code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) __A : str = logging.get_logger(__name__) # pylint: disable=invalid-name __A : int = ''' Examples: ```py >>> import torch >>> import numpy as np >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline >>> from transformers import pipeline >>> from diffusers.utils import load_image >>> def make_hint(image, depth_estimator): ... image = depth_estimator(image)["depth"] ... image = np.array(image) ... image = image[:, :, None] ... image = np.concatenate([image, image, image], axis=2) ... detected_map = torch.from_numpy(image).float() / 255.0 ... hint = detected_map.permute(2, 0, 1) ... return hint >>> depth_estimator = pipeline("depth-estimation") >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16 ... ) >>> pipe_prior = pipe_prior.to("cuda") >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained( ... "kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to("cuda") >>> img = load_image( ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" ... "/kandinsky/cat.png" ... ).resize((768, 768)) >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to("cuda") >>> prompt = "A robot, 4k photo" >>> negative_prior_prompt = "lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature" >>> generator = torch.Generator(device="cuda").manual_seed(43) >>> image_emb, zero_image_emb = pipe_prior( ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator ... ).to_tuple() >>> images = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... hint=hint, ... num_inference_steps=50, ... generator=generator, ... height=768, ... width=768, ... ).images >>> images[0].save("robot_cat.png") ``` ''' def lowercase ( __snake_case : Any , __snake_case : int , __snake_case : Dict=8 ): lowercase_ : List[str] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 lowercase_ : int = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class _UpperCAmelCase ( _A ): def __init__( self : List[Any] , A : UNetaDConditionModel , A : DDPMScheduler , A : VQModel , ) -> Any: super().__init__() self.register_modules( unet=A , scheduler=A , movq=A , ) lowercase_ : List[str] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def A ( self : Optional[Any] , A : Optional[Any] , A : Any , A : List[str] , A : Optional[int] , A : Optional[int] , A : List[str] ) -> List[str]: if latents is None: lowercase_ : str = randn_tensor(A , generator=A , device=A , dtype=A ) else: if latents.shape != shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) lowercase_ : List[Any] = latents.to(A ) lowercase_ : Union[str, Any] = latents * scheduler.init_noise_sigma return latents def A ( self : Optional[Any] , A : Union[str, Any]=0 ) -> int: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) lowercase_ : str = torch.device(F'''cuda:{gpu_id}''' ) lowercase_ : List[Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(A , A ) def A ( self : Union[str, Any] , A : Optional[int]=0 ) -> int: if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0''' ): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' ) lowercase_ : List[Any] = torch.device(F'''cuda:{gpu_id}''' ) if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=A ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) lowercase_ : Union[str, Any] = None for cpu_offloaded_model in [self.unet, self.movq]: lowercase_ , lowercase_ : Any = cpu_offload_with_hook(A , A , prev_module_hook=A ) # We'll offload the last model manually. lowercase_ : Dict = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def A ( self : str ) -> str: if not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(A , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(A ) def __call__( self : List[Any] , A : Union[torch.FloatTensor, List[torch.FloatTensor]] , A : Union[torch.FloatTensor, List[torch.FloatTensor]] , A : torch.FloatTensor , A : int = 5_12 , A : int = 5_12 , A : int = 1_00 , A : float = 4.0 , A : int = 1 , A : Optional[Union[torch.Generator, List[torch.Generator]]] = None , A : Optional[torch.FloatTensor] = None , A : Optional[str] = "pil" , A : bool = True , ) -> List[Any]: lowercase_ : List[str] = self._execution_device lowercase_ : Optional[Any] = guidance_scale > 1.0 if isinstance(A , A ): lowercase_ : str = torch.cat(A , dim=0 ) if isinstance(A , A ): lowercase_ : Optional[int] = torch.cat(A , dim=0 ) if isinstance(A , A ): lowercase_ : Optional[Any] = torch.cat(A , dim=0 ) lowercase_ : List[str] = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: lowercase_ : Any = image_embeds.repeat_interleave(A , dim=0 ) lowercase_ : Tuple = negative_image_embeds.repeat_interleave(A , dim=0 ) lowercase_ : Optional[int] = hint.repeat_interleave(A , dim=0 ) lowercase_ : Dict = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=A ) lowercase_ : List[Any] = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=A ) self.scheduler.set_timesteps(A , device=A ) lowercase_ : Optional[Any] = self.scheduler.timesteps lowercase_ : Union[str, Any] = self.movq.config.latent_channels lowercase_ , lowercase_ : Any = downscale_height_and_width(A , A , self.movq_scale_factor ) # create initial latent lowercase_ : Dict = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , A , A , A , self.scheduler , ) for i, t in enumerate(self.progress_bar(A ) ): # expand the latents if we are doing classifier free guidance lowercase_ : Union[str, Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase_ : Dict = {'''image_embeds''': image_embeds, '''hint''': hint} lowercase_ : Dict = self.unet( sample=A , timestep=A , encoder_hidden_states=A , added_cond_kwargs=A , return_dict=A , )[0] if do_classifier_free_guidance: lowercase_ , lowercase_ : Tuple = noise_pred.split(latents.shape[1] , dim=1 ) lowercase_ , lowercase_ : Optional[int] = noise_pred.chunk(2 ) lowercase_ , lowercase_ : List[str] = variance_pred.chunk(2 ) lowercase_ : Any = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) lowercase_ : Optional[int] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , '''variance_type''' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): lowercase_ , lowercase_ : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 lowercase_ : Union[str, Any] = self.scheduler.step( A , A , A , generator=A , )[0] # post-processing lowercase_ : List[Any] = self.movq.decode(A , force_not_quantize=A )['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' ) if output_type in ["np", "pil"]: lowercase_ : List[Any] = image * 0.5 + 0.5 lowercase_ : Any = image.clamp(0 , 1 ) lowercase_ : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowercase_ : int = self.numpy_to_pil(A ) if not return_dict: return (image,) return ImagePipelineOutput(images=A )
33
"""simple docstring""" from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def lowercase ( __snake_case : str , __snake_case : str , __snake_case : Optional[str] = None ): if version.parse(hfh.__version__ ).release < version.parse('''0.11.0''' ).release: # old versions of hfh don't url-encode the file path lowercase_ : Union[str, Any] = quote(__snake_case ) return hfh.hf_hub_url(__snake_case , __snake_case , repo_type='''dataset''' , revision=__snake_case )
33
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowercase__ = { "configuration_vision_text_dual_encoder": ["VisionTextDualEncoderConfig"], "processing_vision_text_dual_encoder": ["VisionTextDualEncoderProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = ["VisionTextDualEncoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = ["FlaxVisionTextDualEncoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = ["TFVisionTextDualEncoderModel"] if TYPE_CHECKING: from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel else: import sys lowercase__ = _LazyModule(__name__, globals()["__file__"], _import_structure)
83
'''simple docstring''' def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ = 1 , SCREAMING_SNAKE_CASE__ = 1000 ) -> int: '''simple docstring''' snake_case : Dict = 1 snake_case : str = 0 for divide_by_number in range(SCREAMING_SNAKE_CASE__ , digit + 1 ): snake_case : list[int] = [] snake_case : Optional[Any] = numerator for _ in range(1 , digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(SCREAMING_SNAKE_CASE__ ): snake_case : Dict = len(SCREAMING_SNAKE_CASE__ ) snake_case : List[str] = divide_by_number else: has_been_divided.append(SCREAMING_SNAKE_CASE__ ) snake_case : Any = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
83
1
from sklearn.metrics import matthews_corrcoef import datasets lowercase__ :Tuple = "\nCompute the Matthews correlation coefficient (MCC)\n\nThe Matthews correlation coefficient is used in machine learning as a\nmeasure of the quality of binary and multiclass classifications. It takes\ninto account true and false positives and negatives and is generally\nregarded as a balanced measure which can be used even if the classes are of\nvery different sizes. The MCC is in essence a correlation coefficient value\nbetween -1 and +1. A coefficient of +1 represents a perfect prediction, 0\nan average random prediction and -1 an inverse prediction. The statistic\nis also known as the phi coefficient. [source: Wikipedia]\n" lowercase__ :str = "\nArgs:\n predictions (list of int): Predicted labels, as returned by a model.\n references (list of int): Ground truth labels.\n sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.\nReturns:\n matthews_correlation (dict containing float): Matthews correlation.\nExamples:\n Example 1, a basic example with only predictions and references as inputs:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3])\n >>> print(round(results[\'matthews_correlation\'], 2))\n 0.54\n\n Example 2, the same example as above, but also including sample weights:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 3, 1, 1, 1, 2])\n >>> print(round(results[\'matthews_correlation\'], 2))\n 0.1\n\n Example 3, the same example as above, but with sample weights that cause a negative correlation:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 1, 0, 0, 0, 1])\n >>> print(round(results[\'matthews_correlation\'], 2))\n -0.25\n" lowercase__ :int = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): def A__ ( self): return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''predictions''': datasets.Value('''int32'''), '''references''': datasets.Value('''int32'''), }) ,reference_urls=[ '''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html''' ] ,) def A__ ( self ,A__ ,A__ ,A__=None): return { "matthews_correlation": float(matthews_corrcoef(lowerCAmelCase_ ,lowerCAmelCase_ ,sample_weight=lowerCAmelCase_)), }
101
import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def snake_case ( snake_case__ :int , snake_case__ :List[str] , snake_case__ :Union[str, Any]) -> str: # Initialise PyTorch model _A = AlbertConfig.from_json_file(snake_case__) print(F'''Building PyTorch model from configuration: {config}''') _A = AlbertForPreTraining(snake_case__) # Load weights from tf checkpoint load_tf_weights_in_albert(snake_case__ , snake_case__ , snake_case__) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''') torch.save(model.state_dict() , snake_case__) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--albert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained ALBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
180
0
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} __SCREAMING_SNAKE_CASE = { """vocab_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } __SCREAMING_SNAKE_CASE = { """vocab_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } __SCREAMING_SNAKE_CASE = { """vocab_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json""" ), }, } __SCREAMING_SNAKE_CASE = { """facebook/dpr-ctx_encoder-single-nq-base""": 512, """facebook/dpr-ctx_encoder-multiset-base""": 512, } __SCREAMING_SNAKE_CASE = { """facebook/dpr-question_encoder-single-nq-base""": 512, """facebook/dpr-question_encoder-multiset-base""": 512, } __SCREAMING_SNAKE_CASE = { """facebook/dpr-reader-single-nq-base""": 512, """facebook/dpr-reader-multiset-base""": 512, } __SCREAMING_SNAKE_CASE = { """facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True}, } __SCREAMING_SNAKE_CASE = { """facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True}, } __SCREAMING_SNAKE_CASE = { """facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True}, } class lowerCamelCase_ ( _A ): '''simple docstring''' a__ = VOCAB_FILES_NAMES a__ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP a__ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION a__ = DPRContextEncoderTokenizer class lowerCamelCase_ ( _A ): '''simple docstring''' a__ = VOCAB_FILES_NAMES a__ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP a__ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION a__ = DPRQuestionEncoderTokenizer __SCREAMING_SNAKE_CASE = collections.namedtuple( """DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""] ) __SCREAMING_SNAKE_CASE = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""]) __SCREAMING_SNAKE_CASE = r""" Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Return: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. """ @add_start_docstrings(_A ) class lowerCamelCase_ : '''simple docstring''' def __call__( self : Optional[int] , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : Union[bool, str] = False , __lowerCamelCase : Union[bool, str] = False , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[Union[str, TensorType]] = None , __lowerCamelCase : Optional[bool] = None , **__lowerCamelCase : int , ) -> BatchEncoding: if titles is None and texts is None: return super().__call__( __lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , return_tensors=__lowerCamelCase , return_attention_mask=__lowerCamelCase , **__lowerCamelCase , ) elif titles is None or texts is None: A : List[str] = titles if texts is None else texts return super().__call__( __lowerCamelCase , __lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , return_tensors=__lowerCamelCase , return_attention_mask=__lowerCamelCase , **__lowerCamelCase , ) A : Any = titles if not isinstance(__lowerCamelCase , __lowerCamelCase ) else [titles] A : str = texts if not isinstance(__lowerCamelCase , __lowerCamelCase ) else [texts] A : Dict = len(__lowerCamelCase ) A : List[Any] = questions if not isinstance(__lowerCamelCase , __lowerCamelCase ) else [questions] * n_passages assert len(__lowerCamelCase ) == len( __lowerCamelCase ), F"""There should be as many titles than texts but got {len(__lowerCamelCase )} titles and {len(__lowerCamelCase )} texts.""" A : Optional[Any] = super().__call__(__lowerCamelCase , __lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase )["input_ids"] A : str = super().__call__(__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase )["input_ids"] A : Union[str, Any] = { "input_ids": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(__lowerCamelCase , __lowerCamelCase ) ] } if return_attention_mask is not False: A : Optional[int] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) A : Optional[Any] = attention_mask return self.pad(__lowerCamelCase , padding=__lowerCamelCase , max_length=__lowerCamelCase , return_tensors=__lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self : Dict , __lowerCamelCase : BatchEncoding , __lowerCamelCase : DPRReaderOutput , __lowerCamelCase : int = 16 , __lowerCamelCase : int = 64 , __lowerCamelCase : int = 4 , ) -> List[DPRSpanPrediction]: A : Optional[int] = reader_input["input_ids"] A , A , A : Any = reader_output[:3] A : str = len(__lowerCamelCase ) A : Union[str, Any] = sorted(range(__lowerCamelCase ) , reverse=__lowerCamelCase , key=relevance_logits.__getitem__ ) A : List[DPRReaderOutput] = [] for doc_id in sorted_docs: A : Optional[int] = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence A : Optional[int] = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: A : Optional[int] = sequence_ids.index(self.pad_token_id ) else: A : int = len(__lowerCamelCase ) A : Optional[int] = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=__lowerCamelCase , top_spans=__lowerCamelCase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=__lowerCamelCase , start_index=__lowerCamelCase , end_index=__lowerCamelCase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(__lowerCamelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , __lowerCamelCase : List[int] , __lowerCamelCase : List[int] , __lowerCamelCase : int , __lowerCamelCase : int , ) -> List[DPRSpanPrediction]: A : Any = [] for start_index, start_score in enumerate(__lowerCamelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) A : Tuple = sorted(__lowerCamelCase , key=lambda __lowerCamelCase : x[1] , reverse=__lowerCamelCase ) A : str = [] for (start_index, end_index), score in scores: assert start_index <= end_index, F"""Wrong span indices: [{start_index}:{end_index}]""" A : Union[str, Any] = end_index - start_index + 1 assert length <= max_answer_length, F"""Span is too long: {length} > {max_answer_length}""" if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(__lowerCamelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(_A ) class lowerCamelCase_ ( _A ,_A ): '''simple docstring''' a__ = VOCAB_FILES_NAMES a__ = READER_PRETRAINED_VOCAB_FILES_MAP a__ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ = READER_PRETRAINED_INIT_CONFIGURATION a__ = ["input_ids", "attention_mask"] a__ = DPRReaderTokenizer
256
import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def UpperCAmelCase ( _lowerCamelCase ): A : Any = [] for line in lines: A : List[str] = re.sub(R"#.*" , "" , _lowerCamelCase ) # remove comments if line: filtered_lines.append(_lowerCamelCase ) A : str = "\n".join(_lowerCamelCase ) # Make a hash from all this code A : Any = full_str.encode("utf-8" ) return shaaaa(_lowerCamelCase ).hexdigest() # get importable module names and hash for caching __SCREAMING_SNAKE_CASE = { """csv""": (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), """json""": (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), """pandas""": (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), """parquet""": (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), """arrow""": (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), """text""": (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), """imagefolder""": (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), """audiofolder""": (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions __SCREAMING_SNAKE_CASE = { """.csv""": ("""csv""", {}), """.tsv""": ("""csv""", {"""sep""": """\t"""}), """.json""": ("""json""", {}), """.jsonl""": ("""json""", {}), """.parquet""": ("""parquet""", {}), """.arrow""": ("""arrow""", {}), """.txt""": ("""text""", {}), } _EXTENSION_TO_MODULE.update({ext: ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) __SCREAMING_SNAKE_CASE = {"""imagefolder""", """audiofolder"""} # Used to filter data files based on extensions given a module name __SCREAMING_SNAKE_CASE = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append(""".zip""") _MODULE_TO_EXTENSIONS["audiofolder"].append(""".zip""")
256
1
import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin A : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece class A ( UpperCamelCase__ , unittest.TestCase ): '''simple docstring''' A__ = XLMProphetNetTokenizer A__ = False A__ = True def lowerCamelCase__ (self : str ) -> Optional[int]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowercase__ = XLMProphetNetTokenizer(__a , keep_accents=__a ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase__ (self : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = """[PAD]""" lowercase__ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__a ) , __a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__a ) , __a ) def lowerCamelCase__ (self : List[str] ) -> Any: """simple docstring""" lowercase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """[PAD]""" ) self.assertEqual(vocab_keys[1] , """[CLS]""" ) self.assertEqual(vocab_keys[-1] , """j""" ) self.assertEqual(len(__a ) , 1012 ) def lowerCamelCase__ (self : Any ) -> Optional[Any]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1012 ) def lowerCamelCase__ (self : Tuple ) -> Optional[Any]: """simple docstring""" lowercase__ = XLMProphetNetTokenizer(__a , keep_accents=__a ) lowercase__ = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(__a , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__a ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowercase__ = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( __a , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) lowercase__ = tokenizer.convert_tokens_to_ids(__a ) self.assertListEqual( __a , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) lowercase__ = tokenizer.convert_ids_to_tokens(__a ) self.assertListEqual( __a , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """[UNK]""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """[UNK]""", """.""", ] , ) @cached_property def lowerCamelCase__ (self : Optional[int] ) -> Union[str, Any]: """simple docstring""" return XLMProphetNetTokenizer.from_pretrained("""microsoft/xprophetnet-large-wiki100-cased""" ) @slow def lowerCamelCase__ (self : Optional[Any] ) -> str: """simple docstring""" lowercase__ = """Hello World!""" lowercase__ = [3_5389, 6672, 49, 2] self.assertListEqual(__a , self.big_tokenizer.encode(__a ) ) @slow def lowerCamelCase__ (self : int ) -> List[Any]: """simple docstring""" lowercase__ = {"""input_ids""": [[1_1073, 8_2783, 18, 26, 8_2783, 549, 5_1540, 248, 1_7209, 1301, 217, 20, 21_5186, 1325, 147, 1_7209, 1301, 217, 20, 5_6370, 53, 12_2020, 20, 1_6477, 27, 8_7355, 4548, 20, 4728, 7_8392, 17, 15_9969, 18, 26, 2_4491, 629, 15, 538, 2_2704, 5439, 15, 2788, 2_4491, 9885, 15, 4_3534, 605, 15, 814, 1_8403, 3_3200, 29, 15, 4_3534, 2_4458, 1_2410, 111, 2_4966, 8_3669, 9637, 14_4068, 26, 850, 2_2346, 27, 147, 2_4966, 8_3669, 8_3490, 26, 3_9113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 12_2020, 11_5785, 34, 816, 1339, 4_6887, 18, 147, 5_3905, 1951, 4_2238, 4_1170, 1_7732, 834, 436, 15, 2_7523, 9_8733, 217, 147, 5542, 4981, 930, 1_7347, 16, 2], [2_0091, 629, 94, 8_2786, 58, 490, 20, 1528, 84, 5_3905, 344, 8_0592, 11_0128, 1_8822, 5267, 1306, 62, 15_2537, 308, 7997, 401, 12_4427, 549, 3_5442, 225, 109, 1_5055, 2_5748, 147, 7119, 4_3712, 34, 767, 13_5366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 6_3784, 11_9466, 17, 14_7808, 8_8214, 18, 656, 81, 32, 3296, 1_0280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__a , model_name="""microsoft/xprophetnet-large-wiki100-cased""" , revision="""1acad1643ddd54a44df6a1b797ada8373685d90e""" , )
305
'''simple docstring''' from __future__ import annotations import queue class __A : def __init__(self : Optional[Any] , __a : str ): UpperCAmelCase_ = data UpperCAmelCase_ = None UpperCAmelCase_ = None def lowerCAmelCase_ ( ) -> TreeNode: '''simple docstring''' print("\n********Press N to stop entering at any point of time********\n" ) UpperCAmelCase_ = input("Enter the value of the root node: " ).strip().lower() UpperCAmelCase_ = queue.Queue() UpperCAmelCase_ = TreeNode(int(snake_case_ ) ) q.put(snake_case_ ) while not q.empty(): UpperCAmelCase_ = q.get() UpperCAmelCase_ = f"""Enter the left node of {node_found.data}: """ UpperCAmelCase_ = input(snake_case_ ).strip().lower() or "n" if check == "n": return tree_node UpperCAmelCase_ = TreeNode(int(snake_case_ ) ) UpperCAmelCase_ = left_node q.put(snake_case_ ) UpperCAmelCase_ = f"""Enter the right node of {node_found.data}: """ UpperCAmelCase_ = input(snake_case_ ).strip().lower() or "n" if check == "n": return tree_node UpperCAmelCase_ = TreeNode(int(snake_case_ ) ) UpperCAmelCase_ = right_node q.put(snake_case_ ) raise def lowerCAmelCase_ ( snake_case_ : TreeNode ) -> None: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ) or not node: return print(node.data , end="," ) pre_order(node.left ) pre_order(node.right ) def lowerCAmelCase_ ( snake_case_ : TreeNode ) -> None: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ) or not node: return in_order(node.left ) print(node.data , end="," ) in_order(node.right ) def lowerCAmelCase_ ( snake_case_ : TreeNode ) -> None: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end="," ) def lowerCAmelCase_ ( snake_case_ : TreeNode ) -> None: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ) or not node: return UpperCAmelCase_ = queue.Queue() q.put(snake_case_ ) while not q.empty(): UpperCAmelCase_ = q.get() print(node_dequeued.data , end="," ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def lowerCAmelCase_ ( snake_case_ : TreeNode ) -> None: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ) or not node: return UpperCAmelCase_ = queue.Queue() q.put(snake_case_ ) while not q.empty(): UpperCAmelCase_ = [] while not q.empty(): UpperCAmelCase_ = q.get() print(node_dequeued.data , end="," ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(snake_case_ ) def lowerCAmelCase_ ( snake_case_ : TreeNode ) -> None: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ) or not node: return UpperCAmelCase_ = [] UpperCAmelCase_ = node while n or stack: while n: # start from root node, find its left child print(n.data , end="," ) stack.append(snake_case_ ) UpperCAmelCase_ = n.left # end of while means current node doesn't have left child UpperCAmelCase_ = stack.pop() # start to traverse its right child UpperCAmelCase_ = n.right def lowerCAmelCase_ ( snake_case_ : TreeNode ) -> None: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ) or not node: return UpperCAmelCase_ = [] UpperCAmelCase_ = node while n or stack: while n: stack.append(snake_case_ ) UpperCAmelCase_ = n.left UpperCAmelCase_ = stack.pop() print(n.data , end="," ) UpperCAmelCase_ = n.right def lowerCAmelCase_ ( snake_case_ : TreeNode ) -> None: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ) or not node: return UpperCAmelCase_ , UpperCAmelCase_ = [], [] UpperCAmelCase_ = node stacka.append(snake_case_ ) while stacka: # to find the reversed order of post order, store it in stack2 UpperCAmelCase_ = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(snake_case_ ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end="," ) def lowerCAmelCase_ ( snake_case_ : str = "" , snake_case_ : Any=50 , snake_case_ : Union[str, Any]="*" ) -> str: '''simple docstring''' if not s: return "\n" + width * char UpperCAmelCase_ , UpperCAmelCase_ = divmod(width - len(snake_case_ ) - 2 , 2 ) return f"""{left * char} {s} {(left + extra) * char}""" if __name__ == "__main__": import doctest doctest.testmod() print(prompt('Binary Tree Traversals')) SCREAMING_SNAKE_CASE_: TreeNode =build_tree() print(prompt('Pre Order Traversal')) pre_order(node) print(prompt() + '\n') print(prompt('In Order Traversal')) in_order(node) print(prompt() + '\n') print(prompt('Post Order Traversal')) post_order(node) print(prompt() + '\n') print(prompt('Level Order Traversal')) level_order(node) print(prompt() + '\n') print(prompt('Actual Level Order Traversal')) level_order_actual(node) print('*' * 50 + '\n') print(prompt('Pre Order Traversal - Iteration Version')) pre_order_iter(node) print(prompt() + '\n') print(prompt('In Order Traversal - Iteration Version')) in_order_iter(node) print(prompt() + '\n') print(prompt('Post Order Traversal - Iteration Version')) post_order_iter(node) print(prompt())
1
0
"""simple docstring""" import copy import os import cva import numpy as np from matplotlib import pyplot as plt class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : List[Any] )-> Union[str, Any]: lowerCamelCase__ : Any ='''''' lowerCamelCase__ : Tuple ='''''' lowerCamelCase__ : Any =[] lowerCamelCase__ : int =0 lowerCamelCase__ : Optional[Any] =256 lowerCamelCase__ : Dict =0 lowerCamelCase__ : List[str] =0 lowerCamelCase__ : Tuple =0 lowerCamelCase__ : Any =0 def snake_case ( self : Optional[Any], lowerCamelCase : Optional[int] )-> Tuple: lowerCamelCase__ : Tuple =cva.imread(lowerCamelCase, 0 ) lowerCamelCase__ : int =copy.deepcopy(self.img ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[Any] =plt.hist(self.img.ravel(), 256, [0, 256], label='''x''' ) lowerCamelCase__ : List[str] =np.sum(lowerCamelCase ) for i in range(len(lowerCamelCase ) ): lowerCamelCase__ : int =x[i] / self.k self.sk += prk lowerCamelCase__ : Tuple =(self.L - 1) * self.sk if self.rem != 0: lowerCamelCase__ : Any =int(last % last ) lowerCamelCase__ : Tuple =int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(lowerCamelCase ) lowerCamelCase__ : Dict =int(np.ma.count(self.img ) / self.img[1].size ) lowerCamelCase__ : Tuple =self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): lowerCamelCase__ : str =self.img[j][i] if num != self.last_list[num]: lowerCamelCase__ : int =self.last_list[num] cva.imwrite('''output_data/output.jpg''', self.img ) def snake_case ( self : Optional[Any] )-> Union[str, Any]: plt.hist(self.img.ravel(), 256, [0, 256] ) def snake_case ( self : List[str] )-> List[str]: cva.imshow('''Output-Image''', self.img ) cva.imshow('''Input-Image''', self.original_image ) cva.waitKey(5000 ) cva.destroyAllWindows() if __name__ == "__main__": _lowercase : Tuple = os.path.join(os.path.basename(__file__), "image_data/input.jpg") _lowercase : Optional[int] = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
272
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging _lowercase : Dict = logging.get_logger(__name__) _lowercase : int = { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json", # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' _a = 'blenderbot-small' _a = ['past_key_values'] _a = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : Tuple, lowerCamelCase : Any=5_0265, lowerCamelCase : Optional[Any]=512, lowerCamelCase : Union[str, Any]=8, lowerCamelCase : Dict=2048, lowerCamelCase : str=16, lowerCamelCase : List[Any]=8, lowerCamelCase : List[str]=2048, lowerCamelCase : int=16, lowerCamelCase : Any=0.0, lowerCamelCase : Dict=0.0, lowerCamelCase : Tuple=True, lowerCamelCase : Tuple=True, lowerCamelCase : Optional[int]="gelu", lowerCamelCase : Tuple=512, lowerCamelCase : Tuple=0.1, lowerCamelCase : Optional[int]=0.0, lowerCamelCase : Optional[int]=0.0, lowerCamelCase : List[str]=0.02, lowerCamelCase : Any=1, lowerCamelCase : Union[str, Any]=False, lowerCamelCase : Any=0, lowerCamelCase : Tuple=1, lowerCamelCase : Tuple=2, lowerCamelCase : Dict=2, **lowerCamelCase : Any, )-> Dict: lowerCamelCase__ : Dict =vocab_size lowerCamelCase__ : Dict =max_position_embeddings lowerCamelCase__ : Optional[Any] =d_model lowerCamelCase__ : Union[str, Any] =encoder_ffn_dim lowerCamelCase__ : Optional[Any] =encoder_layers lowerCamelCase__ : Any =encoder_attention_heads lowerCamelCase__ : Union[str, Any] =decoder_ffn_dim lowerCamelCase__ : Optional[int] =decoder_layers lowerCamelCase__ : Any =decoder_attention_heads lowerCamelCase__ : Optional[int] =dropout lowerCamelCase__ : str =attention_dropout lowerCamelCase__ : Union[str, Any] =activation_dropout lowerCamelCase__ : Tuple =activation_function lowerCamelCase__ : str =init_std lowerCamelCase__ : List[Any] =encoder_layerdrop lowerCamelCase__ : List[str] =decoder_layerdrop lowerCamelCase__ : Tuple =use_cache lowerCamelCase__ : Optional[Any] =encoder_layers lowerCamelCase__ : List[Any] =scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowerCamelCase, bos_token_id=lowerCamelCase, eos_token_id=lowerCamelCase, is_encoder_decoder=lowerCamelCase, decoder_start_token_id=lowerCamelCase, forced_eos_token_id=lowerCamelCase, **lowerCamelCase, ) class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' @property def snake_case ( self : Optional[int] )-> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: lowerCamelCase__ : int =OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: lowerCamelCase__ : List[str] ={0: '''batch'''} lowerCamelCase__ : Tuple ={0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: lowerCamelCase__ : Union[str, Any] ={0: '''batch''', 1: '''decoder_sequence'''} lowerCamelCase__ : Tuple ={0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(lowerCamelCase, direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. lowerCamelCase__ : Optional[Any] =OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: lowerCamelCase__ , lowerCamelCase__ : List[str] =self.num_layers for i in range(lowerCamelCase ): lowerCamelCase__ : Optional[Any] ={0: '''batch''', 2: '''past_sequence + sequence'''} lowerCamelCase__ : Optional[int] ={0: '''batch''', 2: '''past_sequence + sequence'''} else: lowerCamelCase__ : str =OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property def snake_case ( self : Dict )-> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: lowerCamelCase__ : Dict =super().outputs else: lowerCamelCase__ : Optional[Any] =super(lowerCamelCase, self ).outputs if self.use_past: lowerCamelCase__ , lowerCamelCase__ : str =self.num_layers for i in range(lowerCamelCase ): lowerCamelCase__ : Tuple ={0: '''batch''', 2: '''past_sequence + sequence'''} lowerCamelCase__ : Dict ={0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def snake_case ( self : List[str], lowerCamelCase : PreTrainedTokenizer, lowerCamelCase : int = -1, lowerCamelCase : int = -1, lowerCamelCase : bool = False, lowerCamelCase : Optional[TensorType] = None, )-> Mapping[str, Any]: lowerCamelCase__ : Any =self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase ) # Generate decoder inputs lowerCamelCase__ : str =seq_length if not self.use_past else 1 lowerCamelCase__ : Tuple =self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase ) lowerCamelCase__ : str ={F'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} lowerCamelCase__ : Tuple =dict(**lowerCamelCase, **lowerCamelCase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch lowerCamelCase__ , lowerCamelCase__ : List[Any] =common_inputs['''input_ids'''].shape lowerCamelCase__ : Optional[Any] =common_inputs['''decoder_input_ids'''].shape[1] lowerCamelCase__ , lowerCamelCase__ : List[str] =self.num_attention_heads lowerCamelCase__ : str =( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) lowerCamelCase__ : List[Any] =decoder_seq_length + 3 lowerCamelCase__ : Optional[int] =( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) lowerCamelCase__ : Optional[Any] =torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(lowerCamelCase, lowerCamelCase )], dim=1 ) lowerCamelCase__ : Tuple =[] # If the number of encoder and decoder layers are present in the model configuration, both are considered lowerCamelCase__ , lowerCamelCase__ : int =self.num_layers lowerCamelCase__ : Any =min(lowerCamelCase, lowerCamelCase ) lowerCamelCase__ : Any =max(lowerCamelCase, lowerCamelCase ) - min_num_layers lowerCamelCase__ : Dict ='''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(lowerCamelCase ): common_inputs["past_key_values"].append( ( torch.zeros(lowerCamelCase ), torch.zeros(lowerCamelCase ), torch.zeros(lowerCamelCase ), torch.zeros(lowerCamelCase ), ) ) # TODO: test this. lowerCamelCase__ : Union[str, Any] =encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(lowerCamelCase, lowerCamelCase ): common_inputs["past_key_values"].append((torch.zeros(lowerCamelCase ), torch.zeros(lowerCamelCase )) ) return common_inputs def snake_case ( self : List[str], lowerCamelCase : PreTrainedTokenizer, lowerCamelCase : int = -1, lowerCamelCase : int = -1, lowerCamelCase : bool = False, lowerCamelCase : Optional[TensorType] = None, )-> Mapping[str, Any]: lowerCamelCase__ : int =self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch lowerCamelCase__ , lowerCamelCase__ : List[str] =common_inputs['''input_ids'''].shape # Not using the same length for past_key_values lowerCamelCase__ : Union[str, Any] =seqlen + 2 lowerCamelCase__ , lowerCamelCase__ : int =self.num_layers lowerCamelCase__ , lowerCamelCase__ : Optional[int] =self.num_attention_heads lowerCamelCase__ : int =( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) lowerCamelCase__ : str =common_inputs['''attention_mask'''].dtype lowerCamelCase__ : int =torch.cat( [common_inputs['''attention_mask'''], torch.ones(lowerCamelCase, lowerCamelCase, dtype=lowerCamelCase )], dim=1 ) lowerCamelCase__ : str =[ (torch.zeros(lowerCamelCase ), torch.zeros(lowerCamelCase )) for _ in range(lowerCamelCase ) ] return common_inputs def snake_case ( self : Optional[int], lowerCamelCase : PreTrainedTokenizer, lowerCamelCase : int = -1, lowerCamelCase : int = -1, lowerCamelCase : bool = False, lowerCamelCase : Optional[TensorType] = None, )-> Mapping[str, Any]: # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowerCamelCase__ : int =compute_effective_axis_dimension( lowerCamelCase, fixed_dimension=OnnxConfig.default_fixed_batch, num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowerCamelCase__ : Optional[int] =tokenizer.num_special_tokens_to_add(lowerCamelCase ) lowerCamelCase__ : Optional[int] =compute_effective_axis_dimension( lowerCamelCase, fixed_dimension=OnnxConfig.default_fixed_sequence, num_token_to_add=lowerCamelCase ) # Generate dummy inputs according to compute batch and sequence lowerCamelCase__ : Optional[int] =[''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size lowerCamelCase__ : Optional[Any] =dict(tokenizer(lowerCamelCase, return_tensors=lowerCamelCase ) ) return common_inputs def snake_case ( self : List[Any], lowerCamelCase : PreTrainedTokenizer, lowerCamelCase : int = -1, lowerCamelCase : int = -1, lowerCamelCase : bool = False, lowerCamelCase : Optional[TensorType] = None, )-> Mapping[str, Any]: if self.task in ["default", "seq2seq-lm"]: lowerCamelCase__ : Union[str, Any] =self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowerCamelCase, batch_size=lowerCamelCase, seq_length=lowerCamelCase, is_pair=lowerCamelCase, framework=lowerCamelCase ) elif self.task == "causal-lm": lowerCamelCase__ : Union[str, Any] =self._generate_dummy_inputs_for_causal_lm( lowerCamelCase, batch_size=lowerCamelCase, seq_length=lowerCamelCase, is_pair=lowerCamelCase, framework=lowerCamelCase ) else: lowerCamelCase__ : List[Any] =self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCamelCase, batch_size=lowerCamelCase, seq_length=lowerCamelCase, is_pair=lowerCamelCase, framework=lowerCamelCase ) return common_inputs def snake_case ( self : Optional[Any], lowerCamelCase : Tuple, lowerCamelCase : Union[str, Any], lowerCamelCase : Dict, lowerCamelCase : Any )-> str: if self.task in ["default", "seq2seq-lm"]: lowerCamelCase__ : Any =super()._flatten_past_key_values_(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase ) else: lowerCamelCase__ : List[str] =super(lowerCamelCase, self )._flatten_past_key_values_( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase )
272
1
'''simple docstring''' from collections.abc import Callable class __SCREAMING_SNAKE_CASE : def __init__( self : List[str] , __lowercase : Callable | None = None ) -> None: # Stores actual heap items. SCREAMING_SNAKE_CASE__ : list =[] # Stores indexes of each item for supporting updates and deletion. SCREAMING_SNAKE_CASE__ : dict ={} # Stores current size of heap. SCREAMING_SNAKE_CASE__ : Any =0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. SCREAMING_SNAKE_CASE__ : Optional[int] =key or (lambda __lowercase : x) def __magic_name__ ( self : List[str] , __lowercase : int ) -> int | None: return int((i - 1) / 2 ) if i > 0 else None def __magic_name__ ( self : Any , __lowercase : int ) -> int | None: SCREAMING_SNAKE_CASE__ : Optional[int] =int(2 * i + 1 ) return left if 0 < left < self.size else None def __magic_name__ ( self : Optional[int] , __lowercase : int ) -> int | None: SCREAMING_SNAKE_CASE__ : str =int(2 * i + 2 ) return right if 0 < right < self.size else None def __magic_name__ ( self : int , __lowercase : int , __lowercase : int ) -> None: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] =( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] =self.arr[j], self.arr[i] def __magic_name__ ( self : int , __lowercase : int , __lowercase : int ) -> bool: return self.arr[i][1] < self.arr[j][1] def __magic_name__ ( self : Optional[int] , __lowercase : int ) -> int: SCREAMING_SNAKE_CASE__ : str =self._left(__lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] =self._right(__lowercase ) SCREAMING_SNAKE_CASE__ : str =i if left is not None and not self._cmp(__lowercase , __lowercase ): SCREAMING_SNAKE_CASE__ : List[str] =left if right is not None and not self._cmp(__lowercase , __lowercase ): SCREAMING_SNAKE_CASE__ : List[Any] =right return valid_parent def __magic_name__ ( self : Union[str, Any] , __lowercase : int ) -> None: SCREAMING_SNAKE_CASE__ : int =self._parent(__lowercase ) while parent is not None and not self._cmp(__lowercase , __lowercase ): self._swap(__lowercase , __lowercase ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any =parent, self._parent(__lowercase ) def __magic_name__ ( self : Optional[int] , __lowercase : int ) -> None: SCREAMING_SNAKE_CASE__ : Any =self._get_valid_parent(__lowercase ) while valid_parent != index: self._swap(__lowercase , __lowercase ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int =valid_parent, self._get_valid_parent(__lowercase ) def __magic_name__ ( self : Optional[Any] , __lowercase : int , __lowercase : int ) -> None: if item not in self.pos_map: return SCREAMING_SNAKE_CASE__ : str =self.pos_map[item] SCREAMING_SNAKE_CASE__ : Union[str, Any] =[item, self.key(__lowercase )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(__lowercase ) self._heapify_down(__lowercase ) def __magic_name__ ( self : Any , __lowercase : int ) -> None: if item not in self.pos_map: return SCREAMING_SNAKE_CASE__ : Tuple =self.pos_map[item] del self.pos_map[item] SCREAMING_SNAKE_CASE__ : int =self.arr[self.size - 1] SCREAMING_SNAKE_CASE__ : int =index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(__lowercase ) self._heapify_down(__lowercase ) def __magic_name__ ( self : Union[str, Any] , __lowercase : int , __lowercase : int ) -> None: SCREAMING_SNAKE_CASE__ : Optional[Any] =len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(__lowercase )] ) else: SCREAMING_SNAKE_CASE__ : Any =[item, self.key(__lowercase )] SCREAMING_SNAKE_CASE__ : Optional[Any] =self.size self.size += 1 self._heapify_up(self.size - 1 ) def __magic_name__ ( self : Optional[Any] ) -> tuple | None: return self.arr[0] if self.size else None def __magic_name__ ( self : str ) -> tuple | None: SCREAMING_SNAKE_CASE__ : List[Any] =self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def _a( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
152
'''simple docstring''' import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser a_ = re.compile(R'\s+') def _a( UpperCamelCase__ : str ): '''simple docstring''' return {"hash": hashlib.mda(re.sub(UpperCamelCase__, '''''', example['''content'''] ).encode('''utf-8''' ) ).hexdigest()} def _a( UpperCamelCase__ : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] =[len(UpperCamelCase__ ) for line in example['''content'''].splitlines()] return {"line_mean": np.mean(UpperCamelCase__ ), "line_max": max(UpperCamelCase__ )} def _a( UpperCamelCase__ : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple =np.mean([c.isalnum() for c in example['''content''']] ) return {"alpha_frac": alpha_frac} def _a( UpperCamelCase__ : Any, UpperCamelCase__ : Any ): '''simple docstring''' if example["hash"] in uniques: uniques.remove(example['''hash'''] ) return True else: return False def _a( UpperCamelCase__ : Any, UpperCamelCase__ : Optional[Any]=5 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] =['''auto-generated''', '''autogenerated''', '''automatically generated'''] SCREAMING_SNAKE_CASE__ : Dict =example['''content'''].splitlines() for _, line in zip(range(UpperCamelCase__ ), UpperCamelCase__ ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def _a( UpperCamelCase__ : Union[str, Any], UpperCamelCase__ : Tuple=5, UpperCamelCase__ : Optional[Any]=0.0_5 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple =['''unit tests''', '''test file''', '''configuration file'''] SCREAMING_SNAKE_CASE__ : List[Any] =example['''content'''].splitlines() SCREAMING_SNAKE_CASE__ : List[str] =0 SCREAMING_SNAKE_CASE__ : Optional[Any] =0 # first test for _, line in zip(range(UpperCamelCase__ ), UpperCamelCase__ ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test SCREAMING_SNAKE_CASE__ : List[str] =example['''content'''].count('''\n''' ) SCREAMING_SNAKE_CASE__ : Optional[int] =int(coeff * nlines ) for line in lines: count_config += line.lower().count('''config''' ) count_test += line.lower().count('''test''' ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def _a( UpperCamelCase__ : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] =['''def ''', '''class ''', '''for ''', '''while '''] SCREAMING_SNAKE_CASE__ : List[Any] =example['''content'''].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def _a( UpperCamelCase__ : Any, UpperCamelCase__ : Dict=4 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] =example['''content'''].splitlines() SCREAMING_SNAKE_CASE__ : Optional[Any] =0 for line in lines: counter += line.lower().count('''=''' ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def _a( UpperCamelCase__ : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str =tokenizer(example['''content'''], truncation=UpperCamelCase__ )['''input_ids'''] SCREAMING_SNAKE_CASE__ : Optional[Any] =len(example['''content'''] ) / len(UpperCamelCase__ ) return {"ratio": ratio} def _a( UpperCamelCase__ : str ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict ={} results.update(get_hash(UpperCamelCase__ ) ) results.update(line_stats(UpperCamelCase__ ) ) results.update(alpha_stats(UpperCamelCase__ ) ) results.update(char_token_ratio(UpperCamelCase__ ) ) results.update(is_autogenerated(UpperCamelCase__ ) ) results.update(is_config_or_test(UpperCamelCase__ ) ) results.update(has_no_keywords(UpperCamelCase__ ) ) results.update(has_few_assignments(UpperCamelCase__ ) ) return results def _a( UpperCamelCase__ : Tuple, UpperCamelCase__ : List[Any], UpperCamelCase__ : str ): '''simple docstring''' if not check_uniques(UpperCamelCase__, UpperCamelCase__ ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def _a( UpperCamelCase__ : str ): '''simple docstring''' with open(UpperCamelCase__, '''rb''' ) as f_in: with gzip.open(str(UpperCamelCase__ ) + '''.gz''', '''wb''', compresslevel=6 ) as f_out: shutil.copyfileobj(UpperCamelCase__, UpperCamelCase__ ) os.unlink(UpperCamelCase__ ) # Settings a_ = HfArgumentParser(PreprocessingArguments) a_ = parser.parse_args() if args.num_workers is None: a_ = multiprocessing.cpu_count() a_ = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset a_ = time.time() a_ = load_dataset(args.dataset_name, split='train') print(F'''Time to load dataset: {time.time()-t_start:.2f}''') # Run preprocessing a_ = time.time() a_ = ds.map(preprocess, num_proc=args.num_workers) print(F'''Time to preprocess dataset: {time.time()-t_start:.2f}''') # Deduplicate hashes a_ = set(ds.unique('hash')) a_ = len(uniques) / len(ds) print(F'''Fraction of duplicates: {1-frac:.2%}''') # Deduplicate data and apply heuristics a_ = time.time() a_ = ds.filter(filter, fn_kwargs={'uniques': uniques, 'args': args}) print(F'''Time to filter dataset: {time.time()-t_start:.2f}''') print(F'''Size of filtered dataset: {len(ds_filter)}''') # Deduplicate with minhash and jaccard similarity if args.near_deduplication: a_ = time.time() a_ , a_ = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(F'''Time to deduplicate dataset: {time.time()-t_start:.2f}''') print(F'''Size of deduplicate dataset: {len(ds_filter)}''') # Save data in batches of samples_per_file a_ = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / 'duplicate_clusters.json', 'w') as f: json.dump(duplicate_clusters, f) a_ = output_dir / 'data' data_dir.mkdir(exist_ok=True) a_ = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): a_ = str(data_dir / F'''file-{file_number+1:012}.json''') a_ = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(F'''Time to save dataset: {time.time()-t_start:.2f}''')
152
1
from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class __a ( __UpperCamelCase ): __lowercase : Union[List[PIL.Image.Image], np.ndarray] __lowercase : Optional[List[bool]] if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
362
import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __a ( __UpperCamelCase , unittest.TestCase ): __lowercase : Optional[int] = CLIPTokenizer __lowercase : str = CLIPTokenizerFast __lowercase : Tuple = True __lowercase : str = {} __lowercase : Dict = False def SCREAMING_SNAKE_CASE__ ( self ) -> int: '''simple docstring''' super().setUp() # fmt: off lowercase__: str = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on lowercase__: List[str] = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) lowercase__: int = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>'] lowercase__: Optional[int] = {'unk_token': '<unk>'} lowercase__: int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowercase__: Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(lowerCAmelCase__ ) ) def SCREAMING_SNAKE_CASE__ ( self , **lowerCAmelCase__ ) -> List[str]: '''simple docstring''' kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self , **lowerCAmelCase__ ) -> Optional[int]: '''simple docstring''' kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> Union[str, Any]: '''simple docstring''' lowercase__: Dict = 'lower newer' lowercase__: Dict = 'lower newer' return input_text, output_text def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' lowercase__: Union[str, Any] = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowercase__: Dict = 'lower newer' lowercase__: Union[str, Any] = ['lo', 'w', 'er</w>', 'n', 'e', 'w', 'er</w>'] lowercase__: Any = tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase__: Tuple = tokens + [tokenizer.unk_token] lowercase__: Tuple = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , lowerCAmelCase__ ) @require_ftfy def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): lowercase__: List[str] = self.tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) lowercase__: Optional[int] = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) lowercase__: Optional[int] = 'A\n\'ll 11p223RF☆ho!!to?\'d\'d\'\'d of a cat to-$\'\'d.' lowercase__: Optional[Any] = tokenizer_s.tokenize(lowerCAmelCase__ ) lowercase__: Dict = tokenizer_r.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways lowercase__: Dict = 'xa\u0303y' + ' ' + 'x\xe3y' lowercase__: Tuple = tokenizer_s.tokenize(lowerCAmelCase__ ) lowercase__: int = tokenizer_r.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) # Test that the tokenization is identical on unicode of space type lowercase__: str = [ '\u0009', # (horizontal tab, '\t') '\u000B', # (vertical tab) '\u000C', # (form feed) '\u0020', # (space, ' ') '\u200E', # (left-to-right mark):w '\u200F', # (right-to-left mark) ] for unicode_seq in spaces_unicodes: lowercase__: Optional[Any] = tokenizer_s.tokenize(lowerCAmelCase__ ) lowercase__: Tuple = tokenizer_r.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) # Test that the tokenization is identical on unicode of line break type lowercase__: str = [ '\u000A', # (line feed, '\n') '\r\n', # (carriage return and line feed, '\r\n') '\u000D', # (carriage return, '\r') '\r', # (carriage return, '\r') '\u000D', # (carriage return, '\r') '\u2028', # (line separator) '\u2029', # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: lowercase__: Optional[int] = tokenizer_s.tokenize(lowerCAmelCase__ ) lowercase__: Optional[int] = tokenizer_r.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): lowercase__: Optional[int] = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` lowercase__: Optional[int] = F'{text_of_1_token} {text_of_1_token}' lowercase__: int = self.rust_tokenizer_class.from_pretrained( lowerCAmelCase__ , use_fast=lowerCAmelCase__ , ) lowercase__: Dict = tokenizer_r(lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCAmelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCAmelCase__ ) + 1, len(lowerCAmelCase__ ) + 1 + len(lowerCAmelCase__ )) , ) lowercase__: Any = F' {text}' lowercase__: Union[str, Any] = self.rust_tokenizer_class.from_pretrained( lowerCAmelCase__ , use_fast=lowerCAmelCase__ , ) lowercase__: int = tokenizer_r(lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowerCAmelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowerCAmelCase__ ) + 1, 1 + len(lowerCAmelCase__ ) + 1 + len(lowerCAmelCase__ )) , ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: '''simple docstring''' # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(lowerCAmelCase__ ) as context: self.rust_tokenizer_class.from_pretrained('robot-test/old-clip-tokenizer' ) self.assertTrue( context.exception.args[0].startswith( 'The `backend_tokenizer` provided does not match the expected format.' ) ) @require_ftfy def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' super().test_tokenization_python_rust_equals() def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' # CLIP always lower cases letters pass
288
0
'''simple docstring''' import math from collections.abc import Iterator from itertools import takewhile def __UpperCamelCase ( lowercase__ : int ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5, int(math.sqrt(__snake_case ) + 1 ), 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __UpperCamelCase ( ): '''simple docstring''' __lowercase =2 while True: if is_prime(__snake_case ): yield num num += 1 def __UpperCamelCase ( lowercase__ : int = 2_00_00_00 ): '''simple docstring''' return sum(takewhile(lambda lowercase__ : x < n, prime_generator() ) ) if __name__ == "__main__": print(F'''{solution() = }''')
141
'''simple docstring''' from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging a_ : Dict = logging.get_logger(__name__) a_ : Any = { """snap-research/efficientformer-l1-300""": ( """https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json""" ), } class __UpperCamelCase ( lowerCamelCase__ ): lowercase : List[str] ='efficientformer' def __init__( self, lowerCAmelCase = [3, 2, 6, 4], lowerCAmelCase = [48, 96, 224, 448], lowerCAmelCase = [True, True, True, True], lowerCAmelCase = 448, lowerCAmelCase = 32, lowerCAmelCase = 4, lowerCAmelCase = 7, lowerCAmelCase = 5, lowerCAmelCase = 8, lowerCAmelCase = 4, lowerCAmelCase = 0.0, lowerCAmelCase = 16, lowerCAmelCase = 3, lowerCAmelCase = 3, lowerCAmelCase = 3, lowerCAmelCase = 2, lowerCAmelCase = 1, lowerCAmelCase = 0.0, lowerCAmelCase = 1, lowerCAmelCase = True, lowerCAmelCase = True, lowerCAmelCase = 1e-5, lowerCAmelCase = "gelu", lowerCAmelCase = 0.0_2, lowerCAmelCase = 1e-12, lowerCAmelCase = 224, lowerCAmelCase = 1e-05, **lowerCAmelCase, ): """simple docstring""" super().__init__(**lowerCAmelCase ) lowerCamelCase_ =hidden_act lowerCamelCase_ =hidden_dropout_prob lowerCamelCase_ =hidden_sizes lowerCamelCase_ =num_hidden_layers lowerCamelCase_ =num_attention_heads lowerCamelCase_ =initializer_range lowerCamelCase_ =layer_norm_eps lowerCamelCase_ =patch_size lowerCamelCase_ =num_channels lowerCamelCase_ =depths lowerCamelCase_ =mlp_expansion_ratio lowerCamelCase_ =downsamples lowerCamelCase_ =dim lowerCamelCase_ =key_dim lowerCamelCase_ =attention_ratio lowerCamelCase_ =resolution lowerCamelCase_ =pool_size lowerCamelCase_ =downsample_patch_size lowerCamelCase_ =downsample_stride lowerCamelCase_ =downsample_pad lowerCamelCase_ =drop_path_rate lowerCamelCase_ =num_metaad_blocks lowerCamelCase_ =distillation lowerCamelCase_ =use_layer_scale lowerCamelCase_ =layer_scale_init_value lowerCamelCase_ =image_size lowerCamelCase_ =batch_norm_eps
75
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL a__ : Union[str, Any] = logging.get_logger(__name__) def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = b.T __SCREAMING_SNAKE_CASE = np.sum(np.square(lowerCAmelCase_ ) , axis=1 ) __SCREAMING_SNAKE_CASE = np.sum(np.square(lowerCAmelCase_ ) , axis=0 ) __SCREAMING_SNAKE_CASE = np.matmul(lowerCAmelCase_ , lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = aa[:, None] - 2 * ab + ba[None, :] return d def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = x.reshape(-1 , 3 ) __SCREAMING_SNAKE_CASE = squared_euclidean_distance(lowerCAmelCase_ , lowerCAmelCase_ ) return np.argmin(lowerCAmelCase_ , axis=1 ) class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" snake_case__ : List[str] = ["pixel_values"] def __init__( self : List[str] , UpperCAmelCase__ : Optional[Union[List[List[int]], np.ndarray]] = None , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Dict[str, int] = None , UpperCAmelCase__ : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : bool = True , **UpperCAmelCase__ : List[Any] , ) -> None: super().__init__(**UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = size if size is not None else {"height": 2_5_6, "width": 2_5_6} __SCREAMING_SNAKE_CASE = get_size_dict(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = np.array(UpperCAmelCase__ ) if clusters is not None else None __SCREAMING_SNAKE_CASE = do_resize __SCREAMING_SNAKE_CASE = size __SCREAMING_SNAKE_CASE = resample __SCREAMING_SNAKE_CASE = do_normalize __SCREAMING_SNAKE_CASE = do_color_quantize def UpperCAmelCase_ ( self : Tuple , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : Dict[str, int] , UpperCAmelCase__ : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase__ : str , ) -> np.ndarray: __SCREAMING_SNAKE_CASE = get_size_dict(UpperCAmelCase__ ) if "height" not in size or "width" not in size: raise ValueError(F"""Size dictionary must contain both height and width keys. Got {size.keys()}""" ) return resize( UpperCAmelCase__ , size=(size["height"], size["width"]) , resample=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def UpperCAmelCase_ ( self : str , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , ) -> np.ndarray: __SCREAMING_SNAKE_CASE = rescale(image=UpperCAmelCase__ , scale=1 / 127.5 , data_format=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = image - 1 return image def UpperCAmelCase_ ( self : Dict , UpperCAmelCase__ : ImageInput , UpperCAmelCase__ : bool = None , UpperCAmelCase__ : Dict[str, int] = None , UpperCAmelCase__ : PILImageResampling = None , UpperCAmelCase__ : bool = None , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[Union[List[List[int]], np.ndarray]] = None , UpperCAmelCase__ : Optional[Union[str, TensorType]] = None , UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = ChannelDimension.FIRST , **UpperCAmelCase__ : Optional[Any] , ) -> PIL.Image.Image: __SCREAMING_SNAKE_CASE = do_resize if do_resize is not None else self.do_resize __SCREAMING_SNAKE_CASE = size if size is not None else self.size __SCREAMING_SNAKE_CASE = get_size_dict(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = resample if resample is not None else self.resample __SCREAMING_SNAKE_CASE = do_normalize if do_normalize is not None else self.do_normalize __SCREAMING_SNAKE_CASE = do_color_quantize if do_color_quantize is not None else self.do_color_quantize __SCREAMING_SNAKE_CASE = clusters if clusters is not None else self.clusters __SCREAMING_SNAKE_CASE = np.array(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = make_list_of_images(UpperCAmelCase__ ) if not valid_images(UpperCAmelCase__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_color_quantize and clusters is None: raise ValueError("Clusters must be specified if do_color_quantize is True." ) # All transformations expect numpy arrays. __SCREAMING_SNAKE_CASE = [to_numpy_array(UpperCAmelCase__ ) for image in images] if do_resize: __SCREAMING_SNAKE_CASE = [self.resize(image=UpperCAmelCase__ , size=UpperCAmelCase__ , resample=UpperCAmelCase__ ) for image in images] if do_normalize: __SCREAMING_SNAKE_CASE = [self.normalize(image=UpperCAmelCase__ ) for image in images] if do_color_quantize: __SCREAMING_SNAKE_CASE = [to_channel_dimension_format(UpperCAmelCase__ , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) __SCREAMING_SNAKE_CASE = np.array(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = color_quantize(UpperCAmelCase__ , UpperCAmelCase__ ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) __SCREAMING_SNAKE_CASE = images.shape[0] __SCREAMING_SNAKE_CASE = images.reshape(UpperCAmelCase__ , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. __SCREAMING_SNAKE_CASE = list(UpperCAmelCase__ ) else: __SCREAMING_SNAKE_CASE = [to_channel_dimension_format(UpperCAmelCase__ , UpperCAmelCase__ ) for image in images] __SCREAMING_SNAKE_CASE = {"input_ids": images} return BatchFeature(data=UpperCAmelCase__ , tensor_type=UpperCAmelCase__ )
356
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a__ : List[str] = { '''configuration_biogpt''': ['''BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BioGptConfig'''], '''tokenization_biogpt''': ['''BioGptTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Union[str, Any] = [ '''BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BioGptForCausalLM''', '''BioGptForTokenClassification''', '''BioGptForSequenceClassification''', '''BioGptModel''', '''BioGptPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys a__ : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
195
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase__ = {'''configuration_glpn''': ['''GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GLPNConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''GLPNFeatureExtractor'''] lowerCAmelCase__ = ['''GLPNImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''GLPN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GLPNForDepthEstimation''', '''GLPNLayer''', '''GLPNModel''', '''GLPNPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_glpn import GLPNFeatureExtractor from .image_processing_glpn import GLPNImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_glpn import ( GLPN_PRETRAINED_MODEL_ARCHIVE_LIST, GLPNForDepthEstimation, GLPNLayer, GLPNModel, GLPNPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
130
from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class snake_case__(_UpperCamelCase , _UpperCamelCase ): """simple docstring""" @register_to_config def __init__( self : Dict , SCREAMING_SNAKE_CASE : int = 768 , ): super().__init__() lowercase__ : List[str] = nn.Parameter(torch.zeros(1 , SCREAMING_SNAKE_CASE ) ) lowercase__ : Optional[int] = nn.Parameter(torch.ones(1 , SCREAMING_SNAKE_CASE ) ) def snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE : Optional[Union[str, torch.device]] = None , SCREAMING_SNAKE_CASE : Optional[torch.dtype] = None , ): lowercase__ : Union[str, Any] = nn.Parameter(self.mean.to(SCREAMING_SNAKE_CASE ).to(SCREAMING_SNAKE_CASE ) ) lowercase__ : Dict = nn.Parameter(self.std.to(SCREAMING_SNAKE_CASE ).to(SCREAMING_SNAKE_CASE ) ) return self def snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] ): lowercase__ : Optional[int] = (embeds - self.mean) * 1.0 / self.std return embeds def snake_case ( self : Dict , SCREAMING_SNAKE_CASE : str ): lowercase__ : Any = (embeds * self.std) + self.mean return embeds
130
1
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() A : List[str] = logging.get_logger(__name__) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = original_name.split("." )[0] __lowerCAmelCase = key.split("." ) __lowerCAmelCase = int(key_list[key_list.index(_UpperCamelCase ) - 2] ) __lowerCAmelCase = int(key_list[key_list.index(_UpperCamelCase ) - 1] ) __lowerCAmelCase = orig_block_num - offset __lowerCAmelCase = key.replace(f"{orig_block_num}.{layer_num}.{original_name}" , f"block.{new_block_num}.{layer_num}.{new_name}" ) return key def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = OrderedDict() __lowerCAmelCase , __lowerCAmelCase = 0, 0 for key, value in state_dict.items(): if key.startswith("network" ): __lowerCAmelCase = key.replace("network" , "poolformer.encoder" ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith("bias" ) and "patch_embed" not in key: patch_emb_offset += 1 __lowerCAmelCase = key[: key.find("proj" )] __lowerCAmelCase = key.replace(_UpperCamelCase , f"patch_embeddings.{total_embed_found}." ) __lowerCAmelCase = key.replace("proj" , "projection" ) if key.endswith("bias" ): total_embed_found += 1 if "patch_embeddings" in key: __lowerCAmelCase = "poolformer.encoder." + key if "mlp.fc1" in key: __lowerCAmelCase = replace_key_with_offset(_UpperCamelCase , _UpperCamelCase , "mlp.fc1" , "output.conv1" ) if "mlp.fc2" in key: __lowerCAmelCase = replace_key_with_offset(_UpperCamelCase , _UpperCamelCase , "mlp.fc2" , "output.conv2" ) if "norm1" in key: __lowerCAmelCase = replace_key_with_offset(_UpperCamelCase , _UpperCamelCase , "norm1" , "before_norm" ) if "norm2" in key: __lowerCAmelCase = replace_key_with_offset(_UpperCamelCase , _UpperCamelCase , "norm2" , "after_norm" ) if "layer_scale_1" in key: __lowerCAmelCase = replace_key_with_offset(_UpperCamelCase , _UpperCamelCase , "layer_scale_1" , "layer_scale_1" ) if "layer_scale_2" in key: __lowerCAmelCase = replace_key_with_offset(_UpperCamelCase , _UpperCamelCase , "layer_scale_2" , "layer_scale_2" ) if "head" in key: __lowerCAmelCase = key.replace("head" , "classifier" ) __lowerCAmelCase = value return new_state_dict def _lowerCamelCase ( ): '''simple docstring''' __lowerCAmelCase = "http://images.cocodataset.org/val2017/000000039769.jpg" __lowerCAmelCase = Image.open(requests.get(_UpperCamelCase , stream=_UpperCamelCase ).raw ) return image @torch.no_grad() def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = PoolFormerConfig() # set attributes based on model_name __lowerCAmelCase = "huggingface/label-files" __lowerCAmelCase = model_name[-3:] __lowerCAmelCase = 1000 __lowerCAmelCase = "imagenet-1k-id2label.json" __lowerCAmelCase = (1, 1000) # set config attributes __lowerCAmelCase = json.load(open(hf_hub_download(_UpperCamelCase , _UpperCamelCase , repo_type="dataset" ) , "r" ) ) __lowerCAmelCase = {int(_UpperCamelCase ): v for k, v in idalabel.items()} __lowerCAmelCase = idalabel __lowerCAmelCase = {v: k for k, v in idalabel.items()} if size == "s12": __lowerCAmelCase = [2, 2, 6, 2] __lowerCAmelCase = [64, 128, 320, 512] __lowerCAmelCase = 4.0 __lowerCAmelCase = 0.9 elif size == "s24": __lowerCAmelCase = [4, 4, 12, 4] __lowerCAmelCase = [64, 128, 320, 512] __lowerCAmelCase = 4.0 __lowerCAmelCase = 0.9 elif size == "s36": __lowerCAmelCase = [6, 6, 18, 6] __lowerCAmelCase = [64, 128, 320, 512] __lowerCAmelCase = 4.0 __lowerCAmelCase = 1e-6 __lowerCAmelCase = 0.9 elif size == "m36": __lowerCAmelCase = [6, 6, 18, 6] __lowerCAmelCase = [96, 192, 384, 768] __lowerCAmelCase = 4.0 __lowerCAmelCase = 1e-6 __lowerCAmelCase = 0.95 elif size == "m48": __lowerCAmelCase = [8, 8, 24, 8] __lowerCAmelCase = [96, 192, 384, 768] __lowerCAmelCase = 4.0 __lowerCAmelCase = 1e-6 __lowerCAmelCase = 0.95 else: raise ValueError(f"Size {size} not supported" ) # load image processor __lowerCAmelCase = PoolFormerImageProcessor(crop_pct=_UpperCamelCase ) # Prepare image __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=_UpperCamelCase , return_tensors="pt" ).pixel_values logger.info(f"Converting model {model_name}..." ) # load original state dict __lowerCAmelCase = torch.load(_UpperCamelCase , map_location=torch.device("cpu" ) ) # rename keys __lowerCAmelCase = rename_keys(_UpperCamelCase ) # create HuggingFace model and load state dict __lowerCAmelCase = PoolFormerForImageClassification(_UpperCamelCase ) model.load_state_dict(_UpperCamelCase ) model.eval() # Define image processor __lowerCAmelCase = PoolFormerImageProcessor(crop_pct=_UpperCamelCase ) __lowerCAmelCase = image_processor(images=prepare_img() , return_tensors="pt" ).pixel_values # forward pass __lowerCAmelCase = model(_UpperCamelCase ) __lowerCAmelCase = outputs.logits # define expected logit slices for different models if size == "s12": __lowerCAmelCase = torch.tensor([-0.30_45, -0.67_58, -0.48_69] ) elif size == "s24": __lowerCAmelCase = torch.tensor([0.44_02, -0.13_74, -0.80_45] ) elif size == "s36": __lowerCAmelCase = torch.tensor([-0.60_80, -0.51_33, -0.58_98] ) elif size == "m36": __lowerCAmelCase = torch.tensor([0.39_52, 0.22_63, -1.26_68] ) elif size == "m48": __lowerCAmelCase = torch.tensor([0.11_67, -0.06_56, -0.34_23] ) else: raise ValueError(f"Size {size} not supported" ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , _UpperCamelCase , atol=1e-2 ) # finally, save model and image processor logger.info(f"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." ) Path(_UpperCamelCase ).mkdir(exist_ok=_UpperCamelCase ) model.save_pretrained(_UpperCamelCase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": A : Dict = argparse.ArgumentParser() parser.add_argument( "--model_name", default="poolformer_s12", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original PyTorch checkpoint (.pth file)." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) A : Any = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
259
"""simple docstring""" import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' if is_torch_version("<" , "2.0.0" ) or not hasattr(_UpperCamelCase , "_dynamo" ): return False return isinstance(_UpperCamelCase , torch._dynamo.eval_frame.OptimizedModule ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase = True ): '''simple docstring''' __lowerCAmelCase = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) __lowerCAmelCase = is_compiled_module(_UpperCamelCase ) if is_compiled: __lowerCAmelCase = model __lowerCAmelCase = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(_UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase = model.module if not keep_fpaa_wrapper: __lowerCAmelCase = getattr(_UpperCamelCase , "forward" ) __lowerCAmelCase = model.__dict__.pop("_original_forward" , _UpperCamelCase ) if original_forward is not None: while hasattr(_UpperCamelCase , "__wrapped__" ): __lowerCAmelCase = forward.__wrapped__ if forward == original_forward: break __lowerCAmelCase = forward if getattr(_UpperCamelCase , "_converted_to_transformer_engine" , _UpperCamelCase ): convert_model(_UpperCamelCase , to_transformer_engine=_UpperCamelCase ) if is_compiled: __lowerCAmelCase = model __lowerCAmelCase = compiled_model return model def _lowerCamelCase ( ): '''simple docstring''' PartialState().wait_for_everyone() def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' if PartialState().distributed_type == DistributedType.TPU: xm.save(_UpperCamelCase , _UpperCamelCase ) elif PartialState().local_process_index == 0: torch.save(_UpperCamelCase , _UpperCamelCase ) @contextmanager def _lowerCamelCase ( **_UpperCamelCase ): '''simple docstring''' for key, value in kwargs.items(): __lowerCAmelCase = str(_UpperCamelCase ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' if not hasattr(_UpperCamelCase , "__qualname__" ) and not hasattr(_UpperCamelCase , "__name__" ): __lowerCAmelCase = getattr(_UpperCamelCase , "__class__" , _UpperCamelCase ) if hasattr(_UpperCamelCase , "__qualname__" ): return obj.__qualname__ if hasattr(_UpperCamelCase , "__name__" ): return obj.__name__ return str(_UpperCamelCase ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' for key, value in source.items(): if isinstance(_UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase = destination.setdefault(_UpperCamelCase , {} ) merge_dicts(_UpperCamelCase , _UpperCamelCase ) else: __lowerCAmelCase = value return destination def _lowerCamelCase ( _UpperCamelCase = None ): '''simple docstring''' if port is None: __lowerCAmelCase = 2_9500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(("localhost", port) ) == 0
259
1
# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class UpperCAmelCase_ : '''simple docstring''' __A : CommonSchedulerState # setable values __A : jnp.ndarray __A : jnp.ndarray __A : Optional[int] = None @classmethod def _snake_case ( cls , __A , __A , __A ): """simple docstring""" return cls(common=__A , init_noise_sigma=__A , timesteps=__A ) @dataclass class UpperCAmelCase_ ( UpperCamelCase ): '''simple docstring''' __A : DDPMSchedulerState class UpperCAmelCase_ ( UpperCamelCase , UpperCamelCase ): '''simple docstring''' __A : Union[str, Any] = [e.name for e in FlaxKarrasDiffusionSchedulers] __A : jnp.dtype @property def _snake_case ( self ): """simple docstring""" return True @register_to_config def __init__( self , __A = 1000 , __A = 0.0001 , __A = 0.02 , __A = "linear" , __A = None , __A = "fixed_small" , __A = True , __A = "epsilon" , __A = jnp.floataa , ): """simple docstring""" lowerCamelCase : Any = dtype def _snake_case ( self , __A = None ): """simple docstring""" if common is None: lowerCamelCase : Dict = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution lowerCamelCase : Any = jnp.array(1.0 , dtype=self.dtype ) lowerCamelCase : Dict = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=__A , init_noise_sigma=__A , timesteps=__A , ) def _snake_case ( self , __A , __A , __A = None ): """simple docstring""" return sample def _snake_case ( self , __A , __A , __A = () ): """simple docstring""" lowerCamelCase : Dict = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 lowerCamelCase : str = (jnp.arange(0 , __A ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=__A , timesteps=__A , ) def _snake_case ( self , __A , __A , __A=None , __A=None ): """simple docstring""" lowerCamelCase : Optional[int] = state.common.alphas_cumprod[t] lowerCamelCase : Union[str, Any] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample lowerCamelCase : List[Any] = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: lowerCamelCase : int = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": lowerCamelCase : List[Any] = jnp.clip(__A , a_min=1e-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": lowerCamelCase : Tuple = jnp.log(jnp.clip(__A , a_min=1e-20 ) ) elif variance_type == "fixed_large": lowerCamelCase : str = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log lowerCamelCase : List[str] = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": lowerCamelCase : str = variance lowerCamelCase : str = state.common.betas[t] lowerCamelCase : Union[str, Any] = (predicted_variance + 1) / 2 lowerCamelCase : Any = frac * max_log + (1 - frac) * min_log return variance def _snake_case ( self , __A , __A , __A , __A , __A = None , __A = True , ): """simple docstring""" lowerCamelCase : int = timestep if key is None: lowerCamelCase : str = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: lowerCamelCase , lowerCamelCase : int = jnp.split(__A , sample.shape[1] , axis=1 ) else: lowerCamelCase : int = None # 1. compute alphas, betas lowerCamelCase : List[str] = state.common.alphas_cumprod[t] lowerCamelCase : Tuple = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) lowerCamelCase : Optional[int] = 1 - alpha_prod_t lowerCamelCase : Tuple = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": lowerCamelCase : Tuple = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": lowerCamelCase : Dict = model_output elif self.config.prediction_type == "v_prediction": lowerCamelCase : Any = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` """ " for the FlaxDDPMScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: lowerCamelCase : Dict = jnp.clip(__A , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCamelCase : Any = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t lowerCamelCase : Union[str, Any] = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCamelCase : List[str] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): lowerCamelCase : Dict = jax.random.split(__A , num=1 ) lowerCamelCase : int = jax.random.normal(__A , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(__A , __A , predicted_variance=__A ) ** 0.5) * noise lowerCamelCase : Any = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) lowerCamelCase : Tuple = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=__A , state=__A ) def _snake_case ( self , __A , __A , __A , __A , ): """simple docstring""" return add_noise_common(state.common , __A , __A , __A ) def _snake_case ( self , __A , __A , __A , __A , ): """simple docstring""" return get_velocity_common(state.common , __A , __A , __A ) def __len__( self ): """simple docstring""" return self.config.num_train_timesteps
283
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase_ ( UpperCamelCase ): '''simple docstring''' __A : Dict = ["image_processor", "tokenizer"] __A : Dict = "BridgeTowerImageProcessor" __A : Optional[int] = ("RobertaTokenizer", "RobertaTokenizerFast") def __init__( self , __A , __A ): """simple docstring""" super().__init__(__A , __A ) def __call__( self , __A , __A = None , __A = True , __A = False , __A = None , __A = None , __A = 0 , __A = None , __A = None , __A = None , __A = False , __A = False , __A = False , __A = False , __A = True , __A = None , **__A , ): """simple docstring""" lowerCamelCase : str = self.tokenizer( text=__A , add_special_tokens=__A , padding=__A , truncation=__A , max_length=__A , stride=__A , pad_to_multiple_of=__A , return_token_type_ids=__A , return_attention_mask=__A , return_overflowing_tokens=__A , return_special_tokens_mask=__A , return_offsets_mapping=__A , return_length=__A , verbose=__A , return_tensors=__A , **__A , ) # add pixel_values + pixel_mask lowerCamelCase : int = self.image_processor( __A , return_tensors=__A , do_normalize=__A , do_center_crop=__A , **__A ) encoding.update(__A ) return encoding def _snake_case ( self , *__A , **__A ): """simple docstring""" return self.tokenizer.batch_decode(*__A , **__A ) def _snake_case ( self , *__A , **__A ): """simple docstring""" return self.tokenizer.decode(*__A , **__A ) @property def _snake_case ( self ): """simple docstring""" lowerCamelCase : List[Any] = self.tokenizer.model_input_names lowerCamelCase : int = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
283
1
'''simple docstring''' import sys import turtle def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> tuple[float, float]: return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ) -> None: my_pen.up() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) if depth == 0: return triangle(_lowerCAmelCase , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , depth - 1 ) triangle(_lowerCAmelCase , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , depth - 1 ) triangle(_lowerCAmelCase , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( "Correct format for using this script: " "python fractals.py <int:depth_for_fractal>" ) __a = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor("red") __a = [(-175, -125), (0, 175), (175, -125)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
350
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { "microsoft/markuplm-base": "https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json", "microsoft/markuplm-large": "https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json", } class UpperCAmelCase_ ( _a ): """simple docstring""" lowercase = "markuplm" def __init__( self : List[Any] , snake_case_ : List[Any]=30_522 , snake_case_ : Tuple=768 , snake_case_ : Union[str, Any]=12 , snake_case_ : str=12 , snake_case_ : Optional[Any]=3_072 , snake_case_ : Optional[Any]="gelu" , snake_case_ : str=0.1 , snake_case_ : List[Any]=0.1 , snake_case_ : Dict=512 , snake_case_ : Tuple=2 , snake_case_ : List[str]=0.02 , snake_case_ : int=1E-1_2 , snake_case_ : Any=0 , snake_case_ : Any=0 , snake_case_ : str=2 , snake_case_ : Optional[int]=256 , snake_case_ : Optional[int]=1_024 , snake_case_ : str=216 , snake_case_ : List[str]=1_001 , snake_case_ : Optional[Any]=32 , snake_case_ : int=50 , snake_case_ : Tuple="absolute" , snake_case_ : Tuple=True , snake_case_ : int=None , **snake_case_ : str , ): super().__init__( pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_ , ) snake_case__ : Tuple = vocab_size snake_case__ : Optional[int] = hidden_size snake_case__ : Union[str, Any] = num_hidden_layers snake_case__ : Union[str, Any] = num_attention_heads snake_case__ : List[str] = hidden_act snake_case__ : Dict = intermediate_size snake_case__ : Optional[Any] = hidden_dropout_prob snake_case__ : Any = attention_probs_dropout_prob snake_case__ : int = max_position_embeddings snake_case__ : Optional[int] = type_vocab_size snake_case__ : List[str] = initializer_range snake_case__ : str = layer_norm_eps snake_case__ : List[Any] = position_embedding_type snake_case__ : Any = use_cache snake_case__ : Union[str, Any] = classifier_dropout # additional properties snake_case__ : List[str] = max_depth snake_case__ : int = max_xpath_tag_unit_embeddings snake_case__ : Tuple = max_xpath_subs_unit_embeddings snake_case__ : Dict = tag_pad_id snake_case__ : Union[str, Any] = subs_pad_id snake_case__ : Tuple = xpath_unit_hidden_size
43
0
'''simple docstring''' from __future__ import annotations from random import random from typing import Generic, TypeVar UpperCamelCase__ = TypeVar('''KT''') UpperCamelCase__ = TypeVar('''VT''') class lowerCamelCase_ ( Generic[KT, VT] ): def __init__( self : int , _A : KT | str = "root" , _A : VT | None = None ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = key UpperCAmelCase__ : Optional[int] = value UpperCAmelCase__ : Tuple = [] def __repr__( self : Any ): '''simple docstring''' return f"""Node({self.key}: {self.value})""" @property def lowercase_ ( self : int ): '''simple docstring''' return len(self.forward ) class lowerCamelCase_ ( Generic[KT, VT] ): def __init__( self : List[Any] , _A : float = 0.5 , _A : int = 16 ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = Node[KT, VT]() UpperCAmelCase__ : int = 0 UpperCAmelCase__ : int = p UpperCAmelCase__ : Optional[Any] = max_level def __str__( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : int = list(self ) if len(_A ) == 0: return f"""SkipList(level={self.level})""" UpperCAmelCase__ : Union[str, Any] = max((len(str(_A ) ) for item in items) , default=4 ) UpperCAmelCase__ : Optional[Any] = max(_A , 4 ) + 4 UpperCAmelCase__ : List[str] = self.head UpperCAmelCase__ : Dict = [] UpperCAmelCase__ : Dict = node.forward.copy() lines.append(f"""[{node.key}]""".ljust(_A , '''-''' ) + '''* ''' * len(_A ) ) lines.append(''' ''' * label_size + '''| ''' * len(_A ) ) while len(node.forward ) != 0: UpperCAmelCase__ : Tuple = node.forward[0] lines.append( f"""[{node.key}]""".ljust(_A , '''-''' ) + ''' '''.join(str(n.key ) if n.key == node.key else '''|''' for n in forwards ) ) lines.append(''' ''' * label_size + '''| ''' * len(_A ) ) UpperCAmelCase__ : Tuple = node.forward lines.append('''None'''.ljust(_A ) + '''* ''' * len(_A ) ) return f"""SkipList(level={self.level})\n""" + "\n".join(_A ) def __iter__( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : str = self.head while len(node.forward ) != 0: yield node.forward[0].key UpperCAmelCase__ : Optional[Any] = node.forward[0] def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = 1 while random() < self.p and level < self.max_level: level += 1 return level def lowercase_ ( self : Optional[Any] , _A : Dict ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = [] UpperCAmelCase__ : List[Any] = self.head for i in reversed(range(self.level ) ): # i < node.level - When node level is lesser than `i` decrement `i`. # node.forward[i].key < key - Jumping to node with key value higher # or equal to searched key would result # in skipping searched key. while i < node.level and node.forward[i].key < key: UpperCAmelCase__ : Optional[Any] = node.forward[i] # Each leftmost node (relative to searched node) will potentially have to # be updated. update_vector.append(_A ) update_vector.reverse() # Note that we were inserting values in reverse order. # len(node.forward) != 0 - If current node doesn't contain any further # references then searched key is not present. # node.forward[0].key == key - Next node key should be equal to search key # if key is present. if len(node.forward ) != 0 and node.forward[0].key == key: return node.forward[0], update_vector else: return None, update_vector def lowercase_ ( self : List[str] , _A : KT ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = self._locate_node(_A ) if node is not None: for i, update_node in enumerate(_A ): # Remove or replace all references to removed node. if update_node.level > i and update_node.forward[i].key == key: if node.level > i: UpperCAmelCase__ : int = node.forward[i] else: UpperCAmelCase__ : str = update_node.forward[:i] def lowercase_ ( self : Dict , _A : KT , _A : VT ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Any = self._locate_node(_A ) if node is not None: UpperCAmelCase__ : Tuple = value else: UpperCAmelCase__ : Optional[Any] = self.random_level() if level > self.level: # After level increase we have to add additional nodes to head. for _ in range(self.level - 1 , _A ): update_vector.append(self.head ) UpperCAmelCase__ : Any = level UpperCAmelCase__ : Tuple = Node(_A , _A ) for i, update_node in enumerate(update_vector[:level] ): # Change references to pass through new node. if update_node.level > i: new_node.forward.append(update_node.forward[i] ) if update_node.level < i + 1: update_node.forward.append(_A ) else: UpperCAmelCase__ : int = new_node def lowercase_ ( self : Any , _A : VT ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : str = self._locate_node(_A ) if node is not None: return node.value return None def a__ ( ) -> Optional[Any]: UpperCAmelCase__ : Dict = SkipList() skip_list.insert('''Key1''' , 3 ) skip_list.insert('''Key2''' , 12 ) skip_list.insert('''Key3''' , 41 ) skip_list.insert('''Key4''' , -19 ) UpperCAmelCase__ : Tuple = skip_list.head UpperCAmelCase__ : int = {} while node.level != 0: UpperCAmelCase__ : List[Any] = node.forward[0] UpperCAmelCase__ : Optional[int] = node.value assert len(UpperCamelCase__ ) == 4 assert all_values["Key1"] == 3 assert all_values["Key2"] == 12 assert all_values["Key3"] == 41 assert all_values["Key4"] == -19 def a__ ( ) -> Any: UpperCAmelCase__ : Dict = SkipList() skip_list.insert('''Key1''' , 10 ) skip_list.insert('''Key1''' , 12 ) skip_list.insert('''Key5''' , 7 ) skip_list.insert('''Key7''' , 10 ) skip_list.insert('''Key10''' , 5 ) skip_list.insert('''Key7''' , 7 ) skip_list.insert('''Key5''' , 5 ) skip_list.insert('''Key10''' , 10 ) UpperCAmelCase__ : int = skip_list.head UpperCAmelCase__ : List[Any] = {} while node.level != 0: UpperCAmelCase__ : List[Any] = node.forward[0] UpperCAmelCase__ : Union[str, Any] = node.value if len(UpperCamelCase__ ) != 4: print() assert len(UpperCamelCase__ ) == 4 assert all_values["Key1"] == 12 assert all_values["Key7"] == 7 assert all_values["Key5"] == 5 assert all_values["Key10"] == 10 def a__ ( ) -> Optional[Any]: UpperCAmelCase__ : Optional[Any] = SkipList() assert skip_list.find('''Some key''' ) is None def a__ ( ) -> str: UpperCAmelCase__ : Optional[Any] = SkipList() skip_list.insert('''Key2''' , 20 ) assert skip_list.find('''Key2''' ) == 20 skip_list.insert('''Some Key''' , 10 ) skip_list.insert('''Key2''' , 8 ) skip_list.insert('''V''' , 13 ) assert skip_list.find('''Y''' ) is None assert skip_list.find('''Key2''' ) == 8 assert skip_list.find('''Some Key''' ) == 10 assert skip_list.find('''V''' ) == 13 def a__ ( ) -> int: UpperCAmelCase__ : Optional[Any] = SkipList() skip_list.delete('''Some key''' ) assert len(skip_list.head.forward ) == 0 def a__ ( ) -> int: UpperCAmelCase__ : Tuple = SkipList() skip_list.insert('''Key1''' , 12 ) skip_list.insert('''V''' , 13 ) skip_list.insert('''X''' , 14 ) skip_list.insert('''Key2''' , 15 ) skip_list.delete('''V''' ) skip_list.delete('''Key2''' ) assert skip_list.find('''V''' ) is None assert skip_list.find('''Key2''' ) is None def a__ ( ) -> List[str]: UpperCAmelCase__ : str = SkipList() skip_list.insert('''Key1''' , 12 ) skip_list.insert('''V''' , 13 ) skip_list.insert('''X''' , 14 ) skip_list.insert('''Key2''' , 15 ) skip_list.delete('''V''' ) assert skip_list.find('''V''' ) is None assert skip_list.find('''X''' ) == 14 assert skip_list.find('''Key1''' ) == 12 assert skip_list.find('''Key2''' ) == 15 skip_list.delete('''X''' ) assert skip_list.find('''V''' ) is None assert skip_list.find('''X''' ) is None assert skip_list.find('''Key1''' ) == 12 assert skip_list.find('''Key2''' ) == 15 skip_list.delete('''Key1''' ) assert skip_list.find('''V''' ) is None assert skip_list.find('''X''' ) is None assert skip_list.find('''Key1''' ) is None assert skip_list.find('''Key2''' ) == 15 skip_list.delete('''Key2''' ) assert skip_list.find('''V''' ) is None assert skip_list.find('''X''' ) is None assert skip_list.find('''Key1''' ) is None assert skip_list.find('''Key2''' ) is None def a__ ( ) -> List[Any]: UpperCAmelCase__ : Optional[Any] = SkipList() skip_list.insert('''Key1''' , 12 ) skip_list.insert('''V''' , 13 ) skip_list.insert('''X''' , 1_42 ) skip_list.insert('''Key2''' , 15 ) skip_list.delete('''X''' ) def traverse_keys(lowerCAmelCase__ ): yield node.key for forward_node in node.forward: yield from traverse_keys(UpperCamelCase__ ) assert len(set(traverse_keys(skip_list.head ) ) ) == 4 def a__ ( ) -> Dict: def is_sorted(lowerCAmelCase__ ): return all(next_item >= item for item, next_item in zip(UpperCamelCase__ , lst[1:] ) ) UpperCAmelCase__ : int = SkipList() for i in range(10 ): skip_list.insert(UpperCamelCase__ , UpperCamelCase__ ) assert is_sorted(list(UpperCamelCase__ ) ) skip_list.delete(5 ) skip_list.delete(8 ) skip_list.delete(2 ) assert is_sorted(list(UpperCamelCase__ ) ) skip_list.insert(-12 , -12 ) skip_list.insert(77 , 77 ) assert is_sorted(list(UpperCamelCase__ ) ) def a__ ( ) -> int: for _ in range(1_00 ): # Repeat test 100 times due to the probabilistic nature of skip list # random values == random bugs test_insert() test_insert_overrides_existing_value() test_searching_empty_list_returns_none() test_search() test_deleting_item_from_empty_list_do_nothing() test_deleted_items_are_not_founded_by_find_method() test_delete_removes_only_given_key() test_delete_doesnt_leave_dead_nodes() test_iter_always_yields_sorted_values() def a__ ( ) -> List[str]: UpperCAmelCase__ : Optional[Any] = SkipList() skip_list.insert(2 , '''2''' ) skip_list.insert(4 , '''4''' ) skip_list.insert(6 , '''4''' ) skip_list.insert(4 , '''5''' ) skip_list.insert(8 , '''4''' ) skip_list.insert(9 , '''4''' ) skip_list.delete(4 ) print(UpperCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
181
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class a__ ( UpperCAmelCase__ ): lowerCamelCase : Optional[int] =["image_processor", "tokenizer"] lowerCamelCase : Union[str, Any] ="LayoutLMv2ImageProcessor" lowerCamelCase : int =("LayoutXLMTokenizer", "LayoutXLMTokenizerFast") def __init__( self : Optional[int] , a : Any=None , a : Any=None , **a : Union[str, Any] ): """simple docstring""" if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , a , ) __lowerCamelCase = kwargs.pop('''feature_extractor''' ) __lowerCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(a , a ) def __call__( self : Tuple , a : Optional[int] , a : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , a : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , a : Union[List[List[int]], List[List[List[int]]]] = None , a : Optional[Union[List[int], List[List[int]]]] = None , a : bool = True , a : Union[bool, str, PaddingStrategy] = False , a : Union[bool, str, TruncationStrategy] = None , a : Optional[int] = None , a : int = 0 , a : Optional[int] = None , a : Optional[bool] = None , a : Optional[bool] = None , a : bool = False , a : bool = False , a : bool = False , a : bool = False , a : bool = True , a : Optional[Union[str, TensorType]] = None , **a : Tuple , ): """simple docstring""" if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes ''' '''if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' ) # first, apply the image processor __lowerCamelCase = self.image_processor(images=a , return_tensors=a ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(a , a ): __lowerCamelCase = [text] # add batch dimension (as the image processor always adds a batch dimension) __lowerCamelCase = features['''words'''] __lowerCamelCase = self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=a , add_special_tokens=a , padding=a , truncation=a , max_length=a , stride=a , pad_to_multiple_of=a , return_token_type_ids=a , return_attention_mask=a , return_overflowing_tokens=a , return_special_tokens_mask=a , return_offsets_mapping=a , return_length=a , verbose=a , return_tensors=a , **a , ) # add pixel values __lowerCamelCase = features.pop('''pixel_values''' ) if return_overflowing_tokens is True: __lowerCamelCase = self.get_overflowing_images(a , encoded_inputs['''overflow_to_sample_mapping'''] ) __lowerCamelCase = images return encoded_inputs def SCREAMING_SNAKE_CASE__ ( self : Tuple , a : Optional[Any] , a : str ): """simple docstring""" __lowerCamelCase = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(a ) != len(a ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f""" {len(a )} and {len(a )}""" ) return images_with_overflow def SCREAMING_SNAKE_CASE__ ( self : List[str] , *a : Optional[Any] , **a : Union[str, Any] ): """simple docstring""" return self.tokenizer.batch_decode(*a , **a ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , *a : Union[str, Any] , **a : Tuple ): """simple docstring""" return self.tokenizer.decode(*a , **a ) @property def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" return ["input_ids", "bbox", "attention_mask", "image"] @property def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , a , ) return self.image_processor_class @property def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , a , ) return self.image_processor
67
0
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: lowerCAmelCase_ : List[Any] = None lowerCAmelCase_ : Any = logging.get_logger(__name__) lowerCAmelCase_ : Optional[Any] = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} lowerCAmelCase_ : List[str] = { '''vocab_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json''' ), }, } lowerCAmelCase_ : Tuple = { '''moussaKam/mbarthez''': 1024, '''moussaKam/barthez''': 1024, '''moussaKam/barthez-orangesum-title''': 1024, } lowerCAmelCase_ : str = '''▁''' class __lowerCAmelCase ( __a ): snake_case : List[str] = VOCAB_FILES_NAMES snake_case : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP snake_case : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case : str = ["""input_ids""", """attention_mask"""] snake_case : List[Any] = BarthezTokenizer def __init__(self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<mask>" , **lowerCAmelCase__ , ): # Mask token behave like a normal word, i.e. include the space before it _UpperCAmelCase : Union[str, Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token super().__init__( lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , **lowerCAmelCase__ , ) _UpperCAmelCase : List[str] = vocab_file _UpperCAmelCase : Tuple = False if not self.vocab_file else True def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _UpperCAmelCase : int = [self.cls_token_id] _UpperCAmelCase : Tuple = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ = None ): _UpperCAmelCase : str = [self.sep_token_id] _UpperCAmelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ = None ): if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(lowerCAmelCase__ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return _UpperCAmelCase : Union[str, Any] = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ): copyfile(self.vocab_file , lowerCAmelCase__ ) return (out_vocab_file,)
170
'''simple docstring''' from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. lowerCAmelCase_ : Optional[Any] = 10 def __A ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): for i in range(lowerCAmelCase_ , lowerCAmelCase_ ): if array[i] == target: return i return -1 def __A ( lowerCAmelCase_ , lowerCAmelCase_ ): _UpperCAmelCase : Optional[int] = 0 _UpperCAmelCase : str = len(lowerCAmelCase_ ) while left <= right: if right - left < precision: return lin_search(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _UpperCAmelCase : Tuple = (left + right) // 3 + 1 _UpperCAmelCase : str = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: _UpperCAmelCase : List[Any] = one_third - 1 elif array[two_third] < target: _UpperCAmelCase : Optional[Any] = two_third + 1 else: _UpperCAmelCase : Dict = one_third + 1 _UpperCAmelCase : List[Any] = two_third - 1 else: return -1 def __A ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): if left < right: if right - left < precision: return lin_search(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _UpperCAmelCase : List[Any] = (left + right) // 3 + 1 _UpperCAmelCase : int = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(lowerCAmelCase_ , one_third - 1 , lowerCAmelCase_ , lowerCAmelCase_ ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , lowerCAmelCase_ , lowerCAmelCase_ ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase_ : int = input('''Enter numbers separated by comma:\n''').strip() lowerCAmelCase_ : Tuple = [int(item.strip()) for item in user_input.split(''',''')] assert collection == sorted(collection), F"List must be ordered.\n{collection}." lowerCAmelCase_ : Any = int(input('''Enter the number to be found in the list:\n''').strip()) lowerCAmelCase_ : List[str] = ite_ternary_search(collection, target) lowerCAmelCase_ : int = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F"Iterative search: {target} found at positions: {resulta}") print(F"Recursive search: {target} found at positions: {resulta}") else: print('''Not found''')
170
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) a__ : Optional[Any] ={ '''configuration_mobilebert''': [ '''MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileBertConfig''', '''MobileBertOnnxConfig''', ], '''tokenization_mobilebert''': ['''MobileBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Any =['''MobileBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Dict =[ '''MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileBertForMaskedLM''', '''MobileBertForMultipleChoice''', '''MobileBertForNextSentencePrediction''', '''MobileBertForPreTraining''', '''MobileBertForQuestionAnswering''', '''MobileBertForSequenceClassification''', '''MobileBertForTokenClassification''', '''MobileBertLayer''', '''MobileBertModel''', '''MobileBertPreTrainedModel''', '''load_tf_weights_in_mobilebert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[Any] =[ '''TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFMobileBertForMaskedLM''', '''TFMobileBertForMultipleChoice''', '''TFMobileBertForNextSentencePrediction''', '''TFMobileBertForPreTraining''', '''TFMobileBertForQuestionAnswering''', '''TFMobileBertForSequenceClassification''', '''TFMobileBertForTokenClassification''', '''TFMobileBertMainLayer''', '''TFMobileBertModel''', '''TFMobileBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys a__ : Tuple =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
53
"""simple docstring""" from __future__ import annotations __A = tuple[int, int, int] __A = tuple[str, str, str] # used alphabet -------------------------- # from string.ascii_uppercase __A = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" # -------------------------- default selection -------------------------- # rotors -------------------------- __A = """EGZWVONAHDCLFQMSIPJBYUKXTR""" __A = """FOBHMDKEXQNRAULPGSJVTYICZW""" __A = """ZJXESIUQLHAVRMDOYGTNFWPBKC""" # reflector -------------------------- __A = { """A""": """N""", """N""": """A""", """B""": """O""", """O""": """B""", """C""": """P""", """P""": """C""", """D""": """Q""", """Q""": """D""", """E""": """R""", """R""": """E""", """F""": """S""", """S""": """F""", """G""": """T""", """T""": """G""", """H""": """U""", """U""": """H""", """I""": """V""", """V""": """I""", """J""": """W""", """W""": """J""", """K""": """X""", """X""": """K""", """L""": """Y""", """Y""": """L""", """M""": """Z""", """Z""": """M""", } # -------------------------- extra rotors -------------------------- __A = """RMDJXFUWGISLHVTCQNKYPBEZOA""" __A = """SGLCPQWZHKXAREONTFBVIYJUDM""" __A = """HVSICLTYKQUBXDWAJZOMFGPREN""" __A = """RZWQHFMVDBKICJLNTUXAGYPSOE""" __A = """LFKIJODBEGAMQPXVUHYSTCZRWN""" __A = """KOAEGVDHXPQZMLFTYWJNBRCIUS""" def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->tuple[RotorPositionT, RotorSelectionT, dict[str, str]]: """simple docstring""" if (unique_rotsel := len(set(_SCREAMING_SNAKE_CASE ) )) < 3: lowerCAmelCase__ :Union[str, Any] = F"Please use 3 unique rotors (not {unique_rotsel})" raise Exception(_SCREAMING_SNAKE_CASE ) # Checks if rotor positions are valid lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :str = rotpos if not 0 < rotorposa <= len(_SCREAMING_SNAKE_CASE ): lowerCAmelCase__ :Tuple = F"First rotor position is not within range of 1..26 ({rotorposa}" raise ValueError(_SCREAMING_SNAKE_CASE ) if not 0 < rotorposa <= len(_SCREAMING_SNAKE_CASE ): lowerCAmelCase__ :Optional[Any] = F"Second rotor position is not within range of 1..26 ({rotorposa})" raise ValueError(_SCREAMING_SNAKE_CASE ) if not 0 < rotorposa <= len(_SCREAMING_SNAKE_CASE ): lowerCAmelCase__ :Union[str, Any] = F"Third rotor position is not within range of 1..26 ({rotorposa})" raise ValueError(_SCREAMING_SNAKE_CASE ) # Validates string and returns dict lowerCAmelCase__ :int = _plugboard(_SCREAMING_SNAKE_CASE ) return rotpos, rotsel, pbdict def __A (_SCREAMING_SNAKE_CASE ) ->dict[str, str]: """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): lowerCAmelCase__ :str = F"Plugboard setting isn't type string ({type(_SCREAMING_SNAKE_CASE )})" raise TypeError(_SCREAMING_SNAKE_CASE ) elif len(_SCREAMING_SNAKE_CASE ) % 2 != 0: lowerCAmelCase__ :str = F"Odd number of symbols ({len(_SCREAMING_SNAKE_CASE )})" raise Exception(_SCREAMING_SNAKE_CASE ) elif pbstring == "": return {} pbstring.replace(' ' , '' ) # Checks if all characters are unique lowerCAmelCase__ :Any = set() for i in pbstring: if i not in abc: lowerCAmelCase__ :Any = F"'{i}' not in list of symbols" raise Exception(_SCREAMING_SNAKE_CASE ) elif i in tmppbl: lowerCAmelCase__ :Dict = F"Duplicate symbol ({i})" raise Exception(_SCREAMING_SNAKE_CASE ) else: tmppbl.add(_SCREAMING_SNAKE_CASE ) del tmppbl # Created the dictionary lowerCAmelCase__ :List[Any] = {} for j in range(0 , len(_SCREAMING_SNAKE_CASE ) - 1 , 2 ): lowerCAmelCase__ :Optional[int] = pbstring[j + 1] lowerCAmelCase__ :Union[str, Any] = pbstring[j] return pb def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = (rotora, rotora, rotora) , _SCREAMING_SNAKE_CASE = "" , ) ->str: """simple docstring""" lowerCAmelCase__ :Tuple = text.upper() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :Tuple = _validator( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , plugb.upper() ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :Tuple = rotor_position lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :Union[str, Any] = rotor_selection rotorposa -= 1 rotorposa -= 1 rotorposa -= 1 lowerCAmelCase__ :Dict = [] # encryption/decryption process -------------------------- for symbol in text: if symbol in abc: # 1st plugboard -------------------------- if symbol in plugboard: lowerCAmelCase__ :Dict = plugboard[symbol] # rotor ra -------------------------- lowerCAmelCase__ :Optional[int] = abc.index(_SCREAMING_SNAKE_CASE ) + rotorposa lowerCAmelCase__ :str = rotora[index % len(_SCREAMING_SNAKE_CASE )] # rotor rb -------------------------- lowerCAmelCase__ :Optional[int] = abc.index(_SCREAMING_SNAKE_CASE ) + rotorposa lowerCAmelCase__ :int = rotora[index % len(_SCREAMING_SNAKE_CASE )] # rotor rc -------------------------- lowerCAmelCase__ :str = abc.index(_SCREAMING_SNAKE_CASE ) + rotorposa lowerCAmelCase__ :Optional[Any] = rotora[index % len(_SCREAMING_SNAKE_CASE )] # reflector -------------------------- # this is the reason you don't need another machine to decipher lowerCAmelCase__ :str = reflector[symbol] # 2nd rotors lowerCAmelCase__ :Tuple = abc[rotora.index(_SCREAMING_SNAKE_CASE ) - rotorposa] lowerCAmelCase__ :Optional[int] = abc[rotora.index(_SCREAMING_SNAKE_CASE ) - rotorposa] lowerCAmelCase__ :Any = abc[rotora.index(_SCREAMING_SNAKE_CASE ) - rotorposa] # 2nd plugboard if symbol in plugboard: lowerCAmelCase__ :Union[str, Any] = plugboard[symbol] # moves/resets rotor positions rotorposa += 1 if rotorposa >= len(_SCREAMING_SNAKE_CASE ): lowerCAmelCase__ :str = 0 rotorposa += 1 if rotorposa >= len(_SCREAMING_SNAKE_CASE ): lowerCAmelCase__ :List[Any] = 0 rotorposa += 1 if rotorposa >= len(_SCREAMING_SNAKE_CASE ): lowerCAmelCase__ :Optional[Any] = 0 # else: # pass # Error could be also raised # raise ValueError( # 'Invalid symbol('+repr(symbol)+')') result.append(_SCREAMING_SNAKE_CASE ) return "".join(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __A = """This is my Python script that emulates the Enigma machine from WWII.""" __A = (1, 1, 1) __A = """pictures""" __A = (rotora, rotora, rotora) __A = enigma(message, rotor_pos, rotor_sel, pb) print("""Encrypted message:""", en) print("""Decrypted message:""", enigma(en, rotor_pos, rotor_sel, pb))
293
0
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class __UpperCAmelCase ( _lowerCamelCase ): __lowercase = 42 __lowercase = 42 __lowercase = None class __UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase ): __lowercase = 2 @register_to_config def __init__( self , lowerCAmelCase_ = 0.02 , lowerCAmelCase_ = 1_00 , lowerCAmelCase_ = 1.007 , lowerCAmelCase_ = 80 , lowerCAmelCase_ = 0.05 , lowerCAmelCase_ = 50 , ): """simple docstring""" _snake_case = sigma_max # setable values _snake_case = None _snake_case = None _snake_case = None # sigma(t_i) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ): """simple docstring""" return sample def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ): """simple docstring""" _snake_case = num_inference_steps _snake_case = np.arange(0 , self.num_inference_steps )[::-1].copy() _snake_case = torch.from_numpy(lowerCAmelCase_ ).to(lowerCAmelCase_ ) _snake_case = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] _snake_case = torch.tensor(lowerCAmelCase_ , dtype=torch.floataa , device=lowerCAmelCase_ ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = None ): """simple docstring""" if self.config.s_min <= sigma <= self.config.s_max: _snake_case = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 ) else: _snake_case = 0 # sample eps ~ N(0, S_noise^2 * I) _snake_case = self.config.s_noise * randn_tensor(sample.shape , generator=lowerCAmelCase_ ).to(sample.device ) _snake_case = sigma + gamma * sigma _snake_case = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = True , ): """simple docstring""" _snake_case = sample_hat + sigma_hat * model_output _snake_case = (sample_hat - pred_original_sample) / sigma_hat _snake_case = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=lowerCAmelCase_ , derivative=lowerCAmelCase_ , pred_original_sample=lowerCAmelCase_ ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = True , ): """simple docstring""" _snake_case = sample_prev + sigma_prev * model_output _snake_case = (sample_prev - pred_original_sample) / sigma_prev _snake_case = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=lowerCAmelCase_ , derivative=lowerCAmelCase_ , pred_original_sample=lowerCAmelCase_ ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" raise NotImplementedError()
160
'''simple docstring''' import torch from transformers import AutoModel class __UpperCAmelCase ( torch.nn.Module ): def __init__( self , lowerCAmelCase_="sayef/fsner-bert-base-uncased" ): """simple docstring""" super(lowerCAmelCase_ , self ).__init__() _snake_case = AutoModel.from_pretrained(lowerCAmelCase_ , return_dict=lowerCAmelCase_ ) _snake_case = torch.nn.CosineSimilarity(3 , 1E-08 ) _snake_case = torch.nn.Softmax(dim=1 ) def lowerCamelCase ( self , **lowerCAmelCase_ ): """simple docstring""" return self.bert(**lowerCAmelCase_ ).last_hidden_state def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" return token_embeddings.sum(2 , keepdim=lowerCAmelCase_ ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=1 ): """simple docstring""" return self.softmax(T * self.cos(lowerCAmelCase_ , lowerCAmelCase_ ) ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case = W_supports['sizes'].tolist() _snake_case = W_supports['start_token_id'].item() _snake_case = W_supports['end_token_id'].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] _snake_case = self.BERT(**lowerCAmelCase_ ) _snake_case = self.BERT(**lowerCAmelCase_ ) _snake_case = None _snake_case = None _snake_case = W_supports['input_ids'] == start_token_id _snake_case = W_supports['input_ids'] == end_token_id for i, size in enumerate(lowerCAmelCase_ ): if i == 0: _snake_case = 0 else: _snake_case = support_sizes[i - 1] _snake_case = S[s : s + size][start_token_masks[s : s + size]] _snake_case = S[s : s + size][end_token_masks[s : s + size]] _snake_case = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) _snake_case = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: _snake_case = torch.vstack((p_starts, p_start) ) _snake_case = torch.vstack((p_ends, p_end) ) else: _snake_case = p_start _snake_case = p_end return p_starts, p_ends
160
1
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase : str = logging.get_logger(__name__) def _A ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" a__ : Optional[Any] =original_name.split("." )[0] a__ : List[str] =key.split("." ) a__ : List[str] =int(key_list[key_list.index(SCREAMING_SNAKE_CASE ) - 2] ) a__ : List[str] =int(key_list[key_list.index(SCREAMING_SNAKE_CASE ) - 1] ) a__ : int =orig_block_num - offset a__ : List[str] =key.replace(f'''{orig_block_num}.{layer_num}.{original_name}''' , f'''block.{new_block_num}.{layer_num}.{new_name}''' ) return key def _A ( SCREAMING_SNAKE_CASE : str ): """simple docstring""" a__ : List[str] =OrderedDict() a__ , a__ : List[Any] =0, 0 for key, value in state_dict.items(): if key.startswith("network" ): a__ : Any =key.replace("network" , "poolformer.encoder" ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith("bias" ) and "patch_embed" not in key: patch_emb_offset += 1 a__ : Dict =key[: key.find("proj" )] a__ : str =key.replace(SCREAMING_SNAKE_CASE , f'''patch_embeddings.{total_embed_found}.''' ) a__ : Optional[Any] =key.replace("proj" , "projection" ) if key.endswith("bias" ): total_embed_found += 1 if "patch_embeddings" in key: a__ : int ="poolformer.encoder." + key if "mlp.fc1" in key: a__ : str =replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , "mlp.fc1" , "output.conv1" ) if "mlp.fc2" in key: a__ : Tuple =replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , "mlp.fc2" , "output.conv2" ) if "norm1" in key: a__ : Any =replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , "norm1" , "before_norm" ) if "norm2" in key: a__ : Tuple =replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , "norm2" , "after_norm" ) if "layer_scale_1" in key: a__ : str =replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , "layer_scale_1" , "layer_scale_1" ) if "layer_scale_2" in key: a__ : str =replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , "layer_scale_2" , "layer_scale_2" ) if "head" in key: a__ : Optional[int] =key.replace("head" , "classifier" ) a__ : Union[str, Any] =value return new_state_dict def _A ( ): """simple docstring""" a__ : Optional[int] ="http://images.cocodataset.org/val2017/000000039769.jpg" a__ : List[str] =Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) return image @torch.no_grad() def _A ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Any ): """simple docstring""" a__ : Optional[int] =PoolFormerConfig() # set attributes based on model_name a__ : Tuple ="huggingface/label-files" a__ : Dict =model_name[-3:] a__ : Optional[int] =1_000 a__ : Optional[int] ="imagenet-1k-id2label.json" a__ : int =(1, 1_000) # set config attributes a__ : Any =json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) ) a__ : List[Any] ={int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} a__ : Any =idalabel a__ : int ={v: k for k, v in idalabel.items()} if size == "s12": a__ : str =[2, 2, 6, 2] a__ : List[str] =[64, 128, 320, 512] a__ : Any =4.0 a__ : Tuple =0.9 elif size == "s24": a__ : List[str] =[4, 4, 12, 4] a__ : Union[str, Any] =[64, 128, 320, 512] a__ : str =4.0 a__ : Optional[Any] =0.9 elif size == "s36": a__ : List[str] =[6, 6, 18, 6] a__ : int =[64, 128, 320, 512] a__ : Tuple =4.0 a__ : Optional[int] =1e-6 a__ : int =0.9 elif size == "m36": a__ : List[Any] =[6, 6, 18, 6] a__ : List[str] =[96, 192, 384, 768] a__ : Optional[int] =4.0 a__ : List[str] =1e-6 a__ : List[Any] =0.9_5 elif size == "m48": a__ : List[str] =[8, 8, 24, 8] a__ : List[str] =[96, 192, 384, 768] a__ : Optional[Any] =4.0 a__ : int =1e-6 a__ : Optional[Any] =0.9_5 else: raise ValueError(f'''Size {size} not supported''' ) # load image processor a__ : str =PoolFormerImageProcessor(crop_pct=SCREAMING_SNAKE_CASE ) # Prepare image a__ : List[Any] =prepare_img() a__ : Tuple =image_processor(images=SCREAMING_SNAKE_CASE , return_tensors="pt" ).pixel_values logger.info(f'''Converting model {model_name}...''' ) # load original state dict a__ : Optional[int] =torch.load(SCREAMING_SNAKE_CASE , map_location=torch.device("cpu" ) ) # rename keys a__ : Dict =rename_keys(SCREAMING_SNAKE_CASE ) # create HuggingFace model and load state dict a__ : Optional[int] =PoolFormerForImageClassification(SCREAMING_SNAKE_CASE ) model.load_state_dict(SCREAMING_SNAKE_CASE ) model.eval() # Define image processor a__ : Optional[int] =PoolFormerImageProcessor(crop_pct=SCREAMING_SNAKE_CASE ) a__ : Any =image_processor(images=prepare_img() , return_tensors="pt" ).pixel_values # forward pass a__ : str =model(SCREAMING_SNAKE_CASE ) a__ : List[str] =outputs.logits # define expected logit slices for different models if size == "s12": a__ : Any =torch.tensor([-0.3_0_4_5, -0.6_7_5_8, -0.4_8_6_9] ) elif size == "s24": a__ : List[Any] =torch.tensor([0.4_4_0_2, -0.1_3_7_4, -0.8_0_4_5] ) elif size == "s36": a__ : Any =torch.tensor([-0.6_0_8_0, -0.5_1_3_3, -0.5_8_9_8] ) elif size == "m36": a__ : Dict =torch.tensor([0.3_9_5_2, 0.2_2_6_3, -1.2_6_6_8] ) elif size == "m48": a__ : Optional[Any] =torch.tensor([0.1_1_6_7, -0.0_6_5_6, -0.3_4_2_3] ) else: raise ValueError(f'''Size {size} not supported''' ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1e-2 ) # finally, save model and image processor logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE ) model.save_pretrained(SCREAMING_SNAKE_CASE ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCAmelCase : int = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""poolformer_s12""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) UpperCAmelCase : Optional[Any] = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
95
from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class __lowerCAmelCase ( UpperCamelCase__): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = True , lowerCAmelCase__ = None , lowerCAmelCase__ = False , lowerCAmelCase__ = None , lowerCAmelCase__ = True , lowerCAmelCase__ = "arrow" , **lowerCAmelCase__ , ) -> Optional[int]: '''simple docstring''' super().__init__( split=lowerCAmelCase__ , features=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ , keep_in_memory=lowerCAmelCase__ , streaming=lowerCAmelCase__ , **lowerCAmelCase__ , ) a__ : int =load_from_cache_file a__ : Tuple =file_format a__ : List[Any] =Spark( df=lowerCAmelCase__ , features=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ , working_dir=lowerCAmelCase__ , **lowerCAmelCase__ , ) def _lowercase ( self ) -> str: '''simple docstring''' if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) a__ : str =None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=lowerCAmelCase__ , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
95
1
"""simple docstring""" import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class UpperCamelCase ( unittest.TestCase ): @slow def _lowercase (self : Dict) -> Optional[Any]: __snake_case : Union[str, Any] = FlaxMTaForConditionalGeneration.from_pretrained('google/mt5-small') __snake_case : int = AutoTokenizer.from_pretrained('google/mt5-small') __snake_case : List[Any] = tokenizer('Hello there' , return_tensors='np').input_ids __snake_case : List[str] = tokenizer('Hi I am' , return_tensors='np').input_ids __snake_case : Tuple = shift_tokens_right(_A , model.config.pad_token_id , model.config.decoder_start_token_id) __snake_case : Union[str, Any] = model(_A , decoder_input_ids=_A).logits __snake_case : str = optax.softmax_cross_entropy(_A , onehot(_A , logits.shape[-1])).mean() __snake_case : Dict = -(labels.shape[-1] * loss.item()) __snake_case : List[Any] = -84.9_127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 1E-4)
355
"""simple docstring""" def __UpperCAmelCase ( UpperCAmelCase_ : list , UpperCAmelCase_ : int , UpperCAmelCase_ : int = 0 , UpperCAmelCase_ : int = 0 ) -> int: '''simple docstring''' __snake_case : str = right or len(UpperCAmelCase_ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(UpperCAmelCase_ , UpperCAmelCase_ , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
95
0
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType A__ : str = logging.get_logger(__name__) A__ : str = { """openai/imagegpt-small""": """""", """openai/imagegpt-medium""": """""", """openai/imagegpt-large""": """""", } class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" lowerCamelCase : int = 'imagegpt' lowerCamelCase : str = ['past_key_values'] lowerCamelCase : Optional[Any] = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , SCREAMING_SNAKE_CASE_=5_12 + 1 , SCREAMING_SNAKE_CASE_=32 * 32 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=24 , SCREAMING_SNAKE_CASE_=8 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_="quick_gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=1E-5 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_ , ) -> Any: __lowerCamelCase : Any = vocab_size __lowerCamelCase : List[Any] = n_positions __lowerCamelCase : Optional[int] = n_embd __lowerCamelCase : Union[str, Any] = n_layer __lowerCamelCase : Optional[Any] = n_head __lowerCamelCase : int = n_inner __lowerCamelCase : Tuple = activation_function __lowerCamelCase : Optional[Any] = resid_pdrop __lowerCamelCase : str = embd_pdrop __lowerCamelCase : Dict = attn_pdrop __lowerCamelCase : Any = layer_norm_epsilon __lowerCamelCase : Dict = initializer_range __lowerCamelCase : int = scale_attn_weights __lowerCamelCase : Dict = use_cache __lowerCamelCase : Any = scale_attn_by_inverse_layer_idx __lowerCamelCase : List[str] = reorder_and_upcast_attn __lowerCamelCase : Optional[int] = tie_word_embeddings super().__init__(tie_word_embeddings=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" @property def lowercase_ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ] ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = -1 , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 3 , SCREAMING_SNAKE_CASE_ = 32 , SCREAMING_SNAKE_CASE_ = 32 , ) -> Mapping[str, Any]: __lowerCamelCase : int = self._generate_dummy_images(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = dict(preprocessor(images=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ ) ) return inputs
185
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging A__ : Tuple = logging.get_logger(__name__) A__ : List[str] = {"""vocab_file""": """spm_char.model"""} A__ : str = { """vocab_file""": { """microsoft/speecht5_asr""": """https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model""", """microsoft/speecht5_tts""": """https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model""", """microsoft/speecht5_vc""": """https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model""", } } A__ : List[Any] = { """microsoft/speecht5_asr""": 1024, """microsoft/speecht5_tts""": 1024, """microsoft/speecht5_vc""": 1024, } class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" lowerCamelCase : Optional[Any] = VOCAB_FILES_NAMES lowerCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : int = ['input_ids', 'attention_mask'] def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_="<s>" , SCREAMING_SNAKE_CASE_="</s>" , SCREAMING_SNAKE_CASE_="<unk>" , SCREAMING_SNAKE_CASE_="<pad>" , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ) -> None: __lowerCamelCase : Any = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE_ , ) __lowerCamelCase : List[Any] = vocab_file __lowerCamelCase : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(SCREAMING_SNAKE_CASE_ ) @property def lowercase_ ( self ) -> List[str]: return self.sp_model.get_piece_size() def lowercase_ ( self ) -> Tuple: __lowerCamelCase : str = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Optional[Any]: __lowerCamelCase : Dict = self.__dict__.copy() __lowerCamelCase : int = None return state def __setstate__( self , SCREAMING_SNAKE_CASE_ ) -> List[str]: __lowerCamelCase : Union[str, Any] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __lowerCamelCase : List[str] = {} __lowerCamelCase : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> List[str]: return self.sp_model.encode(SCREAMING_SNAKE_CASE_ , out_type=SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> str: return self.sp_model.piece_to_id(SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Dict: __lowerCamelCase : Any = self.sp_model.IdToPiece(SCREAMING_SNAKE_CASE_ ) return token def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> List[Any]: __lowerCamelCase : Union[str, Any] = [] __lowerCamelCase : str = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE_ ) + token __lowerCamelCase : int = [] else: current_sub_tokens.append(SCREAMING_SNAKE_CASE_ ) out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE_ ) return out_string.strip() def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE_ , token_ids_a=SCREAMING_SNAKE_CASE_ , already_has_special_tokens=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = [1] if token_ids_a is None: return ([0] * len(SCREAMING_SNAKE_CASE_ )) + suffix_ones return ([0] * len(SCREAMING_SNAKE_CASE_ )) + ([0] * len(SCREAMING_SNAKE_CASE_ )) + suffix_ones def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]: if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __lowerCamelCase : Tuple = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE_ ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE_ , 'wb' ) as fi: __lowerCamelCase : str = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE_ ) return (out_vocab_file,)
185
1
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler a__ = 16 a__ = 32 def __UpperCAmelCase ( __a : Accelerator ,__a : int = 16 ,__a : str = "bert-base-cased" ) -> int: """simple docstring""" _a : int = AutoTokenizer.from_pretrained(__a ) _a : Optional[Any] = load_dataset('''glue''' ,'''mrpc''' ) def tokenize_function(__a : List[str] ): # max_length=None => use the model max length (it's actually the default) _a : int = tokenizer(examples['''sentence1'''] ,examples['''sentence2'''] ,truncation=__a ,max_length=__a ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset _a : Optional[Any] = datasets.map( __a ,batched=__a ,remove_columns=['''idx''', '''sentence1''', '''sentence2'''] ,load_from_cache_file=__a ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _a : Union[str, Any] = tokenized_datasets.rename_column('''label''' ,'''labels''' ) def collate_fn(__a : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__a ,padding='''max_length''' ,max_length=128 ,return_tensors='''pt''' ) return tokenizer.pad(__a ,padding='''longest''' ,return_tensors='''pt''' ) # Instantiate dataloaders. _a : Dict = DataLoader( tokenized_datasets['''train'''] ,shuffle=__a ,collate_fn=__a ,batch_size=__a ) _a : List[str] = DataLoader( tokenized_datasets['''validation'''] ,shuffle=__a ,collate_fn=__a ,batch_size=__a ) return train_dataloader, eval_dataloader def __UpperCAmelCase ( __a : str ,__a : Tuple ) -> List[str]: """simple docstring""" _a : Tuple = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _a : Optional[int] = config['''lr'''] _a : Optional[int] = int(config['''num_epochs'''] ) _a : Optional[Any] = int(config['''seed'''] ) _a : Union[str, Any] = int(config['''batch_size'''] ) _a : List[str] = args.model_name_or_path set_seed(__a ) _a , _a : List[Any] = get_dataloaders(__a ,__a ,__a ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _a : str = AutoModelForSequenceClassification.from_pretrained(__a ,return_dict=__a ) # Instantiate optimizer _a : Dict = ( AdamW if accelerator.state.deepspeed_plugin is None or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) _a : Union[str, Any] = optimizer_cls(params=model.parameters() ,lr=__a ) if accelerator.state.deepspeed_plugin is not None: _a : Dict = accelerator.state.deepspeed_plugin.deepspeed_config[ '''gradient_accumulation_steps''' ] else: _a : str = 1 _a : Optional[Any] = (len(__a ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): _a : Union[str, Any] = get_linear_schedule_with_warmup( optimizer=__a ,num_warmup_steps=0 ,num_training_steps=__a ,) else: _a : Optional[int] = DummyScheduler(__a ,total_num_steps=__a ,warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _a , _a , _a , _a , _a : str = accelerator.prepare( __a ,__a ,__a ,__a ,__a ) # We need to keep track of how many total steps we have iterated over _a : Union[str, Any] = 0 # We also need to keep track of the stating epoch so files are named properly _a : Dict = 0 # Now we train the model _a : Dict = evaluate.load('''glue''' ,'''mrpc''' ) _a : Union[str, Any] = 0 _a : int = {} for epoch in range(__a ,__a ): model.train() for step, batch in enumerate(__a ): _a : List[Any] = model(**__a ) _a : Any = outputs.loss _a : Optional[int] = loss / gradient_accumulation_steps accelerator.backward(__a ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() _a : Dict = 0 for step, batch in enumerate(__a ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _a : Union[str, Any] = model(**__a ) _a : Dict = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times _a , _a : Tuple = accelerator.gather( (predictions, batch['''labels''']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(__a ) - 1: _a : Any = predictions[: len(eval_dataloader.dataset ) - samples_seen] _a : List[str] = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=__a ,references=__a ,) _a : List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" ,__a ) _a : List[Any] = eval_metric['''accuracy'''] if best_performance < eval_metric["accuracy"]: _a : Union[str, Any] = eval_metric['''accuracy'''] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), F"""Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}""" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir ,'''all_results.json''' ) ,'''w''' ) as f: json.dump(__a ,__a ) def __UpperCAmelCase ( ) -> Tuple: """simple docstring""" _a : int = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' ) parser.add_argument( '''--model_name_or_path''' ,type=__a ,default='''bert-base-cased''' ,help='''Path to pretrained model or model identifier from huggingface.co/models.''' ,required=__a ,) parser.add_argument( '''--output_dir''' ,type=__a ,default='''.''' ,help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' ,) parser.add_argument( '''--performance_lower_bound''' ,type=__a ,default=__a ,help='''Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.''' ,) parser.add_argument( '''--num_epochs''' ,type=__a ,default=3 ,help='''Number of train epochs.''' ,) _a : Union[str, Any] = parser.parse_args() _a : Optional[int] = {'''lr''': 2E-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16} training_function(__a ,__a ) if __name__ == "__main__": main()
15
from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch a__ = logging.get_logger(__name__) @add_end_docstrings( __lowercase , r"\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n " , ) class UpperCAmelCase_ ( __lowercase ): """simple docstring""" def __lowercase ( self , _a ) -> np.ndarray: if self.framework == "tf": _a : List[str] = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": _a : Tuple = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_a ) else: raise ValueError('''Unsupported framework''' ) return masked_index def __lowercase ( self , _a ) -> np.ndarray: _a : int = self.get_masked_index(_a ) _a : Tuple = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , F"""No mask_token ({self.tokenizer.mask_token}) found on the input""" , ) def __lowercase ( self , _a ) -> Optional[int]: if isinstance(_a , _a ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input['''input_ids'''][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(_a ) def __lowercase ( self , _a , _a=None , **_a ) -> Dict[str, GenericTensor]: if return_tensors is None: _a : Union[str, Any] = self.framework _a : str = self.tokenizer(_a , return_tensors=_a ) self.ensure_exactly_one_mask_token(_a ) return model_inputs def __lowercase ( self , _a ) -> Optional[Any]: _a : List[str] = self.model(**_a ) _a : Any = model_inputs['''input_ids'''] return model_outputs def __lowercase ( self , _a , _a=5 , _a=None ) -> str: # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: _a : List[Any] = target_ids.shape[0] _a : Any = model_outputs['''input_ids'''][0] _a : List[str] = model_outputs['''logits'''] if self.framework == "tf": _a : Tuple = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] _a : List[str] = outputs.numpy() _a : Dict = outputs[0, masked_index, :] _a : str = stable_softmax(_a , axis=-1 ) if target_ids is not None: _a : Any = tf.gather_nd(tf.squeeze(_a , 0 ) , target_ids.reshape(-1 , 1 ) ) _a : Union[str, Any] = tf.expand_dims(_a , 0 ) _a : Optional[int] = tf.math.top_k(_a , k=_a ) _a , _a : Optional[Any] = topk.values.numpy(), topk.indices.numpy() else: _a : Optional[Any] = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_a ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample _a : List[str] = outputs[0, masked_index, :] _a : List[Any] = logits.softmax(dim=-1 ) if target_ids is not None: _a : List[Any] = probs[..., target_ids] _a , _a : Optional[Any] = probs.topk(_a ) _a : Dict = [] _a : List[Any] = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): _a : Optional[Any] = [] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place _a : Optional[int] = input_ids.numpy().copy() if target_ids is not None: _a : Tuple = target_ids[p].tolist() _a : List[str] = p # Filter padding out: _a : List[Any] = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back _a : List[str] = self.tokenizer.decode(_a , skip_special_tokens=_a ) _a : List[Any] = {'''score''': v, '''token''': p, '''token_str''': self.tokenizer.decode([p] ), '''sequence''': sequence} row.append(_a ) result.append(_a ) if single_mask: return result[0] return result def __lowercase ( self , _a , _a=None ) -> Dict: if isinstance(_a , _a ): _a : Tuple = [targets] try: _a : int = self.tokenizer.get_vocab() except Exception: _a : Any = {} _a : List[Any] = [] for target in targets: _a : List[Any] = vocab.get(_a , _a ) if id_ is None: _a : Tuple = self.tokenizer( _a , add_special_tokens=_a , return_attention_mask=_a , return_token_type_ids=_a , max_length=1 , truncation=_a , )['''input_ids'''] if len(_a ) == 0: logger.warning( F"""The specified target token `{target}` does not exist in the model vocabulary. """ '''We cannot replace it with anything meaningful, ignoring it''' ) continue _a : Tuple = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( F"""The specified target token `{target}` does not exist in the model vocabulary. """ F"""Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.""" ) target_ids.append(id_ ) _a : List[str] = list(set(_a ) ) if len(_a ) == 0: raise ValueError('''At least one target must be provided when passed.''' ) _a : int = np.array(_a ) return target_ids def __lowercase ( self , _a=None , _a=None ) -> Tuple: _a : str = {} if targets is not None: _a : List[Any] = self.get_target_ids(_a , _a ) _a : Optional[Any] = target_ids if top_k is not None: _a : Union[str, Any] = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , '''The tokenizer does not define a `mask_token`.''' ) return {}, {}, postprocess_params def __call__( self , _a , *_a , **_a ) -> int: _a : Optional[Any] = super().__call__(_a , **_a ) if isinstance(_a , _a ) and len(_a ) == 1: return outputs[0] return outputs
15
1
import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def A (__A : Tuple , __A : Optional[Any] , __A : Optional[int] ) -> List[str]: """simple docstring""" if gpta_config_file == "": UpperCAmelCase_ = GPTaConfig() else: UpperCAmelCase_ = GPTaConfig.from_json_file(__lowerCamelCase ) UpperCAmelCase_ = GPTaModel(__lowerCamelCase ) # Load weights from numpy load_tf_weights_in_gpta(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Save pytorch-model UpperCAmelCase_ = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME UpperCAmelCase_ = pytorch_dump_folder_path + '''/''' + CONFIG_NAME print(F"""Save PyTorch model to {pytorch_weights_dump_path}""" ) torch.save(model.state_dict() , __lowerCamelCase ) print(F"""Save configuration file to {pytorch_config_dump_path}""" ) with open(__lowerCamelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": snake_case_ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--gpt2_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--gpt2_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained OpenAI model. \n" "This specifies the model architecture." ), ) snake_case_ : str = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
51
"""simple docstring""" import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def _UpperCAmelCase ( __lowerCamelCase : int = 3 ) -> qiskit.result.counts.Counts: if isinstance(__lowerCamelCase , __lowerCamelCase ): raise TypeError('''number of qubits must be a integer.''' ) if number_of_qubits <= 0: raise ValueError('''number of qubits must be > 0.''' ) if math.floor(__lowerCamelCase ) != number_of_qubits: raise ValueError('''number of qubits must be exact integer.''' ) if number_of_qubits > 10: raise ValueError('''number of qubits too large to simulate(>10).''' ) _snake_case = QuantumRegister(__lowerCamelCase , '''qr''' ) _snake_case = ClassicalRegister(__lowerCamelCase , '''cr''' ) _snake_case = QuantumCircuit(__lowerCamelCase , __lowerCamelCase ) _snake_case = number_of_qubits for i in range(__lowerCamelCase ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(__lowerCamelCase ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , __lowerCamelCase , __lowerCamelCase ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(__lowerCamelCase , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(__lowerCamelCase , __lowerCamelCase ) # simulate with 10000 shots _snake_case = Aer.get_backend('''qasm_simulator''' ) _snake_case = execute(__lowerCamelCase , __lowerCamelCase , shots=1_00_00 ) return job.result().get_counts(__lowerCamelCase ) if __name__ == "__main__": print( F"Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}" )
288
0
import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class a_ ( a__ , a__ ): """simple docstring""" @register_to_config def __init__( self , _lowerCamelCase = 128 , _lowerCamelCase = 256 , _lowerCamelCase = 2000.0 , _lowerCamelCase = 768 , _lowerCamelCase = 12 , _lowerCamelCase = 12 , _lowerCamelCase = 64 , _lowerCamelCase = 2048 , _lowerCamelCase = 0.1 , ) ->int: super().__init__() SCREAMING_SNAKE_CASE : str = nn.Sequential( nn.Linear(_lowerCamelCase , d_model * 4 , bias=_lowerCamelCase ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=_lowerCamelCase ) , nn.SiLU() , ) SCREAMING_SNAKE_CASE : List[Any] = nn.Embedding(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = False SCREAMING_SNAKE_CASE : Any = nn.Linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Dropout(p=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = nn.ModuleList() for lyr_num in range(_lowerCamelCase ): # FiLM conditional T5 decoder SCREAMING_SNAKE_CASE : Tuple = DecoderLayer(d_model=_lowerCamelCase , d_kv=_lowerCamelCase , num_heads=_lowerCamelCase , d_ff=_lowerCamelCase , dropout_rate=_lowerCamelCase ) self.decoders.append(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = TaLayerNorm(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = nn.Dropout(p=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = nn.Linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Optional[Any]: SCREAMING_SNAKE_CASE : List[str] = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->List[Any]: SCREAMING_SNAKE_CASE : int = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. SCREAMING_SNAKE_CASE : Any = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) SCREAMING_SNAKE_CASE : List[str] = self.conditioning_emb(_lowerCamelCase ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) SCREAMING_SNAKE_CASE : Any = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. SCREAMING_SNAKE_CASE : List[str] = torch.broadcast_to( torch.arange(_lowerCamelCase , device=decoder_input_tokens.device ) , (batch, seq_length) , ) SCREAMING_SNAKE_CASE : Dict = self.position_encoding(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = self.continuous_inputs_projection(_lowerCamelCase ) inputs += position_encodings SCREAMING_SNAKE_CASE : int = self.dropout(_lowerCamelCase ) # decoder: No padding present. SCREAMING_SNAKE_CASE : Any = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. SCREAMING_SNAKE_CASE : Optional[int] = [(x, self.encoder_decoder_mask(_lowerCamelCase , _lowerCamelCase )) for x, y in encodings_and_masks] # cross attend style: concat encodings SCREAMING_SNAKE_CASE : List[Any] = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) SCREAMING_SNAKE_CASE : str = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: SCREAMING_SNAKE_CASE : List[str] = lyr( _lowerCamelCase , conditioning_emb=_lowerCamelCase , encoder_hidden_states=_lowerCamelCase , encoder_attention_mask=_lowerCamelCase , )[0] SCREAMING_SNAKE_CASE : List[str] = self.decoder_norm(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = self.post_dropout(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = self.spec_out(_lowerCamelCase ) return spec_out class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=1e-6 ) ->List[str]: super().__init__() SCREAMING_SNAKE_CASE : Tuple = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=_lowerCamelCase , d_kv=_lowerCamelCase , num_heads=_lowerCamelCase , dropout_rate=_lowerCamelCase ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=_lowerCamelCase , d_kv=_lowerCamelCase , num_heads=_lowerCamelCase , dropout_rate=_lowerCamelCase , layer_norm_epsilon=_lowerCamelCase , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=_lowerCamelCase , d_ff=_lowerCamelCase , dropout_rate=_lowerCamelCase , layer_norm_epsilon=_lowerCamelCase ) ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , ) ->Optional[int]: SCREAMING_SNAKE_CASE : List[Any] = self.layer[0]( _lowerCamelCase , conditioning_emb=_lowerCamelCase , attention_mask=_lowerCamelCase , ) if encoder_hidden_states is not None: SCREAMING_SNAKE_CASE : List[str] = torch.where(encoder_attention_mask > 0 , 0 , -1e10 ).to( encoder_hidden_states.dtype ) SCREAMING_SNAKE_CASE : Optional[int] = self.layer[1]( _lowerCamelCase , key_value_states=_lowerCamelCase , attention_mask=_lowerCamelCase , ) # Apply Film Conditional Feed Forward layer SCREAMING_SNAKE_CASE : int = self.layer[-1](_lowerCamelCase , _lowerCamelCase ) return (hidden_states,) class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->List[str]: super().__init__() SCREAMING_SNAKE_CASE : List[Any] = TaLayerNorm(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = TaFiLMLayer(in_features=d_model * 4 , out_features=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = Attention(query_dim=_lowerCamelCase , heads=_lowerCamelCase , dim_head=_lowerCamelCase , out_bias=_lowerCamelCase , scale_qk=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = nn.Dropout(_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , ) ->List[str]: # pre_self_attention_layer_norm SCREAMING_SNAKE_CASE : Union[str, Any] = self.layer_norm(_lowerCamelCase ) if conditioning_emb is not None: SCREAMING_SNAKE_CASE : Optional[int] = self.FiLMLayer(_lowerCamelCase , _lowerCamelCase ) # Self-attention block SCREAMING_SNAKE_CASE : str = self.attention(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = hidden_states + self.dropout(_lowerCamelCase ) return hidden_states class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Any: super().__init__() SCREAMING_SNAKE_CASE : Optional[Any] = Attention(query_dim=_lowerCamelCase , heads=_lowerCamelCase , dim_head=_lowerCamelCase , out_bias=_lowerCamelCase , scale_qk=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = TaLayerNorm(_lowerCamelCase , eps=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = nn.Dropout(_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , ) ->Optional[int]: SCREAMING_SNAKE_CASE : Dict = self.layer_norm(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = self.attention( _lowerCamelCase , encoder_hidden_states=_lowerCamelCase , attention_mask=attention_mask.squeeze(1 ) , ) SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_states + self.dropout(_lowerCamelCase ) return layer_output class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->int: super().__init__() SCREAMING_SNAKE_CASE : Dict = TaDenseGatedActDense(d_model=_lowerCamelCase , d_ff=_lowerCamelCase , dropout_rate=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = TaFiLMLayer(in_features=d_model * 4 , out_features=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = TaLayerNorm(_lowerCamelCase , eps=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = nn.Dropout(_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=None ) ->Optional[int]: SCREAMING_SNAKE_CASE : Any = self.layer_norm(_lowerCamelCase ) if conditioning_emb is not None: SCREAMING_SNAKE_CASE : Optional[Any] = self.film(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : str = self.DenseReluDense(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = hidden_states + self.dropout(_lowerCamelCase ) return hidden_states class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->int: super().__init__() SCREAMING_SNAKE_CASE : List[str] = nn.Linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = nn.Linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = nn.Linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = nn.Dropout(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = NewGELUActivation() def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[Any]: SCREAMING_SNAKE_CASE : Dict = self.act(self.wi_a(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : List[str] = self.wi_a(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = hidden_gelu * hidden_linear SCREAMING_SNAKE_CASE : int = self.dropout(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = self.wo(_lowerCamelCase ) return hidden_states class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=1e-6 ) ->List[str]: super().__init__() SCREAMING_SNAKE_CASE : Optional[int] = nn.Parameter(torch.ones(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : List[str] = eps def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[Any]: # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 SCREAMING_SNAKE_CASE : Dict = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: SCREAMING_SNAKE_CASE : Optional[Any] = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class a_ ( nn.Module ): """simple docstring""" def __lowerCAmelCase ( self , _lowerCamelCase ) ->torch.Tensor: return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.0_4_4_7_1_5 * torch.pow(_lowerCamelCase , 3.0 )) )) class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase ) ->Any: super().__init__() SCREAMING_SNAKE_CASE : List[str] = nn.Linear(_lowerCamelCase , out_features * 2 , bias=_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->List[str]: SCREAMING_SNAKE_CASE : Optional[Any] = self.scale_bias(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.chunk(_lowerCamelCase , 2 , -1 ) SCREAMING_SNAKE_CASE : Union[str, Any] = x * (1 + scale) + shift return x
357
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) a__ : Optional[Any] = {'''configuration_deit''': ['''DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DeiTConfig''', '''DeiTOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[Any] = ['''DeiTFeatureExtractor'''] a__ : Any = ['''DeiTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Tuple = [ '''DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DeiTForImageClassification''', '''DeiTForImageClassificationWithTeacher''', '''DeiTForMaskedImageModeling''', '''DeiTModel''', '''DeiTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[str] = [ '''TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFDeiTForImageClassification''', '''TFDeiTForImageClassificationWithTeacher''', '''TFDeiTForMaskedImageModeling''', '''TFDeiTModel''', '''TFDeiTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys a__ : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
19
0
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} # See all BART models at https://huggingface.co/models?filter=bart SCREAMING_SNAKE_CASE_ = { '''vocab_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/vocab.json''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/vocab.json''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json''', }, '''merges_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/merges.txt''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/merges.txt''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json''', }, } SCREAMING_SNAKE_CASE_ = { '''facebook/bart-base''': 1_0_2_4, '''facebook/bart-large''': 1_0_2_4, '''facebook/bart-large-mnli''': 1_0_2_4, '''facebook/bart-large-cnn''': 1_0_2_4, '''facebook/bart-large-xsum''': 1_0_2_4, '''yjernite/bart_eli5''': 1_0_2_4, } class UpperCamelCase__ ( a_ ): '''simple docstring''' __snake_case : List[str] = VOCAB_FILES_NAMES __snake_case : List[str] = PRETRAINED_VOCAB_FILES_MAP __snake_case : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case : Tuple = ["input_ids", "attention_mask"] __snake_case : str = BartTokenizer def __init__( self : Union[str, Any] ,lowerCamelCase__ : int=None ,lowerCamelCase__ : Tuple=None ,lowerCamelCase__ : List[Any]=None ,lowerCamelCase__ : str="replace" ,lowerCamelCase__ : List[Any]="<s>" ,lowerCamelCase__ : Dict="</s>" ,lowerCamelCase__ : List[Any]="</s>" ,lowerCamelCase__ : Union[str, Any]="<s>" ,lowerCamelCase__ : Dict="<unk>" ,lowerCamelCase__ : Any="<pad>" ,lowerCamelCase__ : List[str]="<mask>" ,lowerCamelCase__ : int=False ,lowerCamelCase__ : int=True ,**lowerCamelCase__ : int ,) -> Optional[Any]: '''simple docstring''' super().__init__( lowercase_ ,lowercase_ ,tokenizer_file=lowercase_ ,errors=lowercase_ ,bos_token=lowercase_ ,eos_token=lowercase_ ,sep_token=lowercase_ ,cls_token=lowercase_ ,unk_token=lowercase_ ,pad_token=lowercase_ ,mask_token=lowercase_ ,add_prefix_space=lowercase_ ,trim_offsets=lowercase_ ,**lowercase_ ,) SCREAMING_SNAKE_CASE = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" ,lowercase_ ) != add_prefix_space: SCREAMING_SNAKE_CASE = getattr(lowercase_ ,pre_tok_state.pop("""type""" ) ) SCREAMING_SNAKE_CASE = add_prefix_space SCREAMING_SNAKE_CASE = pre_tok_class(**lowercase_ ) SCREAMING_SNAKE_CASE = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` SCREAMING_SNAKE_CASE = '''post_processor''' SCREAMING_SNAKE_CASE = getattr(self.backend_tokenizer ,lowercase_ ,lowercase_ ) if tokenizer_component_instance: SCREAMING_SNAKE_CASE = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: SCREAMING_SNAKE_CASE = tuple(state["""sep"""] ) if "cls" in state: SCREAMING_SNAKE_CASE = tuple(state["""cls"""] ) SCREAMING_SNAKE_CASE = False if state.get("""add_prefix_space""" ,lowercase_ ) != add_prefix_space: SCREAMING_SNAKE_CASE = add_prefix_space SCREAMING_SNAKE_CASE = True if state.get("""trim_offsets""" ,lowercase_ ) != trim_offsets: SCREAMING_SNAKE_CASE = trim_offsets SCREAMING_SNAKE_CASE = True if changes_to_apply: SCREAMING_SNAKE_CASE = getattr(lowercase_ ,state.pop("""type""" ) ) SCREAMING_SNAKE_CASE = component_class(**lowercase_ ) setattr(self.backend_tokenizer ,lowercase_ ,lowercase_ ) @property def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def SCREAMING_SNAKE_CASE__ ( self : int ,lowerCamelCase__ : Tuple ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = AddedToken(lowercase_ ,lstrip=lowercase_ ,rstrip=lowercase_ ) if isinstance(lowercase_ ,lowercase_ ) else value SCREAMING_SNAKE_CASE = value def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ,*lowerCamelCase__ : Tuple ,**lowerCamelCase__ : str ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = kwargs.get("""is_split_into_words""" ,lowercase_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ """to use it with pretokenized inputs.""" ) return super()._batch_encode_plus(*lowercase_ ,**lowercase_ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ,*lowerCamelCase__ : str ,**lowerCamelCase__ : str ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = kwargs.get("""is_split_into_words""" ,lowercase_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ """to use it with pretokenized inputs.""" ) return super()._encode_plus(*lowercase_ ,**lowercase_ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ,lowerCamelCase__ : str ,lowerCamelCase__ : Optional[str] = None ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = self._tokenizer.model.save(lowercase_ ,name=lowercase_ ) return tuple(lowercase_ ) def SCREAMING_SNAKE_CASE__ ( self : int ,lowerCamelCase__ : str ,lowerCamelCase__ : Dict=None ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def SCREAMING_SNAKE_CASE__ ( self : Dict ,lowerCamelCase__ : List[int] ,lowerCamelCase__ : Optional[List[int]] = None ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
296
"""simple docstring""" from collections import defaultdict from math import ceil, sqrt def __SCREAMING_SNAKE_CASE ( A_ = 1_00_00_00 , A_ = 10 ): lowerCAmelCase__ : defaultdict = defaultdict(A_ ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: lowerCAmelCase__ : int = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: lowerCAmelCase__ : Tuple = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(A_ , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(F'''{solution() = }''')
106
0
'''simple docstring''' import argparse import copy def _A ( snake_case ) -> Tuple: _lowercase : Any = {} with open(snake_case ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: _lowercase : Dict = [] _list.append([line.split()[1], line.split()[2]] ) _lowercase : Any = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: _lowercase : Tuple = [] _list.append([line.split()[0], line.split()[2]] ) _lowercase : List[Any] = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def _A ( snake_case , snake_case ) -> Optional[int]: with open(snake_case ) as f: _lowercase : str = f.read(1 ) _lowercase : List[str] = start_node _lowercase : int = [] _lowercase : Optional[Any] = start_node _lowercase : Optional[Any] = 0 while visiting not in first_solution: _lowercase : Optional[Any] = 1_00_00 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(snake_case ) and k[0] not in first_solution: _lowercase : int = k[1] _lowercase : Tuple = k[0] first_solution.append(snake_case ) _lowercase : Optional[Any] = distance_of_first_solution + int(snake_case ) _lowercase : List[Any] = best_node first_solution.append(snake_case ) _lowercase : List[Any] = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 _lowercase : List[str] = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 1_00_00 ) return first_solution, distance_of_first_solution def _A ( snake_case , snake_case ) -> List[str]: _lowercase : Dict = [] for n in solution[1:-1]: _lowercase : Tuple = solution.index(snake_case ) for kn in solution[1:-1]: _lowercase : Union[str, Any] = solution.index(snake_case ) if n == kn: continue _lowercase : List[str] = copy.deepcopy(snake_case ) _lowercase : str = kn _lowercase : List[str] = n _lowercase : List[Any] = 0 for k in _tmp[:-1]: _lowercase : List[str] = _tmp[_tmp.index(snake_case ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: _lowercase : Optional[Any] = distance + int(i[1] ) _tmp.append(snake_case ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) _lowercase : Any = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda snake_case : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def _A ( snake_case , snake_case , snake_case , snake_case , snake_case ) -> List[Any]: _lowercase : Union[str, Any] = 1 _lowercase : List[Any] = first_solution _lowercase : Optional[int] = [] _lowercase : Any = distance_of_first_solution _lowercase : Union[str, Any] = solution while count <= iters: _lowercase : List[Any] = find_neighborhood(snake_case , snake_case ) _lowercase : int = 0 _lowercase : Optional[int] = neighborhood[index_of_best_solution] _lowercase : int = len(snake_case ) - 1 _lowercase : List[str] = False while not found: _lowercase : int = 0 while i < len(snake_case ): if best_solution[i] != solution[i]: _lowercase : Optional[Any] = best_solution[i] _lowercase : str = solution[i] break _lowercase : Tuple = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) _lowercase : Optional[Any] = True _lowercase : Dict = best_solution[:-1] _lowercase : Tuple = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: _lowercase : Union[str, Any] = cost _lowercase : Any = solution else: _lowercase : Tuple = index_of_best_solution + 1 _lowercase : List[Any] = neighborhood[index_of_best_solution] if len(snake_case ) >= size: tabu_list.pop(0 ) _lowercase : List[Any] = count + 1 return best_solution_ever, best_cost def _A ( snake_case=None ) -> Optional[int]: _lowercase : List[Any] = generate_neighbours(args.File ) _lowercase , _lowercase : Union[str, Any] = generate_first_solution( args.File , snake_case ) _lowercase , _lowercase : Optional[int] = tabu_search( snake_case , snake_case , snake_case , args.Iterations , args.Size , ) print(F'''Best solution: {best_sol}, with total distance: {best_cost}.''' ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser(description='Tabu Search') parser.add_argument( '-f', '--File', type=str, help='Path to the file containing the data', required=True, ) parser.add_argument( '-i', '--Iterations', type=int, help='How many iterations the algorithm should perform', required=True, ) parser.add_argument( '-s', '--Size', type=int, help='Size of the tabu list', required=True ) # Pass the arguments to main method main(parser.parse_args())
199
'''simple docstring''' from math import pi, sqrt, tan def _A ( snake_case ) -> float: if side_length < 0: raise ValueError("surface_area_cube() only accepts non-negative values" ) return 6 * side_length**2 def _A ( snake_case , snake_case , snake_case ) -> float: if length < 0 or breadth < 0 or height < 0: raise ValueError("surface_area_cuboid() only accepts non-negative values" ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def _A ( snake_case ) -> float: if radius < 0: raise ValueError("surface_area_sphere() only accepts non-negative values" ) return 4 * pi * radius**2 def _A ( snake_case ) -> float: if radius < 0: raise ValueError("surface_area_hemisphere() only accepts non-negative values" ) return 3 * pi * radius**2 def _A ( snake_case , snake_case ) -> float: if radius < 0 or height < 0: raise ValueError("surface_area_cone() only accepts non-negative values" ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def _A ( snake_case , snake_case , snake_case ) -> float: if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( "surface_area_conical_frustum() only accepts non-negative values" ) _lowercase : Union[str, Any] = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def _A ( snake_case , snake_case ) -> float: if radius < 0 or height < 0: raise ValueError("surface_area_cylinder() only accepts non-negative values" ) return 2 * pi * radius * (height + radius) def _A ( snake_case , snake_case ) -> float: if torus_radius < 0 or tube_radius < 0: raise ValueError("surface_area_torus() only accepts non-negative values" ) if torus_radius < tube_radius: raise ValueError( "surface_area_torus() does not support spindle or self intersecting tori" ) return 4 * pow(snake_case , 2 ) * torus_radius * tube_radius def _A ( snake_case , snake_case ) -> float: if length < 0 or width < 0: raise ValueError("area_rectangle() only accepts non-negative values" ) return length * width def _A ( snake_case ) -> float: if side_length < 0: raise ValueError("area_square() only accepts non-negative values" ) return side_length**2 def _A ( snake_case , snake_case ) -> float: if base < 0 or height < 0: raise ValueError("area_triangle() only accepts non-negative values" ) return (base * height) / 2 def _A ( snake_case , snake_case , snake_case ) -> float: if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError("area_triangle_three_sides() only accepts non-negative values" ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError("Given three sides do not form a triangle" ) _lowercase : Any = (sidea + sidea + sidea) / 2 _lowercase : List[str] = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def _A ( snake_case , snake_case ) -> float: if base < 0 or height < 0: raise ValueError("area_parallelogram() only accepts non-negative values" ) return base * height def _A ( snake_case , snake_case , snake_case ) -> float: if basea < 0 or basea < 0 or height < 0: raise ValueError("area_trapezium() only accepts non-negative values" ) return 1 / 2 * (basea + basea) * height def _A ( snake_case ) -> float: if radius < 0: raise ValueError("area_circle() only accepts non-negative values" ) return pi * radius**2 def _A ( snake_case , snake_case ) -> float: if radius_x < 0 or radius_y < 0: raise ValueError("area_ellipse() only accepts non-negative values" ) return pi * radius_x * radius_y def _A ( snake_case , snake_case ) -> float: if diagonal_a < 0 or diagonal_a < 0: raise ValueError("area_rhombus() only accepts non-negative values" ) return 1 / 2 * diagonal_a * diagonal_a def _A ( snake_case , snake_case ) -> float: if not isinstance(snake_case , snake_case ) or sides < 3: raise ValueError( "area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides" ) elif length < 0: raise ValueError( "area_reg_polygon() only accepts non-negative values as \ length of a side" ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('[DEMO] Areas of various geometric shapes: \n') print(F'''Rectangle: {area_rectangle(10, 20) = }''') print(F'''Square: {area_square(10) = }''') print(F'''Triangle: {area_triangle(10, 10) = }''') print(F'''Triangle: {area_triangle_three_sides(5, 12, 13) = }''') print(F'''Parallelogram: {area_parallelogram(10, 20) = }''') print(F'''Rhombus: {area_rhombus(10, 20) = }''') print(F'''Trapezium: {area_trapezium(10, 20, 30) = }''') print(F'''Circle: {area_circle(20) = }''') print(F'''Ellipse: {area_ellipse(10, 20) = }''') print('\nSurface Areas of various geometric shapes: \n') print(F'''Cube: {surface_area_cube(20) = }''') print(F'''Cuboid: {surface_area_cuboid(10, 20, 30) = }''') print(F'''Sphere: {surface_area_sphere(20) = }''') print(F'''Hemisphere: {surface_area_hemisphere(20) = }''') print(F'''Cone: {surface_area_cone(10, 20) = }''') print(F'''Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }''') print(F'''Cylinder: {surface_area_cylinder(10, 20) = }''') print(F'''Torus: {surface_area_torus(20, 10) = }''') print(F'''Equilateral Triangle: {area_reg_polygon(3, 10) = }''') print(F'''Square: {area_reg_polygon(4, 10) = }''') print(F'''Reqular Pentagon: {area_reg_polygon(5, 10) = }''')
199
1
from collections.abc import Callable import numpy as np def lowerCamelCase__ ( _a , _a , _a , _a , _a): SCREAMING_SNAKE_CASE : Dict = int(np.ceil((x_end - xa) / step_size)) SCREAMING_SNAKE_CASE : Tuple = np.zeros((n + 1,)) SCREAMING_SNAKE_CASE : int = ya SCREAMING_SNAKE_CASE : int = xa for k in range(_a): SCREAMING_SNAKE_CASE : Any = y[k] + step_size * ode_func(_a , y[k]) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
76
def lowerCamelCase__ ( _a , _a): return int((input_a, input_a).count(1) != 0) def lowerCamelCase__ ( ): assert or_gate(0 , 0) == 0 assert or_gate(0 , 1) == 1 assert or_gate(1 , 0) == 1 assert or_gate(1 , 1) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
76
1
"""simple docstring""" def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Any: if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(__lowerCAmelCase , n - 1 , __lowerCAmelCase ) * a) % mod else: SCREAMING_SNAKE_CASE__ : List[Any] = binary_exponentiation(__lowerCAmelCase , n / 2 , __lowerCAmelCase ) return (b * b) % mod # a prime number a :int = 701 a :List[str] = 1_000_000_000 a :int = 10 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
355
"""simple docstring""" import math from collections.abc import Iterator from itertools import takewhile def _lowercase ( __lowerCAmelCase ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _lowercase ( ) -> Iterator[int]: SCREAMING_SNAKE_CASE__ : List[Any] = 2 while True: if is_prime(__lowerCAmelCase ): yield num num += 1 def _lowercase ( __lowerCAmelCase = 200_0000 ) -> int: return sum(takewhile(lambda __lowerCAmelCase : x < n , prime_generator() ) ) if __name__ == "__main__": print(f'{solution() = }')
56
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging _snake_case = logging.get_logger(__name__) _snake_case = { "bigscience/bloom": "https://huggingface.co/bigscience/bloom/resolve/main/config.json", "bigscience/bloom-560m": "https://huggingface.co/bigscience/bloom-560m/blob/main/config.json", "bigscience/bloom-1b1": "https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json", "bigscience/bloom-1b7": "https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json", "bigscience/bloom-3b": "https://huggingface.co/bigscience/bloom-3b/blob/main/config.json", "bigscience/bloom-7b1": "https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json", } class UpperCAmelCase_ ( UpperCAmelCase_): lowerCamelCase__ = """bloom""" lowerCamelCase__ = ["""past_key_values"""] lowerCamelCase__ = { """num_hidden_layers""": """n_layer""", """num_attention_heads""": """n_head""", } def __init__( self, __a=25_0880, __a=64, __a=2, __a=8, __a=1E-5, __a=0.02, __a=True, __a=1, __a=2, __a=False, __a=0.0, __a=0.0, __a=1, __a=False, **__a, ): '''simple docstring''' _lowerCAmelCase : Tuple = vocab_size # Backward compatibility with n_embed kwarg _lowerCAmelCase : Union[str, Any] = kwargs.pop("n_embed", __lowercase) _lowerCAmelCase : Any = hidden_size if n_embed is None else n_embed _lowerCAmelCase : List[str] = n_layer _lowerCAmelCase : Optional[int] = n_head _lowerCAmelCase : Optional[Any] = layer_norm_epsilon _lowerCAmelCase : Optional[Any] = initializer_range _lowerCAmelCase : str = use_cache _lowerCAmelCase : List[Any] = pretraining_tp _lowerCAmelCase : Tuple = apply_residual_connection_post_layernorm _lowerCAmelCase : int = hidden_dropout _lowerCAmelCase : Optional[int] = attention_dropout _lowerCAmelCase : Dict = bos_token_id _lowerCAmelCase : List[Any] = eos_token_id _lowerCAmelCase : int = slow_but_exact super().__init__(bos_token_id=__lowercase, eos_token_id=__lowercase, **__lowercase) class UpperCAmelCase_ ( UpperCAmelCase_): lowerCamelCase__ = version.parse('1.12') def __init__( self, __a, __a = "default", __a = None, __a = False, ): '''simple docstring''' super().__init__(__lowercase, task=__lowercase, patching_specs=__lowercase, use_past=__lowercase) if not getattr(self._config, "pad_token_id", __lowercase): # TODO: how to do that better? _lowerCAmelCase : List[Any] = 0 @property def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}}) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(__lowercase, direction="inputs", inverted_values_shape=__lowercase) _lowerCAmelCase : List[str] = {0: '''batch''', 1: '''past_sequence + sequence'''} else: _lowerCAmelCase : Union[str, Any] = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def snake_case__ ( self): '''simple docstring''' return self._config.n_layer @property def snake_case__ ( self): '''simple docstring''' return self._config.n_head @property def snake_case__ ( self): '''simple docstring''' return 1E-3 def snake_case__ ( self, __a, __a = -1, __a = -1, __a = False, __a = None, ): '''simple docstring''' _lowerCAmelCase : str = super(__lowercase, self).generate_dummy_inputs( __lowercase, batch_size=__lowercase, seq_length=__lowercase, is_pair=__lowercase, framework=__lowercase) # We need to order the input in the way they appears in the forward() _lowerCAmelCase : Optional[Any] = OrderedDict({"input_ids": common_inputs["input_ids"]}) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.") else: import torch _lowerCAmelCase : Tuple = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values _lowerCAmelCase : List[str] = seqlen + 2 _lowerCAmelCase : Optional[int] = self._config.hidden_size // self.num_attention_heads _lowerCAmelCase : Union[str, Any] = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) _lowerCAmelCase : Optional[Any] = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) _lowerCAmelCase : Tuple = [ (torch.zeros(__lowercase), torch.zeros(__lowercase)) for _ in range(self.num_layers) ] _lowerCAmelCase : str = common_inputs['''attention_mask'''] if self.use_past: _lowerCAmelCase : int = ordered_inputs['''attention_mask'''].dtype _lowerCAmelCase : Any = torch.cat( [ordered_inputs["attention_mask"], torch.ones(__lowercase, __lowercase, dtype=__lowercase)], dim=1) return ordered_inputs @property def snake_case__ ( self): '''simple docstring''' return 13
36
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase = logging.get_logger(__name__) __lowercase = {'''ctrl''': '''https://huggingface.co/ctrl/resolve/main/config.json'''} class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : str = """ctrl""" a__ : Dict = ["""past_key_values"""] a__ : Tuple = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , __lowercase=246_534 , __lowercase=256 , __lowercase=1_280 , __lowercase=8_192 , __lowercase=48 , __lowercase=16 , __lowercase=0.1 , __lowercase=0.1 , __lowercase=1E-6 , __lowercase=0.02 , __lowercase=True , **__lowercase , ) -> List[Any]: __UpperCamelCase :List[str] = vocab_size __UpperCamelCase :Optional[Any] = n_positions __UpperCamelCase :Dict = n_embd __UpperCamelCase :Dict = n_layer __UpperCamelCase :List[Any] = n_head __UpperCamelCase :int = dff __UpperCamelCase :Union[str, Any] = resid_pdrop __UpperCamelCase :Optional[int] = embd_pdrop __UpperCamelCase :List[Any] = layer_norm_epsilon __UpperCamelCase :Dict = initializer_range __UpperCamelCase :Any = use_cache super().__init__(**__lowercase)
43
0
'''simple docstring''' def lowerCamelCase ( UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> str: if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): raise ValueError("""iterations must be defined as integers""" ) if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) or not number >= 1: raise ValueError( """starting number must be and integer and be more than 0""" ) if not iterations >= 1: raise ValueError("""Iterations must be done more than 0 times to play FizzBuzz""" ) lowercase_ : Dict = """""" while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(UpperCAmelCase__ ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
21
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline _lowercase : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class __magic_name__ ( _UpperCAmelCase): def __init__( self : Union[str, Any] , lowercase_ : Optional[int] , lowercase_ : str ): super().__init__() self.register_modules(unet=lowercase_ , scheduler=lowercase_ ) @torch.no_grad() def __call__( self : List[str] , lowercase_ : int = 1 , lowercase_ : int = 100 , lowercase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowercase_ : Optional[float] = None , lowercase_ : bool = True , ): if audio_length_in_s is None: lowercase_ : List[Any] = self.unet.config.sample_size / self.unet.config.sample_rate lowercase_ : Dict = audio_length_in_s * self.unet.config.sample_rate lowercase_ : Any = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( f'''{audio_length_in_s} is too small. Make sure it\'s bigger or equal to''' f''' {3 * down_scale_factor / self.unet.config.sample_rate}.''' ) lowercase_ : List[Any] = int(lowercase_ ) if sample_size % down_scale_factor != 0: lowercase_ : int = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( f'''{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled''' f''' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising''' """ process.""" ) lowercase_ : Any = int(lowercase_ ) lowercase_ : List[str] = next(iter(self.unet.parameters() ) ).dtype lowercase_ : List[str] = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(lowercase_ , lowercase_ ) and len(lowercase_ ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(lowercase_ )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowercase_ : Any = randn_tensor(lowercase_ , generator=lowercase_ , device=self.device , dtype=lowercase_ ) # set step values self.scheduler.set_timesteps(lowercase_ , device=audio.device ) lowercase_ : Optional[Any] = self.scheduler.timesteps.to(lowercase_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output lowercase_ : Dict = self.unet(lowercase_ , lowercase_ ).sample # 2. compute previous image: x_t -> t_t-1 lowercase_ : List[str] = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ ).prev_sample lowercase_ : str = audio.clamp(-1 , 1 ).float().cpu().numpy() lowercase_ : Union[str, Any] = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=lowercase_ )
21
1
'''simple docstring''' import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel a : List[str] = '0.12' # assumed parallelism: 8 @require_flax @is_staging_test class a ( unittest.TestCase ): @classmethod def A_ ( cls : str ): snake_case_ = TOKEN HfFolder.save_token(lowercase_ ) @classmethod def A_ ( cls : Optional[Any] ): try: delete_repo(token=cls._token , repo_id='''test-model-flax''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' ) except HTTPError: pass def A_ ( self : Tuple ): snake_case_ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) snake_case_ = FlaxBertModel(lowercase_ ) model.push_to_hub('''test-model-flax''' , use_auth_token=self._token ) snake_case_ = FlaxBertModel.from_pretrained(F"{USER}/test-model-flax" ) snake_case_ = flatten_dict(unfreeze(model.params ) ) snake_case_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): snake_case_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowercase_ , 1e-3 , msg=F"{key} not identical" ) # Reset repo delete_repo(token=self._token , repo_id='''test-model-flax''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(lowercase_ , repo_id='''test-model-flax''' , push_to_hub=lowercase_ , use_auth_token=self._token ) snake_case_ = FlaxBertModel.from_pretrained(F"{USER}/test-model-flax" ) snake_case_ = flatten_dict(unfreeze(model.params ) ) snake_case_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): snake_case_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowercase_ , 1e-3 , msg=F"{key} not identical" ) def A_ ( self : Optional[Any] ): snake_case_ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) snake_case_ = FlaxBertModel(lowercase_ ) model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token ) snake_case_ = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) snake_case_ = flatten_dict(unfreeze(model.params ) ) snake_case_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): snake_case_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowercase_ , 1e-3 , msg=F"{key} not identical" ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( lowercase_ , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=lowercase_ , use_auth_token=self._token ) snake_case_ = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) snake_case_ = flatten_dict(unfreeze(model.params ) ) snake_case_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): snake_case_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowercase_ , 1e-3 , msg=F"{key} not identical" ) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' snake_case_ = True snake_case_ = flatten_dict(modela.params ) snake_case_ = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: snake_case_ = False return models_are_equal @require_flax class a ( unittest.TestCase ): def A_ ( self : Union[str, Any] ): snake_case_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) snake_case_ = FlaxBertModel(lowercase_ ) snake_case_ = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(lowercase_ , lowercase_ ) ) with self.assertRaises(lowercase_ ): snake_case_ = FlaxBertModel.from_pretrained(lowercase_ ) snake_case_ = FlaxBertModel.from_pretrained(lowercase_ , subfolder=lowercase_ ) self.assertTrue(check_models_equal(lowercase_ , lowercase_ ) ) def A_ ( self : Union[str, Any] ): snake_case_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) snake_case_ = FlaxBertModel(lowercase_ ) snake_case_ = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(lowercase_ , lowercase_ ) , max_shard_size='''10KB''' ) with self.assertRaises(lowercase_ ): snake_case_ = FlaxBertModel.from_pretrained(lowercase_ ) snake_case_ = FlaxBertModel.from_pretrained(lowercase_ , subfolder=lowercase_ ) self.assertTrue(check_models_equal(lowercase_ , lowercase_ ) ) def A_ ( self : str ): snake_case_ = '''bert''' snake_case_ = '''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(lowercase_ ): snake_case_ = FlaxBertModel.from_pretrained(lowercase_ ) snake_case_ = FlaxBertModel.from_pretrained(lowercase_ , subfolder=lowercase_ ) self.assertIsNotNone(lowercase_ ) def A_ ( self : Tuple ): snake_case_ = '''bert''' snake_case_ = '''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(lowercase_ ): snake_case_ = FlaxBertModel.from_pretrained(lowercase_ ) snake_case_ = FlaxBertModel.from_pretrained(lowercase_ , subfolder=lowercase_ ) self.assertIsNotNone(lowercase_ )
56
'''simple docstring''' import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class a ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): snake_case_ = AutoencoderKL snake_case_ = "sample" snake_case_ = 1e-2 @property def A_ ( self : Dict ): snake_case_ = 4 snake_case_ = 3 snake_case_ = (32, 32) snake_case_ = floats_tensor((batch_size, num_channels) + sizes ).to(lowercase_ ) return {"sample": image} @property def A_ ( self : List[Any] ): return (3, 32, 32) @property def A_ ( self : Dict ): return (3, 32, 32) def A_ ( self : Union[str, Any] ): snake_case_ = { '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 4, } snake_case_ = self.dummy_input return init_dict, inputs_dict def A_ ( self : Any ): pass def A_ ( self : str ): pass @unittest.skipIf(torch_device == '''mps''' , '''Gradient checkpointing skipped on MPS''' ) def A_ ( self : Dict ): # enable deterministic behavior for gradient checkpointing snake_case_ ,snake_case_ = self.prepare_init_args_and_inputs_for_common() snake_case_ = self.model_class(**lowercase_ ) model.to(lowercase_ ) assert not model.is_gradient_checkpointing and model.training snake_case_ = model(**lowercase_ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() snake_case_ = torch.randn_like(lowercase_ ) snake_case_ = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing snake_case_ = self.model_class(**lowercase_ ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(lowercase_ ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training snake_case_ = model_a(**lowercase_ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() snake_case_ = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1e-5 ) snake_case_ = dict(model.named_parameters() ) snake_case_ = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5e-5 ) ) def A_ ( self : Tuple ): snake_case_ ,snake_case_ = AutoencoderKL.from_pretrained('''fusing/autoencoder-kl-dummy''' , output_loading_info=lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(lowercase_ ) snake_case_ = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def A_ ( self : Tuple ): snake_case_ = AutoencoderKL.from_pretrained('''fusing/autoencoder-kl-dummy''' ) snake_case_ = model.to(lowercase_ ) model.eval() if torch_device == "mps": snake_case_ = torch.manual_seed(0 ) else: snake_case_ = torch.Generator(device=lowercase_ ).manual_seed(0 ) snake_case_ = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) snake_case_ = image.to(lowercase_ ) with torch.no_grad(): snake_case_ = model(lowercase_ , sample_posterior=lowercase_ , generator=lowercase_ ).sample snake_case_ = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": snake_case_ = torch.tensor( [ -4.0_078e-01, -3.8_323e-04, -1.2_681e-01, -1.1_462e-01, 2.0_095e-01, 1.0_893e-01, -8.8_247e-02, -3.0_361e-01, -9.8_644e-03, ] ) elif torch_device == "cpu": snake_case_ = torch.tensor( [-0.1352, 0.0878, 0.0419, -0.0818, -0.1069, 0.0688, -0.1458, -0.4446, -0.0026] ) else: snake_case_ = torch.tensor( [-0.2421, 0.4642, 0.2507, -0.0438, 0.0682, 0.3160, -0.2018, -0.0727, 0.2485] ) self.assertTrue(torch_all_close(lowercase_ , lowercase_ , rtol=1e-2 ) ) @slow class a ( unittest.TestCase ): def A_ ( self : Union[str, Any] , lowercase_ : Optional[Any] , lowercase_ : Optional[int] ): return F"gaussian_noise_s={seed}_shape={'_'.join([str(lowercase_ ) for s in shape] )}.npy" def A_ ( self : Any ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A_ ( self : Dict , lowercase_ : List[Any]=0 , lowercase_ : Union[str, Any]=(4, 3, 512, 512) , lowercase_ : Optional[Any]=False ): snake_case_ = torch.floataa if fpaa else torch.floataa snake_case_ = torch.from_numpy(load_hf_numpy(self.get_file_format(lowercase_ , lowercase_ ) ) ).to(lowercase_ ).to(lowercase_ ) return image def A_ ( self : Any , lowercase_ : Dict="CompVis/stable-diffusion-v1-4" , lowercase_ : List[str]=False ): snake_case_ = '''fp16''' if fpaa else None snake_case_ = torch.floataa if fpaa else torch.floataa snake_case_ = AutoencoderKL.from_pretrained( lowercase_ , subfolder='''vae''' , torch_dtype=lowercase_ , revision=lowercase_ , ) model.to(lowercase_ ).eval() return model def A_ ( self : Any , lowercase_ : int=0 ): if torch_device == "mps": return torch.manual_seed(lowercase_ ) return torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) @parameterized.expand( [ # fmt: off [33, [-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def A_ ( self : Union[str, Any] , lowercase_ : Tuple , lowercase_ : Tuple , lowercase_ : Tuple ): snake_case_ = self.get_sd_vae_model() snake_case_ = self.get_sd_image(lowercase_ ) snake_case_ = self.get_generator(lowercase_ ) with torch.no_grad(): snake_case_ = model(lowercase_ , generator=lowercase_ , sample_posterior=lowercase_ ).sample assert sample.shape == image.shape snake_case_ = sample[-1, -2:, -2:, :2].flatten().float().cpu() snake_case_ = torch.tensor(expected_slice_mps if torch_device == '''mps''' else expected_slice ) assert torch_all_close(lowercase_ , lowercase_ , atol=3e-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0513, 0.0289, 1.3799, 0.2166, -0.2573, -0.0871, 0.5103, -0.0999]], [47, [-0.4128, -0.1320, -0.3704, 0.1965, -0.4116, -0.2332, -0.3340, 0.2247]], # fmt: on ] ) @require_torch_gpu def A_ ( self : Optional[int] , lowercase_ : Union[str, Any] , lowercase_ : Dict ): snake_case_ = self.get_sd_vae_model(fpaa=lowercase_ ) snake_case_ = self.get_sd_image(lowercase_ , fpaa=lowercase_ ) snake_case_ = self.get_generator(lowercase_ ) with torch.no_grad(): snake_case_ = model(lowercase_ , generator=lowercase_ , sample_posterior=lowercase_ ).sample assert sample.shape == image.shape snake_case_ = sample[-1, -2:, :2, -2:].flatten().float().cpu() snake_case_ = torch.tensor(lowercase_ ) assert torch_all_close(lowercase_ , lowercase_ , atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1609, 0.9866, -0.0487, -0.0777, -0.2716, 0.8368, -0.2055, -0.0814], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2377, 0.1147, 0.1333, -0.4841, -0.2506, -0.0805, -0.0491, -0.4085], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def A_ ( self : Tuple , lowercase_ : Dict , lowercase_ : str , lowercase_ : Optional[int] ): snake_case_ = self.get_sd_vae_model() snake_case_ = self.get_sd_image(lowercase_ ) with torch.no_grad(): snake_case_ = model(lowercase_ ).sample assert sample.shape == image.shape snake_case_ = sample[-1, -2:, -2:, :2].flatten().float().cpu() snake_case_ = torch.tensor(expected_slice_mps if torch_device == '''mps''' else expected_slice ) assert torch_all_close(lowercase_ , lowercase_ , atol=3e-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2051, -0.1803, -0.2311, -0.2114, -0.3292, -0.3574, -0.2953, -0.3323]], [37, [-0.2632, -0.2625, -0.2199, -0.2741, -0.4539, -0.4990, -0.3720, -0.4925]], # fmt: on ] ) @require_torch_gpu def A_ ( self : Dict , lowercase_ : Tuple , lowercase_ : Optional[int] ): snake_case_ = self.get_sd_vae_model() snake_case_ = self.get_sd_image(lowercase_ , shape=(3, 4, 64, 64) ) with torch.no_grad(): snake_case_ = model.decode(lowercase_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] snake_case_ = sample[-1, -2:, :2, -2:].flatten().cpu() snake_case_ = torch.tensor(lowercase_ ) assert torch_all_close(lowercase_ , lowercase_ , atol=1e-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0369, 0.0207, -0.0776, -0.0682, -0.1747, -0.1930, -0.1465, -0.2039]], [16, [-0.1628, -0.2134, -0.2747, -0.2642, -0.3774, -0.4404, -0.3687, -0.4277]], # fmt: on ] ) @require_torch_gpu def A_ ( self : Union[str, Any] , lowercase_ : Any , lowercase_ : Optional[Any] ): snake_case_ = self.get_sd_vae_model(fpaa=lowercase_ ) snake_case_ = self.get_sd_image(lowercase_ , shape=(3, 4, 64, 64) , fpaa=lowercase_ ) with torch.no_grad(): snake_case_ = model.decode(lowercase_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] snake_case_ = sample[-1, -2:, :2, -2:].flatten().float().cpu() snake_case_ = torch.tensor(lowercase_ ) assert torch_all_close(lowercase_ , lowercase_ , atol=5e-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='''xformers is not required when using PyTorch 2.0.''' ) def A_ ( self : Optional[Any] , lowercase_ : List[str] ): snake_case_ = self.get_sd_vae_model(fpaa=lowercase_ ) snake_case_ = self.get_sd_image(lowercase_ , shape=(3, 4, 64, 64) , fpaa=lowercase_ ) with torch.no_grad(): snake_case_ = model.decode(lowercase_ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): snake_case_ = model.decode(lowercase_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(lowercase_ , lowercase_ , atol=1e-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='''xformers is not required when using PyTorch 2.0.''' ) def A_ ( self : Optional[Any] , lowercase_ : Any ): snake_case_ = self.get_sd_vae_model() snake_case_ = self.get_sd_image(lowercase_ , shape=(3, 4, 64, 64) ) with torch.no_grad(): snake_case_ = model.decode(lowercase_ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): snake_case_ = model.decode(lowercase_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(lowercase_ , lowercase_ , atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]], [47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]], # fmt: on ] ) def A_ ( self : str , lowercase_ : Optional[int] , lowercase_ : Tuple ): snake_case_ = self.get_sd_vae_model() snake_case_ = self.get_sd_image(lowercase_ ) snake_case_ = self.get_generator(lowercase_ ) with torch.no_grad(): snake_case_ = model.encode(lowercase_ ).latent_dist snake_case_ = dist.sample(generator=lowercase_ ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] snake_case_ = sample[0, -1, -3:, -3:].flatten().cpu() snake_case_ = torch.tensor(lowercase_ ) snake_case_ = 3e-3 if torch_device != '''mps''' else 1e-2 assert torch_all_close(lowercase_ , lowercase_ , atol=lowercase_ )
56
1
import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format='''%(message)s''') def __lowercase ( _UpperCamelCase ) ->np.ndarray: """simple docstring""" return input_array.reshape((input_array.size, 1) ) def __lowercase ( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) ->np.ndarray: """simple docstring""" lowercase : Optional[Any] = np.nan for i in range(_UpperCamelCase ): lowercase : str = features[:, labels == i] lowercase : Dict = data.mean(1 ) # Centralize the data of class i lowercase : List[Any] = data - column_reshape(_UpperCamelCase ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(_UpperCamelCase, centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) lowercase : Optional[Any] = np.dot(_UpperCamelCase, centered_data.T ) return covariance_sum / features.shape[1] def __lowercase ( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) ->np.ndarray: """simple docstring""" lowercase : Optional[int] = features.mean(1 ) lowercase : Dict = np.nan for i in range(_UpperCamelCase ): lowercase : int = features[:, labels == i] lowercase : Union[str, Any] = data.shape[1] lowercase : Union[str, Any] = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(_UpperCamelCase ) - column_reshape(_UpperCamelCase ), (column_reshape(_UpperCamelCase ) - column_reshape(_UpperCamelCase )).T, ) else: # If covariance_sum is np.nan (i.e. first loop) lowercase : Any = device_data * np.dot( column_reshape(_UpperCamelCase ) - column_reshape(_UpperCamelCase ), (column_reshape(_UpperCamelCase ) - column_reshape(_UpperCamelCase )).T, ) return covariance_sum / features.shape[1] def __lowercase ( _UpperCamelCase, _UpperCamelCase ) ->np.ndarray: """simple docstring""" if features.any(): lowercase : Dict = features.mean(1 ) # Center the dataset lowercase : List[str] = features - np.reshape(_UpperCamelCase, (data_mean.size, 1) ) lowercase : str = np.dot(_UpperCamelCase, centered_data.T ) / features.shape[1] lowercase , lowercase : int = np.linalg.eigh(_UpperCamelCase ) # Take all the columns in the reverse order (-1), and then takes only the first lowercase : Any = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space lowercase : Optional[Any] = np.dot(filtered_eigenvectors.T, _UpperCamelCase ) logging.info('''Principal Component Analysis computed''' ) return projected_data else: logging.basicConfig(level=logging.ERROR, format='''%(message)s''', force=_UpperCamelCase ) logging.error('''Dataset empty''' ) raise AssertionError def __lowercase ( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) ->np.ndarray: """simple docstring""" assert classes > dimensions # Check if features have been already loaded if features.any: lowercase , lowercase : List[Any] = eigh( covariance_between_classes(_UpperCamelCase, _UpperCamelCase, _UpperCamelCase ), covariance_within_classes(_UpperCamelCase, _UpperCamelCase, _UpperCamelCase ), ) lowercase : str = eigenvectors[:, ::-1][:, :dimensions] lowercase , lowercase , lowercase : List[Any] = np.linalg.svd(_UpperCamelCase ) lowercase : Dict = svd_matrix[:, 0:dimensions] lowercase : Dict = np.dot(filtered_svd_matrix.T, _UpperCamelCase ) logging.info('''Linear Discriminant Analysis computed''' ) return projected_data else: logging.basicConfig(level=logging.ERROR, format='''%(message)s''', force=_UpperCamelCase ) logging.error('''Dataset empty''' ) raise AssertionError def __lowercase ( ) ->None: """simple docstring""" lowercase : Optional[int] = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) lowercase : str = np.array([0, 0, 0, 1, 1] ) lowercase : Any = 2 lowercase : int = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(_UpperCamelCase ) as error_info: lowercase : Tuple = linear_discriminant_analysis( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) if isinstance(_UpperCamelCase, np.ndarray ): raise AssertionError( '''Did not raise AssertionError for dimensions > classes''' ) assert error_info.type is AssertionError def __lowercase ( ) ->None: """simple docstring""" lowercase : Optional[int] = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) lowercase : List[Any] = 2 lowercase : Tuple = np.array([[6.9_2_8_2_0_3_2_3, 8.6_6_0_2_5_4_0_4, 1_0.3_9_2_3_0_4_8_5], [3.0, 3.0, 3.0]] ) with pytest.raises(_UpperCamelCase ) as error_info: lowercase : Optional[int] = principal_component_analysis(_UpperCamelCase, _UpperCamelCase ) if not np.allclose(_UpperCamelCase, _UpperCamelCase ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
173
# Algorithm for the pigeonhole sorting def __lowercase ( _UpperCamelCase ) ->List[Any]: """simple docstring""" lowercase : List[Any] = min(_UpperCamelCase ) # min() finds the minimum value lowercase : Union[str, Any] = max(_UpperCamelCase ) # max() finds the maximum value lowercase : Tuple = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size lowercase : List[Any] = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(_UpperCamelCase, _UpperCamelCase ), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. lowercase : Tuple = 0 for count in range(_UpperCamelCase ): while holes[count] > 0: holes[count] -= 1 lowercase : str = count + min_val i += 1 def __lowercase ( ) ->List[str]: """simple docstring""" lowercase : Union[str, Any] = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(_UpperCamelCase ) print('''Sorted order is:''', ''' '''.join(_UpperCamelCase ) ) if __name__ == "__main__": main()
173
1
"""simple docstring""" class __lowercase : '''simple docstring''' def __init__( self , _UpperCAmelCase ): __a : str = set_counts __a : str = max(_UpperCAmelCase ) __a : List[str] = len(_UpperCAmelCase ) __a : Any = [1] * num_sets __a : Dict = list(range(_UpperCAmelCase ) ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase ): __a : Optional[int] = self.get_parent(_UpperCAmelCase ) __a : Union[str, Any] = self.get_parent(_UpperCAmelCase ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] __a : Any = 0 __a : Tuple = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 __a : Dict = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] __a : Union[str, Any] = 0 __a : str = src_parent __a : Tuple = self.set_counts[src_parent] __a : List[Any] = max(self.max_set , _UpperCAmelCase ) return True def _lowerCamelCase ( self , _UpperCAmelCase ): if self.parents[disj_set] == disj_set: return disj_set __a : Optional[Any] = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
160
"""simple docstring""" import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() A = logging.get_logger(__name__) def __A ( a_ :Tuple) -> Tuple: __a : int = torch.load(a_ , map_location='''cpu''') if "model" in sd.keys(): __a : Optional[Any] = torch.load(a_ , map_location='''cpu''')['''model'''] # pop unnecessary weights __a : Optional[Any] = [ '''decoder.version''', '''decoder.output_projection.weight''', ] for key in keys_to_delete: if key in sd: sd.pop(a_) __a : Tuple = { '''decoder.project_in_dim.weight''': '''decoder.project_in.weight''', '''decoder.project_out_dim.weight''': '''decoder.project_out.weight''', '''decoder.layer_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.layer_norm.bias''': '''decoder.final_layer_norm.bias''', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: __a : Tuple = sd.pop(a_) __a : List[Any] = list(sd.keys()) for key in keys: if ".qkv_proj." in key: __a : List[str] = sd[key] # We split QKV in separate Q,K,V __a : Optional[int] = key.replace('''.qkv_proj.''' , '''.q_proj.''') __a : List[Any] = key.replace('''.qkv_proj.''' , '''.k_proj.''') __a : Any = key.replace('''.qkv_proj.''' , '''.v_proj.''') __a : Any = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 __a , __a , __a : Dict = torch.split(a_ , depth // 3 , dim=0) __a : Tuple = q __a : Optional[Any] = k __a : Tuple = v del sd[key] return sd @torch.no_grad() def __A ( a_ :str , a_ :Tuple , a_ :Any=None) -> List[str]: __a : str = load_checkpoint(a_) if config is not None: __a : Union[str, Any] = OPTConfig.from_pretrained(a_) else: __a : Any = OPTConfig() __a : List[str] = OPTModel(a_).half().eval() model.load_state_dict(a_) # Check results Path(a_).mkdir(exist_ok=a_) model.save_pretrained(a_) if __name__ == "__main__": A = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--fairseq_path''', type=str, help=( '''path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:''' ''' https://huggingface.co/models?other=opt_metasq''' ), ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--hf_config''', default=None, type=str, help='''Define HF config.''') A = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
160
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE : List[Any] = { '''configuration_roformer''': ['''ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RoFormerConfig''', '''RoFormerOnnxConfig'''], '''tokenization_roformer''': ['''RoFormerTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Optional[int] = ['''RoFormerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Tuple = [ '''ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RoFormerForCausalLM''', '''RoFormerForMaskedLM''', '''RoFormerForMultipleChoice''', '''RoFormerForQuestionAnswering''', '''RoFormerForSequenceClassification''', '''RoFormerForTokenClassification''', '''RoFormerLayer''', '''RoFormerModel''', '''RoFormerPreTrainedModel''', '''load_tf_weights_in_roformer''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Dict = [ '''TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRoFormerForCausalLM''', '''TFRoFormerForMaskedLM''', '''TFRoFormerForMultipleChoice''', '''TFRoFormerForQuestionAnswering''', '''TFRoFormerForSequenceClassification''', '''TFRoFormerForTokenClassification''', '''TFRoFormerLayer''', '''TFRoFormerModel''', '''TFRoFormerPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : List[str] = [ '''FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FlaxRoFormerForMaskedLM''', '''FlaxRoFormerForMultipleChoice''', '''FlaxRoFormerForQuestionAnswering''', '''FlaxRoFormerForSequenceClassification''', '''FlaxRoFormerForTokenClassification''', '''FlaxRoFormerModel''', '''FlaxRoFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
317
"""simple docstring""" from __future__ import annotations import string from itertools import cycle, product from pathlib import Path SCREAMING_SNAKE_CASE : str = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) SCREAMING_SNAKE_CASE : list[int] = [ord(letter) for letter in string.ascii_lowercase] SCREAMING_SNAKE_CASE : set[int] = {ord(char) for char in VALID_CHARS} SCREAMING_SNAKE_CASE : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"] def __UpperCAmelCase ( snake_case_ : list[int] , snake_case_ : tuple[int, ...] ) -> str | None: """simple docstring""" _lowerCAmelCase = "" _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 for keychar, cipherchar in zip(cycle(snake_case_ ) , snake_case_ ): _lowerCAmelCase = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(snake_case_ ) return decoded def __UpperCAmelCase ( snake_case_ : list[int] ) -> list[str]: """simple docstring""" _lowerCAmelCase = [] for key in product(snake_case_ , repeat=3 ): _lowerCAmelCase = try_key(snake_case_ , snake_case_ ) if encoded is not None: possibles.append(snake_case_ ) return possibles def __UpperCAmelCase ( snake_case_ : list[str] , snake_case_ : str ) -> list[str]: """simple docstring""" return [possible for possible in possibles if common_word in possible.lower()] def __UpperCAmelCase ( snake_case_ : str = "p059_cipher.txt" ) -> int: """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = Path(snake_case_ ).parent.joinpath(snake_case_ ).read_text(encoding="""utf-8""" ) _lowerCAmelCase = [int(snake_case_ ) for number in data.strip().split(""",""" )] _lowerCAmelCase = filter_valid_chars(snake_case_ ) for common_word in COMMON_WORDS: _lowerCAmelCase = filter_common_word(snake_case_ , snake_case_ ) if len(snake_case_ ) == 1: break _lowerCAmelCase = possibles[0] return sum(ord(snake_case_ ) for char in decoded_text ) if __name__ == "__main__": print(F'{solution() = }')
317
1
"""simple docstring""" import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def lowercase (snake_case__ : Tuple , snake_case__ : Dict , snake_case__ : List[str]=1_024 , snake_case__ : List[Any]=1_024 , snake_case__ : Union[str, Any]=False , **snake_case__ : List[Any] ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase = AutoTokenizer.from_pretrained(snake_case__ ) lowerCAmelCase = SeqaSeqDataset(snake_case__ , snake_case__ , snake_case__ , snake_case__ , type_path="""train""" , **snake_case__ ) lowerCAmelCase = tok.pad_token_id def get_lens(snake_case__ : List[Any] ): lowerCAmelCase = tqdm( DataLoader(snake_case__ , batch_size=512 , num_workers=8 , shuffle=snake_case__ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) lowerCAmelCase = [] for batch in dl: lowerCAmelCase = batch["""input_ids"""].ne(snake_case__ ).sum(1 ).tolist() lowerCAmelCase = batch["""labels"""].ne(snake_case__ ).sum(1 ).tolist() if consider_target: for src, tgt in zip(snake_case__ , snake_case__ ): max_lens.append(max(snake_case__ , snake_case__ ) ) else: max_lens.extend(snake_case__ ) return max_lens lowerCAmelCase = get_lens(snake_case__ ) lowerCAmelCase = SeqaSeqDataset(snake_case__ , snake_case__ , snake_case__ , snake_case__ , type_path="""val""" , **snake_case__ ) lowerCAmelCase = get_lens(snake_case__ ) pickle_save(snake_case__ , train_ds.len_file ) pickle_save(snake_case__ , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
155
"""simple docstring""" import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor a = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( _a ): def __init__( self : Tuple , *lowerCAmelCase : Tuple , **lowerCAmelCase : str ): warnings.warn( """The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use FlavaImageProcessor instead.""" , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase )
155
1
import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger UpperCamelCase__ = get_logger(__name__) class A : def __init__(self : List[str] , __UpperCAmelCase : Optional[str] = None ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = ( os.path.join(__UpperCAmelCase , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) UpperCAmelCase__ = Extractor def lowercase_ (self : str , __UpperCAmelCase : str ) -> str: """simple docstring""" from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" UpperCAmelCase__ = os.path.abspath(__UpperCAmelCase ) return os.path.join(self.extract_dir , hash_url_to_filename(__UpperCAmelCase ) ) def lowercase_ (self : int , __UpperCAmelCase : str , __UpperCAmelCase : bool ) -> bool: """simple docstring""" return force_extract or ( not os.path.isfile(__UpperCAmelCase ) and not (os.path.isdir(__UpperCAmelCase ) and os.listdir(__UpperCAmelCase )) ) def lowercase_ (self : Union[str, Any] , __UpperCAmelCase : str , __UpperCAmelCase : bool = False ) -> str: """simple docstring""" UpperCAmelCase__ = self.extractor.infer_extractor_format(__UpperCAmelCase ) if not extractor_format: return input_path UpperCAmelCase__ = self._get_output_path(__UpperCAmelCase ) if self._do_extract(__UpperCAmelCase , __UpperCAmelCase ): self.extractor.extract(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return output_path class A ( UpperCAmelCase_ ): @classmethod @abstractmethod def lowercase_ (cls : Dict , __UpperCAmelCase : Union[Path, str] , **__UpperCAmelCase : Dict ) -> bool: """simple docstring""" ... @staticmethod @abstractmethod def lowercase_ (__UpperCAmelCase : Union[Path, str] , __UpperCAmelCase : Union[Path, str] ) -> None: """simple docstring""" ... class A ( UpperCAmelCase_ , UpperCAmelCase_ ): __UpperCAmelCase : List[bytes] = [] @staticmethod def lowercase_ (__UpperCAmelCase : Union[Path, str] , __UpperCAmelCase : int ) -> Dict: """simple docstring""" with open(__UpperCAmelCase , "rb" ) as f: return f.read(__UpperCAmelCase ) @classmethod def lowercase_ (cls : Any , __UpperCAmelCase : Union[Path, str] , __UpperCAmelCase : bytes = b"" ) -> bool: """simple docstring""" if not magic_number: UpperCAmelCase__ = max(len(__UpperCAmelCase ) for cls_magic_number in cls.magic_numbers ) try: UpperCAmelCase__ = cls.read_magic_number(__UpperCAmelCase , __UpperCAmelCase ) except OSError: return False return any(magic_number.startswith(__UpperCAmelCase ) for cls_magic_number in cls.magic_numbers ) class A ( UpperCAmelCase_ ): @classmethod def lowercase_ (cls : Optional[int] , __UpperCAmelCase : Union[Path, str] , **__UpperCAmelCase : Tuple ) -> bool: """simple docstring""" return tarfile.is_tarfile(__UpperCAmelCase ) @staticmethod def lowercase_ (__UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[Any] ) -> int: """simple docstring""" def resolved(__UpperCAmelCase : str ) -> str: return os.path.realpath(os.path.abspath(__UpperCAmelCase ) ) def badpath(__UpperCAmelCase : str , __UpperCAmelCase : str ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(__UpperCAmelCase , __UpperCAmelCase ) ).startswith(__UpperCAmelCase ) def badlink(__UpperCAmelCase : List[str] , __UpperCAmelCase : str ) -> bool: # Links are interpreted relative to the directory containing the link UpperCAmelCase__ = resolved(os.path.join(__UpperCAmelCase , os.path.dirname(info.name ) ) ) return badpath(info.linkname , base=__UpperCAmelCase ) UpperCAmelCase__ = resolved(__UpperCAmelCase ) for finfo in members: if badpath(finfo.name , __UpperCAmelCase ): logger.error(f"""Extraction of {finfo.name} is blocked (illegal path)""" ) elif finfo.issym() and badlink(__UpperCAmelCase , __UpperCAmelCase ): logger.error(f"""Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}""" ) elif finfo.islnk() and badlink(__UpperCAmelCase , __UpperCAmelCase ): logger.error(f"""Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}""" ) else: yield finfo @staticmethod def lowercase_ (__UpperCAmelCase : Union[Path, str] , __UpperCAmelCase : Union[Path, str] ) -> None: """simple docstring""" os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) UpperCAmelCase__ = tarfile.open(__UpperCAmelCase ) tar_file.extractall(__UpperCAmelCase , members=TarExtractor.safemembers(__UpperCAmelCase , __UpperCAmelCase ) ) tar_file.close() class A ( UpperCAmelCase_ ): __UpperCAmelCase : Optional[int] = [b'\x1F\x8B'] @staticmethod def lowercase_ (__UpperCAmelCase : Union[Path, str] , __UpperCAmelCase : Union[Path, str] ) -> None: """simple docstring""" with gzip.open(__UpperCAmelCase , "rb" ) as gzip_file: with open(__UpperCAmelCase , "wb" ) as extracted_file: shutil.copyfileobj(__UpperCAmelCase , __UpperCAmelCase ) class A ( UpperCAmelCase_ ): __UpperCAmelCase : Tuple = [ b'PK\x03\x04', b'PK\x05\x06', # empty archive b'PK\x07\x08', # spanned archive ] @classmethod def lowercase_ (cls : Optional[Any] , __UpperCAmelCase : Union[Path, str] , __UpperCAmelCase : bytes = b"" ) -> bool: """simple docstring""" if super().is_extractable(__UpperCAmelCase , magic_number=__UpperCAmelCase ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(__UpperCAmelCase , "rb" ) as fp: UpperCAmelCase__ = _EndRecData(__UpperCAmelCase ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: UpperCAmelCase__ = fp.read(__UpperCAmelCase ) # CD is where we expect it to be if len(__UpperCAmelCase ) == sizeCentralDir: UpperCAmelCase__ = struct.unpack(__UpperCAmelCase , __UpperCAmelCase ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def lowercase_ (__UpperCAmelCase : Union[Path, str] , __UpperCAmelCase : Union[Path, str] ) -> None: """simple docstring""" os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) with zipfile.ZipFile(__UpperCAmelCase , "r" ) as zip_file: zip_file.extractall(__UpperCAmelCase ) zip_file.close() class A ( UpperCAmelCase_ ): __UpperCAmelCase : str = [b'\xFD\x37\x7A\x58\x5A\x00'] @staticmethod def lowercase_ (__UpperCAmelCase : Union[Path, str] , __UpperCAmelCase : Union[Path, str] ) -> None: """simple docstring""" with lzma.open(__UpperCAmelCase ) as compressed_file: with open(__UpperCAmelCase , "wb" ) as extracted_file: shutil.copyfileobj(__UpperCAmelCase , __UpperCAmelCase ) class A ( UpperCAmelCase_ ): __UpperCAmelCase : Union[str, Any] = [b'Rar!\x1a\x07\x00', b'Rar!\x1a\x07\x01\x00'] # RAR_ID # RAR5_ID @staticmethod def lowercase_ (__UpperCAmelCase : Union[Path, str] , __UpperCAmelCase : Union[Path, str] ) -> None: """simple docstring""" if not config.RARFILE_AVAILABLE: raise ImportError("Please pip install rarfile" ) import rarfile os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) UpperCAmelCase__ = rarfile.RarFile(__UpperCAmelCase ) rf.extractall(__UpperCAmelCase ) rf.close() class A ( UpperCAmelCase_ ): __UpperCAmelCase : str = [b'\x28\xb5\x2F\xFD'] @staticmethod def lowercase_ (__UpperCAmelCase : Union[Path, str] , __UpperCAmelCase : Union[Path, str] ) -> None: """simple docstring""" if not config.ZSTANDARD_AVAILABLE: raise ImportError("Please pip install zstandard" ) import zstandard as zstd UpperCAmelCase__ = zstd.ZstdDecompressor() with open(__UpperCAmelCase , "rb" ) as ifh, open(__UpperCAmelCase , "wb" ) as ofh: dctx.copy_stream(__UpperCAmelCase , __UpperCAmelCase ) class A ( UpperCAmelCase_ ): __UpperCAmelCase : Tuple = [b'\x42\x5A\x68'] @staticmethod def lowercase_ (__UpperCAmelCase : Union[Path, str] , __UpperCAmelCase : Union[Path, str] ) -> None: """simple docstring""" with bza.open(__UpperCAmelCase , "rb" ) as compressed_file: with open(__UpperCAmelCase , "wb" ) as extracted_file: shutil.copyfileobj(__UpperCAmelCase , __UpperCAmelCase ) class A ( UpperCAmelCase_ ): __UpperCAmelCase : Any = [b'\x37\x7A\xBC\xAF\x27\x1C'] @staticmethod def lowercase_ (__UpperCAmelCase : Union[Path, str] , __UpperCAmelCase : Union[Path, str] ) -> None: """simple docstring""" if not config.PY7ZR_AVAILABLE: raise ImportError("Please pip install py7zr" ) import pyazr os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) with pyazr.SevenZipFile(__UpperCAmelCase , "r" ) as archive: archive.extractall(__UpperCAmelCase ) class A ( UpperCAmelCase_ ): __UpperCAmelCase : Optional[Any] = [b'\x04\x22\x4D\x18'] @staticmethod def lowercase_ (__UpperCAmelCase : Union[Path, str] , __UpperCAmelCase : Union[Path, str] ) -> None: """simple docstring""" if not config.LZ4_AVAILABLE: raise ImportError("Please pip install lz4" ) import lza.frame with lza.frame.open(__UpperCAmelCase , "rb" ) as compressed_file: with open(__UpperCAmelCase , "wb" ) as extracted_file: shutil.copyfileobj(__UpperCAmelCase , __UpperCAmelCase ) class A : # Put zip file to the last, b/c it is possible wrongly detected as zip (I guess it means: as tar or gzip) __UpperCAmelCase : Dict[str, Type[BaseExtractor]] = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def lowercase_ (cls : Optional[int] ) -> Optional[int]: """simple docstring""" return max( len(__UpperCAmelCase ) for extractor in cls.extractors.values() if issubclass(__UpperCAmelCase , __UpperCAmelCase ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def lowercase_ (__UpperCAmelCase : Union[Path, str] , __UpperCAmelCase : int ) -> int: """simple docstring""" try: return MagicNumberBaseExtractor.read_magic_number(__UpperCAmelCase , magic_number_length=__UpperCAmelCase ) except OSError: return b"" @classmethod def lowercase_ (cls : Union[str, Any] , __UpperCAmelCase : Union[Path, str] , __UpperCAmelCase : bool = False ) -> bool: """simple docstring""" warnings.warn( "Method 'is_extractable' was deprecated in version 2.4.0 and will be removed in 3.0.0. " "Use 'infer_extractor_format' instead." , category=__UpperCAmelCase , ) UpperCAmelCase__ = cls.infer_extractor_format(__UpperCAmelCase ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def lowercase_ (cls : str , __UpperCAmelCase : Union[Path, str] ) -> str: # <Added version="2.4.0"/> """simple docstring""" UpperCAmelCase__ = cls._get_magic_number_max_length() UpperCAmelCase__ = cls._read_magic_number(__UpperCAmelCase , __UpperCAmelCase ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(__UpperCAmelCase , magic_number=__UpperCAmelCase ): return extractor_format @classmethod def lowercase_ (cls : Dict , __UpperCAmelCase : Union[Path, str] , __UpperCAmelCase : Union[Path, str] , __UpperCAmelCase : Optional[str] = None , __UpperCAmelCase : Optional[BaseExtractor] = "deprecated" , ) -> None: """simple docstring""" os.makedirs(os.path.dirname(__UpperCAmelCase ) , exist_ok=__UpperCAmelCase ) # Prevent parallel extractions UpperCAmelCase__ = str(Path(__UpperCAmelCase ).with_suffix(".lock" ) ) with FileLock(__UpperCAmelCase ): shutil.rmtree(__UpperCAmelCase , ignore_errors=__UpperCAmelCase ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(__UpperCAmelCase , __UpperCAmelCase ): # passed as positional arg warnings.warn( "Parameter 'extractor' was deprecated in version 2.4.0 and will be removed in 3.0.0. " "Use 'extractor_format' instead." , category=__UpperCAmelCase , ) UpperCAmelCase__ = extractor if extractor != "deprecated" else extractor_format else: UpperCAmelCase__ = cls.extractors[extractor_format] return extractor.extract(__UpperCAmelCase , __UpperCAmelCase ) else: warnings.warn( "Parameter 'extractor_format' was made required in version 2.4.0 and not passing it will raise an " "exception in 3.0.0." , category=__UpperCAmelCase , ) for extractor in cls.extractors.values(): if extractor.is_extractable(__UpperCAmelCase ): return extractor.extract(__UpperCAmelCase , __UpperCAmelCase )
143
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase__ = logging.get_logger(__name__) def lowerCAmelCase_ ( __A, __A=False ) -> Any: '''simple docstring''' UpperCAmelCase__ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""blocks.{i}.norm1.weight""", f"""deit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""blocks.{i}.norm1.bias""", f"""deit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((f"""blocks.{i}.attn.proj.weight""", f"""deit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.attn.proj.bias""", f"""deit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""blocks.{i}.norm2.weight""", f"""deit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""blocks.{i}.norm2.bias""", f"""deit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.weight""", f"""deit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.bias""", f"""deit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.weight""", f"""deit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.bias""", f"""deit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "deit.embeddings.cls_token"), ("dist_token", "deit.embeddings.distillation_token"), ("patch_embed.proj.weight", "deit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "deit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "deit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" UpperCAmelCase__ = [(pair[0], pair[1][4:]) if pair[1].startswith("deit" ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ("norm.weight", "deit.layernorm.weight"), ("norm.bias", "deit.layernorm.bias"), ("head.weight", "cls_classifier.weight"), ("head.bias", "cls_classifier.bias"), ("head_dist.weight", "distillation_classifier.weight"), ("head_dist.bias", "distillation_classifier.bias"), ] ) return rename_keys def lowerCAmelCase_ ( __A, __A, __A=False ) -> Tuple: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: UpperCAmelCase__ = "" else: UpperCAmelCase__ = "deit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase__ = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" ) UpperCAmelCase__ = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase__ = in_proj_weight[ : config.hidden_size, : ] UpperCAmelCase__ = in_proj_bias[: config.hidden_size] UpperCAmelCase__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase__ = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase__ = in_proj_bias[-config.hidden_size :] def lowerCAmelCase_ ( __A, __A, __A ) -> Dict: '''simple docstring''' UpperCAmelCase__ = dct.pop(__A ) UpperCAmelCase__ = val def lowerCAmelCase_ ( ) -> Dict: '''simple docstring''' UpperCAmelCase__ = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase__ = Image.open(requests.get(__A, stream=__A ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( __A, __A ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase__ = DeiTConfig() # all deit models have fine-tuned heads UpperCAmelCase__ = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size UpperCAmelCase__ = 1_000 UpperCAmelCase__ = "huggingface/label-files" UpperCAmelCase__ = "imagenet-1k-id2label.json" UpperCAmelCase__ = json.load(open(hf_hub_download(__A, __A, repo_type="dataset" ), "r" ) ) UpperCAmelCase__ = {int(__A ): v for k, v in idalabel.items()} UpperCAmelCase__ = idalabel UpperCAmelCase__ = {v: k for k, v in idalabel.items()} UpperCAmelCase__ = int(deit_name[-6:-4] ) UpperCAmelCase__ = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith("tiny" ): UpperCAmelCase__ = 192 UpperCAmelCase__ = 768 UpperCAmelCase__ = 12 UpperCAmelCase__ = 3 elif deit_name[9:].startswith("small" ): UpperCAmelCase__ = 384 UpperCAmelCase__ = 1_536 UpperCAmelCase__ = 12 UpperCAmelCase__ = 6 if deit_name[9:].startswith("base" ): pass elif deit_name[4:].startswith("large" ): UpperCAmelCase__ = 1_024 UpperCAmelCase__ = 4_096 UpperCAmelCase__ = 24 UpperCAmelCase__ = 16 # load original model from timm UpperCAmelCase__ = timm.create_model(__A, pretrained=__A ) timm_model.eval() # load state_dict of original model, remove and rename some keys UpperCAmelCase__ = timm_model.state_dict() UpperCAmelCase__ = create_rename_keys(__A, __A ) for src, dest in rename_keys: rename_key(__A, __A, __A ) read_in_q_k_v(__A, __A, __A ) # load HuggingFace model UpperCAmelCase__ = DeiTForImageClassificationWithTeacher(__A ).eval() model.load_state_dict(__A ) # Check outputs on an image, prepared by DeiTImageProcessor UpperCAmelCase__ = int( (256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 UpperCAmelCase__ = DeiTImageProcessor(size=__A, crop_size=config.image_size ) UpperCAmelCase__ = image_processor(images=prepare_img(), return_tensors="pt" ) UpperCAmelCase__ = encoding["pixel_values"] UpperCAmelCase__ = model(__A ) UpperCAmelCase__ = timm_model(__A ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__A, outputs.logits, atol=1e-3 ) Path(__A ).mkdir(exist_ok=__A ) print(f"""Saving model {deit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__A ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__A ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--deit_name', default='vit_deit_base_distilled_patch16_224', type=str, help='Name of the DeiT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) UpperCamelCase__ = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
143
1
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler SCREAMING_SNAKE_CASE :int = 16 SCREAMING_SNAKE_CASE :Any = 32 def UpperCAmelCase ( a_ , a_ = 1_6 , a_ = "bert-base-cased" ) -> Union[str, Any]: """simple docstring""" __A = AutoTokenizer.from_pretrained(a_ ) __A = load_dataset("glue" , "mrpc" ) def tokenize_function(a_ ): # max_length=None => use the model max length (it's actually the default) __A = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=a_ , max_length=a_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __A = datasets.map( a_ , batched=a_ , remove_columns=["idx", "sentence1", "sentence2"] , load_from_cache_file=a_ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __A = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(a_ ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(a_ , padding="max_length" , max_length=1_2_8 , return_tensors="pt" ) return tokenizer.pad(a_ , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. __A = DataLoader( tokenized_datasets["train"] , shuffle=a_ , collate_fn=a_ , batch_size=a_ ) __A = DataLoader( tokenized_datasets["validation"] , shuffle=a_ , collate_fn=a_ , batch_size=a_ ) return train_dataloader, eval_dataloader def UpperCAmelCase ( a_ , a_ ) -> List[str]: """simple docstring""" __A = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __A = config["lr"] __A = int(config["num_epochs"] ) __A = int(config["seed"] ) __A = int(config["batch_size"] ) __A = args.model_name_or_path set_seed(a_ ) __A , __A = get_dataloaders(a_ , a_ , a_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __A = AutoModelForSequenceClassification.from_pretrained(a_ , return_dict=a_ ) # Instantiate optimizer __A = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) __A = optimizer_cls(params=model.parameters() , lr=a_ ) if accelerator.state.deepspeed_plugin is not None: __A = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: __A = 1 __A = (len(a_ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): __A = get_linear_schedule_with_warmup( optimizer=a_ , num_warmup_steps=0 , num_training_steps=a_ , ) else: __A = DummyScheduler(a_ , total_num_steps=a_ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __A , __A , __A , __A , __A = accelerator.prepare( a_ , a_ , a_ , a_ , a_ ) # We need to keep track of how many total steps we have iterated over __A = 0 # We also need to keep track of the stating epoch so files are named properly __A = 0 # Now we train the model __A = evaluate.load("glue" , "mrpc" ) __A = 0 __A = {} for epoch in range(a_ , a_ ): model.train() for step, batch in enumerate(a_ ): __A = model(**a_ ) __A = outputs.loss __A = loss / gradient_accumulation_steps accelerator.backward(a_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() __A = 0 for step, batch in enumerate(a_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __A = model(**a_ ) __A = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times __A , __A = accelerator.gather( (predictions, batch["labels"]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(a_ ) - 1: __A = predictions[: len(eval_dataloader.dataset ) - samples_seen] __A = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=a_ , references=a_ , ) __A = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , a_ ) __A = eval_metric["accuracy"] if best_performance < eval_metric["accuracy"]: __A = eval_metric["accuracy"] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), F'''Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}''' accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , "all_results.json" ) , "w" ) as f: json.dump(a_ , a_ ) def UpperCAmelCase ( ) -> List[str]: """simple docstring""" __A = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." ) parser.add_argument( "--model_name_or_path" , type=a_ , default="bert-base-cased" , help="Path to pretrained model or model identifier from huggingface.co/models." , required=a_ , ) parser.add_argument( "--output_dir" , type=a_ , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--performance_lower_bound" , type=a_ , default=a_ , help="Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value." , ) parser.add_argument( "--num_epochs" , type=a_ , default=3 , help="Number of train epochs." , ) __A = parser.parse_args() __A = {"lr": 2E-5, "num_epochs": args.num_epochs, "seed": 4_2, "batch_size": 1_6} training_function(a_ , a_ ) if __name__ == "__main__": main()
15
def UpperCAmelCase ( a_ ) -> list: """simple docstring""" if len(a_ ) <= 1: return [tuple(a_ )] __A = [] def generate(a_ , a_ ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , a_ ) for i in range(k - 1 ): if k % 2 == 0: # k is even __A , __A = arr[k - 1], arr[i] else: # k is odd __A , __A = arr[k - 1], arr[0] generate(k - 1 , a_ ) generate(len(a_ ) , a_ ) return res if __name__ == "__main__": SCREAMING_SNAKE_CASE :int = input('Enter numbers separated by a comma:\n').strip() SCREAMING_SNAKE_CASE :Dict = [int(item) for item in user_input.split(',')] print(heaps(arr))
15
1
import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def lowerCamelCase ( a_ ) -> List[str]: lowerCAmelCase_ = args.pruning_method lowerCAmelCase_ = args.threshold lowerCAmelCase_ = args.model_name_or_path.rstrip('/' ) lowerCAmelCase_ = args.target_model_path print(F'''Load fine-pruned model from {model_name_or_path}''' ) lowerCAmelCase_ = torch.load(os.path.join(a_ , 'pytorch_model.bin' ) ) lowerCAmelCase_ = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: lowerCAmelCase_ = tensor print(F'''Copied layer {name}''' ) elif "classifier" in name or "qa_output" in name: lowerCAmelCase_ = tensor print(F'''Copied layer {name}''' ) elif "bias" in name: lowerCAmelCase_ = tensor print(F'''Copied layer {name}''' ) else: if pruning_method == "magnitude": lowerCAmelCase_ = MagnitudeBinarizer.apply(inputs=a_ , threshold=a_ ) lowerCAmelCase_ = tensor * mask print(F'''Pruned layer {name}''' ) elif pruning_method == "topK": if "mask_scores" in name: continue lowerCAmelCase_ = name[:-6] lowerCAmelCase_ = model[F'''{prefix_}mask_scores'''] lowerCAmelCase_ = TopKBinarizer.apply(a_ , a_ ) lowerCAmelCase_ = tensor * mask print(F'''Pruned layer {name}''' ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue lowerCAmelCase_ = name[:-6] lowerCAmelCase_ = model[F'''{prefix_}mask_scores'''] lowerCAmelCase_ = ThresholdBinarizer.apply(a_ , a_ , a_ ) lowerCAmelCase_ = tensor * mask print(F'''Pruned layer {name}''' ) elif pruning_method == "l0": if "mask_scores" in name: continue lowerCAmelCase_ = name[:-6] lowerCAmelCase_ = model[F'''{prefix_}mask_scores'''] lowerCAmelCase_ , lowerCAmelCase_ = -0.1, 1.1 lowerCAmelCase_ = torch.sigmoid(a_ ) lowerCAmelCase_ = s * (r - l) + l lowerCAmelCase_ = s_bar.clamp(min=0.0 , max=1.0 ) lowerCAmelCase_ = tensor * mask print(F'''Pruned layer {name}''' ) else: raise ValueError('Unknown pruning method' ) if target_model_path is None: lowerCAmelCase_ = os.path.join( os.path.dirname(a_ ) , F'''bertarized_{os.path.basename(a_ )}''' ) if not os.path.isdir(a_ ): shutil.copytree(a_ , a_ ) print(F'''\nCreated folder {target_model_path}''' ) torch.save(a_ , os.path.join(a_ , 'pytorch_model.bin' ) ) print('\nPruned model saved! See you later!' ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument( """--pruning_method""", choices=["""l0""", """magnitude""", """topK""", """sigmoied_threshold"""], type=str, required=True, help=( """Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,""" """ sigmoied_threshold = Soft movement pruning)""" ), ) parser.add_argument( """--threshold""", type=float, required=False, help=( """For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.""" """For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.""" """Not needed for `l0`""" ), ) parser.add_argument( """--model_name_or_path""", type=str, required=True, help="""Folder containing the model that was previously fine-pruned""", ) parser.add_argument( """--target_model_path""", default=None, type=str, required=False, help="""Folder containing the model that was previously fine-pruned""", ) lowerCamelCase_ = parser.parse_args() main(args)
368
import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def lowerCamelCase ( a_ ) -> Any: lowerCAmelCase_ = tmp_path / 'file.csv' lowerCAmelCase_ = textwrap.dedent( '\\n header1,header2\n 1,2\n 10,20\n ' ) with open(a_ , 'w' ) as f: f.write(a_ ) return str(a_ ) @pytest.fixture def lowerCamelCase ( a_ ) -> List[Any]: lowerCAmelCase_ = tmp_path / 'malformed_file.csv' lowerCAmelCase_ = textwrap.dedent( '\\n header1,header2\n 1,2\n 10,20,\n ' ) with open(a_ , 'w' ) as f: f.write(a_ ) return str(a_ ) @pytest.fixture def lowerCamelCase ( a_ , a_ ) -> List[str]: lowerCAmelCase_ = tmp_path / 'csv_with_image.csv' lowerCAmelCase_ = textwrap.dedent( F'''\ image {image_file} ''' ) with open(a_ , 'w' ) as f: f.write(a_ ) return str(a_ ) @pytest.fixture def lowerCamelCase ( a_ ) -> int: lowerCAmelCase_ = tmp_path / 'csv_with_label.csv' lowerCAmelCase_ = textwrap.dedent( '\\n label\n good\n bad\n good\n ' ) with open(a_ , 'w' ) as f: f.write(a_ ) return str(a_ ) @pytest.fixture def lowerCamelCase ( a_ ) -> Union[str, Any]: lowerCAmelCase_ = tmp_path / 'csv_with_int_list.csv' lowerCAmelCase_ = textwrap.dedent( '\\n int_list\n 1 2 3\n 4 5 6\n 7 8 9\n ' ) with open(a_ , 'w' ) as f: f.write(a_ ) return str(a_ ) def lowerCamelCase ( a_ , a_ , a_ ) -> Optional[Any]: lowerCAmelCase_ = Csv() lowerCAmelCase_ = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(a_ , match='Error tokenizing data' ): for _ in generator: pass assert any( record.levelname == 'ERROR' and 'Failed to read file' in record.message and os.path.basename(a_ ) in record.message for record in caplog.records ) @require_pil def lowerCamelCase ( a_ ) -> Optional[Any]: with open(a_ , encoding='utf-8' ) as f: lowerCAmelCase_ = f.read().splitlines()[1] lowerCAmelCase_ = Csv(encoding='utf-8' , features=Features({'image': Image()} ) ) lowerCAmelCase_ = csv._generate_tables([[csv_file_with_image]] ) lowerCAmelCase_ = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('image' ).type == Image()() lowerCAmelCase_ = pa_table.to_pydict()['image'] assert generated_content == [{"path": image_file, "bytes": None}] def lowerCamelCase ( a_ ) -> int: with open(a_ , encoding='utf-8' ) as f: lowerCAmelCase_ = f.read().splitlines()[1:] lowerCAmelCase_ = Csv(encoding='utf-8' , features=Features({'label': ClassLabel(names=['good', 'bad'] )} ) ) lowerCAmelCase_ = csv._generate_tables([[csv_file_with_label]] ) lowerCAmelCase_ = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('label' ).type == ClassLabel(names=['good', 'bad'] )() lowerCAmelCase_ = pa_table.to_pydict()['label'] assert generated_content == [ClassLabel(names=['good', 'bad'] ).straint(a_ ) for label in labels] def lowerCamelCase ( a_ ) -> Union[str, Any]: lowerCAmelCase_ = Csv(encoding='utf-8' , sep=',' , converters={'int_list': lambda a_ : [int(a_ ) for i in x.split()]} ) lowerCAmelCase_ = csv._generate_tables([[csv_file_with_int_list]] ) lowerCAmelCase_ = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field('int_list' ).type ) lowerCAmelCase_ = pa_table.to_pydict()['int_list'] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
14
0
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging SCREAMING_SNAKE_CASE :Dict = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :int = {'''vocab_file''': '''spiece.model'''} SCREAMING_SNAKE_CASE :List[str] = { '''vocab_file''': { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model''', } } SCREAMING_SNAKE_CASE :int = { '''xlnet-base-cased''': None, '''xlnet-large-cased''': None, } # Segments (not really needed) SCREAMING_SNAKE_CASE :str = 0 SCREAMING_SNAKE_CASE :Dict = 1 SCREAMING_SNAKE_CASE :Tuple = 2 SCREAMING_SNAKE_CASE :int = 3 SCREAMING_SNAKE_CASE :Optional[int] = 4 class __lowerCAmelCase ( snake_case_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE = 'left' def __init__( self : Tuple , _lowerCAmelCase : Dict , _lowerCAmelCase : Dict=False , _lowerCAmelCase : str=True , _lowerCAmelCase : List[Any]=False , _lowerCAmelCase : Optional[int]="<s>" , _lowerCAmelCase : List[Any]="</s>" , _lowerCAmelCase : List[str]="<unk>" , _lowerCAmelCase : Any="<sep>" , _lowerCAmelCase : str="<pad>" , _lowerCAmelCase : Any="<cls>" , _lowerCAmelCase : Any="<mask>" , _lowerCAmelCase : Tuple=["<eop>", "<eod>"] , _lowerCAmelCase : List[str] = None , **_lowerCAmelCase : str , ) -> None: """simple docstring""" # Mask token behave like a normal word, i.e. include the space before it snake_case_ = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else mask_token snake_case_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_lowerCAmelCase , remove_space=_lowerCAmelCase , keep_accents=_lowerCAmelCase , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , ) snake_case_ = 3 snake_case_ = do_lower_case snake_case_ = remove_space snake_case_ = keep_accents snake_case_ = vocab_file snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCAmelCase ) @property def lowerCAmelCase__ ( self : Union[str, Any] ) -> int: """simple docstring""" return len(self.sp_model ) def lowerCAmelCase__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" snake_case_ = {self.convert_ids_to_tokens(_lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Union[str, Any] ) -> str: """simple docstring""" snake_case_ = self.__dict__.copy() snake_case_ = None return state def __setstate__( self : Union[str, Any] , _lowerCAmelCase : Optional[int] ) -> Optional[Any]: """simple docstring""" snake_case_ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): snake_case_ = {} snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCAmelCase__ ( self : str , _lowerCAmelCase : Optional[int] ) -> Any: """simple docstring""" if self.remove_space: snake_case_ = " ".join(inputs.strip().split() ) else: snake_case_ = inputs snake_case_ = outputs.replace("``" , "\"" ).replace("''" , "\"" ) if not self.keep_accents: snake_case_ = unicodedata.normalize("NFKD" , _lowerCAmelCase ) snake_case_ = "".join([c for c in outputs if not unicodedata.combining(_lowerCAmelCase )] ) if self.do_lower_case: snake_case_ = outputs.lower() return outputs def lowerCAmelCase__ ( self : Optional[Any] , _lowerCAmelCase : Any ) -> List[str]: """simple docstring""" snake_case_ = self.preprocess_text(_lowerCAmelCase ) snake_case_ = self.sp_model.encode(_lowerCAmelCase , out_type=_lowerCAmelCase ) snake_case_ = [] for piece in pieces: if len(_lowerCAmelCase ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit(): snake_case_ = self.sp_model.EncodeAsPieces(piece[:-1].replace(_lowerCAmelCase , "" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: snake_case_ = cur_pieces[1:] else: snake_case_ = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_lowerCAmelCase ) else: new_pieces.append(_lowerCAmelCase ) return new_pieces def lowerCAmelCase__ ( self : Union[str, Any] , _lowerCAmelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return self.sp_model.PieceToId(_lowerCAmelCase ) def lowerCAmelCase__ ( self : Tuple , _lowerCAmelCase : Union[str, Any] ) -> List[Any]: """simple docstring""" return self.sp_model.IdToPiece(_lowerCAmelCase ) def lowerCAmelCase__ ( self : Union[str, Any] , _lowerCAmelCase : int ) -> Tuple: """simple docstring""" snake_case_ = "".join(_lowerCAmelCase ).replace(_lowerCAmelCase , " " ).strip() return out_string def lowerCAmelCase__ ( self : Optional[int] , _lowerCAmelCase : Any , _lowerCAmelCase : Dict = False , _lowerCAmelCase : Any = None , _lowerCAmelCase : Any = True , **_lowerCAmelCase : List[Any] , ) -> str: """simple docstring""" snake_case_ = kwargs.pop("use_source_tokenizer" , _lowerCAmelCase ) snake_case_ = self.convert_ids_to_tokens(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 snake_case_ = [] snake_case_ = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_lowerCAmelCase ) ) snake_case_ = [] sub_texts.append(_lowerCAmelCase ) else: current_sub_text.append(_lowerCAmelCase ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_lowerCAmelCase ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens snake_case_ = "".join(_lowerCAmelCase ) snake_case_ = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: snake_case_ = self.clean_up_tokenization(_lowerCAmelCase ) return clean_text else: return text def lowerCAmelCase__ ( self : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[str] = None ) -> List[int]: """simple docstring""" snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def lowerCAmelCase__ ( self : Union[str, Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : str = None , _lowerCAmelCase : int = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCAmelCase , token_ids_a=_lowerCAmelCase , already_has_special_tokens=_lowerCAmelCase ) if token_ids_a is not None: return ([0] * len(_lowerCAmelCase )) + [1] + ([0] * len(_lowerCAmelCase )) + [1, 1] return ([0] * len(_lowerCAmelCase )) + [1, 1] def lowerCAmelCase__ ( self : Optional[int] , _lowerCAmelCase : str , _lowerCAmelCase : Tuple = None ) -> List[int]: """simple docstring""" snake_case_ = [self.sep_token_id] snake_case_ = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def lowerCAmelCase__ ( self : List[str] , _lowerCAmelCase : str , _lowerCAmelCase : Dict = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_lowerCAmelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case_ = os.path.join( _lowerCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCAmelCase , "wb" ) as fi: snake_case_ = self.sp_model.serialized_model_proto() fi.write(_lowerCAmelCase ) return (out_vocab_file,)
159
import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features __A =logging.get_logger(__name__) __A =list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) __A =tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _SCREAMING_SNAKE_CASE : lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'Model type selected in the list: ' + ', '.join(snake_case_ )} ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'The input data dir. Should contain the .json files for the SQuAD task.'} ) lowerCAmelCase__ = field( default=1_28 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase__ = field( default=1_28 , metadata={'help': 'When splitting up a long document into chunks, how much stride to take between chunks.'} , ) lowerCAmelCase__ = field( default=64 , metadata={ 'help': ( 'The maximum number of tokens for the question. Questions longer than this will ' 'be truncated to this length.' ) } , ) lowerCAmelCase__ = field( default=30 , metadata={ 'help': ( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ) } , ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'If true, the SQuAD examples contain some that do not have an answer.'} ) lowerCAmelCase__ = field( default=0.0 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowerCAmelCase__ = field( default=20 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowerCAmelCase__ = field( default=0 , metadata={ 'help': ( 'language id of input for language-specific xlm models (see' ' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)' ) } , ) lowerCAmelCase__ = field(default=1 , metadata={'help': 'multiple threads for converting example to features'} ) class _SCREAMING_SNAKE_CASE ( snake_case_ ): lowerCAmelCase__ = 'train' lowerCAmelCase__ = 'dev' class _SCREAMING_SNAKE_CASE ( snake_case_ ): lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 def __init__( self , lowercase , lowercase , lowercase = None , lowercase = Split.train , lowercase = False , lowercase = None , lowercase = "pt" , ) -> List[str]: lowerCamelCase_ = args lowerCamelCase_ = is_language_sensitive lowerCamelCase_ = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(lowercase , lowercase ): try: lowerCamelCase_ = Split[mode] except KeyError: raise KeyError("mode is not a valid split name" ) lowerCamelCase_ = mode # Load data features from cache or dataset file lowerCamelCase_ = "v2" if args.version_2_with_negative else "v1" lowerCamelCase_ = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}' , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCamelCase_ = cached_features_file + ".lock" with FileLock(lowercase ): if os.path.exists(lowercase ) and not args.overwrite_cache: lowerCamelCase_ = time.time() lowerCamelCase_ = torch.load(lowercase ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. lowerCamelCase_ = self.old_features["features"] lowerCamelCase_ = self.old_features.get("dataset" , lowercase ) lowerCamelCase_ = self.old_features.get("examples" , lowercase ) logger.info( f'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in' " future run" ) else: if mode == Split.dev: lowerCamelCase_ = self.processor.get_dev_examples(args.data_dir ) else: lowerCamelCase_ = self.processor.get_train_examples(args.data_dir ) lowerCamelCase_ , lowerCamelCase_ = squad_convert_examples_to_features( examples=self.examples , tokenizer=lowercase , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=lowercase , ) lowerCamelCase_ = time.time() torch.save( {"features": self.features, "dataset": self.dataset, "examples": self.examples} , lowercase , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self ) -> Tuple: return len(self.features ) def __getitem__( self , lowercase ) -> Dict[str, torch.Tensor]: # Convert to Tensors and build dataset lowerCamelCase_ = self.features[i] lowerCamelCase_ = torch.tensor(feature.input_ids , dtype=torch.long ) lowerCamelCase_ = torch.tensor(feature.attention_mask , dtype=torch.long ) lowerCamelCase_ = torch.tensor(feature.token_type_ids , dtype=torch.long ) lowerCamelCase_ = torch.tensor(feature.cls_index , dtype=torch.long ) lowerCamelCase_ = torch.tensor(feature.p_mask , dtype=torch.float ) lowerCamelCase_ = torch.tensor(feature.is_impossible , dtype=torch.float ) lowerCamelCase_ = { "input_ids": input_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"cls_index": cls_index, "p_mask": p_mask} ) if self.args.version_2_with_negative: inputs.update({"is_impossible": is_impossible} ) if self.is_language_sensitive: inputs.update({"langs": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: lowerCamelCase_ = torch.tensor(feature.start_position , dtype=torch.long ) lowerCamelCase_ = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({"start_positions": start_positions, "end_positions": end_positions} ) return inputs
19
0
import importlib.metadata import operator import re import sys from typing import Optional from packaging import version UpperCamelCase = { '<': operator.lt, '<=': operator.le, '==': operator.eq, '!=': operator.ne, '>=': operator.ge, '>': operator.gt, } def _A ( lowerCAmelCase_ : Any , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any] ): """simple docstring""" if got_ver is None or want_ver is None: raise ValueError( F'Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider' F' reinstalling {pkg}.' ) if not ops[op](version.parse(lowerCAmelCase_ ) , version.parse(lowerCAmelCase_ ) ): raise ImportError( F'{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}' ) def _A ( lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ): """simple docstring""" lowerCAmelCase__ = F'\n{hint}' if hint is not None else "" # non-versioned check if re.match(r"^[\w_\-\d]+$" , lowerCAmelCase_ ): lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = requirement, None, None else: lowerCAmelCase__ = re.findall(r"^([^!=<>\s]+)([\s!=<>]{1,2}.+)" , lowerCAmelCase_ ) if not match: raise ValueError( "requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but" F' got {requirement}' ) lowerCAmelCase__ , lowerCAmelCase__ = match[0] lowerCAmelCase__ = want_full.split("," ) # there could be multiple requirements lowerCAmelCase__ = {} for w in want_range: lowerCAmelCase__ = re.findall(r"^([\s!=<>]{1,2})(.+)" , lowerCAmelCase_ ) if not match: raise ValueError( "requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23," F' but got {requirement}' ) lowerCAmelCase__ , lowerCAmelCase__ = match[0] lowerCAmelCase__ = want_ver if op not in ops: raise ValueError(F'{requirement}: need one of {list(ops.keys() )}, but got {op}' ) # special case if pkg == "python": lowerCAmelCase__ = ".".join([str(lowerCAmelCase_ ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) return # check if any version is installed try: lowerCAmelCase__ = importlib.metadata.version(lowerCAmelCase_ ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( F'The \'{requirement}\' distribution was not found and is required by this application. {hint}' ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def _A ( lowerCAmelCase_ : List[Any] ): """simple docstring""" lowerCAmelCase__ = "Try: pip install transformers -U or pip install -e '.[dev]' if you're working with git main" return require_version(lowerCAmelCase_ , lowerCAmelCase_ )
366
from statistics import mean, stdev def _A ( lowerCAmelCase_ : list , lowerCAmelCase_ : int = 3 ): """simple docstring""" lowerCAmelCase__ = min(lowerCAmelCase_ ) lowerCAmelCase__ = max(lowerCAmelCase_ ) # normalize data return [round((x - x_min) / (x_max - x_min) , lowerCAmelCase_ ) for x in data] def _A ( lowerCAmelCase_ : list , lowerCAmelCase_ : int = 3 ): """simple docstring""" lowerCAmelCase__ = mean(lowerCAmelCase_ ) lowerCAmelCase__ = stdev(lowerCAmelCase_ ) # standardize data return [round((x - mu) / (sigma) , lowerCAmelCase_ ) for x in data]
221
0
"""simple docstring""" import os def _snake_case ( UpperCAmelCase_ : str = "matrix.txt" ): with open(os.path.join(os.path.dirname(UpperCAmelCase_ ) , UpperCAmelCase_ ) ) as in_file: A__ = in_file.read() A__ = [[int(UpperCAmelCase_ ) for cell in row.split(""",""" )] for row in data.strip().splitlines()] A__ = [[0 for cell in row] for row in grid] A__ = len(grid[0] ) A__ = [[0 for i in range(UpperCAmelCase_ )] for j in range(UpperCAmelCase_ )] A__ = grid[0][0] for i in range(1 , UpperCAmelCase_ ): A__ = grid[0][i] + dp[0][i - 1] for i in range(1 , UpperCAmelCase_ ): A__ = grid[i][0] + dp[i - 1][0] for i in range(1 , UpperCAmelCase_ ): for j in range(1 , UpperCAmelCase_ ): A__ = grid[i][j] + min(dp[i - 1][j] , dp[i][j - 1] ) return dp[-1][-1] if __name__ == "__main__": print(f"""{solution() = }""")
335
"""simple docstring""" class a : """simple docstring""" def __init__( self: Dict ): """simple docstring""" A__ = {} def UpperCamelCase ( self: List[str] ): """simple docstring""" print(self.vertex ) for i in self.vertex: print(UpperCamelCase , """ -> """ , """ -> """.join([str(UpperCamelCase ) for j in self.vertex[i]] ) ) def UpperCamelCase ( self: Any , UpperCamelCase: int , UpperCamelCase: int ): """simple docstring""" if from_vertex in self.vertex: self.vertex[from_vertex].append(UpperCamelCase ) else: # else make a new vertex A__ = [to_vertex] def UpperCamelCase ( self: Union[str, Any] ): """simple docstring""" A__ = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(UpperCamelCase , UpperCamelCase ) def UpperCamelCase ( self: str , UpperCamelCase: int , UpperCamelCase: list ): """simple docstring""" A__ = True print(UpperCamelCase , end=""" """ ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(UpperCamelCase , UpperCamelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ : Optional[int] = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print('DFS:') g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
335
1
'''simple docstring''' from argparse import ArgumentParser from ..pipelines import Pipeline, PipelineDataFormat, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand __lowerCAmelCase : List[Any] =logging.get_logger(__name__) # pylint: disable=invalid-name def UpperCamelCase ( _lowerCamelCase : str ): if not path: return "pipe" for ext in PipelineDataFormat.SUPPORTED_FORMATS: if path.endswith(_lowerCamelCase ): return ext raise Exception( F"Unable to determine file format from file extension {path}. " F"Please provide the format through --format {PipelineDataFormat.SUPPORTED_FORMATS}" ) def UpperCamelCase ( _lowerCamelCase : int ): A__ = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) A__ = try_infer_format_from_ext(args.input ) if args.format == "infer" else args.format A__ = PipelineDataFormat.from_str( format=_lowerCamelCase , output_path=args.output , input_path=args.input , column=args.column if args.column else nlp.default_input_names , overwrite=args.overwrite , ) return RunCommand(_lowerCamelCase , _lowerCamelCase ) class UpperCAmelCase ( UpperCamelCase__ ): def __init__( self :Union[str, Any] , lowercase_ :Pipeline , lowercase_ :PipelineDataFormat )-> str: A__ = nlp A__ = reader @staticmethod def UpperCAmelCase_ ( lowercase_ :ArgumentParser )-> Optional[Any]: A__ = parser.add_parser("run" , help="Run a pipeline through the CLI" ) run_parser.add_argument("--task" , choices=get_supported_tasks() , help="Task to run" ) run_parser.add_argument("--input" , type=lowercase_ , help="Path to the file to use for inference" ) run_parser.add_argument("--output" , type=lowercase_ , help="Path to the file that will be used post to write results." ) run_parser.add_argument("--model" , type=lowercase_ , help="Name or path to the model to instantiate." ) run_parser.add_argument("--config" , type=lowercase_ , help="Name or path to the model's config to instantiate." ) run_parser.add_argument( "--tokenizer" , type=lowercase_ , help="Name of the tokenizer to use. (default: same as the model name)" ) run_parser.add_argument( "--column" , type=lowercase_ , help="Name of the column to use as input. (For multi columns input as QA use column1,columns2)" , ) run_parser.add_argument( "--format" , type=lowercase_ , default="infer" , choices=PipelineDataFormat.SUPPORTED_FORMATS , help="Input format to read from" , ) run_parser.add_argument( "--device" , type=lowercase_ , default=-1 , help="Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)" , ) run_parser.add_argument("--overwrite" , action="store_true" , help="Allow overwriting the output file." ) run_parser.set_defaults(func=lowercase_ ) def UpperCAmelCase_ ( self :Dict )-> Optional[Any]: A__, A__ = self._nlp, [] for entry in self._reader: A__ = nlp(**lowercase_ ) if self._reader.is_multi_columns else nlp(lowercase_ ) if isinstance(lowercase_ , lowercase_ ): outputs.append(lowercase_ ) else: outputs += output # Saving data if self._nlp.binary_output: A__ = self._reader.save_binary(lowercase_ ) logger.warning(F"Current pipeline requires output to be in binary format, saving at {binary_path}" ) else: self._reader.save(lowercase_ )
353
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : List[str] =logging.get_logger(__name__) def UpperCamelCase ( _lowerCamelCase : str ): A__ = torch.load(_lowerCamelCase , map_location="cpu" ) if "model" in sd.keys(): A__ = torch.load(_lowerCamelCase , map_location="cpu" )["model"] # pop unnecessary weights A__ = [ "decoder.version", "decoder.output_projection.weight", ] for key in keys_to_delete: if key in sd: sd.pop(_lowerCamelCase ) A__ = { "decoder.project_in_dim.weight": "decoder.project_in.weight", "decoder.project_out_dim.weight": "decoder.project_out.weight", "decoder.layer_norm.weight": "decoder.final_layer_norm.weight", "decoder.layer_norm.bias": "decoder.final_layer_norm.bias", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: A__ = sd.pop(_lowerCamelCase ) A__ = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: A__ = sd[key] # We split QKV in separate Q,K,V A__ = key.replace(".qkv_proj." , ".q_proj." ) A__ = key.replace(".qkv_proj." , ".k_proj." ) A__ = key.replace(".qkv_proj." , ".v_proj." ) A__ = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 A__, A__, A__ = torch.split(_lowerCamelCase , depth // 3 , dim=0 ) A__ = q A__ = k A__ = v del sd[key] return sd @torch.no_grad() def UpperCamelCase ( _lowerCamelCase : List[Any] , _lowerCamelCase : Any , _lowerCamelCase : Dict=None ): A__ = load_checkpoint(_lowerCamelCase ) if config is not None: A__ = OPTConfig.from_pretrained(_lowerCamelCase ) else: A__ = OPTConfig() A__ = OPTModel(_lowerCamelCase ).half().eval() model.load_state_dict(_lowerCamelCase ) # Check results Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) model.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": __lowerCAmelCase : List[str] =argparse.ArgumentParser() # Required parameters parser.add_argument( "--fairseq_path", type=str, help=( "path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:" " https://huggingface.co/models?other=opt_metasq" ), ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--hf_config", default=None, type=str, help="Define HF config.") __lowerCAmelCase : List[Any] =parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
123
0
"""simple docstring""" import torch from diffusers import StableDiffusionPipeline __A = """path-to-your-trained-model""" __A = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.floataa).to("""cuda""") __A = """A photo of sks dog in a bucket""" __A = pipe(prompt, num_inference_steps=50, guidance_scale=7.5).images[0] image.save("""dog-bucket.png""")
293
"""simple docstring""" from __future__ import annotations __A = tuple[int, int, int] __A = tuple[str, str, str] # used alphabet -------------------------- # from string.ascii_uppercase __A = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" # -------------------------- default selection -------------------------- # rotors -------------------------- __A = """EGZWVONAHDCLFQMSIPJBYUKXTR""" __A = """FOBHMDKEXQNRAULPGSJVTYICZW""" __A = """ZJXESIUQLHAVRMDOYGTNFWPBKC""" # reflector -------------------------- __A = { """A""": """N""", """N""": """A""", """B""": """O""", """O""": """B""", """C""": """P""", """P""": """C""", """D""": """Q""", """Q""": """D""", """E""": """R""", """R""": """E""", """F""": """S""", """S""": """F""", """G""": """T""", """T""": """G""", """H""": """U""", """U""": """H""", """I""": """V""", """V""": """I""", """J""": """W""", """W""": """J""", """K""": """X""", """X""": """K""", """L""": """Y""", """Y""": """L""", """M""": """Z""", """Z""": """M""", } # -------------------------- extra rotors -------------------------- __A = """RMDJXFUWGISLHVTCQNKYPBEZOA""" __A = """SGLCPQWZHKXAREONTFBVIYJUDM""" __A = """HVSICLTYKQUBXDWAJZOMFGPREN""" __A = """RZWQHFMVDBKICJLNTUXAGYPSOE""" __A = """LFKIJODBEGAMQPXVUHYSTCZRWN""" __A = """KOAEGVDHXPQZMLFTYWJNBRCIUS""" def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->tuple[RotorPositionT, RotorSelectionT, dict[str, str]]: """simple docstring""" if (unique_rotsel := len(set(_SCREAMING_SNAKE_CASE ) )) < 3: lowerCAmelCase__ :Union[str, Any] = F"Please use 3 unique rotors (not {unique_rotsel})" raise Exception(_SCREAMING_SNAKE_CASE ) # Checks if rotor positions are valid lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :str = rotpos if not 0 < rotorposa <= len(_SCREAMING_SNAKE_CASE ): lowerCAmelCase__ :Tuple = F"First rotor position is not within range of 1..26 ({rotorposa}" raise ValueError(_SCREAMING_SNAKE_CASE ) if not 0 < rotorposa <= len(_SCREAMING_SNAKE_CASE ): lowerCAmelCase__ :Optional[Any] = F"Second rotor position is not within range of 1..26 ({rotorposa})" raise ValueError(_SCREAMING_SNAKE_CASE ) if not 0 < rotorposa <= len(_SCREAMING_SNAKE_CASE ): lowerCAmelCase__ :Union[str, Any] = F"Third rotor position is not within range of 1..26 ({rotorposa})" raise ValueError(_SCREAMING_SNAKE_CASE ) # Validates string and returns dict lowerCAmelCase__ :int = _plugboard(_SCREAMING_SNAKE_CASE ) return rotpos, rotsel, pbdict def __A (_SCREAMING_SNAKE_CASE ) ->dict[str, str]: """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): lowerCAmelCase__ :str = F"Plugboard setting isn't type string ({type(_SCREAMING_SNAKE_CASE )})" raise TypeError(_SCREAMING_SNAKE_CASE ) elif len(_SCREAMING_SNAKE_CASE ) % 2 != 0: lowerCAmelCase__ :str = F"Odd number of symbols ({len(_SCREAMING_SNAKE_CASE )})" raise Exception(_SCREAMING_SNAKE_CASE ) elif pbstring == "": return {} pbstring.replace(' ' , '' ) # Checks if all characters are unique lowerCAmelCase__ :Any = set() for i in pbstring: if i not in abc: lowerCAmelCase__ :Any = F"'{i}' not in list of symbols" raise Exception(_SCREAMING_SNAKE_CASE ) elif i in tmppbl: lowerCAmelCase__ :Dict = F"Duplicate symbol ({i})" raise Exception(_SCREAMING_SNAKE_CASE ) else: tmppbl.add(_SCREAMING_SNAKE_CASE ) del tmppbl # Created the dictionary lowerCAmelCase__ :List[Any] = {} for j in range(0 , len(_SCREAMING_SNAKE_CASE ) - 1 , 2 ): lowerCAmelCase__ :Optional[int] = pbstring[j + 1] lowerCAmelCase__ :Union[str, Any] = pbstring[j] return pb def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = (rotora, rotora, rotora) , _SCREAMING_SNAKE_CASE = "" , ) ->str: """simple docstring""" lowerCAmelCase__ :Tuple = text.upper() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :Tuple = _validator( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , plugb.upper() ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :Tuple = rotor_position lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :Union[str, Any] = rotor_selection rotorposa -= 1 rotorposa -= 1 rotorposa -= 1 lowerCAmelCase__ :Dict = [] # encryption/decryption process -------------------------- for symbol in text: if symbol in abc: # 1st plugboard -------------------------- if symbol in plugboard: lowerCAmelCase__ :Dict = plugboard[symbol] # rotor ra -------------------------- lowerCAmelCase__ :Optional[int] = abc.index(_SCREAMING_SNAKE_CASE ) + rotorposa lowerCAmelCase__ :str = rotora[index % len(_SCREAMING_SNAKE_CASE )] # rotor rb -------------------------- lowerCAmelCase__ :Optional[int] = abc.index(_SCREAMING_SNAKE_CASE ) + rotorposa lowerCAmelCase__ :int = rotora[index % len(_SCREAMING_SNAKE_CASE )] # rotor rc -------------------------- lowerCAmelCase__ :str = abc.index(_SCREAMING_SNAKE_CASE ) + rotorposa lowerCAmelCase__ :Optional[Any] = rotora[index % len(_SCREAMING_SNAKE_CASE )] # reflector -------------------------- # this is the reason you don't need another machine to decipher lowerCAmelCase__ :str = reflector[symbol] # 2nd rotors lowerCAmelCase__ :Tuple = abc[rotora.index(_SCREAMING_SNAKE_CASE ) - rotorposa] lowerCAmelCase__ :Optional[int] = abc[rotora.index(_SCREAMING_SNAKE_CASE ) - rotorposa] lowerCAmelCase__ :Any = abc[rotora.index(_SCREAMING_SNAKE_CASE ) - rotorposa] # 2nd plugboard if symbol in plugboard: lowerCAmelCase__ :Union[str, Any] = plugboard[symbol] # moves/resets rotor positions rotorposa += 1 if rotorposa >= len(_SCREAMING_SNAKE_CASE ): lowerCAmelCase__ :str = 0 rotorposa += 1 if rotorposa >= len(_SCREAMING_SNAKE_CASE ): lowerCAmelCase__ :List[Any] = 0 rotorposa += 1 if rotorposa >= len(_SCREAMING_SNAKE_CASE ): lowerCAmelCase__ :Optional[Any] = 0 # else: # pass # Error could be also raised # raise ValueError( # 'Invalid symbol('+repr(symbol)+')') result.append(_SCREAMING_SNAKE_CASE ) return "".join(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __A = """This is my Python script that emulates the Enigma machine from WWII.""" __A = (1, 1, 1) __A = """pictures""" __A = (rotora, rotora, rotora) __A = enigma(message, rotor_pos, rotor_sel, pb) print("""Encrypted message:""", en) print("""Decrypted message:""", enigma(en, rotor_pos, rotor_sel, pb))
293
1
from __future__ import annotations import inspect import unittest from math import floor import numpy as np from transformers import CvtConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFCvtForImageClassification, TFCvtModel from transformers.models.cvt.modeling_tf_cvt import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __a ( __UpperCamelCase ): def A ( self : Optional[Any] ): lowerCAmelCase_ : int = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(UpperCAmelCase , """embed_dim""" ) ) self.parent.assertTrue(hasattr(UpperCAmelCase , """num_heads""" ) ) class __a : def __init__( self : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, Any]=13 , UpperCAmelCase : Dict=64 , UpperCAmelCase : int=3 , UpperCAmelCase : Optional[int]=[16, 48, 96] , UpperCAmelCase : Union[str, Any]=[1, 3, 6] , UpperCAmelCase : Optional[Any]=[1, 2, 10] , UpperCAmelCase : str=[7, 3, 3] , UpperCAmelCase : Optional[Any]=[4, 2, 2] , UpperCAmelCase : Any=[2, 1, 1] , UpperCAmelCase : List[Any]=[2, 2, 2] , UpperCAmelCase : List[str]=[False, False, True] , UpperCAmelCase : Dict=[0.0, 0.0, 0.0] , UpperCAmelCase : List[Any]=0.02 , UpperCAmelCase : List[str]=1e-1_2 , UpperCAmelCase : List[Any]=True , UpperCAmelCase : Any=True , UpperCAmelCase : Union[str, Any]=2 , ): lowerCAmelCase_ : Optional[int] = parent lowerCAmelCase_ : Optional[int] = batch_size lowerCAmelCase_ : Any = image_size lowerCAmelCase_ : Union[str, Any] = patch_sizes lowerCAmelCase_ : Any = patch_stride lowerCAmelCase_ : str = patch_padding lowerCAmelCase_ : str = is_training lowerCAmelCase_ : Tuple = use_labels lowerCAmelCase_ : Tuple = num_labels lowerCAmelCase_ : Optional[Any] = num_channels lowerCAmelCase_ : Optional[Any] = embed_dim lowerCAmelCase_ : int = num_heads lowerCAmelCase_ : str = stride_kv lowerCAmelCase_ : Union[str, Any] = depth lowerCAmelCase_ : Optional[Any] = cls_token lowerCAmelCase_ : List[Any] = attention_drop_rate lowerCAmelCase_ : Optional[int] = initializer_range lowerCAmelCase_ : List[str] = layer_norm_eps def A ( self : Optional[Any] ): lowerCAmelCase_ : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase_ : int = None if self.use_labels: # create a random int32 tensor of given shape lowerCAmelCase_ : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) lowerCAmelCase_ : str = self.get_config() return config, pixel_values, labels def A ( self : str ): return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def A ( self : List[Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] ): lowerCAmelCase_ : Optional[int] = TFCvtModel(config=UpperCAmelCase ) lowerCAmelCase_ : Tuple = model(UpperCAmelCase , training=UpperCAmelCase ) lowerCAmelCase_ : int = (self.image_size, self.image_size) lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = image_size[0], image_size[1] for i in range(len(self.depth ) ): lowerCAmelCase_ : str = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) lowerCAmelCase_ : Union[str, Any] = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def A ( self : Dict , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] ): lowerCAmelCase_ : List[Any] = self.num_labels lowerCAmelCase_ : Any = TFCvtForImageClassification(UpperCAmelCase ) lowerCAmelCase_ : Any = model(UpperCAmelCase , labels=UpperCAmelCase , training=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : int ): lowerCAmelCase_ : Any = self.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : int = config_and_inputs lowerCAmelCase_ : Union[str, Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class __a ( __UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ): __snake_case : Optional[int] = (TFCvtModel, TFCvtForImageClassification) if is_tf_available() else () __snake_case : Any = ( {"""feature-extraction""": TFCvtModel, """image-classification""": TFCvtForImageClassification} if is_tf_available() else {} ) __snake_case : List[Any] = False __snake_case : Dict = False __snake_case : Optional[Any] = False __snake_case : Optional[Any] = False __snake_case : Optional[int] = False def A ( self : Optional[int] ): lowerCAmelCase_ : Optional[int] = TFCvtModelTester(self ) lowerCAmelCase_ : Optional[int] = TFCvtConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase , hidden_size=37 ) def A ( self : Tuple ): self.config_tester.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() @unittest.skip(reason="""Cvt does not output attentions""" ) def A ( self : Optional[Any] ): pass @unittest.skip(reason="""Cvt does not use inputs_embeds""" ) def A ( self : List[str] ): pass @unittest.skip(reason="""Cvt does not support input and output embeddings""" ) def A ( self : List[Any] ): pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , ) def A ( self : int ): super().test_dataset_conversion() @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , ) @slow def A ( self : Any ): super().test_keras_fit() @unittest.skip(reason="""Get `Failed to determine best cudnn convolution algo.` error after using TF 2.12+cuda 11.8""" ) def A ( self : List[str] ): lowerCAmelCase_ : List[str] = tf.keras.mixed_precision.Policy("""mixed_float16""" ) tf.keras.mixed_precision.set_global_policy(UpperCAmelCase ) super().test_keras_fit() tf.keras.mixed_precision.set_global_policy("""float32""" ) def A ( self : Dict ): lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : Union[str, Any] = model_class(UpperCAmelCase ) lowerCAmelCase_ : int = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase_ : str = [*signature.parameters.keys()] lowerCAmelCase_ : Optional[int] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def A ( self : Union[str, Any] ): def check_hidden_states_output(UpperCAmelCase : List[str] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple ): lowerCAmelCase_ : Tuple = model_class(UpperCAmelCase ) lowerCAmelCase_ : Tuple = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) lowerCAmelCase_ : List[str] = outputs.hidden_states lowerCAmelCase_ : int = len(self.model_tester.depth ) self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : Dict = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase_ : List[str] = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def A ( self : List[Any] ): lowerCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def A ( self : int ): lowerCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase ) @slow def A ( self : List[str] ): for model_name in TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ : Tuple = TFCvtModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def __UpperCamelCase ( ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class __a ( unittest.TestCase ): @cached_property def A ( self : Any ): return AutoImageProcessor.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def A ( self : int ): lowerCAmelCase_ : Dict = TFCvtForImageClassification.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowerCAmelCase_ : int = self.default_image_processor lowerCAmelCase_ : Union[str, Any] = prepare_img() lowerCAmelCase_ : Any = image_processor(images=UpperCAmelCase , return_tensors="""tf""" ) # forward pass lowerCAmelCase_ : Optional[Any] = model(**UpperCAmelCase ) # verify the logits lowerCAmelCase_ : Dict = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) lowerCAmelCase_ : List[str] = tf.constant([0.9285, 0.9015, -0.3150] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , UpperCAmelCase , atol=1e-4 ) )
28
from math import ceil def __UpperCamelCase ( lowercase__ : int = 1001 ) -> int: '''simple docstring''' lowerCAmelCase_ : List[str] = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): lowerCAmelCase_ : Optional[Any] = 2 * i + 1 lowerCAmelCase_ : Union[str, Any] = 2 * i lowerCAmelCase_ : Optional[Any] = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: __UpperCAmelCase = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number')
28
1
import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _lowerCamelCase( _a, unittest.TestCase ): lowercase_ : Union[str, Any] = ConsistencyModelPipeline lowercase_ : Tuple = UNCONDITIONAL_IMAGE_GENERATION_PARAMS lowercase_ : List[str] = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt lowercase_ : List[str] = frozenset( [ """num_inference_steps""", """generator""", """latents""", """output_type""", """return_dict""", """callback""", """callback_steps""", ] ) @property def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Tuple = UNetaDModel.from_pretrained( 'diffusers/consistency-models-test', subfolder='test_unet', ) return unet @property def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : Tuple = UNetaDModel.from_pretrained( 'diffusers/consistency-models-test', subfolder='test_unet_class_cond', ) return unet def UpperCamelCase ( self, lowerCamelCase=False) -> Dict: """simple docstring""" if class_cond: _lowercase : Union[str, Any] = self.dummy_cond_unet else: _lowercase : Union[str, Any] = self.dummy_uncond_unet # Default to CM multistep sampler _lowercase : List[str] = CMStochasticIterativeScheduler( num_train_timesteps=40, sigma_min=0.0_0_2, sigma_max=8_0.0, ) _lowercase : Optional[Any] = { 'unet': unet, 'scheduler': scheduler, } return components def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase=0) -> Tuple: """simple docstring""" if str(lowerCamelCase).startswith('mps'): _lowercase : str = torch.manual_seed(lowerCamelCase) else: _lowercase : int = torch.Generator(device=lowerCamelCase).manual_seed(lowerCamelCase) _lowercase : Tuple = { 'batch_size': 1, 'num_inference_steps': None, 'timesteps': [22, 0], 'generator': generator, 'output_type': 'np', } return inputs def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowercase : Optional[int] = self.get_dummy_components() _lowercase : str = ConsistencyModelPipeline(**lowerCamelCase) _lowercase : Dict = pipe.to(lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Tuple = self.get_dummy_inputs(lowerCamelCase) _lowercase : Optional[int] = pipe(**lowerCamelCase).images assert image.shape == (1, 32, 32, 3) _lowercase : int = image[0, -3:, -3:, -1] _lowercase : Dict = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : Union[str, Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowercase : Dict = self.get_dummy_components(class_cond=lowerCamelCase) _lowercase : Any = ConsistencyModelPipeline(**lowerCamelCase) _lowercase : str = pipe.to(lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Any = self.get_dummy_inputs(lowerCamelCase) _lowercase : Any = 0 _lowercase : List[str] = pipe(**lowerCamelCase).images assert image.shape == (1, 32, 32, 3) _lowercase : Any = image[0, -3:, -3:, -1] _lowercase : Union[str, Any] = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowercase : Any = self.get_dummy_components() _lowercase : Optional[Any] = ConsistencyModelPipeline(**lowerCamelCase) _lowercase : List[str] = pipe.to(lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Optional[Any] = self.get_dummy_inputs(lowerCamelCase) _lowercase : Union[str, Any] = 1 _lowercase : Tuple = None _lowercase : Tuple = pipe(**lowerCamelCase).images assert image.shape == (1, 32, 32, 3) _lowercase : str = image[0, -3:, -3:, -1] _lowercase : List[str] = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : Union[str, Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowercase : Dict = self.get_dummy_components(class_cond=lowerCamelCase) _lowercase : Dict = ConsistencyModelPipeline(**lowerCamelCase) _lowercase : Optional[Any] = pipe.to(lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Tuple = self.get_dummy_inputs(lowerCamelCase) _lowercase : Tuple = 1 _lowercase : int = None _lowercase : Tuple = 0 _lowercase : Dict = pipe(**lowerCamelCase).images assert image.shape == (1, 32, 32, 3) _lowercase : List[str] = image[0, -3:, -3:, -1] _lowercase : Any = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 @slow @require_torch_gpu class _lowerCamelCase( unittest.TestCase ): def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self, lowerCamelCase=0, lowerCamelCase=False, lowerCamelCase="cpu", lowerCamelCase=torch.floataa, lowerCamelCase=(1, 3, 64, 64)) -> Optional[Any]: """simple docstring""" _lowercase : List[Any] = torch.manual_seed(lowerCamelCase) _lowercase : str = { 'num_inference_steps': None, 'timesteps': [22, 0], 'class_labels': 0, 'generator': generator, 'output_type': 'np', } if get_fixed_latents: _lowercase : Optional[Any] = self.get_fixed_latents(seed=lowerCamelCase, device=lowerCamelCase, dtype=lowerCamelCase, shape=lowerCamelCase) _lowercase : Tuple = latents return inputs def UpperCamelCase ( self, lowerCamelCase=0, lowerCamelCase="cpu", lowerCamelCase=torch.floataa, lowerCamelCase=(1, 3, 64, 64)) -> Any: """simple docstring""" if type(lowerCamelCase) == str: _lowercase : Union[str, Any] = torch.device(lowerCamelCase) _lowercase : int = torch.Generator(device=lowerCamelCase).manual_seed(lowerCamelCase) _lowercase : List[str] = randn_tensor(lowerCamelCase, generator=lowerCamelCase, device=lowerCamelCase, dtype=lowerCamelCase) return latents def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : Tuple = UNetaDModel.from_pretrained('diffusers/consistency_models', subfolder='diffusers_cd_imagenet64_l2') _lowercase : Optional[int] = CMStochasticIterativeScheduler( num_train_timesteps=40, sigma_min=0.0_0_2, sigma_max=8_0.0, ) _lowercase : Any = ConsistencyModelPipeline(unet=lowerCamelCase, scheduler=lowerCamelCase) pipe.to(torch_device=lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : str = self.get_inputs() _lowercase : Optional[int] = pipe(**lowerCamelCase).images assert image.shape == (1, 64, 64, 3) _lowercase : str = image[0, -3:, -3:, -1] _lowercase : Optional[Any] = np.array([0.0_8_8_8, 0.0_8_8_1, 0.0_6_6_6, 0.0_4_7_9, 0.0_2_9_2, 0.0_1_9_5, 0.0_2_0_1, 0.0_1_6_3, 0.0_2_5_4]) assert np.abs(image_slice.flatten() - expected_slice).max() < 2E-2 def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : List[str] = UNetaDModel.from_pretrained('diffusers/consistency_models', subfolder='diffusers_cd_imagenet64_l2') _lowercase : List[str] = CMStochasticIterativeScheduler( num_train_timesteps=40, sigma_min=0.0_0_2, sigma_max=8_0.0, ) _lowercase : Union[str, Any] = ConsistencyModelPipeline(unet=lowerCamelCase, scheduler=lowerCamelCase) pipe.to(torch_device=lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : List[Any] = self.get_inputs() _lowercase : int = 1 _lowercase : Optional[Any] = None _lowercase : str = pipe(**lowerCamelCase).images assert image.shape == (1, 64, 64, 3) _lowercase : List[Any] = image[0, -3:, -3:, -1] _lowercase : List[str] = np.array([0.0_3_4_0, 0.0_1_5_2, 0.0_0_6_3, 0.0_2_6_7, 0.0_2_2_1, 0.0_1_0_7, 0.0_4_1_6, 0.0_1_8_6, 0.0_2_1_7]) assert np.abs(image_slice.flatten() - expected_slice).max() < 2E-2 @require_torch_a def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : str = UNetaDModel.from_pretrained('diffusers/consistency_models', subfolder='diffusers_cd_imagenet64_l2') _lowercase : Optional[int] = CMStochasticIterativeScheduler( num_train_timesteps=40, sigma_min=0.0_0_2, sigma_max=8_0.0, ) _lowercase : Optional[int] = ConsistencyModelPipeline(unet=lowerCamelCase, scheduler=lowerCamelCase) pipe.to(torch_device=lowerCamelCase, torch_dtype=torch.floataa) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Any = self.get_inputs(get_fixed_latents=lowerCamelCase, device=lowerCamelCase) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=lowerCamelCase, enable_math=lowerCamelCase, enable_mem_efficient=lowerCamelCase): _lowercase : Dict = pipe(**lowerCamelCase).images assert image.shape == (1, 64, 64, 3) _lowercase : Any = image[0, -3:, -3:, -1] _lowercase : Union[str, Any] = np.array([0.1_8_7_5, 0.1_4_2_8, 0.1_2_8_9, 0.2_1_5_1, 0.2_0_9_2, 0.1_4_7_7, 0.1_8_7_7, 0.1_6_4_1, 0.1_3_5_3]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 @require_torch_a def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : Dict = UNetaDModel.from_pretrained('diffusers/consistency_models', subfolder='diffusers_cd_imagenet64_l2') _lowercase : Optional[Any] = CMStochasticIterativeScheduler( num_train_timesteps=40, sigma_min=0.0_0_2, sigma_max=8_0.0, ) _lowercase : int = ConsistencyModelPipeline(unet=lowerCamelCase, scheduler=lowerCamelCase) pipe.to(torch_device=lowerCamelCase, torch_dtype=torch.floataa) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : List[Any] = self.get_inputs(get_fixed_latents=lowerCamelCase, device=lowerCamelCase) _lowercase : int = 1 _lowercase : str = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=lowerCamelCase, enable_math=lowerCamelCase, enable_mem_efficient=lowerCamelCase): _lowercase : Union[str, Any] = pipe(**lowerCamelCase).images assert image.shape == (1, 64, 64, 3) _lowercase : Any = image[0, -3:, -3:, -1] _lowercase : int = np.array([0.1_6_6_3, 0.1_9_4_8, 0.2_2_7_5, 0.1_6_8_0, 0.1_2_0_4, 0.1_2_4_5, 0.1_8_5_8, 0.1_3_3_8, 0.2_0_9_5]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3
21
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def UpperCamelCase_( lowerCamelCase_ ) -> bool: _lowercase : int = int(number**0.5 ) return number == sq * sq def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> tuple[int, int]: _lowercase : int = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den _lowercase : int = x_den * y_den * z_den _lowercase : int = gcd(lowerCamelCase_ , lowerCamelCase_ ) top //= hcf bottom //= hcf return top, bottom def UpperCamelCase_( lowerCamelCase_ = 35 ) -> int: _lowercase : set = set() _lowercase : int _lowercase : Fraction = Fraction(0 ) _lowercase : tuple[int, int] for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 _lowercase : int = x_num * y_den + x_den * y_num _lowercase : int = x_den * y_den _lowercase : str = gcd(lowerCamelCase_ , lowerCamelCase_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _lowercase : List[Any] = add_three( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) unique_s.add(lowerCamelCase_ ) # n=2 _lowercase : Dict = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) _lowercase : List[Any] = x_den * x_den * y_den * y_den if is_sq(lowerCamelCase_ ) and is_sq(lowerCamelCase_ ): _lowercase : Tuple = int(sqrt(lowerCamelCase_ ) ) _lowercase : int = int(sqrt(lowerCamelCase_ ) ) _lowercase : Any = gcd(lowerCamelCase_ , lowerCamelCase_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _lowercase : Optional[int] = add_three( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) unique_s.add(lowerCamelCase_ ) # n=-1 _lowercase : Any = x_num * y_num _lowercase : str = x_den * y_num + x_num * y_den _lowercase : Any = gcd(lowerCamelCase_ , lowerCamelCase_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _lowercase : int = add_three( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) unique_s.add(lowerCamelCase_ ) # n=2 _lowercase : str = x_num * x_num * y_num * y_num _lowercase : Optional[Any] = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(lowerCamelCase_ ) and is_sq(lowerCamelCase_ ): _lowercase : Tuple = int(sqrt(lowerCamelCase_ ) ) _lowercase : List[str] = int(sqrt(lowerCamelCase_ ) ) _lowercase : Union[str, Any] = gcd(lowerCamelCase_ , lowerCamelCase_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _lowercase : Tuple = add_three( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) unique_s.add(lowerCamelCase_ ) for num, den in unique_s: total += Fraction(lowerCamelCase_ , lowerCamelCase_ ) return total.denominator + total.numerator if __name__ == "__main__": print(F"{solution() = }")
21
1
from __future__ import annotations class UpperCAmelCase : '''simple docstring''' def __init__( self : List[str] , lowerCAmelCase_ : int ): """simple docstring""" _A: Tuple = order # a_{0} ... a_{k} _A: str = [1.0] + [0.0] * order # b_{0} ... b_{k} _A: Dict = [1.0] + [0.0] * order # x[n-1] ... x[n-k] _A: Union[str, Any] = [0.0] * self.order # y[n-1] ... y[n-k] _A: int = [0.0] * self.order def __magic_name__ ( self : int , lowerCAmelCase_ : list[float] , lowerCAmelCase_ : list[float] ): """simple docstring""" if len(_UpperCAmelCase ) < self.order: _A: List[Any] = [1.0, *a_coeffs] if len(_UpperCAmelCase ) != self.order + 1: _A: str = ( F"""Expected a_coeffs to have {self.order + 1} elements """ F"""for {self.order}-order filter, got {len(_UpperCAmelCase )}""" ) raise ValueError(_UpperCAmelCase ) if len(_UpperCAmelCase ) != self.order + 1: _A: Optional[Any] = ( F"""Expected b_coeffs to have {self.order + 1} elements """ F"""for {self.order}-order filter, got {len(_UpperCAmelCase )}""" ) raise ValueError(_UpperCAmelCase ) _A: Union[str, Any] = a_coeffs _A: Dict = b_coeffs def __magic_name__ ( self : Union[str, Any] , lowerCAmelCase_ : float ): """simple docstring""" _A: Optional[int] = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) _A: List[Any] = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] _A: List[str] = self.input_history[:-1] _A: List[str] = self.output_history[:-1] _A: int = sample _A: Tuple = result return result
367
import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Any = (DDPMParallelScheduler,) def __magic_name__ ( self : Optional[int] , **lowerCAmelCase_ : Any ): """simple docstring""" _A: Optional[int] = { '''num_train_timesteps''': 1_0_0_0, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**lowerCAmelCase_ ) return config def __magic_name__ ( self : int ): """simple docstring""" for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=lowerCAmelCase_ ) def __magic_name__ ( self : Tuple ): """simple docstring""" for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=lowerCAmelCase_ , beta_end=lowerCAmelCase_ ) def __magic_name__ ( self : Optional[Any] ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowerCAmelCase_ ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=lowerCAmelCase_ ) def __magic_name__ ( self : Tuple ): """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowerCAmelCase_ ) def __magic_name__ ( self : List[str] ): """simple docstring""" self.check_over_configs(thresholding=lowerCAmelCase_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=lowerCAmelCase_ , prediction_type=lowerCAmelCase_ , sample_max_value=lowerCAmelCase_ , ) def __magic_name__ ( self : Dict ): """simple docstring""" for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase_ ) def __magic_name__ ( self : int ): """simple docstring""" for t in [0, 5_0_0, 9_9_9]: self.check_over_forward(time_step=lowerCAmelCase_ ) def __magic_name__ ( self : Any ): """simple docstring""" _A: List[Any] = self.scheduler_classes[0] _A: Union[str, Any] = self.get_scheduler_config() _A: Optional[Any] = scheduler_class(**lowerCAmelCase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.00979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.02 ) ) < 1e-5 def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Any = self.scheduler_classes[0] _A: List[str] = self.get_scheduler_config() _A: Union[str, Any] = scheduler_class(**lowerCAmelCase_ ) _A: List[Any] = len(lowerCAmelCase_ ) _A: Union[str, Any] = self.dummy_model() _A: Dict = self.dummy_sample_deter _A: Dict = self.dummy_sample_deter + 0.1 _A: str = self.dummy_sample_deter - 0.1 _A: str = samplea.shape[0] _A: Optional[Any] = torch.stack([samplea, samplea, samplea] , dim=0 ) _A: List[str] = torch.arange(lowerCAmelCase_ )[0:3, None].repeat(1 , lowerCAmelCase_ ) _A: List[Any] = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) _A: Optional[int] = scheduler.batch_step_no_noise(lowerCAmelCase_ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) _A: Dict = torch.sum(torch.abs(lowerCAmelCase_ ) ) _A: List[str] = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 1153.1833 ) < 1e-2 assert abs(result_mean.item() - 0.5005 ) < 1e-3 def __magic_name__ ( self : Tuple ): """simple docstring""" _A: Optional[Any] = self.scheduler_classes[0] _A: List[Any] = self.get_scheduler_config() _A: Any = scheduler_class(**lowerCAmelCase_ ) _A: Union[str, Any] = len(lowerCAmelCase_ ) _A: Any = self.dummy_model() _A: Optional[int] = self.dummy_sample_deter _A: List[str] = torch.manual_seed(0 ) for t in reversed(range(lowerCAmelCase_ ) ): # 1. predict noise residual _A: Optional[int] = model(lowerCAmelCase_ , lowerCAmelCase_ ) # 2. predict previous mean of sample x_t-1 _A: Optional[int] = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_ ).prev_sample _A: List[Any] = pred_prev_sample _A: Optional[int] = torch.sum(torch.abs(lowerCAmelCase_ ) ) _A: Any = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.3372 ) < 1e-3 def __magic_name__ ( self : Tuple ): """simple docstring""" _A: Optional[int] = self.scheduler_classes[0] _A: Union[str, Any] = self.get_scheduler_config(prediction_type='''v_prediction''' ) _A: List[str] = scheduler_class(**lowerCAmelCase_ ) _A: Union[str, Any] = len(lowerCAmelCase_ ) _A: Any = self.dummy_model() _A: Any = self.dummy_sample_deter _A: str = torch.manual_seed(0 ) for t in reversed(range(lowerCAmelCase_ ) ): # 1. predict noise residual _A: Any = model(lowerCAmelCase_ , lowerCAmelCase_ ) # 2. predict previous mean of sample x_t-1 _A: int = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_ ).prev_sample _A: Tuple = pred_prev_sample _A: List[Any] = torch.sum(torch.abs(lowerCAmelCase_ ) ) _A: str = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.2631 ) < 1e-3 def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Optional[int] = self.scheduler_classes[0] _A: Optional[Any] = self.get_scheduler_config() _A: Dict = scheduler_class(**lowerCAmelCase_ ) _A: Any = [1_0_0, 8_7, 5_0, 1, 0] scheduler.set_timesteps(timesteps=lowerCAmelCase_ ) _A: Tuple = scheduler.timesteps for i, timestep in enumerate(lowerCAmelCase_ ): if i == len(lowerCAmelCase_ ) - 1: _A: Dict = -1 else: _A: int = timesteps[i + 1] _A: List[str] = scheduler.previous_timestep(lowerCAmelCase_ ) _A: str = prev_t.item() self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def __magic_name__ ( self : Any ): """simple docstring""" _A: Tuple = self.scheduler_classes[0] _A: int = self.get_scheduler_config() _A: Any = scheduler_class(**lowerCAmelCase_ ) _A: Union[str, Any] = [1_0_0, 8_7, 5_0, 5_1, 0] with self.assertRaises(lowerCAmelCase_ , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=lowerCAmelCase_ ) def __magic_name__ ( self : int ): """simple docstring""" _A: List[str] = self.scheduler_classes[0] _A: Optional[Any] = self.get_scheduler_config() _A: Union[str, Any] = scheduler_class(**lowerCAmelCase_ ) _A: Union[str, Any] = [1_0_0, 8_7, 5_0, 1, 0] _A: Dict = len(lowerCAmelCase_ ) with self.assertRaises(lowerCAmelCase_ , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=lowerCAmelCase_ , timesteps=lowerCAmelCase_ ) def __magic_name__ ( self : Any ): """simple docstring""" _A: List[Any] = self.scheduler_classes[0] _A: int = self.get_scheduler_config() _A: str = scheduler_class(**lowerCAmelCase_ ) _A: Any = [scheduler.config.num_train_timesteps] with self.assertRaises( lowerCAmelCase_ , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=lowerCAmelCase_ )
301
0
'''simple docstring''' import numpy as np class A__ : """simple docstring""" def __init__( self : List[Any] ) -> List[str]: """simple docstring""" _UpperCAmelCase : int = (0, 0) _UpperCAmelCase : List[str] = None _UpperCAmelCase : List[str] = 0 _UpperCAmelCase : Union[str, Any] = 0 _UpperCAmelCase : Optional[int] = 0 def __eq__( self : Union[str, Any] , lowerCAmelCase__ : Optional[Any] ) -> Optional[int]: """simple docstring""" return self.position == cell.position def _lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" print(self.position ) class A__ : """simple docstring""" def __init__( self : Optional[Any] , lowerCAmelCase__ : Optional[Any]=(5, 5) ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : List[str] = np.zeros(lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = world_size[0] _UpperCAmelCase : Optional[int] = world_size[1] def _lowerCAmelCase ( self : str ) -> Any: """simple docstring""" print(self.w ) def _lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase__ : str ) -> Any: """simple docstring""" _UpperCAmelCase : List[str] = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] _UpperCAmelCase : str = cell.position[0] _UpperCAmelCase : str = cell.position[1] _UpperCAmelCase : str = [] for n in neughbour_cord: _UpperCAmelCase : Union[str, Any] = current_x + n[0] _UpperCAmelCase : str = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: _UpperCAmelCase : Tuple = Cell() _UpperCAmelCase : Dict = (x, y) _UpperCAmelCase : Optional[Any] = cell neighbours.append(lowerCAmelCase__ ) return neighbours def __UpperCAmelCase ( a_: str, a_: str, a_: str ): _UpperCAmelCase : Any = [] _UpperCAmelCase : List[Any] = [] _open.append(a_ ) while _open: _UpperCAmelCase : Dict = np.argmin([n.f for n in _open] ) _UpperCAmelCase : List[Any] = _open[min_f] _closed.append(_open.pop(a_ ) ) if current == goal: break for n in world.get_neigbours(a_ ): for c in _closed: if c == n: continue _UpperCAmelCase : str = current.g + 1 _UpperCAmelCase , _UpperCAmelCase : Optional[int] = n.position _UpperCAmelCase , _UpperCAmelCase : List[str] = goal.position _UpperCAmelCase : Union[str, Any] = (ya - ya) ** 2 + (xa - xa) ** 2 _UpperCAmelCase : str = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(a_ ) _UpperCAmelCase : List[Any] = [] while current.parent is not None: path.append(current.position ) _UpperCAmelCase : List[str] = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": __a = Gridworld() # Start position and goal __a = Cell() __a = (0, 0) __a = Cell() __a = (4, 4) print(f'path from {start.position} to {goal.position}') __a = astar(world, start, goal) # Just for visual reasons. for i in s: __a = 1 print(world.w)
145
'''simple docstring''' from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging __a = logging.get_logger(__name__) # pylint: disable=invalid-name class A__ ( UpperCamelCase ): """simple docstring""" def __init__( self : List[Any] , lowerCAmelCase__ : CLIPSegForImageSegmentation , lowerCAmelCase__ : CLIPSegProcessor , lowerCAmelCase__ : AutoencoderKL , lowerCAmelCase__ : CLIPTextModel , lowerCAmelCase__ : CLIPTokenizer , lowerCAmelCase__ : UNetaDConditionModel , lowerCAmelCase__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , lowerCAmelCase__ : StableDiffusionSafetyChecker , lowerCAmelCase__ : CLIPImageProcessor , ) -> Dict: """simple docstring""" super().__init__() if hasattr(scheduler.config , "steps_offset" ) and scheduler.config.steps_offset != 1: _UpperCAmelCase : str = ( F"""The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`""" F""" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure """ "to update the config accordingly as leaving `steps_offset` might led to incorrect results" " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" " file" ) deprecate("steps_offset!=1" , "1.0.0" , lowerCAmelCase__ , standard_warn=lowerCAmelCase__ ) _UpperCAmelCase : Any = dict(scheduler.config ) _UpperCAmelCase : Tuple = 1 _UpperCAmelCase : Optional[Any] = FrozenDict(lowerCAmelCase__ ) if hasattr(scheduler.config , "skip_prk_steps" ) and scheduler.config.skip_prk_steps is False: _UpperCAmelCase : Union[str, Any] = ( F"""The configuration file of this scheduler: {scheduler} has not set the configuration""" " `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make" " sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to" " incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face" " Hub, it would be very nice if you could open a Pull request for the" " `scheduler/scheduler_config.json` file" ) deprecate("skip_prk_steps not set" , "1.0.0" , lowerCAmelCase__ , standard_warn=lowerCAmelCase__ ) _UpperCAmelCase : List[str] = dict(scheduler.config ) _UpperCAmelCase : Optional[Any] = True _UpperCAmelCase : Dict = FrozenDict(lowerCAmelCase__ ) if safety_checker is None: logger.warning( F"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) self.register_modules( segmentation_model=lowerCAmelCase__ , segmentation_processor=lowerCAmelCase__ , vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , feature_extractor=lowerCAmelCase__ , ) def _lowerCAmelCase ( self : str , lowerCAmelCase__ : Optional[Union[str, int]] = "auto" ) -> Optional[int]: """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _UpperCAmelCase : Tuple = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCAmelCase__ ) def _lowerCAmelCase ( self : Optional[int] ) -> Any: """simple docstring""" self.enable_attention_slicing(lowerCAmelCase__ ) def _lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) _UpperCAmelCase : Dict = torch.device("cuda" ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(lowerCAmelCase__ , lowerCAmelCase__ ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _lowerCAmelCase ( self : Any ) -> int: """simple docstring""" if self.device != torch.device("meta" ) or not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(lowerCAmelCase__ , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self : Optional[int] , lowerCAmelCase__ : Union[str, List[str]] , lowerCAmelCase__ : Union[torch.FloatTensor, PIL.Image.Image] , lowerCAmelCase__ : str , lowerCAmelCase__ : int = 5_1_2 , lowerCAmelCase__ : int = 5_1_2 , lowerCAmelCase__ : int = 5_0 , lowerCAmelCase__ : float = 7.5 , lowerCAmelCase__ : Optional[Union[str, List[str]]] = None , lowerCAmelCase__ : Optional[int] = 1 , lowerCAmelCase__ : float = 0.0 , lowerCAmelCase__ : Optional[torch.Generator] = None , lowerCAmelCase__ : Optional[torch.FloatTensor] = None , lowerCAmelCase__ : Optional[str] = "pil" , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCAmelCase__ : int = 1 , **lowerCAmelCase__ : Any , ) -> Tuple: """simple docstring""" _UpperCAmelCase : List[str] = self.segmentation_processor( text=[text] , images=[image] , padding="max_length" , return_tensors="pt" ).to(self.device ) _UpperCAmelCase : List[Any] = self.segmentation_model(**lowerCAmelCase__ ) _UpperCAmelCase : Any = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() _UpperCAmelCase : str = self.numpy_to_pil(lowerCAmelCase__ )[0].resize(image.size ) # Run inpainting pipeline with the generated mask _UpperCAmelCase : Union[str, Any] = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , mask_image=lowerCAmelCase__ , height=lowerCAmelCase__ , width=lowerCAmelCase__ , num_inference_steps=lowerCAmelCase__ , guidance_scale=lowerCAmelCase__ , negative_prompt=lowerCAmelCase__ , num_images_per_prompt=lowerCAmelCase__ , eta=lowerCAmelCase__ , generator=lowerCAmelCase__ , latents=lowerCAmelCase__ , output_type=lowerCAmelCase__ , return_dict=lowerCAmelCase__ , callback=lowerCAmelCase__ , callback_steps=lowerCAmelCase__ , )
145
1
from __future__ import annotations _lowerCAmelCase : str = { "A": ["B", "C", "E"], "B": ["A", "D", "E"], "C": ["A", "F", "G"], "D": ["B"], "E": ["A", "B", "D"], "F": ["C"], "G": ["C"], } class __magic_name__ : def __init__( self , __snake_case , __snake_case ) -> None: '''simple docstring''' __a =graph # mapping node to its parent in resulting breadth first tree __a ={} __a =source_vertex def __magic_name__ ( self ) -> None: '''simple docstring''' __a ={self.source_vertex} __a =None __a =[self.source_vertex] # first in first out queue while queue: __a =queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(__snake_case ) __a =vertex queue.append(__snake_case ) def __magic_name__ ( self , __snake_case ) -> str: '''simple docstring''' if target_vertex == self.source_vertex: return self.source_vertex __a =self.parent.get(__snake_case ) if target_vertex_parent is None: __a =( f'No path from vertex: {self.source_vertex} to vertex: {target_vertex}' ) raise ValueError(__snake_case ) return self.shortest_path(__snake_case ) + f'->{target_vertex}' if __name__ == "__main__": _lowerCAmelCase : List[Any] = Graph(graph, "G") g.breath_first_search() print(g.shortest_path("D")) print(g.shortest_path("G")) print(g.shortest_path("Foo"))
308
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('TEST_SAGEMAKER' , 'False' ) ) is not True , reason='Skipping test because should only be run when releasing minor transformers version' , ) @pytest.mark.usefixtures('sm_env' ) @parameterized_class( [ { 'framework': 'pytorch', 'script': 'run_glue.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 6_5_0, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'pytorch', 'script': 'run_ddp.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 6_0_0, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'tensorflow', 'script': 'run_tf_dist.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 6_0_0, 'eval_accuracy': 0.6, 'eval_loss': 0.7}, }, ] ) class __magic_name__ ( unittest.TestCase ): def __magic_name__ ( self ) -> int: '''simple docstring''' if self.framework == "pytorch": subprocess.run( f'cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'.split() , encoding='utf-8' , check=__snake_case , ) assert hasattr(self , 'env' ) def __magic_name__ ( self , __snake_case ) -> int: '''simple docstring''' __a =f'{self.env.base_job_name}-{instance_count}-{"ddp" if "ddp" in self.script else "smd"}' # distributed data settings __a ={'smdistributed': {'dataparallel': {'enabled': True}}} if self.script != 'run_ddp.py' else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=__snake_case , instance_count=__snake_case , instance_type=self.instance_type , debugger_hook_config=__snake_case , hyperparameters={**self.env.distributed_hyperparameters, 'model_name_or_path': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=__snake_case , py_version='py36' , ) def __magic_name__ ( self , __snake_case ) -> Optional[Any]: '''simple docstring''' TrainingJobAnalytics(__snake_case ).export_csv(f'{self.env.test_path}/{job_name}_metrics.csv' ) @parameterized.expand([(2,)] ) def __magic_name__ ( self , __snake_case ) -> Optional[int]: '''simple docstring''' # create estimator __a =self.create_estimator(__snake_case ) # run training estimator.fit() # result dataframe __a =TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis __a =list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value'] ) __a =list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value'] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping __a =( Session().describe_training_job(estimator.latest_training_job.name ).get('TrainingTimeInSeconds' , 99_9999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy ) assert all(t <= self.results['eval_loss'] for t in eval_loss ) # dump tests result into json file to share in PR with open(f'{estimator.latest_training_job.name}.json' , 'w' ) as outfile: json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss} , __snake_case )
308
1
import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class lowerCamelCase__ ( _A): '''simple docstring''' def __init__( self :Optional[int] , a :Dict , a :List[Any]=None , a :Union[str, Any]=True , a :str=None , **a :List[Any] ) -> int: __UpperCamelCase : Any = parent __UpperCamelCase : List[str] = config_class __UpperCamelCase : Tuple = has_text_modality __UpperCamelCase : Optional[int] = kwargs __UpperCamelCase : str = common_properties def _lowerCamelCase ( self :List[Any] ) -> str: __UpperCamelCase : List[str] = self.config_class(**self.inputs_dict ) __UpperCamelCase : str = ( ["hidden_size", "num_attention_heads", "num_hidden_layers"] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(["vocab_size"] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(UpperCamelCase__ , UpperCamelCase__ ) , msg=f'`{prop}` does not exist' ) # Test that config has the common properties as setter for idx, name in enumerate(UpperCamelCase__ ): try: setattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) self.parent.assertEqual( getattr(UpperCamelCase__ , UpperCamelCase__ ) , UpperCamelCase__ , msg=f'`{name} value {idx} expected, but was {getattr(UpperCamelCase__ , UpperCamelCase__ )}' ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(UpperCamelCase__ ): try: __UpperCamelCase : Optional[Any] = self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(UpperCamelCase__ , UpperCamelCase__ ) , UpperCamelCase__ , msg=f'`{name} value {idx} expected, but was {getattr(UpperCamelCase__ , UpperCamelCase__ )}' ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def _lowerCamelCase ( self :List[str] ) -> Any: __UpperCamelCase : int = self.config_class(**self.inputs_dict ) __UpperCamelCase : Union[str, Any] = json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] , UpperCamelCase__ ) def _lowerCamelCase ( self :Tuple ) -> Optional[Any]: __UpperCamelCase : Any = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase : Optional[Any] = os.path.join(UpperCamelCase__ , "config.json" ) config_first.to_json_file(UpperCamelCase__ ) __UpperCamelCase : List[Any] = self.config_class.from_json_file(UpperCamelCase__ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def _lowerCamelCase ( self :int ) -> List[str]: __UpperCamelCase : int = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(UpperCamelCase__ ) __UpperCamelCase : Any = self.config_class.from_pretrained(UpperCamelCase__ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def _lowerCamelCase ( self :str ) -> Tuple: __UpperCamelCase : Dict = self.config_class(**self.inputs_dict ) __UpperCamelCase : Optional[Any] = "test" with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase : str = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) config_first.save_pretrained(UpperCamelCase__ ) __UpperCamelCase : Tuple = self.config_class.from_pretrained(UpperCamelCase__ , subfolder=UpperCamelCase__ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def _lowerCamelCase ( self :List[Any] ) -> List[Any]: __UpperCamelCase : List[Any] = self.config_class(**self.inputs_dict , num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) , 5 ) self.parent.assertEqual(len(config.labelaid ) , 5 ) __UpperCamelCase : Dict = 3 self.parent.assertEqual(len(config.idalabel ) , 3 ) self.parent.assertEqual(len(config.labelaid ) , 3 ) def _lowerCamelCase ( self :Union[str, Any] ) -> Optional[Any]: if self.config_class.is_composition: return __UpperCamelCase : List[Any] = self.config_class() self.parent.assertIsNotNone(UpperCamelCase__ ) def _lowerCamelCase ( self :Optional[int] ) -> List[Any]: __UpperCamelCase : List[str] = copy.deepcopy(UpperCamelCase__ ) __UpperCamelCase : List[str] = self.config_class(**UpperCamelCase__ ) __UpperCamelCase : Dict = [] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(("torch_dtype", config.torch_dtype, torch.floataa) ) elif getattr(UpperCamelCase__ , UpperCamelCase__ ) != value: wrong_values.append((key, getattr(UpperCamelCase__ , UpperCamelCase__ ), value) ) if len(UpperCamelCase__ ) > 0: __UpperCamelCase : Any = "\n".join([f'- {v[0]}: got {v[1]} instead of {v[2]}' for v in wrong_values] ) raise ValueError(f'The following keys were not properly set in the config:\n{errors}' ) def _lowerCamelCase ( self :Optional[int] ) -> List[Any]: self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
232
import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency __lowerCAmelCase : Optional[int] = { 'E': 12.70, 'T': 9.06, 'A': 8.17, 'O': 7.51, 'I': 6.97, 'N': 6.75, 'S': 6.33, 'H': 6.09, 'R': 5.99, 'D': 4.25, 'L': 4.03, 'C': 2.78, 'U': 2.76, 'M': 2.41, 'W': 2.36, 'F': 2.23, 'G': 2.02, 'Y': 1.97, 'P': 1.93, 'B': 1.29, 'V': 0.98, 'K': 0.77, 'J': 0.15, 'X': 0.15, 'Q': 0.10, 'Z': 0.07, } __lowerCAmelCase : Optional[Any] = 'ETAOINSHRDLCUMWFGYPBVKJXQZ' __lowerCAmelCase : Optional[Any] = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' def a__ ( A_ ): '''simple docstring''' __magic_name__ = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def a__ ( A_ ): '''simple docstring''' return x[0] def a__ ( A_ ): '''simple docstring''' __magic_name__ = get_letter_count(A_ ) __magic_name__ = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(A_ ) __magic_name__ = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find, reverse=A_ ) __magic_name__ = """""".join(freq_to_letter[freq] ) __magic_name__ = list(freq_to_letter_str.items() ) freq_pairs.sort(key=A_, reverse=A_ ) __magic_name__ = [freq_pair[1] for freq_pair in freq_pairs] return "".join(A_ ) def a__ ( A_ ): '''simple docstring''' __magic_name__ = get_frequency_order(A_ ) __magic_name__ = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
88
0
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch _snake_case = logging.get_logger(__name__) class UpperCamelCase ( snake_case_ ): UpperCamelCase : int = ['''pixel_values'''] def __init__( self : List[Any] , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Optional[Dict[str, int]] = None , UpperCAmelCase__ : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Dict[str, int] = None , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Union[int, float] = 1 / 255 , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Optional[Union[float, List[float]]] = None , UpperCAmelCase__ : Optional[Union[float, List[float]]] = None , **UpperCAmelCase__ : int , ) -> None: super().__init__(**UpperCAmelCase__ ) _a : Any = size if size is not None else {"""shortest_edge""": 256} _a : List[str] = get_size_dict(UpperCAmelCase__ , default_to_square=UpperCAmelCase__ ) _a : List[Any] = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} _a : int = get_size_dict(UpperCAmelCase__ , param_name="""crop_size""" ) _a : Any = do_resize _a : Any = size _a : Union[str, Any] = resample _a : int = do_center_crop _a : Optional[Any] = crop_size _a : Optional[int] = do_rescale _a : List[str] = rescale_factor _a : Any = do_normalize _a : Dict = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _a : List[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowercase ( self : Tuple , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : Dict[str, int] , UpperCAmelCase__ : PILImageResampling = PILImageResampling.BICUBIC , UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase__ : Any , ) -> np.ndarray: _a : Optional[Any] = get_size_dict(UpperCAmelCase__ , default_to_square=UpperCAmelCase__ ) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) _a : Union[str, Any] = get_resize_output_image_size(UpperCAmelCase__ , size=size["""shortest_edge"""] , default_to_square=UpperCAmelCase__ ) return resize(UpperCAmelCase__ , size=UpperCAmelCase__ , resample=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def _lowercase ( self : Dict , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : Dict[str, int] , UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase__ : int , ) -> np.ndarray: _a : List[Any] = get_size_dict(UpperCAmelCase__ ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(UpperCAmelCase__ , size=(size["""height"""], size["""width"""]) , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def _lowercase ( self : Tuple , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : float , UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase__ : Tuple ) -> np.ndarray: return rescale(UpperCAmelCase__ , scale=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def _lowercase ( self : List[Any] , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : Union[float, List[float]] , UpperCAmelCase__ : Union[float, List[float]] , UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase__ : Tuple , ) -> np.ndarray: return normalize(UpperCAmelCase__ , mean=UpperCAmelCase__ , std=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def _lowercase ( self : Optional[Any] , UpperCAmelCase__ : ImageInput , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Dict[str, int] = None , UpperCAmelCase__ : PILImageResampling = None , UpperCAmelCase__ : bool = None , UpperCAmelCase__ : Dict[str, int] = None , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[float] = None , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[Union[float, List[float]]] = None , UpperCAmelCase__ : Optional[Union[float, List[float]]] = None , UpperCAmelCase__ : Optional[Union[str, TensorType]] = None , UpperCAmelCase__ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **UpperCAmelCase__ : Optional[Any] , ) -> int: _a : Tuple = do_resize if do_resize is not None else self.do_resize _a : Any = size if size is not None else self.size _a : int = get_size_dict(UpperCAmelCase__ , default_to_square=UpperCAmelCase__ ) _a : int = resample if resample is not None else self.resample _a : Union[str, Any] = do_center_crop if do_center_crop is not None else self.do_center_crop _a : Union[str, Any] = crop_size if crop_size is not None else self.crop_size _a : Union[str, Any] = get_size_dict(UpperCAmelCase__ , param_name="""crop_size""" ) _a : Any = do_rescale if do_rescale is not None else self.do_rescale _a : Any = rescale_factor if rescale_factor is not None else self.rescale_factor _a : Any = do_normalize if do_normalize is not None else self.do_normalize _a : Any = image_mean if image_mean is not None else self.image_mean _a : Optional[int] = image_std if image_std is not None else self.image_std _a : Dict = make_list_of_images(UpperCAmelCase__ ) if not valid_images(UpperCAmelCase__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. _a : Dict = [to_numpy_array(UpperCAmelCase__ ) for image in images] if do_resize: _a : Dict = [self.resize(image=UpperCAmelCase__ , size=UpperCAmelCase__ , resample=UpperCAmelCase__ ) for image in images] if do_center_crop: _a : Optional[Any] = [self.center_crop(image=UpperCAmelCase__ , size=UpperCAmelCase__ ) for image in images] if do_rescale: _a : Any = [self.rescale(image=UpperCAmelCase__ , scale=UpperCAmelCase__ ) for image in images] if do_normalize: _a : Any = [self.normalize(image=UpperCAmelCase__ , mean=UpperCAmelCase__ , std=UpperCAmelCase__ ) for image in images] _a : int = [to_channel_dimension_format(UpperCAmelCase__ , UpperCAmelCase__ ) for image in images] _a : Tuple = {"""pixel_values""": images} return BatchFeature(data=UpperCAmelCase__ , tensor_type=UpperCAmelCase__ ) def _lowercase ( self : Tuple , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[Tuple] = None ) -> int: _a : List[Any] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ): raise ValueError( """Make sure that you pass in as many target sizes as the batch dimension of the logits""" ) if is_torch_tensor(UpperCAmelCase__ ): _a : Optional[int] = target_sizes.numpy() _a : Optional[Any] = [] for idx in range(len(UpperCAmelCase__ ) ): _a : List[Any] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="""bilinear""" , align_corners=UpperCAmelCase__ ) _a : Dict = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(UpperCAmelCase__ ) else: _a : List[str] = logits.argmax(dim=1 ) _a : Tuple = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
365
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _snake_case = { 'configuration_vision_encoder_decoder': ['VisionEncoderDecoderConfig', 'VisionEncoderDecoderOnnxConfig'] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['VisionEncoderDecoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['TFVisionEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['FlaxVisionEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys _snake_case = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
324
0
"""simple docstring""" from ...processing_utils import ProcessorMixin class lowerCamelCase (SCREAMING_SNAKE_CASE_ ): lowerCamelCase__ : str = """SpeechT5FeatureExtractor""" lowerCamelCase__ : List[str] = """SpeechT5Tokenizer""" def __init__( self : Dict , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : List[str] ) -> Optional[Any]: super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __call__( self : int , *__UpperCAmelCase : List[str] , **__UpperCAmelCase : str ) -> List[Any]: SCREAMING_SNAKE_CASE__ = kwargs.pop("""audio""" , __UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = kwargs.pop("""text""" , __UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = kwargs.pop("""text_target""" , __UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = kwargs.pop("""audio_target""" , __UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = kwargs.pop("""sampling_rate""" , __UpperCAmelCase ) if audio is not None and text is not None: raise ValueError( """Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?""" ) if audio_target is not None and text_target is not None: raise ValueError( """Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?""" ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( """You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.""" ) if audio is not None: SCREAMING_SNAKE_CASE__ = self.feature_extractor(__UpperCAmelCase , *__UpperCAmelCase , sampling_rate=__UpperCAmelCase , **__UpperCAmelCase ) elif text is not None: SCREAMING_SNAKE_CASE__ = self.tokenizer(__UpperCAmelCase , **__UpperCAmelCase ) else: SCREAMING_SNAKE_CASE__ = None if audio_target is not None: SCREAMING_SNAKE_CASE__ = self.feature_extractor(audio_target=__UpperCAmelCase , *__UpperCAmelCase , sampling_rate=__UpperCAmelCase , **__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = targets["""input_values"""] elif text_target is not None: SCREAMING_SNAKE_CASE__ = self.tokenizer(__UpperCAmelCase , **__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = targets["""input_ids"""] else: SCREAMING_SNAKE_CASE__ = None if inputs is None: return targets if targets is not None: SCREAMING_SNAKE_CASE__ = labels SCREAMING_SNAKE_CASE__ = targets.get("""attention_mask""" ) if decoder_attention_mask is not None: SCREAMING_SNAKE_CASE__ = decoder_attention_mask return inputs def SCREAMING_SNAKE_CASE ( self : Tuple , *__UpperCAmelCase : List[Any] , **__UpperCAmelCase : Tuple ) -> int: SCREAMING_SNAKE_CASE__ = kwargs.pop("""input_values""" , __UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = kwargs.pop("""input_ids""" , __UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = kwargs.pop("""labels""" , __UpperCAmelCase ) if input_values is not None and input_ids is not None: raise ValueError("""Cannot process both `input_values` and `input_ids` inputs.""" ) if input_values is None and input_ids is None and labels is None: raise ValueError( """You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.""" ) if input_values is not None: SCREAMING_SNAKE_CASE__ = self.feature_extractor.pad(__UpperCAmelCase , *__UpperCAmelCase , **__UpperCAmelCase ) elif input_ids is not None: SCREAMING_SNAKE_CASE__ = self.tokenizer.pad(__UpperCAmelCase , **__UpperCAmelCase ) else: SCREAMING_SNAKE_CASE__ = None if labels is not None: if "input_ids" in labels or (isinstance(__UpperCAmelCase , __UpperCAmelCase ) and "input_ids" in labels[0]): SCREAMING_SNAKE_CASE__ = self.tokenizer.pad(__UpperCAmelCase , **__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = targets["""input_ids"""] else: SCREAMING_SNAKE_CASE__ = self.feature_extractor.feature_size SCREAMING_SNAKE_CASE__ = self.feature_extractor.num_mel_bins SCREAMING_SNAKE_CASE__ = self.feature_extractor.pad(__UpperCAmelCase , *__UpperCAmelCase , **__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = feature_size_hack SCREAMING_SNAKE_CASE__ = targets["""input_values"""] else: SCREAMING_SNAKE_CASE__ = None if inputs is None: return targets if targets is not None: SCREAMING_SNAKE_CASE__ = labels SCREAMING_SNAKE_CASE__ = targets.get("""attention_mask""" ) if decoder_attention_mask is not None: SCREAMING_SNAKE_CASE__ = decoder_attention_mask return inputs def SCREAMING_SNAKE_CASE ( self : List[Any] , *__UpperCAmelCase : Optional[Any] , **__UpperCAmelCase : List[str] ) -> List[Any]: return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[Any] , *__UpperCAmelCase : Any , **__UpperCAmelCase : Optional[Any] ) -> Dict: return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase )
165
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig a__ = logging.get_logger(__name__) # General docstring a__ = """RegNetConfig""" # Base docstring a__ = """facebook/regnet-y-040""" a__ = [1, 10_88, 7, 7] # Image classification docstring a__ = """facebook/regnet-y-040""" a__ = """tabby, tabby cat""" a__ = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 3 , lowerCAmelCase : int = 1 , lowerCAmelCase : int = 1 , lowerCAmelCase : Optional[str] = "relu" , ) -> List[str]: """simple docstring""" super().__init__() _snake_case : int = nn.Convad( lowerCAmelCase , lowerCAmelCase , kernel_size=lowerCAmelCase , stride=lowerCAmelCase , padding=kernel_size // 2 , groups=lowerCAmelCase , bias=lowerCAmelCase , ) _snake_case : List[Any] = nn.BatchNormad(lowerCAmelCase) _snake_case : Tuple = ACTaFN[activation] if activation is not None else nn.Identity() def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : List[Any]) -> List[str]: """simple docstring""" _snake_case : Tuple = self.convolution(lowerCAmelCase) _snake_case : Any = self.normalization(lowerCAmelCase) _snake_case : List[Any] = self.activation(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase : RegNetConfig) -> List[str]: """simple docstring""" super().__init__() _snake_case : Dict = RegNetConvLayer( config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act) _snake_case : Dict = config.num_channels def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : int) -> List[str]: """simple docstring""" _snake_case : str = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( """Make sure that the channel dimension of the pixel values match with the one set in the configuration.""") _snake_case : Any = self.embedder(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Tuple , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 2) -> Optional[Any]: """simple docstring""" super().__init__() _snake_case : Optional[Any] = nn.Convad(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , stride=lowerCAmelCase , bias=lowerCAmelCase) _snake_case : Tuple = nn.BatchNormad(lowerCAmelCase) def UpperCamelCase_ ( self : int , lowerCAmelCase : Tensor) -> Tensor: """simple docstring""" _snake_case : Optional[Any] = self.convolution(lowerCAmelCase) _snake_case : Optional[int] = self.normalization(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowerCAmelCase : int , lowerCAmelCase : int) -> Any: """simple docstring""" super().__init__() _snake_case : Optional[Any] = nn.AdaptiveAvgPoolad((1, 1)) _snake_case : Optional[Any] = nn.Sequential( nn.Convad(lowerCAmelCase , lowerCAmelCase , kernel_size=1) , nn.ReLU() , nn.Convad(lowerCAmelCase , lowerCAmelCase , kernel_size=1) , nn.Sigmoid() , ) def UpperCamelCase_ ( self : Any , lowerCAmelCase : Tuple) -> Optional[int]: """simple docstring""" _snake_case : Dict = self.pooler(lowerCAmelCase) _snake_case : List[str] = self.attention(lowerCAmelCase) _snake_case : str = hidden_state * attention return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : int , lowerCAmelCase : RegNetConfig , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 1) -> Union[str, Any]: """simple docstring""" super().__init__() _snake_case : Optional[int] = in_channels != out_channels or stride != 1 _snake_case : Optional[Any] = max(1 , out_channels // config.groups_width) _snake_case : Union[str, Any] = ( RegNetShortCut(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase) if should_apply_shortcut else nn.Identity() ) _snake_case : Tuple = nn.Sequential( RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=config.hidden_act) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase , groups=lowerCAmelCase , activation=config.hidden_act) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=lowerCAmelCase) , ) _snake_case : Dict = ACTaFN[config.hidden_act] def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : Optional[int]) -> Union[str, Any]: """simple docstring""" _snake_case : Union[str, Any] = hidden_state _snake_case : int = self.layer(lowerCAmelCase) _snake_case : Dict = self.shortcut(lowerCAmelCase) hidden_state += residual _snake_case : str = self.activation(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase : RegNetConfig , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 1) -> Optional[Any]: """simple docstring""" super().__init__() _snake_case : int = in_channels != out_channels or stride != 1 _snake_case : Dict = max(1 , out_channels // config.groups_width) _snake_case : Tuple = ( RegNetShortCut(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase) if should_apply_shortcut else nn.Identity() ) _snake_case : Dict = nn.Sequential( RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=config.hidden_act) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase , groups=lowerCAmelCase , activation=config.hidden_act) , RegNetSELayer(lowerCAmelCase , reduced_channels=int(round(in_channels / 4))) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=lowerCAmelCase) , ) _snake_case : Optional[Any] = ACTaFN[config.hidden_act] def UpperCamelCase_ ( self : Optional[int] , lowerCAmelCase : List[Any]) -> Tuple: """simple docstring""" _snake_case : Tuple = hidden_state _snake_case : List[Any] = self.layer(lowerCAmelCase) _snake_case : List[str] = self.shortcut(lowerCAmelCase) hidden_state += residual _snake_case : int = self.activation(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowerCAmelCase : RegNetConfig , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 2 , lowerCAmelCase : int = 2 , ) -> int: """simple docstring""" super().__init__() _snake_case : Optional[Any] = RegNetXLayer if config.layer_type == """x""" else RegNetYLayer _snake_case : Optional[int] = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase , ) , *[layer(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) for _ in range(depth - 1)] , ) def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Union[str, Any]) -> str: """simple docstring""" _snake_case : List[str] = self.layers(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase : RegNetConfig) -> List[str]: """simple docstring""" super().__init__() _snake_case : Dict = nn.ModuleList([]) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( lowerCAmelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , )) _snake_case : Union[str, Any] = zip(config.hidden_sizes , config.hidden_sizes[1:]) for (in_channels, out_channels), depth in zip(lowerCAmelCase , config.depths[1:]): self.stages.append(RegNetStage(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , depth=lowerCAmelCase)) def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : Tensor , lowerCAmelCase : bool = False , lowerCAmelCase : bool = True) -> BaseModelOutputWithNoAttention: """simple docstring""" _snake_case : Dict = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _snake_case : Optional[int] = hidden_states + (hidden_state,) _snake_case : Dict = stage_module(lowerCAmelCase) if output_hidden_states: _snake_case : Tuple = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None) return BaseModelOutputWithNoAttention(last_hidden_state=lowerCAmelCase , hidden_states=lowerCAmelCase) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = RegNetConfig snake_case_ : List[Any] = """regnet""" snake_case_ : Any = """pixel_values""" snake_case_ : Optional[Any] = True def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" if isinstance(lowerCAmelCase , nn.Convad): nn.init.kaiming_normal_(module.weight , mode="""fan_out""" , nonlinearity="""relu""") elif isinstance(lowerCAmelCase , (nn.BatchNormad, nn.GroupNorm)): nn.init.constant_(module.weight , 1) nn.init.constant_(module.bias , 0) def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : Tuple , lowerCAmelCase : List[str]=False) -> Optional[int]: """simple docstring""" if isinstance(lowerCAmelCase , lowerCAmelCase): _snake_case : Optional[Any] = value a__ = R""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ a__ = R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( """The bare RegNet model outputting raw features without any specific head on top.""" ,SCREAMING_SNAKE_CASE_ ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : List[Any] , lowerCAmelCase : List[str]) -> Dict: """simple docstring""" super().__init__(lowerCAmelCase) _snake_case : Any = config _snake_case : Any = RegNetEmbeddings(lowerCAmelCase) _snake_case : Dict = RegNetEncoder(lowerCAmelCase) _snake_case : Tuple = nn.AdaptiveAvgPoolad((1, 1)) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : Tensor , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[bool] = None) -> BaseModelOutputWithPoolingAndNoAttention: """simple docstring""" _snake_case : Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case : int = return_dict if return_dict is not None else self.config.use_return_dict _snake_case : str = self.embedder(lowerCAmelCase) _snake_case : Optional[Any] = self.encoder( lowerCAmelCase , output_hidden_states=lowerCAmelCase , return_dict=lowerCAmelCase) _snake_case : Tuple = encoder_outputs[0] _snake_case : Optional[Any] = self.pooler(lowerCAmelCase) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCAmelCase , pooler_output=lowerCAmelCase , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( """ RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ ,SCREAMING_SNAKE_CASE_ ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : int , lowerCAmelCase : int) -> Tuple: """simple docstring""" super().__init__(lowerCAmelCase) _snake_case : Union[str, Any] = config.num_labels _snake_case : List[Any] = RegNetModel(lowerCAmelCase) # classification head _snake_case : Union[str, Any] = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCamelCase_ ( self : int , lowerCAmelCase : Optional[torch.FloatTensor] = None , lowerCAmelCase : Optional[torch.LongTensor] = None , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[bool] = None , ) -> ImageClassifierOutputWithNoAttention: """simple docstring""" _snake_case : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict _snake_case : Tuple = self.regnet(lowerCAmelCase , output_hidden_states=lowerCAmelCase , return_dict=lowerCAmelCase) _snake_case : str = outputs.pooler_output if return_dict else outputs[1] _snake_case : Optional[Any] = self.classifier(lowerCAmelCase) _snake_case : Any = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _snake_case : List[Any] = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _snake_case : Optional[int] = """single_label_classification""" else: _snake_case : Tuple = """multi_label_classification""" if self.config.problem_type == "regression": _snake_case : List[str] = MSELoss() if self.num_labels == 1: _snake_case : Optional[Any] = loss_fct(logits.squeeze() , labels.squeeze()) else: _snake_case : List[str] = loss_fct(lowerCAmelCase , lowerCAmelCase) elif self.config.problem_type == "single_label_classification": _snake_case : Dict = CrossEntropyLoss() _snake_case : int = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1)) elif self.config.problem_type == "multi_label_classification": _snake_case : Optional[int] = BCEWithLogitsLoss() _snake_case : List[str] = loss_fct(lowerCAmelCase , lowerCAmelCase) if not return_dict: _snake_case : Optional[Any] = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowerCAmelCase , logits=lowerCAmelCase , hidden_states=outputs.hidden_states)
317
0
"""simple docstring""" from __future__ import annotations class __lowerCAmelCase : def __init__( self: Optional[int] , _lowerCAmelCase: Optional[int] ): lowercase :Union[str, Any] = data lowercase :int = None lowercase :List[str] = None def UpperCAmelCase__ ( lowerCamelCase ): # In Order traversal of the tree if tree: display(tree.left ) print(tree.data ) display(tree.right ) def UpperCAmelCase__ ( lowerCamelCase ): return 1 + max(depth_of_tree(tree.left ), depth_of_tree(tree.right ) ) if tree else 0 def UpperCAmelCase__ ( lowerCamelCase ): if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def UpperCAmelCase__ ( ): # Main function for testing. lowercase :Optional[Any] = Node(1 ) lowercase :Tuple = Node(2 ) lowercase :str = Node(3 ) lowercase :Any = Node(4 ) lowercase :Any = Node(5 ) lowercase :int = Node(6 ) lowercase :Dict = Node(7 ) lowercase :Tuple = Node(8 ) lowercase :int = Node(9 ) print(is_full_binary_tree(snake_case__ ) ) print(depth_of_tree(snake_case__ ) ) print("Tree is: " ) display(snake_case__ ) if __name__ == "__main__": main()
365
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class __lowerCAmelCase ( lowerCAmelCase): _a = (DDIMParallelScheduler,) _a = (('''eta''', 0.0), ('''num_inference_steps''', 50)) def SCREAMING_SNAKE_CASE ( self: Any , **_lowerCAmelCase: Optional[Any] ): lowercase :List[Any] = { "num_train_timesteps": 10_00, "beta_start": 0.00_01, "beta_end": 0.02, "beta_schedule": "linear", "clip_sample": True, } config.update(**_lowerCAmelCase ) return config def SCREAMING_SNAKE_CASE ( self: str , **_lowerCAmelCase: Any ): lowercase :Optional[int] = self.scheduler_classes[0] lowercase :Dict = self.get_scheduler_config(**_lowerCAmelCase ) lowercase :List[str] = scheduler_class(**_lowerCAmelCase ) lowercase , lowercase :str = 10, 0.0 lowercase :List[Any] = self.dummy_model() lowercase :int = self.dummy_sample_deter scheduler.set_timesteps(_lowerCAmelCase ) for t in scheduler.timesteps: lowercase :Optional[int] = model(_lowerCAmelCase , _lowerCAmelCase ) lowercase :Dict = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).prev_sample return sample def SCREAMING_SNAKE_CASE ( self: Union[str, Any] ): for timesteps in [1_00, 5_00, 10_00]: self.check_over_configs(num_train_timesteps=_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: int ): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=_lowerCAmelCase ) lowercase :Optional[Any] = self.scheduler_classes[0] lowercase :List[str] = self.get_scheduler_config(steps_offset=1 ) lowercase :Optional[int] = scheduler_class(**_lowerCAmelCase ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([8_01, 6_01, 4_01, 2_01, 1] ) ) def SCREAMING_SNAKE_CASE ( self: Tuple ): for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] , [0.0_02, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_lowerCAmelCase , beta_end=_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: Union[str, Any] ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: Union[str, Any] ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: int ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: Union[str, Any] ): for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: Optional[int] ): for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: Dict ): self.check_over_configs(thresholding=_lowerCAmelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=_lowerCAmelCase , prediction_type=_lowerCAmelCase , sample_max_value=_lowerCAmelCase , ) def SCREAMING_SNAKE_CASE ( self: str ): for t in [1, 10, 49]: self.check_over_forward(time_step=_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: int ): for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 5_00] ): self.check_over_forward(time_step=_lowerCAmelCase , num_inference_steps=_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: str ): for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=_lowerCAmelCase , eta=_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: str ): lowercase :Dict = self.scheduler_classes[0] lowercase :Tuple = self.get_scheduler_config() lowercase :Optional[Any] = scheduler_class(**_lowerCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_20 , 4_00 ) - 0.1_47_71 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_80 , 9_60 ) - 0.3_24_60 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 , 4_86 ) - 0.0_09_79 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 , 9_98 ) - 0.02 ) ) < 1e-5 def SCREAMING_SNAKE_CASE ( self: List[str] ): lowercase :Union[str, Any] = self.scheduler_classes[0] lowercase :Union[str, Any] = self.get_scheduler_config() lowercase :Union[str, Any] = scheduler_class(**_lowerCAmelCase ) lowercase , lowercase :Union[str, Any] = 10, 0.0 scheduler.set_timesteps(_lowerCAmelCase ) lowercase :Dict = self.dummy_model() lowercase :Dict = self.dummy_sample_deter lowercase :Union[str, Any] = self.dummy_sample_deter + 0.1 lowercase :int = self.dummy_sample_deter - 0.1 lowercase :Dict = samplea.shape[0] lowercase :Tuple = torch.stack([samplea, samplea, samplea] , dim=0 ) lowercase :Optional[Any] = torch.arange(_lowerCAmelCase )[0:3, None].repeat(1 , _lowerCAmelCase ) lowercase :Union[str, Any] = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) lowercase :Optional[int] = scheduler.batch_step_no_noise(_lowerCAmelCase , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , _lowerCAmelCase ) lowercase :int = torch.sum(torch.abs(_lowerCAmelCase ) ) lowercase :Optional[int] = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 11_47.79_04 ) < 1e-2 assert abs(result_mean.item() - 0.49_82 ) < 1e-3 def SCREAMING_SNAKE_CASE ( self: List[Any] ): lowercase :int = self.full_loop() lowercase :Optional[int] = torch.sum(torch.abs(_lowerCAmelCase ) ) lowercase :Any = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 1_72.00_67 ) < 1e-2 assert abs(result_mean.item() - 0.22_39_67 ) < 1e-3 def SCREAMING_SNAKE_CASE ( self: Any ): lowercase :Dict = self.full_loop(prediction_type="v_prediction" ) lowercase :int = torch.sum(torch.abs(_lowerCAmelCase ) ) lowercase :Union[str, Any] = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 52.53_02 ) < 1e-2 assert abs(result_mean.item() - 0.06_84 ) < 1e-3 def SCREAMING_SNAKE_CASE ( self: Optional[int] ): # We specify different beta, so that the first alpha is 0.99 lowercase :List[Any] = self.full_loop(set_alpha_to_one=_lowerCAmelCase , beta_start=0.01 ) lowercase :List[Any] = torch.sum(torch.abs(_lowerCAmelCase ) ) lowercase :Union[str, Any] = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 1_49.82_95 ) < 1e-2 assert abs(result_mean.item() - 0.19_51 ) < 1e-3 def SCREAMING_SNAKE_CASE ( self: Any ): # We specify different beta, so that the first alpha is 0.99 lowercase :Tuple = self.full_loop(set_alpha_to_one=_lowerCAmelCase , beta_start=0.01 ) lowercase :str = torch.sum(torch.abs(_lowerCAmelCase ) ) lowercase :List[str] = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 1_49.07_84 ) < 1e-2 assert abs(result_mean.item() - 0.19_41 ) < 1e-3
158
0
"""simple docstring""" import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask SCREAMING_SNAKE_CASE_ = logging.getLogger(__name__) class lowerCAmelCase_ ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , snake_case_=-1 ) -> Tuple: __lowerCAmelCase = label_idx def A__ ( self , snake_case_ , snake_case_ ) -> List[InputExample]: if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): __lowerCAmelCase = mode.value __lowerCAmelCase = os.path.join(UpperCAmelCase__ , f"""{mode}.txt""" ) __lowerCAmelCase = 1 __lowerCAmelCase = [] with open(UpperCAmelCase__ , encoding="""utf-8""" ) as f: __lowerCAmelCase = [] __lowerCAmelCase = [] for line in f: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f"""{mode}-{guid_index}""" , words=UpperCAmelCase__ , labels=UpperCAmelCase__ ) ) guid_index += 1 __lowerCAmelCase = [] __lowerCAmelCase = [] else: __lowerCAmelCase = line.split(""" """ ) words.append(splits[0] ) if len(UpperCAmelCase__ ) > 1: labels.append(splits[self.label_idx].replace("""\n""" , """""" ) ) else: # Examples could have no label for mode = "test" labels.append("""O""" ) if words: examples.append(InputExample(guid=f"""{mode}-{guid_index}""" , words=UpperCAmelCase__ , labels=UpperCAmelCase__ ) ) return examples def A__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> Optional[Any]: __lowerCAmelCase = 0 for line in test_input_reader: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": writer.write(UpperCAmelCase__ ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: __lowerCAmelCase = line.split()[0] + """ """ + preds_list[example_id].pop(0 ) + """\n""" writer.write(UpperCAmelCase__ ) else: logger.warning("""Maximum sequence length exceeded: No prediction for \'%s\'.""" , line.split()[0] ) def A__ ( self , snake_case_ ) -> List[str]: if path: with open(UpperCAmelCase__ , """r""" ) as f: __lowerCAmelCase = f.read().splitlines() if "O" not in labels: __lowerCAmelCase = ["""O"""] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class lowerCAmelCase_ ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self ) -> int: super().__init__(label_idx=-2 ) def A__ ( self , snake_case_ ) -> List[str]: if path: with open(UpperCAmelCase__ , """r""" ) as f: __lowerCAmelCase = f.read().splitlines() if "O" not in labels: __lowerCAmelCase = ["""O"""] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class lowerCAmelCase_ ( UpperCAmelCase__ ): '''simple docstring''' def A__ ( self , snake_case_ , snake_case_ ) -> List[InputExample]: if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): __lowerCAmelCase = mode.value __lowerCAmelCase = os.path.join(UpperCAmelCase__ , f"""{mode}.txt""" ) __lowerCAmelCase = 1 __lowerCAmelCase = [] with open(UpperCAmelCase__ , encoding="""utf-8""" ) as f: for sentence in parse_incr(UpperCAmelCase__ ): __lowerCAmelCase = [] __lowerCAmelCase = [] for token in sentence: words.append(token["""form"""] ) labels.append(token["""upos"""] ) assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) if words: examples.append(InputExample(guid=f"""{mode}-{guid_index}""" , words=UpperCAmelCase__ , labels=UpperCAmelCase__ ) ) guid_index += 1 return examples def A__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> Dict: __lowerCAmelCase = 0 for sentence in parse_incr(UpperCAmelCase__ ): __lowerCAmelCase = preds_list[example_id] __lowerCAmelCase = """""" for token in sentence: out += f"""{token["form"]} ({token["upos"]}|{s_p.pop(0 )}) """ out += "\n" writer.write(UpperCAmelCase__ ) example_id += 1 def A__ ( self , snake_case_ ) -> List[str]: if path: with open(UpperCAmelCase__ , """r""" ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
301
from __future__ import annotations def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> tuple[float, list[float]]: """simple docstring""" A__ = list(range(len(lowercase_ ) ) ) A__ = [v / w for v, w in zip(lowercase_ , lowercase_ )] index.sort(key=lambda lowercase_ : ratio[i] , reverse=lowercase_ ) A__ = 0 A__ = [0] * len(lowercase_ ) for i in index: if weight[i] <= capacity: A__ = 1 max_value += value[i] capacity -= weight[i] else: A__ = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
14
0
"""simple docstring""" import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class lowerCamelCase ( lowerCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = (DDIMParallelScheduler,) SCREAMING_SNAKE_CASE = (('eta', 0.0), ('num_inference_steps', 5_0)) def _a (self , **_lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = { """num_train_timesteps""": 1000, """beta_start""": 0.0_001, """beta_end""": 0.02, """beta_schedule""": """linear""", """clip_sample""": True, } config.update(**_lowerCamelCase ) return config def _a (self , **_lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : Any = self.scheduler_classes[0] UpperCAmelCase__ : List[str] = self.get_scheduler_config(**_lowerCamelCase ) UpperCAmelCase__ : Tuple = scheduler_class(**_lowerCamelCase ) UpperCAmelCase__ : str = 10, 0.0 UpperCAmelCase__ : Tuple = self.dummy_model() UpperCAmelCase__ : Optional[Any] = self.dummy_sample_deter scheduler.set_timesteps(_lowerCamelCase ) for t in scheduler.timesteps: UpperCAmelCase__ : Optional[Any] = model(_lowerCamelCase , _lowerCamelCase ) UpperCAmelCase__ : str = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ).prev_sample return sample def _a (self ): """simple docstring""" for timesteps in [100, 500, 1000]: self.check_over_configs(num_train_timesteps=_lowerCamelCase ) def _a (self ): """simple docstring""" for steps_offset in [0, 1]: self.check_over_configs(steps_offset=_lowerCamelCase ) UpperCAmelCase__ : str = self.scheduler_classes[0] UpperCAmelCase__ : Optional[Any] = self.get_scheduler_config(steps_offset=1 ) UpperCAmelCase__ : Tuple = scheduler_class(**_lowerCamelCase ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1] ) ) def _a (self ): """simple docstring""" for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_lowerCamelCase , beta_end=_lowerCamelCase ) def _a (self ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_lowerCamelCase ) def _a (self ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowerCamelCase ) def _a (self ): """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowerCamelCase ) def _a (self ): """simple docstring""" for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=_lowerCamelCase ) def _a (self ): """simple docstring""" for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=_lowerCamelCase ) def _a (self ): """simple docstring""" self.check_over_configs(thresholding=_lowerCamelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=_lowerCamelCase , prediction_type=_lowerCamelCase , sample_max_value=_lowerCamelCase , ) def _a (self ): """simple docstring""" for t in [1, 10, 49]: self.check_over_forward(time_step=_lowerCamelCase ) def _a (self ): """simple docstring""" for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500] ): self.check_over_forward(time_step=_lowerCamelCase , num_inference_steps=_lowerCamelCase ) def _a (self ): """simple docstring""" for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=_lowerCamelCase , eta=_lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : List[str] = self.scheduler_classes[0] UpperCAmelCase__ : Dict = self.get_scheduler_config() UpperCAmelCase__ : Any = scheduler_class(**_lowerCamelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(420 , 400 ) - 0.14_771 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(980 , 960 ) - 0.32_460 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 , 486 ) - 0.00_979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 , 998 ) - 0.02 ) ) < 1e-5 def _a (self ): """simple docstring""" UpperCAmelCase__ : str = self.scheduler_classes[0] UpperCAmelCase__ : str = self.get_scheduler_config() UpperCAmelCase__ : int = scheduler_class(**_lowerCamelCase ) UpperCAmelCase__ : List[str] = 10, 0.0 scheduler.set_timesteps(_lowerCamelCase ) UpperCAmelCase__ : Tuple = self.dummy_model() UpperCAmelCase__ : Optional[Any] = self.dummy_sample_deter UpperCAmelCase__ : str = self.dummy_sample_deter + 0.1 UpperCAmelCase__ : Any = self.dummy_sample_deter - 0.1 UpperCAmelCase__ : Tuple = samplea.shape[0] UpperCAmelCase__ : Dict = torch.stack([samplea, samplea, samplea] , dim=0 ) UpperCAmelCase__ : int = torch.arange(_lowerCamelCase )[0:3, None].repeat(1 , _lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) UpperCAmelCase__ : int = scheduler.batch_step_no_noise(_lowerCamelCase , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , _lowerCamelCase ) UpperCAmelCase__ : List[Any] = torch.sum(torch.abs(_lowerCamelCase ) ) UpperCAmelCase__ : List[str] = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 1147.7904 ) < 1e-2 assert abs(result_mean.item() - 0.4_982 ) < 1e-3 def _a (self ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = self.full_loop() UpperCAmelCase__ : Optional[int] = torch.sum(torch.abs(_lowerCamelCase ) ) UpperCAmelCase__ : int = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 172.0_067 ) < 1e-2 assert abs(result_mean.item() - 0.223_967 ) < 1e-3 def _a (self ): """simple docstring""" UpperCAmelCase__ : Dict = self.full_loop(prediction_type="""v_prediction""" ) UpperCAmelCase__ : Optional[Any] = torch.sum(torch.abs(_lowerCamelCase ) ) UpperCAmelCase__ : List[str] = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 52.5_302 ) < 1e-2 assert abs(result_mean.item() - 0.0_684 ) < 1e-3 def _a (self ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = self.full_loop(set_alpha_to_one=_lowerCamelCase , beta_start=0.01 ) UpperCAmelCase__ : List[str] = torch.sum(torch.abs(_lowerCamelCase ) ) UpperCAmelCase__ : Optional[Any] = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 149.8_295 ) < 1e-2 assert abs(result_mean.item() - 0.1_951 ) < 1e-3 def _a (self ): """simple docstring""" UpperCAmelCase__ : Tuple = self.full_loop(set_alpha_to_one=_lowerCamelCase , beta_start=0.01 ) UpperCAmelCase__ : Optional[int] = torch.sum(torch.abs(_lowerCamelCase ) ) UpperCAmelCase__ : Optional[Any] = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 149.0_784 ) < 1e-2 assert abs(result_mean.item() - 0.1_941 ) < 1e-3
361
"""simple docstring""" import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() _A = logging.get_logger(__name__) def a__ ( lowerCAmelCase ) -> Tuple: UpperCAmelCase__ : Optional[int] = OrderedDict() for key, value in state_dict.items(): if key.startswith("""module.encoder""" ): UpperCAmelCase__ : Dict = key.replace("""module.encoder""" , """glpn.encoder""" ) if key.startswith("""module.decoder""" ): UpperCAmelCase__ : int = key.replace("""module.decoder""" , """decoder.stages""" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 UpperCAmelCase__ : Optional[int] = key[key.find("""patch_embed""" ) + len("""patch_embed""" )] UpperCAmelCase__ : Union[str, Any] = key.replace(F"""patch_embed{idx}""" , F"""patch_embeddings.{int(lowerCAmelCase )-1}""" ) if "norm" in key: UpperCAmelCase__ : Optional[Any] = key.replace("""norm""" , """layer_norm""" ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 UpperCAmelCase__ : int = key[key.find("""glpn.encoder.layer_norm""" ) + len("""glpn.encoder.layer_norm""" )] UpperCAmelCase__ : Union[str, Any] = key.replace(F"""layer_norm{idx}""" , F"""layer_norm.{int(lowerCAmelCase )-1}""" ) if "layer_norm1" in key: UpperCAmelCase__ : Any = key.replace("""layer_norm1""" , """layer_norm_1""" ) if "layer_norm2" in key: UpperCAmelCase__ : Union[str, Any] = key.replace("""layer_norm2""" , """layer_norm_2""" ) if "block" in key: # replace for example block1 by block.0 UpperCAmelCase__ : int = key[key.find("""block""" ) + len("""block""" )] UpperCAmelCase__ : List[Any] = key.replace(F"""block{idx}""" , F"""block.{int(lowerCAmelCase )-1}""" ) if "attn.q" in key: UpperCAmelCase__ : List[Any] = key.replace("""attn.q""" , """attention.self.query""" ) if "attn.proj" in key: UpperCAmelCase__ : Tuple = key.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in key: UpperCAmelCase__ : Union[str, Any] = key.replace("""attn""" , """attention.self""" ) if "fc1" in key: UpperCAmelCase__ : int = key.replace("""fc1""" , """dense1""" ) if "fc2" in key: UpperCAmelCase__ : List[Any] = key.replace("""fc2""" , """dense2""" ) if "linear_pred" in key: UpperCAmelCase__ : Optional[Any] = key.replace("""linear_pred""" , """classifier""" ) if "linear_fuse" in key: UpperCAmelCase__ : Optional[Any] = key.replace("""linear_fuse.conv""" , """linear_fuse""" ) UpperCAmelCase__ : Optional[Any] = key.replace("""linear_fuse.bn""" , """batch_norm""" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 UpperCAmelCase__ : List[Any] = key[key.find("""linear_c""" ) + len("""linear_c""" )] UpperCAmelCase__ : int = key.replace(F"""linear_c{idx}""" , F"""linear_c.{int(lowerCAmelCase )-1}""" ) if "bot_conv" in key: UpperCAmelCase__ : int = key.replace("""bot_conv""" , """0.convolution""" ) if "skip_conv1" in key: UpperCAmelCase__ : List[Any] = key.replace("""skip_conv1""" , """1.convolution""" ) if "skip_conv2" in key: UpperCAmelCase__ : List[Any] = key.replace("""skip_conv2""" , """2.convolution""" ) if "fusion1" in key: UpperCAmelCase__ : Optional[Any] = key.replace("""fusion1""" , """1.fusion""" ) if "fusion2" in key: UpperCAmelCase__ : List[str] = key.replace("""fusion2""" , """2.fusion""" ) if "fusion3" in key: UpperCAmelCase__ : int = key.replace("""fusion3""" , """3.fusion""" ) if "fusion" in key and "conv" in key: UpperCAmelCase__ : Union[str, Any] = key.replace("""conv""" , """convolutional_layer""" ) if key.startswith("""module.last_layer_depth""" ): UpperCAmelCase__ : Optional[int] = key.replace("""module.last_layer_depth""" , """head.head""" ) UpperCAmelCase__ : Optional[Any] = value return new_state_dict def a__ ( lowerCAmelCase , lowerCAmelCase ) -> Dict: # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) UpperCAmelCase__ : Dict = state_dict.pop(F"""glpn.encoder.block.{i}.{j}.attention.self.kv.weight""" ) UpperCAmelCase__ : int = state_dict.pop(F"""glpn.encoder.block.{i}.{j}.attention.self.kv.bias""" ) # next, add keys and values (in that order) to the state dict UpperCAmelCase__ : Optional[int] = kv_weight[ : config.hidden_sizes[i], : ] UpperCAmelCase__ : int = kv_bias[: config.hidden_sizes[i]] UpperCAmelCase__ : int = kv_weight[ config.hidden_sizes[i] :, : ] UpperCAmelCase__ : List[Any] = kv_bias[config.hidden_sizes[i] :] def a__ ( ) -> int: UpperCAmelCase__ : Optional[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCAmelCase__ : int = Image.open(requests.get(lowerCAmelCase , stream=lowerCAmelCase ).raw ) return image @torch.no_grad() def a__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=False , lowerCAmelCase=None ) -> Union[str, Any]: UpperCAmelCase__ : Any = GLPNConfig(hidden_sizes=[64, 1_28, 3_20, 5_12] , decoder_hidden_size=64 , depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) UpperCAmelCase__ : Any = GLPNImageProcessor() # prepare image UpperCAmelCase__ : List[str] = prepare_img() UpperCAmelCase__ : Tuple = image_processor(images=lowerCAmelCase , return_tensors="""pt""" ).pixel_values logger.info("""Converting model...""" ) # load original state dict UpperCAmelCase__ : Tuple = torch.load(lowerCAmelCase , map_location=torch.device("""cpu""" ) ) # rename keys UpperCAmelCase__ : Optional[Any] = rename_keys(lowerCAmelCase ) # key and value matrices need special treatment read_in_k_v(lowerCAmelCase , lowerCAmelCase ) # create HuggingFace model and load state dict UpperCAmelCase__ : Union[str, Any] = GLPNForDepthEstimation(lowerCAmelCase ) model.load_state_dict(lowerCAmelCase ) model.eval() # forward pass UpperCAmelCase__ : Any = model(lowerCAmelCase ) UpperCAmelCase__ : Tuple = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: UpperCAmelCase__ : int = torch.tensor( [[4.4147, 4.0873, 4.0673], [3.7890, 3.2881, 3.1525], [3.7674, 3.5423, 3.4913]] ) elif "kitti" in model_name: UpperCAmelCase__ : Union[str, Any] = torch.tensor( [[3.4291, 2.7865, 2.5151], [3.2841, 2.7021, 2.3502], [3.1147, 2.4625, 2.2481]] ) else: raise ValueError(F"""Unknown model name: {model_name}""" ) UpperCAmelCase__ : Any = torch.Size([1, 4_80, 6_40] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] , lowerCAmelCase , atol=1E-4 ) print("""Looks ok!""" ) # finally, push to hub if required if push_to_hub: logger.info("""Pushing model and image processor to the hub...""" ) model.push_to_hub( repo_path_or_name=Path(lowerCAmelCase , lowerCAmelCase ) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=lowerCAmelCase , ) image_processor.push_to_hub( repo_path_or_name=Path(lowerCAmelCase , lowerCAmelCase ) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=lowerCAmelCase , ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub.""" ) parser.add_argument( """--model_name""", default="""glpn-kitti""", type=str, help="""Name of the model in case you're pushing to the hub.""", ) _A = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
166
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: lowerCamelCase__ = None lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} lowerCamelCase__ = { """vocab_file""": { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/spiece.model""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/spiece.model""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/spiece.model""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/spiece.model""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model""", }, """tokenizer_file""": { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json""", }, } lowerCamelCase__ = { """albert-base-v1""": 512, """albert-large-v1""": 512, """albert-xlarge-v1""": 512, """albert-xxlarge-v1""": 512, """albert-base-v2""": 512, """albert-large-v2""": 512, """albert-xlarge-v2""": 512, """albert-xxlarge-v2""": 512, } lowerCamelCase__ = """▁""" class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __lowerCamelCase : List[Any] =VOCAB_FILES_NAMES __lowerCamelCase : Union[str, Any] =PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : List[str] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : Any =AlbertTokenizer def __init__( self : Tuple , __lowercase : Union[str, Any]=None , __lowercase : Optional[int]=None , __lowercase : int=True , __lowercase : Dict=True , __lowercase : str=False , __lowercase : str="[CLS]" , __lowercase : List[Any]="[SEP]" , __lowercase : Any="<unk>" , __lowercase : List[Any]="[SEP]" , __lowercase : List[Any]="<pad>" , __lowercase : Optional[Any]="[CLS]" , __lowercase : List[str]="[MASK]" , **__lowercase : str , ): '''simple docstring''' # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. __a = ( AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase , normalized=__lowercase ) if isinstance(__lowercase , __lowercase ) else mask_token ) super().__init__( __lowercase , tokenizer_file=__lowercase , do_lower_case=__lowercase , remove_space=__lowercase , keep_accents=__lowercase , bos_token=__lowercase , eos_token=__lowercase , unk_token=__lowercase , sep_token=__lowercase , pad_token=__lowercase , cls_token=__lowercase , mask_token=__lowercase , **__lowercase , ) __a = do_lower_case __a = remove_space __a = keep_accents __a = vocab_file __a = False if not self.vocab_file else True def UpperCamelCase_ ( self : Dict , __lowercase : List[int] , __lowercase : Optional[List[int]] = None ): '''simple docstring''' __a = [self.sep_token_id] __a = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase_ ( self : str , __lowercase : List[int] , __lowercase : Optional[List[int]] = None ): '''simple docstring''' __a = [self.sep_token_id] __a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self : Tuple , __lowercase : str , __lowercase : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(__lowercase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return __a = os.path.join( __lowercase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowercase ): copyfile(self.vocab_file , __lowercase ) return (out_vocab_file,)
302
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: lowerCamelCase__ = None lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} lowerCamelCase__ = { """vocab_file""": { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/spiece.model""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/spiece.model""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/spiece.model""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/spiece.model""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model""", }, """tokenizer_file""": { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json""", }, } lowerCamelCase__ = { """albert-base-v1""": 512, """albert-large-v1""": 512, """albert-xlarge-v1""": 512, """albert-xxlarge-v1""": 512, """albert-base-v2""": 512, """albert-large-v2""": 512, """albert-xlarge-v2""": 512, """albert-xxlarge-v2""": 512, } lowerCamelCase__ = """▁""" class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __lowerCamelCase : List[Any] =VOCAB_FILES_NAMES __lowerCamelCase : Union[str, Any] =PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : List[str] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : Any =AlbertTokenizer def __init__( self : Tuple , __lowercase : Union[str, Any]=None , __lowercase : Optional[int]=None , __lowercase : int=True , __lowercase : Dict=True , __lowercase : str=False , __lowercase : str="[CLS]" , __lowercase : List[Any]="[SEP]" , __lowercase : Any="<unk>" , __lowercase : List[Any]="[SEP]" , __lowercase : List[Any]="<pad>" , __lowercase : Optional[Any]="[CLS]" , __lowercase : List[str]="[MASK]" , **__lowercase : str , ): '''simple docstring''' # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. __a = ( AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase , normalized=__lowercase ) if isinstance(__lowercase , __lowercase ) else mask_token ) super().__init__( __lowercase , tokenizer_file=__lowercase , do_lower_case=__lowercase , remove_space=__lowercase , keep_accents=__lowercase , bos_token=__lowercase , eos_token=__lowercase , unk_token=__lowercase , sep_token=__lowercase , pad_token=__lowercase , cls_token=__lowercase , mask_token=__lowercase , **__lowercase , ) __a = do_lower_case __a = remove_space __a = keep_accents __a = vocab_file __a = False if not self.vocab_file else True def UpperCamelCase_ ( self : Dict , __lowercase : List[int] , __lowercase : Optional[List[int]] = None ): '''simple docstring''' __a = [self.sep_token_id] __a = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase_ ( self : str , __lowercase : List[int] , __lowercase : Optional[List[int]] = None ): '''simple docstring''' __a = [self.sep_token_id] __a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self : Tuple , __lowercase : str , __lowercase : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(__lowercase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return __a = os.path.join( __lowercase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowercase ): copyfile(self.vocab_file , __lowercase ) return (out_vocab_file,)
302
1
from __future__ import annotations import math def __lowercase ( _SCREAMING_SNAKE_CASE ) -> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_SCREAMING_SNAKE_CASE ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __lowercase ( _SCREAMING_SNAKE_CASE ) -> list[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = str(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = [n] for i in range(1 , len(_SCREAMING_SNAKE_CASE ) ): list_nums.append(int(str_num[i:] ) ) list_nums.append(int(str_num[:-i] ) ) return list_nums def __lowercase ( _SCREAMING_SNAKE_CASE ) -> bool: '''simple docstring''' if len(str(_SCREAMING_SNAKE_CASE ) ) > 3: if not is_prime(int(str(_SCREAMING_SNAKE_CASE )[-3:] ) ) or not is_prime(int(str(_SCREAMING_SNAKE_CASE )[:3] ) ): return False return True def __lowercase ( _SCREAMING_SNAKE_CASE = 11 ) -> list[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = 13 while len(_SCREAMING_SNAKE_CASE ) != count: if validate(_SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE = list_truncated_nums(_SCREAMING_SNAKE_CASE ) if all(is_prime(_SCREAMING_SNAKE_CASE ) for i in list_nums ): list_truncated_primes.append(_SCREAMING_SNAKE_CASE ) num += 2 return list_truncated_primes def __lowercase ( ) -> int: '''simple docstring''' return sum(compute_truncated_primes(11 ) ) if __name__ == "__main__": print(F'''{sum(compute_truncated_primes(1_1)) = }''')
193
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE_ = {"""configuration_reformer""": ["""REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ReformerConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = ["""ReformerTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = ["""ReformerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ """REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """ReformerAttention""", """ReformerForMaskedLM""", """ReformerForQuestionAnswering""", """ReformerForSequenceClassification""", """ReformerLayer""", """ReformerModel""", """ReformerModelWithLMHead""", """ReformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
193
1
'''simple docstring''' import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () _SCREAMING_SNAKE_CASE = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). _SCREAMING_SNAKE_CASE = [0, 25, 50] _SCREAMING_SNAKE_CASE = [25, 50, 75] _SCREAMING_SNAKE_CASE = fuzz.membership.trimf(X, abca) _SCREAMING_SNAKE_CASE = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. _SCREAMING_SNAKE_CASE = np.ones(75) _SCREAMING_SNAKE_CASE = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) _SCREAMING_SNAKE_CASE = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) _SCREAMING_SNAKE_CASE = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) _SCREAMING_SNAKE_CASE = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) _SCREAMING_SNAKE_CASE = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] _SCREAMING_SNAKE_CASE = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) _SCREAMING_SNAKE_CASE = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] _SCREAMING_SNAKE_CASE = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] _SCREAMING_SNAKE_CASE = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title("Young") plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title("Middle aged") plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title("union") plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title("intersection") plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title("complement_a") plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title("difference a/b") plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title("alg_sum") plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title("alg_product") plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title("bdd_sum") plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title("bdd_difference") plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
158
'''simple docstring''' def __a(SCREAMING_SNAKE_CASE_ : int = 1000 ): '''simple docstring''' return sum(e for e in range(3 , SCREAMING_SNAKE_CASE_ ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(f'''{solution() = }''')
158
1
"""simple docstring""" import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __A (SCREAMING_SNAKE_CASE__ , unittest.TestCase): '''simple docstring''' __lowercase: List[Any] = RoCBertTokenizer __lowercase: Optional[int] = None __lowercase: Tuple = False __lowercase: int = True __lowercase: Union[str, Any] = filter_non_english def lowerCAmelCase ( self : str ) ->Dict: """simple docstring""" super().setUp() snake_case_ = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', '你', '好', '是', '谁', 'a', 'b', 'c', 'd'] snake_case_ = {} snake_case_ = {} for i, value in enumerate(UpperCAmelCase_ ): snake_case_ = i snake_case_ = i snake_case_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) snake_case_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""word_shape_file"""] ) snake_case_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""word_pronunciation_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) with open(self.word_shape_file , """w""" , encoding="""utf-8""" ) as word_shape_writer: json.dump(UpperCAmelCase_ , UpperCAmelCase_ , ensure_ascii=UpperCAmelCase_ ) with open(self.word_pronunciation_file , """w""" , encoding="""utf-8""" ) as word_pronunciation_writer: json.dump(UpperCAmelCase_ , UpperCAmelCase_ , ensure_ascii=UpperCAmelCase_ ) def lowerCAmelCase ( self : List[str] ) ->Dict: """simple docstring""" snake_case_ = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) snake_case_ = tokenizer.tokenize("""你好[SEP]你是谁""" ) self.assertListEqual(UpperCAmelCase_ , ["""你""", """好""", """[SEP]""", """你""", """是""", """谁"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(UpperCAmelCase_ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(UpperCAmelCase_ ) , [5, 6, 2, 5, 7, 8] ) def lowerCAmelCase ( self : Dict ) ->str: """simple docstring""" snake_case_ = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""" ) , ["""ah""", """\u535A""", """\u63A8""", """zz"""] ) def lowerCAmelCase ( self : List[str] ) ->List[Any]: """simple docstring""" snake_case_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""hello""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def lowerCAmelCase ( self : Any ) ->Optional[Any]: """simple docstring""" snake_case_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase_ , strip_accents=UpperCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hällo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""h\u00E9llo"""] ) def lowerCAmelCase ( self : Any ) ->Union[str, Any]: """simple docstring""" snake_case_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase_ , strip_accents=UpperCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def lowerCAmelCase ( self : List[Any] ) ->Tuple: """simple docstring""" snake_case_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def lowerCAmelCase ( self : Any ) ->Optional[int]: """simple docstring""" snake_case_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def lowerCAmelCase ( self : List[Any] ) ->Dict: """simple docstring""" snake_case_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase_ , strip_accents=UpperCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def lowerCAmelCase ( self : Union[str, Any] ) ->Optional[Any]: """simple docstring""" snake_case_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase_ , strip_accents=UpperCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def lowerCAmelCase ( self : List[Any] ) ->Any: """simple docstring""" snake_case_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase_ , never_split=["""[UNK]"""] ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""" ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""] ) def lowerCAmelCase ( self : Optional[Any] ) ->List[str]: """simple docstring""" snake_case_ = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] snake_case_ = {} for i, token in enumerate(UpperCAmelCase_ ): snake_case_ = i snake_case_ = RoCBertWordpieceTokenizer(vocab=UpperCAmelCase_ , unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) , [] ) self.assertListEqual(tokenizer.tokenize("""unwanted running""" ) , ["""un""", """##want""", """##ed""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.tokenize("""unwantedX running""" ) , ["""[UNK]""", """runn""", """##ing"""] ) def lowerCAmelCase ( self : Tuple ) ->int: """simple docstring""" self.assertTrue(_is_whitespace(""" """ ) ) self.assertTrue(_is_whitespace("""\t""" ) ) self.assertTrue(_is_whitespace("""\r""" ) ) self.assertTrue(_is_whitespace("""\n""" ) ) self.assertTrue(_is_whitespace("""\u00A0""" ) ) self.assertFalse(_is_whitespace("""A""" ) ) self.assertFalse(_is_whitespace("""-""" ) ) def lowerCAmelCase ( self : Optional[Any] ) ->Union[str, Any]: """simple docstring""" self.assertTrue(_is_control("""\u0005""" ) ) self.assertFalse(_is_control("""A""" ) ) self.assertFalse(_is_control(""" """ ) ) self.assertFalse(_is_control("""\t""" ) ) self.assertFalse(_is_control("""\r""" ) ) def lowerCAmelCase ( self : int ) ->int: """simple docstring""" self.assertTrue(_is_punctuation("""-""" ) ) self.assertTrue(_is_punctuation("""$""" ) ) self.assertTrue(_is_punctuation("""`""" ) ) self.assertTrue(_is_punctuation(""".""" ) ) self.assertFalse(_is_punctuation("""A""" ) ) self.assertFalse(_is_punctuation(""" """ ) ) def lowerCAmelCase ( self : List[Any] ) ->List[Any]: """simple docstring""" snake_case_ = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(UpperCAmelCase_ ) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]] ) if self.test_rust_tokenizer: snake_case_ = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(UpperCAmelCase_ ) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]] ) def lowerCAmelCase ( self : List[Any] ) ->int: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): snake_case_ = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_ ) snake_case_ = F"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" snake_case_ = tokenizer_r.encode_plus( UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , return_token_type_ids=UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , ) snake_case_ = tokenizer_r.do_lower_case if hasattr(UpperCAmelCase_ , """do_lower_case""" ) else False snake_case_ = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'Allen'), ((21, 23), '##NL'), ((23, 24), '##P'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'allen'), ((21, 23), '##nl'), ((23, 24), '##p'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["""input_ids"""] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["""offset_mapping"""] ) def lowerCAmelCase ( self : str ) ->List[str]: """simple docstring""" snake_case_ = ['的', '人', '有'] snake_case_ = ''.join(UpperCAmelCase_ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): snake_case_ = True snake_case_ = self.tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_ ) snake_case_ = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_ ) snake_case_ = tokenizer_p.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) snake_case_ = tokenizer_r.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) snake_case_ = tokenizer_r.convert_ids_to_tokens(UpperCAmelCase_ ) snake_case_ = tokenizer_p.convert_ids_to_tokens(UpperCAmelCase_ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ = False snake_case_ = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_ ) snake_case_ = self.tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_ ) snake_case_ = tokenizer_r.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) snake_case_ = tokenizer_p.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) snake_case_ = tokenizer_r.convert_ids_to_tokens(UpperCAmelCase_ ) snake_case_ = tokenizer_p.convert_ids_to_tokens(UpperCAmelCase_ ) # it is expected that only the first Chinese character is not preceded by "##". snake_case_ = [ F"""##{token}""" if idx != 0 else token for idx, token in enumerate(UpperCAmelCase_ ) ] self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) @slow def lowerCAmelCase ( self : List[Any] ) ->Union[str, Any]: """simple docstring""" snake_case_ = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) snake_case_ = tokenizer.encode("""你好""" , add_special_tokens=UpperCAmelCase_ ) snake_case_ = tokenizer.encode("""你是谁""" , add_special_tokens=UpperCAmelCase_ ) snake_case_ = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ ) snake_case_ = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ , UpperCAmelCase_ ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def lowerCAmelCase ( self : Tuple ) ->Dict: """simple docstring""" snake_case_ = self.get_tokenizers(do_lower_case=UpperCAmelCase_ ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): snake_case_ = '你好,你是谁' snake_case_ = tokenizer.tokenize(UpperCAmelCase_ ) snake_case_ = tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) snake_case_ = tokenizer.convert_tokens_to_shape_ids(UpperCAmelCase_ ) snake_case_ = tokenizer.convert_tokens_to_pronunciation_ids(UpperCAmelCase_ ) snake_case_ = tokenizer.prepare_for_model( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) snake_case_ = tokenizer.encode_plus(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_ )
359
"""simple docstring""" from __future__ import annotations from collections.abc import Iterator class __A : '''simple docstring''' def __init__( self : Any , UpperCAmelCase_ : int ) ->None: """simple docstring""" snake_case_ = value snake_case_ = None snake_case_ = None class __A : '''simple docstring''' def __init__( self : List[Any] , UpperCAmelCase_ : Node ) ->None: """simple docstring""" snake_case_ = tree def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : Node | None ) ->int: """simple docstring""" if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self : str ) ->Iterator[int]: """simple docstring""" yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
233
0
'''simple docstring''' def __lowerCamelCase ( A__ ) -> list[int]: """simple docstring""" if num <= 0: raise ValueError('Input must be a positive integer' ) UpperCamelCase = [True] * (num + 1) UpperCamelCase = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , A__ ): UpperCamelCase = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() _lowerCamelCase : Optional[int] = int(input("Enter a positive integer: ").strip()) print(prime_sieve_eratosthenes(user_num))
28
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowerCamelCase : List[Any] = { "configuration_m2m_100": ["M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP", "M2M100Config", "M2M100OnnxConfig"], "tokenization_m2m_100": ["M2M100Tokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : int = [ "M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST", "M2M100ForConditionalGeneration", "M2M100Model", "M2M100PreTrainedModel", ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys _lowerCamelCase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
28
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) a__ = { '''configuration_gpt_bigcode''': ['''GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTBigCodeConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ '''GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTBigCodeForSequenceClassification''', '''GPTBigCodeForTokenClassification''', '''GPTBigCodeForCausalLM''', '''GPTBigCodeModel''', '''GPTBigCodePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys a__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
370
import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ) -> Union[str, Any]: _a : Optional[Any] = tempfile.mkdtemp() # fmt: off _a : Optional[int] = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest'''] # fmt: on _a : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) _a : Any = { '''do_resize''': True, '''size''': {'''height''': 1_8, '''width''': 1_8}, '''do_normalize''': True, '''image_mean''': [0.5, 0.5, 0.5], '''image_std''': [0.5, 0.5, 0.5], } _a : str = os.path.join(self.tmpdirname , _a ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(_a , _a ) def __lowercase ( self , **_a ) -> Any: return BertTokenizer.from_pretrained(self.tmpdirname , **_a ) def __lowercase ( self , **_a ) -> str: return ViTImageProcessor.from_pretrained(self.tmpdirname , **_a ) def __lowercase ( self ) -> List[Any]: shutil.rmtree(self.tmpdirname ) def __lowercase ( self ) -> Any: _a : Union[str, Any] = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] _a : Tuple = [Image.fromarray(np.moveaxis(_a , 0 , -1 ) ) for x in image_inputs] return image_inputs def __lowercase ( self ) -> str: _a : List[str] = self.get_tokenizer() _a : Tuple = self.get_image_processor() _a : Union[str, Any] = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) processor.save_pretrained(self.tmpdirname ) _a : Dict = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , _a ) def __lowercase ( self ) -> Dict: _a : List[str] = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _a : Any = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) _a : List[Any] = self.get_image_processor(do_normalize=_a , padding_value=1.0 ) _a : Dict = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_a , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _a ) def __lowercase ( self ) -> Any: _a : Dict = self.get_image_processor() _a : str = self.get_tokenizer() _a : int = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) _a : List[str] = self.prepare_image_inputs() _a : List[Any] = image_processor(_a , return_tensors='''np''' ) _a : Dict = processor(images=_a , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __lowercase ( self ) -> List[str]: _a : Union[str, Any] = self.get_image_processor() _a : Dict = self.get_tokenizer() _a : Optional[Any] = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) _a : Tuple = '''lower newer''' _a : int = processor(text=_a ) _a : str = tokenizer(_a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __lowercase ( self ) -> List[Any]: _a : Any = self.get_image_processor() _a : str = self.get_tokenizer() _a : Tuple = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) _a : List[Any] = '''lower newer''' _a : Union[str, Any] = self.prepare_image_inputs() _a : Any = processor(text=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with self.assertRaises(_a ): processor() def __lowercase ( self ) -> Optional[int]: _a : Union[str, Any] = self.get_image_processor() _a : List[str] = self.get_tokenizer() _a : Any = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) _a : Any = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _a : int = processor.batch_decode(_a ) _a : int = tokenizer.batch_decode(_a ) self.assertListEqual(_a , _a ) def __lowercase ( self ) -> List[Any]: _a : Tuple = self.get_image_processor() _a : List[str] = self.get_tokenizer() _a : str = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) _a : Optional[int] = '''lower newer''' _a : Dict = self.prepare_image_inputs() _a : Any = processor(text=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
15
0
"""simple docstring""" import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() lowerCamelCase_ : List[Any] = logging.get_logger(__name__) lowerCamelCase_ : Tuple = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn.grep_linear""": """encoder.layers.*.attention.gru_rel_pos_linear""", """self_attn.relative_attention_bias""": """encoder.layers.*.attention.rel_attn_embed""", """self_attn.grep_a""": """encoder.layers.*.attention.gru_rel_pos_const""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """ctc_proj""", """mask_emb""": """masked_spec_embed""", } lowerCamelCase_ : Dict = [ """ctc_proj""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def _A ( lowercase , lowercase , lowercase , lowercase , lowercase ): """simple docstring""" for attribute in key.split('''.''' ): a =getattr(lowercase , lowercase ) if weight_type is not None: a =getattr(lowercase , lowercase ).shape else: a =hf_pointer.shape assert hf_shape == value.shape, ( f'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": a =value elif weight_type == "weight_g": a =value elif weight_type == "weight_v": a =value elif weight_type == "bias": a =value else: a =value logger.info(f'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def _A ( lowercase , lowercase ): """simple docstring""" a =[] a =fairseq_model.state_dict() a =hf_model.feature_extractor for name, value in fairseq_dict.items(): a =False if "conv_layers" in name: load_conv_layer( lowercase , lowercase , lowercase , lowercase , hf_model.config.feat_extract_norm == '''group''' , ) a =True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: a =True if "*" in mapped_key: a =name.split(lowercase )[0].split('''.''' )[-2] a =mapped_key.replace('''*''' , lowercase ) if "weight_g" in name: a ='''weight_g''' elif "weight_v" in name: a ='''weight_v''' elif "bias" in name and "relative_attention_bias" not in name: a ='''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj a ='''weight''' else: a =None set_recursively(lowercase , lowercase , lowercase , lowercase , lowercase ) continue if not is_used: unused_weights.append(lowercase ) logger.warning(f'''Unused weights: {unused_weights}''' ) def _A ( lowercase , lowercase , lowercase , lowercase , lowercase ): """simple docstring""" a =full_name.split('''conv_layers.''' )[-1] a =name.split('''.''' ) a =int(items[0] ) a =int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) a =value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) a =value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) a =value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) a =value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(lowercase ) @torch.no_grad() def _A ( lowercase , lowercase , lowercase=None ): """simple docstring""" # load the pre-trained checkpoints a =torch.load(lowercase ) a =WavLMConfigOrig(checkpoint['''cfg'''] ) a =WavLMOrig(lowercase ) model.load_state_dict(checkpoint['''model'''] ) model.eval() if config_path is not None: a =WavLMConfig.from_pretrained(lowercase ) else: a =WavLMConfig() a =WavLMModel(lowercase ) recursively_load_weights(lowercase , lowercase ) hf_wavlm.save_pretrained(lowercase ) if __name__ == "__main__": lowerCamelCase_ : int = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") lowerCamelCase_ : Tuple = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
81
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase_ : Optional[Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : str = ["""NllbTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Dict = ["""NllbTokenizerFast"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys lowerCamelCase_ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
81
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available SCREAMING_SNAKE_CASE_ = { """configuration_ctrl""": ["""CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CTRLConfig"""], """tokenization_ctrl""": ["""CTRLTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ """CTRL_PRETRAINED_MODEL_ARCHIVE_LIST""", """CTRLForSequenceClassification""", """CTRLLMHeadModel""", """CTRLModel""", """CTRLPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ """TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFCTRLForSequenceClassification""", """TFCTRLLMHeadModel""", """TFCTRLModel""", """TFCTRLPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
193
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[int] ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : Optional[Any]=3 ,lowerCamelCase__ : List[str]=32 ,lowerCamelCase__ : List[Any]=3 ,lowerCamelCase__ : str=10 ,lowerCamelCase__ : Any=[10, 20, 30, 40] ,lowerCamelCase__ : Optional[Any]=[1, 1, 2, 1] ,lowerCamelCase__ : Union[str, Any]=True ,lowerCamelCase__ : int=True ,lowerCamelCase__ : Tuple="relu" ,lowerCamelCase__ : Dict=3 ,lowerCamelCase__ : Optional[int]=None ,) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = embeddings_size SCREAMING_SNAKE_CASE = hidden_sizes SCREAMING_SNAKE_CASE = depths SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = scope SCREAMING_SNAKE_CASE = len(lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values def SCREAMING_SNAKE_CASE__ ( self : str ) -> Optional[int]: '''simple docstring''' return RegNetConfig( num_channels=self.num_channels ,embeddings_size=self.embeddings_size ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,hidden_act=self.hidden_act ,num_labels=self.num_labels ,image_size=self.image_size ,) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ,lowerCamelCase__ : int ,lowerCamelCase__ : Union[str, Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = FlaxRegNetModel(config=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = model(lowerCamelCase__ ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ,lowerCamelCase__ : Optional[int] ,lowerCamelCase__ : Optional[Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = FlaxRegNetForImageClassification(config=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self : str ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = config_and_inputs SCREAMING_SNAKE_CASE = {"""pixel_values""": pixel_values} return config, inputs_dict @require_flax class UpperCamelCase__ ( lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' __snake_case : Union[str, Any] = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () __snake_case : Tuple = False __snake_case : int = False __snake_case : Tuple = False def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE = FlaxRegNetModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self ,config_class=lowerCamelCase__ ,has_text_modality=lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Optional[int]: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE__ ( self : int ) -> List[str]: '''simple docstring''' return def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase__ ) @unittest.skip(reason="""RegNet does not use inputs_embeds""" ) def SCREAMING_SNAKE_CASE__ ( self : str ) -> Any: '''simple docstring''' pass @unittest.skip(reason="""RegNet does not support input and output embeddings""" ) def SCREAMING_SNAKE_CASE__ ( self : str ) -> Any: '''simple docstring''' pass def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> int: '''simple docstring''' def check_hidden_states_output(lowerCamelCase__ : Tuple ,lowerCamelCase__ : Union[str, Any] ,lowerCamelCase__ : Optional[int] ): SCREAMING_SNAKE_CASE = model_class(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(lowerCamelCase__ ,lowerCamelCase__ ) ) SCREAMING_SNAKE_CASE = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states SCREAMING_SNAKE_CASE = self.model_tester.num_stages self.assertEqual(len(lowerCamelCase__ ) ,expected_num_stages + 1 ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = True check_hidden_states_output(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE = True check_hidden_states_output(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): SCREAMING_SNAKE_CASE = self._prepare_for_class(lowerCamelCase__ ,lowerCamelCase__ ) SCREAMING_SNAKE_CASE = model_class(lowerCamelCase__ ) @jax.jit def model_jitted(lowerCamelCase__ : Dict ,**lowerCamelCase__ : Optional[Any] ): return model(pixel_values=lowerCamelCase__ ,**lowerCamelCase__ ) with self.subTest("""JIT Enabled""" ): SCREAMING_SNAKE_CASE = model_jitted(**lowerCamelCase__ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): SCREAMING_SNAKE_CASE = model_jitted(**lowerCamelCase__ ).to_tuple() self.assertEqual(len(lowerCamelCase__ ) ,len(lowerCamelCase__ ) ) for jitted_output, output in zip(lowerCamelCase__ ,lowerCamelCase__ ): self.assertEqual(jitted_output.shape ,output.shape ) def __lowercase ( ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_flax class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE__ ( self : int ) -> str: '''simple docstring''' return AutoImageProcessor.from_pretrained("""facebook/regnet-y-040""" ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = FlaxRegNetForImageClassification.from_pretrained("""facebook/regnet-y-040""" ) SCREAMING_SNAKE_CASE = self.default_image_processor SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=lowerCamelCase__ ,return_tensors="""np""" ) SCREAMING_SNAKE_CASE = model(**lowerCamelCase__ ) # verify the logits SCREAMING_SNAKE_CASE = (1, 1000) self.assertEqual(outputs.logits.shape ,lowerCamelCase__ ) SCREAMING_SNAKE_CASE = jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] ,lowerCamelCase__ ,atol=1e-4 ) )
193
1
'''simple docstring''' import random def snake_case_ ( __SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : str ): """simple docstring""" lowercase_ , lowercase_ , lowercase_ : Optional[int] = [], [], [] for element in data: if element < pivot: less.append(__SCREAMING_SNAKE_CASE ) elif element > pivot: greater.append(__SCREAMING_SNAKE_CASE ) else: equal.append(__SCREAMING_SNAKE_CASE ) return less, equal, greater def snake_case_ ( __SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : int ): """simple docstring""" if index >= len(__SCREAMING_SNAKE_CASE ) or index < 0: return None lowercase_ : Dict = items[random.randint(0 , len(__SCREAMING_SNAKE_CASE ) - 1 )] lowercase_ : Optional[int] = 0 lowercase_ , lowercase_ , lowercase_ : Optional[int] = _partition(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase_ : str = len(__SCREAMING_SNAKE_CASE ) lowercase_ : List[str] = len(__SCREAMING_SNAKE_CASE ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # must be in larger else: return quick_select(__SCREAMING_SNAKE_CASE , index - (m + count) )
93
"""simple docstring""" import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = FunnelTokenizer SCREAMING_SNAKE_CASE = FunnelTokenizerFast SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True def _SCREAMING_SNAKE_CASE ( self: Tuple) -> Optional[int]: """simple docstring""" super().setUp() __lowerCAmelCase : str = [ "<unk>", "<cls>", "<sep>", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] __lowerCAmelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file , "w" , encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) def _SCREAMING_SNAKE_CASE ( self: Optional[Any] , **_SCREAMING_SNAKE_CASE: Union[str, Any]) -> int: """simple docstring""" return FunnelTokenizer.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: Any , **_SCREAMING_SNAKE_CASE: Any) -> str: """simple docstring""" return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: Tuple , _SCREAMING_SNAKE_CASE: str) -> Any: """simple docstring""" __lowerCAmelCase : Union[str, Any] = "UNwant\u00E9d,running" __lowerCAmelCase : str = "unwanted, running" return input_text, output_text def _SCREAMING_SNAKE_CASE ( self: Optional[int]) -> List[str]: """simple docstring""" __lowerCAmelCase : Any = self.tokenizer_class(self.vocab_file) __lowerCAmelCase : Any = tokenizer.tokenize("UNwant\u00E9d,running") self.assertListEqual(_SCREAMING_SNAKE_CASE , ["un", "##want", "##ed", ",", "runn", "##ing"]) self.assertListEqual(tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE) , [7, 4, 5, 10, 8, 9]) def _SCREAMING_SNAKE_CASE ( self: List[str]) -> List[str]: """simple docstring""" __lowerCAmelCase : Optional[Any] = self.get_tokenizers(do_lower_case=_SCREAMING_SNAKE_CASE) for tokenizer in tokenizers: __lowerCAmelCase : List[str] = tokenizer("UNwant\u00E9d,running") __lowerCAmelCase : Optional[int] = len(inputs["input_ids"]) - 1 self.assertListEqual(inputs["token_type_ids"] , [2] + [0] * sentence_len) __lowerCAmelCase : List[str] = tokenizer("UNwant\u00E9d,running" , "UNwant\u00E9d,running") self.assertListEqual(inputs["token_type_ids"] , [2] + [0] * sentence_len + [1] * sentence_len)
269
0
"""simple docstring""" import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('1.0.0a'): raise Exception('requires fairseq >= 1.0.0a') logging.set_verbosity_info() _UpperCamelCase: Optional[int] = logging.get_logger(__name__) _UpperCamelCase: int = 'Hello world! cécé herlolip' def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> List[str]: '''simple docstring''' lowercase : List[Any] = FairseqRobertaModel.from_pretrained(_UpperCAmelCase ) roberta.eval() # disable dropout lowercase : Optional[Any] = roberta.model.encoder.sentence_encoder lowercase : Tuple = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_14 , type_vocab_size=1 , layer_norm_eps=1e-5 , ) if classification_head: lowercase : int = roberta.model.classification_heads['mnli'].out_proj.weight.shape[0] print('Our RoBERTa config:' , _UpperCAmelCase ) lowercase : Tuple = XLMRobertaXLForSequenceClassification(_UpperCAmelCase ) if classification_head else XLMRobertaXLForMaskedLM(_UpperCAmelCase ) model.eval() # Now let's copy all the weights. # Embeddings lowercase : Dict = roberta_sent_encoder.embed_tokens.weight lowercase : List[str] = roberta_sent_encoder.embed_positions.weight lowercase : List[Any] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. lowercase : List[Any] = roberta_sent_encoder.layer_norm.weight lowercase : Dict = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer lowercase : BertLayer = model.roberta.encoder.layer[i] lowercase : TransformerSentenceEncoderLayer = roberta_sent_encoder.layers[i] lowercase : RobertaAttention = layer.attention lowercase : Any = roberta_layer.self_attn_layer_norm.weight lowercase : Union[str, Any] = roberta_layer.self_attn_layer_norm.bias # self attention lowercase : BertSelfAttention = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) lowercase : Dict = roberta_layer.self_attn.q_proj.weight lowercase : Tuple = roberta_layer.self_attn.q_proj.bias lowercase : Any = roberta_layer.self_attn.k_proj.weight lowercase : str = roberta_layer.self_attn.k_proj.bias lowercase : Tuple = roberta_layer.self_attn.v_proj.weight lowercase : int = roberta_layer.self_attn.v_proj.bias # self-attention output lowercase : BertSelfOutput = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape lowercase : Tuple = roberta_layer.self_attn.out_proj.weight lowercase : List[str] = roberta_layer.self_attn.out_proj.bias # this one is final layer norm lowercase : Optional[Any] = roberta_layer.final_layer_norm.weight lowercase : Optional[Any] = roberta_layer.final_layer_norm.bias # intermediate lowercase : BertIntermediate = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape lowercase : Tuple = roberta_layer.fca.weight lowercase : Dict = roberta_layer.fca.bias # output lowercase : BertOutput = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape lowercase : Any = roberta_layer.fca.weight lowercase : str = roberta_layer.fca.bias # end of layer if classification_head: lowercase : int = roberta.model.classification_heads['mnli'].dense.weight lowercase : Optional[int] = roberta.model.classification_heads['mnli'].dense.bias lowercase : Union[str, Any] = roberta.model.classification_heads['mnli'].out_proj.weight lowercase : List[Any] = roberta.model.classification_heads['mnli'].out_proj.bias else: # LM Head lowercase : Optional[Any] = roberta.model.encoder.lm_head.dense.weight lowercase : Optional[int] = roberta.model.encoder.lm_head.dense.bias lowercase : List[str] = roberta.model.encoder.lm_head.layer_norm.weight lowercase : Optional[Any] = roberta.model.encoder.lm_head.layer_norm.bias lowercase : Optional[int] = roberta.model.encoder.lm_head.weight lowercase : str = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. lowercase : torch.Tensor = roberta.encode(_UpperCAmelCase ).unsqueeze(0 ) # batch of size 1 lowercase : Dict = model(_UpperCAmelCase )[0] if classification_head: lowercase : str = roberta.model.classification_heads['mnli'](roberta.extract_features(_UpperCAmelCase ) ) else: lowercase : Optional[int] = roberta.model(_UpperCAmelCase )[0] print(our_output.shape , their_output.shape ) lowercase : Optional[int] = torch.max(torch.abs(our_output - their_output ) ).item() print(f'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 lowercase : str = torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1e-3 ) print('Do both models output the same tensors?' , '🔥' if success else '💩' ) if not success: raise Exception('Something went wRoNg' ) pathlib.Path(_UpperCAmelCase ).mkdir(parents=_UpperCAmelCase , exist_ok=_UpperCAmelCase ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": _UpperCamelCase: Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--roberta_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--classification_head', action='store_true', help='Whether to convert a final classification head.' ) _UpperCamelCase: List[str] = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
53
"""simple docstring""" from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING _UpperCamelCase: Tuple = logging.get_logger(__name__) @add_end_docstrings(SCREAMING_SNAKE_CASE__ ) class a__ ( SCREAMING_SNAKE_CASE__ ): def __init__( self : int, **lowerCAmelCase : str ) -> Any: super().__init__(**lowerCAmelCase ) requires_backends(self, 'vision' ) requires_backends(self, 'torch' ) if self.framework != "pt": raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' ) self.check_model_type(lowerCAmelCase ) def lowercase ( self : Optional[int], **lowerCAmelCase : int ) -> Tuple: lowercase : List[Any] = {} lowercase : List[str] = {} lowercase : Optional[int] = {} # preprocess args if "points_per_batch" in kwargs: lowercase : List[Any] = kwargs['points_per_batch'] if "points_per_crop" in kwargs: lowercase : Tuple = kwargs['points_per_crop'] if "crops_n_layers" in kwargs: lowercase : Any = kwargs['crops_n_layers'] if "crop_overlap_ratio" in kwargs: lowercase : Dict = kwargs['crop_overlap_ratio'] if "crop_n_points_downscale_factor" in kwargs: lowercase : str = kwargs['crop_n_points_downscale_factor'] # postprocess args if "pred_iou_thresh" in kwargs: lowercase : List[str] = kwargs['pred_iou_thresh'] if "stability_score_offset" in kwargs: lowercase : List[str] = kwargs['stability_score_offset'] if "mask_threshold" in kwargs: lowercase : str = kwargs['mask_threshold'] if "stability_score_thresh" in kwargs: lowercase : Optional[int] = kwargs['stability_score_thresh'] if "crops_nms_thresh" in kwargs: lowercase : Dict = kwargs['crops_nms_thresh'] if "output_rle_mask" in kwargs: lowercase : int = kwargs['output_rle_mask'] if "output_bboxes_mask" in kwargs: lowercase : Union[str, Any] = kwargs['output_bboxes_mask'] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self : List[Any], lowerCAmelCase : List[str], *lowerCAmelCase : Optional[Any], lowerCAmelCase : Dict=None, lowerCAmelCase : Union[str, Any]=None, **lowerCAmelCase : int ) -> List[str]: return super().__call__(lowerCAmelCase, *lowerCAmelCase, num_workers=lowerCAmelCase, batch_size=lowerCAmelCase, **lowerCAmelCase ) def lowercase ( self : List[Any], lowerCAmelCase : Union[str, Any], lowerCAmelCase : Tuple=64, lowerCAmelCase : int = 0, lowerCAmelCase : float = 512 / 1500, lowerCAmelCase : Optional[int] = 32, lowerCAmelCase : Optional[int] = 1, ) -> Union[str, Any]: lowercase : List[Any] = load_image(lowerCAmelCase ) lowercase : str = self.image_processor.size['longest_edge'] lowercase , lowercase , lowercase , lowercase : List[Any] = self.image_processor.generate_crop_boxes( lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ) lowercase : Any = self.image_processor(images=lowerCAmelCase, return_tensors='pt' ) with self.device_placement(): if self.framework == "pt": lowercase : Optional[int] = self.get_inference_context() with inference_context(): lowercase : List[str] = self._ensure_tensor_on_device(lowerCAmelCase, device=self.device ) lowercase : int = self.model.get_image_embeddings(model_inputs.pop('pixel_values' ) ) lowercase : List[Any] = image_embeddings lowercase : Dict = grid_points.shape[1] lowercase : Any = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( 'Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. ' 'To return all points at once, set points_per_batch to None' ) for i in range(0, lowerCAmelCase, lowerCAmelCase ): lowercase : Optional[int] = grid_points[:, i : i + points_per_batch, :, :] lowercase : List[str] = input_labels[:, i : i + points_per_batch] lowercase : Optional[Any] = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def lowercase ( self : Any, lowerCAmelCase : List[str], lowerCAmelCase : str=0.88, lowerCAmelCase : Optional[int]=0.95, lowerCAmelCase : str=0, lowerCAmelCase : Optional[int]=1, ) -> Optional[int]: lowercase : Optional[int] = model_inputs.pop('input_boxes' ) lowercase : Any = model_inputs.pop('is_last' ) lowercase : Tuple = model_inputs.pop('original_sizes' ).tolist() lowercase : Union[str, Any] = model_inputs.pop('reshaped_input_sizes' ).tolist() lowercase : str = self.model(**lowerCAmelCase ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks lowercase : str = model_outputs['pred_masks'] lowercase : str = self.image_processor.post_process_masks( lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, binarize=lowerCAmelCase ) lowercase : Dict = model_outputs['iou_scores'] lowercase , lowercase , lowercase : int = self.image_processor.filter_masks( masks[0], iou_scores[0], original_sizes[0], input_boxes[0], lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def lowercase ( self : Optional[Any], lowerCAmelCase : str, lowerCAmelCase : Tuple=False, lowerCAmelCase : Any=False, lowerCAmelCase : Tuple=0.7, ) -> List[str]: lowercase : Any = [] lowercase : Optional[Any] = [] lowercase : Optional[Any] = [] for model_output in model_outputs: all_scores.append(model_output.pop('iou_scores' ) ) all_masks.extend(model_output.pop('masks' ) ) all_boxes.append(model_output.pop('boxes' ) ) lowercase : Optional[Any] = torch.cat(lowerCAmelCase ) lowercase : List[Any] = torch.cat(lowerCAmelCase ) lowercase , lowercase , lowercase , lowercase : str = self.image_processor.post_process_for_mask_generation( lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ) lowercase : str = defaultdict(lowerCAmelCase ) for output in model_outputs: for k, v in output.items(): extra[k].append(lowerCAmelCase ) lowercase : Dict = {} if output_rle_mask: lowercase : Tuple = rle_mask if output_bboxes_mask: lowercase : Tuple = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
53
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _snake_case = { 'configuration_upernet': ['UperNetConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ 'UperNetForSemanticSegmentation', 'UperNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_upernet import UperNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel else: import sys _snake_case = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
294
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging _snake_case = logging.get_logger(__name__) _snake_case = {'vocab_file': 'spiece.model'} _snake_case = { 'vocab_file': { 'TsinghuaAI/CPM-Generate': 'https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model', } } class UpperCamelCase ( snake_case_ ): def __init__( self : Tuple , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : int=False , UpperCAmelCase__ : Dict=True , UpperCAmelCase__ : Union[str, Any]=False , UpperCAmelCase__ : Dict="<s>" , UpperCAmelCase__ : Any="</s>" , UpperCAmelCase__ : Any="<unk>" , UpperCAmelCase__ : int="<sep>" , UpperCAmelCase__ : Tuple="<pad>" , UpperCAmelCase__ : Any="<cls>" , UpperCAmelCase__ : Optional[Any]="<mask>" , UpperCAmelCase__ : int=["<eop>", "<eod>"] , UpperCAmelCase__ : Optional[Dict[str, Any]] = None , **UpperCAmelCase__ : List[str] , ) -> None: _a : Optional[int] = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else mask_token _a : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=UpperCAmelCase__ , remove_space=UpperCAmelCase__ , keep_accents=UpperCAmelCase__ , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , additional_special_tokens=UpperCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase__ , ) _a : Optional[Any] = 3 _a : Tuple = do_lower_case _a : Tuple = remove_space _a : Tuple = keep_accents _a : Tuple = vocab_file _a : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCAmelCase__ ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( """You need to install jieba to use CpmTokenizer or CpmTokenizerFast. """ """See https://pypi.org/project/jieba/ for installation.""" ) _a : int = jieba _a : Tuple = str.maketrans(""" \n""" , """\u2582\u2583""" ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def _lowercase ( self : Optional[Any] ) -> Any: return len(self.sp_model ) def _lowercase ( self : str ) -> Union[str, Any]: _a : int = {self.convert_ids_to_tokens(UpperCAmelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Tuple ) -> List[str]: _a : Tuple = self.__dict__.copy() _a : Tuple = None return state def __setstate__( self : Any , UpperCAmelCase__ : Dict ) -> Dict: _a : Tuple = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _a : Tuple = {} _a : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowercase ( self : List[str] , UpperCAmelCase__ : Union[str, Any] ) -> Dict: if self.remove_space: _a : Optional[int] = """ """.join(inputs.strip().split() ) else: _a : List[Any] = inputs _a : int = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" ) if not self.keep_accents: _a : Optional[Any] = unicodedata.normalize("""NFKD""" , UpperCAmelCase__ ) _a : Dict = """""".join([c for c in outputs if not unicodedata.combining(UpperCAmelCase__ )] ) if self.do_lower_case: _a : Union[str, Any] = outputs.lower() return outputs def _lowercase ( self : List[str] , UpperCAmelCase__ : str ) -> List[str]: _a : str = self.preprocess_text(UpperCAmelCase__ ) _a : Dict = self.sp_model.encode(UpperCAmelCase__ , out_type=UpperCAmelCase__ ) _a : Union[str, Any] = [] for piece in pieces: if len(UpperCAmelCase__ ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): _a : Dict = self.sp_model.EncodeAsPieces(piece[:-1].replace(UpperCAmelCase__ , """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _a : Dict = cur_pieces[1:] else: _a : Any = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(UpperCAmelCase__ ) else: new_pieces.append(UpperCAmelCase__ ) return new_pieces def _lowercase ( self : Union[str, Any] , UpperCAmelCase__ : int ) -> int: return self.sp_model.PieceToId(UpperCAmelCase__ ) def _lowercase ( self : List[Any] , UpperCAmelCase__ : Optional[Any] ) -> Any: return self.sp_model.IdToPiece(UpperCAmelCase__ ) def _lowercase ( self : Any , UpperCAmelCase__ : Any ) -> Dict: _a : Dict = """""".join(UpperCAmelCase__ ).replace(UpperCAmelCase__ , """ """ ).strip() return out_string def _lowercase ( self : Any , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]: _a : Optional[Any] = [self.sep_token_id] _a : Dict = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _lowercase ( self : Tuple , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None , UpperCAmelCase__ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase__ , token_ids_a=UpperCAmelCase__ , already_has_special_tokens=UpperCAmelCase__ ) if token_ids_a is not None: return ([0] * len(UpperCAmelCase__ )) + [1] + ([0] * len(UpperCAmelCase__ )) + [1, 1] return ([0] * len(UpperCAmelCase__ )) + [1, 1] def _lowercase ( self : str , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]: _a : Any = [self.sep_token_id] _a : Optional[Any] = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _lowercase ( self : Optional[int] , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(UpperCAmelCase__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return _a : Union[str, Any] = os.path.join( UpperCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCAmelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase__ , """wb""" ) as fi: _a : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase__ ) return (out_vocab_file,) def _lowercase ( self : Any , *UpperCAmelCase__ : List[str] , **UpperCAmelCase__ : List[str] ) -> List[str]: _a : Tuple = super()._decode(*UpperCAmelCase__ , **UpperCAmelCase__ ) _a : Optional[Any] = text.replace(""" """ , """""" ).replace("""\u2582""" , """ """ ).replace("""\u2583""" , """\n""" ) return text
294
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase = { '''configuration_poolformer''': [ '''POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PoolFormerConfig''', '''PoolFormerOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = ['''PoolFormerFeatureExtractor'''] UpperCAmelCase = ['''PoolFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ '''POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PoolFormerForImageClassification''', '''PoolFormerModel''', '''PoolFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
172
"""simple docstring""" import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def lowerCamelCase (a_ :int) -> int: # picklable for multiprocessing return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def lowerCamelCase () -> Optional[int]: with parallel_backend('''spark'''): assert ParallelBackendConfig.backend_name == "spark" lowercase :Optional[int] = [1, 2, 3] with pytest.raises(a_): with parallel_backend('''unsupported backend'''): map_nested(a_ , a_ , num_proc=2) with pytest.raises(a_): with parallel_backend('''unsupported backend'''): map_nested(a_ , a_ , num_proc=-1) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize('''num_proc''' , [2, -1]) def lowerCamelCase (a_ :Union[str, Any]) -> Optional[Any]: lowercase :Optional[Any] = [1, 2] lowercase :int = {'''a''': 1, '''b''': 2} lowercase :List[Any] = {'''a''': [1, 2], '''b''': [3, 4]} lowercase :Optional[int] = {'''a''': {'''1''': 1}, '''b''': 2} lowercase :List[Any] = {'''a''': 1, '''b''': 2, '''c''': 3, '''d''': 4} lowercase :Optional[int] = [2, 3] lowercase :Tuple = {'''a''': 2, '''b''': 3} lowercase :Union[str, Any] = {'''a''': [2, 3], '''b''': [4, 5]} lowercase :List[str] = {'''a''': {'''1''': 2}, '''b''': 3} lowercase :Union[str, Any] = {'''a''': 2, '''b''': 3, '''c''': 4, '''d''': 5} with parallel_backend('''spark'''): assert map_nested(a_ , a_ , num_proc=a_) == expected_map_nested_sa assert map_nested(a_ , a_ , num_proc=a_) == expected_map_nested_sa assert map_nested(a_ , a_ , num_proc=a_) == expected_map_nested_sa assert map_nested(a_ , a_ , num_proc=a_) == expected_map_nested_sa assert map_nested(a_ , a_ , num_proc=a_) == expected_map_nested_sa
172
1
from math import ceil, sqrt def A ( a_ = 1_000_000 ) -> int: __UpperCamelCase : Optional[int] =0 for outer_width in range(3 ,(limit // 4) + 2 ): if outer_width**2 > limit: __UpperCamelCase : int =max(ceil(sqrt(outer_width**2 - limit ) ) ,1 ) else: __UpperCamelCase : List[Any] =1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f"{solution() = }")
71
from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class __A ( a ): """simple docstring""" UpperCamelCase__ : Optional[int] ="""new-model""" if is_tf_available(): class __A ( a ): """simple docstring""" UpperCamelCase__ : List[str] =NewModelConfig @require_tf class __A ( unittest.TestCase ): """simple docstring""" @slow def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[str] ='bert-base-cased' __UpperCamelCase : Union[str, Any] =AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : List[str] =TFAutoModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) @slow def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Union[str, Any] ='bert-base-cased' __UpperCamelCase : Optional[int] =AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : Tuple =TFAutoModelForPreTraining.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) @slow def __lowercase ( self ): """simple docstring""" for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase : str =AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : str =TFAutoModelForCausalLM.from_pretrained(lowerCamelCase__ ) __UpperCamelCase , __UpperCamelCase : str =TFAutoModelForCausalLM.from_pretrained(lowerCamelCase__ , output_loading_info=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) @slow def __lowercase ( self ): """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase : Optional[int] =AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : Any =TFAutoModelWithLMHead.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) @slow def __lowercase ( self ): """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase : Union[str, Any] =AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : Any =TFAutoModelForMaskedLM.from_pretrained(lowerCamelCase__ ) __UpperCamelCase , __UpperCamelCase : Union[str, Any] =TFAutoModelForMaskedLM.from_pretrained(lowerCamelCase__ , output_loading_info=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) @slow def __lowercase ( self ): """simple docstring""" for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase : Union[str, Any] =AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : List[str] =TFAutoModelForSeqaSeqLM.from_pretrained(lowerCamelCase__ ) __UpperCamelCase , __UpperCamelCase : str =TFAutoModelForSeqaSeqLM.from_pretrained(lowerCamelCase__ , output_loading_info=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) @slow def __lowercase ( self ): """simple docstring""" for model_name in ["bert-base-uncased"]: __UpperCamelCase : Union[str, Any] =AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : List[str] =TFAutoModelForSequenceClassification.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) @slow def __lowercase ( self ): """simple docstring""" for model_name in ["bert-base-uncased"]: __UpperCamelCase : List[Any] =AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : Optional[int] =TFAutoModelForQuestionAnswering.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) @slow @require_tensorflow_probability def __lowercase ( self ): """simple docstring""" for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: __UpperCamelCase : Any =AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : str =TFAutoModelForTableQuestionAnswering.from_pretrained(lowerCamelCase__ ) __UpperCamelCase , __UpperCamelCase : List[str] =TFAutoModelForTableQuestionAnswering.from_pretrained( lowerCamelCase__ , output_loading_info=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : str =TFAutoModelWithLMHead.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=lowerCamelCase__ ) , 14410 ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Optional[Any] =TFAutoModelWithLMHead.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=lowerCamelCase__ ) , 14410 ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Dict =TFAutoModel.from_pretrained('sgugger/funnel-random-tiny' ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : Optional[int] =copy.deepcopy(model.config ) __UpperCamelCase : Optional[Any] =['FunnelBaseModel'] __UpperCamelCase : Tuple =TFAutoModel.from_config(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(lowerCamelCase__ ) __UpperCamelCase : List[Any] =TFAutoModel.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def __lowercase ( self ): """simple docstring""" try: AutoConfig.register('new-model' , lowerCamelCase__ ) __UpperCamelCase : int =[ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(lowerCamelCase__ ): auto_class.register(lowerCamelCase__ , lowerCamelCase__ ) auto_class.register(lowerCamelCase__ , lowerCamelCase__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCamelCase__ ): auto_class.register(lowerCamelCase__ , lowerCamelCase__ ) # Now that the config is registered, it can be used as any other config with the auto-API __UpperCamelCase : List[str] =BertModelTester(self ).get_config() __UpperCamelCase : Optional[Any] =NewModelConfig(**tiny_config.to_dict() ) __UpperCamelCase : Dict =auto_class.from_config(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(lowerCamelCase__ ) __UpperCamelCase : Union[str, Any] =auto_class.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def __lowercase ( self ): """simple docstring""" with self.assertRaisesRegex( lowerCamelCase__ , 'bert-base is not a local folder and is not a valid model identifier' ): __UpperCamelCase : Dict =TFAutoModel.from_pretrained('bert-base' ) def __lowercase ( self ): """simple docstring""" with self.assertRaisesRegex( lowerCamelCase__ , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): __UpperCamelCase : Union[str, Any] =TFAutoModel.from_pretrained(lowerCamelCase__ , revision='aaaaaa' ) def __lowercase ( self ): """simple docstring""" with self.assertRaisesRegex( lowerCamelCase__ , 'hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin' , ): __UpperCamelCase : List[str] =TFAutoModel.from_pretrained('hf-internal-testing/config-no-model' ) def __lowercase ( self ): """simple docstring""" with self.assertRaisesRegex(lowerCamelCase__ , 'Use `from_pt=True` to load this model' ): __UpperCamelCase : List[Any] =TFAutoModel.from_pretrained('hf-internal-testing/tiny-bert-pt-only' ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Optional[int] =TFAutoModel.from_pretrained('hf-internal-testing/tiny-random-bert' ) with RequestCounter() as counter: __UpperCamelCase : Dict =TFAutoModel.from_pretrained('hf-internal-testing/tiny-random-bert' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint __UpperCamelCase : Dict =TFAutoModel.from_pretrained('ArthurZ/tiny-random-bert-sharded' ) with RequestCounter() as counter: __UpperCamelCase : Union[str, Any] =TFAutoModel.from_pretrained('ArthurZ/tiny-random-bert-sharded' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
71
1
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, PNDMScheduler, StableDiffusionLDMaDPipeline, UNetaDConditionModel, ) from diffusers.utils import nightly, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS enable_full_determinism() class __lowerCAmelCase ( unittest.TestCase ): UpperCamelCase__ = StableDiffusionLDMaDPipeline UpperCamelCase__ = TEXT_TO_IMAGE_PARAMS UpperCamelCase__ = TEXT_TO_IMAGE_BATCH_PARAMS UpperCamelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS def lowerCamelCase__ ( self :str ): '''simple docstring''' torch.manual_seed(0 ) a = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) a = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=__magic_name__ , set_alpha_to_one=__magic_name__ , ) torch.manual_seed(0 ) a = AutoencoderKL( block_out_channels=[32, 64] , in_channels=6 , out_channels=6 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) a = CLIPTextModel(__magic_name__ ) a = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) a = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowerCamelCase__ ( self :List[str] , __magic_name__ :int , __magic_name__ :Dict=0 ): '''simple docstring''' if str(__magic_name__ ).startswith("""mps""" ): a = torch.manual_seed(__magic_name__ ) else: a = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ ) a = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def lowerCamelCase__ ( self :int ): '''simple docstring''' a = """cpu""" # ensure determinism for the device-dependent torch.Generator a = self.get_dummy_components() a = StableDiffusionLDMaDPipeline(**__magic_name__ ) a = ldmad_pipe.to(__magic_name__ ) ldmad_pipe.set_progress_bar_config(disable=__magic_name__ ) a = self.get_dummy_inputs(__magic_name__ ) a = ldmad_pipe(**__magic_name__ ) a , a = output.rgb, output.depth a = rgb[0, -3:, -3:, -1] a = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) a = np.array( [0.37338176, 0.70247, 0.74203193, 0.51643604, 0.58256793, 0.60932136, 0.4181095, 0.48355877, 0.46535262] ) a = np.array([103.46727, 85.812004, 87.849236] ) assert np.abs(image_slice_rgb.flatten() - expected_slice_rgb ).max() < 1E-2 assert np.abs(image_slice_depth.flatten() - expected_slice_depth ).max() < 1E-2 def lowerCamelCase__ ( self :Tuple ): '''simple docstring''' a = self.get_dummy_components() a = StableDiffusionLDMaDPipeline(**__magic_name__ ) a = ldmad_pipe.to(__magic_name__ ) ldmad_pipe.set_progress_bar_config(disable=__magic_name__ ) a = self.get_dummy_inputs(__magic_name__ ) a = 3 * [inputs["""prompt"""]] # forward a = ldmad_pipe(**__magic_name__ ) a , a = output.rgb, output.depth a = rgb_slice_a[0, -3:, -3:, -1] a = depth_slice_a[0, -3:, -1] a = self.get_dummy_inputs(__magic_name__ ) a = 3 * [inputs.pop("""prompt""" )] a = ldmad_pipe.tokenizer( __magic_name__ , padding="""max_length""" , max_length=ldmad_pipe.tokenizer.model_max_length , truncation=__magic_name__ , return_tensors="""pt""" , ) a = text_inputs["""input_ids"""].to(__magic_name__ ) a = ldmad_pipe.text_encoder(__magic_name__ )[0] a = prompt_embeds # forward a = ldmad_pipe(**__magic_name__ ) a , a = output.rgb, output.depth a = rgb_slice_a[0, -3:, -3:, -1] a = depth_slice_a[0, -3:, -1] assert np.abs(rgb_slice_a.flatten() - rgb_slice_a.flatten() ).max() < 1E-4 assert np.abs(depth_slice_a.flatten() - depth_slice_a.flatten() ).max() < 1E-4 def lowerCamelCase__ ( self :Optional[int] ): '''simple docstring''' a = """cpu""" # ensure determinism for the device-dependent torch.Generator a = self.get_dummy_components() a = PNDMScheduler(skip_prk_steps=__magic_name__ ) a = StableDiffusionLDMaDPipeline(**__magic_name__ ) a = ldmad_pipe.to(__magic_name__ ) ldmad_pipe.set_progress_bar_config(disable=__magic_name__ ) a = self.get_dummy_inputs(__magic_name__ ) a = """french fries""" a = ldmad_pipe(**__magic_name__ , negative_prompt=__magic_name__ ) a , a = output.rgb, output.depth a = rgb[0, -3:, -3:, -1] a = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) a = np.array( [0.37044, 0.71811503, 0.7223251, 0.48603675, 0.5638391, 0.6364948, 0.42833704, 0.4901315, 0.47926217] ) a = np.array([107.84738, 84.62802, 89.962135] ) assert np.abs(rgb_slice.flatten() - expected_slice_rgb ).max() < 1E-2 assert np.abs(depth_slice.flatten() - expected_slice_depth ).max() < 1E-2 @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase__ ( self :List[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ ( self :Union[str, Any] , __magic_name__ :List[str] , __magic_name__ :List[Any]="cpu" , __magic_name__ :Optional[int]=torch.floataa , __magic_name__ :int=0 ): '''simple docstring''' a = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ ) a = np.random.RandomState(__magic_name__ ).standard_normal((1, 4, 64, 64) ) a = torch.from_numpy(__magic_name__ ).to(device=__magic_name__ , dtype=__magic_name__ ) a = { """prompt""": """a photograph of an astronaut riding a horse""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def lowerCamelCase__ ( self :Tuple ): '''simple docstring''' a = StableDiffusionLDMaDPipeline.from_pretrained("""Intel/ldm3d""" ) a = ldmad_pipe.to(__magic_name__ ) ldmad_pipe.set_progress_bar_config(disable=__magic_name__ ) a = self.get_inputs(__magic_name__ ) a = ldmad_pipe(**__magic_name__ ) a , a = output.rgb, output.depth a = rgb[0, -3:, -3:, -1].flatten() a = rgb[0, -3:, -1].flatten() assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512) a = np.array( [0.53805465, 0.56707305, 0.5486515, 0.57012236, 0.5814511, 0.56253487, 0.54843014, 0.55092263, 0.6459706] ) a = np.array( [0.9263781, 0.6678672, 0.5486515, 0.92202145, 0.67831135, 0.56253487, 0.9241694, 0.7551478, 0.6459706] ) assert np.abs(rgb_slice - expected_slice_rgb ).max() < 3E-3 assert np.abs(depth_slice - expected_slice_depth ).max() < 3E-3 @nightly @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase__ ( self :int ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ ( self :Optional[int] , __magic_name__ :str , __magic_name__ :List[str]="cpu" , __magic_name__ :Optional[int]=torch.floataa , __magic_name__ :List[str]=0 ): '''simple docstring''' a = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ ) a = np.random.RandomState(__magic_name__ ).standard_normal((1, 4, 64, 64) ) a = torch.from_numpy(__magic_name__ ).to(device=__magic_name__ , dtype=__magic_name__ ) a = { """prompt""": """a photograph of an astronaut riding a horse""", """latents""": latents, """generator""": generator, """num_inference_steps""": 50, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def lowerCamelCase__ ( self :Any ): '''simple docstring''' a = StableDiffusionLDMaDPipeline.from_pretrained("""Intel/ldm3d""" ).to(__magic_name__ ) ldmad_pipe.set_progress_bar_config(disable=__magic_name__ ) a = self.get_inputs(__magic_name__ ) a = ldmad_pipe(**__magic_name__ ) a , a = output.rgb, output.depth a = 0.495586 a = 0.33795515 a = 112.48518 a = 98.489746 assert np.abs(expected_rgb_mean - rgb.mean() ) < 1E-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1E-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1E-3 assert np.abs(expected_depth_std - depth.std() ) < 1E-3 def lowerCamelCase__ ( self :Optional[int] ): '''simple docstring''' a = StableDiffusionLDMaDPipeline.from_pretrained("""Intel/ldm3d-4c""" ).to(__magic_name__ ) ldmad_pipe.set_progress_bar_config(disable=__magic_name__ ) a = self.get_inputs(__magic_name__ ) a = ldmad_pipe(**__magic_name__ ) a , a = output.rgb, output.depth a = 0.4194127 a = 0.35375586 a = 0.5638502 a = 0.34686103 assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512, 1) assert np.abs(expected_rgb_mean - rgb.mean() ) < 1E-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1E-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1E-3 assert np.abs(expected_depth_std - depth.std() ) < 1E-3
356
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) __UpperCamelCase : int = { "shi-labs/nat-mini-in1k-224": "https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json", # See all Nat models at https://huggingface.co/models?filter=nat } class __lowerCAmelCase ( __magic_name__ , __magic_name__ ): UpperCamelCase__ = '''nat''' UpperCamelCase__ = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self :Any , __magic_name__ :int=4 , __magic_name__ :Dict=3 , __magic_name__ :List[str]=64 , __magic_name__ :Optional[int]=[3, 4, 6, 5] , __magic_name__ :int=[2, 4, 8, 16] , __magic_name__ :str=7 , __magic_name__ :Tuple=3.0 , __magic_name__ :Dict=True , __magic_name__ :List[Any]=0.0 , __magic_name__ :List[Any]=0.0 , __magic_name__ :List[Any]=0.1 , __magic_name__ :Optional[Any]="gelu" , __magic_name__ :Optional[Any]=0.02 , __magic_name__ :Tuple=1E-5 , __magic_name__ :Union[str, Any]=0.0 , __magic_name__ :int=None , __magic_name__ :Any=None , **__magic_name__ :Dict , ): '''simple docstring''' super().__init__(**__magic_name__ ) a = patch_size a = num_channels a = embed_dim a = depths a = len(__magic_name__ ) a = num_heads a = kernel_size a = mlp_ratio a = qkv_bias a = hidden_dropout_prob a = attention_probs_dropout_prob a = drop_path_rate a = hidden_act a = layer_norm_eps a = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model a = int(embed_dim * 2 ** (len(__magic_name__ ) - 1) ) a = layer_scale_init_value a = ["""stem"""] + [F'stage{idx}' for idx in range(1 , len(__magic_name__ ) + 1 )] a , a = get_aligned_output_features_output_indices( out_features=__magic_name__ , out_indices=__magic_name__ , stage_names=self.stage_names )
347
0
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class lowerCAmelCase ( TensorFormatter[Mapping, """torch.Tensor""", Mapping] ): def __init__( self : str , UpperCAmelCase : str=None , **UpperCAmelCase : int ) -> Optional[Any]: super().__init__(features=UpperCAmelCase ) lowerCamelCase__ : int = torch_tensor_kwargs import torch # noqa import torch at initialization def A_ ( self : Union[str, Any] , UpperCAmelCase : List[Any] ) -> Optional[Any]: import torch if isinstance(UpperCAmelCase , UpperCAmelCase ) and column: if all( isinstance(UpperCAmelCase , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(UpperCAmelCase ) return column def A_ ( self : str , UpperCAmelCase : Dict ) -> List[Any]: import torch if isinstance(UpperCAmelCase , (str, bytes, type(UpperCAmelCase )) ): return value elif isinstance(UpperCAmelCase , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() lowerCamelCase__ : Union[str, Any] = {} if isinstance(UpperCAmelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): lowerCamelCase__ : Optional[Any] = {'dtype': torch.intaa} elif isinstance(UpperCAmelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): lowerCamelCase__ : List[Any] = {'dtype': torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(UpperCAmelCase , PIL.Image.Image ): lowerCamelCase__ : List[str] = np.asarray(UpperCAmelCase ) return torch.tensor(UpperCAmelCase , **{**default_dtype, **self.torch_tensor_kwargs} ) def A_ ( self : str , UpperCAmelCase : Tuple ) -> Optional[Any]: import torch # support for torch, tf, jax etc. if hasattr(UpperCAmelCase , '__array__' ) and not isinstance(UpperCAmelCase , torch.Tensor ): lowerCamelCase__ : Optional[int] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(UpperCAmelCase , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(UpperCAmelCase ) for substruct in data_struct] ) elif isinstance(UpperCAmelCase , (list, tuple) ): return self._consolidate([self.recursive_tensorize(UpperCAmelCase ) for substruct in data_struct] ) return self._tensorize(UpperCAmelCase ) def A_ ( self : List[str] , UpperCAmelCase : dict ) -> List[str]: return map_nested(self._recursive_tensorize , UpperCAmelCase , map_list=UpperCAmelCase ) def A_ ( self : Tuple , UpperCAmelCase : pa.Table ) -> Mapping: lowerCamelCase__ : Tuple = self.numpy_arrow_extractor().extract_row(UpperCAmelCase ) lowerCamelCase__ : List[Any] = self.python_features_decoder.decode_row(UpperCAmelCase ) return self.recursive_tensorize(UpperCAmelCase ) def A_ ( self : List[str] , UpperCAmelCase : pa.Table ) -> "torch.Tensor": lowerCamelCase__ : Optional[int] = self.numpy_arrow_extractor().extract_column(UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = self.python_features_decoder.decode_column(UpperCAmelCase , pa_table.column_names[0] ) lowerCamelCase__ : int = self.recursive_tensorize(UpperCAmelCase ) lowerCamelCase__ : List[Any] = self._consolidate(UpperCAmelCase ) return column def A_ ( self : Optional[int] , UpperCAmelCase : pa.Table ) -> Mapping: lowerCamelCase__ : Optional[int] = self.numpy_arrow_extractor().extract_batch(UpperCAmelCase ) lowerCamelCase__ : List[Any] = self.python_features_decoder.decode_batch(UpperCAmelCase ) lowerCamelCase__ : Any = self.recursive_tensorize(UpperCAmelCase ) for column_name in batch: lowerCamelCase__ : Optional[Any] = self._consolidate(batch[column_name] ) return batch
50
import flax.linen as nn import jax import jax.numpy as jnp class lowerCAmelCase ( nn.Module ): UpperCAmelCase__ = 42 UpperCAmelCase__ = jnp.floataa def A_ ( self : Any ) -> Any: lowerCamelCase__ : str = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : int , UpperCAmelCase : Dict ) -> Optional[Any]: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : str = hidden_states.shape lowerCamelCase__ : Union[str, Any] = jax.image.resize( UpperCAmelCase , shape=(batch, height * 2, width * 2, channels) , method='nearest' , ) lowerCamelCase__ : Optional[Any] = self.conv(UpperCAmelCase ) return hidden_states class lowerCAmelCase ( nn.Module ): UpperCAmelCase__ = 42 UpperCAmelCase__ = jnp.floataa def A_ ( self : List[str] ) -> int: lowerCamelCase__ : Tuple = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : str , UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: # pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim # hidden_states = jnp.pad(hidden_states, pad_width=pad) lowerCamelCase__ : Optional[Any] = self.conv(UpperCAmelCase ) return hidden_states class lowerCAmelCase ( nn.Module ): UpperCAmelCase__ = 42 UpperCAmelCase__ = None UpperCAmelCase__ = 0.0 UpperCAmelCase__ = None UpperCAmelCase__ = jnp.floataa def A_ ( self : List[str] ) -> Union[str, Any]: lowerCamelCase__ : Optional[Any] = self.in_channels if self.out_channels is None else self.out_channels lowerCamelCase__ : Tuple = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) lowerCamelCase__ : int = nn.Conv( UpperCAmelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) lowerCamelCase__ : Union[str, Any] = nn.Dense(UpperCAmelCase , dtype=self.dtype ) lowerCamelCase__ : Union[str, Any] = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) lowerCamelCase__ : List[Any] = nn.Dropout(self.dropout_prob ) lowerCamelCase__ : Tuple = nn.Conv( UpperCAmelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) lowerCamelCase__ : Optional[Any] = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut lowerCamelCase__ : Union[str, Any] = None if use_nin_shortcut: lowerCamelCase__ : Dict = nn.Conv( UpperCAmelCase , kernel_size=(1, 1) , strides=(1, 1) , padding='VALID' , dtype=self.dtype , ) def __call__( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int=True ) -> Optional[int]: lowerCamelCase__ : Union[str, Any] = hidden_states lowerCamelCase__ : List[Any] = self.norma(UpperCAmelCase ) lowerCamelCase__ : List[Any] = nn.swish(UpperCAmelCase ) lowerCamelCase__ : Any = self.conva(UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = self.time_emb_proj(nn.swish(UpperCAmelCase ) ) lowerCamelCase__ : List[str] = jnp.expand_dims(jnp.expand_dims(UpperCAmelCase , 1 ) , 1 ) lowerCamelCase__ : List[str] = hidden_states + temb lowerCamelCase__ : Optional[Any] = self.norma(UpperCAmelCase ) lowerCamelCase__ : List[str] = nn.swish(UpperCAmelCase ) lowerCamelCase__ : Optional[int] = self.dropout(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase__ : str = self.conva(UpperCAmelCase ) if self.conv_shortcut is not None: lowerCamelCase__ : Dict = self.conv_shortcut(UpperCAmelCase ) return hidden_states + residual
50
1
'''simple docstring''' import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm A : List[Any] = re.compile('''[^A-Za-z_0-9]''') # parameters used in DuplicationIndex A : Dict = 10 A : Optional[Any] = 256 def lowerCAmelCase__ ( lowerCamelCase : List[str] ): if len(lowerCamelCase ) < MIN_NUM_TOKENS: return None _A : Dict = MinHash(num_perm=lowerCamelCase ) for token in set(lowerCamelCase ): min_hash.update(token.encode() ) return min_hash def lowerCAmelCase__ ( lowerCamelCase : str ): return {t for t in NON_ALPHA.split(lowerCamelCase ) if len(t.strip() ) > 0} class __lowerCamelCase : """simple docstring""" def __init__( self : List[str] , *, SCREAMING_SNAKE_CASE : float = 0.85 , ): _A : int = duplication_jaccard_threshold _A : int = NUM_PERM _A : Dict = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm) _A : Optional[Any] = defaultdict(SCREAMING_SNAKE_CASE) def A ( self : Any , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : MinHash): _A : str = self._index.query(SCREAMING_SNAKE_CASE) if code_key in self._index.keys: print(F'Duplicate key {code_key}') return self._index.insert(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) if len(SCREAMING_SNAKE_CASE) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(SCREAMING_SNAKE_CASE) break else: self._duplicate_clusters[close_duplicates[0]].add(SCREAMING_SNAKE_CASE) def A ( self : Optional[int]): _A : int = [] for base, duplicates in self._duplicate_clusters.items(): _A : Optional[int] = [base] + list(SCREAMING_SNAKE_CASE) # reformat the cluster to be a list of dict _A : Union[str, Any] = [{'base_index': el[0], 'repo_name': el[1], 'path': el[2]} for el in cluster] duplicate_clusters.append(SCREAMING_SNAKE_CASE) return duplicate_clusters def A ( self : List[str] , SCREAMING_SNAKE_CASE : Union[str, Any]): _A : List[Any] = self.get_duplicate_clusters() with open(SCREAMING_SNAKE_CASE , 'w') as f: json.dump(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) def lowerCAmelCase__ ( lowerCamelCase : int ): _A , _A : List[str] = element _A : Any = get_min_hash([t for t in NON_ALPHA.split(data['content'] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def lowerCAmelCase__ ( lowerCamelCase : Type[Dataset] ): with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash ,ThreadedIterator(lowerCamelCase ,max_queue_size=10000 ) ,chunksize=100 ,): if data is not None: yield data def lowerCAmelCase__ ( lowerCamelCase : Type[Dataset] ,lowerCamelCase : float ): _A : str = DuplicationIndex(duplication_jaccard_threshold=lowerCamelCase ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(lowerCamelCase ) ) ,max_queue_size=100 ) ): di.add(lowerCamelCase ,lowerCamelCase ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def lowerCAmelCase__ ( lowerCamelCase : str ,lowerCamelCase : str ): _A : Union[str, Any] = get_tokens(lowerCamelCase ) _A : Optional[int] = get_tokens(lowerCamelCase ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) A : Optional[Any] = None def lowerCAmelCase__ ( lowerCamelCase : Union[str, Any] ,lowerCamelCase : Union[str, Any] ): _A : Any = [] for elementa in cluster: _A : List[Any] = _shared_dataset[elementa['base_index']]['content'] for elementa in extremes: _A : Optional[Any] = _shared_dataset[elementa['base_index']]['content'] if jaccard_similarity(lowerCamelCase ,lowerCamelCase ) >= jaccard_threshold: elementa["copies"] += 1 break else: _A : Optional[Any] = 1 extremes.append(lowerCamelCase ) return extremes def lowerCAmelCase__ ( lowerCamelCase : Optional[Any] ,lowerCamelCase : List[str] ,lowerCamelCase : Dict ): global _shared_dataset _A : List[Any] = dataset _A : Optional[Any] = [] _A : Tuple = partial(_find_cluster_extremes_shared ,jaccard_threshold=lowerCamelCase ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( lowerCamelCase ,lowerCamelCase ,) ,total=len(lowerCamelCase ) ,): extremes_list.append(lowerCamelCase ) return extremes_list def lowerCAmelCase__ ( lowerCamelCase : Type[Dataset] ,lowerCamelCase : float = 0.85 ): _A : List[str] = make_duplicate_clusters(lowerCamelCase ,lowerCamelCase ) _A : List[str] = {x['base_index'] for cluster in duplicate_clusters for x in cluster} _A : int = {} _A : Tuple = find_extremes(lowerCamelCase ,lowerCamelCase ,lowerCamelCase ) for extremes in extremes_clusters: for element in extremes: _A : str = element _A : str = duplicate_indices - set(extreme_dict.keys() ) _A : Union[str, Any] = dataset.filter(lambda lowerCamelCase ,lowerCamelCase : idx not in remove_indices ,with_indices=lowerCamelCase ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: _A : Optional[int] = element['base_index'] in extreme_dict if element["is_extreme"]: _A : Union[str, Any] = extreme_dict[element['base_index']]['copies'] print(F'Original dataset size: {len(lowerCamelCase )}' ) print(F'Number of duplicate clusters: {len(lowerCamelCase )}' ) print(F'Files in duplicate cluster: {len(lowerCamelCase )}' ) print(F'Unique files in duplicate cluster: {len(lowerCamelCase )}' ) print(F'Filtered dataset size: {len(lowerCamelCase )}' ) return ds_filter, duplicate_clusters
227
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase A : Tuple = logging.get_logger(__name__) A : Tuple = { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json''', '''allenai/longformer-large-4096''': '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json''', '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json''' ), } class __lowerCamelCase ( a_ ): """simple docstring""" a = "longformer" def __init__( self : Any , SCREAMING_SNAKE_CASE : Union[List[int], int] = 512 , SCREAMING_SNAKE_CASE : int = 2 , SCREAMING_SNAKE_CASE : int = 1 , SCREAMING_SNAKE_CASE : int = 0 , SCREAMING_SNAKE_CASE : int = 2 , SCREAMING_SNAKE_CASE : int = 30522 , SCREAMING_SNAKE_CASE : int = 768 , SCREAMING_SNAKE_CASE : int = 12 , SCREAMING_SNAKE_CASE : int = 12 , SCREAMING_SNAKE_CASE : int = 3072 , SCREAMING_SNAKE_CASE : str = "gelu" , SCREAMING_SNAKE_CASE : float = 0.1 , SCREAMING_SNAKE_CASE : float = 0.1 , SCREAMING_SNAKE_CASE : int = 512 , SCREAMING_SNAKE_CASE : int = 2 , SCREAMING_SNAKE_CASE : float = 0.02 , SCREAMING_SNAKE_CASE : float = 1e-12 , SCREAMING_SNAKE_CASE : bool = False , **SCREAMING_SNAKE_CASE : List[Any] , ): super().__init__(pad_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE) _A : List[Any] = attention_window _A : int = sep_token_id _A : Tuple = bos_token_id _A : Any = eos_token_id _A : List[str] = vocab_size _A : Any = hidden_size _A : Optional[int] = num_hidden_layers _A : int = num_attention_heads _A : Dict = hidden_act _A : List[Any] = intermediate_size _A : int = hidden_dropout_prob _A : Optional[int] = attention_probs_dropout_prob _A : int = max_position_embeddings _A : Any = type_vocab_size _A : Dict = initializer_range _A : Any = layer_norm_eps _A : List[Any] = onnx_export class __lowerCamelCase ( a_ ): """simple docstring""" def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE : "PretrainedConfig" , SCREAMING_SNAKE_CASE : str = "default" , SCREAMING_SNAKE_CASE : "List[PatchingSpec]" = None): super().__init__(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) _A : Optional[Any] = True @property def A ( self : List[str]): if self.task == "multiple-choice": _A : Tuple = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _A : List[Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('global_attention_mask', dynamic_axis), ]) @property def A ( self : str): _A : int = super().outputs if self.task == "default": _A : str = {0: 'batch'} return outputs @property def A ( self : List[Any]): return 1e-4 @property def A ( self : Dict): # needs to be >= 14 to support tril operator return max(super().default_onnx_opset , 14) def A ( self : str , SCREAMING_SNAKE_CASE : "PreTrainedTokenizerBase" , SCREAMING_SNAKE_CASE : int = -1 , SCREAMING_SNAKE_CASE : int = -1 , SCREAMING_SNAKE_CASE : bool = False , SCREAMING_SNAKE_CASE : Optional[TensorType] = None , ): _A : Union[str, Any] = super().generate_dummy_inputs( preprocessor=SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE , seq_length=SCREAMING_SNAKE_CASE , is_pair=SCREAMING_SNAKE_CASE , framework=SCREAMING_SNAKE_CASE) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly _A : Tuple = torch.zeros_like(inputs['input_ids']) # make every second token global _A : Dict = 1 return inputs
227
1
'''simple docstring''' import collections import os import re from pathlib import Path __lowerCAmelCase = 'src/transformers' # Matches is_xxx_available() __lowerCAmelCase = re.compile(r'is\_([a-z_]*)_available()') # Catches a one-line _import_struct = {xxx} __lowerCAmelCase = re.compile(r'^_import_structure\s+=\s+\{([^\}]+)\}') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] __lowerCAmelCase = re.compile(r'\s+"\S*":\s+\[([^\]]*)\]') # Catches a line if not is_foo_available __lowerCAmelCase = re.compile(r'^\s*if\s+not\s+is\_[a-z_]*\_available\(\)') # Catches a line _import_struct["bla"].append("foo") __lowerCAmelCase = re.compile(r'^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] __lowerCAmelCase = re.compile(r'^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]') # Catches a line with an object between quotes and a comma: "MyModel", __lowerCAmelCase = re.compile(r'^\s+"([^"]+)",') # Catches a line with objects between brackets only: ["foo", "bar"], __lowerCAmelCase = re.compile(r'^\s+\[([^\]]+)\]') # Catches a line with from foo import bar, bla, boo __lowerCAmelCase = re.compile(r'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') # Catches a line with try: __lowerCAmelCase = re.compile(r'^\s*try:') # Catches a line with else: __lowerCAmelCase = re.compile(r'^\s*else:') def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): if _re_test_backend.search(_SCREAMING_SNAKE_CASE ) is None: return None _snake_case = [b[0] for b in _re_backend.findall(_SCREAMING_SNAKE_CASE )] backends.sort() return "_and_".join(_SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): with open(_SCREAMING_SNAKE_CASE , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: _snake_case = f.readlines() _snake_case = 0 while line_index < len(_SCREAMING_SNAKE_CASE ) and not lines[line_index].startswith("""_import_structure = {""" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(_SCREAMING_SNAKE_CASE ): return None # First grab the objects without a specific backend in _import_structure _snake_case = [] while not lines[line_index].startswith("""if TYPE_CHECKING""" ) and find_backend(lines[line_index] ) is None: _snake_case = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(_SCREAMING_SNAKE_CASE ): _snake_case = _re_one_line_import_struct.search(_SCREAMING_SNAKE_CASE ).groups()[0] _snake_case = re.findall(R"""\[([^\]]+)\]""" , _SCREAMING_SNAKE_CASE ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(""", """ )] ) line_index += 1 continue _snake_case = _re_import_struct_key_value.search(_SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: _snake_case = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(""", """ ) if len(_SCREAMING_SNAKE_CASE ) > 0] objects.extend(_SCREAMING_SNAKE_CASE ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) line_index += 1 _snake_case = {"""none""": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("""if TYPE_CHECKING""" ): # If the line is an if not is_backend_available, we grab all objects associated. _snake_case = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: _snake_case = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 _snake_case = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 4 ): _snake_case = lines[line_index] if _re_import_struct_add_one.search(_SCREAMING_SNAKE_CASE ) is not None: objects.append(_re_import_struct_add_one.search(_SCREAMING_SNAKE_CASE ).groups()[0] ) elif _re_import_struct_add_many.search(_SCREAMING_SNAKE_CASE ) is not None: _snake_case = _re_import_struct_add_many.search(_SCREAMING_SNAKE_CASE ).groups()[0].split(""", """ ) _snake_case = [obj[1:-1] for obj in imports if len(_SCREAMING_SNAKE_CASE ) > 0] objects.extend(_SCREAMING_SNAKE_CASE ) elif _re_between_brackets.search(_SCREAMING_SNAKE_CASE ) is not None: _snake_case = _re_between_brackets.search(_SCREAMING_SNAKE_CASE ).groups()[0].split(""", """ ) _snake_case = [obj[1:-1] for obj in imports if len(_SCREAMING_SNAKE_CASE ) > 0] objects.extend(_SCREAMING_SNAKE_CASE ) elif _re_quote_object.search(_SCREAMING_SNAKE_CASE ) is not None: objects.append(_re_quote_object.search(_SCREAMING_SNAKE_CASE ).groups()[0] ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) elif line.startswith(""" """ * 12 + """\"""" ): objects.append(line[13:-3] ) line_index += 1 _snake_case = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend _snake_case = [] while ( line_index < len(_SCREAMING_SNAKE_CASE ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("""else""" ) ): _snake_case = lines[line_index] _snake_case = _re_import.search(_SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 _snake_case = {"""none""": objects} # Let's continue with backend-specific objects while line_index < len(_SCREAMING_SNAKE_CASE ): # If the line is an if is_backend_available, we grab all objects associated. _snake_case = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: _snake_case = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 _snake_case = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 8 ): _snake_case = lines[line_index] _snake_case = _re_import.search(_SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 12 ): objects.append(line[12:-2] ) line_index += 1 _snake_case = objects else: line_index += 1 return import_dict_objects, type_hint_objects def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): def find_duplicates(_SCREAMING_SNAKE_CASE ): return [k for k, v in collections.Counter(_SCREAMING_SNAKE_CASE ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] _snake_case = [] for key in import_dict_objects.keys(): _snake_case = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(f"""Duplicate _import_structure definitions for: {duplicate_imports}""" ) _snake_case = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(f"""Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}""" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): _snake_case = """base imports""" if key == """none""" else f"""{key} backend""" errors.append(f"""Differences for {name}:""" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f""" {a} in TYPE_HINT but not in _import_structure.""" ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f""" {a} in _import_structure but not in TYPE_HINT.""" ) return errors def __SCREAMING_SNAKE_CASE ( ): _snake_case = [] for root, _, files in os.walk(_SCREAMING_SNAKE_CASE ): if "__init__.py" in files: _snake_case = os.path.join(_SCREAMING_SNAKE_CASE , """__init__.py""" ) _snake_case = parse_init(_SCREAMING_SNAKE_CASE ) if objects is not None: _snake_case = analyze_results(*_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: _snake_case = f"""Problem in {fname}, both halves do not define the same objects.\n{errors[0]}""" failures.append("""\n""".join(_SCREAMING_SNAKE_CASE ) ) if len(_SCREAMING_SNAKE_CASE ) > 0: raise ValueError("""\n\n""".join(_SCREAMING_SNAKE_CASE ) ) def __SCREAMING_SNAKE_CASE ( ): _snake_case = [] for path, directories, files in os.walk(_SCREAMING_SNAKE_CASE ): for folder in directories: # Ignore private modules if folder.startswith("""_""" ): directories.remove(_SCREAMING_SNAKE_CASE ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(_SCREAMING_SNAKE_CASE ) / folder).glob("""*.py""" ) ) ) == 0: continue _snake_case = str((Path(_SCREAMING_SNAKE_CASE ) / folder).relative_to(_SCREAMING_SNAKE_CASE ) ) _snake_case = short_path.replace(os.path.sep , """.""" ) submodules.append(_SCREAMING_SNAKE_CASE ) for fname in files: if fname == "__init__.py": continue _snake_case = str((Path(_SCREAMING_SNAKE_CASE ) / fname).relative_to(_SCREAMING_SNAKE_CASE ) ) _snake_case = short_path.replace(""".py""" , """""" ).replace(os.path.sep , """.""" ) if len(submodule.split(""".""" ) ) == 1: submodules.append(_SCREAMING_SNAKE_CASE ) return submodules __lowerCAmelCase = [ 'convert_pytorch_checkpoint_to_tf2', 'modeling_flax_pytorch_utils', 'models.esm.openfold_utils', ] def __SCREAMING_SNAKE_CASE ( ): # This is to make sure the transformers module imported is the one in the repo. from transformers.utils import direct_transformers_import _snake_case = direct_transformers_import(_SCREAMING_SNAKE_CASE ) _snake_case = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(_SCREAMING_SNAKE_CASE , """__init__.py""" ) , """r""" ) as f: _snake_case = f.read() import_structure_keys.update(set(re.findall(R"""import_structure\[\"([^\"]*)\"\]""" , _SCREAMING_SNAKE_CASE ) ) ) _snake_case = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(_SCREAMING_SNAKE_CASE ) > 0: _snake_case = """\n""".join(f"""- {module}""" for module in module_not_registered ) raise ValueError( """The following submodules are not properly registed in the main init of Transformers:\n""" f"""{list_of_modules}\n""" """Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.""" ) if __name__ == "__main__": check_all_inits() check_submodules()
341
'''simple docstring''' import argparse from collections import defaultdict def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = f"""{file}_{class_name}_{test_name}""" done_test[_id] += 1 with open(_SCREAMING_SNAKE_CASE , """r""" ) as f: _snake_case = f.readlines() _snake_case = f"""class {class_name}(""" _snake_case = f"""{4 * " "}def {test_name}(""" _snake_case = f"""{8 * " "}{correct_line.split()[0]}""" _snake_case = f"""{16 * " "}{correct_line.split()[0]}""" _snake_case = False _snake_case = False _snake_case = False _snake_case = False _snake_case = 0 _snake_case = 0 _snake_case = [] for line in lines: if line.startswith(_SCREAMING_SNAKE_CASE ): _snake_case = True elif in_class and line.startswith(_SCREAMING_SNAKE_CASE ): _snake_case = True elif in_class and in_func and (line.startswith(_SCREAMING_SNAKE_CASE ) or line.startswith(_SCREAMING_SNAKE_CASE )): _snake_case = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: _snake_case = True if in_class and in_func and in_line: if ")" not in line: continue else: _snake_case = True if in_class and in_func and in_line and insert_line: new_lines.append(f"""{spaces * " "}{correct_line}""" ) _snake_case = _snake_case = _snake_case = _snake_case = False else: new_lines.append(_SCREAMING_SNAKE_CASE ) with open(_SCREAMING_SNAKE_CASE , """w""" ) as f: for line in new_lines: f.write(_SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ): if fail is not None: with open(_SCREAMING_SNAKE_CASE , """r""" ) as f: _snake_case = {l.strip() for l in f.readlines()} else: _snake_case = None with open(_SCREAMING_SNAKE_CASE , """r""" ) as f: _snake_case = f.readlines() _snake_case = defaultdict(_SCREAMING_SNAKE_CASE ) for line in correct_lines: _snake_case, _snake_case, _snake_case, _snake_case = line.split(""";""" ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('--correct_filename', help='filename of tests with expected result') parser.add_argument('--fail_filename', help='filename of test failures', type=str, default=None) __lowerCAmelCase = parser.parse_args() main(args.correct_filename, args.fail_filename)
341
1
'''simple docstring''' import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def UpperCamelCase ( a ) -> float: '''simple docstring''' return np.dot(a , a ) class _SCREAMING_SNAKE_CASE : def __init__( self : List[str] , *, a__ : float = np.inf , a__ : str = "linear" , a__ : float = 0.0 , ): __magic_name__ = regularization __magic_name__ = gamma if kernel == "linear": __magic_name__ = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError('''rbf kernel requires gamma''' ) if not isinstance(self.gamma , (float, int) ): raise ValueError('''gamma must be float or int''' ) if not self.gamma > 0: raise ValueError('''gamma must be > 0''' ) __magic_name__ = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: __magic_name__ = F'''Unknown kernel: {kernel}''' raise ValueError(a__ ) def snake_case__ ( self : List[Any] , a__ : ndarray , a__ : ndarray ): return np.dot(a__ , a__ ) def snake_case__ ( self : int , a__ : ndarray , a__ : ndarray ): return np.exp(-(self.gamma * norm_squared(vectora - vectora )) ) def snake_case__ ( self : Union[str, Any] , a__ : list[ndarray] , a__ : ndarray ): __magic_name__ = observations __magic_name__ = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((__magic_name__ ) , ) = np.shape(a__ ) def to_minimize(a__ : ndarray ) -> float: __magic_name__ = 0 ((__magic_name__ ) , ) = np.shape(a__ ) for i in range(a__ ): for j in range(a__ ): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j] ) ) return 1 / 2 * s - sum(a__ ) __magic_name__ = LinearConstraint(a__ , 0 , 0 ) __magic_name__ = Bounds(0 , self.regularization ) __magic_name__ = minimize( a__ , np.ones(a__ ) , bounds=a__ , constraints=[ly_contraint] ).x __magic_name__ = l_star # calculating mean offset of separation plane to points __magic_name__ = 0 for i in range(a__ ): for j in range(a__ ): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j] ) __magic_name__ = s / n def snake_case__ ( self : str , a__ : ndarray ): __magic_name__ = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , a__ ) for n in range(len(self.classes ) ) ) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
363
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 _lowerCAmelCase = get_tests_dir("fixtures") _lowerCAmelCase = get_tests_dir("fixtures/dummy_feature_extractor_config.json") _lowerCAmelCase = get_tests_dir("fixtures/dummy-config.json") class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def snake_case__ ( self : Union[str, Any] ): __magic_name__ = 0 def snake_case__ ( self : Optional[int] ): __magic_name__ = AutoFeatureExtractor.from_pretrained('''facebook/wav2vec2-base-960h''' ) self.assertIsInstance(a__ , a__ ) def snake_case__ ( self : Optional[int] ): __magic_name__ = AutoFeatureExtractor.from_pretrained(a__ ) self.assertIsInstance(a__ , a__ ) def snake_case__ ( self : Optional[Any] ): with tempfile.TemporaryDirectory() as tmpdirname: __magic_name__ = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally __magic_name__ = AutoFeatureExtractor.from_pretrained(a__ ).to_dict() config_dict.pop('''feature_extractor_type''' ) __magic_name__ = WavaVecaFeatureExtractor(**a__ ) # save in new folder model_config.save_pretrained(a__ ) config.save_pretrained(a__ ) __magic_name__ = AutoFeatureExtractor.from_pretrained(a__ ) # make sure private variable is not incorrectly saved __magic_name__ = json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(a__ , a__ ) def snake_case__ ( self : Optional[Any] ): __magic_name__ = AutoFeatureExtractor.from_pretrained(a__ ) self.assertIsInstance(a__ , a__ ) def snake_case__ ( self : str ): with self.assertRaisesRegex( a__ , '''bert-base is not a local folder and is not a valid model identifier''' ): __magic_name__ = AutoFeatureExtractor.from_pretrained('''bert-base''' ) def snake_case__ ( self : str ): with self.assertRaisesRegex( a__ , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): __magic_name__ = AutoFeatureExtractor.from_pretrained(a__ , revision='''aaaaaa''' ) def snake_case__ ( self : Union[str, Any] ): with self.assertRaisesRegex( a__ , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): __magic_name__ = AutoFeatureExtractor.from_pretrained('''hf-internal-testing/config-no-model''' ) def snake_case__ ( self : Dict ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(a__ ): __magic_name__ = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(a__ ): __magic_name__ = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' , trust_remote_code=a__ ) __magic_name__ = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' , trust_remote_code=a__ ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(a__ ) __magic_name__ = AutoFeatureExtractor.from_pretrained(a__ , trust_remote_code=a__ ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) def snake_case__ ( self : int ): try: AutoConfig.register('''custom''' , a__ ) AutoFeatureExtractor.register(a__ , a__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(a__ ): AutoFeatureExtractor.register(a__ , a__ ) # Now that the config is registered, it can be used as any other config with the auto-API __magic_name__ = CustomFeatureExtractor.from_pretrained(a__ ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(a__ ) __magic_name__ = AutoFeatureExtractor.from_pretrained(a__ ) self.assertIsInstance(a__ , a__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def snake_case__ ( self : int ): class _SCREAMING_SNAKE_CASE ( __a ): __SCREAMING_SNAKE_CASE :Optional[int] = True try: AutoConfig.register('''custom''' , a__ ) AutoFeatureExtractor.register(a__ , a__ ) # If remote code is not set, the default is to use local __magic_name__ = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. __magic_name__ = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' , trust_remote_code=a__ ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub __magic_name__ = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' , trust_remote_code=a__ ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) self.assertTrue(not hasattr(a__ , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
98
0
from __future__ import annotations import pandas as pd def _UpperCAmelCase ( snake_case , snake_case , snake_case ): """simple docstring""" _lowerCAmelCase = [0] * no_of_processes _lowerCAmelCase = [0] * no_of_processes # Copy the burst time into remaining_time[] for i in range(snake_case ): _lowerCAmelCase = burst_time[i] _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = 9_99_99_99_99 _lowerCAmelCase = 0 _lowerCAmelCase = False # Process until all processes are completed while complete != no_of_processes: for j in range(snake_case ): if arrival_time[j] <= increment_time and remaining_time[j] > 0: if remaining_time[j] < minm: _lowerCAmelCase = remaining_time[j] _lowerCAmelCase = j _lowerCAmelCase = True if not check: increment_time += 1 continue remaining_time[short] -= 1 _lowerCAmelCase = remaining_time[short] if minm == 0: _lowerCAmelCase = 9_99_99_99_99 if remaining_time[short] == 0: complete += 1 _lowerCAmelCase = False # Find finish time of current process _lowerCAmelCase = increment_time + 1 # Calculate waiting time _lowerCAmelCase = finish_time - arrival_time[short] _lowerCAmelCase = finar - burst_time[short] if waiting_time[short] < 0: _lowerCAmelCase = 0 # Increment time increment_time += 1 return waiting_time def _UpperCAmelCase ( snake_case , snake_case , snake_case ): """simple docstring""" _lowerCAmelCase = [0] * no_of_processes for i in range(snake_case ): _lowerCAmelCase = burst_time[i] + waiting_time[i] return turn_around_time def _UpperCAmelCase ( snake_case , snake_case , snake_case ): """simple docstring""" _lowerCAmelCase = 0 _lowerCAmelCase = 0 for i in range(snake_case ): _lowerCAmelCase = total_waiting_time + waiting_time[i] _lowerCAmelCase = total_turn_around_time + turn_around_time[i] print(F'Average waiting time = {total_waiting_time / no_of_processes:.5f}' ) print("""Average turn around time =""" , total_turn_around_time / no_of_processes ) if __name__ == "__main__": print("""Enter how many process you want to analyze""") A__ = int(input()) A__ = [0] * no_of_processes A__ = [0] * no_of_processes A__ = list(range(1, no_of_processes + 1)) for i in range(no_of_processes): print("""Enter the arrival time and burst time for process:--""" + str(i + 1)) A__ , A__ = map(int, input().split()) A__ = calculate_waitingtime(arrival_time, burst_time, no_of_processes) A__ = burst_time A__ = no_of_processes A__ = waiting_time A__ = calculate_turnaroundtime(bt, n, wt) calculate_average_times(waiting_time, turn_around_time, no_of_processes) A__ = pd.DataFrame( list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)), columns=[ """Process""", """BurstTime""", """ArrivalTime""", """WaitingTime""", """TurnAroundTime""", ], ) # Printing the dataFrame pd.set_option("""display.max_rows""", fcfs.shape[0] + 1) print(fcfs)
82
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __snake_case : Dict =logging.get_logger(__name__) __snake_case : Optional[int] ={ 'facebook/xlm-roberta-xl': 'https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json', 'facebook/xlm-roberta-xxl': 'https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json', # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' snake_case_ ="""xlm-roberta-xl""" def __init__(self ,__lowerCamelCase=25_08_80 ,__lowerCamelCase=25_60 ,__lowerCamelCase=36 ,__lowerCamelCase=32 ,__lowerCamelCase=1_02_40 ,__lowerCamelCase="gelu" ,__lowerCamelCase=0.1 ,__lowerCamelCase=0.1 ,__lowerCamelCase=5_14 ,__lowerCamelCase=1 ,__lowerCamelCase=0.02 ,__lowerCamelCase=1e-05 ,__lowerCamelCase=1 ,__lowerCamelCase=0 ,__lowerCamelCase=2 ,__lowerCamelCase="absolute" ,__lowerCamelCase=True ,__lowerCamelCase=None ,**__lowerCamelCase ,) -> Optional[Any]: """simple docstring""" super().__init__(pad_token_id=__lowerCamelCase ,bos_token_id=__lowerCamelCase ,eos_token_id=__lowerCamelCase ,**__lowerCamelCase ) lowerCAmelCase__ : int = vocab_size lowerCAmelCase__ : Tuple = hidden_size lowerCAmelCase__ : int = num_hidden_layers lowerCAmelCase__ : int = num_attention_heads lowerCAmelCase__ : int = hidden_act lowerCAmelCase__ : Tuple = intermediate_size lowerCAmelCase__ : Optional[int] = hidden_dropout_prob lowerCAmelCase__ : Optional[int] = attention_probs_dropout_prob lowerCAmelCase__ : Optional[Any] = max_position_embeddings lowerCAmelCase__ : List[str] = type_vocab_size lowerCAmelCase__ : List[str] = initializer_range lowerCAmelCase__ : Any = layer_norm_eps lowerCAmelCase__ : Union[str, Any] = position_embedding_type lowerCAmelCase__ : Union[str, Any] = use_cache lowerCAmelCase__ : str = classifier_dropout class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' @property def lowerCAmelCase__ (self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": lowerCAmelCase__ : Dict = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowerCAmelCase__ : Any = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
129
0
import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) _A = logging.getLogger(__name__) @dataclass class lowerCamelCase : UpperCAmelCase__ : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) UpperCAmelCase__ : Optional[str] = field( default=A_ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) UpperCAmelCase__ : Optional[str] = field( default=A_ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) UpperCAmelCase__ : Optional[str] = field( default=A_ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) UpperCAmelCase__ : bool = field(default=A_ , metadata={"help": "Whether tp freeze the encoder."} ) UpperCAmelCase__ : bool = field(default=A_ , metadata={"help": "Whether to freeze the embeddings."} ) @dataclass class lowerCamelCase : UpperCAmelCase__ : str = field( metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} ) UpperCAmelCase__ : Optional[str] = field( default="summarization" , metadata={"help": "Task name, summarization (or summarization_{dataset} for pegasus) or translation"} , ) UpperCAmelCase__ : Optional[int] = field( default=10_24 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) UpperCAmelCase__ : Optional[int] = field( default=1_28 , metadata={ "help": ( "The maximum total sequence length for target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) UpperCAmelCase__ : Optional[int] = field( default=1_42 , metadata={ "help": ( "The maximum total sequence length for validation target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded. " "This argument is also used to override the ``max_length`` param of ``model.generate``, which is used " "during ``evaluate`` and ``predict``." ) } , ) UpperCAmelCase__ : Optional[int] = field( default=1_42 , metadata={ "help": ( "The maximum total sequence length for test target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) UpperCAmelCase__ : Optional[int] = field(default=-1 , metadata={"help": "# training examples. -1 means use all."} ) UpperCAmelCase__ : Optional[int] = field(default=-1 , metadata={"help": "# validation examples. -1 means use all."} ) UpperCAmelCase__ : Optional[int] = field(default=-1 , metadata={"help": "# test examples. -1 means use all."} ) UpperCAmelCase__ : Optional[str] = field(default=A_ , metadata={"help": "Source language id for translation."} ) UpperCAmelCase__ : Optional[str] = field(default=A_ , metadata={"help": "Target language id for translation."} ) UpperCAmelCase__ : Optional[int] = field(default=A_ , metadata={"help": "# num_beams to use for evaluation."} ) UpperCAmelCase__ : bool = field( default=A_ , metadata={"help": "If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."} , ) def lowercase_ ( A__ , A__ , A__ ) -> Dict: """simple docstring""" logger.info(F'***** {split} metrics *****' ) for key in sorted(metrics.keys() ): logger.info(F' {key} = {metrics[key]}' ) save_json(A__ , os.path.join(A__ , F'{split}_results.json' ) ) def lowercase_ ( ) -> Tuple: """simple docstring""" snake_case = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. snake_case , snake_case , snake_case = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: snake_case , snake_case , snake_case = parser.parse_args_into_dataclasses() check_output_dir(A__ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("Training/evaluation parameters %s" , A__ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) snake_case = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") for p in extra_model_params: if getattr(A__ , A__ , A__ ): assert hasattr(A__ , A__ ), F'({config.__class__.__name__}) doesn\'t have a `{p}` attribute' setattr(A__ , A__ , getattr(A__ , A__ ) ) snake_case = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) snake_case = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=".ckpt" in model_args.model_name_or_path , config=A__ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(A__ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: snake_case = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(A__ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(A__ , A__ ): snake_case = tokenizer.lang_code_to_id[data_args.tgt_lang] else: snake_case = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(A__ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) snake_case = SeqaSeqDataset # Get datasets snake_case = ( dataset_class( A__ , type_path="train" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_train else None ) snake_case = ( dataset_class( A__ , type_path="val" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) snake_case = ( dataset_class( A__ , type_path="test" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_predict else None ) # Initialize our Trainer snake_case = ( build_compute_metrics_fn(data_args.task , A__ ) if training_args.predict_with_generate else None ) snake_case = SeqaSeqTrainer( model=A__ , args=A__ , data_args=A__ , train_dataset=A__ , eval_dataset=A__ , data_collator=SeqaSeqDataCollator( A__ , A__ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=A__ , tokenizer=A__ , ) snake_case = {} # Training if training_args.do_train: logger.info("*** Train ***" ) snake_case = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) snake_case = train_result.metrics snake_case = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("train" , A__ , training_args.output_dir ) all_metrics.update(A__ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , "trainer_state.json" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) snake_case = trainer.evaluate(metric_key_prefix="val" ) snake_case = data_args.n_val snake_case = round(metrics["val_loss"] , 4 ) if trainer.is_world_process_zero(): handle_metrics("val" , A__ , training_args.output_dir ) all_metrics.update(A__ ) if training_args.do_predict: logger.info("*** Predict ***" ) snake_case = trainer.predict(test_dataset=A__ , metric_key_prefix="test" ) snake_case = test_output.metrics snake_case = data_args.n_test if trainer.is_world_process_zero(): snake_case = round(metrics["test_loss"] , 4 ) handle_metrics("test" , A__ , training_args.output_dir ) all_metrics.update(A__ ) if training_args.predict_with_generate: snake_case = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=A__ , clean_up_tokenization_spaces=A__ ) snake_case = lmap(str.strip , A__ ) write_txt_file(A__ , os.path.join(training_args.output_dir , "test_generations.txt" ) ) if trainer.is_world_process_zero(): save_json(A__ , os.path.join(training_args.output_dir , "all_results.json" ) ) return all_metrics def lowercase_ ( A__ ) -> Optional[Any]: """simple docstring""" main() if __name__ == "__main__": main()
137
from collections import defaultdict class lowerCamelCase : def __init__(self : Tuple , _A : Optional[int] , _A : List[str] ) -> Union[str, Any]: snake_case = total # total no of tasks (N) # DP table will have a dimension of (2^M)*N # initially all values are set to -1 snake_case = [ [-1 for i in range(total + 1 )] for j in range(2 ** len(_A ) ) ] snake_case = defaultdict(_A ) # stores the list of persons for each task # final_mask is used to check if all persons are included by setting all bits # to 1 snake_case = (1 << len(_A )) - 1 def UpperCAmelCase(self : str , _A : Optional[Any] , _A : List[Any] ) -> str: # if mask == self.finalmask all persons are distributed tasks, return 1 if mask == self.final_mask: return 1 # if not everyone gets the task and no more tasks are available, return 0 if task_no > self.total_tasks: return 0 # if case already considered if self.dp[mask][task_no] != -1: return self.dp[mask][task_no] # Number of ways when we don't this task in the arrangement snake_case = self.count_ways_until(_A , task_no + 1 ) # now assign the tasks one by one to all possible persons and recursively # assign for the remaining tasks. if task_no in self.task: for p in self.task[task_no]: # if p is already given a task if mask & (1 << p): continue # assign this task to p and change the mask value. And recursively # assign tasks with the new mask value. total_ways_util += self.count_ways_until(mask | (1 << p) , task_no + 1 ) # save the value. snake_case = total_ways_util return self.dp[mask][task_no] def UpperCAmelCase(self : Any , _A : Dict ) -> Optional[Any]: # Store the list of persons for each task for i in range(len(_A ) ): for j in task_performed[i]: self.task[j].append(_A ) # call the function to fill the DP table, final answer is stored in dp[0][1] return self.count_ways_until(0 , 1 ) if __name__ == "__main__": _A = 5 # total no of tasks (the value of N) # the list of tasks that can be done by M persons. _A = [[1, 3, 4], [1, 2, 5], [3, 4]] print( AssignmentUsingBitmask(task_performed, total_tasks).count_no_of_ways( task_performed ) )
137
1
import logging import os from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union from filelock import FileLock from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available _UpperCAmelCase = logging.getLogger(__name__) @dataclass class UpperCAmelCase : '''simple docstring''' lowerCamelCase_ = 4_2 lowerCamelCase_ = 4_2 lowerCamelCase_ = 4_2 @dataclass class UpperCAmelCase : '''simple docstring''' lowerCamelCase_ = 4_2 lowerCamelCase_ = 4_2 lowerCamelCase_ = None lowerCamelCase_ = None class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase_ = '''train''' lowerCamelCase_ = '''dev''' lowerCamelCase_ = '''test''' class UpperCAmelCase : '''simple docstring''' @staticmethod def lowerCAmelCase_ ( lowercase , lowercase ): """simple docstring""" raise NotImplementedError @staticmethod def lowerCAmelCase_ ( lowercase ): """simple docstring""" raise NotImplementedError @staticmethod def lowerCAmelCase_ ( lowercase , lowercase , lowercase , lowercase , lowercase=False , lowercase="[CLS]" , lowercase=1 , lowercase="[SEP]" , lowercase=False , lowercase=False , lowercase=0 , lowercase=0 , lowercase=-1_0_0 , lowercase=0 , lowercase=True , ): """simple docstring""" A_ : Any = {label: i for i, label in enumerate(lowercase )} A_ : str = [] for ex_index, example in enumerate(lowercase ): if ex_index % 1_0_0_0_0 == 0: logger.info('Writing example %d of %d' , lowercase , len(lowercase ) ) A_ : Dict = [] A_ : List[Any] = [] for word, label in zip(example.words , example.labels ): A_ : Any = tokenizer.tokenize(lowercase ) # bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space. if len(lowercase ) > 0: tokens.extend(lowercase ) # Use the real label id for the first token of the word, and padding ids for the remaining tokens label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(lowercase ) - 1) ) # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. A_ : str = tokenizer.num_special_tokens_to_add() if len(lowercase ) > max_seq_length - special_tokens_count: A_ : Any = tokens[: (max_seq_length - special_tokens_count)] A_ : List[Any] = label_ids[: (max_seq_length - special_tokens_count)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens += [sep_token] label_ids += [pad_token_label_id] if sep_token_extra: # roberta uses an extra separator b/w pairs of sentences tokens += [sep_token] label_ids += [pad_token_label_id] A_ : Union[str, Any] = [sequence_a_segment_id] * len(lowercase ) if cls_token_at_end: tokens += [cls_token] label_ids += [pad_token_label_id] segment_ids += [cls_token_segment_id] else: A_ : Dict = [cls_token] + tokens A_ : Union[str, Any] = [pad_token_label_id] + label_ids A_ : Union[str, Any] = [cls_token_segment_id] + segment_ids A_ : Union[str, Any] = tokenizer.convert_tokens_to_ids(lowercase ) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. A_ : Tuple = [1 if mask_padding_with_zero else 0] * len(lowercase ) # Zero-pad up to the sequence length. A_ : int = max_seq_length - len(lowercase ) if pad_on_left: A_ : Union[str, Any] = ([pad_token] * padding_length) + input_ids A_ : Optional[Any] = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask A_ : int = ([pad_token_segment_id] * padding_length) + segment_ids A_ : Tuple = ([pad_token_label_id] * padding_length) + label_ids else: input_ids += [pad_token] * padding_length input_mask += [0 if mask_padding_with_zero else 1] * padding_length segment_ids += [pad_token_segment_id] * padding_length label_ids += [pad_token_label_id] * padding_length assert len(lowercase ) == max_seq_length assert len(lowercase ) == max_seq_length assert len(lowercase ) == max_seq_length assert len(lowercase ) == max_seq_length if ex_index < 5: logger.info('*** Example ***' ) logger.info('guid: %s' , example.guid ) logger.info('tokens: %s' , ' '.join([str(lowercase ) for x in tokens] ) ) logger.info('input_ids: %s' , ' '.join([str(lowercase ) for x in input_ids] ) ) logger.info('input_mask: %s' , ' '.join([str(lowercase ) for x in input_mask] ) ) logger.info('segment_ids: %s' , ' '.join([str(lowercase ) for x in segment_ids] ) ) logger.info('label_ids: %s' , ' '.join([str(lowercase ) for x in label_ids] ) ) if "token_type_ids" not in tokenizer.model_input_names: A_ : str = None features.append( InputFeatures( input_ids=lowercase , attention_mask=lowercase , token_type_ids=lowercase , label_ids=lowercase ) ) return features if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase_ = 4_2 lowerCamelCase_ = nn.CrossEntropyLoss().ignore_index def __init__( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase = None , lowercase=False , lowercase = Split.train , ): """simple docstring""" A_ : Tuple = os.path.join( lowercase , 'cached_{}_{}_{}'.format(mode.value , tokenizer.__class__.__name__ , str(lowercase ) ) , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. A_ : Tuple = cached_features_file + '.lock' with FileLock(lowercase ): if os.path.exists(lowercase ) and not overwrite_cache: logger.info(F'''Loading features from cached file {cached_features_file}''' ) A_ : Dict = torch.load(lowercase ) else: logger.info(F'''Creating features from dataset file at {data_dir}''' ) A_ : str = token_classification_task.read_examples_from_file(lowercase , lowercase ) # TODO clean up all this to leverage built-in features of tokenizers A_ : Optional[Any] = token_classification_task.convert_examples_to_features( lowercase , lowercase , lowercase , lowercase , cls_token_at_end=bool(model_type in ['xlnet'] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['xlnet'] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=lowercase , pad_on_left=bool(tokenizer.padding_side == 'left' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info(F'''Saving features into cached file {cached_features_file}''' ) torch.save(self.features , lowercase ) def __len__( self ): """simple docstring""" return len(self.features ) def __getitem__( self , lowercase ): """simple docstring""" return self.features[i] if is_tf_available(): import tensorflow as tf class UpperCAmelCase : '''simple docstring''' lowerCamelCase_ = 4_2 lowerCamelCase_ = -1_0_0 def __init__( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase = None , lowercase=False , lowercase = Split.train , ): """simple docstring""" A_ : Dict = token_classification_task.read_examples_from_file(lowercase , lowercase ) # TODO clean up all this to leverage built-in features of tokenizers A_ : Union[str, Any] = token_classification_task.convert_examples_to_features( lowercase , lowercase , lowercase , lowercase , cls_token_at_end=bool(model_type in ['xlnet'] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['xlnet'] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=lowercase , pad_on_left=bool(tokenizer.padding_side == 'left' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) def gen(): for ex in self.features: if ex.token_type_ids is None: yield ( {"input_ids": ex.input_ids, "attention_mask": ex.attention_mask}, ex.label_ids, ) else: yield ( { "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label_ids, ) if "token_type_ids" not in tokenizer.model_input_names: A_ : Dict = tf.data.Dataset.from_generator( lowercase , ({'input_ids': tf.intaa, 'attention_mask': tf.intaa}, tf.intaa) , ( {'input_ids': tf.TensorShape([None] ), 'attention_mask': tf.TensorShape([None] )}, tf.TensorShape([None] ), ) , ) else: A_ : List[Any] = tf.data.Dataset.from_generator( lowercase , ({'input_ids': tf.intaa, 'attention_mask': tf.intaa, 'token_type_ids': tf.intaa}, tf.intaa) , ( { 'input_ids': tf.TensorShape([None] ), 'attention_mask': tf.TensorShape([None] ), 'token_type_ids': tf.TensorShape([None] ), }, tf.TensorShape([None] ), ) , ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Tuple = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features ) ) ) return self.dataset def __len__( self ): """simple docstring""" return len(self.features ) def __getitem__( self , lowercase ): """simple docstring""" return self.features[i]
140
import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE :List[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :int = {'vocab_file': 'spiece.model'} SCREAMING_SNAKE_CASE :Union[str, Any] = { 'vocab_file': { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model', 'google/bigbird-roberta-large': ( 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model' ), 'google/bigbird-base-trivia-itc': ( 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model' ), } } SCREAMING_SNAKE_CASE :int = { 'google/bigbird-roberta-base': 4096, 'google/bigbird-roberta-large': 4096, 'google/bigbird-base-trivia-itc': 4096, } class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = ["input_ids", "attention_mask"] snake_case_ = [] def __init__( self : Any ,A : List[str] ,A : str="<unk>" ,A : int="<s>" ,A : Union[str, Any]="</s>" ,A : List[str]="<pad>" ,A : int="[SEP]" ,A : Optional[Any]="[MASK]" ,A : Tuple="[CLS]" ,A : Optional[Dict[str, Any]] = None ,**A : Any ,): __A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else bos_token __A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else eos_token __A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else unk_token __A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else pad_token __A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else cls_token __A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else sep_token # Mask token behave like a normal word, i.e. include the space before it __A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else mask_token __A = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A ,eos_token=A ,unk_token=A ,pad_token=A ,sep_token=A ,mask_token=A ,cls_token=A ,sp_model_kwargs=self.sp_model_kwargs ,**A ,) __A = vocab_file __A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A ) @property def UpperCamelCase_ ( self : List[str] ): return self.sp_model.get_piece_size() def UpperCamelCase_ ( self : Optional[Any] ): __A = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[int] ): __A = self.__dict__.copy() __A = None return state def __setstate__( self : str ,A : Optional[Any] ): __A = d # for backward compatibility if not hasattr(self ,"sp_model_kwargs" ): __A = {} __A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase_ ( self : Any ,A : str ): return self.sp_model.encode(A ,out_type=A ) def UpperCamelCase_ ( self : List[str] ,A : Tuple ): return self.sp_model.piece_to_id(A ) def UpperCamelCase_ ( self : List[Any] ,A : Tuple ): __A = self.sp_model.IdToPiece(A ) return token def UpperCamelCase_ ( self : List[Any] ,A : int ): __A = [] __A = "" __A = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(A ) + token __A = True __A = [] else: current_sub_tokens.append(A ) __A = False out_string += self.sp_model.decode(A ) return out_string.strip() def UpperCamelCase_ ( self : Tuple ,A : List[int] ,A : bool = False ,A : bool = None ,A : bool = True ,**A : Union[str, Any] ,): __A = kwargs.pop("use_source_tokenizer" ,A ) __A = self.convert_ids_to_tokens(A ,skip_special_tokens=A ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 __A = [] __A = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(A ) ) __A = [] sub_texts.append(A ) else: current_sub_text.append(A ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(A ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: __A = re.sub(R" (\[(MASK|SEP)\])" ,R"\1" ," ".join(A ) ) else: __A = "".join(A ) __A = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: __A = self.clean_up_tokenization(A ) return clean_text else: return text def UpperCamelCase_ ( self : str ,A : str ,A : Optional[str] = None ): if not os.path.isdir(A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __A = os.path.join( A ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,A ) elif not os.path.isfile(self.vocab_file ): with open(A ,"wb" ) as fi: __A = self.sp_model.serialized_model_proto() fi.write(A ) return (out_vocab_file,) def UpperCamelCase_ ( self : Dict ,A : List[int] ,A : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __A = [self.cls_token_id] __A = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase_ ( self : Optional[int] ,A : List[int] ,A : Optional[List[int]] = None ,A : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A ,token_ids_a=A ,already_has_special_tokens=A ) if token_ids_a is None: return [1] + ([0] * len(A )) + [1] return [1] + ([0] * len(A )) + [1] + ([0] * len(A )) + [1] def UpperCamelCase_ ( self : Any ,A : List[int] ,A : Optional[List[int]] = None ): __A = [self.sep_token_id] __A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
15
0
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging lowercase = logging.get_logger(__name__) def lowerCamelCase_ ( UpperCamelCase__ : List[str], UpperCamelCase__ : Optional[Any] ): '''simple docstring''' UpperCamelCase__ = set() UpperCamelCase__ = [] def parse_line(UpperCamelCase__ : str ): for line in fp: if isinstance(UpperCamelCase__, UpperCamelCase__ ): UpperCamelCase__ = line.decode('''UTF-8''' ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(''' ''' ): # process a single warning and move it to `selected_warnings`. if len(UpperCamelCase__ ) > 0: UpperCamelCase__ = '''\n'''.join(UpperCamelCase__ ) # Only keep the warnings specified in `targets` if any(F""": {x}: """ in warning for x in targets ): selected_warnings.add(UpperCamelCase__ ) buffer.clear() continue else: UpperCamelCase__ = line.strip() buffer.append(UpperCamelCase__ ) if from_gh: for filename in os.listdir(UpperCamelCase__ ): UpperCamelCase__ = os.path.join(UpperCamelCase__, UpperCamelCase__ ) if not os.path.isdir(UpperCamelCase__ ): # read the file if filename != "warnings.txt": continue with open(UpperCamelCase__ ) as fp: parse_line(UpperCamelCase__ ) else: try: with zipfile.ZipFile(UpperCamelCase__ ) as z: for filename in z.namelist(): if not os.path.isdir(UpperCamelCase__ ): # read the file if filename != "warnings.txt": continue with z.open(UpperCamelCase__ ) as fp: parse_line(UpperCamelCase__ ) except Exception: logger.warning( F"""{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.""" ) return selected_warnings def lowerCamelCase_ ( UpperCamelCase__ : List[str], UpperCamelCase__ : List[str] ): '''simple docstring''' UpperCamelCase__ = set() UpperCamelCase__ = [os.path.join(UpperCamelCase__, UpperCamelCase__ ) for p in os.listdir(UpperCamelCase__ ) if (p.endswith('''.zip''' ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(UpperCamelCase__, UpperCamelCase__ ) ) return selected_warnings if __name__ == "__main__": def lowerCamelCase_ ( UpperCamelCase__ : str ): '''simple docstring''' return values.split(''',''' ) lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""") parser.add_argument( """--output_dir""", type=str, required=True, help="""Where to store the downloaded artifacts and other result files.""", ) parser.add_argument("""--token""", default=None, type=str, help="""A token that has actions:read permission.""") # optional parameters parser.add_argument( """--targets""", default="""DeprecationWarning,UserWarning,FutureWarning""", type=list_str, help="""Comma-separated list of target warning(s) which we want to extract.""", ) parser.add_argument( """--from_gh""", action="""store_true""", help="""If running from a GitHub action workflow and collecting warnings from its artifacts.""", ) lowercase = parser.parse_args() lowercase = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links lowercase = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, """artifacts.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print("""=""" * 8_0) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts lowercase = extract_warnings(args.output_dir, args.targets) lowercase = sorted(selected_warnings) with open(os.path.join(args.output_dir, """selected_warnings.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
352
import datasets from .evaluate import evaluate lowercase = """\ @article{hendrycks2021cuad, title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review}, author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball}, journal={arXiv preprint arXiv:2103.06268}, year={2021} } """ lowercase = """ This metric wrap the official scoring script for version 1 of the Contract Understanding Atticus Dataset (CUAD). Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510 commercial legal contracts that have been manually labeled to identify 41 categories of important clauses that lawyers look for when reviewing contracts in connection with corporate transactions. """ lowercase = """ Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall). Args: predictions: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair as given in the references (see below) - 'prediction_text': list of possible texts for the answer, as a list of strings depending on a threshold on the confidence probability of each prediction. references: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair (see above), - 'answers': a Dict in the CUAD dataset format { 'text': list of possible texts for the answer, as a list of strings 'answer_start': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: 'exact_match': Exact match (the normalized answer exactly match the gold answer) 'f1': The F-score of predicted tokens versus the gold answer 'aupr': Area Under the Precision-Recall curve 'prec_at_80_recall': Precision at 80% recall 'prec_at_90_recall': Precision at 90% recall Examples: >>> predictions = [{'prediction_text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.'], 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}] >>> references = [{'answers': {'answer_start': [143, 49], 'text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.']}, 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}] >>> cuad_metric = datasets.load_metric(\"cuad\") >>> results = cuad_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 100.0, 'f1': 100.0, 'aupr': 0.0, 'prec_at_80_recall': 1.0, 'prec_at_90_recall': 1.0} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class __lowercase ( datasets.Metric ): '''simple docstring''' def A_ ( self : int ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': { '''id''': datasets.Value('''string''' ), '''prediction_text''': datasets.features.Sequence(datasets.Value('''string''' ) ), }, '''references''': { '''id''': datasets.Value('''string''' ), '''answers''': datasets.features.Sequence( { '''text''': datasets.Value('''string''' ), '''answer_start''': datasets.Value('''int32''' ), } ), }, } ) , codebase_urls=['''https://www.atticusprojectai.org/cuad'''] , reference_urls=['''https://www.atticusprojectai.org/cuad'''] , ) def A_ ( self : Optional[Any] , _a : List[str] , _a : Optional[int] ): UpperCamelCase__ = {prediction['''id''']: prediction['''prediction_text'''] for prediction in predictions} UpperCamelCase__ = [ { '''paragraphs''': [ { '''qas''': [ { '''answers''': [{'''text''': answer_text} for answer_text in ref['''answers''']['''text''']], '''id''': ref['''id'''], } for ref in references ] } ] } ] UpperCamelCase__ = evaluate(dataset=_a , predictions=_a ) return score
35
0
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _UpperCAmelCase : List[str] = logging.get_logger(__name__) _UpperCAmelCase : Optional[Any] = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } _UpperCAmelCase : Union[str, Any] = { """vocab_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"""}, """merges_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"""}, """tokenizer_config_file""": { """facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json""" }, } _UpperCAmelCase : int = {"""facebook/blenderbot-3B""": 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def __lowerCamelCase ( ): '''simple docstring''' snake_case_ = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) snake_case_ = bs[:] snake_case_ = 0 for b in range(2**8 ): if b not in bs: bs.append(UpperCamelCase__ ) cs.append(2**8 + n ) n += 1 snake_case_ = [chr(UpperCamelCase__ ) for n in cs] return dict(zip(UpperCamelCase__ , UpperCamelCase__ ) ) def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' snake_case_ = set() snake_case_ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) snake_case_ = char return pairs class lowercase ( lowercase_ ): __SCREAMING_SNAKE_CASE : Optional[int] = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : int = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : int = ['''input_ids''', '''attention_mask'''] def __init__( self , snake_case , snake_case , snake_case="replace" , snake_case="<s>" , snake_case="</s>" , snake_case="</s>" , snake_case="<s>" , snake_case="<unk>" , snake_case="<pad>" , snake_case="<mask>" , snake_case=False , **snake_case , ): snake_case_ = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else bos_token snake_case_ = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else eos_token snake_case_ = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else sep_token snake_case_ = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else cls_token snake_case_ = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else unk_token snake_case_ = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else pad_token # Mask token behave like a normal word, i.e. include the space before it snake_case_ = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else mask_token super().__init__( errors=snake_case , bos_token=snake_case , eos_token=snake_case , unk_token=snake_case , sep_token=snake_case , cls_token=snake_case , pad_token=snake_case , mask_token=snake_case , add_prefix_space=snake_case , **snake_case , ) with open(snake_case , encoding='utf-8' ) as vocab_handle: snake_case_ = json.load(snake_case ) snake_case_ = {v: k for k, v in self.encoder.items()} snake_case_ = errors # how to handle errors in decoding snake_case_ = bytes_to_unicode() snake_case_ = {v: k for k, v in self.byte_encoder.items()} with open(snake_case , encoding='utf-8' ) as merges_handle: snake_case_ = merges_handle.read().split('\n' )[1:-1] snake_case_ = [tuple(merge.split() ) for merge in bpe_merges] snake_case_ = dict(zip(snake_case , range(len(snake_case ) ) ) ) snake_case_ = {} snake_case_ = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions snake_case_ = re.compile(R'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def a ( self ): return len(self.encoder ) def a ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def a ( self , snake_case ): if token in self.cache: return self.cache[token] snake_case_ = tuple(snake_case ) snake_case_ = get_pairs(snake_case ) if not pairs: return token while True: snake_case_ = min(snake_case , key=lambda snake_case : self.bpe_ranks.get(snake_case , float('inf' ) ) ) if bigram not in self.bpe_ranks: break snake_case_ , snake_case_ = bigram snake_case_ = [] snake_case_ = 0 while i < len(snake_case ): try: snake_case_ = word.index(snake_case , snake_case ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) snake_case_ = j if word[i] == first and i < len(snake_case ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 snake_case_ = tuple(snake_case ) snake_case_ = new_word if len(snake_case ) == 1: break else: snake_case_ = get_pairs(snake_case ) snake_case_ = ' '.join(snake_case ) snake_case_ = word return word def a ( self , snake_case ): snake_case_ = [] for token in re.findall(self.pat , snake_case ): snake_case_ = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(snake_case ).split(' ' ) ) return bpe_tokens def a ( self , snake_case ): return self.encoder.get(snake_case , self.encoder.get(self.unk_token ) ) def a ( self , snake_case ): return self.decoder.get(snake_case ) def a ( self , snake_case ): snake_case_ = ''.join(snake_case ) snake_case_ = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def a ( self , snake_case , snake_case = None ): if not os.path.isdir(snake_case ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case_ = os.path.join( snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) snake_case_ = os.path.join( snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(snake_case , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=snake_case , ensure_ascii=snake_case ) + '\n' ) snake_case_ = 0 with open(snake_case , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda snake_case : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ' Please check that the tokenizer is not corrupted!' ) snake_case_ = token_index writer.write(' '.join(snake_case ) + '\n' ) index += 1 return vocab_file, merge_file def a ( self , snake_case , snake_case = None , snake_case = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case , token_ids_a=snake_case , already_has_special_tokens=snake_case ) if token_ids_a is None: return [1] + ([0] * len(snake_case )) + [1] return [1] + ([0] * len(snake_case )) + [1, 1] + ([0] * len(snake_case )) + [1] def a ( self , snake_case , snake_case = None ): snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def a ( self , snake_case , snake_case=False , **snake_case ): snake_case_ = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(snake_case ) > 0 and not text[0].isspace()): snake_case_ = ' ' + text return (text, kwargs) def a ( self , snake_case , snake_case = None ): return token_ids_a + [self.eos_token_id] def a ( self , snake_case ): snake_case_ = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text ) else: # Generated responses should contain them already. inputs.append(snake_case ) snake_case_ = ' '.join(snake_case ) snake_case_ = self.encode(snake_case ) if len(snake_case ) > self.model_max_length: snake_case_ = input_ids[-self.model_max_length :] logger.warning(F'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
285
import json import os import tempfile import datasets from utils import generate_example_dataset, get_duration _UpperCAmelCase : Optional[int] = 5_0000 _UpperCAmelCase : Dict = 5000 _UpperCAmelCase , _UpperCAmelCase : Optional[int] = os.path.split(__file__) _UpperCAmelCase : List[str] = os.path.join(RESULTS_BASEPATH, """results""", RESULTS_FILENAME.replace(""".py""", """.json""")) @get_duration def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' for i in range(UpperCamelCase__ ): snake_case_ = dataset[i] @get_duration def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' for i in range(0 , len(UpperCamelCase__ ) , UpperCamelCase__ ): snake_case_ = dataset[i : i + batch_size] @get_duration def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' with dataset.formatted_as(type=UpperCamelCase__ ): for i in range(UpperCamelCase__ ): snake_case_ = dataset[i] @get_duration def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' with dataset.formatted_as(type=UpperCamelCase__ ): for i in range(0 , UpperCamelCase__ , UpperCamelCase__ ): snake_case_ = dataset[i : i + batch_size] def __lowerCamelCase ( ): '''simple docstring''' snake_case_ = {'num examples': SPEED_TEST_N_EXAMPLES} snake_case_ = [ (read, {'length': SMALL_TEST}), (read, {'length': SPEED_TEST_N_EXAMPLES}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 10}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 100}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 1000}), (read_formatted, {'type': 'numpy', 'length': SMALL_TEST}), (read_formatted, {'type': 'pandas', 'length': SMALL_TEST}), (read_formatted, {'type': 'torch', 'length': SMALL_TEST}), (read_formatted, {'type': 'tensorflow', 'length': SMALL_TEST}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 10}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 1000}), ] snake_case_ = [ (read, {'length': SMALL_TEST}), (read, {'length': SPEED_TEST_N_EXAMPLES}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 10}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 100}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 1000}), (read_formatted, {'type': 'numpy', 'length': SMALL_TEST}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 10}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 1000}), ] with tempfile.TemporaryDirectory() as tmp_dir: print('generating dataset' ) snake_case_ = datasets.Features( {'list': datasets.Sequence(datasets.Value('float32' ) ), 'numbers': datasets.Value('float32' )} ) snake_case_ = generate_example_dataset( os.path.join(UpperCamelCase__ , 'dataset.arrow' ) , UpperCamelCase__ , num_examples=UpperCamelCase__ , seq_shapes={'list': (100,)} , ) print('first set of iterations' ) for func, kwargs in functions: print(func.__name__ , str(UpperCamelCase__ ) ) snake_case_ = func(UpperCamelCase__ , **UpperCamelCase__ ) print('shuffling dataset' ) snake_case_ = dataset.shuffle() print('Second set of iterations (after shuffling' ) for func, kwargs in functions_shuffled: print('shuffled ' , func.__name__ , str(UpperCamelCase__ ) ) snake_case_ = func( UpperCamelCase__ , **UpperCamelCase__ ) with open(UpperCamelCase__ , 'wb' ) as f: f.write(json.dumps(UpperCamelCase__ ).encode('utf-8' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_iterating()
285
1
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 lowerCAmelCase__ : Dict =get_tests_dir('fixtures') lowerCAmelCase__ : int =get_tests_dir('fixtures/dummy_feature_extractor_config.json') lowerCAmelCase__ : int =get_tests_dir('fixtures/dummy-config.json') class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = 0 def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = AutoFeatureExtractor.from_pretrained('facebook/wav2vec2-base-960h' ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = AutoFeatureExtractor.from_pretrained(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCamelCase__ ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_ : List[str] = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally SCREAMING_SNAKE_CASE_ : Optional[int] = AutoFeatureExtractor.from_pretrained(lowerCAmelCase__ ).to_dict() config_dict.pop('feature_extractor_type' ) SCREAMING_SNAKE_CASE_ : Optional[int] = WavaVecaFeatureExtractor(**lowerCAmelCase__ ) # save in new folder model_config.save_pretrained(lowerCAmelCase__ ) config.save_pretrained(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = AutoFeatureExtractor.from_pretrained(lowerCAmelCase__ ) # make sure private variable is not incorrectly saved SCREAMING_SNAKE_CASE_ : Optional[int] = json.loads(config.to_json_string() ) self.assertTrue('_processor_class' not in dict_as_saved ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = AutoFeatureExtractor.from_pretrained(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCamelCase__ ( self ): """simple docstring""" with self.assertRaisesRegex( lowerCAmelCase__ , 'bert-base is not a local folder and is not a valid model identifier' ): SCREAMING_SNAKE_CASE_ : Dict = AutoFeatureExtractor.from_pretrained('bert-base' ) def UpperCamelCase__ ( self ): """simple docstring""" with self.assertRaisesRegex( lowerCAmelCase__ , r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): SCREAMING_SNAKE_CASE_ : Optional[Any] = AutoFeatureExtractor.from_pretrained(lowerCAmelCase__ , revision='aaaaaa' ) def UpperCamelCase__ ( self ): """simple docstring""" with self.assertRaisesRegex( lowerCAmelCase__ , 'hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.' , ): SCREAMING_SNAKE_CASE_ : int = AutoFeatureExtractor.from_pretrained('hf-internal-testing/config-no-model' ) def UpperCamelCase__ ( self ): """simple docstring""" with self.assertRaises(lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ : Dict = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : int = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowerCAmelCase__ ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Tuple = AutoFeatureExtractor.from_pretrained(lowerCAmelCase__ , trust_remote_code=lowerCAmelCase__ ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) def UpperCamelCase__ ( self ): """simple docstring""" try: AutoConfig.register('custom' , lowerCAmelCase__ ) AutoFeatureExtractor.register(lowerCAmelCase__ , lowerCAmelCase__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCAmelCase__ ): AutoFeatureExtractor.register(lowerCAmelCase__ , lowerCAmelCase__ ) # Now that the config is registered, it can be used as any other config with the auto-API SCREAMING_SNAKE_CASE_ : List[Any] = CustomFeatureExtractor.from_pretrained(lowerCAmelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Tuple = AutoFeatureExtractor.from_pretrained(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def UpperCamelCase__ ( self ): """simple docstring""" class __lowercase (__SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCAmelCase = True try: AutoConfig.register('custom' , lowerCAmelCase__ ) AutoFeatureExtractor.register(lowerCAmelCase__ , lowerCAmelCase__ ) # If remote code is not set, the default is to use local SCREAMING_SNAKE_CASE_ : List[str] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. SCREAMING_SNAKE_CASE_ : Union[str, Any] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowerCAmelCase__ ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub SCREAMING_SNAKE_CASE_ : Tuple = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowerCAmelCase__ ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(not hasattr(lowerCAmelCase__ , 'is_local' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
162
# Lint as: python3 import itertools import os import re lowerCAmelCase__ : Optional[int] =re.compile(R'([A-Z]+)([A-Z][a-z])') lowerCAmelCase__ : List[Any] =re.compile(R'([a-z\d])([A-Z])') lowerCAmelCase__ : Dict =re.compile(R'(?<!_)_(?!_)') lowerCAmelCase__ : int =re.compile(R'(_{2,})') lowerCAmelCase__ : Optional[Any] =R'^\w+(\.\w+)*$' lowerCAmelCase__ : List[Any] =R'<>:/\|?*' def a__ ( A__ ): SCREAMING_SNAKE_CASE_ : Dict = _uppercase_uppercase_re.sub(r'\1_\2', A__ ) SCREAMING_SNAKE_CASE_ : List[str] = _lowercase_uppercase_re.sub(r'\1_\2', A__ ) return name.lower() def a__ ( A__ ): SCREAMING_SNAKE_CASE_ : Optional[Any] = _single_underscore_re.split(A__ ) SCREAMING_SNAKE_CASE_ : str = [_multiple_underscores_re.split(A__ ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(A__ ) if n != '' ) def a__ ( A__ ): if os.path.basename(A__ ) != name: raise ValueError(F'''Should be a dataset name, not a path: {name}''' ) return camelcase_to_snakecase(A__ ) def a__ ( A__, A__ ): if os.path.basename(A__ ) != name: raise ValueError(F'''Should be a dataset name, not a path: {name}''' ) if not re.match(_split_re, A__ ): raise ValueError(F'''Split name should match \'{_split_re}\'\' but got \'{split}\'.''' ) return F'''{filename_prefix_for_name(A__ )}-{split}''' def a__ ( A__, A__, A__, A__=None ): SCREAMING_SNAKE_CASE_ : Tuple = filename_prefix_for_split(A__, A__ ) if filetype_suffix: prefix += F'''.{filetype_suffix}''' SCREAMING_SNAKE_CASE_ : List[Any] = os.path.join(A__, A__ ) return F'''{filepath}*''' def a__ ( A__, A__, A__, A__=None, A__=None ): SCREAMING_SNAKE_CASE_ : Tuple = filename_prefix_for_split(A__, A__ ) SCREAMING_SNAKE_CASE_ : Dict = os.path.join(A__, A__ ) if shard_lengths: SCREAMING_SNAKE_CASE_ : Dict = len(A__ ) SCREAMING_SNAKE_CASE_ : Any = [F'''{prefix}-{shard_id:05d}-of-{num_shards:05d}''' for shard_id in range(A__ )] if filetype_suffix: SCREAMING_SNAKE_CASE_ : Optional[int] = [filename + F'''.{filetype_suffix}''' for filename in filenames] return filenames else: SCREAMING_SNAKE_CASE_ : Optional[Any] = prefix if filetype_suffix: filename += F'''.{filetype_suffix}''' return [filename]
162
1
'''simple docstring''' def snake_case__ ( _A: int , _A: int ) -> int: '''simple docstring''' return int((input_a, input_a).count(0 ) != 0 ) def snake_case__ ( ) -> None: '''simple docstring''' assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
272
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class a__( unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : Dict = ViTImageProcessor if is_vision_available() else None @property def a_ ( self): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def a_ ( self): """simple docstring""" lowerCAmelCase = (3, 32, 128) lowerCAmelCase = tempfile.mkdtemp() # fmt: off lowerCAmelCase = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on lowerCAmelCase = dict(zip(__lowerCAmelCase , range(len(__lowerCAmelCase)))) lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""]) with open(self.vocab_file , """w""" , encoding="""utf-8""") as fp: fp.write(json.dumps(__lowerCAmelCase) + """\n""") lowerCAmelCase = { """do_normalize""": False, """do_resize""": True, """image_processor_type""": """ViTImageProcessor""", """resample""": 3, """size""": {"""height""": 32, """width""": 128}, } lowerCAmelCase = os.path.join(self.tmpdirname , __lowerCAmelCase) with open(self.image_processor_file , """w""" , encoding="""utf-8""") as fp: json.dump(__lowerCAmelCase , __lowerCAmelCase) def a_ ( self , **__lowerCAmelCase): """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase) def a_ ( self , **__lowerCAmelCase): """simple docstring""" return ViTImageProcessor.from_pretrained(self.tmpdirname , **__lowerCAmelCase) def a_ ( self): """simple docstring""" shutil.rmtree(self.tmpdirname) def a_ ( self): """simple docstring""" lowerCAmelCase = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta) lowerCAmelCase = Image.fromarray(np.moveaxis(__lowerCAmelCase , 0 , -1)) return image_input def a_ ( self): """simple docstring""" lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = self.get_image_processor() lowerCAmelCase = MgpstrProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase) processor.save_pretrained(self.tmpdirname) lowerCAmelCase = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=__lowerCAmelCase) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab()) self.assertIsInstance(processor.char_tokenizer , __lowerCAmelCase) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string()) self.assertIsInstance(processor.image_processor , __lowerCAmelCase) def a_ ( self): """simple docstring""" lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = self.get_image_processor() lowerCAmelCase = MgpstrProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase) processor.save_pretrained(self.tmpdirname) lowerCAmelCase = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""") lowerCAmelCase = self.get_image_processor(do_normalize=__lowerCAmelCase , padding_value=1.0) lowerCAmelCase = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__lowerCAmelCase , padding_value=1.0) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.char_tokenizer , __lowerCAmelCase) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , __lowerCAmelCase) def a_ ( self): """simple docstring""" lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = MgpstrProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase) lowerCAmelCase = self.prepare_image_inputs() lowerCAmelCase = image_processor(__lowerCAmelCase , return_tensors="""np""") lowerCAmelCase = processor(images=__lowerCAmelCase , return_tensors="""np""") for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2) def a_ ( self): """simple docstring""" lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = MgpstrProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase) lowerCAmelCase = """test""" lowerCAmelCase = processor(text=__lowerCAmelCase) lowerCAmelCase = tokenizer(__lowerCAmelCase) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def a_ ( self): """simple docstring""" lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = MgpstrProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase) lowerCAmelCase = """test""" lowerCAmelCase = self.prepare_image_inputs() lowerCAmelCase = processor(text=__lowerCAmelCase , images=__lowerCAmelCase) self.assertListEqual(list(inputs.keys()) , ["""pixel_values""", """labels"""]) # test if it raises when no input is passed with pytest.raises(__lowerCAmelCase): processor() def a_ ( self): """simple docstring""" lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = MgpstrProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase) lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase = processor.char_decode(__lowerCAmelCase) lowerCAmelCase = tokenizer.batch_decode(__lowerCAmelCase) lowerCAmelCase = [seq.replace(""" """ , """""") for seq in decoded_tok] self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase) def a_ ( self): """simple docstring""" lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = MgpstrProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase) lowerCAmelCase = None lowerCAmelCase = self.prepare_image_inputs() lowerCAmelCase = processor(text=__lowerCAmelCase , images=__lowerCAmelCase) self.assertListEqual(list(inputs.keys()) , processor.model_input_names) def a_ ( self): """simple docstring""" lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = MgpstrProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase) lowerCAmelCase = torch.randn(1 , 27 , 38) lowerCAmelCase = torch.randn(1 , 27 , 50257) lowerCAmelCase = torch.randn(1 , 27 , 30522) lowerCAmelCase = processor.batch_decode([char_input, bpe_input, wp_input]) self.assertListEqual(list(results.keys()) , ["""generated_text""", """scores""", """char_preds""", """bpe_preds""", """wp_preds"""])
272
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig lowerCamelCase__ = { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/config.json''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/config.json''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/config.json''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/config.json''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/config.json''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/config.json''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json''', } class __magic_name__ (__lowercase ): lowerCamelCase__ = '''albert''' def __init__( self , _a=30000 , _a=128 , _a=4096 , _a=12 , _a=1 , _a=64 , _a=16384 , _a=1 , _a="gelu_new" , _a=0 , _a=0 , _a=512 , _a=2 , _a=0.0_2 , _a=1E-12 , _a=0.1 , _a="absolute" , _a=0 , _a=2 , _a=3 , **_a , ) -> int: super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a ) lowerCAmelCase_ = vocab_size lowerCAmelCase_ = embedding_size lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_hidden_groups lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = inner_group_num lowerCAmelCase_ = hidden_act lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = max_position_embeddings lowerCAmelCase_ = type_vocab_size lowerCAmelCase_ = initializer_range lowerCAmelCase_ = layer_norm_eps lowerCAmelCase_ = classifier_dropout_prob lowerCAmelCase_ = position_embedding_type class __magic_name__ (__lowercase ): @property def __a ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": lowerCAmelCase_ = {0: "batch", 1: "choice", 2: "sequence"} else: lowerCAmelCase_ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
22
import logging from transformers import PretrainedConfig lowerCamelCase__ = logging.getLogger(__name__) lowerCamelCase__ = { '''bertabs-finetuned-cnndm''': '''https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json''', } class __magic_name__ (__lowercase ): lowerCamelCase__ = '''bertabs''' def __init__( self , _a=30522 , _a=512 , _a=6 , _a=512 , _a=8 , _a=512 , _a=0.2 , _a=6 , _a=768 , _a=8 , _a=2048 , _a=0.2 , **_a , ) -> List[Any]: super().__init__(**_a ) lowerCAmelCase_ = vocab_size lowerCAmelCase_ = max_pos lowerCAmelCase_ = enc_layers lowerCAmelCase_ = enc_hidden_size lowerCAmelCase_ = enc_heads lowerCAmelCase_ = enc_ff_size lowerCAmelCase_ = enc_dropout lowerCAmelCase_ = dec_layers lowerCAmelCase_ = dec_hidden_size lowerCAmelCase_ = dec_heads lowerCAmelCase_ = dec_ff_size lowerCAmelCase_ = dec_dropout
22
1
import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput lowercase_ = """scheduler_config.json""" class __UpperCamelCase ( snake_case__ ): """simple docstring""" lowerCAmelCase_ = 1 lowerCAmelCase_ = 2 lowerCAmelCase_ = 3 lowerCAmelCase_ = 4 lowerCAmelCase_ = 5 @dataclass class __UpperCamelCase ( snake_case__ ): """simple docstring""" lowerCAmelCase_ = 42 class __UpperCamelCase : """simple docstring""" lowerCAmelCase_ = SCHEDULER_CONFIG_NAME lowerCAmelCase_ = ['dtype'] lowerCAmelCase_ = [] lowerCAmelCase_ = True @classmethod def UpperCAmelCase__ ( cls : Union[str, Any] , _A : Dict[str, Any] = None , _A : Optional[str] = None , _A : List[str]=False , **_A : Optional[int] , ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = cls.load_config( pretrained_model_name_or_path=_A , subfolder=_A , return_unused_kwargs=_A , **_A , ) __SCREAMING_SNAKE_CASE : Optional[Any] = cls.from_config(_A , return_unused_kwargs=_A , **_A ) if hasattr(_A , '''create_state''' ) and getattr(_A , '''has_state''' , _A ): __SCREAMING_SNAKE_CASE : Dict = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def UpperCAmelCase__ ( self : Tuple , _A : Union[str, os.PathLike] , _A : bool = False , **_A : Any ): """simple docstring""" self.save_config(save_directory=_A , push_to_hub=_A , **_A ) @property def UpperCAmelCase__ ( self : str ): """simple docstring""" return self._get_compatibles() @classmethod def UpperCAmelCase__ ( cls : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = list(set([cls.__name__] + cls._compatibles ) ) __SCREAMING_SNAKE_CASE : Dict = importlib.import_module(__name__.split('''.''' )[0] ) __SCREAMING_SNAKE_CASE : Dict = [ getattr(_A , _A ) for c in compatible_classes_str if hasattr(_A , _A ) ] return compatible_classes def a__ ( snake_case , snake_case ): """simple docstring""" assert len(snake_case ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(snake_case ) - x.ndim) ) , snake_case ) def a__ ( snake_case , snake_case=0.999 , snake_case=jnp.floataa ): """simple docstring""" def alpha_bar(snake_case ): return math.cos((time_step + 0.008) / 1.008 * math.pi / 2 ) ** 2 __SCREAMING_SNAKE_CASE : str = [] for i in range(snake_case ): __SCREAMING_SNAKE_CASE : Union[str, Any] = i / num_diffusion_timesteps __SCREAMING_SNAKE_CASE : List[str] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(snake_case ) / alpha_bar(snake_case ) , snake_case ) ) return jnp.array(snake_case , dtype=snake_case ) @flax.struct.dataclass class __UpperCamelCase : """simple docstring""" lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 @classmethod def UpperCAmelCase__ ( cls : str , _A : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = scheduler.config if config.trained_betas is not None: __SCREAMING_SNAKE_CASE : Tuple = jnp.asarray(config.trained_betas , dtype=scheduler.dtype ) elif config.beta_schedule == "linear": __SCREAMING_SNAKE_CASE : Any = jnp.linspace(config.beta_start , config.beta_end , config.num_train_timesteps , dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __SCREAMING_SNAKE_CASE : List[Any] = ( jnp.linspace( config.beta_start**0.5 , config.beta_end**0.5 , config.num_train_timesteps , dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __SCREAMING_SNAKE_CASE : str = betas_for_alpha_bar(config.num_train_timesteps , dtype=scheduler.dtype ) else: raise NotImplementedError( F'''beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = 1.0 - betas __SCREAMING_SNAKE_CASE : Optional[Any] = jnp.cumprod(_A , axis=0 ) return cls( alphas=_A , betas=_A , alphas_cumprod=_A , ) def a__ ( snake_case , snake_case , snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = state.alphas_cumprod __SCREAMING_SNAKE_CASE : str = alphas_cumprod[timesteps] ** 0.5 __SCREAMING_SNAKE_CASE : Any = sqrt_alpha_prod.flatten() __SCREAMING_SNAKE_CASE : Any = broadcast_to_shape_from_left(snake_case , original_samples.shape ) __SCREAMING_SNAKE_CASE : Any = (1 - alphas_cumprod[timesteps]) ** 0.5 __SCREAMING_SNAKE_CASE : str = sqrt_one_minus_alpha_prod.flatten() __SCREAMING_SNAKE_CASE : str = broadcast_to_shape_from_left(snake_case , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def a__ ( snake_case , snake_case , snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = get_sqrt_alpha_prod(snake_case , snake_case , snake_case , snake_case ) __SCREAMING_SNAKE_CASE : Optional[int] = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def a__ ( snake_case , snake_case , snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = get_sqrt_alpha_prod(snake_case , snake_case , snake_case , snake_case ) __SCREAMING_SNAKE_CASE : int = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
303
_a = [sum(int(c, 1_0) ** 2 for c in i.__str__()) for i in range(1_0_0_0_0_0)] def _a ( SCREAMING_SNAKE_CASE : int ) -> int: """simple docstring""" __lowerCAmelCase: Optional[int] = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 10_00_00] number //= 10_00_00 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution _a = [None] * 1_0_0_0_0_0_0_0 _a = True _a = False def _a ( SCREAMING_SNAKE_CASE : int ) -> bool: """simple docstring""" if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore __lowerCAmelCase: int = chain(next_number(SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase: Tuple = number_chain while number < 10_00_00_00: __lowerCAmelCase: Dict = number_chain number *= 10 return number_chain def _a ( SCREAMING_SNAKE_CASE : int = 10_00_00_00 ) -> int: """simple docstring""" for i in range(1 , SCREAMING_SNAKE_CASE ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() print(f"{solution() = }")
322
0
import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) SCREAMING_SNAKE_CASE : Tuple = logging.getLogger(__name__) @dataclass(frozen=lowercase__ ) class UpperCamelCase : '''simple docstring''' lowercase : str lowercase : str lowercase : Optional[str] =None lowercase : Optional[str] =None lowercase : Optional[str] =None @dataclass(frozen=lowercase__ ) class UpperCamelCase : '''simple docstring''' lowercase : List[int] lowercase : Optional[List[int]] =None lowercase : Optional[List[int]] =None lowercase : Optional[Union[int, float]] =None lowercase : Optional[int] =None if is_torch_available(): import torch from torch.utils.data import Dataset class UpperCamelCase ( lowercase__ ): '''simple docstring''' lowercase : List[InputFeatures] def __init__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_=False , UpperCamelCase_ = False , ): lowercase_ :Dict = hans_processors[task]() lowercase_ :Tuple = os.path.join( UpperCamelCase_ , '''cached_{}_{}_{}_{}'''.format( '''dev''' if evaluate else '''train''' , tokenizer.__class__.__name__ , str(UpperCamelCase_ ) , UpperCamelCase_ , ) , ) lowercase_ :Any = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) lowercase_ :Union[str, Any] = label_list[2], label_list[1] lowercase_ :List[str] = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowercase_ :Any = cached_features_file + '''.lock''' with FileLock(UpperCamelCase_ ): if os.path.exists(UpperCamelCase_ ) and not overwrite_cache: logger.info(f"Loading features from cached file {cached_features_file}" ) lowercase_ :Tuple = torch.load(UpperCamelCase_ ) else: logger.info(f"Creating features from dataset file at {data_dir}" ) lowercase_ :Dict = ( processor.get_dev_examples(UpperCamelCase_ ) if evaluate else processor.get_train_examples(UpperCamelCase_ ) ) logger.info('''Training examples: %s''' , len(UpperCamelCase_ ) ) lowercase_ :Any = hans_convert_examples_to_features(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) logger.info('''Saving features into cached file %s''' , UpperCamelCase_ ) torch.save(self.features , UpperCamelCase_ ) def __len__( self ): return len(self.features ) def __getitem__( self , UpperCamelCase_ ): return self.features[i] def UpperCamelCase ( self ): return self.label_list if is_tf_available(): import tensorflow as tf class UpperCamelCase : '''simple docstring''' lowercase : List[InputFeatures] def __init__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = 128 , UpperCamelCase_=False , UpperCamelCase_ = False , ): lowercase_ :List[str] = hans_processors[task]() lowercase_ :str = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) lowercase_ :Optional[int] = label_list[2], label_list[1] lowercase_ :Union[str, Any] = label_list lowercase_ :Optional[int] = processor.get_dev_examples(UpperCamelCase_ ) if evaluate else processor.get_train_examples(UpperCamelCase_ ) lowercase_ :Optional[int] = hans_convert_examples_to_features(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='''convert examples to features''' ): if ex_index % 1_0000 == 0: logger.info('''Writing example %d of %d''' % (ex_index, len(UpperCamelCase_ )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) lowercase_ :Optional[int] = tf.data.Dataset.from_generator( UpperCamelCase_ , ( { '''example_id''': tf.intaa, '''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa, }, tf.intaa, ) , ( { '''example_id''': tf.TensorShape([] ), '''input_ids''': tf.TensorShape([None, None] ), '''attention_mask''': tf.TensorShape([None, None] ), '''token_type_ids''': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def UpperCamelCase ( self ): return self.dataset def __len__( self ): return len(self.features ) def __getitem__( self , UpperCamelCase_ ): return self.features[i] def UpperCamelCase ( self ): return self.label_list class UpperCamelCase ( lowercase__ ): '''simple docstring''' def UpperCamelCase ( self , UpperCamelCase_ ): return self._create_examples(self._read_tsv(os.path.join(UpperCamelCase_ , '''heuristics_train_set.txt''' ) ) , '''train''' ) def UpperCamelCase ( self , UpperCamelCase_ ): return self._create_examples(self._read_tsv(os.path.join(UpperCamelCase_ , '''heuristics_evaluation_set.txt''' ) ) , '''dev''' ) def UpperCamelCase ( self ): return ["contradiction", "entailment", "neutral"] def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ ): lowercase_ :Dict = [] for i, line in enumerate(UpperCamelCase_ ): if i == 0: continue lowercase_ :Tuple = '''%s-%s''' % (set_type, line[0]) lowercase_ :Optional[int] = line[5] lowercase_ :Any = line[6] lowercase_ :int = line[7][2:] if line[7].startswith('''ex''' ) else line[7] lowercase_ :int = line[0] examples.append(InputExample(guid=UpperCamelCase_ , text_a=UpperCamelCase_ , text_b=UpperCamelCase_ , label=UpperCamelCase_ , pairID=UpperCamelCase_ ) ) return examples def UpperCamelCase ( _a , _a , _a , _a , ) -> int: '''simple docstring''' lowercase_ :Tuple = {label: i for i, label in enumerate(_a )} lowercase_ :List[Any] = [] for ex_index, example in tqdm.tqdm(enumerate(_a ) , desc='''convert examples to features''' ): if ex_index % 1_0_0_0_0 == 0: logger.info('''Writing example %d''' % (ex_index) ) lowercase_ :List[Any] = tokenizer( example.text_a , example.text_b , add_special_tokens=_a , max_length=_a , padding='''max_length''' , truncation=_a , return_overflowing_tokens=_a , ) lowercase_ :List[Any] = label_map[example.label] if example.label in label_map else 0 lowercase_ :Tuple = int(example.pairID ) features.append(InputFeatures(**_a , label=_a , pairID=_a ) ) for i, example in enumerate(examples[:5] ): logger.info('''*** Example ***''' ) logger.info(f"guid: {example}" ) logger.info(f"features: {features[i]}" ) return features SCREAMING_SNAKE_CASE : str = { "hans": 3, } SCREAMING_SNAKE_CASE : Dict = { "hans": HansProcessor, }
370
import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCamelCase ( self ): lowercase_ :List[Any] = 1 lowercase_ :List[Any] = 3 lowercase_ :str = (32, 32) lowercase_ :Tuple = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(UpperCamelCase_ ) return image @property def UpperCamelCase ( self ): torch.manual_seed(0 ) lowercase_ :Tuple = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) return model @property def UpperCamelCase ( self ): torch.manual_seed(0 ) lowercase_ :str = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def UpperCamelCase ( self ): torch.manual_seed(0 ) lowercase_ :int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(UpperCamelCase_ ) @property def UpperCamelCase ( self ): def extract(*UpperCamelCase_ , **UpperCamelCase_ ): class UpperCamelCase : '''simple docstring''' def __init__( self ): lowercase_ :Dict = torch.ones([0] ) def UpperCamelCase ( self , UpperCamelCase_ ): self.pixel_values.to(UpperCamelCase_ ) return self return Out() return extract def UpperCamelCase ( self ): lowercase_ :Optional[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase_ :List[Any] = self.dummy_cond_unet lowercase_ :int = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=UpperCamelCase_ , set_alpha_to_one=UpperCamelCase_ , ) lowercase_ :Any = self.dummy_vae lowercase_ :Dict = self.dummy_text_encoder lowercase_ :str = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) # make sure here that pndm scheduler skips prk lowercase_ :Optional[Any] = StableDiffusionPipeline( unet=UpperCamelCase_ , scheduler=UpperCamelCase_ , vae=UpperCamelCase_ , text_encoder=UpperCamelCase_ , tokenizer=UpperCamelCase_ , safety_checker=UpperCamelCase_ , feature_extractor=self.dummy_extractor , ) lowercase_ :Union[str, Any] = sd_pipe.to(UpperCamelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowercase_ :str = '''A painting of a squirrel eating a burger''' lowercase_ :int = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 ) lowercase_ :Optional[Any] = sd_pipe([prompt] , generator=UpperCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' ) lowercase_ :Any = output.images lowercase_ :List[Any] = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 ) lowercase_ :List[Any] = sd_pipe( [prompt] , generator=UpperCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , return_dict=UpperCamelCase_ , )[0] lowercase_ :Dict = image[0, -3:, -3:, -1] lowercase_ :List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase_ :List[Any] = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase ( self ): lowercase_ :List[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase_ :List[str] = self.dummy_cond_unet lowercase_ :Optional[Any] = PNDMScheduler(skip_prk_steps=UpperCamelCase_ ) lowercase_ :Optional[Any] = self.dummy_vae lowercase_ :List[Any] = self.dummy_text_encoder lowercase_ :str = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) # make sure here that pndm scheduler skips prk lowercase_ :Tuple = StableDiffusionPipeline( unet=UpperCamelCase_ , scheduler=UpperCamelCase_ , vae=UpperCamelCase_ , text_encoder=UpperCamelCase_ , tokenizer=UpperCamelCase_ , safety_checker=UpperCamelCase_ , feature_extractor=self.dummy_extractor , ) lowercase_ :Optional[int] = sd_pipe.to(UpperCamelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowercase_ :str = '''A painting of a squirrel eating a burger''' lowercase_ :Any = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 ) lowercase_ :Optional[int] = sd_pipe([prompt] , generator=UpperCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' ) lowercase_ :Optional[Any] = output.images lowercase_ :List[Any] = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 ) lowercase_ :List[str] = sd_pipe( [prompt] , generator=UpperCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , return_dict=UpperCamelCase_ , )[0] lowercase_ :Dict = image[0, -3:, -3:, -1] lowercase_ :str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase_ :Dict = np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase ( self ): lowercase_ :List[str] = StableDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-lms-pipe''' , safety_checker=UpperCamelCase_ ) assert isinstance(UpperCamelCase_ , UpperCamelCase_ ) assert isinstance(pipe.scheduler , UpperCamelCase_ ) assert pipe.safety_checker is None lowercase_ :Optional[int] = pipe('''example prompt''' , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(UpperCamelCase_ ) lowercase_ :Union[str, Any] = StableDiffusionPipeline.from_pretrained(UpperCamelCase_ ) # sanity check that the pipeline still works assert pipe.safety_checker is None lowercase_ :List[Any] = pipe('''example prompt''' , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def UpperCamelCase ( self ): lowercase_ :Optional[Any] = self.dummy_cond_unet lowercase_ :Any = PNDMScheduler(skip_prk_steps=UpperCamelCase_ ) lowercase_ :int = self.dummy_vae lowercase_ :Tuple = self.dummy_text_encoder lowercase_ :Dict = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) # put models in fp16 lowercase_ :Optional[int] = unet.half() lowercase_ :Union[str, Any] = vae.half() lowercase_ :Optional[int] = bert.half() # make sure here that pndm scheduler skips prk lowercase_ :Any = StableDiffusionPipeline( unet=UpperCamelCase_ , scheduler=UpperCamelCase_ , vae=UpperCamelCase_ , text_encoder=UpperCamelCase_ , tokenizer=UpperCamelCase_ , safety_checker=UpperCamelCase_ , feature_extractor=self.dummy_extractor , ) lowercase_ :Dict = sd_pipe.to(UpperCamelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowercase_ :List[str] = '''A painting of a squirrel eating a burger''' lowercase_ :List[Any] = sd_pipe([prompt] , num_inference_steps=2 , output_type='''np''' ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self ): lowercase_ :Optional[Any] = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' , safety_checker=UpperCamelCase_ ) lowercase_ :Dict = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) lowercase_ :List[Any] = sd_pipe.to(UpperCamelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowercase_ :List[Any] = ( '''portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle''' ''' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with''' ''' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and''' ''' children from bahnhof zoo, detailed ''' ) lowercase_ :str = 40_0366_0346 lowercase_ :Optional[Any] = 7 # without safety guidance (sld_guidance_scale = 0) lowercase_ :Tuple = torch.manual_seed(UpperCamelCase_ ) lowercase_ :int = sd_pipe( [prompt] , generator=UpperCamelCase_ , guidance_scale=UpperCamelCase_ , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=0 , ) lowercase_ :List[str] = output.images lowercase_ :int = image[0, -3:, -3:, -1] lowercase_ :str = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) lowercase_ :Dict = torch.manual_seed(UpperCamelCase_ ) lowercase_ :Any = sd_pipe( [prompt] , generator=UpperCamelCase_ , guidance_scale=UpperCamelCase_ , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowercase_ :int = output.images lowercase_ :Union[str, Any] = image[0, -3:, -3:, -1] lowercase_ :Optional[int] = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase ( self ): lowercase_ :Tuple = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' , safety_checker=UpperCamelCase_ ) lowercase_ :List[Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) lowercase_ :Dict = sd_pipe.to(UpperCamelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowercase_ :Optional[int] = '''padme amidala taking a bath artwork, safe for work, no nudity''' lowercase_ :Any = 27_3497_1755 lowercase_ :str = 7 lowercase_ :Optional[Any] = torch.manual_seed(UpperCamelCase_ ) lowercase_ :Tuple = sd_pipe( [prompt] , generator=UpperCamelCase_ , guidance_scale=UpperCamelCase_ , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=0 , ) lowercase_ :Optional[Any] = output.images lowercase_ :str = image[0, -3:, -3:, -1] lowercase_ :int = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 lowercase_ :Any = torch.manual_seed(UpperCamelCase_ ) lowercase_ :List[Any] = sd_pipe( [prompt] , generator=UpperCamelCase_ , guidance_scale=UpperCamelCase_ , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowercase_ :List[str] = output.images lowercase_ :Optional[Any] = image[0, -3:, -3:, -1] lowercase_ :Optional[Any] = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase ( self ): lowercase_ :Tuple = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' ) lowercase_ :Tuple = sd_pipe.to(UpperCamelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowercase_ :List[str] = ( '''the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.''' ''' leyendecker''' ) lowercase_ :Any = 10_4435_5234 lowercase_ :Union[str, Any] = 12 lowercase_ :str = torch.manual_seed(UpperCamelCase_ ) lowercase_ :str = sd_pipe( [prompt] , generator=UpperCamelCase_ , guidance_scale=UpperCamelCase_ , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=0 , ) lowercase_ :Optional[int] = output.images lowercase_ :str = image[0, -3:, -3:, -1] lowercase_ :Optional[int] = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 lowercase_ :Dict = torch.manual_seed(UpperCamelCase_ ) lowercase_ :Optional[Any] = sd_pipe( [prompt] , generator=UpperCamelCase_ , guidance_scale=UpperCamelCase_ , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowercase_ :Optional[Any] = output.images lowercase_ :List[Any] = image[0, -3:, -3:, -1] lowercase_ :Any = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
252
0
"""simple docstring""" import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch A = logging.get_logger(__name__) class __lowercase : '''simple docstring''' def __init__( self , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase=None , _UpperCAmelCase=None ): if not conversation_id: __a : List[Any] = uuid.uuida() if past_user_inputs is None: __a : Tuple = [] if generated_responses is None: __a : Dict = [] __a : uuid.UUID = conversation_id __a : List[str] = past_user_inputs __a : List[str] = generated_responses __a : Optional[str] = text def __eq__( self , _UpperCAmelCase ): if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = False ): if self.new_user_input: if overwrite: logger.warning( f"""User input added while unprocessed input was existing: \"{self.new_user_input}\" was overwritten """ f"""with: \"{text}\".""" ) __a : Any = text else: logger.warning( f"""User input added while unprocessed input was existing: \"{self.new_user_input}\" new input """ f"""ignored: \"{text}\". Set `overwrite` to True to overwrite unprocessed user input""" ) else: __a : List[str] = text def _lowerCamelCase ( self ): if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) __a : Any = None def _lowerCamelCase ( self , _UpperCAmelCase ): self.generated_responses.append(_UpperCAmelCase ) def _lowerCamelCase ( self ): for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self ): __a : Any = f"""Conversation id: {self.uuid} \n""" for is_user, text in self.iter_texts(): __a : str = '''user''' if is_user else '''bot''' output += f"""{name} >> {text} \n""" return output @add_end_docstrings( _UpperCamelCase , R''' min_length_for_response (`int`, *optional*, defaults to 32): The minimum length (in number of tokens) for a response. minimum_tokens (`int`, *optional*, defaults to 10): The minimum length of tokens to leave for a response. ''' , ) class __lowercase ( _UpperCamelCase ): '''simple docstring''' def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): super().__init__(*_UpperCAmelCase , **_UpperCAmelCase ) if self.tokenizer.pad_token_id is None: __a : List[Any] = self.tokenizer.eos_token def _lowerCamelCase ( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase ): __a : str = {} __a : List[Any] = {} __a : int = {} if min_length_for_response is not None: __a : Dict = min_length_for_response if minimum_tokens is not None: __a : Union[str, Any] = minimum_tokens if "max_length" in generate_kwargs: __a : Tuple = generate_kwargs['''max_length'''] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: __a : Tuple = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(_UpperCAmelCase ) return preprocess_params, forward_params, postprocess_params def __call__( self , _UpperCAmelCase , _UpperCAmelCase=0 , **_UpperCAmelCase ): __a : Optional[Any] = super().__call__(_UpperCAmelCase , num_workers=_UpperCAmelCase , **_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and len(_UpperCAmelCase ) == 1: return outputs[0] return outputs def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase=32 ): if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError('''ConversationalPipeline, expects Conversation as inputs''' ) if conversation.new_user_input is None: raise ValueError( f"""Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. """ '''Add user inputs with the conversation\'s `add_user_input` method''' ) if hasattr(self.tokenizer , '''_build_conversation_input_ids''' ): __a : Tuple = self.tokenizer._build_conversation_input_ids(_UpperCAmelCase ) else: # If the tokenizer cannot handle conversations, we default to only the old version __a : List[str] = self._legacy_parse_and_tokenize(_UpperCAmelCase ) if self.framework == "pt": __a : List[Any] = torch.LongTensor([input_ids] ) elif self.framework == "tf": __a : List[Any] = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase=10 , **_UpperCAmelCase ): __a : List[Any] = generate_kwargs.get('''max_length''' , self.model.config.max_length ) __a : Tuple = model_inputs['''input_ids'''].shape[1] if max_length - minimum_tokens < n: logger.warning(f"""Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})""" ) __a : str = max_length - minimum_tokens __a : str = model_inputs['''input_ids'''][:, -trim:] if "attention_mask" in model_inputs: __a : Any = model_inputs['''attention_mask'''][:, -trim:] __a : Optional[Any] = model_inputs.pop('''conversation''' ) __a : Union[str, Any] = max_length __a : Dict = self.model.generate(**_UpperCAmelCase , **_UpperCAmelCase ) if self.model.config.is_encoder_decoder: __a : Optional[int] = 1 else: __a : Tuple = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase=True ): __a : Dict = model_outputs['''output_ids'''] __a : Dict = self.tokenizer.decode( output_ids[0] , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase , ) __a : Optional[int] = model_outputs['''conversation'''] conversation.mark_processed() conversation.append_response(_UpperCAmelCase ) return conversation def _lowerCamelCase ( self , _UpperCAmelCase ): __a : Optional[Any] = self.tokenizer.eos_token_id __a : int = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) if len(_UpperCAmelCase ) > self.tokenizer.model_max_length: __a : int = input_ids[-self.tokenizer.model_max_length :] return input_ids
160
"""simple docstring""" from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = ['''image_processor'''] __lowerCAmelCase = '''SamImageProcessor''' def __init__( self , _UpperCAmelCase ): super().__init__(_UpperCAmelCase ) __a : Any = self.image_processor __a : List[Any] = -10 __a : str = self.image_processor.size['''longest_edge'''] def __call__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase = None , **_UpperCAmelCase , ): __a : Tuple = self.image_processor( _UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase , ) # pop arguments that are not used in the foward but used nevertheless __a : Optional[Any] = encoding_image_processor['''original_sizes'''] if hasattr(_UpperCAmelCase , '''numpy''' ): # Checks if Torch or TF tensor __a : Optional[Any] = original_sizes.numpy() __a , __a , __a : int = self._check_and_preprocess_points( input_points=_UpperCAmelCase , input_labels=_UpperCAmelCase , input_boxes=_UpperCAmelCase , ) __a : List[Any] = self._normalize_and_convert( _UpperCAmelCase , _UpperCAmelCase , input_points=_UpperCAmelCase , input_labels=_UpperCAmelCase , input_boxes=_UpperCAmelCase , return_tensors=_UpperCAmelCase , ) return encoding_image_processor def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="pt" , ): if input_points is not None: if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): __a : Dict = [ self._normalize_coordinates(self.target_size , _UpperCAmelCase , original_sizes[0] ) for point in input_points ] else: __a : Dict = [ self._normalize_coordinates(self.target_size , _UpperCAmelCase , _UpperCAmelCase ) for point, original_size in zip(_UpperCAmelCase , _UpperCAmelCase ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: __a , __a : Tuple = self._pad_points_and_labels(_UpperCAmelCase , _UpperCAmelCase ) __a : List[Any] = np.array(_UpperCAmelCase ) if input_labels is not None: __a : List[Any] = np.array(_UpperCAmelCase ) if input_boxes is not None: if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): __a : Any = [ self._normalize_coordinates(self.target_size , _UpperCAmelCase , original_sizes[0] , is_bounding_box=_UpperCAmelCase ) for box in input_boxes ] else: __a : int = [ self._normalize_coordinates(self.target_size , _UpperCAmelCase , _UpperCAmelCase , is_bounding_box=_UpperCAmelCase ) for box, original_size in zip(_UpperCAmelCase , _UpperCAmelCase ) ] __a : Optional[int] = np.array(_UpperCAmelCase ) if input_boxes is not None: if return_tensors == "pt": __a : Any = torch.from_numpy(_UpperCAmelCase ) # boxes batch size of 1 by default __a : str = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": __a : Dict = tf.convert_to_tensor(_UpperCAmelCase ) # boxes batch size of 1 by default __a : str = tf.expand_dims(_UpperCAmelCase , 1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({'''input_boxes''': input_boxes} ) if input_points is not None: if return_tensors == "pt": __a : int = torch.from_numpy(_UpperCAmelCase ) # point batch size of 1 by default __a : Optional[Any] = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": __a : List[Any] = tf.convert_to_tensor(_UpperCAmelCase ) # point batch size of 1 by default __a : Optional[Any] = tf.expand_dims(_UpperCAmelCase , 1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({'''input_points''': input_points} ) if input_labels is not None: if return_tensors == "pt": __a : Any = torch.from_numpy(_UpperCAmelCase ) # point batch size of 1 by default __a : Union[str, Any] = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": __a : str = tf.convert_to_tensor(_UpperCAmelCase ) # point batch size of 1 by default __a : Dict = tf.expand_dims(_UpperCAmelCase , 1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({'''input_labels''': input_labels} ) return encoding_image_processor def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase ): __a : Optional[int] = max([point.shape[0] for point in input_points] ) __a : Dict = [] for i, point in enumerate(_UpperCAmelCase ): if point.shape[0] != expected_nb_points: __a : Any = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value] , axis=0 ) __a : List[Any] = np.append(input_labels[i] , [self.point_pad_value] ) processed_input_points.append(_UpperCAmelCase ) __a : int = processed_input_points return input_points, input_labels def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ): __a , __a : str = original_size __a , __a : Optional[int] = self.image_processor._get_preprocess_shape(_UpperCAmelCase , longest_edge=_UpperCAmelCase ) __a : List[str] = deepcopy(_UpperCAmelCase ).astype(_UpperCAmelCase ) if is_bounding_box: __a : Optional[int] = coords.reshape(-1 , 2 , 2 ) __a : str = coords[..., 0] * (new_w / old_w) __a : List[Any] = coords[..., 1] * (new_h / old_h) if is_bounding_box: __a : List[Any] = coords.reshape(-1 , 4 ) return coords def _lowerCamelCase ( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , ): if input_points is not None: if hasattr(_UpperCAmelCase , '''numpy''' ): # Checks for TF or Torch tensor __a : str = input_points.numpy().tolist() if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or not isinstance(input_points[0] , _UpperCAmelCase ): raise ValueError('''Input points must be a list of list of floating points.''' ) __a : str = [np.array(_UpperCAmelCase ) for input_point in input_points] else: __a : Optional[int] = None if input_labels is not None: if hasattr(_UpperCAmelCase , '''numpy''' ): __a : Dict = input_labels.numpy().tolist() if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or not isinstance(input_labels[0] , _UpperCAmelCase ): raise ValueError('''Input labels must be a list of list integers.''' ) __a : Dict = [np.array(_UpperCAmelCase ) for label in input_labels] else: __a : Tuple = None if input_boxes is not None: if hasattr(_UpperCAmelCase , '''numpy''' ): __a : List[Any] = input_boxes.numpy().tolist() if ( not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or not isinstance(input_boxes[0] , _UpperCAmelCase ) or not isinstance(input_boxes[0][0] , _UpperCAmelCase ) ): raise ValueError('''Input boxes must be a list of list of list of floating points.''' ) __a : Optional[Any] = [np.array(_UpperCAmelCase ).astype(np.floataa ) for box in input_boxes] else: __a : Union[str, Any] = None return input_points, input_labels, input_boxes @property def _lowerCamelCase ( self ): __a : Tuple = self.image_processor.model_input_names return list(dict.fromkeys(_UpperCAmelCase ) ) def _lowerCamelCase ( self , *_UpperCAmelCase , **_UpperCAmelCase ): return self.image_processor.post_process_masks(*_UpperCAmelCase , **_UpperCAmelCase )
160
1
'''simple docstring''' import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class _a ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : Any = '''naver-clova-ix/donut-base-finetuned-docvqa''' A : List[str] = ( '''This is a tool that answers a question about an document (pdf). It takes an input named `document` which ''' '''should be the document containing the information, as well as a `question` that is the question about the ''' '''document. It returns a text that contains the answer to the question.''' ) A : Tuple = '''document_qa''' A : Optional[Any] = AutoProcessor A : List[str] = VisionEncoderDecoderModel A : str = ['''image''', '''text'''] A : Optional[int] = ['''text'''] def __init__( self, *A, **A ): '''simple docstring''' if not is_vision_available(): raise ValueError('Pillow must be installed to use the DocumentQuestionAnsweringTool.' ) super().__init__(*A, **A ) def UpperCamelCase_ ( self, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = '<s_docvqa><s_question>{user_input}</s_question><s_answer>' SCREAMING_SNAKE_CASE : Dict = task_prompt.replace('{user_input}', A ) SCREAMING_SNAKE_CASE : Any = self.pre_processor.tokenizer( A, add_special_tokens=A, return_tensors='pt' ).input_ids SCREAMING_SNAKE_CASE : List[str] = self.pre_processor(A, return_tensors='pt' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def UpperCamelCase_ ( self, A ): '''simple docstring''' return self.model.generate( inputs['pixel_values'].to(self.device ), decoder_input_ids=inputs['decoder_input_ids'].to(self.device ), max_length=self.model.decoder.config.max_position_embeddings, early_stopping=A, pad_token_id=self.pre_processor.tokenizer.pad_token_id, eos_token_id=self.pre_processor.tokenizer.eos_token_id, use_cache=A, num_beams=1, bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]], return_dict_in_generate=A, ).sequences def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.pre_processor.batch_decode(A )[0] SCREAMING_SNAKE_CASE : Union[str, Any] = sequence.replace(self.pre_processor.tokenizer.eos_token, '' ) SCREAMING_SNAKE_CASE : Optional[Any] = sequence.replace(self.pre_processor.tokenizer.pad_token, '' ) SCREAMING_SNAKE_CASE : Optional[Any] = re.sub(r'<.*?>', '', A, count=1 ).strip() # remove first task start token SCREAMING_SNAKE_CASE : List[str] = self.pre_processor.tokenajson(A ) return sequence["answer"]
359
'''simple docstring''' from __future__ import annotations from typing import Generic, TypeVar UpperCamelCase_ = TypeVar("T") class _a ( Generic[T] ): '''simple docstring''' def __init__( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = data SCREAMING_SNAKE_CASE : int = self SCREAMING_SNAKE_CASE : Optional[Any] = 0 class _a ( Generic[T] ): '''simple docstring''' def __init__( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : dict[T, DisjointSetTreeNode[T]] = {} def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = DisjointSetTreeNode(A ) def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.map[data] if elem_ref != elem_ref.parent: SCREAMING_SNAKE_CASE : Union[str, Any] = self.find_set(elem_ref.parent.data ) return elem_ref.parent def UpperCamelCase_ ( self, A, A ): '''simple docstring''' if nodea.rank > nodea.rank: SCREAMING_SNAKE_CASE : Optional[int] = nodea else: SCREAMING_SNAKE_CASE : Optional[int] = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def UpperCamelCase_ ( self, A, A ): '''simple docstring''' self.link(self.find_set(A ), self.find_set(A ) ) class _a ( Generic[T] ): '''simple docstring''' def __init__( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : dict[T, dict[T, int]] = {} def UpperCamelCase_ ( self, A ): '''simple docstring''' if node not in self.connections: SCREAMING_SNAKE_CASE : Dict = {} def UpperCamelCase_ ( self, A, A, A ): '''simple docstring''' self.add_node(A ) self.add_node(A ) SCREAMING_SNAKE_CASE : Dict = weight SCREAMING_SNAKE_CASE : Optional[int] = weight def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = [] SCREAMING_SNAKE_CASE : int = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start) ) edges.append((start, end, self.connections[start][end]) ) edges.sort(key=lambda A : x[2] ) # creating the disjoint set SCREAMING_SNAKE_CASE : int = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(A ) # MST generation SCREAMING_SNAKE_CASE : str = 0 SCREAMING_SNAKE_CASE : str = 0 SCREAMING_SNAKE_CASE : Dict = GraphUndirectedWeighted[T]() while num_edges < len(self.connections ) - 1: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = edges[index] index += 1 SCREAMING_SNAKE_CASE : List[Any] = disjoint_set.find_set(A ) SCREAMING_SNAKE_CASE : Tuple = disjoint_set.find_set(A ) if parent_u != parent_v: num_edges += 1 graph.add_edge(A, A, A ) disjoint_set.union(A, A ) return graph
246
0
'''simple docstring''' import torch from diffusers import DiffusionPipeline class __UpperCamelCase ( lowerCamelCase__ ): def __init__( self, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" super().__init__() self.register_modules(unet=lowerCAmelCase, scheduler=lowerCAmelCase ) def __call__( self ): """simple docstring""" lowerCamelCase_ =torch.randn( (1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size), ) lowerCamelCase_ =1 lowerCamelCase_ =self.unet(lowerCAmelCase, lowerCAmelCase ).sample lowerCamelCase_ =self.scheduler.step(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ).prev_sample lowerCamelCase_ =scheduler_output - scheduler_output + torch.ones_like(lowerCAmelCase ) return result
75
import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A_ : '''simple docstring''' def __init__(self , lowercase__ , lowercase__=13 , lowercase__=3 , lowercase__=True , lowercase__=True , lowercase__=0.1 , lowercase__=0.1 , lowercase__=224 , lowercase__=1_000 , lowercase__=[3, 3, 6, 4] , lowercase__=[48, 56, 112, 220] , ) -> int: __UpperCAmelCase = parent __UpperCAmelCase = batch_size __UpperCAmelCase = num_channels __UpperCAmelCase = is_training __UpperCAmelCase = use_labels __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = num_labels __UpperCAmelCase = image_size __UpperCAmelCase = layer_depths __UpperCAmelCase = embed_dims def lowerCAmelCase_ (self ) -> str: __UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase = None if self.use_labels: __UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) __UpperCAmelCase = self.get_config() return config, pixel_values, labels def lowerCAmelCase_ (self ) -> Optional[Any]: return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act='''gelu''' , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=lowercase__ , layer_scale_init_value=1E-5 , ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ ) -> int: __UpperCAmelCase = SwiftFormerModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() __UpperCAmelCase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ ) -> List[Any]: __UpperCAmelCase = self.num_labels __UpperCAmelCase = SwiftFormerForImageClassification(lowercase__ ) model.to(lowercase__ ) model.eval() __UpperCAmelCase = model(lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) __UpperCAmelCase = SwiftFormerForImageClassification(lowercase__ ) model.to(lowercase__ ) model.eval() __UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase = model(lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase_ (self ) -> Optional[int]: ((__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase)) = self.prepare_config_and_inputs() __UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class A_ ( _a , _a , unittest.TestCase ): '''simple docstring''' a__ = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () a__ = ( {"feature-extraction": SwiftFormerModel, "image-classification": SwiftFormerForImageClassification} if is_torch_available() else {} ) a__ = False a__ = False a__ = False a__ = False a__ = False def lowerCAmelCase_ (self ) -> List[str]: __UpperCAmelCase = SwiftFormerModelTester(self ) __UpperCAmelCase = ConfigTester( self , config_class=lowercase__ , has_text_modality=lowercase__ , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def lowerCAmelCase_ (self ) -> Dict: self.config_tester.run_common_tests() @unittest.skip(reason='''SwiftFormer does not use inputs_embeds''' ) def lowerCAmelCase_ (self ) -> List[Any]: pass def lowerCAmelCase_ (self ) -> Any: __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase = model_class(lowercase__ ) __UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase__ , nn.Linear ) ) def lowerCAmelCase_ (self ) -> Optional[int]: __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase = model_class(lowercase__ ) __UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase = [*signature.parameters.keys()] __UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowercase__ ) def lowerCAmelCase_ (self ) -> Optional[int]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__ ) def lowerCAmelCase_ (self ) -> Optional[int]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase__ ) @slow def lowerCAmelCase_ (self ) -> Any: for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase = SwiftFormerModel.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) @unittest.skip(reason='''SwiftFormer does not output attentions''' ) def lowerCAmelCase_ (self ) -> List[str]: pass def lowerCAmelCase_ (self ) -> Union[str, Any]: def check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ ): __UpperCAmelCase = model_class(lowercase__ ) model.to(lowercase__ ) model.eval() with torch.no_grad(): __UpperCAmelCase = model(**self._prepare_for_class(lowercase__ , lowercase__ ) ) __UpperCAmelCase = outputs.hidden_states __UpperCAmelCase = 8 self.assertEqual(len(lowercase__ ) , lowercase__ ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(lowercase__ ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase = True check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase = True check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Tuple: def _config_zero_init(lowercase__ ): __UpperCAmelCase = copy.deepcopy(lowercase__ ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(lowercase__ , lowercase__ , 1E-10 ) if isinstance(getattr(lowercase__ , lowercase__ , lowercase__ ) , lowercase__ ): __UpperCAmelCase = _config_zero_init(getattr(lowercase__ , lowercase__ ) ) setattr(lowercase__ , lowercase__ , lowercase__ ) return configs_no_init __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase = _config_zero_init(lowercase__ ) for model_class in self.all_model_classes: __UpperCAmelCase = model_class(config=lowercase__ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9) / 1E9).round().item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowerCAmelCase_ (self ) -> Optional[Any]: pass def __a ( ) -> Any: '''simple docstring''' __UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class A_ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase_ (self ) -> str: return ViTImageProcessor.from_pretrained('''MBZUAI/swiftformer-xs''' ) if is_vision_available() else None @slow def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = SwiftFormerForImageClassification.from_pretrained('''MBZUAI/swiftformer-xs''' ).to(lowercase__ ) __UpperCAmelCase = self.default_image_processor __UpperCAmelCase = prepare_img() __UpperCAmelCase = image_processor(images=lowercase__ , return_tensors='''pt''' ).to(lowercase__ ) # forward pass with torch.no_grad(): __UpperCAmelCase = model(**lowercase__ ) # verify the logits __UpperCAmelCase = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , lowercase__ ) __UpperCAmelCase = torch.tensor([[-2.1703E00, 2.1107E00, -2.0811E00]] ).to(lowercase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase__ , atol=1E-4 ) )
333
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { """google/mobilenet_v1_1.0_224""": """https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json""", """google/mobilenet_v1_0.75_192""": """https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json""", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class lowercase ( __UpperCamelCase): """simple docstring""" a__ : Optional[int] = "mobilenet_v1" def __init__( self : Tuple , __UpperCAmelCase : List[str]=3 , __UpperCAmelCase : Dict=224 , __UpperCAmelCase : List[Any]=1.0 , __UpperCAmelCase : List[Any]=8 , __UpperCAmelCase : List[Any]="relu6" , __UpperCAmelCase : str=True , __UpperCAmelCase : Optional[Any]=0.999 , __UpperCAmelCase : Dict=0.02 , __UpperCAmelCase : Tuple=0.001 , **__UpperCAmelCase : Tuple , ) -> List[Any]: super().__init__(**__UpperCAmelCase ) if depth_multiplier <= 0: raise ValueError("""depth_multiplier must be greater than zero.""" ) UpperCAmelCase_= num_channels UpperCAmelCase_= image_size UpperCAmelCase_= depth_multiplier UpperCAmelCase_= min_depth UpperCAmelCase_= hidden_act UpperCAmelCase_= tf_padding UpperCAmelCase_= classifier_dropout_prob UpperCAmelCase_= initializer_range UpperCAmelCase_= layer_norm_eps class lowercase ( __UpperCamelCase): """simple docstring""" a__ : Union[str, Any] = version.parse("1.11") @property def _SCREAMING_SNAKE_CASE ( self : Any ) -> Mapping[str, Mapping[int, str]]: return OrderedDict([("""pixel_values""", {0: """batch"""})] ) @property def _SCREAMING_SNAKE_CASE ( self : int ) -> Mapping[str, Mapping[int, str]]: if self.task == "image-classification": return OrderedDict([("""logits""", {0: """batch"""})] ) else: return OrderedDict([("""last_hidden_state""", {0: """batch"""}), ("""pooler_output""", {0: """batch"""})] ) @property def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> float: return 1E-4
351
from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowercase ( snake_case__): """simple docstring""" def __init__( self : Dict , __UpperCAmelCase : Tuple , __UpperCAmelCase : List[Any] ) -> List[str]: super().__init__() # make sure scheduler can always be converted to DDIM UpperCAmelCase_= DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=__UpperCAmelCase , scheduler=__UpperCAmelCase ) @torch.no_grad() def __call__( self : Union[str, Any] , __UpperCAmelCase : int = 1 , __UpperCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __UpperCAmelCase : float = 0.0 , __UpperCAmelCase : int = 50 , __UpperCAmelCase : Optional[bool] = None , __UpperCAmelCase : Optional[str] = "pil" , __UpperCAmelCase : bool = True , ) -> Union[ImagePipelineOutput, Tuple]: # Sample gaussian noise to begin loop if isinstance(self.unet.config.sample_size , __UpperCAmelCase ): UpperCAmelCase_= ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: UpperCAmelCase_= (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) and len(__UpperCAmelCase ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(__UpperCAmelCase )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) UpperCAmelCase_= randn_tensor(__UpperCAmelCase , generator=__UpperCAmelCase , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(__UpperCAmelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output UpperCAmelCase_= self.unet(__UpperCAmelCase , __UpperCAmelCase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 UpperCAmelCase_= self.scheduler.step( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , eta=__UpperCAmelCase , use_clipped_model_output=__UpperCAmelCase , generator=__UpperCAmelCase ).prev_sample UpperCAmelCase_= (image / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase_= image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase_= self.numpy_to_pil(__UpperCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__UpperCAmelCase )
277
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { '''weiweishi/roc-bert-base-zh''': '''https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json''', } class UpperCAmelCase_ ( UpperCamelCase ): '''simple docstring''' __A : Tuple = "roc_bert" def __init__( self , __A=3_0522 , __A=768 , __A=12 , __A=12 , __A=3072 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=2 , __A=0.02 , __A=1e-12 , __A=True , __A=0 , __A="absolute" , __A=None , __A=True , __A=True , __A=768 , __A=910 , __A=512 , __A=2_4858 , __A=True , **__A , ): """simple docstring""" lowerCamelCase : str = vocab_size lowerCamelCase : Optional[Any] = max_position_embeddings lowerCamelCase : Optional[int] = hidden_size lowerCamelCase : Dict = num_hidden_layers lowerCamelCase : Any = num_attention_heads lowerCamelCase : List[Any] = intermediate_size lowerCamelCase : Union[str, Any] = hidden_act lowerCamelCase : List[Any] = hidden_dropout_prob lowerCamelCase : List[str] = attention_probs_dropout_prob lowerCamelCase : Union[str, Any] = initializer_range lowerCamelCase : int = type_vocab_size lowerCamelCase : Union[str, Any] = layer_norm_eps lowerCamelCase : List[str] = use_cache lowerCamelCase : Optional[int] = enable_pronunciation lowerCamelCase : str = enable_shape lowerCamelCase : Union[str, Any] = pronunciation_embed_dim lowerCamelCase : Tuple = pronunciation_vocab_size lowerCamelCase : Optional[int] = shape_embed_dim lowerCamelCase : List[str] = shape_vocab_size lowerCamelCase : List[str] = concat_input lowerCamelCase : Dict = position_embedding_type lowerCamelCase : Optional[Any] = classifier_dropout super().__init__(pad_token_id=__A , **__A )
283
import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor _snake_case = logging.get_logger(__name__) class UpperCAmelCase_ ( UpperCamelCase ): '''simple docstring''' def __init__( self , *__A , **__A ): """simple docstring""" warnings.warn( "The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use DPTImageProcessor instead." , __A , ) super().__init__(*__A , **__A )
283
1
"""simple docstring""" import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging _a : Optional[int]= logging.get_logger(__name__) class UpperCamelCase ( lowercase ): UpperCAmelCase : Any = ["""input_features"""] def __init__(self : int , _A : Any=80 , _A : Any=1_60_00 , _A : Union[str, Any]=1_60 , _A : int=30 , _A : str=4_00 , _A : Any=0.0 , _A : Optional[int]=False , **_A : List[str] , ) -> Optional[int]: super().__init__( feature_size=_A , sampling_rate=_A , padding_value=_A , return_attention_mask=_A , **_A , ) __snake_case : List[str] = n_fft __snake_case : str = hop_length __snake_case : Optional[Any] = chunk_length __snake_case : int = chunk_length * sampling_rate __snake_case : List[str] = self.n_samples // hop_length __snake_case : Any = sampling_rate __snake_case : Optional[Any] = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=_A , min_frequency=0.0 , max_frequency=8_000.0 , sampling_rate=_A , norm='slaney' , mel_scale='slaney' , ) def _lowercase (self : str , _A : np.array) -> np.ndarray: __snake_case : Optional[int] = spectrogram( _A , window_function(self.n_fft , 'hann') , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel='log10' , ) __snake_case : List[str] = log_spec[:, :-1] __snake_case : str = np.maximum(_A , log_spec.max() - 8.0) __snake_case : Any = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def _lowercase (_A : List[np.ndarray] , _A : List[np.ndarray] , _A : float = 0.0) -> List[np.ndarray]: if attention_mask is not None: __snake_case : Optional[Any] = np.array(_A , np.intaa) __snake_case : Tuple = [] for vector, length in zip(_A , attention_mask.sum(-1)): __snake_case : Dict = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7) if length < normed_slice.shape[0]: __snake_case : List[Any] = padding_value normed_input_values.append(_A) else: __snake_case : int = [(x - x.mean()) / np.sqrt(x.var() + 1E-7) for x in input_values] return normed_input_values def __call__(self : Any , _A : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _A : bool = True , _A : Optional[int] = None , _A : Optional[Union[str, TensorType]] = None , _A : Optional[bool] = None , _A : Optional[str] = "max_length" , _A : Optional[int] = None , _A : Optional[int] = None , _A : Optional[bool] = None , **_A : Any , ) -> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a" f" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input" f" was sampled with {self.sampling_rate} and not {sampling_rate}.") else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.') __snake_case : Dict = isinstance(_A , np.ndarray) and len(raw_speech.shape) > 1 if is_batched_numpy and len(raw_speech.shape) > 2: raise ValueError(f"Only mono-channel audio is supported for input to {self}") __snake_case : Dict = is_batched_numpy or ( isinstance(_A , (list, tuple)) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list))) ) if is_batched: __snake_case : List[str] = [np.asarray([speech] , dtype=np.floataa).T for speech in raw_speech] elif not is_batched and not isinstance(_A , np.ndarray): __snake_case : Tuple = np.asarray(_A , dtype=np.floataa) elif isinstance(_A , np.ndarray) and raw_speech.dtype is np.dtype(np.floataa): __snake_case : str = raw_speech.astype(np.floataa) # always return batch if not is_batched: __snake_case : int = [np.asarray([raw_speech]).T] __snake_case : Any = BatchFeature({'input_features': raw_speech}) # convert into correct format for padding __snake_case : Any = self.pad( _A , padding=_A , max_length=max_length if max_length else self.n_samples , truncation=_A , pad_to_multiple_of=_A , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: __snake_case : Optional[Any] = self.zero_mean_unit_var_norm( padded_inputs['input_features'] , attention_mask=padded_inputs['attention_mask'] , padding_value=self.padding_value , ) __snake_case : Optional[Any] = np.stack(padded_inputs['input_features'] , axis=0) # make sure list is in array format __snake_case : Union[str, Any] = padded_inputs.get('input_features').transpose(2 , 0 , 1) __snake_case : List[Any] = [self._np_extract_fbank_features(_A) for waveform in input_features[0]] if isinstance(input_features[0] , _A): __snake_case : Union[str, Any] = [np.asarray(_A , dtype=np.floataa) for feature in input_features] else: __snake_case : Optional[int] = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) __snake_case : Union[str, Any] = padded_inputs['attention_mask'][:, :: self.hop_length] if return_tensors is not None: __snake_case : Dict = padded_inputs.convert_to_tensors(_A) return padded_inputs def _lowercase (self : Optional[int]) -> Dict[str, Any]: __snake_case : List[Any] = copy.deepcopy(self.__dict__) __snake_case : Union[str, Any] = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
95
"""simple docstring""" import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() _a : Optional[int]= logging.get_logger() @dataclass class UpperCamelCase : UpperCAmelCase : nn.Module UpperCAmelCase : List[nn.Module] = field(default_factory=lowercase ) UpperCAmelCase : list = field(default_factory=lowercase ) def _lowercase (self : str , _A : Optional[Any] , _A : Tensor , _A : Tensor) -> Any: __snake_case : str = len(list(m.modules())) == 1 or isinstance(_A , nn.Convad) or isinstance(_A , nn.BatchNormad) if has_not_submodules: self.traced.append(_A) def __call__(self : Dict , _A : Tensor) -> Optional[Any]: for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook)) self.module(_A) [x.remove() for x in self.handles] return self @property def _lowercase (self : Union[str, Any]) -> List[str]: # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda _A: len(list(x.state_dict().keys())) > 0 , self.traced)) @dataclass class UpperCamelCase : UpperCAmelCase : nn.Module UpperCAmelCase : nn.Module UpperCAmelCase : int = 0 UpperCAmelCase : List = field(default_factory=lowercase ) UpperCAmelCase : List = field(default_factory=lowercase ) def __call__(self : List[str] , _A : Tensor) -> List[Any]: __snake_case : Any = Tracker(self.dest)(_A).parametrized __snake_case : int = Tracker(self.src)(_A).parametrized __snake_case : List[Any] = list(filter(lambda _A: type(_A) not in self.src_skip , _A)) __snake_case : Any = list(filter(lambda _A: type(_A) not in self.dest_skip , _A)) if len(_A) != len(_A): raise Exception( f"Numbers of operations are different. Source module has {len(_A)} operations while" f" destination module has {len(_A)}.") for dest_m, src_m in zip(_A , _A): dest_m.load_state_dict(src_m.state_dict()) if self.verbose == 1: print(f"Transfered from={src_m} to={dest_m}") def __UpperCAmelCase ( UpperCAmelCase_ : str , UpperCAmelCase_ : ResNetConfig , UpperCAmelCase_ : Path , UpperCAmelCase_ : bool = True ) -> List[str]: '''simple docstring''' print(F"Converting {name}..." ) with torch.no_grad(): __snake_case : Dict = timm.create_model(UpperCAmelCase_ , pretrained=UpperCAmelCase_ ).eval() __snake_case : List[Any] = ResNetForImageClassification(UpperCAmelCase_ ).eval() __snake_case : int = ModuleTransfer(src=UpperCAmelCase_ , dest=UpperCAmelCase_ ) __snake_case : Optional[Any] = torch.randn((1, 3, 2_24, 2_24) ) module_transfer(UpperCAmelCase_ ) assert torch.allclose(from_model(UpperCAmelCase_ ) , our_model(UpperCAmelCase_ ).logits ), "The model logits don't match the original one." __snake_case : str = F"resnet{'-'.join(name.split('resnet' ) )}" print(UpperCAmelCase_ ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='Add model' , use_temp_dir=UpperCAmelCase_ , ) # we can use the convnext one __snake_case : int = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='Add image processor' , use_temp_dir=UpperCAmelCase_ , ) print(F"Pushed {checkpoint_name}" ) def __UpperCAmelCase ( UpperCAmelCase_ : Path , UpperCAmelCase_ : str = None , UpperCAmelCase_ : bool = True ) -> Union[str, Any]: '''simple docstring''' __snake_case : str = 'imagenet-1k-id2label.json' __snake_case : Optional[Any] = 10_00 __snake_case : Any = (1, num_labels) __snake_case : List[Any] = 'huggingface/label-files' __snake_case : Dict = num_labels __snake_case : Any = json.load(open(hf_hub_download(UpperCAmelCase_ , UpperCAmelCase_ , repo_type='dataset' ) , 'r' ) ) __snake_case : Any = {int(UpperCAmelCase_ ): v for k, v in idalabel.items()} __snake_case : Optional[Any] = idalabel __snake_case : Optional[Any] = {v: k for k, v in idalabel.items()} __snake_case : Optional[int] = partial(UpperCAmelCase_ , num_labels=UpperCAmelCase_ , idalabel=UpperCAmelCase_ , labelaid=UpperCAmelCase_ ) __snake_case : str = { 'resnet18': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 1_28, 2_56, 5_12] , layer_type='basic' ), 'resnet26': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type='bottleneck' ), 'resnet34': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 1_28, 2_56, 5_12] , layer_type='basic' ), 'resnet50': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type='bottleneck' ), 'resnet101': ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type='bottleneck' ), 'resnet152': ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type='bottleneck' ), } if model_name: convert_weight_and_push(UpperCAmelCase_ , names_to_config[model_name] , UpperCAmelCase_ , UpperCAmelCase_ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) return config, expected_shape if __name__ == "__main__": _a : Optional[Any]= argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default=None, type=str, help=( "The name of the model you wish to convert, it must be one of the supported resnet* architecture," " currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=Path, required=True, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=True, type=bool, required=False, help="If True, push model and image processor to the hub.", ) _a : Union[str, Any]= parser.parse_args() _a : Path= args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
95
1
import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class _snake_case ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]: SCREAMING_SNAKE_CASE = 'ZinengTang/tvlt-base' SCREAMING_SNAKE_CASE = tempfile.mkdtemp() def SCREAMING_SNAKE_CASE__ ( self , **a) -> Any: return TvltImageProcessor.from_pretrained(self.checkpoint , **a) def SCREAMING_SNAKE_CASE__ ( self , **a) -> str: return TvltFeatureExtractor.from_pretrained(self.checkpoint , **a) def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]: shutil.rmtree(self.tmpdirname) def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]: SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_feature_extractor() SCREAMING_SNAKE_CASE = TvltProcessor(image_processor=a , feature_extractor=a) processor.save_pretrained(self.tmpdirname) SCREAMING_SNAKE_CASE = TvltProcessor.from_pretrained(self.tmpdirname) self.assertIsInstance(processor.feature_extractor , a) self.assertIsInstance(processor.image_processor , a) def SCREAMING_SNAKE_CASE__ ( self) -> Tuple: SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_feature_extractor() SCREAMING_SNAKE_CASE = TvltProcessor(image_processor=a , feature_extractor=a) SCREAMING_SNAKE_CASE = np.ones([1_2000]) SCREAMING_SNAKE_CASE = feature_extractor(a , return_tensors='np') SCREAMING_SNAKE_CASE = processor(audio=a , return_tensors='np') for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1E-2) def SCREAMING_SNAKE_CASE__ ( self) -> List[str]: SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_feature_extractor() SCREAMING_SNAKE_CASE = TvltProcessor(image_processor=a , feature_extractor=a) SCREAMING_SNAKE_CASE = np.ones([3, 224, 224]) SCREAMING_SNAKE_CASE = image_processor(a , return_tensors='np') SCREAMING_SNAKE_CASE = processor(images=a , return_tensors='np') for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1E-2) def SCREAMING_SNAKE_CASE__ ( self) -> List[str]: SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_feature_extractor() SCREAMING_SNAKE_CASE = TvltProcessor(image_processor=a , feature_extractor=a) SCREAMING_SNAKE_CASE = np.ones([1_2000]) SCREAMING_SNAKE_CASE = np.ones([3, 224, 224]) SCREAMING_SNAKE_CASE = processor(audio=a , images=a) self.assertListEqual(list(inputs.keys()) , ['audio_values', 'audio_mask', 'pixel_values', 'pixel_mask']) # test if it raises when no input is passed with pytest.raises(a): processor() def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]: SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_feature_extractor() SCREAMING_SNAKE_CASE = TvltProcessor(image_processor=a , feature_extractor=a) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg='`processor` and `image_processor`+`feature_extractor` model input names do not match' , )
137
import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger a_ : List[Any] = get_logger(__name__) class _snake_case ( enum.Enum ): _lowercase : Any = '''all_checks''' _lowercase : str = '''basic_checks''' _lowercase : str = '''no_checks''' class _snake_case ( A__ ): pass class _snake_case ( A__ ): pass class _snake_case ( A__ ): pass class _snake_case ( A__ ): pass def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None): if expected_checksums is None: logger.info('Unable to verify checksums.') return if len(set(_UpperCAmelCase) - set(_UpperCAmelCase)) > 0: raise ExpectedMoreDownloadedFiles(str(set(_UpperCAmelCase) - set(_UpperCAmelCase))) if len(set(_UpperCAmelCase) - set(_UpperCAmelCase)) > 0: raise UnexpectedDownloadedFile(str(set(_UpperCAmelCase) - set(_UpperCAmelCase))) SCREAMING_SNAKE_CASE = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] SCREAMING_SNAKE_CASE = ' for ' + verification_name if verification_name is not None else '' if len(_UpperCAmelCase) > 0: raise NonMatchingChecksumError( F'''Checksums didn\'t match{for_verification_name}:\n''' F'''{bad_urls}\n''' 'Set `verification_mode=\'no_checks\'` to skip checksums verification and ignore this error') logger.info('All the checksums matched successfully' + for_verification_name) class _snake_case ( A__ ): pass class _snake_case ( A__ ): pass class _snake_case ( A__ ): pass class _snake_case ( A__ ): pass def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): if expected_splits is None: logger.info('Unable to verify splits sizes.') return if len(set(_UpperCAmelCase) - set(_UpperCAmelCase)) > 0: raise ExpectedMoreSplits(str(set(_UpperCAmelCase) - set(_UpperCAmelCase))) if len(set(_UpperCAmelCase) - set(_UpperCAmelCase)) > 0: raise UnexpectedSplits(str(set(_UpperCAmelCase) - set(_UpperCAmelCase))) SCREAMING_SNAKE_CASE = [ {'expected': expected_splits[name], 'recorded': recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(_UpperCAmelCase) > 0: raise NonMatchingSplitsSizesError(str(_UpperCAmelCase)) logger.info('All the splits matched successfully.') def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase = True): if record_checksum: SCREAMING_SNAKE_CASE = shaaaa() with open(_UpperCAmelCase , 'rb') as f: for chunk in iter(lambda: f.read(1 << 20) , B''): m.update(_UpperCAmelCase) SCREAMING_SNAKE_CASE = m.hexdigest() else: SCREAMING_SNAKE_CASE = None return {"num_bytes": os.path.getsize(_UpperCAmelCase), "checksum": checksum} def lowerCamelCase__ (_UpperCAmelCase): if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
137
1
import torch from diffusers import DiffusionPipeline class lowercase_ ( __SCREAMING_SNAKE_CASE ): def __init__( self , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" super().__init__() self.register_modules(unet=__UpperCamelCase , scheduler=__UpperCamelCase ) def __call__( self ): """simple docstring""" UpperCamelCase_ = torch.randn( (1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , ) UpperCamelCase_ = 1 UpperCamelCase_ = self.unet(__UpperCamelCase , __UpperCamelCase ).sample UpperCamelCase_ = self.scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ).prev_sample UpperCamelCase_ = scheduler_output - scheduler_output + torch.ones_like(__UpperCamelCase ) return result
261
import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def lowerCamelCase__ ( a__ : Dict ) -> List[Any]: UpperCamelCase_ = {} UpperCamelCase_ = tokenizer(example["""content"""] , truncation=a__ )["""input_ids"""] UpperCamelCase_ = len(example["""content"""] ) / len(output["""input_ids"""] ) return output _A = HfArgumentParser(PretokenizationArguments) _A = parser.parse_args() if args.num_workers is None: _A = multiprocessing.cpu_count() _A = AutoTokenizer.from_pretrained(args.tokenizer_dir) _A = time.time() _A = load_dataset(args.dataset_name, split='''train''') print(F'''Dataset loaded in {time.time()-t_start:.2f}s''') _A = time.time() _A = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ '''repo_name''', '''path''', '''copies''', '''size''', '''content''', '''license''', '''hash''', '''line_mean''', '''line_max''', '''alpha_frac''', '''autogenerated''', ], ) print(F'''Dataset tokenized in {time.time()-t_start:.2f}s''') _A = time.time() ds.push_to_hub(args.tokenized_data_repo) print(F'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
261
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor _UpperCamelCase : str = logging.get_logger(__name__) class UpperCAmelCase_ ( _a): def __init__( self , *a , **a ) -> Dict: warnings.warn( 'The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use VideoMAEImageProcessor instead.' , snake_case_ , ) super().__init__(*snake_case_ , **snake_case_ )
77
'''simple docstring''' import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings __a = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class UpperCAmelCase_ ( _a ): """simple docstring""" lowercase = field(default=_a , metadata={"help": "Whether to use SortishSampler or not."} ) lowercase = field( default=_a , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) lowercase = field( default=_a , metadata={ "help": ( "The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `max_length` value of the model configuration." ) } , ) lowercase = field( default=_a , metadata={ "help": ( "The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `num_beams` value of the model configuration." ) } , ) lowercase = field( default=_a , metadata={ "help": "Model id, file path or url pointing to a GenerationConfig json file, to use during prediction." } , ) def lowerCamelCase ( self : List[str] ): snake_case__ : int = super().to_dict() for k, v in d.items(): if isinstance(snake_case_ , snake_case_ ): snake_case__ : Optional[int] = v.to_dict() return d
35
0
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging UpperCamelCase = logging.get_logger(__name__) def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = set() _SCREAMING_SNAKE_CASE = [] def parse_line(snake_case__ ): for line in fp: if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = line.decode("""UTF-8""" ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(""" """ ): # process a single warning and move it to `selected_warnings`. if len(snake_case__ ) > 0: _SCREAMING_SNAKE_CASE = """\n""".join(snake_case__ ) # Only keep the warnings specified in `targets` if any(F': {x}: ' in warning for x in targets ): selected_warnings.add(snake_case__ ) buffer.clear() continue else: _SCREAMING_SNAKE_CASE = line.strip() buffer.append(snake_case__ ) if from_gh: for filename in os.listdir(snake_case__ ): _SCREAMING_SNAKE_CASE = os.path.join(snake_case__ ,snake_case__ ) if not os.path.isdir(snake_case__ ): # read the file if filename != "warnings.txt": continue with open(snake_case__ ) as fp: parse_line(snake_case__ ) else: try: with zipfile.ZipFile(snake_case__ ) as z: for filename in z.namelist(): if not os.path.isdir(snake_case__ ): # read the file if filename != "warnings.txt": continue with z.open(snake_case__ ) as fp: parse_line(snake_case__ ) except Exception: logger.warning( F'{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.' ) return selected_warnings def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE = set() _SCREAMING_SNAKE_CASE = [os.path.join(snake_case__ ,snake_case__ ) for p in os.listdir(snake_case__ ) if (p.endswith(""".zip""" ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(snake_case__ ,snake_case__ ) ) return selected_warnings if __name__ == "__main__": def __lowerCamelCase ( snake_case__ ) -> int: """simple docstring""" return values.split(""",""" ) UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''') parser.add_argument( '''--output_dir''', type=str, required=True, help='''Where to store the downloaded artifacts and other result files.''', ) parser.add_argument('''--token''', default=None, type=str, help='''A token that has actions:read permission.''') # optional parameters parser.add_argument( '''--targets''', default='''DeprecationWarning,UserWarning,FutureWarning''', type=list_str, help='''Comma-separated list of target warning(s) which we want to extract.''', ) parser.add_argument( '''--from_gh''', action='''store_true''', help='''If running from a GitHub action workflow and collecting warnings from its artifacts.''', ) UpperCamelCase = parser.parse_args() UpperCamelCase = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links UpperCamelCase = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, '''artifacts.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print('''=''' * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts UpperCamelCase = extract_warnings(args.output_dir, args.targets) UpperCamelCase = sorted(selected_warnings) with open(os.path.join(args.output_dir, '''selected_warnings.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
125
from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class __UpperCAmelCase : def __init__( self: Tuple , UpperCAmelCase_: Tuple , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = 13 _SCREAMING_SNAKE_CASE = 7 _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = 99 _SCREAMING_SNAKE_CASE = 32 _SCREAMING_SNAKE_CASE = 2 _SCREAMING_SNAKE_CASE = 4 _SCREAMING_SNAKE_CASE = 37 _SCREAMING_SNAKE_CASE = """gelu""" _SCREAMING_SNAKE_CASE = 0.1 _SCREAMING_SNAKE_CASE = 0.1 _SCREAMING_SNAKE_CASE = 512 _SCREAMING_SNAKE_CASE = 16 _SCREAMING_SNAKE_CASE = 2 _SCREAMING_SNAKE_CASE = 0.02 _SCREAMING_SNAKE_CASE = 3 _SCREAMING_SNAKE_CASE = 4 _SCREAMING_SNAKE_CASE = None def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = None if self.use_input_mask: _SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None if self.use_labels: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) _SCREAMING_SNAKE_CASE = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self: Tuple ): '''simple docstring''' ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) = self.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def UpperCamelCase ( self: int , UpperCAmelCase_: Dict , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: Dict , UpperCAmelCase_: Dict , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFEsmModel(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": input_mask} _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = [input_ids, input_mask] _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Dict , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Any , UpperCAmelCase_: List[str] , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = TFEsmModel(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """encoder_hidden_states""": encoder_hidden_states, """encoder_attention_mask""": encoder_attention_mask, } _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = [input_ids, input_mask] _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , encoder_hidden_states=UpperCAmelCase_ ) # Also check the case where encoder outputs are not passed _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self: Dict , UpperCAmelCase_: List[Any] , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: List[str] , UpperCAmelCase_: str , UpperCAmelCase_: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFEsmForMaskedLM(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self: List[Any] , UpperCAmelCase_: Tuple , UpperCAmelCase_: str , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: int , UpperCAmelCase_: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = TFEsmForTokenClassification(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": input_mask} _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase ( self: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) = config_and_inputs _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class __UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): __snake_case : List[Any] = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) __snake_case : Tuple = ( { "feature-extraction": TFEsmModel, "fill-mask": TFEsmForMaskedLM, "text-classification": TFEsmForSequenceClassification, "token-classification": TFEsmForTokenClassification, "zero-shot": TFEsmForSequenceClassification, } if is_tf_available() else {} ) __snake_case : List[str] = False __snake_case : Union[str, Any] = False def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFEsmModelTester(self ) _SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*UpperCAmelCase_ ) def UpperCamelCase ( self: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ ) @slow def UpperCamelCase ( self: Tuple ): '''simple docstring''' for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _SCREAMING_SNAKE_CASE = TFEsmModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) @unittest.skip("""Protein models do not support embedding resizing.""" ) def UpperCamelCase ( self: Dict ): '''simple docstring''' pass @unittest.skip("""Protein models do not support embedding resizing.""" ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' pass def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE = model_class(UpperCAmelCase_ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer _SCREAMING_SNAKE_CASE = model.get_bias() assert isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) for k, v in name.items(): assert isinstance(UpperCAmelCase_ , tf.Variable ) else: _SCREAMING_SNAKE_CASE = model.get_output_embeddings() assert x is None _SCREAMING_SNAKE_CASE = model.get_bias() assert name is None @require_tf class __UpperCAmelCase (unittest.TestCase ): @slow def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFEsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) _SCREAMING_SNAKE_CASE = tf.constant([[0, 1, 2, 3, 4, 5]] ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ )[0] _SCREAMING_SNAKE_CASE = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , UpperCAmelCase_ ) # compare the actual values for a slice. _SCREAMING_SNAKE_CASE = tf.constant( [ [ [8.92_15_18, -10.58_98_14, -6.4_67_13_07], [-6.3_96_71_56, -13.91_13_77, -1.1_21_19_15], [-7.78_12_47, -13.95_15_57, -3.74_05_92], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-2 ) ) @slow def UpperCamelCase ( self: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFEsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) _SCREAMING_SNAKE_CASE = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ )[0] # compare the actual values for a slice. _SCREAMING_SNAKE_CASE = tf.constant( [ [ [0.14_44_30_92, 0.54_12_53_27, 0.3_24_77_39], [0.30_34_04_84, 0.00_52_66_76, 0.31_07_77_22], [0.32_27_80_43, -0.24_98_70_96, 0.3_41_46_28], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
125
1
'''simple docstring''' import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) lowerCamelCase : Optional[Any] = logging.getLogger() lowerCamelCase : Any = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class A__ ( A__ ): def A ( self : List[str] , _a : List[str] ) -> Optional[int]: '''simple docstring''' os.makedirs(_a , exist_ok=_a ) _SCREAMING_SNAKE_CASE ={'source': 'What is love ?', 'target': 'life'} _SCREAMING_SNAKE_CASE ={'train': 12, 'val': 2, 'test': 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: _SCREAMING_SNAKE_CASE ='\n'.join([contents[field]] * n_lines[split] ) with open(os.path.join(_a , f"{split}.{field}" ) , 'w' ) as f: f.write(_a ) def A ( self : int , _a : int , _a : str = "pytorch" ) -> Optional[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.get_auto_remove_tmp_dir() _SCREAMING_SNAKE_CASE =os.path.join(_a , 'output' ) _SCREAMING_SNAKE_CASE =os.path.join(_a , 'data' ) self._create_dummy_data(data_dir=_a ) _SCREAMING_SNAKE_CASE =f"\n --data_dir {data_dir} \\n --output_dir {output_dir} \\n --model_name_or_path facebook/rag-sequence-base \\n --model_type rag_sequence \\n --do_train \\n --do_predict \\n --n_val -1 \\n --val_check_interval 1.0 \\n --train_batch_size 2 \\n --eval_batch_size 1 \\n --max_source_length 25 \\n --max_target_length 25 \\n --val_max_target_length 25 \\n --test_max_target_length 25 \\n --label_smoothing 0.1 \\n --dropout 0.1 \\n --attention_dropout 0.1 \\n --weight_decay 0.001 \\n --adam_epsilon 1e-08 \\n --max_grad_norm 0.1 \\n --lr_scheduler polynomial \\n --learning_rate 3e-04 \\n --num_train_epochs 1 \\n --warmup_steps 4 \\n --gradient_accumulation_steps 1 \\n --distributed-port 8787 \\n --use_dummy_dataset 1 \\n --distributed_retriever {distributed_retriever} \\n ".split() if gpus > 0: testargs.append(f"--gpus={gpus}" ) if is_apex_available(): testargs.append('--fp16' ) else: testargs.append('--gpus=0' ) testargs.append('--distributed_backend=ddp_cpu' ) testargs.append('--num_processes=2' ) _SCREAMING_SNAKE_CASE =[sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(_a , env=self.get_env() ) _SCREAMING_SNAKE_CASE =os.path.join(_a , 'metrics.json' ) with open(_a ) as f: _SCREAMING_SNAKE_CASE =json.load(_a ) return result @require_torch_gpu def A ( self : List[str] ) -> List[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self._run_finetune(gpus=1 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_multi_gpu def A ( self : Any ) -> Optional[int]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self._run_finetune(gpus=2 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_gpu @require_ray def A ( self : str ) -> Tuple: '''simple docstring''' _SCREAMING_SNAKE_CASE =self._run_finetune(gpus=1 , distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_multi_gpu @require_ray def A ( self : Tuple ) -> Dict: '''simple docstring''' _SCREAMING_SNAKE_CASE =self._run_finetune(gpus=1 , distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 )
47
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ = {'''configuration_mmbt''': ['''MMBTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = ['''MMBTForClassification''', '''MMBTModel''', '''ModalEmbeddings'''] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys a__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
235
0
"""simple docstring""" from functools import lru_cache @lru_cache def lowerCAmelCase_ ( UpperCamelCase_ ) -> int: if num < 0: raise ValueError("Number should not be negative." ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
362
import argparse import json from tqdm import tqdm def lowerCAmelCase_ ( ) -> Tuple: UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--src_path" , type=UpperCamelCase_ , default="biencoder-nq-dev.json" , help="Path to raw DPR training data" , ) parser.add_argument( "--evaluation_set" , type=UpperCamelCase_ , help="where to store parsed evaluation_set file" , ) parser.add_argument( "--gold_data_path" , type=UpperCamelCase_ , help="where to store parsed gold_data_path file" , ) UpperCamelCase_ = parser.parse_args() with open(args.src_path , "r" ) as src_file, open(args.evaluation_set , "w" ) as eval_file, open( args.gold_data_path , "w" ) as gold_file: UpperCamelCase_ = json.load(UpperCamelCase_ ) for dpr_record in tqdm(UpperCamelCase_ ): UpperCamelCase_ = dpr_record["question"] UpperCamelCase_ = [context["title"] for context in dpr_record["positive_ctxs"]] eval_file.write(question + "\n" ) gold_file.write("\t".join(UpperCamelCase_ ) + "\n" ) if __name__ == "__main__": main()
328
0
'''simple docstring''' from __future__ import annotations def UpperCAmelCase_ ( __lowercase : str , __lowercase : list[str] | None = None ) -> list[list[str]]: '''simple docstring''' _UpperCAmelCase = word_bank or [] # create a table _UpperCAmelCase = len(__lowercase ) + 1 _UpperCAmelCase = [] for _ in range(__lowercase ): table.append([] ) # seed value _UpperCAmelCase = [[]] # because empty string has empty combination # iterate through the indices for i in range(__lowercase ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(__lowercase )] == word: _UpperCAmelCase = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(__lowercase )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(__lowercase )]: combination.reverse() return table[len(__lowercase )] if __name__ == "__main__": print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa'''])) print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t'''])) print( all_construct( '''hexagonosaurus''', ['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''], ) )
22
'''simple docstring''' import string from math import logaa def UpperCAmelCase_ ( __lowercase : str , __lowercase : str ) -> int: '''simple docstring''' _UpperCAmelCase = document.translate( str.maketrans("" , "" , string.punctuation ) ).replace("\n" , "" ) _UpperCAmelCase = document_without_punctuation.split(" " ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def UpperCAmelCase_ ( __lowercase : str , __lowercase : str ) -> tuple[int, int]: '''simple docstring''' _UpperCAmelCase = corpus.lower().translate( str.maketrans("" , "" , string.punctuation ) ) # strip all punctuation and replace it with '' _UpperCAmelCase = corpus_without_punctuation.split("\n" ) _UpperCAmelCase = term.lower() return (len([doc for doc in docs if term in doc] ), len(__lowercase )) def UpperCAmelCase_ ( __lowercase : int , __lowercase : int , __lowercase : Union[str, Any]=False ) -> float: '''simple docstring''' if smoothing: if n == 0: raise ValueError("log10(0) is undefined." ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError("df must be > 0" ) elif n == 0: raise ValueError("log10(0) is undefined." ) return round(logaa(n / df ) , 3 ) def UpperCAmelCase_ ( __lowercase : int , __lowercase : int ) -> float: '''simple docstring''' return round(tf * idf , 3 )
22
1
'''simple docstring''' import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class _A : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="resnet50" , __UpperCAmelCase=3 , __UpperCAmelCase=32 , __UpperCAmelCase=3 , __UpperCAmelCase=True , __UpperCAmelCase=True , ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[Any] = parent __UpperCAmelCase : Any = out_indices if out_indices is not None else [4] __UpperCAmelCase : Optional[int] = stage_names __UpperCAmelCase : int = out_features __UpperCAmelCase : Tuple = backbone __UpperCAmelCase : int = batch_size __UpperCAmelCase : Dict = image_size __UpperCAmelCase : Any = num_channels __UpperCAmelCase : List[Any] = use_pretrained_backbone __UpperCAmelCase : Optional[int] = is_training def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase : str = self.get_config() return config, pixel_values def __A ( self ) -> List[Any]: '''simple docstring''' return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Tuple = TimmBackbone(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : Optional[Any] = model(__UpperCAmelCase ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Tuple = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase : List[str] = config_and_inputs __UpperCAmelCase : Dict = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch @require_timm class _A ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = (TimmBackbone,) if is_torch_available() else () _SCREAMING_SNAKE_CASE : Dict = {"feature-extraction": TimmBackbone} if is_torch_available() else {} _SCREAMING_SNAKE_CASE : Union[str, Any] = False _SCREAMING_SNAKE_CASE : Union[str, Any] = False _SCREAMING_SNAKE_CASE : str = False _SCREAMING_SNAKE_CASE : Optional[Any] = False def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : List[Any] = TimmBackboneModelTester(self ) __UpperCAmelCase : Optional[int] = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase ) def __A ( self ) -> int: '''simple docstring''' self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : List[Any] = """resnet18""" __UpperCAmelCase : Optional[int] = """microsoft/resnet-18""" __UpperCAmelCase : str = AutoBackbone.from_pretrained(__UpperCAmelCase , use_timm_backbone=__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = AutoBackbone.from_pretrained(__UpperCAmelCase ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) __UpperCAmelCase : str = AutoBackbone.from_pretrained(__UpperCAmelCase , use_timm_backbone=__UpperCAmelCase , out_indices=[1, 2, 3] ) __UpperCAmelCase : List[str] = AutoBackbone.from_pretrained(__UpperCAmelCase , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip("""TimmBackbone doesn't support feed forward chunking""" ) def __A ( self ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip("""TimmBackbone doesn't have num_hidden_layers attribute""" ) def __A ( self ) -> Any: '''simple docstring''' pass @unittest.skip("""TimmBackbone initialization is managed on the timm side""" ) def __A ( self ) -> List[str]: '''simple docstring''' pass @unittest.skip("""TimmBackbone models doesn't have inputs_embeds""" ) def __A ( self ) -> Dict: '''simple docstring''' pass @unittest.skip("""TimmBackbone models doesn't have inputs_embeds""" ) def __A ( self ) -> Dict: '''simple docstring''' pass @unittest.skip("""TimmBackbone model cannot be created without specifying a backbone checkpoint""" ) def __A ( self ) -> List[str]: '''simple docstring''' pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def __A ( self ) -> int: '''simple docstring''' pass @unittest.skip("""model weights aren't tied in TimmBackbone.""" ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip("""model weights aren't tied in TimmBackbone.""" ) def __A ( self ) -> List[Any]: '''simple docstring''' pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def __A ( self ) -> Dict: '''simple docstring''' pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def __A ( self ) -> Optional[int]: '''simple docstring''' pass @unittest.skip("""TimmBackbone doesn't have hidden size info in its configuration.""" ) def __A ( self ) -> Any: '''simple docstring''' pass @unittest.skip("""TimmBackbone doesn't support output_attentions.""" ) def __A ( self ) -> Dict: '''simple docstring''' pass @unittest.skip("""Safetensors is not supported by timm.""" ) def __A ( self ) -> Optional[int]: '''simple docstring''' pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def __A ( self ) -> List[str]: '''simple docstring''' pass def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : str = model_class(__UpperCAmelCase ) __UpperCAmelCase : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : Union[str, Any] = [*signature.parameters.keys()] __UpperCAmelCase : int = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : str = True __UpperCAmelCase : Optional[Any] = self.has_attentions # no need to test all models as different heads yield the same functionality __UpperCAmelCase : List[str] = self.all_model_classes[0] __UpperCAmelCase : Any = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) __UpperCAmelCase : Tuple = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) __UpperCAmelCase : int = model(**__UpperCAmelCase ) __UpperCAmelCase : str = outputs[0][-1] # Encoder-/Decoder-only models __UpperCAmelCase : Union[str, Any] = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: __UpperCAmelCase : Union[str, Any] = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=__UpperCAmelCase ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : int = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Union[str, Any] = model(**__UpperCAmelCase ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None __UpperCAmelCase : Tuple = copy.deepcopy(__UpperCAmelCase ) __UpperCAmelCase : Any = None __UpperCAmelCase : Dict = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : List[Any] = model(**__UpperCAmelCase ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights __UpperCAmelCase : Optional[Any] = copy.deepcopy(__UpperCAmelCase ) __UpperCAmelCase : Tuple = False __UpperCAmelCase : List[str] = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : List[Any] = model(**__UpperCAmelCase )
16
'''simple docstring''' import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class _A : def __init__( self , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=64 , __UpperCAmelCase=None ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : str = np.random.default_rng(__UpperCAmelCase ) __UpperCAmelCase : List[str] = length __UpperCAmelCase : List[Any] = rng.normal(size=(length,) ).astype(np.floataa ) __UpperCAmelCase : Union[str, Any] = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self ) -> Dict: '''simple docstring''' return self.length def __getitem__( self , __UpperCAmelCase ) -> List[str]: '''simple docstring''' return {"x": self.x[i], "y": self.y[i]} class _A ( torch.nn.Module ): def __init__( self , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=False ) -> int: '''simple docstring''' super().__init__() __UpperCAmelCase : List[Any] = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) __UpperCAmelCase : Optional[Any] = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) __UpperCAmelCase : Any = True def __A ( self , __UpperCAmelCase=None ) -> str: '''simple docstring''' if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) __UpperCAmelCase : Optional[int] = False return x * self.a[0] + self.b[0] class _A ( torch.nn.Module ): def __init__( self , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=False ) -> Optional[Any]: '''simple docstring''' super().__init__() __UpperCAmelCase : Tuple = torch.nn.Parameter(torch.tensor(__UpperCAmelCase ).float() ) __UpperCAmelCase : List[str] = torch.nn.Parameter(torch.tensor(__UpperCAmelCase ).float() ) __UpperCAmelCase : str = True def __A ( self , __UpperCAmelCase=None ) -> Tuple: '''simple docstring''' if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) __UpperCAmelCase : int = False return x * self.a + self.b def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int = 16 ): """simple docstring""" from datasets import load_dataset from transformers import AutoTokenizer __UpperCAmelCase : int = AutoTokenizer.from_pretrained("""bert-base-cased""" ) __UpperCAmelCase : List[str] = {"""train""": """tests/test_samples/MRPC/train.csv""", """validation""": """tests/test_samples/MRPC/dev.csv"""} __UpperCAmelCase : Tuple = load_dataset("""csv""" , data_files=lowerCAmelCase__ ) __UpperCAmelCase : Optional[Any] = datasets["""train"""].unique("""label""" ) __UpperCAmelCase : str = {v: i for i, v in enumerate(lowerCAmelCase__ )} def tokenize_function(lowerCAmelCase__ : Optional[Any] ): # max_length=None => use the model max length (it's actually the default) __UpperCAmelCase : List[Any] = tokenizer( examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding="""max_length""" ) if "label" in examples: __UpperCAmelCase : Optional[Any] = [label_to_id[l] for l in examples["""label"""]] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __UpperCAmelCase : Tuple = datasets.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=["""sentence1""", """sentence2""", """label"""] , ) def collate_fn(lowerCAmelCase__ : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowerCAmelCase__ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(lowerCAmelCase__ , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. __UpperCAmelCase : Optional[Any] = DataLoader(tokenized_datasets["""train"""] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=2 ) __UpperCAmelCase : List[Any] = DataLoader(tokenized_datasets["""validation"""] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=1 ) return train_dataloader, eval_dataloader
16
1
def UpperCAmelCase_ ( __snake_case = 50 ) -> int: """simple docstring""" _lowercase =[1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(f'''{solution() = }''')
5
'''simple docstring''' lowerCamelCase : Any = "\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" lowerCamelCase : int = [{"type": "code", "content": INSTALL_CONTENT}] lowerCamelCase : str = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
47
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, PNDMScheduler, StableDiffusionLDMaDPipeline, UNetaDConditionModel, ) from diffusers.utils import nightly, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS enable_full_determinism() class A_ ( unittest.TestCase ): _UpperCAmelCase : Optional[Any] = StableDiffusionLDMaDPipeline _UpperCAmelCase : Optional[Any] = TEXT_TO_IMAGE_PARAMS _UpperCAmelCase : Optional[Any] = TEXT_TO_IMAGE_BATCH_PARAMS _UpperCAmelCase : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS def lowerCAmelCase ( self : Optional[Any]): torch.manual_seed(0) __lowerCamelCase : str = UNetaDConditionModel( block_out_channels=(3_2, 6_4) ,layers_per_block=2 ,sample_size=3_2 ,in_channels=4 ,out_channels=4 ,down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') ,up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') ,cross_attention_dim=3_2 ,) __lowerCamelCase : Tuple = DDIMScheduler( beta_start=0.00085 ,beta_end=0.012 ,beta_schedule='scaled_linear' ,clip_sample=SCREAMING_SNAKE_CASE__ ,set_alpha_to_one=SCREAMING_SNAKE_CASE__ ,) torch.manual_seed(0) __lowerCamelCase : Union[str, Any] = AutoencoderKL( block_out_channels=[3_2, 6_4] ,in_channels=6 ,out_channels=6 ,down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] ,up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] ,latent_channels=4 ,) torch.manual_seed(0) __lowerCamelCase : Tuple = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=3_2 ,intermediate_size=3_7 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_0_0_0 ,) __lowerCamelCase : Optional[int] = CLIPTextModel(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Tuple = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') __lowerCamelCase : Union[str, Any] = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def lowerCAmelCase ( self : int ,SCREAMING_SNAKE_CASE__ : Any ,SCREAMING_SNAKE_CASE__ : Dict=0): if str(SCREAMING_SNAKE_CASE__).startswith('mps'): __lowerCamelCase : int = torch.manual_seed(SCREAMING_SNAKE_CASE__) else: __lowerCamelCase : Optional[Any] = torch.Generator(device=SCREAMING_SNAKE_CASE__).manual_seed(SCREAMING_SNAKE_CASE__) __lowerCamelCase : str = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowerCAmelCase ( self : str): __lowerCamelCase : Any = 'cpu' # ensure determinism for the device-dependent torch.Generator __lowerCamelCase : Optional[int] = self.get_dummy_components() __lowerCamelCase : int = StableDiffusionLDMaDPipeline(**SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[int] = ldmad_pipe.to(SCREAMING_SNAKE_CASE__) ldmad_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__) __lowerCamelCase : Dict = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[int] = ldmad_pipe(**SCREAMING_SNAKE_CASE__) __lowerCamelCase , __lowerCamelCase : Any = output.rgb, output.depth __lowerCamelCase : Union[str, Any] = rgb[0, -3:, -3:, -1] __lowerCamelCase : Optional[Any] = depth[0, -3:, -1] assert rgb.shape == (1, 6_4, 6_4, 3) assert depth.shape == (1, 6_4, 6_4) __lowerCamelCase : int = np.array( [0.37338176, 0.70247, 0.74203193, 0.51643604, 0.58256793, 0.60932136, 0.4181095, 0.48355877, 0.46535262]) __lowerCamelCase : Any = np.array([103.46727, 85.812004, 87.849236]) assert np.abs(image_slice_rgb.flatten() - expected_slice_rgb).max() < 1E-2 assert np.abs(image_slice_depth.flatten() - expected_slice_depth).max() < 1E-2 def lowerCAmelCase ( self : Optional[int]): __lowerCamelCase : Dict = self.get_dummy_components() __lowerCamelCase : Any = StableDiffusionLDMaDPipeline(**SCREAMING_SNAKE_CASE__) __lowerCamelCase : Union[str, Any] = ldmad_pipe.to(SCREAMING_SNAKE_CASE__) ldmad_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__) __lowerCamelCase : str = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Any = 3 * [inputs['prompt']] # forward __lowerCamelCase : int = ldmad_pipe(**SCREAMING_SNAKE_CASE__) __lowerCamelCase , __lowerCamelCase : int = output.rgb, output.depth __lowerCamelCase : Tuple = rgb_slice_a[0, -3:, -3:, -1] __lowerCamelCase : List[str] = depth_slice_a[0, -3:, -1] __lowerCamelCase : str = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Union[str, Any] = 3 * [inputs.pop('prompt')] __lowerCamelCase : List[Any] = ldmad_pipe.tokenizer( SCREAMING_SNAKE_CASE__ ,padding='max_length' ,max_length=ldmad_pipe.tokenizer.model_max_length ,truncation=SCREAMING_SNAKE_CASE__ ,return_tensors='pt' ,) __lowerCamelCase : List[Any] = text_inputs['input_ids'].to(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Dict = ldmad_pipe.text_encoder(SCREAMING_SNAKE_CASE__)[0] __lowerCamelCase : Dict = prompt_embeds # forward __lowerCamelCase : Tuple = ldmad_pipe(**SCREAMING_SNAKE_CASE__) __lowerCamelCase , __lowerCamelCase : Any = output.rgb, output.depth __lowerCamelCase : List[str] = rgb_slice_a[0, -3:, -3:, -1] __lowerCamelCase : List[Any] = depth_slice_a[0, -3:, -1] assert np.abs(rgb_slice_a.flatten() - rgb_slice_a.flatten()).max() < 1E-4 assert np.abs(depth_slice_a.flatten() - depth_slice_a.flatten()).max() < 1E-4 def lowerCAmelCase ( self : Optional[int]): __lowerCamelCase : Union[str, Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator __lowerCamelCase : str = self.get_dummy_components() __lowerCamelCase : List[Any] = PNDMScheduler(skip_prk_steps=SCREAMING_SNAKE_CASE__) __lowerCamelCase : Union[str, Any] = StableDiffusionLDMaDPipeline(**SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[Any] = ldmad_pipe.to(SCREAMING_SNAKE_CASE__) ldmad_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__) __lowerCamelCase : Tuple = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Dict = 'french fries' __lowerCamelCase : Optional[int] = ldmad_pipe(**SCREAMING_SNAKE_CASE__ ,negative_prompt=SCREAMING_SNAKE_CASE__) __lowerCamelCase , __lowerCamelCase : Any = output.rgb, output.depth __lowerCamelCase : Dict = rgb[0, -3:, -3:, -1] __lowerCamelCase : List[str] = depth[0, -3:, -1] assert rgb.shape == (1, 6_4, 6_4, 3) assert depth.shape == (1, 6_4, 6_4) __lowerCamelCase : List[Any] = np.array( [0.37044, 0.71811503, 0.7223251, 0.48603675, 0.5638391, 0.6364948, 0.42833704, 0.4901315, 0.47926217]) __lowerCamelCase : List[str] = np.array([107.84738, 84.62802, 89.962135]) assert np.abs(rgb_slice.flatten() - expected_slice_rgb).max() < 1E-2 assert np.abs(depth_slice.flatten() - expected_slice_depth).max() < 1E-2 @slow @require_torch_gpu class A_ ( unittest.TestCase ): def lowerCAmelCase ( self : str): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self : List[Any] ,SCREAMING_SNAKE_CASE__ : Optional[Any] ,SCREAMING_SNAKE_CASE__ : List[str]="cpu" ,SCREAMING_SNAKE_CASE__ : Dict=torch.floataa ,SCREAMING_SNAKE_CASE__ : Optional[Any]=0): __lowerCamelCase : Optional[Any] = torch.Generator(device=SCREAMING_SNAKE_CASE__).manual_seed(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[int] = np.random.RandomState(SCREAMING_SNAKE_CASE__).standard_normal((1, 4, 6_4, 6_4)) __lowerCamelCase : Tuple = torch.from_numpy(SCREAMING_SNAKE_CASE__).to(device=SCREAMING_SNAKE_CASE__ ,dtype=SCREAMING_SNAKE_CASE__) __lowerCamelCase : Tuple = { 'prompt': 'a photograph of an astronaut riding a horse', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def lowerCAmelCase ( self : str): __lowerCamelCase : str = StableDiffusionLDMaDPipeline.from_pretrained('Intel/ldm3d') __lowerCamelCase : Optional[Any] = ldmad_pipe.to(SCREAMING_SNAKE_CASE__) ldmad_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[int] = self.get_inputs(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[int] = ldmad_pipe(**SCREAMING_SNAKE_CASE__) __lowerCamelCase , __lowerCamelCase : Dict = output.rgb, output.depth __lowerCamelCase : List[Any] = rgb[0, -3:, -3:, -1].flatten() __lowerCamelCase : int = rgb[0, -3:, -1].flatten() assert rgb.shape == (1, 5_1_2, 5_1_2, 3) assert depth.shape == (1, 5_1_2, 5_1_2) __lowerCamelCase : List[Any] = np.array( [0.53805465, 0.56707305, 0.5486515, 0.57012236, 0.5814511, 0.56253487, 0.54843014, 0.55092263, 0.6459706]) __lowerCamelCase : List[str] = np.array( [0.9263781, 0.6678672, 0.5486515, 0.92202145, 0.67831135, 0.56253487, 0.9241694, 0.7551478, 0.6459706]) assert np.abs(rgb_slice - expected_slice_rgb).max() < 3E-3 assert np.abs(depth_slice - expected_slice_depth).max() < 3E-3 @nightly @require_torch_gpu class A_ ( unittest.TestCase ): def lowerCAmelCase ( self : List[Any]): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self : Any ,SCREAMING_SNAKE_CASE__ : Any ,SCREAMING_SNAKE_CASE__ : Optional[Any]="cpu" ,SCREAMING_SNAKE_CASE__ : List[str]=torch.floataa ,SCREAMING_SNAKE_CASE__ : Tuple=0): __lowerCamelCase : List[str] = torch.Generator(device=SCREAMING_SNAKE_CASE__).manual_seed(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[Any] = np.random.RandomState(SCREAMING_SNAKE_CASE__).standard_normal((1, 4, 6_4, 6_4)) __lowerCamelCase : Dict = torch.from_numpy(SCREAMING_SNAKE_CASE__).to(device=SCREAMING_SNAKE_CASE__ ,dtype=SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[str] = { 'prompt': 'a photograph of an astronaut riding a horse', 'latents': latents, 'generator': generator, 'num_inference_steps': 5_0, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def lowerCAmelCase ( self : List[Any]): __lowerCamelCase : Tuple = StableDiffusionLDMaDPipeline.from_pretrained('Intel/ldm3d').to(SCREAMING_SNAKE_CASE__) ldmad_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__) __lowerCamelCase : Any = self.get_inputs(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[Any] = ldmad_pipe(**SCREAMING_SNAKE_CASE__) __lowerCamelCase , __lowerCamelCase : Union[str, Any] = output.rgb, output.depth __lowerCamelCase : Union[str, Any] = 0.495586 __lowerCamelCase : Any = 0.33795515 __lowerCamelCase : Dict = 112.48518 __lowerCamelCase : Optional[int] = 98.489746 assert np.abs(expected_rgb_mean - rgb.mean()) < 1E-3 assert np.abs(expected_rgb_std - rgb.std()) < 1E-3 assert np.abs(expected_depth_mean - depth.mean()) < 1E-3 assert np.abs(expected_depth_std - depth.std()) < 1E-3 def lowerCAmelCase ( self : int): __lowerCamelCase : Any = StableDiffusionLDMaDPipeline.from_pretrained('Intel/ldm3d-4c').to(SCREAMING_SNAKE_CASE__) ldmad_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__) __lowerCamelCase : Tuple = self.get_inputs(SCREAMING_SNAKE_CASE__) __lowerCamelCase : str = ldmad_pipe(**SCREAMING_SNAKE_CASE__) __lowerCamelCase , __lowerCamelCase : str = output.rgb, output.depth __lowerCamelCase : Union[str, Any] = 0.4194127 __lowerCamelCase : str = 0.35375586 __lowerCamelCase : Tuple = 0.5638502 __lowerCamelCase : List[Any] = 0.34686103 assert rgb.shape == (1, 5_1_2, 5_1_2, 3) assert depth.shape == (1, 5_1_2, 5_1_2, 1) assert np.abs(expected_rgb_mean - rgb.mean()) < 1E-3 assert np.abs(expected_rgb_std - rgb.std()) < 1E-3 assert np.abs(expected_depth_mean - depth.mean()) < 1E-3 assert np.abs(expected_depth_std - depth.std()) < 1E-3
113
import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class A_ ( unittest.TestCase ): def lowerCAmelCase ( self : Optional[int]): __lowerCamelCase : List[Any] = logging.get_logger() # the current default level is logging.WARNING __lowerCamelCase : Dict = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() ,logging.get_verbosity()) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() ,logging.get_verbosity()) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() ,logging.get_verbosity()) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() ,logging.get_verbosity()) # restore to the original level logging.set_verbosity(SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : Optional[Any]): __lowerCamelCase : Optional[int] = logging.get_verbosity() __lowerCamelCase : str = logging.get_logger('transformers.models.bart.tokenization_bart') __lowerCamelCase : Tuple = 'Testing 1, 2, 3' # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(SCREAMING_SNAKE_CASE__) as cl: logger.warning(SCREAMING_SNAKE_CASE__) self.assertEqual(cl.out ,msg + '\n') # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(SCREAMING_SNAKE_CASE__) as cl: logger.warning(SCREAMING_SNAKE_CASE__) self.assertEqual(cl.out ,'') # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(SCREAMING_SNAKE_CASE__) as cl: logger.warning(SCREAMING_SNAKE_CASE__) self.assertEqual(cl.out ,msg + '\n') # restore to the original level logging.set_verbosity(SCREAMING_SNAKE_CASE__) @mockenv(TRANSFORMERS_VERBOSITY='error') def lowerCAmelCase ( self : Tuple): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() # this action activates the env var __lowerCamelCase : int = logging.get_logger('transformers.models.bart.tokenization_bart') __lowerCamelCase : int = os.getenv('TRANSFORMERS_VERBOSITY' ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[Any] = logging.log_levels[env_level_str] __lowerCamelCase : Tuple = logging.get_verbosity() self.assertEqual( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,F"TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}" ,) # restore to the original level __lowerCamelCase : List[str] = '' transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY='super-error') def lowerCAmelCase ( self : List[Any]): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() __lowerCamelCase : List[str] = logging.logging.getLogger() with CaptureLogger(SCREAMING_SNAKE_CASE__) as cl: # this action activates the env var logging.get_logger('transformers.models.bart.tokenization_bart') self.assertIn('Unknown option TRANSFORMERS_VERBOSITY=super-error' ,cl.out) # no need to restore as nothing was changed def lowerCAmelCase ( self : Any): # testing `logger.warning_advice()` transformers.utils.logging._reset_library_root_logger() __lowerCamelCase : Tuple = logging.get_logger('transformers.models.bart.tokenization_bart') __lowerCamelCase : Optional[int] = 'Testing 1, 2, 3' with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='1'): # nothing should be logged as env var disables this method with CaptureLogger(SCREAMING_SNAKE_CASE__) as cl: logger.warning_advice(SCREAMING_SNAKE_CASE__) self.assertEqual(cl.out ,'') with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS=''): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(SCREAMING_SNAKE_CASE__) as cl: logger.warning_advice(SCREAMING_SNAKE_CASE__) self.assertEqual(cl.out ,msg + '\n') def SCREAMING_SNAKE_CASE__ ( ) -> Any: disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
113
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase : Any = logging.get_logger(__name__) UpperCAmelCase : int = { 'kssteven/ibert-roberta-base': 'https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json', 'kssteven/ibert-roberta-large': 'https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json', 'kssteven/ibert-roberta-large-mnli': ( 'https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json' ), } class lowerCAmelCase__ ( a ): """simple docstring""" lowerCAmelCase__ = "ibert" def __init__( self : Any , __SCREAMING_SNAKE_CASE : Optional[int]=30_522 , __SCREAMING_SNAKE_CASE : Optional[Any]=768 , __SCREAMING_SNAKE_CASE : List[Any]=12 , __SCREAMING_SNAKE_CASE : Dict=12 , __SCREAMING_SNAKE_CASE : Union[str, Any]=3_072 , __SCREAMING_SNAKE_CASE : Union[str, Any]="gelu" , __SCREAMING_SNAKE_CASE : List[str]=0.1 , __SCREAMING_SNAKE_CASE : List[str]=0.1 , __SCREAMING_SNAKE_CASE : int=512 , __SCREAMING_SNAKE_CASE : int=2 , __SCREAMING_SNAKE_CASE : Dict=0.02 , __SCREAMING_SNAKE_CASE : Tuple=1E-12 , __SCREAMING_SNAKE_CASE : Dict=1 , __SCREAMING_SNAKE_CASE : Optional[Any]=0 , __SCREAMING_SNAKE_CASE : Optional[int]=2 , __SCREAMING_SNAKE_CASE : Optional[Any]="absolute" , __SCREAMING_SNAKE_CASE : Dict=False , __SCREAMING_SNAKE_CASE : List[str]="none" , **__SCREAMING_SNAKE_CASE : List[Any] , ) -> Optional[Any]: """simple docstring""" super().__init__(pad_token_id=__SCREAMING_SNAKE_CASE , bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = type_vocab_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = position_embedding_type __SCREAMING_SNAKE_CASE = quant_mode __SCREAMING_SNAKE_CASE = force_dequant class lowerCAmelCase__ ( a ): """simple docstring""" @property def UpperCAmelCase__ ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": __SCREAMING_SNAKE_CASE = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __SCREAMING_SNAKE_CASE = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
267
'''simple docstring''' from __future__ import annotations def a__ ( a__ , a__ , a__ ): """simple docstring""" if len(a__ ) == 0: raise ValueError("""find_max() arg is an empty sequence""" ) if ( left >= len(a__ ) or left < -len(a__ ) or right >= len(a__ ) or right < -len(a__ ) ): raise IndexError("""list index out of range""" ) if left == right: return nums[left] __SCREAMING_SNAKE_CASE = (left + right) >> 1 # the middle __SCREAMING_SNAKE_CASE = find_max(a__ , a__ , a__ ) # find max in range[left, mid] __SCREAMING_SNAKE_CASE = find_max(a__ , mid + 1 , a__ ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
267
1
import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def UpperCamelCase( lowercase_ , lowercase_ , lowercase_ ) -> Optional[int]: '''simple docstring''' if isinstance(lowercase_ , torch.Tensor ): return image elif isinstance(lowercase_ , PIL.Image.Image ): snake_case_ = [image] if isinstance(image[0] , PIL.Image.Image ): snake_case_ = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION["""lanczos"""] ) )[None, :] for i in image] snake_case_ = np.concatenate(lowercase_ , axis=0 ) snake_case_ = np.array(lowercase_ ).astype(np.floataa ) / 2_55.0 snake_case_ = image.transpose(0 , 3 , 1 , 2 ) snake_case_ = 2.0 * image - 1.0 snake_case_ = torch.from_numpy(lowercase_ ) elif isinstance(image[0] , torch.Tensor ): snake_case_ = torch.cat(lowercase_ , dim=0 ) return image def UpperCamelCase( lowercase_ , lowercase_ , lowercase_ , lowercase_=0.99_95 ) -> Any: '''simple docstring''' if not isinstance(lowercase_ , np.ndarray ): snake_case_ = True snake_case_ = va.device snake_case_ = va.cpu().numpy() snake_case_ = va.cpu().numpy() snake_case_ = np.sum(va * va / (np.linalg.norm(lowercase_ ) * np.linalg.norm(lowercase_ )) ) if np.abs(lowercase_ ) > DOT_THRESHOLD: snake_case_ = (1 - t) * va + t * va else: snake_case_ = np.arccos(lowercase_ ) snake_case_ = np.sin(lowercase_ ) snake_case_ = theta_a * t snake_case_ = np.sin(lowercase_ ) snake_case_ = np.sin(theta_a - theta_t ) / sin_theta_a snake_case_ = sin_theta_t / sin_theta_a snake_case_ = sa * va + sa * va if inputs_are_torch: snake_case_ = torch.from_numpy(lowercase_ ).to(lowercase_ ) return va def UpperCamelCase( lowercase_ , lowercase_ ) -> Union[str, Any]: '''simple docstring''' snake_case_ = F.normalize(lowercase_ , dim=-1 ) snake_case_ = F.normalize(lowercase_ , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def UpperCamelCase( lowercase_ , lowercase_ ) -> Union[str, Any]: '''simple docstring''' for param in model.parameters(): snake_case_ = value class __lowerCamelCase ( __snake_case ): def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , ) -> Optional[int]: super().__init__() self.register_modules( vae=lowerCamelCase , text_encoder=lowerCamelCase , clip_model=lowerCamelCase , tokenizer=lowerCamelCase , unet=lowerCamelCase , scheduler=lowerCamelCase , feature_extractor=lowerCamelCase , coca_model=lowerCamelCase , coca_tokenizer=lowerCamelCase , coca_transform=lowerCamelCase , ) snake_case_ = ( feature_extractor.size if isinstance(feature_extractor.size , lowerCamelCase ) else feature_extractor.size["""shortest_edge"""] ) snake_case_ = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , lowerCamelCase ) set_requires_grad(self.clip_model , lowerCamelCase ) def lowerCAmelCase_ ( self , lowerCamelCase = "auto" ) -> int: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory snake_case_ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCamelCase ) def lowerCAmelCase_ ( self ) -> str: self.enable_attention_slicing(lowerCamelCase ) def lowerCAmelCase_ ( self ) -> Optional[int]: set_requires_grad(self.vae , lowerCamelCase ) def lowerCAmelCase_ ( self ) -> Any: set_requires_grad(self.vae , lowerCamelCase ) def lowerCAmelCase_ ( self ) -> str: set_requires_grad(self.unet , lowerCamelCase ) def lowerCAmelCase_ ( self ) -> List[Any]: set_requires_grad(self.unet , lowerCamelCase ) def lowerCAmelCase_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> List[Any]: # get the original timestep using init_timestep snake_case_ = min(int(num_inference_steps * strength ) , lowerCamelCase ) snake_case_ = max(num_inference_steps - init_timestep , 0 ) snake_case_ = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowerCAmelCase_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=None ) -> Union[str, Any]: if not isinstance(lowerCamelCase , torch.Tensor ): raise ValueError(f'''`image` has to be of type `torch.Tensor` but is {type(lowerCamelCase )}''' ) snake_case_ = image.to(device=lowerCamelCase , dtype=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ): snake_case_ = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(lowerCamelCase ) ] snake_case_ = torch.cat(lowerCamelCase , dim=0 ) else: snake_case_ = self.vae.encode(lowerCamelCase ).latent_dist.sample(lowerCamelCase ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor snake_case_ = 0.1_8215 * init_latents snake_case_ = init_latents.repeat_interleave(lowerCamelCase , dim=0 ) snake_case_ = randn_tensor(init_latents.shape , generator=lowerCamelCase , device=lowerCamelCase , dtype=lowerCamelCase ) # get latents snake_case_ = self.scheduler.add_noise(lowerCamelCase , lowerCamelCase , lowerCamelCase ) snake_case_ = init_latents return latents def lowerCAmelCase_ ( self , lowerCamelCase ) -> str: snake_case_ = self.coca_transform(lowerCamelCase ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): snake_case_ = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) snake_case_ = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split("""<end_of_text>""" )[0].replace("""<start_of_text>""" , """""" ).rstrip(""" .,""" ) def lowerCAmelCase_ ( self , lowerCamelCase , lowerCamelCase ) -> Optional[int]: snake_case_ = self.feature_extractor.preprocess(lowerCamelCase ) snake_case_ = torch.from_numpy(clip_image_input["""pixel_values"""][0] ).unsqueeze(0 ).to(self.device ).half() snake_case_ = self.clip_model.get_image_features(lowerCamelCase ) snake_case_ = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=lowerCamelCase ) snake_case_ = image_embeddings_clip.repeat_interleave(lowerCamelCase , dim=0 ) return image_embeddings_clip @torch.enable_grad() def lowerCAmelCase_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) -> int: snake_case_ = latents.detach().requires_grad_() snake_case_ = self.scheduler.scale_model_input(lowerCamelCase , lowerCamelCase ) # predict the noise residual snake_case_ = self.unet(lowerCamelCase , lowerCamelCase , encoder_hidden_states=lowerCamelCase ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): snake_case_ = self.scheduler.alphas_cumprod[timestep] snake_case_ = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf snake_case_ = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 snake_case_ = torch.sqrt(lowerCamelCase ) snake_case_ = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , lowerCamelCase ): snake_case_ = self.scheduler.sigmas[index] snake_case_ = latents - sigma * noise_pred else: raise ValueError(f'''scheduler type {type(self.scheduler )} not supported''' ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor snake_case_ = 1 / 0.1_8215 * sample snake_case_ = self.vae.decode(lowerCamelCase ).sample snake_case_ = (image / 2 + 0.5).clamp(0 , 1 ) snake_case_ = transforms.Resize(self.feature_extractor_size )(lowerCamelCase ) snake_case_ = self.normalize(lowerCamelCase ).to(latents.dtype ) snake_case_ = self.clip_model.get_image_features(lowerCamelCase ) snake_case_ = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=lowerCamelCase ) snake_case_ = spherical_dist_loss(lowerCamelCase , lowerCamelCase ).mean() * clip_guidance_scale snake_case_ = -torch.autograd.grad(lowerCamelCase , lowerCamelCase )[0] if isinstance(self.scheduler , lowerCamelCase ): snake_case_ = latents.detach() + grads * (sigma**2) snake_case_ = noise_pred_original else: snake_case_ = noise_pred_original - torch.sqrt(lowerCamelCase ) * grads return noise_pred, latents @torch.no_grad() def __call__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = 512 , lowerCamelCase = 512 , lowerCamelCase = 0.6 , lowerCamelCase = 50 , lowerCamelCase = 7.5 , lowerCamelCase = 1 , lowerCamelCase = 0.0 , lowerCamelCase = 100 , lowerCamelCase = None , lowerCamelCase = "pil" , lowerCamelCase = True , lowerCamelCase = 0.8 , lowerCamelCase = 0.1 , lowerCamelCase = 0.1 , ) -> str: if isinstance(lowerCamelCase , lowerCamelCase ) and len(lowerCamelCase ) != batch_size: raise ValueError(f'''You have passed {batch_size} batch_size, but only {len(lowerCamelCase )} generators.''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if isinstance(lowerCamelCase , torch.Generator ) and batch_size > 1: snake_case_ = [generator] + [None] * (batch_size - 1) snake_case_ = [ ("""model""", self.coca_model is None), ("""tokenizer""", self.coca_tokenizer is None), ("""transform""", self.coca_transform is None), ] snake_case_ = [x[0] for x in coca_is_none if x[1]] snake_case_ = """, """.join(lowerCamelCase ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(lowerCamelCase ): raise ValueError( f'''Content prompt is None and CoCa [{coca_is_none_str}] is None.''' f'''Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) snake_case_ = self.get_image_description(lowerCamelCase ) if style_prompt is None: if len(lowerCamelCase ): raise ValueError( f'''Style prompt is None and CoCa [{coca_is_none_str}] is None.''' f''' Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) snake_case_ = self.get_image_description(lowerCamelCase ) # get prompt text embeddings for content and style snake_case_ = self.tokenizer( lowerCamelCase , padding="""max_length""" , max_length=self.tokenizer.model_max_length , truncation=lowerCamelCase , return_tensors="""pt""" , ) snake_case_ = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] snake_case_ = self.tokenizer( lowerCamelCase , padding="""max_length""" , max_length=self.tokenizer.model_max_length , truncation=lowerCamelCase , return_tensors="""pt""" , ) snake_case_ = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] snake_case_ = slerp(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # duplicate text embeddings for each generation per prompt snake_case_ = text_embeddings.repeat_interleave(lowerCamelCase , dim=0 ) # set timesteps snake_case_ = """offset""" in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) snake_case_ = {} if accepts_offset: snake_case_ = 1 self.scheduler.set_timesteps(lowerCamelCase , **lowerCamelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) snake_case_ , snake_case_ = self.get_timesteps(lowerCamelCase , lowerCamelCase , self.device ) snake_case_ = timesteps[:1].repeat(lowerCamelCase ) # Preprocess image snake_case_ = preprocess(lowerCamelCase , lowerCamelCase , lowerCamelCase ) snake_case_ = self.prepare_latents( lowerCamelCase , lowerCamelCase , lowerCamelCase , text_embeddings.dtype , self.device , lowerCamelCase ) snake_case_ = preprocess(lowerCamelCase , lowerCamelCase , lowerCamelCase ) snake_case_ = self.prepare_latents( lowerCamelCase , lowerCamelCase , lowerCamelCase , text_embeddings.dtype , self.device , lowerCamelCase ) snake_case_ = slerp(lowerCamelCase , lowerCamelCase , lowerCamelCase ) if clip_guidance_scale > 0: snake_case_ = self.get_clip_image_embeddings(lowerCamelCase , lowerCamelCase ) snake_case_ = self.get_clip_image_embeddings(lowerCamelCase , lowerCamelCase ) snake_case_ = slerp( lowerCamelCase , lowerCamelCase , lowerCamelCase ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. snake_case_ = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: snake_case_ = content_text_input.input_ids.shape[-1] snake_case_ = self.tokenizer([""""""] , padding="""max_length""" , max_length=lowerCamelCase , return_tensors="""pt""" ) snake_case_ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt snake_case_ = uncond_embeddings.repeat_interleave(lowerCamelCase , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes snake_case_ = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. snake_case_ = (batch_size, self.unet.config.in_channels, height // 8, width // 8) snake_case_ = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps snake_case_ = torch.randn(lowerCamelCase , generator=lowerCamelCase , device="""cpu""" , dtype=lowerCamelCase ).to( self.device ) else: snake_case_ = torch.randn(lowerCamelCase , generator=lowerCamelCase , device=self.device , dtype=lowerCamelCase ) else: if latents.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) snake_case_ = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler snake_case_ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] snake_case_ = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) snake_case_ = {} if accepts_eta: snake_case_ = eta # check if the scheduler accepts generator snake_case_ = """generator""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: snake_case_ = generator with self.progress_bar(total=lowerCamelCase ): for i, t in enumerate(lowerCamelCase ): # expand the latents if we are doing classifier free guidance snake_case_ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents snake_case_ = self.scheduler.scale_model_input(lowerCamelCase , lowerCamelCase ) # predict the noise residual snake_case_ = self.unet(lowerCamelCase , lowerCamelCase , encoder_hidden_states=lowerCamelCase ).sample # perform classifier free guidance if do_classifier_free_guidance: snake_case_ , snake_case_ = noise_pred.chunk(2 ) snake_case_ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: snake_case_ = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) snake_case_ , snake_case_ = self.cond_fn( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) # compute the previous noisy sample x_t -> x_t-1 snake_case_ = self.scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor snake_case_ = 1 / 0.1_8215 * latents snake_case_ = self.vae.decode(lowerCamelCase ).sample snake_case_ = (image / 2 + 0.5).clamp(0 , 1 ) snake_case_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": snake_case_ = self.numpy_to_pil(lowerCamelCase ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=lowerCamelCase , nsfw_content_detected=lowerCamelCase )
34
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { '''facebook/levit-128S''': '''https://huggingface.co/facebook/levit-128S/resolve/main/config.json''', # See all LeViT models at https://huggingface.co/models?filter=levit } class __lowerCamelCase ( __snake_case ): lowerCamelCase_ : Tuple = 'levit' def __init__( self , lowerCamelCase=224 , lowerCamelCase=3 , lowerCamelCase=3 , lowerCamelCase=2 , lowerCamelCase=1 , lowerCamelCase=16 , lowerCamelCase=[128, 256, 384] , lowerCamelCase=[4, 8, 12] , lowerCamelCase=[4, 4, 4] , lowerCamelCase=[16, 16, 16] , lowerCamelCase=0 , lowerCamelCase=[2, 2, 2] , lowerCamelCase=[2, 2, 2] , lowerCamelCase=0.02 , **lowerCamelCase , ) -> Tuple: super().__init__(**lowerCamelCase ) snake_case_ = image_size snake_case_ = num_channels snake_case_ = kernel_size snake_case_ = stride snake_case_ = padding snake_case_ = hidden_sizes snake_case_ = num_attention_heads snake_case_ = depths snake_case_ = key_dim snake_case_ = drop_path_rate snake_case_ = patch_size snake_case_ = attention_ratio snake_case_ = mlp_ratio snake_case_ = initializer_range snake_case_ = [ ["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class __lowerCamelCase ( __snake_case ): lowerCamelCase_ : Any = version.parse('1.11' ) @property def lowerCAmelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCAmelCase_ ( self ) -> float: return 1e-4
34
1