code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS lowercase_ = logging.get_logger(__name__) lowercase_ = { "linear": get_linear_schedule_with_warmup, "cosine": get_cosine_schedule_with_warmup, "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, "polynomial": get_polynomial_decay_schedule_with_warmup, "constant": get_constant_schedule, "constant_w_warmup": get_constant_schedule_with_warmup, } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , _a=None , _a=None , *_a , **_a ): super().__init__(*_a , **_a ) if config is None: assert isinstance(self.model , _a ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" f''' {self.model.__class__}''' ) __a = self.model.config else: __a = config __a = data_args __a = self.config.tgt_vocab_size if isinstance(self.config , _a ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( f'''The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for''' ''' padding..''' ) if self.args.label_smoothing == 0: __a = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss __a = label_smoothed_nll_loss def __UpperCAmelCase ( self , _a ): if self.optimizer is None: __a = ['''bias''', '''LayerNorm.weight'''] __a = [ { '''params''': [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], '''weight_decay''': self.args.weight_decay, }, { '''params''': [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], '''weight_decay''': 0.0, }, ] __a = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: __a = Adafactor __a = {'''scale_parameter''': False, '''relative_step''': False} else: __a = AdamW __a = { '''betas''': (self.args.adam_betaa, self.args.adam_betaa), '''eps''': self.args.adam_epsilon, } __a = self.args.learning_rate if self.sharded_ddp: __a = OSS( params=_a , optim=_a , **_a , ) else: __a = optimizer_cls(_a , **_a ) if self.lr_scheduler is None: __a = self._get_lr_scheduler(_a ) else: # ignoring --lr_scheduler logger.warning('''scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.''' ) def __UpperCAmelCase ( self , _a ): __a = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": __a = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": __a = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: __a = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=_a ) return scheduler def __UpperCAmelCase ( self ): if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def __UpperCAmelCase ( self , _a , _a , _a ): if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token __a = model(**_a , use_cache=_a )[0] __a = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models __a , __a = model(**_a , labels=_a , use_cache=_a )[:2] else: # compute label smoothed loss __a = model(**_a , use_cache=_a )[0] __a = torch.nn.functional.log_softmax(_a , dim=-1 ) __a , __a = self.loss_fn(_a , _a , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def __UpperCAmelCase ( self , _a , _a ): __a = inputs.pop('''labels''' ) __a , __a = self._compute_loss(_a , _a , _a ) return loss def __UpperCAmelCase ( self , _a , _a , _a , _a = None , ): __a = self._prepare_inputs(_a ) __a = { '''max_length''': self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, '''num_beams''': self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: __a = self.model.generate( inputs['''input_ids'''] , attention_mask=inputs['''attention_mask'''] , **_a , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: __a = self._pad_tensors_to_max_len(_a , gen_kwargs['''max_length'''] ) __a = inputs.pop('''labels''' ) with torch.no_grad(): # compute loss on predict data __a , __a = self._compute_loss(_a , _a , _a ) __a = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) __a = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: __a = self._pad_tensors_to_max_len(_a , gen_kwargs['''max_length'''] ) return (loss, logits, labels) def __UpperCAmelCase ( self , _a , _a ): # If PAD token is not defined at least EOS token has to be defined __a = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( '''Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be''' f''' padded to `max_length`={max_length}''' ) __a = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) __a = tensor return padded_tensor
45
"""simple docstring""" import math def lowercase ( lowerCAmelCase__ : list , lowerCAmelCase__ : int ) -> int: __a = len(lowerCAmelCase__ ) __a = int(math.floor(math.sqrt(lowerCAmelCase__ ) ) ) __a = 0 while arr[min(lowerCAmelCase__ , lowerCAmelCase__ ) - 1] < x: __a = step step += int(math.floor(math.sqrt(lowerCAmelCase__ ) ) ) if prev >= n: return -1 while arr[prev] < x: __a = prev + 1 if prev == min(lowerCAmelCase__ , lowerCAmelCase__ ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": lowercase_ = input("Enter numbers separated by a comma:\n").strip() lowercase_ = [int(item) for item in user_input.split(",")] lowercase_ = int(input("Enter the number to be searched:\n")) lowercase_ = jump_search(arr, x) if res == -1: print("Number not found!") else: print(F'''Number {x} is at index {res}''')
45
1
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class __lowercase (tf.keras.layers.Layer ): """simple docstring""" def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = None ): """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE_ : Tuple = pad_token_id SCREAMING_SNAKE_CASE_ : Union[str, Any] = max_length SCREAMING_SNAKE_CASE_ : int = vocab SCREAMING_SNAKE_CASE_ : str = merges SCREAMING_SNAKE_CASE_ : Tuple = BytePairTokenizer(lowerCAmelCase__ , lowerCAmelCase__ , sequence_length=lowerCAmelCase__ ) @classmethod def UpperCamelCase__ ( cls , lowerCAmelCase__ , *lowerCAmelCase__ , **lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = [' '.join(lowerCAmelCase__ ) for m in tokenizer.bpe_ranks.keys()] SCREAMING_SNAKE_CASE_ : Union[str, Any] = tokenizer.get_vocab() return cls(lowerCAmelCase__ , lowerCAmelCase__ , *lowerCAmelCase__ , **lowerCAmelCase__ ) @classmethod def UpperCamelCase__ ( cls , lowerCAmelCase__ , *lowerCAmelCase__ , **lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = GPTaTokenizer.from_pretrained(lowerCAmelCase__ , *lowerCAmelCase__ , **lowerCAmelCase__ ) return cls.from_tokenizer(lowerCAmelCase__ , *lowerCAmelCase__ , **lowerCAmelCase__ ) @classmethod def UpperCamelCase__ ( cls , lowerCAmelCase__ ): """simple docstring""" return cls(**lowerCAmelCase__ ) def UpperCamelCase__ ( self ): """simple docstring""" return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.tf_tokenizer(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : int = tf.ones_like(lowerCAmelCase__ ) if self.pad_token_id is not None: # pad the tokens up to max length SCREAMING_SNAKE_CASE_ : str = max_length if max_length is not None else self.max_length if max_length is not None: SCREAMING_SNAKE_CASE_ : int = pad_model_inputs( lowerCAmelCase__ , max_seq_length=lowerCAmelCase__ , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
367
# Lint as: python3 import itertools import os import re lowerCAmelCase__ : Optional[int] =re.compile(R'([A-Z]+)([A-Z][a-z])') lowerCAmelCase__ : List[Any] =re.compile(R'([a-z\d])([A-Z])') lowerCAmelCase__ : Dict =re.compile(R'(?<!_)_(?!_)') lowerCAmelCase__ : int =re.compile(R'(_{2,})') lowerCAmelCase__ : Optional[Any] =R'^\w+(\.\w+)*$' lowerCAmelCase__ : List[Any] =R'<>:/\|?*' def a__ ( A__ ): SCREAMING_SNAKE_CASE_ : Dict = _uppercase_uppercase_re.sub(r'\1_\2', A__ ) SCREAMING_SNAKE_CASE_ : List[str] = _lowercase_uppercase_re.sub(r'\1_\2', A__ ) return name.lower() def a__ ( A__ ): SCREAMING_SNAKE_CASE_ : Optional[Any] = _single_underscore_re.split(A__ ) SCREAMING_SNAKE_CASE_ : str = [_multiple_underscores_re.split(A__ ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(A__ ) if n != '' ) def a__ ( A__ ): if os.path.basename(A__ ) != name: raise ValueError(F'''Should be a dataset name, not a path: {name}''' ) return camelcase_to_snakecase(A__ ) def a__ ( A__, A__ ): if os.path.basename(A__ ) != name: raise ValueError(F'''Should be a dataset name, not a path: {name}''' ) if not re.match(_split_re, A__ ): raise ValueError(F'''Split name should match \'{_split_re}\'\' but got \'{split}\'.''' ) return F'''{filename_prefix_for_name(A__ )}-{split}''' def a__ ( A__, A__, A__, A__=None ): SCREAMING_SNAKE_CASE_ : Tuple = filename_prefix_for_split(A__, A__ ) if filetype_suffix: prefix += F'''.{filetype_suffix}''' SCREAMING_SNAKE_CASE_ : List[Any] = os.path.join(A__, A__ ) return F'''{filepath}*''' def a__ ( A__, A__, A__, A__=None, A__=None ): SCREAMING_SNAKE_CASE_ : Tuple = filename_prefix_for_split(A__, A__ ) SCREAMING_SNAKE_CASE_ : Dict = os.path.join(A__, A__ ) if shard_lengths: SCREAMING_SNAKE_CASE_ : Dict = len(A__ ) SCREAMING_SNAKE_CASE_ : Any = [F'''{prefix}-{shard_id:05d}-of-{num_shards:05d}''' for shard_id in range(A__ )] if filetype_suffix: SCREAMING_SNAKE_CASE_ : Optional[int] = [filename + F'''.{filetype_suffix}''' for filename in filenames] return filenames else: SCREAMING_SNAKE_CASE_ : Optional[Any] = prefix if filetype_suffix: filename += F'''.{filetype_suffix}''' return [filename]
162
0
import os from pathlib import Path def A_ ( ) -> Optional[Any]: '''simple docstring''' from torch.utils.cpp_extension import load __UpperCamelCase = Path(_lowerCAmelCase ).resolve().parent.parent.parent / 'kernels' / 'deformable_detr' __UpperCamelCase = [ root / filename for filename in [ 'vision.cpp', os.path.join('''cpu''' , '''ms_deform_attn_cpu.cpp''' ), os.path.join('''cuda''' , '''ms_deform_attn_cuda.cu''' ), ] ] load( '''MultiScaleDeformableAttention''' , _lowerCAmelCase , with_cuda=_lowerCAmelCase , extra_include_paths=[str(_lowerCAmelCase )] , extra_cflags=['''-DWITH_CUDA=1'''] , extra_cuda_cflags=[ '''-DCUDA_HAS_FP16=1''', '''-D__CUDA_NO_HALF_OPERATORS__''', '''-D__CUDA_NO_HALF_CONVERSIONS__''', '''-D__CUDA_NO_HALF2_OPERATORS__''', ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
328
"""simple docstring""" from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
77
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ = { '''configuration_instructblip''': [ '''INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InstructBlipConfig''', '''InstructBlipQFormerConfig''', '''InstructBlipVisionConfig''', ], '''processing_instructblip''': ['''InstructBlipProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InstructBlipQFormerModel''', '''InstructBlipPreTrainedModel''', '''InstructBlipForConditionalGeneration''', '''InstructBlipVisionModel''', ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
52
'''simple docstring''' lowerCAmelCase__ = { "joule": 1.0, "kilojoule": 1000, "megajoule": 100_0000, "gigajoule": 10_0000_0000, "wattsecond": 1.0, "watthour": 3600, "kilowatthour": 360_0000, "newtonmeter": 1.0, "calorie_nutr": 4186.8, "kilocalorie_nutr": 418_6800.00, "electronvolt": 1.602_176_634e-19, "britishthermalunit_it": 1055.0_5585, "footpound": 1.355_818, } def _A ( A__ , A__ , A__ ): """simple docstring""" if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: __lowercase = ( F"Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n" F"Valid values are: {', '.join(A__ )}" ) raise ValueError(A__ ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
52
1
"""simple docstring""" import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class UpperCAmelCase_ ( unittest.TestCase): def _UpperCamelCase ( self : Tuple ) -> Any: _UpperCamelCase = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertTrue(is_safetensors_compatible(__UpperCamelCase ) ) def _UpperCamelCase ( self : Tuple ) -> int: _UpperCamelCase = [ '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertTrue(is_safetensors_compatible(__UpperCamelCase ) ) def _UpperCamelCase ( self : List[str] ) -> Any: _UpperCamelCase = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', '''unet/diffusion_pytorch_model.bin''', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(__UpperCamelCase ) ) def _UpperCamelCase ( self : Any ) -> int: _UpperCamelCase = [ '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', ] self.assertTrue(is_safetensors_compatible(__UpperCamelCase ) ) def _UpperCamelCase ( self : int ) -> int: _UpperCamelCase = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', # Removed: 'text_encoder/model.safetensors', '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertFalse(is_safetensors_compatible(__UpperCamelCase ) ) def _UpperCamelCase ( self : str ) -> Union[str, Any]: _UpperCamelCase = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] _UpperCamelCase = '''fp16''' self.assertTrue(is_safetensors_compatible(__UpperCamelCase , variant=__UpperCamelCase ) ) def _UpperCamelCase ( self : Tuple ) -> Dict: _UpperCamelCase = [ '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] _UpperCamelCase = '''fp16''' self.assertTrue(is_safetensors_compatible(__UpperCamelCase , variant=__UpperCamelCase ) ) def _UpperCamelCase ( self : Any ) -> int: # pass variant but use the non-variant filenames _UpperCamelCase = [ '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] _UpperCamelCase = '''fp16''' self.assertTrue(is_safetensors_compatible(__UpperCamelCase , variant=__UpperCamelCase ) ) def _UpperCamelCase ( self : List[Any] ) -> Dict: _UpperCamelCase = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', '''unet/diffusion_pytorch_model.fp16.bin''', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] _UpperCamelCase = '''fp16''' self.assertFalse(is_safetensors_compatible(__UpperCamelCase , variant=__UpperCamelCase ) ) def _UpperCamelCase ( self : Union[str, Any] ) -> Optional[Any]: _UpperCamelCase = [ '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', ] _UpperCamelCase = '''fp16''' self.assertTrue(is_safetensors_compatible(__UpperCamelCase , variant=__UpperCamelCase ) ) def _UpperCamelCase ( self : Any ) -> List[str]: # pass variant but use the non-variant filenames _UpperCamelCase = [ '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', ] _UpperCamelCase = '''fp16''' self.assertTrue(is_safetensors_compatible(__UpperCamelCase , variant=__UpperCamelCase ) ) def _UpperCamelCase ( self : str ) -> List[Any]: _UpperCamelCase = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', # 'text_encoder/model.fp16.safetensors', '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] _UpperCamelCase = '''fp16''' self.assertFalse(is_safetensors_compatible(__UpperCamelCase , variant=__UpperCamelCase ) )
256
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { """post_extract_proj""": """feature_projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.upsample.0""": """encoder.upsample.projection""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """layer_norm""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } def lowercase ( a__ : Dict , a__ : Dict , a__ : List[str] , a__ : int , a__ : Any ) -> Optional[Any]: for attribute in key.split('''.''' ): _UpperCamelCase = getattr(a__ , a__ ) if weight_type is not None: _UpperCamelCase = getattr(a__ , a__ ).shape else: _UpperCamelCase = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": _UpperCamelCase = value elif weight_type == "weight_g": _UpperCamelCase = value elif weight_type == "weight_v": _UpperCamelCase = value elif weight_type == "bias": _UpperCamelCase = value else: _UpperCamelCase = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def lowercase ( a__ : str , a__ : Any , a__ : List[Any] ) -> List[Any]: _UpperCamelCase = [] _UpperCamelCase = fairseq_model.state_dict() _UpperCamelCase = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): _UpperCamelCase = False if "conv_layers" in name: load_conv_layer( a__ , a__ , a__ , a__ , hf_model.config.feat_extract_norm == '''group''' , ) _UpperCamelCase = True else: for key, mapped_key in MAPPING.items(): _UpperCamelCase = '''sew.''' + mapped_key if (is_finetuned and mapped_key != '''lm_head''') else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: _UpperCamelCase = True if "*" in mapped_key: _UpperCamelCase = name.split(a__ )[0].split('''.''' )[-2] _UpperCamelCase = mapped_key.replace('''*''' , a__ ) if "weight_g" in name: _UpperCamelCase = '''weight_g''' elif "weight_v" in name: _UpperCamelCase = '''weight_v''' elif "weight" in name: _UpperCamelCase = '''weight''' elif "bias" in name: _UpperCamelCase = '''bias''' else: _UpperCamelCase = None set_recursively(a__ , a__ , a__ , a__ , a__ ) continue if not is_used: unused_weights.append(a__ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def lowercase ( a__ : str , a__ : int , a__ : Optional[int] , a__ : Optional[Any] , a__ : int ) -> Any: _UpperCamelCase = full_name.split('''conv_layers.''' )[-1] _UpperCamelCase = name.split('''.''' ) _UpperCamelCase = int(items[0] ) _UpperCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) _UpperCamelCase = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) _UpperCamelCase = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) _UpperCamelCase = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) _UpperCamelCase = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(a__ ) def lowercase ( a__ : List[str] , a__ : Optional[int] ) -> Union[str, Any]: _UpperCamelCase = SEWConfig() if is_finetuned: _UpperCamelCase = model.wav_encoder.wav_model.cfg else: _UpperCamelCase = model.cfg _UpperCamelCase = fs_config.conv_bias _UpperCamelCase = eval(fs_config.conv_feature_layers ) _UpperCamelCase = [x[0] for x in conv_layers] _UpperCamelCase = [x[1] for x in conv_layers] _UpperCamelCase = [x[2] for x in conv_layers] _UpperCamelCase = '''gelu''' _UpperCamelCase = '''layer''' if fs_config.extractor_mode == '''layer_norm''' else '''group''' _UpperCamelCase = 0.0 _UpperCamelCase = fs_config.activation_fn.name _UpperCamelCase = fs_config.encoder_embed_dim _UpperCamelCase = 0.02 _UpperCamelCase = fs_config.encoder_ffn_embed_dim _UpperCamelCase = 1e-5 _UpperCamelCase = fs_config.encoder_layerdrop _UpperCamelCase = fs_config.encoder_attention_heads _UpperCamelCase = fs_config.conv_pos_groups _UpperCamelCase = fs_config.conv_pos _UpperCamelCase = len(a__ ) _UpperCamelCase = fs_config.encoder_layers _UpperCamelCase = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: _UpperCamelCase = model.cfg _UpperCamelCase = fs_config.final_dropout _UpperCamelCase = fs_config.layerdrop _UpperCamelCase = fs_config.activation_dropout _UpperCamelCase = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 _UpperCamelCase = fs_config.attention_dropout _UpperCamelCase = fs_config.dropout_input _UpperCamelCase = fs_config.dropout _UpperCamelCase = fs_config.mask_channel_length _UpperCamelCase = fs_config.mask_channel_prob _UpperCamelCase = fs_config.mask_length _UpperCamelCase = fs_config.mask_prob _UpperCamelCase = '''Wav2Vec2FeatureExtractor''' _UpperCamelCase = '''Wav2Vec2CTCTokenizer''' return config @torch.no_grad() def lowercase ( a__ : List[Any] , a__ : Optional[Any] , a__ : str=None , a__ : Tuple=None , a__ : Tuple=True ) -> Union[str, Any]: if is_finetuned: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: _UpperCamelCase = SEWConfig.from_pretrained(a__ ) else: _UpperCamelCase = convert_config(model[0] , a__ ) _UpperCamelCase = model[0].eval() _UpperCamelCase = True if config.feat_extract_norm == '''layer''' else False _UpperCamelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=a__ , return_attention_mask=a__ , ) if is_finetuned: if dict_path: _UpperCamelCase = Dictionary.load(a__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _UpperCamelCase = target_dict.pad_index _UpperCamelCase = target_dict.bos_index _UpperCamelCase = target_dict.pad_index _UpperCamelCase = target_dict.bos_index _UpperCamelCase = target_dict.eos_index _UpperCamelCase = len(target_dict.symbols ) _UpperCamelCase = os.path.join(a__ , '''vocab.json''' ) if not os.path.isdir(a__ ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(a__ ) ) return os.makedirs(a__ , exist_ok=a__ ) with open(a__ , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(target_dict.indices , a__ ) _UpperCamelCase = WavaVecaCTCTokenizer( a__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=a__ , ) _UpperCamelCase = WavaVecaProcessor(feature_extractor=a__ , tokenizer=a__ ) processor.save_pretrained(a__ ) _UpperCamelCase = SEWForCTC(a__ ) else: _UpperCamelCase = SEWModel(a__ ) feature_extractor.save_pretrained(a__ ) recursively_load_weights(a__ , a__ , a__ ) hf_model.save_pretrained(a__ ) if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--is_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) UpperCAmelCase = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
256
1
"""simple docstring""" import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( """The `inpainting.py` script is outdated. Please use directly `from diffusers import""" """ StableDiffusionInpaintPipeline` instead.""" )
268
"""simple docstring""" from ...processing_utils import ProcessorMixin class snake_case__ ( snake_case_ ): _snake_case : List[str] = """WhisperFeatureExtractor""" _snake_case : Any = """WhisperTokenizer""" def __init__( self , lowerCamelCase , lowerCamelCase ): super().__init__(lowerCamelCase , lowerCamelCase ) __a = self.feature_extractor __a = False def a__ ( self , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=True ): return self.tokenizer.get_decoder_prompt_ids(task=lowerCamelCase , language=lowerCamelCase , no_timestamps=lowerCamelCase ) def __call__( self , *lowerCamelCase , **lowerCamelCase ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*lowerCamelCase , **lowerCamelCase ) __a = kwargs.pop("audio" , lowerCamelCase ) __a = kwargs.pop("sampling_rate" , lowerCamelCase ) __a = kwargs.pop("text" , lowerCamelCase ) if len(lowerCamelCase ) > 0: __a = args[0] __a = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: __a = self.feature_extractor(lowerCamelCase , *lowerCamelCase , sampling_rate=lowerCamelCase , **lowerCamelCase ) if text is not None: __a = self.tokenizer(lowerCamelCase , **lowerCamelCase ) if text is None: return inputs elif audio is None: return encodings else: __a = encodings["input_ids"] return inputs def a__ ( self , *lowerCamelCase , **lowerCamelCase ): return self.tokenizer.batch_decode(*lowerCamelCase , **lowerCamelCase ) def a__ ( self , *lowerCamelCase , **lowerCamelCase ): return self.tokenizer.decode(*lowerCamelCase , **lowerCamelCase ) def a__ ( self , lowerCamelCase , lowerCamelCase="np" ): return self.tokenizer.get_prompt_ids(lowerCamelCase , return_tensors=lowerCamelCase )
268
1
"""simple docstring""" import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def A_ ( _lowercase ): '''simple docstring''' random.seed(_lowercase ) np.random.seed(_lowercase ) torch.manual_seed(_lowercase ) torch.cuda.manual_seed_all(_lowercase ) # ^^ safe to call this function even if cuda is not available class lowerCamelCase : '''simple docstring''' def __init__( self: List[Any] , snake_case: Iterable[torch.nn.Parameter] , snake_case: float = 0.9_9_9_9 , snake_case: float = 0.0 , snake_case: int = 0 , snake_case: bool = False , snake_case: Union[float, int] = 1.0 , snake_case: Union[float, int] = 2 / 3 , snake_case: Optional[Any] = None , snake_case: Dict[str, Any] = None , **snake_case: Union[str, Any] , ) -> str: if isinstance(snake_case , torch.nn.Module ): snake_case_ :List[str] = ( """Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. """ """Please pass the parameters of the module instead.""" ) deprecate( """passing a `torch.nn.Module` to `ExponentialMovingAverage`""" , """1.0.0""" , snake_case , standard_warn=snake_case , ) snake_case_ :Any = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility snake_case_ :Optional[Any] = True if kwargs.get("""max_value""" , snake_case ) is not None: snake_case_ :str = """The `max_value` argument is deprecated. Please use `decay` instead.""" deprecate("""max_value""" , """1.0.0""" , snake_case , standard_warn=snake_case ) snake_case_ :Union[str, Any] = kwargs["""max_value"""] if kwargs.get("""min_value""" , snake_case ) is not None: snake_case_ :Dict = """The `min_value` argument is deprecated. Please use `min_decay` instead.""" deprecate("""min_value""" , """1.0.0""" , snake_case , standard_warn=snake_case ) snake_case_ :str = kwargs["""min_value"""] snake_case_ :str = list(snake_case ) snake_case_ :Optional[Any] = [p.clone().detach() for p in parameters] if kwargs.get("""device""" , snake_case ) is not None: snake_case_ :Union[str, Any] = """The `device` argument is deprecated. Please use `to` instead.""" deprecate("""device""" , """1.0.0""" , snake_case , standard_warn=snake_case ) self.to(device=kwargs["""device"""] ) snake_case_ :Any = None snake_case_ :Optional[Any] = decay snake_case_ :Any = min_decay snake_case_ :List[Any] = update_after_step snake_case_ :Optional[Any] = use_ema_warmup snake_case_ :Optional[Any] = inv_gamma snake_case_ :int = power snake_case_ :int = 0 snake_case_ :Dict = None # set in `step()` snake_case_ :Dict = model_cls snake_case_ :List[Any] = model_config @classmethod def lowerCAmelCase_ ( cls: Optional[int] , snake_case: Tuple , snake_case: Dict ) -> "EMAModel": snake_case_, snake_case_ :Union[str, Any] = model_cls.load_config(snake_case , return_unused_kwargs=snake_case ) snake_case_ :Tuple = model_cls.from_pretrained(snake_case ) snake_case_ :Any = cls(model.parameters() , model_cls=snake_case , model_config=model.config ) ema_model.load_state_dict(snake_case ) return ema_model def lowerCAmelCase_ ( self: Optional[Any] , snake_case: List[Any] ) -> str: if self.model_cls is None: raise ValueError("""`save_pretrained` can only be used if `model_cls` was defined at __init__.""" ) if self.model_config is None: raise ValueError("""`save_pretrained` can only be used if `model_config` was defined at __init__.""" ) snake_case_ :List[str] = self.model_cls.from_config(self.model_config ) snake_case_ :List[str] = self.state_dict() state_dict.pop("""shadow_params""" , snake_case ) model.register_to_config(**snake_case ) self.copy_to(model.parameters() ) model.save_pretrained(snake_case ) def lowerCAmelCase_ ( self: Dict , snake_case: int ) -> float: snake_case_ :List[str] = max(0 , optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: snake_case_ :Any = 1 - (1 + step / self.inv_gamma) ** -self.power else: snake_case_ :int = (1 + step) / (10 + step) snake_case_ :Optional[Any] = min(snake_case , self.decay ) # make sure decay is not smaller than min_decay snake_case_ :Optional[int] = max(snake_case , self.min_decay ) return cur_decay_value @torch.no_grad() def lowerCAmelCase_ ( self: int , snake_case: Iterable[torch.nn.Parameter] ) -> Optional[int]: if isinstance(snake_case , torch.nn.Module ): snake_case_ :Tuple = ( """Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. """ """Please pass the parameters of the module instead.""" ) deprecate( """passing a `torch.nn.Module` to `ExponentialMovingAverage.step`""" , """1.0.0""" , snake_case , standard_warn=snake_case , ) snake_case_ :Any = parameters.parameters() snake_case_ :str = list(snake_case ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. snake_case_ :Union[str, Any] = self.get_decay(self.optimization_step ) snake_case_ :Optional[Any] = decay snake_case_ :Union[str, Any] = 1 - decay snake_case_ :Tuple = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params , snake_case ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): snake_case_ :List[Any] = deepspeed.zero.GatheredParameters(snake_case , modifier_rank=snake_case ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(snake_case ) def lowerCAmelCase_ ( self: int , snake_case: Iterable[torch.nn.Parameter] ) -> None: snake_case_ :int = list(snake_case ) for s_param, param in zip(self.shadow_params , snake_case ): param.data.copy_(s_param.to(param.device ).data ) def lowerCAmelCase_ ( self: str , snake_case: Optional[Any]=None , snake_case: List[str]=None ) -> None: snake_case_ :List[str] = [ p.to(device=snake_case , dtype=snake_case ) if p.is_floating_point() else p.to(device=snake_case ) for p in self.shadow_params ] def lowerCAmelCase_ ( self: Union[str, Any] ) -> dict: return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def lowerCAmelCase_ ( self: List[Any] , snake_case: Iterable[torch.nn.Parameter] ) -> None: snake_case_ :Optional[Any] = [param.detach().cpu().clone() for param in parameters] def lowerCAmelCase_ ( self: int , snake_case: Iterable[torch.nn.Parameter] ) -> None: if self.temp_stored_params is None: raise RuntimeError("""This ExponentialMovingAverage has no `store()`ed weights """ """to `restore()`""" ) for c_param, param in zip(self.temp_stored_params , snake_case ): param.data.copy_(c_param.data ) # Better memory-wise. snake_case_ :Optional[int] = None def lowerCAmelCase_ ( self: Tuple , snake_case: dict ) -> None: snake_case_ :Optional[Any] = copy.deepcopy(snake_case ) snake_case_ :Tuple = state_dict.get("""decay""" , self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError("""Decay must be between 0 and 1""" ) snake_case_ :Union[str, Any] = state_dict.get("""min_decay""" , self.min_decay ) if not isinstance(self.min_decay , snake_case ): raise ValueError("""Invalid min_decay""" ) snake_case_ :List[str] = state_dict.get("""optimization_step""" , self.optimization_step ) if not isinstance(self.optimization_step , snake_case ): raise ValueError("""Invalid optimization_step""" ) snake_case_ :Union[str, Any] = state_dict.get("""update_after_step""" , self.update_after_step ) if not isinstance(self.update_after_step , snake_case ): raise ValueError("""Invalid update_after_step""" ) snake_case_ :str = state_dict.get("""use_ema_warmup""" , self.use_ema_warmup ) if not isinstance(self.use_ema_warmup , snake_case ): raise ValueError("""Invalid use_ema_warmup""" ) snake_case_ :int = state_dict.get("""inv_gamma""" , self.inv_gamma ) if not isinstance(self.inv_gamma , (float, int) ): raise ValueError("""Invalid inv_gamma""" ) snake_case_ :Union[str, Any] = state_dict.get("""power""" , self.power ) if not isinstance(self.power , (float, int) ): raise ValueError("""Invalid power""" ) snake_case_ :Optional[int] = state_dict.get("""shadow_params""" , snake_case ) if shadow_params is not None: snake_case_ :Tuple = shadow_params if not isinstance(self.shadow_params , snake_case ): raise ValueError("""shadow_params must be a list""" ) if not all(isinstance(snake_case , torch.Tensor ) for p in self.shadow_params ): raise ValueError("""shadow_params must all be Tensors""" )
66
"""simple docstring""" import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def A_ ( _lowercase ): '''simple docstring''' snake_case_ :Union[str, Any] = os.path.join(args.tf_model_dir, """parameters.json""" ) snake_case_ :Any = json.loads(open(_lowercase ).read() ) if not params: raise ValueError( f"""It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.""" ) if not args.output.endswith(""".pt""" ): snake_case_ :Optional[int] = args.output + """.pt""" snake_case_ :List[str] = OrderedDict() with tf.device("""/CPU:0""" ): snake_case_ :Dict = tf.train.load_checkpoint(args.tf_model_dir ) snake_case_ :str = reader.get_variable_to_shape_map() for key_name in shapes.keys(): snake_case_ :List[Any] = reader.get_tensor(_lowercase ).astype(np.floataa ) if key_name.endswith("""/adam_m""" ) or key_name.endswith("""/adam_v""" ): continue if key_name.startswith("""pasts/""" ): if key_name.startswith("""pasts/mlp""" ): snake_case_ :Any = int(key_name[9] ) elif key_name.startswith("""pasts/out""" ): snake_case_ :Optional[int] = 8 snake_case_ :List[str] = """model.sqout.%d.weight""" % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time snake_case_ :Optional[Any] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix snake_case_ :List[str] = torch.tensor(_lowercase ) elif key_name.startswith("""model/moe""" ): snake_case_ :Tuple = int(key_name[9:].split("""/""" )[0] ) if key_name.endswith("""/switch_gating/kernel""" ): snake_case_ :Union[str, Any] = """model.blocks.%d.feed_forward.mlp.router.classifier.weight""" % player snake_case_ :Optional[Any] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix snake_case_ :Optional[Any] = torch.tensor(_lowercase ) elif key_name.endswith("""/softmlp/kernel""" ): snake_case_ :List[Any] = """model.blocks.%d.feed_forward.soft_bypass_mlp.weight""" % player snake_case_ :Optional[int] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix snake_case_ :Optional[Any] = torch.tensor(_lowercase ) elif key_name.endswith("""/wo/kernel""" ) or key_name.endswith("""/wi/kernel""" ): snake_case_ :Dict = key_name[-9:-7] for i in range(16 ): snake_case_ :str = """model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight""" % (player, i, nlayer) snake_case_ :Tuple = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided snake_case_ :Optional[int] = torch.tensor(_lowercase ) elif key_name.startswith("""model/mlp""" ): snake_case_ :Optional[int] = int(key_name[9:].split("""/""" )[0] ) if key_name.endswith("""/p1/kernel""" ): snake_case_ :Union[str, Any] = """model.blocks.%d.feed_forward.mlp.wi.weight""" % player snake_case_ :Dict = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix snake_case_ :Optional[Any] = torch.tensor(_lowercase ) elif key_name.endswith("""/p1/bias""" ): snake_case_ :List[Any] = """model.blocks.%d.feed_forward.mlp.wi.bias""" % player snake_case_ :str = vnp.copy() # same because it is one dimensional snake_case_ :Optional[Any] = torch.tensor(_lowercase ) elif key_name.endswith("""/p2/kernel""" ): snake_case_ :Union[str, Any] = """model.blocks.%d.feed_forward.mlp.wo.weight""" % player snake_case_ :Dict = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix snake_case_ :Tuple = torch.tensor(_lowercase ) elif key_name.endswith("""/p2/bias""" ): snake_case_ :Dict = """model.blocks.%d.feed_forward.mlp.wo.bias""" % player snake_case_ :Any = vnp.copy() # same because it is one dimensional snake_case_ :Optional[int] = torch.tensor(_lowercase ) elif key_name.startswith("""model/ln""" ): snake_case_ :Union[str, Any] = int(key_name[8:].split("""/""" )[0] ) if key_name.endswith("""/b""" ): snake_case_ :str = """model.blocks.%d.feed_forward.norm.bias""" % player snake_case_ :Dict = vnp.copy() # same because it is one dimensional snake_case_ :int = torch.tensor(_lowercase ) elif key_name.endswith("""/g""" ): snake_case_ :Dict = """model.blocks.%d.feed_forward.norm.weight""" % player snake_case_ :Dict = vnp.copy() # same because it is one dimensional snake_case_ :Tuple = torch.tensor(_lowercase ) elif key_name.startswith("""model/att""" ): snake_case_ :List[str] = int(key_name[9:].split("""/""" )[0] ) if key_name.endswith("""/qkv/kernel""" ): snake_case_ :Optional[int] = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum snake_case_ :Dict = state[:, 0, :, :] snake_case_ :int = state[:, 1, :, :] snake_case_ :List[str] = state[:, 2, :, :] snake_case_ :str = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix snake_case_ :Any = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix snake_case_ :Optional[int] = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix snake_case_ :int = """model.blocks.%d.self_attn.self_attn.q_proj.weight""" % player snake_case_ :int = torch.tensor(_lowercase ) snake_case_ :Optional[Any] = """model.blocks.%d.self_attn.self_attn.k_proj.weight""" % player snake_case_ :Dict = torch.tensor(_lowercase ) snake_case_ :Dict = """model.blocks.%d.self_attn.self_attn.v_proj.weight""" % player snake_case_ :Optional[Any] = torch.tensor(_lowercase ) elif key_name.endswith("""/o/kernel""" ): snake_case_ :str = """model.blocks.%d.self_attn.self_attn.out_proj.weight""" % player snake_case_ :str = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix snake_case_ :Any = torch.tensor(_lowercase ) elif key_name.startswith("""model/an""" ): snake_case_ :Optional[int] = int(key_name[8:].split("""/""" )[0] ) if key_name.endswith("""/b""" ): snake_case_ :Any = """model.blocks.%d.self_attn.norm.bias""" % player snake_case_ :Optional[int] = vnp.copy() # same because it is one dimensional snake_case_ :Tuple = torch.tensor(_lowercase ) elif key_name.endswith("""/g""" ): snake_case_ :Union[str, Any] = """model.blocks.%d.self_attn.norm.weight""" % player snake_case_ :Dict = vnp.copy() # same because it is one dimensional snake_case_ :Optional[int] = torch.tensor(_lowercase ) elif ( key_name.startswith("""model/wte""" ) or key_name.startswith("""model/wpe""" ) or key_name.startswith("""model/ete""" ) ): snake_case_ :List[Any] = {"""wte""": """embed_tokens""", """wpe""": """position_embeddings""", """ete""": """extra_position_embeddings"""}[ key_name[-3:] ] snake_case_ :Optional[Any] = """model.%s.weight""" % nlayer snake_case_ :Any = vnp.copy() # same in embedded snake_case_ :List[Any] = torch.tensor(_lowercase ) if key_name.startswith("""model/wte""" ): snake_case_ :Tuple = """lm_head.weight""" snake_case_ :List[str] = vnp.copy() # same in embedded snake_case_ :List[Any] = torch.tensor(_lowercase ) elif key_name.startswith("""model/wob""" ): snake_case_ :str = """final_logits_bias""" snake_case_ :Any = vnp.copy() # same in embedded snake_case_ :List[Any] = state.reshape((1, -1) ) snake_case_ :Union[str, Any] = torch.tensor(_lowercase ) elif key_name == "model/dense/kernel": snake_case_ :str = """model.last_project.weight""" snake_case_ :Dict = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix snake_case_ :int = torch.tensor(_lowercase ) elif key_name == "model/dense_1/bias": snake_case_ :Optional[int] = """model.last_project.bias""" snake_case_ :Tuple = vnp.copy() # same because it is one dimensional snake_case_ :Any = torch.tensor(_lowercase ) torch.save(_lowercase, args.output ) if __name__ == "__main__": __a = argparse.ArgumentParser( description="model converter.", formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument("--tf_model_dir", metavar="PATH", type=str, required=True, help="import model") parser.add_argument("--output", metavar="PATH", type=str, required=True, help="output model") __a = parser.parse_args() convert_tf_gptsan_to_pt(args)
66
1
import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _snake_case ( A__ , unittest.TestCase ): _lowercase : List[Any] = '''hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline''' def SCREAMING_SNAKE_CASE__ ( self , a=0) -> Optional[Any]: SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 128, 128) , rng=random.Random(a)) SCREAMING_SNAKE_CASE = np.random.RandomState(a) SCREAMING_SNAKE_CASE = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'strength': 0.75, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]: SCREAMING_SNAKE_CASE = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider') pipe.set_progress_bar_config(disable=a) SCREAMING_SNAKE_CASE = self.get_dummy_inputs() SCREAMING_SNAKE_CASE = pipe(**a).images SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) SCREAMING_SNAKE_CASE = np.array([0.6_96_43, 0.5_84_84, 0.5_03_14, 0.5_87_60, 0.5_53_68, 0.5_96_43, 0.5_15_29, 0.4_12_17, 0.4_90_87]) assert np.abs(image_slice - expected_slice).max() < 1E-1 def SCREAMING_SNAKE_CASE__ ( self) -> Any: SCREAMING_SNAKE_CASE = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider') SCREAMING_SNAKE_CASE = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=a) pipe.set_progress_bar_config(disable=a) SCREAMING_SNAKE_CASE = self.get_dummy_inputs() SCREAMING_SNAKE_CASE = pipe(**a).images SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) SCREAMING_SNAKE_CASE = np.array([0.6_17_37, 0.5_46_42, 0.5_31_83, 0.5_44_65, 0.5_27_42, 0.6_05_25, 0.4_99_69, 0.4_06_55, 0.4_81_54]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-1 def SCREAMING_SNAKE_CASE__ ( self) -> Dict: SCREAMING_SNAKE_CASE = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider') SCREAMING_SNAKE_CASE = LMSDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=a) # warmup pass to apply optimizations SCREAMING_SNAKE_CASE = pipe(**self.get_dummy_inputs()) SCREAMING_SNAKE_CASE = self.get_dummy_inputs() SCREAMING_SNAKE_CASE = pipe(**a).images SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) SCREAMING_SNAKE_CASE = np.array([0.5_27_61, 0.5_99_77, 0.4_90_33, 0.4_96_19, 0.5_42_82, 0.5_03_11, 0.4_76_00, 0.4_09_18, 0.4_52_03]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-1 def SCREAMING_SNAKE_CASE__ ( self) -> List[str]: SCREAMING_SNAKE_CASE = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider') SCREAMING_SNAKE_CASE = EulerDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=a) SCREAMING_SNAKE_CASE = self.get_dummy_inputs() SCREAMING_SNAKE_CASE = pipe(**a).images SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) SCREAMING_SNAKE_CASE = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-1 def SCREAMING_SNAKE_CASE__ ( self) -> str: SCREAMING_SNAKE_CASE = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider') SCREAMING_SNAKE_CASE = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=a) SCREAMING_SNAKE_CASE = self.get_dummy_inputs() SCREAMING_SNAKE_CASE = pipe(**a).images SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) SCREAMING_SNAKE_CASE = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-1 def SCREAMING_SNAKE_CASE__ ( self) -> Dict: SCREAMING_SNAKE_CASE = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider') SCREAMING_SNAKE_CASE = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=a) SCREAMING_SNAKE_CASE = self.get_dummy_inputs() SCREAMING_SNAKE_CASE = pipe(**a).images SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) SCREAMING_SNAKE_CASE = np.array([0.6_53_31, 0.5_82_77, 0.4_82_04, 0.5_60_59, 0.5_36_65, 0.5_62_35, 0.5_09_69, 0.4_00_09, 0.4_65_52]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class _snake_case ( unittest.TestCase ): @property def SCREAMING_SNAKE_CASE__ ( self) -> Dict: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def SCREAMING_SNAKE_CASE__ ( self) -> Tuple: SCREAMING_SNAKE_CASE = ort.SessionOptions() SCREAMING_SNAKE_CASE = False return options def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]: SCREAMING_SNAKE_CASE = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg') SCREAMING_SNAKE_CASE = init_image.resize((768, 512)) # using the PNDM scheduler by default SCREAMING_SNAKE_CASE = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='onnx' , safety_checker=a , feature_extractor=a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a) SCREAMING_SNAKE_CASE = 'A fantasy landscape, trending on artstation' SCREAMING_SNAKE_CASE = np.random.RandomState(0) SCREAMING_SNAKE_CASE = pipe( prompt=a , image=a , strength=0.75 , guidance_scale=7.5 , num_inference_steps=10 , generator=a , output_type='np' , ) SCREAMING_SNAKE_CASE = output.images SCREAMING_SNAKE_CASE = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) SCREAMING_SNAKE_CASE = np.array([0.49_09, 0.50_59, 0.53_72, 0.46_23, 0.48_76, 0.50_49, 0.48_20, 0.49_56, 0.50_19]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2E-2 def SCREAMING_SNAKE_CASE__ ( self) -> List[str]: SCREAMING_SNAKE_CASE = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg') SCREAMING_SNAKE_CASE = init_image.resize((768, 512)) SCREAMING_SNAKE_CASE = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5' , subfolder='scheduler' , revision='onnx') SCREAMING_SNAKE_CASE = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , revision='onnx' , scheduler=a , safety_checker=a , feature_extractor=a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a) SCREAMING_SNAKE_CASE = 'A fantasy landscape, trending on artstation' SCREAMING_SNAKE_CASE = np.random.RandomState(0) SCREAMING_SNAKE_CASE = pipe( prompt=a , image=a , strength=0.75 , guidance_scale=7.5 , num_inference_steps=20 , generator=a , output_type='np' , ) SCREAMING_SNAKE_CASE = output.images SCREAMING_SNAKE_CASE = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) SCREAMING_SNAKE_CASE = np.array([0.80_43, 0.9_26, 0.95_81, 0.81_19, 0.89_54, 0.9_13, 0.72_09, 0.74_63, 0.74_31]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2E-2
327
import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class _snake_case ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self) -> Any: with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights SCREAMING_SNAKE_CASE = FlaxDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=a , cache_dir=a) SCREAMING_SNAKE_CASE = [t[-1] for t in os.walk(os.path.join(a , os.listdir(a)[0] , 'snapshots'))] SCREAMING_SNAKE_CASE = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('.bin') for f in files) @slow @require_flax class _snake_case ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self) -> Any: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=a) SCREAMING_SNAKE_CASE = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0) SCREAMING_SNAKE_CASE = 4 SCREAMING_SNAKE_CASE = jax.device_count() SCREAMING_SNAKE_CASE = num_samples * [prompt] SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(a) # shard inputs and rng SCREAMING_SNAKE_CASE = replicate(a) SCREAMING_SNAKE_CASE = jax.random.split(a , a) SCREAMING_SNAKE_CASE = shard(a) SCREAMING_SNAKE_CASE = pipeline(a , a , a , a , jit=a).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 4.1_51_47_45) < 1E-3 assert np.abs(np.abs(a , dtype=np.floataa).sum() - 4_99_47.8_75) < 5E-1 SCREAMING_SNAKE_CASE = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:]))) assert len(a) == num_samples def SCREAMING_SNAKE_CASE__ ( self) -> int: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='flax' , safety_checker=a) SCREAMING_SNAKE_CASE = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0) SCREAMING_SNAKE_CASE = 50 SCREAMING_SNAKE_CASE = jax.device_count() SCREAMING_SNAKE_CASE = num_samples * [prompt] SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(a) # shard inputs and rng SCREAMING_SNAKE_CASE = replicate(a) SCREAMING_SNAKE_CASE = jax.random.split(a , a) SCREAMING_SNAKE_CASE = shard(a) SCREAMING_SNAKE_CASE = pipeline(a , a , a , a , jit=a).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.05_65_24_01)) < 1E-3 assert np.abs((np.abs(a , dtype=np.floataa).sum() - 2_38_38_08.2)) < 5E-1 def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=a) SCREAMING_SNAKE_CASE = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0) SCREAMING_SNAKE_CASE = 50 SCREAMING_SNAKE_CASE = jax.device_count() SCREAMING_SNAKE_CASE = num_samples * [prompt] SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(a) # shard inputs and rng SCREAMING_SNAKE_CASE = replicate(a) SCREAMING_SNAKE_CASE = jax.random.split(a , a) SCREAMING_SNAKE_CASE = shard(a) SCREAMING_SNAKE_CASE = pipeline(a , a , a , a , jit=a).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.04_00_39_06)) < 1E-3 assert np.abs((np.abs(a , dtype=np.floataa).sum() - 2_37_35_16.75)) < 5E-1 def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa) SCREAMING_SNAKE_CASE = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0) SCREAMING_SNAKE_CASE = 50 SCREAMING_SNAKE_CASE = jax.device_count() SCREAMING_SNAKE_CASE = num_samples * [prompt] SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(a) # shard inputs and rng SCREAMING_SNAKE_CASE = replicate(a) SCREAMING_SNAKE_CASE = jax.random.split(a , a) SCREAMING_SNAKE_CASE = shard(a) SCREAMING_SNAKE_CASE = pipeline(a , a , a , a , jit=a).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.04_00_39_06)) < 1E-3 assert np.abs((np.abs(a , dtype=np.floataa).sum() - 2_37_35_16.75)) < 5E-1 def SCREAMING_SNAKE_CASE__ ( self) -> Dict: SCREAMING_SNAKE_CASE = FlaxDDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , set_alpha_to_one=a , steps_offset=1 , ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , scheduler=a , safety_checker=a , ) SCREAMING_SNAKE_CASE = scheduler.create_state() SCREAMING_SNAKE_CASE = scheduler_state SCREAMING_SNAKE_CASE = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0) SCREAMING_SNAKE_CASE = 50 SCREAMING_SNAKE_CASE = jax.device_count() SCREAMING_SNAKE_CASE = num_samples * [prompt] SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(a) # shard inputs and rng SCREAMING_SNAKE_CASE = replicate(a) SCREAMING_SNAKE_CASE = jax.random.split(a , a) SCREAMING_SNAKE_CASE = shard(a) SCREAMING_SNAKE_CASE = pipeline(a , a , a , a , jit=a).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.0_45_04_39_45)) < 1E-3 assert np.abs((np.abs(a , dtype=np.floataa).sum() - 2_34_76_93.5)) < 5E-1 def SCREAMING_SNAKE_CASE__ ( self) -> str: SCREAMING_SNAKE_CASE = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) SCREAMING_SNAKE_CASE = jax.device_count() SCREAMING_SNAKE_CASE = num_samples * [prompt] SCREAMING_SNAKE_CASE = jax.random.split(jax.random.PRNGKey(0) , a) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=a , ) SCREAMING_SNAKE_CASE = replicate(a) SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(a) SCREAMING_SNAKE_CASE = shard(a) SCREAMING_SNAKE_CASE = pipeline(a , a , a , jit=a).images assert images.shape == (num_samples, 1, 512, 512, 3) SCREAMING_SNAKE_CASE = images[2, 0, 256, 10:17, 1] # With memory efficient attention SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=a , use_memory_efficient_attention=a , ) SCREAMING_SNAKE_CASE = replicate(a) SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(a) SCREAMING_SNAKE_CASE = shard(a) SCREAMING_SNAKE_CASE = pipeline(a , a , a , jit=a).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) SCREAMING_SNAKE_CASE = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice).max() < 1E-2
327
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { "xlm-mlm-en-2048": "https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json", "xlm-mlm-ende-1024": "https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json", "xlm-mlm-enfr-1024": "https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json", "xlm-mlm-enro-1024": "https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json", "xlm-mlm-tlm-xnli15-1024": "https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json", "xlm-mlm-xnli15-1024": "https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json", "xlm-clm-enfr-1024": "https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json", "xlm-clm-ende-1024": "https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json", "xlm-mlm-17-1280": "https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json", "xlm-mlm-100-1280": "https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json", } class A ( lowerCAmelCase_ ): UpperCamelCase_ : Optional[int] ='''xlm''' UpperCamelCase_ : Optional[Any] ={ '''hidden_size''': '''emb_dim''', '''num_attention_heads''': '''n_heads''', '''num_hidden_layers''': '''n_layers''', '''n_words''': '''vocab_size''', # For backward compatibility } def __init__(self , lowerCAmelCase=3_0_1_4_5 , lowerCAmelCase=2_0_4_8 , lowerCAmelCase=1_2 , lowerCAmelCase=1_6 , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=True , lowerCAmelCase=False , lowerCAmelCase=False , lowerCAmelCase=False , lowerCAmelCase=1 , lowerCAmelCase=True , lowerCAmelCase=5_1_2 , lowerCAmelCase=2_0_4_8**-0.5 , lowerCAmelCase=1E-12 , lowerCAmelCase=0.02 , lowerCAmelCase=0 , lowerCAmelCase=1 , lowerCAmelCase=2 , lowerCAmelCase=3 , lowerCAmelCase=5 , lowerCAmelCase=True , lowerCAmelCase="first" , lowerCAmelCase=True , lowerCAmelCase=None , lowerCAmelCase=True , lowerCAmelCase=0.1 , lowerCAmelCase=5 , lowerCAmelCase=5 , lowerCAmelCase=0 , lowerCAmelCase=0 , lowerCAmelCase=2 , lowerCAmelCase=0 , **lowerCAmelCase , ): __lowercase= vocab_size __lowercase= emb_dim __lowercase= n_layers __lowercase= n_heads __lowercase= dropout __lowercase= attention_dropout __lowercase= gelu_activation __lowercase= sinusoidal_embeddings __lowercase= causal __lowercase= asm __lowercase= n_langs __lowercase= use_lang_emb __lowercase= layer_norm_eps __lowercase= bos_index __lowercase= eos_index __lowercase= pad_index __lowercase= unk_index __lowercase= mask_index __lowercase= is_encoder __lowercase= max_position_embeddings __lowercase= embed_init_std __lowercase= init_std __lowercase= summary_type __lowercase= summary_use_proj __lowercase= summary_activation __lowercase= summary_proj_to_labels __lowercase= summary_first_dropout __lowercase= start_n_top __lowercase= end_n_top __lowercase= mask_token_id __lowercase= lang_id if "n_words" in kwargs: __lowercase= kwargs['''n_words'''] super().__init__(pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , **lowerCAmelCase ) class A ( lowerCAmelCase_ ): @property def _A (self ): if self.task == "multiple-choice": __lowercase= {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __lowercase= {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
295
"""simple docstring""" import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' def __get__( self : Tuple, lowerCamelCase : List[str], lowerCamelCase : Optional[int]=None )-> List[str]: # See docs.python.org/3/howto/descriptor.html#properties if obj is None: return self if self.fget is None: raise AttributeError('''unreadable attribute''' ) lowerCamelCase__ : List[str] ='''__cached_''' + self.fget.__name__ lowerCamelCase__ : List[Any] =getattr(lowerCamelCase, lowerCamelCase, lowerCamelCase ) if cached is None: lowerCamelCase__ : Optional[int] =self.fget(lowerCamelCase ) setattr(lowerCamelCase, lowerCamelCase, lowerCamelCase ) return cached def snake_case__ ( __lowerCamelCase : str ): """simple docstring""" lowerCamelCase__ : Optional[Any] =val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(f'''invalid truth value {val!r}''' ) def snake_case__ ( __lowerCamelCase : List[Any] ): """simple docstring""" if is_torch_fx_proxy(__lowerCamelCase ): return True if is_torch_available(): import torch if isinstance(__lowerCamelCase , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(__lowerCamelCase , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(__lowerCamelCase , (jnp.ndarray, Tracer) ): return True return isinstance(__lowerCamelCase , np.ndarray ) def snake_case__ ( __lowerCamelCase : List[Any] ): """simple docstring""" return isinstance(__lowerCamelCase , np.ndarray ) def snake_case__ ( __lowerCamelCase : Union[str, Any] ): """simple docstring""" return _is_numpy(__lowerCamelCase ) def snake_case__ ( __lowerCamelCase : Any ): """simple docstring""" import torch return isinstance(__lowerCamelCase , torch.Tensor ) def snake_case__ ( __lowerCamelCase : Optional[Any] ): """simple docstring""" return False if not is_torch_available() else _is_torch(__lowerCamelCase ) def snake_case__ ( __lowerCamelCase : List[str] ): """simple docstring""" import torch return isinstance(__lowerCamelCase , torch.device ) def snake_case__ ( __lowerCamelCase : Optional[Any] ): """simple docstring""" return False if not is_torch_available() else _is_torch_device(__lowerCamelCase ) def snake_case__ ( __lowerCamelCase : Tuple ): """simple docstring""" import torch if isinstance(__lowerCamelCase , __lowerCamelCase ): if hasattr(__lowerCamelCase , __lowerCamelCase ): lowerCamelCase__ : Tuple =getattr(__lowerCamelCase , __lowerCamelCase ) else: return False return isinstance(__lowerCamelCase , torch.dtype ) def snake_case__ ( __lowerCamelCase : List[Any] ): """simple docstring""" return False if not is_torch_available() else _is_torch_dtype(__lowerCamelCase ) def snake_case__ ( __lowerCamelCase : Optional[Any] ): """simple docstring""" import tensorflow as tf return isinstance(__lowerCamelCase , tf.Tensor ) def snake_case__ ( __lowerCamelCase : int ): """simple docstring""" return False if not is_tf_available() else _is_tensorflow(__lowerCamelCase ) def snake_case__ ( __lowerCamelCase : str ): """simple docstring""" import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(__lowerCamelCase , '''is_symbolic_tensor''' ): return tf.is_symbolic_tensor(__lowerCamelCase ) return type(__lowerCamelCase ) == tf.Tensor def snake_case__ ( __lowerCamelCase : Optional[Any] ): """simple docstring""" return False if not is_tf_available() else _is_tf_symbolic_tensor(__lowerCamelCase ) def snake_case__ ( __lowerCamelCase : str ): """simple docstring""" import jax.numpy as jnp # noqa: F811 return isinstance(__lowerCamelCase , jnp.ndarray ) def snake_case__ ( __lowerCamelCase : Tuple ): """simple docstring""" return False if not is_flax_available() else _is_jax(__lowerCamelCase ) def snake_case__ ( __lowerCamelCase : List[str] ): """simple docstring""" if isinstance(__lowerCamelCase , (dict, UserDict) ): return {k: to_py_obj(__lowerCamelCase ) for k, v in obj.items()} elif isinstance(__lowerCamelCase , (list, tuple) ): return [to_py_obj(__lowerCamelCase ) for o in obj] elif is_tf_tensor(__lowerCamelCase ): return obj.numpy().tolist() elif is_torch_tensor(__lowerCamelCase ): return obj.detach().cpu().tolist() elif is_jax_tensor(__lowerCamelCase ): return np.asarray(__lowerCamelCase ).tolist() elif isinstance(__lowerCamelCase , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def snake_case__ ( __lowerCamelCase : List[Any] ): """simple docstring""" if isinstance(__lowerCamelCase , (dict, UserDict) ): return {k: to_numpy(__lowerCamelCase ) for k, v in obj.items()} elif isinstance(__lowerCamelCase , (list, tuple) ): return np.array(__lowerCamelCase ) elif is_tf_tensor(__lowerCamelCase ): return obj.numpy() elif is_torch_tensor(__lowerCamelCase ): return obj.detach().cpu().numpy() elif is_jax_tensor(__lowerCamelCase ): return np.asarray(__lowerCamelCase ) else: return obj class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' def snake_case ( self : int )-> Optional[int]: lowerCamelCase__ : Union[str, Any] =fields(self ) # Safety and consistency checks if not len(lowerCamelCase ): raise ValueError(F'''{self.__class__.__name__} has no fields.''' ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(F'''{self.__class__.__name__} should not have more than one required field.''' ) lowerCamelCase__ : List[Any] =getattr(self, class_fields[0].name ) lowerCamelCase__ : Union[str, Any] =all(getattr(self, field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(lowerCamelCase ): if isinstance(lowerCamelCase, lowerCamelCase ): lowerCamelCase__ : Optional[int] =first_field.items() lowerCamelCase__ : Union[str, Any] =True else: try: lowerCamelCase__ : int =iter(lowerCamelCase ) lowerCamelCase__ : List[Any] =True except TypeError: lowerCamelCase__ : List[Any] =False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(lowerCamelCase ): if ( not isinstance(lowerCamelCase, (list, tuple) ) or not len(lowerCamelCase ) == 2 or not isinstance(element[0], lowerCamelCase ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute lowerCamelCase__ : Optional[int] =first_field else: # If we have a mixed iterator, raise an error raise ValueError( F'''Cannot set key/value for {element}. It needs to be a tuple (key, value).''' ) break setattr(self, element[0], element[1] ) if element[1] is not None: lowerCamelCase__ : str =element[1] elif first_field is not None: lowerCamelCase__ : Dict =first_field else: for field in class_fields: lowerCamelCase__ : Union[str, Any] =getattr(self, field.name ) if v is not None: lowerCamelCase__ : Optional[int] =v def __delitem__( self : int, *lowerCamelCase : List[str], **lowerCamelCase : Optional[int] )-> str: raise Exception(F'''You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.''' ) def snake_case ( self : Optional[int], *lowerCamelCase : int, **lowerCamelCase : List[str] )-> Optional[Any]: raise Exception(F'''You cannot use ``setdefault`` on a {self.__class__.__name__} instance.''' ) def snake_case ( self : Dict, *lowerCamelCase : Optional[int], **lowerCamelCase : Optional[Any] )-> int: raise Exception(F'''You cannot use ``pop`` on a {self.__class__.__name__} instance.''' ) def snake_case ( self : List[Any], *lowerCamelCase : Tuple, **lowerCamelCase : List[Any] )-> Optional[int]: raise Exception(F'''You cannot use ``update`` on a {self.__class__.__name__} instance.''' ) def __getitem__( self : Optional[Any], lowerCamelCase : Optional[int] )-> List[Any]: if isinstance(lowerCamelCase, lowerCamelCase ): lowerCamelCase__ : Union[str, Any] =dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self : Union[str, Any], lowerCamelCase : List[str], lowerCamelCase : List[str] )-> Dict: if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(lowerCamelCase, lowerCamelCase ) super().__setattr__(lowerCamelCase, lowerCamelCase ) def __setitem__( self : Optional[Any], lowerCamelCase : Union[str, Any], lowerCamelCase : int )-> List[Any]: # Will raise a KeyException if needed super().__setitem__(lowerCamelCase, lowerCamelCase ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(lowerCamelCase, lowerCamelCase ) def snake_case ( self : str )-> Tuple[Any]: return tuple(self[k] for k in self.keys() ) class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' @classmethod def snake_case ( cls : Optional[Any], lowerCamelCase : int )-> str: raise ValueError( F'''{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}''' ) class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' _a = 'longest' _a = 'max_length' _a = 'do_not_pad' class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' _a = 'pt' _a = 'tf' _a = 'np' _a = 'jax' class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Optional[int], lowerCamelCase : List[ContextManager] )-> str: lowerCamelCase__ : List[str] =context_managers lowerCamelCase__ : int =ExitStack() def __enter__( self : List[str] )-> Union[str, Any]: for context_manager in self.context_managers: self.stack.enter_context(lowerCamelCase ) def __exit__( self : Tuple, *lowerCamelCase : Union[str, Any], **lowerCamelCase : Tuple )-> List[Any]: self.stack.__exit__(*lowerCamelCase, **lowerCamelCase ) def snake_case__ ( __lowerCamelCase : int ): """simple docstring""" lowerCamelCase__ : Tuple =infer_framework(__lowerCamelCase ) if framework == "tf": lowerCamelCase__ : Any =inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": lowerCamelCase__ : Tuple =inspect.signature(model_class.forward ) # PyTorch models else: lowerCamelCase__ : List[str] =inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def snake_case__ ( __lowerCamelCase : str ): """simple docstring""" lowerCamelCase__ : Optional[Any] =model_class.__name__ lowerCamelCase__ : Tuple =infer_framework(__lowerCamelCase ) if framework == "tf": lowerCamelCase__ : int =inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": lowerCamelCase__ : Any =inspect.signature(model_class.forward ) # PyTorch models else: lowerCamelCase__ : Union[str, Any] =inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def snake_case__ ( __lowerCamelCase : MutableMapping , __lowerCamelCase : str = "" , __lowerCamelCase : str = "." ): """simple docstring""" def _flatten_dict(__lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int]="" , __lowerCamelCase : str="." ): for k, v in d.items(): lowerCamelCase__ : List[str] =str(__lowerCamelCase ) + delimiter + str(__lowerCamelCase ) if parent_key else k if v and isinstance(__lowerCamelCase , __lowerCamelCase ): yield from flatten_dict(__lowerCamelCase , __lowerCamelCase , delimiter=__lowerCamelCase ).items() else: yield key, v return dict(_flatten_dict(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) ) @contextmanager def snake_case__ ( __lowerCamelCase : Tuple , __lowerCamelCase : bool = False ): """simple docstring""" if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def snake_case__ ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict=None ): """simple docstring""" if is_numpy_array(__lowerCamelCase ): return np.transpose(__lowerCamelCase , axes=__lowerCamelCase ) elif is_torch_tensor(__lowerCamelCase ): return array.T if axes is None else array.permute(*__lowerCamelCase ) elif is_tf_tensor(__lowerCamelCase ): import tensorflow as tf return tf.transpose(__lowerCamelCase , perm=__lowerCamelCase ) elif is_jax_tensor(__lowerCamelCase ): return jnp.transpose(__lowerCamelCase , axes=__lowerCamelCase ) else: raise ValueError(f'''Type not supported for transpose: {type(__lowerCamelCase )}.''' ) def snake_case__ ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int] ): """simple docstring""" if is_numpy_array(__lowerCamelCase ): return np.reshape(__lowerCamelCase , __lowerCamelCase ) elif is_torch_tensor(__lowerCamelCase ): return array.reshape(*__lowerCamelCase ) elif is_tf_tensor(__lowerCamelCase ): import tensorflow as tf return tf.reshape(__lowerCamelCase , __lowerCamelCase ) elif is_jax_tensor(__lowerCamelCase ): return jnp.reshape(__lowerCamelCase , __lowerCamelCase ) else: raise ValueError(f'''Type not supported for reshape: {type(__lowerCamelCase )}.''' ) def snake_case__ ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[str]=None ): """simple docstring""" if is_numpy_array(__lowerCamelCase ): return np.squeeze(__lowerCamelCase , axis=__lowerCamelCase ) elif is_torch_tensor(__lowerCamelCase ): return array.squeeze() if axis is None else array.squeeze(dim=__lowerCamelCase ) elif is_tf_tensor(__lowerCamelCase ): import tensorflow as tf return tf.squeeze(__lowerCamelCase , axis=__lowerCamelCase ) elif is_jax_tensor(__lowerCamelCase ): return jnp.squeeze(__lowerCamelCase , axis=__lowerCamelCase ) else: raise ValueError(f'''Type not supported for squeeze: {type(__lowerCamelCase )}.''' ) def snake_case__ ( __lowerCamelCase : Dict , __lowerCamelCase : Optional[int] ): """simple docstring""" if is_numpy_array(__lowerCamelCase ): return np.expand_dims(__lowerCamelCase , __lowerCamelCase ) elif is_torch_tensor(__lowerCamelCase ): return array.unsqueeze(dim=__lowerCamelCase ) elif is_tf_tensor(__lowerCamelCase ): import tensorflow as tf return tf.expand_dims(__lowerCamelCase , axis=__lowerCamelCase ) elif is_jax_tensor(__lowerCamelCase ): return jnp.expand_dims(__lowerCamelCase , axis=__lowerCamelCase ) else: raise ValueError(f'''Type not supported for expand_dims: {type(__lowerCamelCase )}.''' ) def snake_case__ ( __lowerCamelCase : List[Any] ): """simple docstring""" if is_numpy_array(__lowerCamelCase ): return np.size(__lowerCamelCase ) elif is_torch_tensor(__lowerCamelCase ): return array.numel() elif is_tf_tensor(__lowerCamelCase ): import tensorflow as tf return tf.size(__lowerCamelCase ) elif is_jax_tensor(__lowerCamelCase ): return array.size else: raise ValueError(f'''Type not supported for expand_dims: {type(__lowerCamelCase )}.''' ) def snake_case__ ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Tuple ): """simple docstring""" for key, value in auto_map.items(): if isinstance(__lowerCamelCase , (tuple, list) ): lowerCamelCase__ : Optional[int] =[f'''{repo_id}--{v}''' if (v is not None and '''--''' not in v) else v for v in value] elif value is not None and "--" not in value: lowerCamelCase__ : Tuple =f'''{repo_id}--{value}''' return auto_map def snake_case__ ( __lowerCamelCase : Optional[int] ): """simple docstring""" for base_class in inspect.getmro(__lowerCamelCase ): lowerCamelCase__ : Tuple =base_class.__module__ lowerCamelCase__ : Tuple =base_class.__name__ if module.startswith('''tensorflow''' ) or module.startswith('''keras''' ) or name == "TFPreTrainedModel": return "tf" elif module.startswith('''torch''' ) or name == "PreTrainedModel": return "pt" elif module.startswith('''flax''' ) or module.startswith('''jax''' ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(f'''Could not infer framework from class {model_class}.''' )
238
0
'''simple docstring''' from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = "EncodecFeatureExtractor" snake_case_ = ("T5Tokenizer", "T5TokenizerFast") def __init__( self : List[Any] , __snake_case : Optional[int] , __snake_case : List[Any] )-> Tuple: super().__init__(__snake_case , __snake_case ) snake_case = self.feature_extractor snake_case = False def lowerCAmelCase ( self : int , __snake_case : Any=None , __snake_case : List[Any]=None , __snake_case : Dict=True )-> List[Any]: return self.tokenizer.get_decoder_prompt_ids(task=__snake_case , language=__snake_case , no_timestamps=__snake_case ) def __call__( self : Optional[Any] , *__snake_case : List[Any] , **__snake_case : List[Any] )-> str: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__snake_case , **__snake_case ) snake_case = kwargs.pop("""audio""" , __snake_case ) snake_case = kwargs.pop("""sampling_rate""" , __snake_case ) snake_case = kwargs.pop("""text""" , __snake_case ) if len(__snake_case ) > 0: snake_case = args[0] snake_case = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if text is not None: snake_case = self.tokenizer(__snake_case , **__snake_case ) if audio is not None: snake_case = self.feature_extractor(__snake_case , *__snake_case , sampling_rate=__snake_case , **__snake_case ) if audio is None: return inputs elif text is None: return audio_inputs else: snake_case = audio_inputs["""input_values"""] if "padding_mask" in audio_inputs: snake_case = audio_inputs["""padding_mask"""] return inputs def lowerCAmelCase ( self : Optional[Any] , *__snake_case : List[Any] , **__snake_case : Optional[int] )-> List[Any]: snake_case = kwargs.pop("""audio""" , __snake_case ) snake_case = kwargs.pop("""padding_mask""" , __snake_case ) if len(__snake_case ) > 0: snake_case = args[0] snake_case = args[1:] if audio_values is not None: return self._decode_audio(__snake_case , padding_mask=__snake_case ) else: return self.tokenizer.batch_decode(*__snake_case , **__snake_case ) def lowerCAmelCase ( self : int , *__snake_case : Optional[Any] , **__snake_case : List[str] )-> Tuple: return self.tokenizer.decode(*__snake_case , **__snake_case ) def lowerCAmelCase ( self : Any , __snake_case : Dict , __snake_case : Optional = None )-> List[np.ndarray]: snake_case = to_numpy(__snake_case ) snake_case , snake_case , snake_case = audio_values.shape if padding_mask is None: return list(__snake_case ) snake_case = to_numpy(__snake_case ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) snake_case = seq_len - padding_mask.shape[-1] snake_case = 1 - self.feature_extractor.padding_value snake_case = np.pad(__snake_case , ((0, 0), (0, difference)) , """constant""" , constant_values=__snake_case ) snake_case = audio_values.tolist() for i in range(__snake_case ): snake_case = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] snake_case = sliced_audio.reshape(__snake_case , -1 ) return audio_values
3
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def __lowerCamelCase ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Dict ) -> int: for attribute in key.split(""".""" ): snake_case = getattr(__lowerCAmelCase , __lowerCAmelCase ) if weight_type is not None: snake_case = getattr(__lowerCAmelCase , __lowerCAmelCase ).shape else: snake_case = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": snake_case = value elif weight_type == "weight_g": snake_case = value elif weight_type == "weight_v": snake_case = value elif weight_type == "bias": snake_case = value else: snake_case = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def __lowerCamelCase ( __lowerCAmelCase : int , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str] ) -> str: snake_case = [] snake_case = fairseq_model.state_dict() snake_case = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): snake_case = False if "conv_layers" in name: load_conv_layer( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , hf_model.config.feat_extract_norm == """group""" , ) snake_case = True else: for key, mapped_key in MAPPING.items(): snake_case = """hubert.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key if key in name or (key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0] and not is_finetuned): snake_case = True if "*" in mapped_key: snake_case = name.split(__lowerCAmelCase )[0].split(""".""" )[-2] snake_case = mapped_key.replace("""*""" , __lowerCAmelCase ) if "weight_g" in name: snake_case = """weight_g""" elif "weight_v" in name: snake_case = """weight_v""" elif "weight" in name: snake_case = """weight""" elif "bias" in name: snake_case = """bias""" else: snake_case = None set_recursively(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) continue if not is_used: unused_weights.append(__lowerCAmelCase ) logger.warning(F'''Unused weights: {unused_weights}''' ) def __lowerCamelCase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Any , __lowerCAmelCase : Any , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any ) -> List[str]: snake_case = full_name.split("""conv_layers.""" )[-1] snake_case = name.split(""".""" ) snake_case = int(items[0] ) snake_case = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) snake_case = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) snake_case = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) snake_case = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) snake_case = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__lowerCAmelCase ) @torch.no_grad() def __lowerCamelCase ( __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[Any]=None , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : Dict=True ) -> List[Any]: if config_path is not None: snake_case = HubertConfig.from_pretrained(__lowerCAmelCase ) else: snake_case = HubertConfig() if is_finetuned: if dict_path: snake_case = Dictionary.load(__lowerCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq snake_case = target_dict.pad_index snake_case = target_dict.bos_index snake_case = target_dict.eos_index snake_case = len(target_dict.symbols ) snake_case = os.path.join(__lowerCAmelCase , """vocab.json""" ) if not os.path.isdir(__lowerCAmelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__lowerCAmelCase ) ) return os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(target_dict.indices , __lowerCAmelCase ) snake_case = WavaVecaCTCTokenizer( __lowerCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=__lowerCAmelCase , ) snake_case = True if config.feat_extract_norm == """layer""" else False snake_case = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , ) snake_case = WavaVecaProcessor(feature_extractor=__lowerCAmelCase , tokenizer=__lowerCAmelCase ) processor.save_pretrained(__lowerCAmelCase ) snake_case = HubertForCTC(__lowerCAmelCase ) else: snake_case = HubertModel(__lowerCAmelCase ) if is_finetuned: snake_case , snake_case , snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: snake_case , snake_case , snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) snake_case = model[0].eval() recursively_load_weights(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) hf_wavavec.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
3
1
'''simple docstring''' import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging __UpperCAmelCase =logging.get_logger(__name__) class a__ ( UpperCAmelCase__ ): def __init__( self : Optional[Any] , a : Union[List[ControlNetModel], Tuple[ControlNetModel]] ): """simple docstring""" super().__init__() __lowerCamelCase = nn.ModuleList(a ) def SCREAMING_SNAKE_CASE__ ( self : Any , a : torch.FloatTensor , a : Union[torch.Tensor, float, int] , a : torch.Tensor , a : List[torch.tensor] , a : List[float] , a : Optional[torch.Tensor] = None , a : Optional[torch.Tensor] = None , a : Optional[torch.Tensor] = None , a : Optional[Dict[str, Any]] = None , a : bool = False , a : bool = True , ): """simple docstring""" for i, (image, scale, controlnet) in enumerate(zip(a , a , self.nets ) ): __lowerCamelCase , __lowerCamelCase = controlnet( a , a , a , a , a , a , a , a , a , a , a , ) # merge samples if i == 0: __lowerCamelCase , __lowerCamelCase = down_samples, mid_sample else: __lowerCamelCase = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(a , a ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def SCREAMING_SNAKE_CASE__ ( self : Any , a : Union[str, os.PathLike] , a : bool = True , a : Callable = None , a : bool = False , a : Optional[str] = None , ): """simple docstring""" __lowerCamelCase = 0 __lowerCamelCase = save_directory for controlnet in self.nets: controlnet.save_pretrained( a , is_main_process=a , save_function=a , safe_serialization=a , variant=a , ) idx += 1 __lowerCamelCase = model_path_to_save + f"""_{idx}""" @classmethod def SCREAMING_SNAKE_CASE__ ( cls : List[str] , a : Optional[Union[str, os.PathLike]] , **a : Optional[Any] ): """simple docstring""" __lowerCamelCase = 0 __lowerCamelCase = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... __lowerCamelCase = pretrained_model_path while os.path.isdir(a ): __lowerCamelCase = ControlNetModel.from_pretrained(a , **a ) controlnets.append(a ) idx += 1 __lowerCamelCase = pretrained_model_path + f"""_{idx}""" logger.info(f"""{len(a )} controlnets loaded from {pretrained_model_path}.""" ) if len(a ) == 0: raise ValueError( f"""No ControlNets found under {os.path.dirname(a )}. Expected at least {pretrained_model_path + '_0'}.""" ) return cls(a )
67
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers snake_case : Union[str, Any] = '''python tqdm regex requests packaging filelock numpy tokenizers'''.split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append('''dataclasses''') if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append('''importlib_metadata''') for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F"""can't find {pkg} in {deps.keys()}, check dependency_versions_table.py""") def __lowerCamelCase ( UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[int]=None ): """simple docstring""" require_version(deps[pkg] , UpperCAmelCase_ )
94
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _A : List[Any] =logging.get_logger(__name__) _A : Optional[Any] ={} class _lowercase ( _lowercase ): a = """llama""" a = ["""past_key_values"""] def __init__( self: Optional[int] , UpperCamelCase__: Optional[int]=32_000 , UpperCamelCase__: Optional[Any]=4_096 , UpperCamelCase__: Tuple=11_008 , UpperCamelCase__: str=32 , UpperCamelCase__: Optional[int]=32 , UpperCamelCase__: List[Any]=None , UpperCamelCase__: Union[str, Any]="silu" , UpperCamelCase__: Optional[Any]=2_048 , UpperCamelCase__: Optional[Any]=0.02 , UpperCamelCase__: Any=1e-6 , UpperCamelCase__: List[Any]=True , UpperCamelCase__: int=0 , UpperCamelCase__: Union[str, Any]=1 , UpperCamelCase__: int=2 , UpperCamelCase__: List[str]=1 , UpperCamelCase__: Tuple=False , UpperCamelCase__: Dict=None , **UpperCamelCase__: List[Any] , ): lowerCamelCase__ : List[str] = vocab_size lowerCamelCase__ : Optional[int] = max_position_embeddings lowerCamelCase__ : List[str] = hidden_size lowerCamelCase__ : Any = intermediate_size lowerCamelCase__ : List[Any] = num_hidden_layers lowerCamelCase__ : Union[str, Any] = num_attention_heads # for backward compatibility if num_key_value_heads is None: lowerCamelCase__ : List[Any] = num_attention_heads lowerCamelCase__ : List[str] = num_key_value_heads lowerCamelCase__ : List[str] = hidden_act lowerCamelCase__ : Tuple = initializer_range lowerCamelCase__ : List[Any] = rms_norm_eps lowerCamelCase__ : Union[str, Any] = pretraining_tp lowerCamelCase__ : Union[str, Any] = use_cache lowerCamelCase__ : Dict = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , tie_word_embeddings=UpperCamelCase__ , **UpperCamelCase__ , ) def lowerCamelCase_ ( self: Any ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , UpperCamelCase__ ) or len(self.rope_scaling ) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ F'''got {self.rope_scaling}''' ) lowerCamelCase__ : Tuple = self.rope_scaling.get("""type""" , UpperCamelCase__ ) lowerCamelCase__ : List[Any] = self.rope_scaling.get("""factor""" , UpperCamelCase__ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' ) if rope_scaling_factor is None or not isinstance(UpperCamelCase__ , UpperCamelCase__ ) or rope_scaling_factor <= 1.0: raise ValueError(F'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
129
'''simple docstring''' from math import asin, atan, cos, radians, sin, sqrt, tan _A : List[str] =637_8137.0 _A : Dict =635_6752.31_4245 _A : int =6_378_137 def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> float: lowerCamelCase__ : str = (AXIS_A - AXIS_B) / AXIS_A lowerCamelCase__ : Dict = atan((1 - flattening) * tan(radians(UpperCamelCase ) ) ) lowerCamelCase__ : Dict = atan((1 - flattening) * tan(radians(UpperCamelCase ) ) ) lowerCamelCase__ : Optional[Any] = radians(UpperCamelCase ) lowerCamelCase__ : List[Any] = radians(UpperCamelCase ) # Equation lowerCamelCase__ : Tuple = sin((phi_a - phi_a) / 2 ) lowerCamelCase__ : List[Any] = sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda lowerCamelCase__ : Tuple = sqrt(sin_sq_phi + (cos(UpperCamelCase ) * cos(UpperCamelCase ) * sin_sq_lambda) ) return 2 * RADIUS * asin(UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
129
1
from collections.abc import Callable import numpy as np def lowerCAmelCase_ ( __A, __A, __A, __A, __A ) -> np.array: '''simple docstring''' UpperCAmelCase__ = int(np.ceil((x_end - xa) / step_size ) ) UpperCAmelCase__ = np.zeros((n + 1,) ) UpperCAmelCase__ = ya UpperCAmelCase__ = xa for k in range(__A ): UpperCAmelCase__ = y[k] + step_size * ode_func(__A, y[k] ) UpperCAmelCase__ = y[k] + ( (step_size / 2) * (ode_func(__A, y[k] ) + ode_func(x + step_size, __A )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
65
from __future__ import annotations class A : def __init__(self : Union[str, Any] , __UpperCAmelCase : list[list[int]] ) -> List[str]: """simple docstring""" UpperCAmelCase__ = TypeError( "Matrices must be formed from a list of zero or more lists containing at " "least one and the same number of values, each of which must be of type " "int or float." ) if len(__UpperCAmelCase ) != 0: UpperCAmelCase__ = len(rows[0] ) if cols == 0: raise error for row in rows: if len(__UpperCAmelCase ) != cols: raise error for value in row: if not isinstance(__UpperCAmelCase , (int, float) ): raise error UpperCAmelCase__ = rows else: UpperCAmelCase__ = [] def lowercase_ (self : Any ) -> list[list[int]]: """simple docstring""" return [[row[i] for row in self.rows] for i in range(len(self.rows[0] ) )] @property def lowercase_ (self : Any ) -> int: """simple docstring""" return len(self.rows ) @property def lowercase_ (self : Union[str, Any] ) -> int: """simple docstring""" return len(self.rows[0] ) @property def lowercase_ (self : List[Any] ) -> tuple[int, int]: """simple docstring""" return (self.num_rows, self.num_columns) @property def lowercase_ (self : Tuple ) -> bool: """simple docstring""" return self.order[0] == self.order[1] def lowercase_ (self : Any ) -> Matrix: """simple docstring""" UpperCAmelCase__ = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows )] for row_num in range(self.num_rows ) ] return Matrix(__UpperCAmelCase ) def lowercase_ (self : int ) -> int: """simple docstring""" if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0] ) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0]) ) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns ) ) def lowercase_ (self : Tuple ) -> bool: """simple docstring""" return bool(self.determinant() ) def lowercase_ (self : Dict , __UpperCAmelCase : int , __UpperCAmelCase : int ) -> int: """simple docstring""" UpperCAmelCase__ = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns ) if other_column != column ] for other_row in range(self.num_rows ) if other_row != row ] return Matrix(__UpperCAmelCase ).determinant() def lowercase_ (self : int , __UpperCAmelCase : int , __UpperCAmelCase : int ) -> int: """simple docstring""" if (row + column) % 2 == 0: return self.get_minor(__UpperCAmelCase , __UpperCAmelCase ) return -1 * self.get_minor(__UpperCAmelCase , __UpperCAmelCase ) def lowercase_ (self : Union[str, Any] ) -> Matrix: """simple docstring""" return Matrix( [ [self.get_minor(__UpperCAmelCase , __UpperCAmelCase ) for column in range(self.num_columns )] for row in range(self.num_rows ) ] ) def lowercase_ (self : List[str] ) -> Matrix: """simple docstring""" return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns ) ] for row in range(self.minors().num_rows ) ] ) def lowercase_ (self : Optional[Any] ) -> Matrix: """simple docstring""" UpperCAmelCase__ = [ [self.cofactors().rows[column][row] for column in range(self.num_columns )] for row in range(self.num_rows ) ] return Matrix(__UpperCAmelCase ) def lowercase_ (self : List[Any] ) -> Matrix: """simple docstring""" UpperCAmelCase__ = self.determinant() if not determinant: raise TypeError("Only matrices with a non-zero determinant have an inverse" ) return self.adjugate() * (1 / determinant) def __repr__(self : Dict ) -> str: """simple docstring""" return str(self.rows ) def __str__(self : Optional[Any] ) -> str: """simple docstring""" if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0] ) ) + "]]" return ( "[" + "\n ".join( [ "[" + ". ".join([str(__UpperCAmelCase ) for value in row] ) + ".]" for row in self.rows ] ) + "]" ) def lowercase_ (self : Optional[int] , __UpperCAmelCase : list[int] , __UpperCAmelCase : int | None = None ) -> None: """simple docstring""" UpperCAmelCase__ = TypeError("Row must be a list containing all ints and/or floats" ) if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise type_error for value in row: if not isinstance(__UpperCAmelCase , (int, float) ): raise type_error if len(__UpperCAmelCase ) != self.num_columns: raise ValueError( "Row must be equal in length to the other rows in the matrix" ) if position is None: self.rows.append(__UpperCAmelCase ) else: UpperCAmelCase__ = self.rows[0:position] + [row] + self.rows[position:] def lowercase_ (self : Union[str, Any] , __UpperCAmelCase : list[int] , __UpperCAmelCase : int | None = None ) -> None: """simple docstring""" UpperCAmelCase__ = TypeError( "Column must be a list containing all ints and/or floats" ) if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise type_error for value in column: if not isinstance(__UpperCAmelCase , (int, float) ): raise type_error if len(__UpperCAmelCase ) != self.num_rows: raise ValueError( "Column must be equal in length to the other columns in the matrix" ) if position is None: UpperCAmelCase__ = [self.rows[i] + [column[i]] for i in range(self.num_rows )] else: UpperCAmelCase__ = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows ) ] def __eq__(self : Any , __UpperCAmelCase : object ) -> bool: """simple docstring""" if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): return NotImplemented return self.rows == other.rows def __ne__(self : int , __UpperCAmelCase : object ) -> bool: """simple docstring""" return not self == other def __neg__(self : Dict ) -> Matrix: """simple docstring""" return self * -1 def __add__(self : Dict , __UpperCAmelCase : Matrix ) -> Matrix: """simple docstring""" if self.order != other.order: raise ValueError("Addition requires matrices of the same order" ) return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __sub__(self : Optional[Any] , __UpperCAmelCase : Matrix ) -> Matrix: """simple docstring""" if self.order != other.order: raise ValueError("Subtraction requires matrices of the same order" ) return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __mul__(self : Tuple , __UpperCAmelCase : Matrix | int | float ) -> Matrix: """simple docstring""" if isinstance(__UpperCAmelCase , (int, float) ): return Matrix( [[int(element * other ) for element in row] for row in self.rows] ) elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): if self.num_columns != other.num_rows: raise ValueError( "The number of columns in the first matrix must " "be equal to the number of rows in the second" ) return Matrix( [ [Matrix.dot_product(__UpperCAmelCase , __UpperCAmelCase ) for column in other.columns()] for row in self.rows ] ) else: raise TypeError( "A Matrix can only be multiplied by an int, float, or another matrix" ) def __pow__(self : List[Any] , __UpperCAmelCase : int ) -> Matrix: """simple docstring""" if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError("A Matrix can only be raised to the power of an int" ) if not self.is_square: raise ValueError("Only square matrices can be raised to a power" ) if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( "Only invertable matrices can be raised to a negative power" ) UpperCAmelCase__ = self for _ in range(other - 1 ): result *= self return result @classmethod def lowercase_ (cls : Dict , __UpperCAmelCase : list[int] , __UpperCAmelCase : list[int] ) -> int: """simple docstring""" return sum(row[i] * column[i] for i in range(len(__UpperCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
65
1
"""simple docstring""" from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def _lowerCAmelCase ( UpperCAmelCase__ : str, UpperCAmelCase__ : float | Decimal, UpperCAmelCase__ : float = 1_0**-1_0 ) ->float: A__ : Any = a while True: A__ : Tuple = Decimal(UpperCAmelCase__ ) - ( Decimal(eval(UpperCAmelCase__ ) ) / Decimal(eval(str(diff(UpperCAmelCase__ ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(UpperCAmelCase__ ) ) < precision: # noqa: S307 return float(UpperCAmelCase__ ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F'The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}') # Find root of polynomial print(F'The root of x**2 - 5*x + 2 = 0 is {newton_raphson("x**2 - 5*x + 2", 0.4)}') # Find Square Root of 5 print(F'The root of log(x) - 1 = 0 is {newton_raphson("log(x) - 1", 2)}') # Exponential Roots print(F'The root of exp(x) - 1 = 0 is {newton_raphson("exp(x) - 1", 0)}')
356
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING A_ = logging.get_logger(__name__) A_ = { '''microsoft/table-transformer-detection''': ( '''https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json''' ), } class __SCREAMING_SNAKE_CASE ( UpperCamelCase ): snake_case_ = 'table-transformer' snake_case_ = ['past_key_values'] snake_case_ = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self : Dict , snake_case : int=True , snake_case : Dict=None , snake_case : Union[str, Any]=3 , snake_case : Dict=100 , snake_case : Tuple=6 , snake_case : Optional[int]=2048 , snake_case : int=8 , snake_case : Dict=6 , snake_case : Any=2048 , snake_case : str=8 , snake_case : Union[str, Any]=0.0 , snake_case : List[str]=0.0 , snake_case : List[str]=True , snake_case : Any="relu" , snake_case : str=256 , snake_case : int=0.1 , snake_case : Dict=0.0 , snake_case : str=0.0 , snake_case : Union[str, Any]=0.02 , snake_case : Union[str, Any]=1.0 , snake_case : Optional[Any]=False , snake_case : int="sine" , snake_case : Optional[Any]="resnet50" , snake_case : Optional[int]=True , snake_case : Any=False , snake_case : int=1 , snake_case : Tuple=5 , snake_case : Optional[int]=2 , snake_case : Tuple=1 , snake_case : Optional[Any]=1 , snake_case : Optional[Any]=5 , snake_case : Dict=2 , snake_case : Any=0.1 , **snake_case : Any , ): '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) A__ : Optional[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(snake_case , snake_case ): A__ : Optional[int] = backbone_config.get("""model_type""" ) A__ : Optional[int] = CONFIG_MAPPING[backbone_model_type] A__ : List[str] = config_class.from_dict(snake_case ) # set timm attributes to None A__ , A__ , A__ : str = None, None, None A__ : Tuple = use_timm_backbone A__ : str = backbone_config A__ : str = num_channels A__ : List[Any] = num_queries A__ : Optional[Any] = d_model A__ : Tuple = encoder_ffn_dim A__ : Union[str, Any] = encoder_layers A__ : List[Any] = encoder_attention_heads A__ : Optional[int] = decoder_ffn_dim A__ : Any = decoder_layers A__ : int = decoder_attention_heads A__ : Any = dropout A__ : Dict = attention_dropout A__ : Dict = activation_dropout A__ : Tuple = activation_function A__ : List[str] = init_std A__ : List[str] = init_xavier_std A__ : Any = encoder_layerdrop A__ : Optional[Any] = decoder_layerdrop A__ : Union[str, Any] = encoder_layers A__ : Dict = auxiliary_loss A__ : List[Any] = position_embedding_type A__ : Optional[Any] = backbone A__ : str = use_pretrained_backbone A__ : Union[str, Any] = dilation # Hungarian matcher A__ : Tuple = class_cost A__ : Optional[Any] = bbox_cost A__ : Dict = giou_cost # Loss coefficients A__ : Any = mask_loss_coefficient A__ : str = dice_loss_coefficient A__ : str = bbox_loss_coefficient A__ : Union[str, Any] = giou_loss_coefficient A__ : List[str] = eos_coefficient super().__init__(is_encoder_decoder=snake_case , **snake_case ) @property def _UpperCamelCase ( self : List[str] ): '''simple docstring''' return self.encoder_attention_heads @property def _UpperCamelCase ( self : Dict ): '''simple docstring''' return self.d_model class __SCREAMING_SNAKE_CASE ( UpperCamelCase ): snake_case_ = version.parse('1.11' ) @property def _UpperCamelCase ( self : Any ): '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def _UpperCamelCase ( self : Optional[int] ): '''simple docstring''' return 1e-5 @property def _UpperCamelCase ( self : List[str] ): '''simple docstring''' return 12
296
0
'''simple docstring''' def __snake_case( _lowerCAmelCase ) -> Union[str, Any]: # if the collection is empty, returns empty if collection == []: return [] # get some information about the collection snake_case__ : Tuple = len(_lowerCAmelCase ) snake_case__ : Any = max(_lowerCAmelCase ) snake_case__ : List[Any] = min(_lowerCAmelCase ) # create the counting array snake_case__ : Optional[int] = coll_max + 1 - coll_min snake_case__ : Optional[Any] = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , _lowerCAmelCase ): snake_case__ : Dict = counting_arr[i] + counting_arr[i - 1] # create the output collection snake_case__ : Dict = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , _lowerCAmelCase ) ): snake_case__ : Optional[Any] = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def __snake_case( _lowerCAmelCase ) -> str: return "".join([chr(_lowerCAmelCase ) for i in counting_sort([ord(_lowerCAmelCase ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string("thisisthestring") == "eghhiiinrsssttt" __a = input("Enter numbers separated by a comma:\n").strip() __a = [int(item) for item in user_input.split(",")] print(counting_sort(unsorted))
35
"""simple docstring""" from ..utils import DummyObject, requires_backends class a ( metaclass=UpperCAmelCase__ ): UpperCamelCase : Optional[int] = ['torch', 'torchsde'] def __init__( self : Union[str, Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Union[str, Any] ) -> Dict: '''simple docstring''' requires_backends(self , ["""torch""", """torchsde"""] ) @classmethod def lowerCamelCase__ ( cls : Union[str, Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Tuple ) -> List[Any]: '''simple docstring''' requires_backends(cls , ["""torch""", """torchsde"""] ) @classmethod def lowerCamelCase__ ( cls : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Any ) -> Tuple: '''simple docstring''' requires_backends(cls , ["""torch""", """torchsde"""] )
173
0
import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel _snake_case = False _snake_case = True _snake_case = False if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument( "--repo_path", default=None, type=str, required=True, help="The config json file corresponding to the architecture.", ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") _snake_case = parser.parse_args() _snake_case = { "image_size": "sample_size", "num_res_blocks": "layers_per_block", "block_channels": "block_out_channels", "down_blocks": "down_block_types", "up_blocks": "up_block_types", "downscale_freq_shift": "freq_shift", "resnet_num_groups": "norm_num_groups", "resnet_act_fn": "act_fn", "resnet_eps": "norm_eps", "num_head_channels": "attention_head_dim", } _snake_case = { "time_steps": "time_proj", "mid": "mid_block", "downsample_blocks": "down_blocks", "upsample_blocks": "up_blocks", } _snake_case = "" if has_file(args.repo_path, "config.json") else "unet" with open(os.path.join(args.repo_path, subfolder, "config.json"), "r", encoding="utf-8") as reader: _snake_case = reader.read() _snake_case = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, "config.json"): _snake_case = UNetaDModel(**config) else: _snake_case = UNetaDConditionModel if "ldm-text2im-large-256" in args.repo_path else UNetaDModel _snake_case = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) _snake_case = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: _snake_case = config[key] del config[key] _snake_case = [k.replace("UNetRes", "") for k in config["down_block_types"]] _snake_case = [k.replace("UNetRes", "") for k in config["up_block_types"]] if do_only_weights: _snake_case = torch.load(os.path.join(args.repo_path, subfolder, "diffusion_pytorch_model.bin")) _snake_case = {} for param_key, param_value in state_dict.items(): if param_key.endswith(".op.bias") or param_key.endswith(".op.weight"): continue _snake_case = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split(".")[0] == key: _snake_case = param_value _snake_case = True if not has_changed: _snake_case = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
300
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class UpperCAmelCase_ ( a): lowerCamelCase__ = 42 lowerCamelCase__ = 42 class UpperCAmelCase_ ( a , a): lowerCamelCase__ = 1 @register_to_config def __init__( self, __a = 2000, __a = 0.15, __a = 0.01, __a = 1_348.0, __a = 1E-5, __a = 1, ): '''simple docstring''' _lowerCAmelCase : Dict = sigma_max # setable values _lowerCAmelCase : str = None self.set_sigmas(__a, __a, __a, __a) def snake_case__ ( self, __a, __a = None): '''simple docstring''' return sample def snake_case__ ( self, __a, __a = None, __a = None): '''simple docstring''' _lowerCAmelCase : int = sampling_eps if sampling_eps is not None else self.config.sampling_eps _lowerCAmelCase : Dict = torch.linspace(1, __a, __a, device=__a) def snake_case__ ( self, __a, __a = None, __a = None, __a = None): '''simple docstring''' _lowerCAmelCase : List[str] = sigma_min if sigma_min is not None else self.config.sigma_min _lowerCAmelCase : Tuple = sigma_max if sigma_max is not None else self.config.sigma_max _lowerCAmelCase : str = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(__a, __a) _lowerCAmelCase : int = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) _lowerCAmelCase : Any = torch.exp(torch.linspace(math.log(__a), math.log(__a), __a)) _lowerCAmelCase : int = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps]) def snake_case__ ( self, __a, __a): '''simple docstring''' return torch.where( timesteps == 0, torch.zeros_like(t.to(timesteps.device)), self.discrete_sigmas[timesteps - 1].to(timesteps.device), ) def snake_case__ ( self, __a, __a, __a, __a = None, __a = True, ): '''simple docstring''' if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler") _lowerCAmelCase : Dict = timestep * torch.ones( sample.shape[0], device=sample.device) # torch.repeat_interleave(timestep, sample.shape[0]) _lowerCAmelCase : Dict = (timestep * (len(self.timesteps) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda _lowerCAmelCase : Union[str, Any] = timesteps.to(self.discrete_sigmas.device) _lowerCAmelCase : Any = self.discrete_sigmas[timesteps].to(sample.device) _lowerCAmelCase : List[Any] = self.get_adjacent_sigma(__a, __a).to(sample.device) _lowerCAmelCase : List[str] = torch.zeros_like(__a) _lowerCAmelCase : Union[str, Any] = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods _lowerCAmelCase : Union[str, Any] = diffusion.flatten() while len(diffusion.shape) < len(sample.shape): _lowerCAmelCase : Optional[int] = diffusion.unsqueeze(-1) _lowerCAmelCase : Dict = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of _lowerCAmelCase : Optional[Any] = randn_tensor( sample.shape, layout=sample.layout, generator=__a, device=sample.device, dtype=sample.dtype) _lowerCAmelCase : int = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? _lowerCAmelCase : Tuple = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=__a, prev_sample_mean=__a) def snake_case__ ( self, __a, __a, __a = None, __a = True, ): '''simple docstring''' if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler") # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction _lowerCAmelCase : Union[str, Any] = randn_tensor(sample.shape, layout=sample.layout, generator=__a).to(sample.device) # compute step size from the model_output, the noise, and the snr _lowerCAmelCase : Any = torch.norm(model_output.reshape(model_output.shape[0], -1), dim=-1).mean() _lowerCAmelCase : Dict = torch.norm(noise.reshape(noise.shape[0], -1), dim=-1).mean() _lowerCAmelCase : Optional[Any] = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 _lowerCAmelCase : Dict = step_size * torch.ones(sample.shape[0]).to(sample.device) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term _lowerCAmelCase : List[Any] = step_size.flatten() while len(step_size.shape) < len(sample.shape): _lowerCAmelCase : int = step_size.unsqueeze(-1) _lowerCAmelCase : List[Any] = sample + step_size * model_output _lowerCAmelCase : Tuple = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__a) def snake_case__ ( self, __a, __a, __a, ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = timesteps.to(original_samples.device) _lowerCAmelCase : Union[str, Any] = self.discrete_sigmas.to(original_samples.device)[timesteps] _lowerCAmelCase : Any = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(__a) * sigmas[:, None, None, None] ) _lowerCAmelCase : int = noise + original_samples return noisy_samples def __len__( self): '''simple docstring''' return self.config.num_train_timesteps
300
1
"""simple docstring""" import re from filelock import FileLock try: import nltk SCREAMING_SNAKE_CASE_ : int = True except (ImportError, ModuleNotFoundError): SCREAMING_SNAKE_CASE_ : Any = False if NLTK_AVAILABLE: with FileLock('.lock') as lock: nltk.download('punkt', quiet=True) def _snake_case ( UpperCAmelCase_ : str ): re.sub("""<n>""" , """""" , _lowerCAmelCase ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(_lowerCAmelCase ) )
335
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets _lowerCAmelCase : List[Any] = '''\ @inproceedings{snover-etal-2006-study, title = "A Study of Translation Edit Rate with Targeted Human Annotation", author = "Snover, Matthew and Dorr, Bonnie and Schwartz, Rich and Micciulla, Linnea and Makhoul, John", booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers", month = aug # " 8-12", year = "2006", address = "Cambridge, Massachusetts, USA", publisher = "Association for Machine Translation in the Americas", url = "https://aclanthology.org/2006.amta-papers.25", pages = "223--231", } @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' _lowerCAmelCase : Union[str, Any] = '''\ TER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a hypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu (https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found here: https://github.com/jhclark/tercom. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information. ''' _lowerCAmelCase : Optional[Any] = ''' Produces TER scores alongside the number of edits and reference length. Args: predictions (list of str): The system stream (a sequence of segments). references (list of list of str): A list of one or more reference streams (each a sequence of segments). normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters, as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana. Only applies if `normalized = True`. Defaults to `False`. case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`. Returns: \'score\' (float): TER score (num_edits / sum_ref_lengths * 100) \'num_edits\' (int): The cumulative number of edits \'ref_length\' (float): The cumulative average reference length Examples: Example 1: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0} Example 2: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0} Example 3: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... normalized=True, ... case_sensitive=True) >>> print(results) {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5} Example 4: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0} Example 5: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' if version.parse(scb.__version__ ) < version.parse("1.4.12" ): raise ImportWarning( "To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n" "You can install it with `pip install \"sacrebleu>=1.4.12\"`." ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="http://www.cs.umd.edu/~snover/tercom/" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Sequence(datasets.Value("string" , id="sequence" ) , id="references" ), } ) , codebase_urls=["https://github.com/mjpost/sacreBLEU#ter"] , reference_urls=[ "https://github.com/jhclark/tercom", ] , ) def SCREAMING_SNAKE_CASE ( self :Union[str, Any] , snake_case :Optional[int] , snake_case :List[Any] , snake_case :bool = False , snake_case :bool = False , snake_case :bool = False , snake_case :bool = False , ): '''simple docstring''' A_ : List[str] = len(references[0] ) if any(len(snake_case ) != references_per_prediction for refs in references ): raise ValueError("Sacrebleu requires the same number of references for each prediction" ) A_ : int = [[refs[i] for refs in references] for i in range(snake_case )] A_ : Optional[Any] = TER( normalized=snake_case , no_punct=snake_case , asian_support=snake_case , case_sensitive=snake_case , ) A_ : List[Any] = sb_ter.corpus_score(snake_case , snake_case ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
300
0
from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance UpperCamelCase = 6_378_137.0 UpperCamelCase = 6_356_752.314_245 UpperCamelCase = 6_378_137 def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) -> float: """simple docstring""" _SCREAMING_SNAKE_CASE = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude _SCREAMING_SNAKE_CASE = atan((1 - flattening) * tan(radians(snake_case__ ) ) ) _SCREAMING_SNAKE_CASE = atan((1 - flattening) * tan(radians(snake_case__ ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius _SCREAMING_SNAKE_CASE = haversine_distance(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) / EQUATORIAL_RADIUS # Intermediate P and Q values _SCREAMING_SNAKE_CASE = (b_lata + b_lata) / 2 _SCREAMING_SNAKE_CASE = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) _SCREAMING_SNAKE_CASE = (sin(snake_case__ ) ** 2) * (cos(snake_case__ ) ** 2) _SCREAMING_SNAKE_CASE = cos(sigma / 2 ) ** 2 _SCREAMING_SNAKE_CASE = (sigma - sin(snake_case__ )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) _SCREAMING_SNAKE_CASE = (cos(snake_case__ ) ** 2) * (sin(snake_case__ ) ** 2) _SCREAMING_SNAKE_CASE = sin(sigma / 2 ) ** 2 _SCREAMING_SNAKE_CASE = (sigma + sin(snake_case__ )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
125
import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel UpperCamelCase = '''0.12''' # assumed parallelism: 8 @require_flax @is_staging_test class __UpperCAmelCase (unittest.TestCase ): @classmethod def UpperCamelCase ( cls: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TOKEN HfFolder.save_token(UpperCAmelCase_ ) @classmethod def UpperCamelCase ( cls: Union[str, Any] ): '''simple docstring''' try: delete_repo(token=cls._token , repo_id="""test-model-flax""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-model-flax-org""" ) except HTTPError: pass def UpperCamelCase ( self: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) _SCREAMING_SNAKE_CASE = FlaxBertModel(UpperCAmelCase_ ) model.push_to_hub("""test-model-flax""" , use_auth_token=self._token ) _SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained(F'{USER}/test-model-flax' ) _SCREAMING_SNAKE_CASE = flatten_dict(unfreeze(model.params ) ) _SCREAMING_SNAKE_CASE = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): _SCREAMING_SNAKE_CASE = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(UpperCAmelCase_ , 1E-3 , msg=F'{key} not identical' ) # Reset repo delete_repo(token=self._token , repo_id="""test-model-flax""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(UpperCAmelCase_ , repo_id="""test-model-flax""" , push_to_hub=UpperCAmelCase_ , use_auth_token=self._token ) _SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained(F'{USER}/test-model-flax' ) _SCREAMING_SNAKE_CASE = flatten_dict(unfreeze(model.params ) ) _SCREAMING_SNAKE_CASE = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): _SCREAMING_SNAKE_CASE = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(UpperCAmelCase_ , 1E-3 , msg=F'{key} not identical' ) def UpperCamelCase ( self: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) _SCREAMING_SNAKE_CASE = FlaxBertModel(UpperCAmelCase_ ) model.push_to_hub("""valid_org/test-model-flax-org""" , use_auth_token=self._token ) _SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained("""valid_org/test-model-flax-org""" ) _SCREAMING_SNAKE_CASE = flatten_dict(unfreeze(model.params ) ) _SCREAMING_SNAKE_CASE = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): _SCREAMING_SNAKE_CASE = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(UpperCAmelCase_ , 1E-3 , msg=F'{key} not identical' ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-model-flax-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( UpperCAmelCase_ , repo_id="""valid_org/test-model-flax-org""" , push_to_hub=UpperCAmelCase_ , use_auth_token=self._token ) _SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained("""valid_org/test-model-flax-org""" ) _SCREAMING_SNAKE_CASE = flatten_dict(unfreeze(model.params ) ) _SCREAMING_SNAKE_CASE = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): _SCREAMING_SNAKE_CASE = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(UpperCAmelCase_ , 1E-3 , msg=F'{key} not identical' ) def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = flatten_dict(modela.params ) _SCREAMING_SNAKE_CASE = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: _SCREAMING_SNAKE_CASE = False return models_are_equal @require_flax class __UpperCAmelCase (unittest.TestCase ): def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = BertConfig.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" ) _SCREAMING_SNAKE_CASE = FlaxBertModel(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = """bert""" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) ) with self.assertRaises(UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained(UpperCAmelCase_ , subfolder=UpperCAmelCase_ ) self.assertTrue(check_models_equal(UpperCAmelCase_ , UpperCAmelCase_ ) ) def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = BertConfig.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" ) _SCREAMING_SNAKE_CASE = FlaxBertModel(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = """bert""" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) , max_shard_size="""10KB""" ) with self.assertRaises(UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained(UpperCAmelCase_ , subfolder=UpperCAmelCase_ ) self.assertTrue(check_models_equal(UpperCAmelCase_ , UpperCAmelCase_ ) ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = """bert""" _SCREAMING_SNAKE_CASE = """hf-internal-testing/tiny-random-bert-subfolder""" with self.assertRaises(UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained(UpperCAmelCase_ , subfolder=UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = """bert""" _SCREAMING_SNAKE_CASE = """hf-internal-testing/tiny-random-bert-sharded-subfolder""" with self.assertRaises(UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained(UpperCAmelCase_ , subfolder=UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ )
125
1
'''simple docstring''' import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: a : Dict = None a : List[Any] = logging.get_logger(__name__) a : List[Any] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} a : str = { 'vocab_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model', 't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model', 't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model', }, 'tokenizer_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/tokenizer.json', 't5-base': 'https://huggingface.co/t5-base/resolve/main/tokenizer.json', 't5-large': 'https://huggingface.co/t5-large/resolve/main/tokenizer.json', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/tokenizer.json', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/tokenizer.json', }, } # TODO(PVP) - this should be removed in Transformers v5 a : List[Any] = { 't5-small': 512, 't5-base': 512, 't5-large': 512, 't5-3b': 512, 't5-11b': 512, } class a ( _lowerCamelCase ): snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = ["input_ids", "attention_mask"] snake_case_ = TaTokenizer snake_case_ = [] def __init__( self : List[Any] , lowercase_ : int=None , lowercase_ : Dict=None , lowercase_ : Dict="</s>" , lowercase_ : List[Any]="<unk>" , lowercase_ : int="<pad>" , lowercase_ : int=100 , lowercase_ : List[Any]=None , **lowercase_ : List[str] , ): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: snake_case_ = [F"<extra_id_{i}>" for i in range(lowercase_ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens snake_case_ = len(set(filter(lambda lowercase_ : bool('''extra_id_''' in str(lowercase_ ) ) , lowercase_ ) ) ) if extra_tokens != extra_ids: raise ValueError( F"Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are" ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) super().__init__( lowercase_ , tokenizer_file=lowercase_ , eos_token=lowercase_ , unk_token=lowercase_ , pad_token=lowercase_ , extra_ids=lowercase_ , additional_special_tokens=lowercase_ , **lowercase_ , ) snake_case_ = vocab_file snake_case_ = False if not self.vocab_file else True snake_case_ = extra_ids @staticmethod def A_ ( lowercase_ : Optional[int] , lowercase_ : List[str] , lowercase_ : int ): if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: snake_case_ = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' F" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this" ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' F" {pretrained_model_name_or_path} automatically truncating your input to" F" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences" F" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with" ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , lowercase_ , ) return max_model_length def A_ ( self : Optional[Any] , lowercase_ : str , lowercase_ : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(lowercase_ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return snake_case_ = os.path.join( lowercase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ): copyfile(self.vocab_file , lowercase_ ) logger.info(F"Copy vocab file to {out_vocab_file}" ) return (out_vocab_file,) def A_ ( self : Optional[int] , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None ): snake_case_ = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: snake_case_ = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def A_ ( self : int , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None ): snake_case_ = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def A_ ( self : Dict ): return list( set(filter(lambda lowercase_ : bool(re.search(R'''<extra_id_\d+>''' , lowercase_ ) ) is not None , self.additional_special_tokens ) ) ) def A_ ( self : Any ): return [self.convert_tokens_to_ids(lowercase_ ) for token in self.get_sentinel_tokens()]
56
import math def _SCREAMING_SNAKE_CASE ( a ) -> list[int]: __A : List[str] = [] __A : Any = 2 __A : Union[str, Any] = int(math.sqrt(a ) ) # Size of every segment __A : Any = [True] * (end + 1) __A : List[Any] = [] while start <= end: if temp[start] is True: in_prime.append(a ) for i in range(start * start , end + 1 , a ): __A : Optional[int] = False start += 1 prime += in_prime __A : Any = end + 1 __A : Any = min(2 * end , a ) while low <= n: __A : List[Any] = [True] * (high - low + 1) for each in in_prime: __A : List[str] = math.floor(low / each ) * each if t < low: t += each for j in range(a , high + 1 , a ): __A : Optional[int] = False for j in range(len(a ) ): if temp[j] is True: prime.append(j + low ) __A : Optional[int] = high + 1 __A : Tuple = min(high + end , a ) return prime print(sieve(10**6))
280
0
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class lowercase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): A__ : int = StableUnCLIPImgaImgPipeline A__ : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS A__ : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS A__ : str = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess A__ : int = frozenset([] ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = 3_2 UpperCamelCase_ = embedder_hidden_size # image encoding components UpperCamelCase_ = CLIPImageProcessor(crop_size=3_2 , size=3_2 ) torch.manual_seed(0 ) UpperCamelCase_ = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=__UpperCamelCase , projection_dim=__UpperCamelCase , num_hidden_layers=5 , num_attention_heads=4 , image_size=3_2 , intermediate_size=3_7 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) UpperCamelCase_ = StableUnCLIPImageNormalizer(embedding_dim=__UpperCamelCase ) UpperCamelCase_ = DDPMScheduler(beta_schedule="""squaredcos_cap_v2""" ) torch.manual_seed(0 ) UpperCamelCase_ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) torch.manual_seed(0 ) UpperCamelCase_ = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=__UpperCamelCase , projection_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) ) torch.manual_seed(0 ) UpperCamelCase_ = UNetaDConditionModel( sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """CrossAttnUpBlock2D""") , block_out_channels=(3_2, 6_4) , attention_head_dim=(2, 4) , class_embed_type="""projection""" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=__UpperCamelCase , layers_per_block=1 , upcast_attention=__UpperCamelCase , use_linear_projection=__UpperCamelCase , ) torch.manual_seed(0 ) UpperCamelCase_ = DDIMScheduler( beta_schedule="""scaled_linear""" , beta_start=0.00_085 , beta_end=0.012 , prediction_type="""v_prediction""" , set_alpha_to_one=__UpperCamelCase , steps_offset=1 , ) torch.manual_seed(0 ) UpperCamelCase_ = AutoencoderKL() UpperCamelCase_ = { # image encoding components """feature_extractor""": feature_extractor, """image_encoder""": image_encoder.eval(), # image noising components """image_normalizer""": image_normalizer.eval(), """image_noising_scheduler""": image_noising_scheduler, # regular denoising components """tokenizer""": tokenizer, """text_encoder""": text_encoder.eval(), """unet""": unet.eval(), """scheduler""": scheduler, """vae""": vae.eval(), } return components def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase=0 , __UpperCamelCase=True ): """simple docstring""" if str(__UpperCamelCase ).startswith("""mps""" ): UpperCamelCase_ = torch.manual_seed(__UpperCamelCase ) else: UpperCamelCase_ = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) UpperCamelCase_ = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(__UpperCamelCase ) ).to(__UpperCamelCase ) if pil_image: UpperCamelCase_ = input_image * 0.5 + 0.5 UpperCamelCase_ = input_image.clamp(0 , 1 ) UpperCamelCase_ = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() UpperCamelCase_ = DiffusionPipeline.numpy_to_pil(__UpperCamelCase )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCamelCase_ = self.get_dummy_components() UpperCamelCase_ = StableUnCLIPImgaImgPipeline(**__UpperCamelCase ) UpperCamelCase_ = sd_pipe.to(__UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCamelCase ) UpperCamelCase_ = self.get_dummy_inputs(__UpperCamelCase ) inputs.update({"""image_embeds""": None} ) UpperCamelCase_ = sd_pipe(**__UpperCamelCase ).images UpperCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) UpperCamelCase_ = np.array([0.3_872, 0.7_224, 0.5_601, 0.4_741, 0.6_872, 0.5_814, 0.4_636, 0.3_867, 0.5_078] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = torch_device in ["""cpu""", """mps"""] self._test_attention_slicing_forward_pass(test_max_difference=__UpperCamelCase ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = torch_device in ["""cpu""", """mps"""] self._test_inference_batch_single_identical(test_max_difference=__UpperCamelCase ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowerCamelCase_ ( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(test_max_difference=__UpperCamelCase ) @slow @require_torch_gpu class lowercase_ ( unittest.TestCase ): def lowerCamelCase_ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png""" ) UpperCamelCase_ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy""" ) UpperCamelCase_ = StableUnCLIPImgaImgPipeline.from_pretrained( """fusing/stable-unclip-2-1-l-img2img""" , torch_dtype=torch.floataa ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() UpperCamelCase_ = torch.Generator(device="""cpu""" ).manual_seed(0 ) UpperCamelCase_ = pipe(__UpperCamelCase , """anime turle""" , generator=__UpperCamelCase , output_type="""np""" ) UpperCamelCase_ = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(__UpperCamelCase , __UpperCamelCase ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png""" ) UpperCamelCase_ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy""" ) UpperCamelCase_ = StableUnCLIPImgaImgPipeline.from_pretrained( """fusing/stable-unclip-2-1-h-img2img""" , torch_dtype=torch.floataa ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() UpperCamelCase_ = torch.Generator(device="""cpu""" ).manual_seed(0 ) UpperCamelCase_ = pipe(__UpperCamelCase , """anime turle""" , generator=__UpperCamelCase , output_type="""np""" ) UpperCamelCase_ = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(__UpperCamelCase , __UpperCamelCase ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png""" ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCamelCase_ = StableUnCLIPImgaImgPipeline.from_pretrained( """fusing/stable-unclip-2-1-h-img2img""" , torch_dtype=torch.floataa ) UpperCamelCase_ = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() UpperCamelCase_ = pipe( __UpperCamelCase , """anime turtle""" , num_inference_steps=2 , output_type="""np""" , ) UpperCamelCase_ = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 1_0**9
261
from __future__ import annotations from typing import Any class lowercase_ : def __init__( self , __UpperCamelCase = 6 ): """simple docstring""" UpperCamelCase_ = None UpperCamelCase_ = None self.create_linked_list(__UpperCamelCase ) def lowerCamelCase_ ( self , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = Node() UpperCamelCase_ = current_node UpperCamelCase_ = current_node UpperCamelCase_ = current_node for _ in range(1 , __UpperCamelCase ): UpperCamelCase_ = Node() UpperCamelCase_ = current_node UpperCamelCase_ = previous_node UpperCamelCase_ = current_node UpperCamelCase_ = self.front UpperCamelCase_ = previous_node def lowerCamelCase_ ( self ): """simple docstring""" return ( self.front == self.rear and self.front is not None and self.front.data is None ) def lowerCamelCase_ ( self ): """simple docstring""" self.check_can_perform_operation() return self.front.data if self.front else None def lowerCamelCase_ ( self , __UpperCamelCase ): """simple docstring""" if self.rear is None: return self.check_is_full() if not self.is_empty(): UpperCamelCase_ = self.rear.next if self.rear: UpperCamelCase_ = data def lowerCamelCase_ ( self ): """simple docstring""" self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: UpperCamelCase_ = self.front.data UpperCamelCase_ = None return data UpperCamelCase_ = self.front UpperCamelCase_ = old_front.next UpperCamelCase_ = old_front.data UpperCamelCase_ = None return data def lowerCamelCase_ ( self ): """simple docstring""" if self.is_empty(): raise Exception("""Empty Queue""" ) def lowerCamelCase_ ( self ): """simple docstring""" if self.rear and self.rear.next == self.front: raise Exception("""Full Queue""" ) class lowercase_ : def __init__( self ): """simple docstring""" UpperCamelCase_ = None UpperCamelCase_ = None UpperCamelCase_ = None if __name__ == "__main__": import doctest doctest.testmod()
261
1
"""simple docstring""" from collections import defaultdict from math import ceil, sqrt def __a ( _SCREAMING_SNAKE_CASE = 1000000 , _SCREAMING_SNAKE_CASE = 10 ) ->List[Any]: a__: str = defaultdict(_SCREAMING_SNAKE_CASE ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: a__: List[str] = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: a__: Union[str, Any] = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(_SCREAMING_SNAKE_CASE , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(f"{solution() = }")
290
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str = " " ): '''simple docstring''' _UpperCAmelCase = [] _UpperCAmelCase = 0 for index, char in enumerate(_SCREAMING_SNAKE_CASE ): if char == separator: split_words.append(string[last_index:index] ) _UpperCAmelCase = index + 1 elif index + 1 == len(_SCREAMING_SNAKE_CASE ): split_words.append(string[last_index : index + 1] ) return split_words if __name__ == "__main__": from doctest import testmod testmod()
260
0
"""simple docstring""" import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors A_ = logging.getLogger(__name__) class lowercase( __a ): '''simple docstring''' lowercase__ = "sequence-classification" def __init__( self: Optional[int], a_: Optional[Any] ): '''simple docstring''' if type(a_ ) == dict: _snake_case : str = Namespace(**a_ ) _snake_case : Union[str, Any] = glue_output_modes[hparams.task] _snake_case : Dict = glue_tasks_num_labels[hparams.task] super().__init__(a_, a_, self.mode ) def UpperCamelCase_ ( self: Dict, **a_: Union[str, Any] ): '''simple docstring''' return self.model(**a_ ) def UpperCamelCase_ ( self: Optional[int], a_: List[Any], a_: List[str] ): '''simple docstring''' _snake_case : List[Any] = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _snake_case : Any = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None _snake_case : Union[str, Any] = self(**a_ ) _snake_case : List[str] = outputs[0] _snake_case : int = self.trainer.lr_schedulers[0]["""scheduler"""] _snake_case : List[Any] = {"""loss""": loss, """rate""": lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : Optional[int] = self.hparams _snake_case : List[str] = processors[args.task]() _snake_case : Any = processor.get_labels() for mode in ["train", "dev"]: _snake_case : List[str] = self._feature_file(a_ ) if os.path.exists(a_ ) and not args.overwrite_cache: logger.info("""Loading features from cached file %s""", a_ ) else: logger.info("""Creating features from dataset file at %s""", args.data_dir ) _snake_case : Tuple = ( processor.get_dev_examples(args.data_dir ) if mode == """dev""" else processor.get_train_examples(args.data_dir ) ) _snake_case : List[str] = convert_examples_to_features( a_, self.tokenizer, max_length=args.max_seq_length, label_list=self.labels, output_mode=args.glue_output_mode, ) logger.info("""Saving features into cached file %s""", a_ ) torch.save(a_, a_ ) def UpperCamelCase_ ( self: int, a_: str, a_: int, a_: bool = False ): '''simple docstring''' _snake_case : Any = """dev""" if mode == """test""" else mode _snake_case : int = self._feature_file(a_ ) logger.info("""Loading features from cached file %s""", a_ ) _snake_case : Union[str, Any] = torch.load(a_ ) _snake_case : List[Any] = torch.tensor([f.input_ids for f in features], dtype=torch.long ) _snake_case : Dict = torch.tensor([f.attention_mask for f in features], dtype=torch.long ) _snake_case : int = torch.tensor([f.token_type_ids for f in features], dtype=torch.long ) if self.hparams.glue_output_mode == "classification": _snake_case : Dict = torch.tensor([f.label for f in features], dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": _snake_case : Union[str, Any] = torch.tensor([f.label for f in features], dtype=torch.float ) return DataLoader( TensorDataset(a_, a_, a_, a_ ), batch_size=a_, shuffle=a_, ) def UpperCamelCase_ ( self: str, a_: Union[str, Any], a_: Optional[int] ): '''simple docstring''' _snake_case : Dict = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _snake_case : List[str] = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None _snake_case : List[Any] = self(**a_ ) _snake_case , _snake_case : List[str] = outputs[:2] _snake_case : Dict = logits.detach().cpu().numpy() _snake_case : Union[str, Any] = inputs["""labels"""].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def UpperCamelCase_ ( self: Dict, a_: int ): '''simple docstring''' _snake_case : Optional[Any] = torch.stack([x["""val_loss"""] for x in outputs] ).mean().detach().cpu().item() _snake_case : Optional[Any] = np.concatenate([x["""pred"""] for x in outputs], axis=0 ) if self.hparams.glue_output_mode == "classification": _snake_case : Union[str, Any] = np.argmax(a_, axis=1 ) elif self.hparams.glue_output_mode == "regression": _snake_case : Tuple = np.squeeze(a_ ) _snake_case : Any = np.concatenate([x["""target"""] for x in outputs], axis=0 ) _snake_case : Tuple = [[] for _ in range(out_label_ids.shape[0] )] _snake_case : Optional[int] = [[] for _ in range(out_label_ids.shape[0] )] _snake_case : List[Any] = {**{"""val_loss""": val_loss_mean}, **compute_metrics(self.hparams.task, a_, a_ )} _snake_case : int = dict(results.items() ) _snake_case : Any = results return ret, preds_list, out_label_list def UpperCamelCase_ ( self: Any, a_: list ): '''simple docstring''' _snake_case , _snake_case , _snake_case : Any = self._eval_end(a_ ) _snake_case : str = ret["""log"""] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def UpperCamelCase_ ( self: Optional[int], a_: Union[str, Any] ): '''simple docstring''' _snake_case , _snake_case , _snake_case : List[str] = self._eval_end(a_ ) _snake_case : List[Any] = ret["""log"""] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def UpperCamelCase_ ( a_: List[str], a_: Union[str, Any] ): '''simple docstring''' BaseTransformer.add_model_specific_args(a_, a_ ) parser.add_argument( """--max_seq_length""", default=128, type=a_, help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ), ) parser.add_argument( """--task""", default="""""", type=a_, required=a_, help="""The GLUE task to run""", ) parser.add_argument( """--gpus""", default=0, type=a_, help="""The number of GPUs allocated for this, it is by default 0 meaning none""", ) parser.add_argument( """--overwrite_cache""", action="""store_true""", help="""Overwrite the cached training and evaluation sets""" ) return parser def UpperCAmelCase__ (): """simple docstring""" _snake_case : int = argparse.ArgumentParser() add_generic_args(snake_case__ , os.getcwd() ) _snake_case : str = GLUETransformer.add_model_specific_args(snake_case__ , os.getcwd() ) _snake_case : Optional[Any] = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: _snake_case : str = os.path.join( """./results""" , F"{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}" , ) os.makedirs(args.output_dir ) _snake_case : str = GLUETransformer(snake_case__ ) _snake_case : int = generic_train(snake_case__ , snake_case__ ) # Optionally, predict on dev set and write to output_dir if args.do_predict: _snake_case : List[Any] = sorted(glob.glob(os.path.join(args.output_dir , """checkpoint-epoch=*.ckpt""" ) , recursive=snake_case__ ) ) _snake_case : int = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(snake_case__ ) if __name__ == "__main__": main()
132
"""simple docstring""" def UpperCAmelCase__ (snake_case__ : int = 10_00 ): """simple docstring""" _snake_case , _snake_case : List[Any] = 1, 1 _snake_case : str = [] for i in range(1 , n + 1 ): _snake_case : Any = prev_numerator + 2 * prev_denominator _snake_case : Optional[Any] = prev_numerator + prev_denominator if len(str(snake_case__ ) ) > len(str(snake_case__ ) ): result.append(snake_case__ ) _snake_case : int = numerator _snake_case : Any = denominator return len(snake_case__ ) if __name__ == "__main__": print(F'''{solution() = }''')
132
1
import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class SCREAMING_SNAKE_CASE_ ( snake_case_ , unittest.TestCase ): __magic_name__: Tuple = "hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline" def UpperCAmelCase_ ( self : Any , _A : Union[str, Any]=0 ) -> List[str]: """simple docstring""" snake_case_ : Optional[Any] = floats_tensor((1, 3, 128, 128) , rng=random.Random(_A ) ) snake_case_ : Tuple = np.random.RandomState(_A ) snake_case_ : Any = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'strength': 0.7_5, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def UpperCAmelCase_ ( self : List[Any] ) -> List[str]: """simple docstring""" snake_case_ : str = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=_A ) snake_case_ : str = self.get_dummy_inputs() snake_case_ : Dict = pipe(**_A ).images snake_case_ : Any = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) snake_case_ : Optional[int] = np.array([0.6_9_6_4_3, 0.5_8_4_8_4, 0.5_0_3_1_4, 0.5_8_7_6_0, 0.5_5_3_6_8, 0.5_9_6_4_3, 0.5_1_5_2_9, 0.4_1_2_1_7, 0.4_9_0_8_7] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def UpperCAmelCase_ ( self : Dict ) -> Optional[Any]: """simple docstring""" snake_case_ : Tuple = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) snake_case_ : Optional[int] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=_A ) pipe.set_progress_bar_config(disable=_A ) snake_case_ : int = self.get_dummy_inputs() snake_case_ : Optional[Any] = pipe(**_A ).images snake_case_ : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case_ : List[str] = np.array([0.6_1_7_3_7, 0.5_4_6_4_2, 0.5_3_1_8_3, 0.5_4_4_6_5, 0.5_2_7_4_2, 0.6_0_5_2_5, 0.4_9_9_6_9, 0.4_0_6_5_5, 0.4_8_1_5_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def UpperCAmelCase_ ( self : List[str] ) -> List[str]: """simple docstring""" snake_case_ : Optional[int] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) snake_case_ : str = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_A ) # warmup pass to apply optimizations snake_case_ : Any = pipe(**self.get_dummy_inputs() ) snake_case_ : Any = self.get_dummy_inputs() snake_case_ : Dict = pipe(**_A ).images snake_case_ : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case_ : str = np.array([0.5_2_7_6_1, 0.5_9_9_7_7, 0.4_9_0_3_3, 0.4_9_6_1_9, 0.5_4_2_8_2, 0.5_0_3_1_1, 0.4_7_6_0_0, 0.4_0_9_1_8, 0.4_5_2_0_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def UpperCAmelCase_ ( self : Optional[Any] ) -> int: """simple docstring""" snake_case_ : Dict = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) snake_case_ : Any = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_A ) snake_case_ : Tuple = self.get_dummy_inputs() snake_case_ : Optional[Any] = pipe(**_A ).images snake_case_ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case_ : Any = np.array([0.5_2_9_1_1, 0.6_0_0_0_4, 0.4_9_2_2_9, 0.4_9_8_0_5, 0.5_4_5_0_2, 0.5_0_6_8_0, 0.4_7_7_7_7, 0.4_1_0_2_8, 0.4_5_3_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def UpperCAmelCase_ ( self : List[str] ) -> str: """simple docstring""" snake_case_ : Dict = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) snake_case_ : Union[str, Any] = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_A ) snake_case_ : Optional[int] = self.get_dummy_inputs() snake_case_ : str = pipe(**_A ).images snake_case_ : int = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case_ : Union[str, Any] = np.array([0.5_2_9_1_1, 0.6_0_0_0_4, 0.4_9_2_2_9, 0.4_9_8_0_5, 0.5_4_5_0_2, 0.5_0_6_8_0, 0.4_7_7_7_7, 0.4_1_0_2_8, 0.4_5_3_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def UpperCAmelCase_ ( self : Tuple ) -> List[Any]: """simple docstring""" snake_case_ : Any = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) snake_case_ : Optional[Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_A ) snake_case_ : Tuple = self.get_dummy_inputs() snake_case_ : Tuple = pipe(**_A ).images snake_case_ : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case_ : int = np.array([0.6_5_3_3_1, 0.5_8_2_7_7, 0.4_8_2_0_4, 0.5_6_0_5_9, 0.5_3_6_6_5, 0.5_6_2_3_5, 0.5_0_9_6_9, 0.4_0_0_0_9, 0.4_6_5_5_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): @property def UpperCAmelCase_ ( self : Dict ) -> Optional[Any]: """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def UpperCAmelCase_ ( self : List[str] ) -> List[Any]: """simple docstring""" snake_case_ : List[str] = ort.SessionOptions() snake_case_ : int = False return options def UpperCAmelCase_ ( self : List[Any] ) -> int: """simple docstring""" snake_case_ : Optional[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) snake_case_ : Any = init_image.resize((768, 512) ) # using the PNDM scheduler by default snake_case_ : Any = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='onnx' , safety_checker=_A , feature_extractor=_A , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_A ) snake_case_ : Dict = 'A fantasy landscape, trending on artstation' snake_case_ : List[str] = np.random.RandomState(0 ) snake_case_ : List[Any] = pipe( prompt=_A , image=_A , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=10 , generator=_A , output_type='np' , ) snake_case_ : Dict = output.images snake_case_ : Dict = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) snake_case_ : List[Any] = np.array([0.4_9_0_9, 0.5_0_5_9, 0.5_3_7_2, 0.4_6_2_3, 0.4_8_7_6, 0.5_0_4_9, 0.4_8_2_0, 0.4_9_5_6, 0.5_0_1_9] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def UpperCAmelCase_ ( self : Optional[int] ) -> List[Any]: """simple docstring""" snake_case_ : Tuple = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) snake_case_ : Optional[Any] = init_image.resize((768, 512) ) snake_case_ : Any = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5' , subfolder='scheduler' , revision='onnx' ) snake_case_ : List[str] = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , revision='onnx' , scheduler=_A , safety_checker=_A , feature_extractor=_A , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_A ) snake_case_ : Optional[Any] = 'A fantasy landscape, trending on artstation' snake_case_ : Dict = np.random.RandomState(0 ) snake_case_ : str = pipe( prompt=_A , image=_A , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=20 , generator=_A , output_type='np' , ) snake_case_ : int = output.images snake_case_ : int = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) snake_case_ : Any = np.array([0.8_0_4_3, 0.9_2_6, 0.9_5_8_1, 0.8_1_1_9, 0.8_9_5_4, 0.9_1_3, 0.7_2_0_9, 0.7_4_6_3, 0.7_4_3_1] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
327
import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version(""">=""", FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType _SCREAMING_SNAKE_CASE = get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a=0 ): os.makedirs(__a , exist_ok=__a ) with FSDP.state_dict_type( __a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): snake_case_ : Dict = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: snake_case_ : Optional[int] = f"""{MODEL_NAME}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}.bin""" snake_case_ : Dict = os.path.join(__a , __a ) if accelerator.process_index == 0: logger.info(f"""Saving model to {output_model_file}""" ) torch.save(__a , __a ) logger.info(f"""Model saved to {output_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: snake_case_ : Dict = ( f"""{MODEL_NAME}_rank{accelerator.process_index}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin""" ) snake_case_ : Dict = os.path.join(__a , __a ) logger.info(f"""Saving model to {output_model_file}""" ) torch.save(__a , __a ) logger.info(f"""Model saved to {output_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: snake_case_ : Optional[int] = os.path.join(__a , f"""{MODEL_NAME}_{model_index}""" ) os.makedirs(__a , exist_ok=__a ) logger.info(f"""Saving model to {ckpt_dir}""" ) snake_case_ : int = {'model': state_dict} dist_cp.save_state_dict( state_dict=__a , storage_writer=dist_cp.FileSystemWriter(__a ) , planner=DefaultSavePlanner() , ) logger.info(f"""Model saved to {ckpt_dir}""" ) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( __a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(__a ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( 'Set the `sync_module_states` flag to `True` so that model states are synced across processes when ' 'initializing FSDP object' ) return snake_case_ : Optional[int] = f"""{MODEL_NAME}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}.bin""" snake_case_ : Optional[Any] = os.path.join(__a , __a ) logger.info(f"""Loading model from {input_model_file}""" ) snake_case_ : Optional[Any] = torch.load(__a ) logger.info(f"""Model loaded from {input_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: snake_case_ : Optional[Any] = ( f"""{MODEL_NAME}_rank{accelerator.process_index}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin""" ) snake_case_ : Tuple = os.path.join(__a , __a ) logger.info(f"""Loading model from {input_model_file}""" ) snake_case_ : Optional[int] = torch.load(__a ) logger.info(f"""Model loaded from {input_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: snake_case_ : Tuple = ( os.path.join(__a , f"""{MODEL_NAME}_{model_index}""" ) if f"""{MODEL_NAME}""" not in input_dir else input_dir ) logger.info(f"""Loading model from {ckpt_dir}""" ) snake_case_ : List[Any] = {'model': model.state_dict()} dist_cp.load_state_dict( state_dict=__a , storage_reader=dist_cp.FileSystemReader(__a ) , planner=DefaultLoadPlanner() , ) snake_case_ : Any = state_dict['model'] logger.info(f"""Model loaded from {ckpt_dir}""" ) model.load_state_dict(__a ) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a , __a=0 ): os.makedirs(__a , exist_ok=__a ) with FSDP.state_dict_type( __a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): snake_case_ : List[str] = FSDP.optim_state_dict(__a , __a ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: snake_case_ : str = ( f"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else f"""{OPTIMIZER_NAME}_{optimizer_index}.bin""" ) snake_case_ : Any = os.path.join(__a , __a ) logger.info(f"""Saving Optimizer state to {output_optimizer_file}""" ) torch.save(__a , __a ) logger.info(f"""Optimizer state saved in {output_optimizer_file}""" ) else: snake_case_ : Optional[int] = os.path.join(__a , f"""{OPTIMIZER_NAME}_{optimizer_index}""" ) os.makedirs(__a , exist_ok=__a ) logger.info(f"""Saving Optimizer state to {ckpt_dir}""" ) dist_cp.save_state_dict( state_dict={'optimizer': optim_state} , storage_writer=dist_cp.FileSystemWriter(__a ) , planner=DefaultSavePlanner() , ) logger.info(f"""Optimizer state saved in {ckpt_dir}""" ) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a , __a=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( __a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: snake_case_ : Optional[Any] = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: snake_case_ : Union[str, Any] = ( f"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else f"""{OPTIMIZER_NAME}_{optimizer_index}.bin""" ) snake_case_ : List[Any] = os.path.join(__a , __a ) logger.info(f"""Loading Optimizer state from {input_optimizer_file}""" ) snake_case_ : Optional[int] = torch.load(__a ) logger.info(f"""Optimizer state loaded from {input_optimizer_file}""" ) else: snake_case_ : str = ( os.path.join(__a , f"""{OPTIMIZER_NAME}_{optimizer_index}""" ) if f"""{OPTIMIZER_NAME}""" not in input_dir else input_dir ) logger.info(f"""Loading Optimizer from {ckpt_dir}""" ) snake_case_ : Any = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key='optimizer' , storage_reader=dist_cp.FileSystemReader(__a ) , ) snake_case_ : Optional[int] = optim_state['optimizer'] logger.info(f"""Optimizer loaded from {ckpt_dir}""" ) snake_case_ : Optional[Any] = FSDP.optim_state_dict_to_load(__a , __a , __a ) optimizer.load_state_dict(__a )
327
1
from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> list[float]: a , a = coefficient_matrix.shape a , a = constant_matrix.shape if rowsa != colsa: a = f'Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}' raise ValueError(__lowerCamelCase ) if colsa != 1: a = f'Constant matrix must be nx1 but received {rowsa}x{colsa}' raise ValueError(__lowerCamelCase ) if rowsa != rowsa: a = ( """Coefficient and constant matrices dimensions must be nxn and nx1 but """ f'received {rowsa}x{colsa} and {rowsa}x{colsa}' ) raise ValueError(__lowerCamelCase ) if len(__lowerCamelCase ) != rowsa: a = ( """Number of initial values must be equal to number of rows in coefficient """ f'matrix but received {len(__lowerCamelCase )} and {rowsa}' ) raise ValueError(__lowerCamelCase ) if iterations <= 0: raise ValueError("""Iterations must be at least 1""" ) a = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) a , a = table.shape strictly_diagonally_dominant(__lowerCamelCase ) # Iterates the whole matrix for given number of times for _ in range(__lowerCamelCase ): a = [] for row in range(__lowerCamelCase ): a = 0 for col in range(__lowerCamelCase ): if col == row: a = table[row][col] elif col == cols - 1: a = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] a = (temp + val) / denom new_val.append(__lowerCamelCase ) a = new_val return [float(__lowerCamelCase ) for i in new_val] def __A ( __lowerCamelCase ) -> bool: a , a = table.shape a = True for i in range(0 , __lowerCamelCase ): a = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("""Coefficient matrix is not strictly diagonally dominant""" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
347
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def __A ( __lowerCamelCase ) -> bool: a = int(number**0.5 ) return number == sq * sq def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> tuple[int, int]: a = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den a = x_den * y_den * z_den a = gcd(__lowerCamelCase , __lowerCamelCase ) top //= hcf bottom //= hcf return top, bottom def __A ( __lowerCamelCase = 35 ) -> int: a = set() a = 42 a = Fraction(0 ) a = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 a = x_num * y_den + x_den * y_num a = x_den * y_den a = gcd(__lowerCamelCase , __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: a = add_three( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) unique_s.add(__lowerCamelCase ) # n=2 a = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) a = x_den * x_den * y_den * y_den if is_sq(__lowerCamelCase ) and is_sq(__lowerCamelCase ): a = int(sqrt(__lowerCamelCase ) ) a = int(sqrt(__lowerCamelCase ) ) a = gcd(__lowerCamelCase , __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: a = add_three( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) unique_s.add(__lowerCamelCase ) # n=-1 a = x_num * y_num a = x_den * y_num + x_num * y_den a = gcd(__lowerCamelCase , __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: a = add_three( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) unique_s.add(__lowerCamelCase ) # n=2 a = x_num * x_num * y_num * y_num a = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(__lowerCamelCase ) and is_sq(__lowerCamelCase ): a = int(sqrt(__lowerCamelCase ) ) a = int(sqrt(__lowerCamelCase ) ) a = gcd(__lowerCamelCase , __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: a = add_three( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) unique_s.add(__lowerCamelCase ) for num, den in unique_s: total += Fraction(__lowerCamelCase , __lowerCamelCase ) return total.denominator + total.numerator if __name__ == "__main__": print(F'{solution() = }')
347
1
'''simple docstring''' from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class A ( __snake_case ): __magic_name__ = '''EncodecFeatureExtractor''' __magic_name__ = ('''T5Tokenizer''', '''T5TokenizerFast''') def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" super().__init__(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A : List[Any] = self.feature_extractor A : Union[str, Any] = False def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=True ) -> Tuple: """simple docstring""" return self.tokenizer.get_decoder_prompt_ids(task=SCREAMING_SNAKE_CASE , language=SCREAMING_SNAKE_CASE , no_timestamps=SCREAMING_SNAKE_CASE ) def __call__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" if self._in_target_context_manager: return self.current_processor(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) A : Any = kwargs.pop('''audio''' , SCREAMING_SNAKE_CASE ) A : Optional[int] = kwargs.pop('''sampling_rate''' , SCREAMING_SNAKE_CASE ) A : Any = kwargs.pop('''text''' , SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) > 0: A : List[Any] = args[0] A : Dict = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if text is not None: A : Tuple = self.tokenizer(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) if audio is not None: A : List[str] = self.feature_extractor(SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE , sampling_rate=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) if audio is None: return inputs elif text is None: return audio_inputs else: A : Optional[Any] = audio_inputs['''input_values'''] if "padding_mask" in audio_inputs: A : Optional[int] = audio_inputs['''padding_mask'''] return inputs def __lowerCAmelCase ( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" A : Optional[Any] = kwargs.pop('''audio''' , SCREAMING_SNAKE_CASE ) A : Optional[int] = kwargs.pop('''padding_mask''' , SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) > 0: A : List[str] = args[0] A : Union[str, Any] = args[1:] if audio_values is not None: return self._decode_audio(SCREAMING_SNAKE_CASE , padding_mask=SCREAMING_SNAKE_CASE ) else: return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" return self.tokenizer.decode(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None ) -> List[np.ndarray]: """simple docstring""" A : Tuple = to_numpy(SCREAMING_SNAKE_CASE ) A, A, A : Union[str, Any] = audio_values.shape if padding_mask is None: return list(SCREAMING_SNAKE_CASE ) A : List[str] = to_numpy(SCREAMING_SNAKE_CASE ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) A : Any = seq_len - padding_mask.shape[-1] A : List[Any] = 1 - self.feature_extractor.padding_value A : Tuple = np.pad(SCREAMING_SNAKE_CASE , ((0, 0), (0, difference)) , '''constant''' , constant_values=SCREAMING_SNAKE_CASE ) A : Union[str, Any] = audio_values.tolist() for i in range(SCREAMING_SNAKE_CASE ): A : Tuple = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] A : Any = sliced_audio.reshape(SCREAMING_SNAKE_CASE , -1 ) return audio_values
3
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase : Union[str, Any] = logging.get_logger(__name__) lowercase : str = { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/config.json', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/config.json', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/config.json', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/config.json', 'bert-base-multilingual-uncased': 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json', 'bert-base-multilingual-cased': 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json', 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/config.json', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/config.json', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json' ), 'bert-base-cased-finetuned-mrpc': 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json', 'bert-base-german-dbmdz-cased': 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json', 'bert-base-german-dbmdz-uncased': 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json', 'cl-tohoku/bert-base-japanese': 'https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json', 'cl-tohoku/bert-base-japanese-whole-word-masking': ( 'https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json' ), 'cl-tohoku/bert-base-japanese-char': ( 'https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json' ), 'cl-tohoku/bert-base-japanese-char-whole-word-masking': ( 'https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json' ), 'wietsedv/bert-base-dutch-cased': 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json', # See all BERT models at https://huggingface.co/models?filter=bert } class A ( __snake_case ): __magic_name__ = '''bert''' def __init__( self , SCREAMING_SNAKE_CASE=30522 , SCREAMING_SNAKE_CASE=768 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=3072 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=512 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=1e-12 , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE="absolute" , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=None , **SCREAMING_SNAKE_CASE , ) -> Optional[int]: """simple docstring""" super().__init__(pad_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) A : Optional[int] = vocab_size A : Optional[Any] = hidden_size A : List[Any] = num_hidden_layers A : List[str] = num_attention_heads A : Dict = hidden_act A : Optional[Any] = intermediate_size A : List[Any] = hidden_dropout_prob A : List[Any] = attention_probs_dropout_prob A : Optional[Any] = max_position_embeddings A : List[str] = type_vocab_size A : Dict = initializer_range A : str = layer_norm_eps A : int = position_embedding_type A : Dict = use_cache A : str = classifier_dropout class A ( __snake_case ): @property def __lowerCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": A : Optional[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: A : Optional[int] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
3
1
'''simple docstring''' import math __UpperCamelCase = 10 __UpperCamelCase = 7 __UpperCamelCase = BALLS_PER_COLOUR * NUM_COLOURS def _a ( _lowerCamelCase = 20 ) -> str: """simple docstring""" __snake_case : int = math.comb(_lowerCamelCase , _lowerCamelCase ) __snake_case : Optional[Any] = math.comb(NUM_BALLS - BALLS_PER_COLOUR , _lowerCamelCase ) __snake_case : Tuple = NUM_COLOURS * (1 - missing_colour / total) return F'''{result:.9f}''' if __name__ == "__main__": print(solution(20))
355
'''simple docstring''' from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
13
0
def UpperCAmelCase_ ( __snake_case = 10**12 ) -> int: """simple docstring""" _lowercase =1 _lowercase =0 _lowercase =1 _lowercase =1 while numerator <= 2 * min_total - 1: prev_numerator += 2 * numerator numerator += 2 * prev_numerator prev_denominator += 2 * denominator denominator += 2 * prev_denominator return (denominator + 1) // 2 if __name__ == "__main__": print(f'''{solution() = }''')
5
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __snake_case : Optional[int] ={} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : List[str] =['NllbTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Tuple =['NllbTokenizerFast'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys __snake_case : Any =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
129
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ : Tuple = logging.get_logger(__name__) lowerCAmelCase_ : List[Any] = { '''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json''', '''YituTech/conv-bert-medium-small''': ( '''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json''' ), '''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json''', # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class UpperCamelCase_ ( a_ ): _A : Dict = 'convbert' def __init__( self , snake_case__=3_05_22 , snake_case__=7_68 , snake_case__=12 , snake_case__=12 , snake_case__=30_72 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=5_12 , snake_case__=2 , snake_case__=0.02 , snake_case__=1e-12 , snake_case__=1 , snake_case__=0 , snake_case__=2 , snake_case__=7_68 , snake_case__=2 , snake_case__=9 , snake_case__=1 , snake_case__=None , **snake_case__ , ) -> List[Any]: """simple docstring""" super().__init__( pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ , ) UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = embedding_size UpperCAmelCase = head_ratio UpperCAmelCase = conv_kernel_size UpperCAmelCase = num_groups UpperCAmelCase = classifier_dropout class UpperCamelCase_ ( a_ ): @property def UpperCamelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": UpperCAmelCase = {0: """batch""", 1: """choice""", 2: """sequence"""} else: UpperCAmelCase = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
362
"""simple docstring""" import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer lowerCAmelCase_ : Any = ['''gpt2'''] lowerCAmelCase_ : Optional[int] = '''gpt2''' if is_tf_available(): class UpperCamelCase_ ( tf.Module ): def __init__( self , snake_case__ ) -> List[str]: """simple docstring""" super().__init__() UpperCAmelCase = tokenizer UpperCAmelCase = AutoConfig.from_pretrained(snake_case__ ) UpperCAmelCase = TFGPTaLMHeadModel.from_config(snake_case__ ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name="""text""" ),) ) def UpperCamelCase_ ( self , snake_case__ ) -> List[str]: """simple docstring""" UpperCAmelCase = self.tokenizer(snake_case__ ) UpperCAmelCase = tokenized["""input_ids"""].to_tensor() UpperCAmelCase = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) UpperCAmelCase = self.model(input_ids=snake_case__ , attention_mask=snake_case__ )["""logits"""] return outputs @require_tf @require_keras_nlp class UpperCamelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" super().setUp() UpperCAmelCase = [GPTaTokenizer.from_pretrained(snake_case__ ) for checkpoint in (TOKENIZER_CHECKPOINTS)] UpperCAmelCase = [TFGPTaTokenizer.from_pretrained(snake_case__ ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) UpperCAmelCase = [ """This is a straightforward English test sentence.""", """This one has some weird characters\rto\nsee\r\nif those\u00E9break things.""", """Now we're going to add some Chinese: 一 二 三 一二三""", """And some much more rare Chinese: 齉 堃 齉堃""", """Je vais aussi écrire en français pour tester les accents""", """Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ""", ] UpperCAmelCase = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: UpperCAmelCase = tokenizer([test_inputs] , return_tensors="""tf""" ) UpperCAmelCase = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors UpperCAmelCase = python_outputs[key].numpy() UpperCAmelCase = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(snake_case__ , tf.intaa ) == tf_outputs_values ) ) @slow def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: UpperCAmelCase = tf.function(snake_case__ ) for test_inputs in self.test_sentences: UpperCAmelCase = tf.constant(snake_case__ ) UpperCAmelCase = compiled_tokenizer(snake_case__ ) UpperCAmelCase = tf_tokenizer(snake_case__ ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def UpperCamelCase_ ( self ) -> Any: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: UpperCAmelCase = ModelToSave(tokenizer=snake_case__ ) UpperCAmelCase = tf.convert_to_tensor([self.test_sentences[0]] ) UpperCAmelCase = model.serving(snake_case__ ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: UpperCAmelCase = Path(snake_case__ ) / """saved.model""" tf.saved_model.save(snake_case__ , snake_case__ , signatures={"""serving_default""": model.serving} ) UpperCAmelCase = tf.saved_model.load(snake_case__ ) UpperCAmelCase = loaded_model.signatures["""serving_default"""](snake_case__ )["""output_0"""] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def UpperCamelCase_ ( self ) -> Any: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: UpperCAmelCase = tf.convert_to_tensor([self.test_sentences[0]] ) UpperCAmelCase = tf_tokenizer(snake_case__ ) # Build model with some sample inputs UpperCAmelCase = tf_tokenizer.get_config() UpperCAmelCase = TFGPTaTokenizer.from_config(snake_case__ ) UpperCAmelCase = model_from_config(snake_case__ ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def UpperCamelCase_ ( self ) -> int: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: # for the test to run UpperCAmelCase = 12_31_23 for max_length in [3, 5, 10_24]: UpperCAmelCase = tf.convert_to_tensor([self.test_sentences[0]] ) UpperCAmelCase = tf_tokenizer(snake_case__ , max_length=snake_case__ ) UpperCAmelCase = out["""input_ids"""].numpy().shape[1] assert out_length == max_length
248
0
'''simple docstring''' import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class A__ ( UpperCamelCase ): """simple docstring""" def _lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Optional[int] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCAmelCase__ , "hidden_sizes" ) ) self.parent.assertTrue(hasattr(lowerCAmelCase__ , "neck_hidden_sizes" ) ) self.parent.assertTrue(hasattr(lowerCAmelCase__ , "num_attention_heads" ) ) class A__ : """simple docstring""" def __init__( self : Union[str, Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[Any]=1_3 , lowerCAmelCase__ : List[str]=3_2 , lowerCAmelCase__ : int=2 , lowerCAmelCase__ : Union[str, Any]=3 , lowerCAmelCase__ : List[Any]=6_4_0 , lowerCAmelCase__ : Dict=4 , lowerCAmelCase__ : List[Any]="silu" , lowerCAmelCase__ : Optional[Any]=3 , lowerCAmelCase__ : Tuple=3_2 , lowerCAmelCase__ : Tuple=0.1 , lowerCAmelCase__ : Tuple=0.1 , lowerCAmelCase__ : Tuple=0.1 , lowerCAmelCase__ : List[str]=0.02 , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : List[Any]=1_0 , lowerCAmelCase__ : Dict=None , ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = parent _UpperCAmelCase : int = batch_size _UpperCAmelCase : List[Any] = image_size _UpperCAmelCase : Optional[int] = patch_size _UpperCAmelCase : Optional[int] = num_channels _UpperCAmelCase : Any = last_hidden_size _UpperCAmelCase : Tuple = num_attention_heads _UpperCAmelCase : Any = hidden_act _UpperCAmelCase : Dict = conv_kernel_size _UpperCAmelCase : Optional[int] = output_stride _UpperCAmelCase : List[Any] = hidden_dropout_prob _UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob _UpperCAmelCase : Any = classifier_dropout_prob _UpperCAmelCase : str = use_labels _UpperCAmelCase : int = is_training _UpperCAmelCase : Dict = num_labels _UpperCAmelCase : List[Any] = initializer_range _UpperCAmelCase : List[str] = scope def _lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase : Optional[Any] = None _UpperCAmelCase : str = None if self.use_labels: _UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_labels ) _UpperCAmelCase : str = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) _UpperCAmelCase : Dict = self.get_config() return config, pixel_values, labels, pixel_labels def _lowerCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" return MobileViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def _lowerCAmelCase ( self : List[str] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[int] ) -> Dict: """simple docstring""" _UpperCAmelCase : Union[str, Any] = MobileViTModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase : int = model(lowerCAmelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _lowerCAmelCase ( self : int , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : int ) -> int: """simple docstring""" _UpperCAmelCase : Union[str, Any] = self.num_labels _UpperCAmelCase : Any = MobileViTForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase : str = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : Dict , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Any ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = self.num_labels _UpperCAmelCase : List[str] = MobileViTForSemanticSegmentation(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase : List[Any] = model(lowerCAmelCase__ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) _UpperCAmelCase : int = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : str = config_and_inputs _UpperCAmelCase : Tuple = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class A__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Optional[int] = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) UpperCamelCase_ : List[Any] = ( { '''feature-extraction''': MobileViTModel, '''image-classification''': MobileViTForImageClassification, '''image-segmentation''': MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) UpperCamelCase_ : str = False UpperCamelCase_ : Any = False UpperCamelCase_ : Optional[Any] = False UpperCamelCase_ : int = False def _lowerCAmelCase ( self : Any ) -> Tuple: """simple docstring""" _UpperCAmelCase : List[Any] = MobileViTModelTester(self ) _UpperCAmelCase : List[Any] = MobileViTConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ ) def _lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="MobileViT does not use inputs_embeds" ) def _lowerCAmelCase ( self : int ) -> str: """simple docstring""" pass @unittest.skip(reason="MobileViT does not support input and output embeddings" ) def _lowerCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" pass @unittest.skip(reason="MobileViT does not output attentions" ) def _lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" pass def _lowerCAmelCase ( self : Optional[int] ) -> Any: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase : Any = model_class(lowerCAmelCase__ ) _UpperCAmelCase : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase : str = [*signature.parameters.keys()] _UpperCAmelCase : Union[str, Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _lowerCAmelCase ( self : int ) -> str: """simple docstring""" pass def _lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def _lowerCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" def check_hidden_states_output(lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[str] ): _UpperCAmelCase : Optional[int] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): _UpperCAmelCase : int = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) _UpperCAmelCase : int = outputs.hidden_states _UpperCAmelCase : List[str] = 5 self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. _UpperCAmelCase : Optional[int] = 2 for i in range(len(lowerCAmelCase__ ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase : List[str] = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase : Optional[Any] = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def _lowerCAmelCase ( self : Any ) -> int: """simple docstring""" _UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) def _lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowerCAmelCase__ ) @slow def _lowerCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : Union[str, Any] = MobileViTModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def __UpperCAmelCase ( ): _UpperCAmelCase : List[str] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class A__ ( unittest.TestCase ): """simple docstring""" @cached_property def _lowerCAmelCase ( self : int ) -> Any: """simple docstring""" return MobileViTImageProcessor.from_pretrained("apple/mobilevit-xx-small" ) if is_vision_available() else None @slow def _lowerCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Any = MobileViTForImageClassification.from_pretrained("apple/mobilevit-xx-small" ).to(lowerCAmelCase__ ) _UpperCAmelCase : str = self.default_image_processor _UpperCAmelCase : Dict = prepare_img() _UpperCAmelCase : Tuple = image_processor(images=lowerCAmelCase__ , return_tensors="pt" ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): _UpperCAmelCase : List[str] = model(**lowerCAmelCase__ ) # verify the logits _UpperCAmelCase : List[str] = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) _UpperCAmelCase : str = torch.tensor([-1.9364, -1.2327, -0.4653] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) ) @slow def _lowerCAmelCase ( self : Any ) -> Tuple: """simple docstring""" _UpperCAmelCase : int = MobileViTForSemanticSegmentation.from_pretrained("apple/deeplabv3-mobilevit-xx-small" ) _UpperCAmelCase : Union[str, Any] = model.to(lowerCAmelCase__ ) _UpperCAmelCase : str = MobileViTImageProcessor.from_pretrained("apple/deeplabv3-mobilevit-xx-small" ) _UpperCAmelCase : Tuple = prepare_img() _UpperCAmelCase : Tuple = image_processor(images=lowerCAmelCase__ , return_tensors="pt" ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): _UpperCAmelCase : List[str] = model(**lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = outputs.logits # verify the logits _UpperCAmelCase : Optional[int] = torch.Size((1, 2_1, 3_2, 3_2) ) self.assertEqual(logits.shape , lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = torch.tensor( [ [[6.9713, 6.9786, 7.2422], [7.2893, 7.2825, 7.4446], [7.6580, 7.8797, 7.9420]], [[-10.6869, -10.3250, -10.3471], [-10.4228, -9.9868, -9.7132], [-11.0405, -11.0221, -10.7318]], [[-3.3089, -2.8539, -2.6740], [-3.2706, -2.5621, -2.5108], [-3.2534, -2.6615, -2.6651]], ] , device=lowerCAmelCase__ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , lowerCAmelCase__ , atol=1e-4 ) ) @slow def _lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Optional[Any] = MobileViTForSemanticSegmentation.from_pretrained("apple/deeplabv3-mobilevit-xx-small" ) _UpperCAmelCase : str = model.to(lowerCAmelCase__ ) _UpperCAmelCase : List[str] = MobileViTImageProcessor.from_pretrained("apple/deeplabv3-mobilevit-xx-small" ) _UpperCAmelCase : Any = prepare_img() _UpperCAmelCase : Union[str, Any] = image_processor(images=lowerCAmelCase__ , return_tensors="pt" ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): _UpperCAmelCase : Tuple = model(**lowerCAmelCase__ ) _UpperCAmelCase : Any = outputs.logits.detach().cpu() _UpperCAmelCase : Dict = image_processor.post_process_semantic_segmentation(outputs=lowerCAmelCase__ , target_sizes=[(5_0, 6_0)] ) _UpperCAmelCase : Optional[int] = torch.Size((5_0, 6_0) ) self.assertEqual(segmentation[0].shape , lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = image_processor.post_process_semantic_segmentation(outputs=lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = torch.Size((3_2, 3_2) ) self.assertEqual(segmentation[0].shape , lowerCAmelCase__ )
145
'''simple docstring''' import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): __a = yaml.safe_load( '\\nname: ""\nallow_empty: false\nallow_empty_text: true\nsubsections:\n - name: "Dataset Card for X" # First-level markdown heading\n allow_empty: false\n allow_empty_text: true\n subsections:\n - name: "Table of Contents"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: "Dataset Description"\n allow_empty: false\n allow_empty_text: false\n subsections:\n - name: "Dataset Summary"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: "Supported Tasks and Leaderboards"\n allow_empty: true\n allow_empty_text: true\n subsections: null\n - name: Languages\n allow_empty: false\n allow_empty_text: true\n subsections: null\n' ) __a = { 'name': 'root', 'text': '', 'is_empty_text': True, 'subsections': [ { 'name': 'Dataset Card for My Dataset', 'text': '', 'is_empty_text': True, 'subsections': [ {'name': 'Table of Contents', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': []}, { 'name': 'Dataset Description', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [ { 'name': 'Dataset Summary', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [], }, { 'name': 'Supported Tasks and Leaderboards', 'text': '', 'is_empty_text': True, 'subsections': [], }, {'name': 'Languages', 'text': 'Language Text', 'is_empty_text': False, 'subsections': []}, ], }, ], } ], } __a = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' __a = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n#### Extra Ignored Subsection\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' __a = { 'name': 'root', 'text': '', 'is_empty_text': True, 'subsections': [ { 'name': 'Dataset Card for My Dataset', 'text': '', 'is_empty_text': True, 'subsections': [ {'name': 'Table of Contents', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': []}, { 'name': 'Dataset Description', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [ { 'name': 'Dataset Summary', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [ { 'name': 'Extra Ignored Subsection', 'text': '', 'is_empty_text': True, 'subsections': [], } ], }, { 'name': 'Supported Tasks and Leaderboards', 'text': '', 'is_empty_text': True, 'subsections': [], }, {'name': 'Languages', 'text': 'Language Text', 'is_empty_text': False, 'subsections': []}, ], }, ], } ], } __a = '\\n---\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' __a = ( 'The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.' ) __a = '\\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' __a = ( 'The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.' ) __a = '\\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' __a = 'The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.' __a = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' __a = 'The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).' __a = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n' __a = 'The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found \'None\'.' __a = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Languages\nLanguage Text\n' __a = 'The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.' __a = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\n' __a = 'The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.' __a = '\\n---\nlanguage:\n- zh\n- en\n---\n\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' __a = 'The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.' __a = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n# Dataset Card My Dataset\n' __a = 'The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.' __a = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' __a = 'The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.' __a = '' __a = 'The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.' __a = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' __a = 'The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.' @pytest.mark.parametrize( "readme_md, expected_dict", [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ], ) def __UpperCAmelCase ( a_: Any, a_: Any ): assert ReadMe.from_string(a_, a_ ).to_dict() == expected_dict @pytest.mark.parametrize( "readme_md, expected_error", [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ], ) def __UpperCAmelCase ( a_: Optional[int], a_: int ): with pytest.raises(a_, match=re.escape(expected_error.format(path="root" ) ) ): _UpperCAmelCase : Union[str, Any] = ReadMe.from_string(a_, a_ ) readme.validate() @pytest.mark.parametrize( "readme_md, expected_error", [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ], ) def __UpperCAmelCase ( a_: str, a_: Optional[Any] ): with pytest.raises(a_, match=re.escape(expected_error.format(path="root" ) ) ): ReadMe.from_string(a_, a_ ) @pytest.mark.parametrize( "readme_md,", [ (README_MULTIPLE_SAME_HEADING_1), ], ) def __UpperCAmelCase ( a_: str ): ReadMe.from_string(a_, a_, suppress_parsing_errors=a_ ) @pytest.mark.parametrize( "readme_md, expected_dict", [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ], ) def __UpperCAmelCase ( a_: str, a_: Union[str, Any] ): with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase : Optional[Any] = Path(a_ ) / "README.md" with open(a_, "w+" ) as readme_file: readme_file.write(a_ ) _UpperCAmelCase : Tuple = ReadMe.from_readme(a_, a_ ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( "readme_md, expected_error", [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ], ) def __UpperCAmelCase ( a_: List[Any], a_: str ): with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase : Optional[Any] = Path(a_ ) / "README.md" with open(a_, "w+" ) as readme_file: readme_file.write(a_ ) _UpperCAmelCase : Any = expected_error.format(path=a_ ) with pytest.raises(a_, match=re.escape(a_ ) ): _UpperCAmelCase : str = ReadMe.from_readme(a_, a_ ) readme.validate() @pytest.mark.parametrize( "readme_md, expected_error", [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ], ) def __UpperCAmelCase ( a_: Tuple, a_: Optional[int] ): with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase : List[str] = Path(a_ ) / "README.md" with open(a_, "w+" ) as readme_file: readme_file.write(a_ ) _UpperCAmelCase : Any = expected_error.format(path=a_ ) with pytest.raises(a_, match=re.escape(a_ ) ): ReadMe.from_readme(a_, a_ ) @pytest.mark.parametrize( "readme_md,", [ (README_MULTIPLE_SAME_HEADING_1), ], ) def __UpperCAmelCase ( a_: Any ): with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase : List[Any] = Path(a_ ) / "README.md" with open(a_, "w+" ) as readme_file: readme_file.write(a_ ) ReadMe.from_readme(a_, a_, suppress_parsing_errors=a_ )
145
1
"""simple docstring""" def _a ( _snake_case ): """simple docstring""" return 10 - x * x def _a ( _snake_case , _snake_case ): """simple docstring""" if equation(__a ) * equation(__a ) >= 0: raise ValueError("""Wrong space!""" ) UpperCAmelCase = a while (b - a) >= 0.01: # Find middle point UpperCAmelCase = (a + b) / 2 # Check if middle point is root if equation(__a ) == 0.0: break # Decide the side to repeat the steps if equation(__a ) * equation(__a ) < 0: UpperCAmelCase = c else: UpperCAmelCase = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
350
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _UpperCamelCase = {"""configuration_mbart""": ["""MBART_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MBartConfig""", """MBartOnnxConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ["""MBartTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ["""MBartTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ """MBART_PRETRAINED_MODEL_ARCHIVE_LIST""", """MBartForCausalLM""", """MBartForConditionalGeneration""", """MBartForQuestionAnswering""", """MBartForSequenceClassification""", """MBartModel""", """MBartPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ """TFMBartForConditionalGeneration""", """TFMBartModel""", """TFMBartPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ """FlaxMBartForConditionalGeneration""", """FlaxMBartForQuestionAnswering""", """FlaxMBartForSequenceClassification""", """FlaxMBartModel""", """FlaxMBartPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
234
0
from __future__ import annotations def UpperCamelCase__ ( A__ , A__ ) -> list[str]: if nth_term == "": return [""] snake_case__ : str = int(a__ ) snake_case__ : Union[str, Any] = int(a__ ) snake_case__ : Dict = [] for temp in range(int(a__ ) ): series.append(F"""1 / {pow(temp + 1 , int(a__ ) )}""" if series else '1' ) return series if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ : Optional[Any] = int(input('''Enter the last number (nth term) of the P-Series''')) lowerCAmelCase__ : int = int(input('''Enter the power for P-Series''')) print('''Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p''') print(p_series(nth_term, power))
143
import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class lowercase_ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): A__ : Dict = BarthezTokenizer A__ : List[Any] = BarthezTokenizerFast A__ : int = True A__ : str = True def lowerCamelCase_ ( self ): """simple docstring""" super().setUp() UpperCamelCase_ = BarthezTokenizerFast.from_pretrained("""moussaKam/mbarthez""" ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=__UpperCamelCase ) UpperCamelCase_ = tokenizer def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = """<pad>""" UpperCamelCase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCamelCase ) , __UpperCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCamelCase ) , __UpperCamelCase ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(__UpperCamelCase ) , 1_0_1_1_2_2 ) def lowerCamelCase_ ( self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_0_1_1_2_2 ) @require_torch def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] UpperCamelCase_ = [0, 5_7, 3_0_1_8, 7_0_3_0_7, 9_1, 2] UpperCamelCase_ = self.tokenizer( __UpperCamelCase , max_length=len(__UpperCamelCase ) , padding=__UpperCamelCase , truncation=__UpperCamelCase , return_tensors="""pt""" ) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) UpperCamelCase_ = batch.input_ids.tolist()[0] self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) def lowerCamelCase_ ( self ): """simple docstring""" if not self.test_rust_tokenizer: return UpperCamelCase_ = self.get_tokenizer() UpperCamelCase_ = self.get_rust_tokenizer() UpperCamelCase_ = """I was born in 92000, and this is falsé.""" UpperCamelCase_ = tokenizer.tokenize(__UpperCamelCase ) UpperCamelCase_ = rust_tokenizer.tokenize(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) UpperCamelCase_ = tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) UpperCamelCase_ = rust_tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) UpperCamelCase_ = self.get_rust_tokenizer() UpperCamelCase_ = tokenizer.encode(__UpperCamelCase ) UpperCamelCase_ = rust_tokenizer.encode(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) @slow def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = {"""input_ids""": [[0, 4_9_0, 1_4_3_2_8, 4_5_0_7, 3_5_4, 4_7, 4_3_6_6_9, 9_5, 2_5, 7_8_1_1_7, 2_0_2_1_5, 1_9_7_7_9, 1_9_0, 2_2, 4_0_0, 4, 3_5_3_4_3, 8_0_3_1_0, 6_0_3, 8_6, 2_4_9_3_7, 1_0_5, 3_3_4_3_8, 9_4_7_6_2, 1_9_6, 3_9_6_4_2, 7, 1_5, 1_5_9_3_3, 1_7_3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0_5_3_4, 8_7, 2_5, 6_6, 3_3_5_8, 1_9_6, 5_5_2_8_9, 8, 8_2_9_6_1, 8_1, 2_2_0_4, 7_5_2_0_3, 7, 1_5, 7_6_3, 1_2_9_5_6, 2_1_6, 1_7_8, 1_4_3_2_8, 9_5_9_5, 1_3_7_7, 6_9_6_9_3, 7, 4_4_8, 7_1_0_2_1, 1_9_6, 1_8_1_0_6, 1_4_3_7, 1_3_9_7_4, 1_0_8, 9_0_8_3, 4, 4_9_3_1_5, 7, 3_9, 8_6, 1_3_2_6, 2_7_9_3, 4_6_3_3_3, 4, 4_4_8, 1_9_6, 7_4_5_8_8, 7, 4_9_3_1_5, 7, 3_9, 2_1, 8_2_2, 3_8_4_7_0, 7_4, 2_1, 6_6_7_2_3, 6_2_4_8_0, 8, 2_2_0_5_0, 5, 2]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. UpperCamelCase_ = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=__UpperCamelCase , model_name="""moussaKam/mbarthez""" , revision="""c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6""" , sequences=__UpperCamelCase , )
122
0
from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class SCREAMING_SNAKE_CASE ( snake_case ): """simple docstring""" def __init__( self: List[str] , __A: Optional[NestedDataStructureLike[PathLike]] = None , __A: Optional[NamedSplit] = None , __A: Optional[Features] = None , __A: str = None , __A: bool = False , __A: bool = False , __A: Optional[int] = None , **__A: Tuple , ) -> List[Any]: _A = path_or_paths _A = split if split or isinstance(__A , __A ) else '''train''' _A = features _A = cache_dir _A = keep_in_memory _A = streaming _A = num_proc _A = kwargs @abstractmethod def __A ( self: Union[str, Any] ) -> Union[Dataset, DatasetDict, IterableDataset, IterableDatasetDict]: pass class SCREAMING_SNAKE_CASE ( snake_case ): """simple docstring""" def __init__( self: str , __A: Optional[Features] = None , __A: str = None , __A: bool = False , __A: bool = False , __A: Optional[int] = None , **__A: Optional[int] , ) -> Union[str, Any]: _A = features _A = cache_dir _A = keep_in_memory _A = streaming _A = num_proc _A = kwargs @abstractmethod def __A ( self: Any ) -> Union[Dataset, IterableDataset]: pass
75
from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { 'weiweishi/roc-bert-base-zh': 'https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json', } class SCREAMING_SNAKE_CASE ( snake_case ): """simple docstring""" A_ = "roc_bert" def __init__( self: Dict , __A: Optional[Any]=3_05_22 , __A: Dict=7_68 , __A: Optional[Any]=12 , __A: int=12 , __A: List[Any]=30_72 , __A: int="gelu" , __A: Optional[Any]=0.1 , __A: Tuple=0.1 , __A: int=5_12 , __A: Optional[Any]=2 , __A: Optional[Any]=0.02 , __A: Any=1e-12 , __A: Optional[Any]=True , __A: int=0 , __A: Union[str, Any]="absolute" , __A: Tuple=None , __A: Dict=True , __A: List[str]=True , __A: Union[str, Any]=7_68 , __A: List[str]=9_10 , __A: Any=5_12 , __A: List[Any]=2_48_58 , __A: int=True , **__A: str , ) -> Tuple: _A = vocab_size _A = max_position_embeddings _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = initializer_range _A = type_vocab_size _A = layer_norm_eps _A = use_cache _A = enable_pronunciation _A = enable_shape _A = pronunciation_embed_dim _A = pronunciation_vocab_size _A = shape_embed_dim _A = shape_vocab_size _A = concat_input _A = position_embedding_type _A = classifier_dropout super().__init__(pad_token_id=__A , **__A )
75
1
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class _UpperCamelCase ( A ): '''simple docstring''' lowerCAmelCase__ = """openai/whisper-base""" lowerCAmelCase__ = ( """This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the """ """transcribed text.""" ) lowerCAmelCase__ = """transcriber""" lowerCAmelCase__ = WhisperProcessor lowerCAmelCase__ = WhisperForConditionalGeneration lowerCAmelCase__ = ["""audio"""] lowerCAmelCase__ = ["""text"""] def __lowerCamelCase ( self : List[Any] , _lowerCAmelCase : List[str]): '''simple docstring''' return self.pre_processor(UpperCAmelCase__ , return_tensors='pt').input_features def __lowerCamelCase ( self : List[Any] , _lowerCAmelCase : Optional[int]): '''simple docstring''' return self.model.generate(inputs=UpperCAmelCase__) def __lowerCamelCase ( self : Dict , _lowerCAmelCase : Optional[int]): '''simple docstring''' return self.pre_processor.batch_decode(UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__)[0]
166
import os import pytest from attr import dataclass UpperCAmelCase__ : Optional[int] = """us-east-1""" # defaults region @dataclass class a__ : """simple docstring""" UpperCAmelCase__ : str UpperCAmelCase__ : Union[str, Any] ="""arn:aws:iam::558105141721:role/sagemaker_execution_role""" UpperCAmelCase__ : Tuple ={ """task_name""": """mnli""", """per_device_train_batch_size""": 1_6, """per_device_eval_batch_size""": 1_6, """do_train""": True, """do_eval""": True, """do_predict""": True, """output_dir""": """/opt/ml/model""", """overwrite_output_dir""": True, """max_steps""": 5_0_0, """save_steps""": 5_5_0_0, } UpperCAmelCase__ : Optional[int] ={**hyperparameters, """max_steps""": 1_0_0_0} @property def _lowercase ( self : List[str] ) ->str: """simple docstring""" if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def _lowercase ( self : Any ) ->str: """simple docstring""" return f"{self.framework}-transfromers-test" @property def _lowercase ( self : Union[str, Any] ) ->str: """simple docstring""" return f"./tests/sagemaker/scripts/{self.framework}" @property def _lowercase ( self : Dict ) ->str: """simple docstring""" if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope="""class""" ) def __lowercase ( _A ) -> Tuple: SCREAMING_SNAKE_CASE : List[str] = SageMakerTestEnvironment(framework=request.cls.framework )
245
0
from __future__ import annotations import math __SCREAMING_SNAKE_CASE = """2020.9.26""" __SCREAMING_SNAKE_CASE = """xcodz-dot, cclaus, dhruvmanila""" def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if not all(isinstance(_lowerCamelCase , (float, int) ) for val in locals().values() ): A : Dict = f"""Input values must either be float or int: {list(locals().values() )}""" raise TypeError(_lowerCamelCase ) A : int = ((x * distance) / (z + distance)) * scale A : List[Any] = ((y * distance) / (z + distance)) * scale return projected_x, projected_y def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError("Axis must be a str" ) A : Union[str, Any] = locals() del input_variables["axis"] if not all(isinstance(_lowerCamelCase , (float, int) ) for val in input_variables.values() ): A : Dict = ( "Input values except axis must either be float or int: " f"""{list(input_variables.values() )}""" ) raise TypeError(_lowerCamelCase ) A : int = (angle % 360) / 450 * 180 / math.pi if axis == "z": A : List[Any] = x * math.cos(_lowerCamelCase ) - y * math.sin(_lowerCamelCase ) A : List[str] = y * math.cos(_lowerCamelCase ) + x * math.sin(_lowerCamelCase ) A : Dict = z elif axis == "x": A : Any = y * math.cos(_lowerCamelCase ) - z * math.sin(_lowerCamelCase ) A : Dict = z * math.cos(_lowerCamelCase ) + y * math.sin(_lowerCamelCase ) A : List[str] = x elif axis == "y": A : Any = x * math.cos(_lowerCamelCase ) - z * math.sin(_lowerCamelCase ) A : str = z * math.cos(_lowerCamelCase ) + x * math.sin(_lowerCamelCase ) A : List[Any] = y else: raise ValueError("not a valid axis, choose one of 'x', 'y', 'z'" ) return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(F"""{convert_to_ad(1.0, 2.0, 3.0, 10.0, 10.0) = }""") print(F"""{rotate(1.0, 2.0, 3.0, 'y', 90.0) = }""")
359
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __SCREAMING_SNAKE_CASE = { """configuration_electra""": ["""ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ElectraConfig""", """ElectraOnnxConfig"""], """tokenization_electra""": ["""ElectraTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE = ["""ElectraTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE = [ """ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """ElectraForCausalLM""", """ElectraForMaskedLM""", """ElectraForMultipleChoice""", """ElectraForPreTraining""", """ElectraForQuestionAnswering""", """ElectraForSequenceClassification""", """ElectraForTokenClassification""", """ElectraModel""", """ElectraPreTrainedModel""", """load_tf_weights_in_electra""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE = [ """TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFElectraForMaskedLM""", """TFElectraForMultipleChoice""", """TFElectraForPreTraining""", """TFElectraForQuestionAnswering""", """TFElectraForSequenceClassification""", """TFElectraForTokenClassification""", """TFElectraModel""", """TFElectraPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE = [ """FlaxElectraForCausalLM""", """FlaxElectraForMaskedLM""", """FlaxElectraForMultipleChoice""", """FlaxElectraForPreTraining""", """FlaxElectraForQuestionAnswering""", """FlaxElectraForSequenceClassification""", """FlaxElectraForTokenClassification""", """FlaxElectraModel""", """FlaxElectraPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
256
0
'''simple docstring''' import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class _lowerCAmelCase : '''simple docstring''' def __init__(self , UpperCAmelCase , UpperCAmelCase=2 , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=10 , UpperCAmelCase=3 , UpperCAmelCase=32 * 4 , UpperCAmelCase=32 * 6 , UpperCAmelCase=4 , UpperCAmelCase=32 , ) -> Optional[Any]: _snake_case = parent _snake_case = batch_size _snake_case = is_training _snake_case = use_auxiliary_loss _snake_case = num_queries _snake_case = num_channels _snake_case = min_size _snake_case = max_size _snake_case = num_labels _snake_case = mask_feature_size def lowercase (self ) -> str: _snake_case = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( UpperCAmelCase ) _snake_case = torch.ones([self.batch_size, self.min_size, self.max_size] , device=UpperCAmelCase ) _snake_case = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=UpperCAmelCase ) > 0.5 ).float() _snake_case = (torch.rand((self.batch_size, self.num_labels) , device=UpperCAmelCase ) > 0.5).long() _snake_case = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def lowercase (self ) -> Tuple: return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig( decoder_ffn_dim=128 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , ) def lowercase (self ) -> Optional[Any]: _snake_case, _snake_case, _snake_case, _snake_case, _snake_case = self.prepare_config_and_inputs() _snake_case = {"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask} return config, inputs_dict def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> int: _snake_case = output.encoder_hidden_states _snake_case = output.pixel_decoder_hidden_states _snake_case = output.transformer_decoder_hidden_states self.parent.assertTrue(len(UpperCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(UpperCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(UpperCAmelCase ) , config.decoder_config.decoder_layers ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) -> Union[str, Any]: with torch.no_grad(): _snake_case = MaskFormerModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _snake_case = model(pixel_values=UpperCAmelCase , pixel_mask=UpperCAmelCase ) _snake_case = model(UpperCAmelCase , output_hidden_states=UpperCAmelCase ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(UpperCAmelCase , UpperCAmelCase ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: _snake_case = MaskFormerForInstanceSegmentation(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() def comm_check_on_output(UpperCAmelCase ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): _snake_case = model(pixel_values=UpperCAmelCase , pixel_mask=UpperCAmelCase ) _snake_case = model(UpperCAmelCase ) comm_check_on_output(UpperCAmelCase ) _snake_case = model( pixel_values=UpperCAmelCase , pixel_mask=UpperCAmelCase , mask_labels=UpperCAmelCase , class_labels=UpperCAmelCase ) comm_check_on_output(UpperCAmelCase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class _lowerCAmelCase ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () lowerCAmelCase_ = ( {"feature-extraction": MaskFormerModel, "image-segmentation": MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def lowercase (self ) -> int: _snake_case = MaskFormerModelTester(self ) _snake_case = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase ) def lowercase (self ) -> int: self.config_tester.run_common_tests() def lowercase (self ) -> List[Any]: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(UpperCAmelCase , **UpperCAmelCase , output_hidden_states=UpperCAmelCase ) def lowercase (self ) -> Any: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*UpperCAmelCase ) @unittest.skip(reason="""MaskFormer does not use inputs_embeds""" ) def lowercase (self ) -> Optional[Any]: pass @unittest.skip(reason="""MaskFormer does not have a get_input_embeddings method""" ) def lowercase (self ) -> Optional[int]: pass @unittest.skip(reason="""MaskFormer is not a generative model""" ) def lowercase (self ) -> int: pass @unittest.skip(reason="""MaskFormer does not use token embeddings""" ) def lowercase (self ) -> Optional[int]: pass @require_torch_multi_gpu @unittest.skip( reason="""MaskFormer has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def lowercase (self ) -> Optional[Any]: pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowercase (self ) -> Tuple: pass def lowercase (self ) -> List[str]: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(UpperCAmelCase ) _snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case = [*signature.parameters.keys()] _snake_case = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) @slow def lowercase (self ) -> int: for model_name in ["facebook/maskformer-swin-small-coco"]: _snake_case = MaskFormerModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def lowercase (self ) -> Tuple: _snake_case = (self.model_tester.min_size,) * 2 _snake_case = { """pixel_values""": torch.randn((2, 3, *size) , device=UpperCAmelCase ), """mask_labels""": torch.randn((2, 10, *size) , device=UpperCAmelCase ), """class_labels""": torch.zeros(2 , 10 , device=UpperCAmelCase ).long(), } _snake_case = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(UpperCAmelCase ) _snake_case = model(**UpperCAmelCase ) self.assertTrue(outputs.loss is not None ) def lowercase (self ) -> Dict: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(UpperCAmelCase , **UpperCAmelCase , output_hidden_states=UpperCAmelCase ) def lowercase (self ) -> List[str]: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(UpperCAmelCase ).to(UpperCAmelCase ) _snake_case = model(**UpperCAmelCase , output_attentions=UpperCAmelCase ) self.assertTrue(outputs.attentions is not None ) def lowercase (self ) -> Tuple: if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss _snake_case = self.all_model_classes[1] _snake_case, _snake_case, _snake_case, _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs() _snake_case = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.train() _snake_case = model(UpperCAmelCase , mask_labels=UpperCAmelCase , class_labels=UpperCAmelCase ).loss loss.backward() def lowercase (self ) -> List[str]: # only MaskFormerForInstanceSegmentation has the loss _snake_case = self.all_model_classes[1] _snake_case, _snake_case, _snake_case, _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs() _snake_case = True _snake_case = True _snake_case = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.train() _snake_case = model(UpperCAmelCase , mask_labels=UpperCAmelCase , class_labels=UpperCAmelCase ) _snake_case = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() _snake_case = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't _snake_case = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() _snake_case = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=UpperCAmelCase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) __lowerCAmelCase = 1E-4 def __SCREAMING_SNAKE_CASE ( ): _snake_case = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_vision @slow class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowercase (self ) -> Optional[int]: return ( MaskFormerImageProcessor.from_pretrained("""facebook/maskformer-swin-small-coco""" ) if is_vision_available() else None ) def lowercase (self ) -> str: _snake_case = MaskFormerModel.from_pretrained("""facebook/maskformer-swin-small-coco""" ).to(UpperCAmelCase ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase ) _snake_case = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(UpperCAmelCase , (1, 3, 800, 1088) ) with torch.no_grad(): _snake_case = model(**UpperCAmelCase ) _snake_case = torch.tensor( [[-0.0482, 0.9228, 0.4951], [-0.2547, 0.8017, 0.8527], [-0.0069, 0.3385, -0.0089]] ).to(UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) ) _snake_case = torch.tensor( [[-0.8422, -0.8434, -0.9718], [-1.0144, -0.5565, -0.4195], [-1.0038, -0.4484, -0.1961]] ).to(UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) ) _snake_case = torch.tensor( [[0.2852, -0.0159, 0.9735], [0.6254, 0.1858, 0.8529], [-0.0680, -0.4116, 1.8413]] ).to(UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) ) def lowercase (self ) -> List[str]: _snake_case = ( MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-swin-small-coco""" ) .to(UpperCAmelCase ) .eval() ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase ) _snake_case = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(UpperCAmelCase , (1, 3, 800, 1088) ) with torch.no_grad(): _snake_case = model(**UpperCAmelCase ) # masks_queries_logits _snake_case = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) _snake_case = [ [-1.373_7124, -1.772_4937, -1.936_4233], [-1.597_7281, -1.986_7939, -2.152_3695], [-1.579_5398, -1.926_9832, -2.09_3942], ] _snake_case = torch.tensor(UpperCAmelCase ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) ) # class_queries_logits _snake_case = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) _snake_case = torch.tensor( [ [1.6_5_1_2e0_0, -5.2_5_7_2e0_0, -3.3_5_1_9e0_0], [3.6_1_6_9e-0_2, -5.9_0_2_5e0_0, -2.9_3_1_3e0_0], [1.0_7_6_6e-0_4, -7.7_6_3_0e0_0, -5.1_2_6_3e0_0], ] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) ) def lowercase (self ) -> List[Any]: _snake_case = ( MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-resnet101-coco-stuff""" ) .to(UpperCAmelCase ) .eval() ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase ) _snake_case = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(UpperCAmelCase , (1, 3, 800, 1088) ) with torch.no_grad(): _snake_case = model(**UpperCAmelCase ) # masks_queries_logits _snake_case = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) _snake_case = [[-0.9046, -2.6366, -4.6062], [-3.4179, -5.7890, -8.8057], [-4.9179, -7.6560, -10.7711]] _snake_case = torch.tensor(UpperCAmelCase ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) ) # class_queries_logits _snake_case = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) _snake_case = torch.tensor( [[4.7188, -3.2585, -2.8857], [6.6871, -2.9181, -1.2487], [7.2449, -2.2764, -2.1874]] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) ) def lowercase (self ) -> Tuple: _snake_case = ( MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-swin-small-coco""" ) .to(UpperCAmelCase ) .eval() ) _snake_case = self.default_image_processor _snake_case = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors="""pt""" , ) _snake_case = inputs["""pixel_values"""].to(UpperCAmelCase ) _snake_case = [el.to(UpperCAmelCase ) for el in inputs["""mask_labels"""]] _snake_case = [el.to(UpperCAmelCase ) for el in inputs["""class_labels"""]] with torch.no_grad(): _snake_case = model(**UpperCAmelCase ) self.assertTrue(outputs.loss is not None )
341
'''simple docstring''' class _lowerCAmelCase : '''simple docstring''' def __init__(self , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None ) -> int: _snake_case = data _snake_case = previous _snake_case = next_node def __str__(self ) -> str: return f"""{self.data}""" def lowercase (self ) -> int: return self.data def lowercase (self ) -> Dict: return self.next def lowercase (self ) -> Union[str, Any]: return self.previous class _lowerCAmelCase : '''simple docstring''' def __init__(self , UpperCAmelCase ) -> List[str]: _snake_case = head def __iter__(self ) -> Optional[Any]: return self def lowercase (self ) -> str: if not self.current: raise StopIteration else: _snake_case = self.current.get_data() _snake_case = self.current.get_next() return value class _lowerCAmelCase : '''simple docstring''' def __init__(self ) -> Optional[int]: _snake_case = None # First node in list _snake_case = None # Last node in list def __str__(self ) -> Optional[int]: _snake_case = self.head _snake_case = [] while current is not None: nodes.append(current.get_data() ) _snake_case = current.get_next() return " ".join(str(UpperCAmelCase ) for node in nodes ) def __contains__(self , UpperCAmelCase ) -> int: _snake_case = self.head while current: if current.get_data() == value: return True _snake_case = current.get_next() return False def __iter__(self ) -> Union[str, Any]: return LinkedListIterator(self.head ) def lowercase (self ) -> str: if self.head: return self.head.get_data() return None def lowercase (self ) -> List[Any]: if self.tail: return self.tail.get_data() return None def lowercase (self , UpperCAmelCase ) -> None: if self.head is None: _snake_case = node _snake_case = node else: self.insert_before_node(self.head , UpperCAmelCase ) def lowercase (self , UpperCAmelCase ) -> None: if self.head is None: self.set_head(UpperCAmelCase ) else: self.insert_after_node(self.tail , UpperCAmelCase ) def lowercase (self , UpperCAmelCase ) -> None: _snake_case = Node(UpperCAmelCase ) if self.head is None: self.set_head(UpperCAmelCase ) else: self.set_tail(UpperCAmelCase ) def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> None: _snake_case = node _snake_case = node.previous if node.get_previous() is None: _snake_case = node_to_insert else: _snake_case = node_to_insert _snake_case = node_to_insert def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> None: _snake_case = node _snake_case = node.next if node.get_next() is None: _snake_case = node_to_insert else: _snake_case = node_to_insert _snake_case = node_to_insert def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> None: _snake_case = 1 _snake_case = Node(UpperCAmelCase ) _snake_case = self.head while node: if current_position == position: self.insert_before_node(UpperCAmelCase , UpperCAmelCase ) return current_position += 1 _snake_case = node.next self.insert_after_node(self.tail , UpperCAmelCase ) def lowercase (self , UpperCAmelCase ) -> Node: _snake_case = self.head while node: if node.get_data() == item: return node _snake_case = node.get_next() raise Exception("""Node not found""" ) def lowercase (self , UpperCAmelCase ) -> Optional[int]: if (node := self.get_node(UpperCAmelCase )) is not None: if node == self.head: _snake_case = self.head.get_next() if node == self.tail: _snake_case = self.tail.get_previous() self.remove_node_pointers(UpperCAmelCase ) @staticmethod def lowercase (UpperCAmelCase ) -> None: if node.get_next(): _snake_case = node.previous if node.get_previous(): _snake_case = node.next _snake_case = None _snake_case = None def lowercase (self ) -> Dict: return self.head is None def __SCREAMING_SNAKE_CASE ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
341
1
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging UpperCAmelCase : int = logging.get_logger(__name__) class lowerCAmelCase__ ( a ): """simple docstring""" lowerCAmelCase__ = ["pixel_values"] def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : int = 32 , __SCREAMING_SNAKE_CASE : Optional[Any]=PILImageResampling.BILINEAR , __SCREAMING_SNAKE_CASE : bool = True , **__SCREAMING_SNAKE_CASE : Optional[int] , ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = do_resize __SCREAMING_SNAKE_CASE = do_rescale __SCREAMING_SNAKE_CASE = size_divisor __SCREAMING_SNAKE_CASE = resample super().__init__(**__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : List[str] , __SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[ChannelDimension] = None , **__SCREAMING_SNAKE_CASE : List[Any] ) -> np.ndarray: """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = get_image_size(__SCREAMING_SNAKE_CASE ) # Rounds the height and width down to the closest multiple of size_divisor __SCREAMING_SNAKE_CASE = height // size_divisor * size_divisor __SCREAMING_SNAKE_CASE = width // size_divisor * size_divisor __SCREAMING_SNAKE_CASE = resize(__SCREAMING_SNAKE_CASE , (new_h, new_w) , resample=__SCREAMING_SNAKE_CASE , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) return image def UpperCAmelCase__ ( self : Dict , __SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : Optional[ChannelDimension] = None , **__SCREAMING_SNAKE_CASE : Optional[Any] ) -> np.ndarray: """simple docstring""" return rescale(image=__SCREAMING_SNAKE_CASE , scale=__SCREAMING_SNAKE_CASE , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Tuple , __SCREAMING_SNAKE_CASE : Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] , __SCREAMING_SNAKE_CASE : Optional[bool] = None , __SCREAMING_SNAKE_CASE : Optional[int] = None , __SCREAMING_SNAKE_CASE : Tuple=None , __SCREAMING_SNAKE_CASE : Optional[bool] = None , __SCREAMING_SNAKE_CASE : Optional[Union[TensorType, str]] = None , __SCREAMING_SNAKE_CASE : ChannelDimension = ChannelDimension.FIRST , **__SCREAMING_SNAKE_CASE : int , ) -> BatchFeature: """simple docstring""" __SCREAMING_SNAKE_CASE = do_resize if do_resize is not None else self.do_resize __SCREAMING_SNAKE_CASE = do_rescale if do_rescale is not None else self.do_rescale __SCREAMING_SNAKE_CASE = size_divisor if size_divisor is not None else self.size_divisor __SCREAMING_SNAKE_CASE = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError("""size_divisor is required for resizing""" ) __SCREAMING_SNAKE_CASE = make_list_of_images(__SCREAMING_SNAKE_CASE ) if not valid_images(__SCREAMING_SNAKE_CASE ): raise ValueError("""Invalid image(s)""" ) # All transformations expect numpy arrays. __SCREAMING_SNAKE_CASE = [to_numpy_array(__SCREAMING_SNAKE_CASE ) for img in images] if do_resize: __SCREAMING_SNAKE_CASE = [self.resize(__SCREAMING_SNAKE_CASE , size_divisor=__SCREAMING_SNAKE_CASE , resample=__SCREAMING_SNAKE_CASE ) for image in images] if do_rescale: __SCREAMING_SNAKE_CASE = [self.rescale(__SCREAMING_SNAKE_CASE , scale=1 / 255 ) for image in images] __SCREAMING_SNAKE_CASE = [to_channel_dimension_format(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for image in images] __SCREAMING_SNAKE_CASE = {"""pixel_values""": images} return BatchFeature(data=__SCREAMING_SNAKE_CASE , tensor_type=__SCREAMING_SNAKE_CASE )
362
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCAmelCase__ ( a , a , a , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = AltDiffusionPipeline lowerCAmelCase__ = TEXT_TO_IMAGE_PARAMS lowerCAmelCase__ = TEXT_TO_IMAGE_BATCH_PARAMS lowerCAmelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCAmelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS def UpperCAmelCase__ ( self : List[str] ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) __SCREAMING_SNAKE_CASE = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=__SCREAMING_SNAKE_CASE , set_alpha_to_one=__SCREAMING_SNAKE_CASE , ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_002 , ) __SCREAMING_SNAKE_CASE = CLIPTextModel(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" ) __SCREAMING_SNAKE_CASE = 77 __SCREAMING_SNAKE_CASE = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def UpperCAmelCase__ ( self : Tuple , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Dict=0 ) -> List[str]: """simple docstring""" if str(__SCREAMING_SNAKE_CASE ).startswith("""mps""" ): __SCREAMING_SNAKE_CASE = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: __SCREAMING_SNAKE_CASE = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def UpperCAmelCase__ ( self : Any ) -> Tuple: """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def UpperCAmelCase__ ( self : Tuple ) -> str: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def UpperCAmelCase__ ( self : Optional[int] ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = """cpu""" # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE = self.get_dummy_components() torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_002 , ) # TODO: remove after fixing the non-deterministic text encoder __SCREAMING_SNAKE_CASE = RobertaSeriesModelWithTransformation(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = text_encoder __SCREAMING_SNAKE_CASE = AltDiffusionPipeline(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = alt_pipe.to(__SCREAMING_SNAKE_CASE ) alt_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = """A photo of an astronaut""" __SCREAMING_SNAKE_CASE = alt_pipe(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = output.images __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __SCREAMING_SNAKE_CASE = np.array( [0.5748162, 0.60447145, 0.48821217, 0.50100636, 0.5431185, 0.45763683, 0.49657696, 0.48132733, 0.47573093] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self : int ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = """cpu""" # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE = self.get_dummy_components() __SCREAMING_SNAKE_CASE = PNDMScheduler(skip_prk_steps=__SCREAMING_SNAKE_CASE ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_002 , ) # TODO: remove after fixing the non-deterministic text encoder __SCREAMING_SNAKE_CASE = RobertaSeriesModelWithTransformation(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = text_encoder __SCREAMING_SNAKE_CASE = AltDiffusionPipeline(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = alt_pipe.to(__SCREAMING_SNAKE_CASE ) alt_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = alt_pipe(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = output.images __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __SCREAMING_SNAKE_CASE = np.array( [0.51605093, 0.5707241, 0.47365507, 0.50578886, 0.5633877, 0.4642503, 0.5182081, 0.48763484, 0.49084237] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self : Any ) -> Optional[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = AltDiffusionPipeline.from_pretrained("""BAAI/AltDiffusion""" , safety_checker=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = alt_pipe.to(__SCREAMING_SNAKE_CASE ) alt_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = """A painting of a squirrel eating a burger""" __SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = alt_pipe([prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=6.0 , num_inference_steps=20 , output_type="""np""" ) __SCREAMING_SNAKE_CASE = output.images __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __SCREAMING_SNAKE_CASE = np.array([0.1010, 0.0800, 0.0794, 0.0885, 0.0843, 0.0762, 0.0769, 0.0729, 0.0586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self : List[Any] ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = DDIMScheduler.from_pretrained("""BAAI/AltDiffusion""" , subfolder="""scheduler""" ) __SCREAMING_SNAKE_CASE = AltDiffusionPipeline.from_pretrained("""BAAI/AltDiffusion""" , scheduler=__SCREAMING_SNAKE_CASE , safety_checker=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = alt_pipe.to(__SCREAMING_SNAKE_CASE ) alt_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = """A painting of a squirrel eating a burger""" __SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = alt_pipe([prompt] , generator=__SCREAMING_SNAKE_CASE , num_inference_steps=2 , output_type="""numpy""" ) __SCREAMING_SNAKE_CASE = output.images __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __SCREAMING_SNAKE_CASE = np.array([0.4019, 0.4052, 0.3810, 0.4119, 0.3916, 0.3982, 0.4651, 0.4195, 0.5323] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
331
0
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class __lowercase : def __init__(self , A , A=1_3 , A=7 , A=True , A=True , A=True , A=9_9 , A=3_2 , A=5 , A=4 , A=3_7 , A="gelu" , A=0.1 , A=0.1 , A=5_1_2 , A=1_6 , A=2 , A=0.02 , A=3 , A=4 , A=None , ): lowerCamelCase_ : Any = parent lowerCamelCase_ : List[str] = batch_size lowerCamelCase_ : List[str] = seq_length lowerCamelCase_ : Dict = is_training lowerCamelCase_ : int = use_token_type_ids lowerCamelCase_ : int = use_labels lowerCamelCase_ : str = vocab_size lowerCamelCase_ : Union[str, Any] = hidden_size lowerCamelCase_ : List[Any] = num_hidden_layers lowerCamelCase_ : str = num_attention_heads lowerCamelCase_ : Optional[int] = intermediate_size lowerCamelCase_ : Union[str, Any] = hidden_act lowerCamelCase_ : str = hidden_dropout_prob lowerCamelCase_ : List[Any] = attention_probs_dropout_prob lowerCamelCase_ : List[str] = max_position_embeddings lowerCamelCase_ : str = type_vocab_size lowerCamelCase_ : Union[str, Any] = type_sequence_label_size lowerCamelCase_ : int = initializer_range lowerCamelCase_ : Union[str, Any] = num_labels lowerCamelCase_ : List[str] = num_choices lowerCamelCase_ : List[str] = scope lowerCamelCase_ : int = self.vocab_size - 1 def UpperCAmelCase__ (self ): lowerCamelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ : Optional[Any] = None if self.use_token_type_ids: lowerCamelCase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase_ : Union[str, Any] = None lowerCamelCase_ : str = None lowerCamelCase_ : List[str] = None if self.use_labels: lowerCamelCase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase_ : Tuple = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase_ : Optional[Any] = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) lowerCamelCase_ : Optional[Any] = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def UpperCAmelCase__ (self , A , A , A , A , *A ): lowerCamelCase_ : Any = OpenAIGPTModel(config=A ) model.to(A ) model.eval() lowerCamelCase_ : Union[str, Any] = model(A , token_type_ids=A , head_mask=A ) lowerCamelCase_ : List[Any] = model(A , token_type_ids=A ) lowerCamelCase_ : int = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ (self , A , A , A , A , *A ): lowerCamelCase_ : int = OpenAIGPTLMHeadModel(A ) model.to(A ) model.eval() lowerCamelCase_ : Tuple = model(A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__ (self , A , A , A , A , *A ): lowerCamelCase_ : int = OpenAIGPTDoubleHeadsModel(A ) model.to(A ) model.eval() lowerCamelCase_ : Union[str, Any] = model(A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__ (self , A , A , A , A , *A ): lowerCamelCase_ : str = self.num_labels lowerCamelCase_ : List[Any] = OpenAIGPTForSequenceClassification(A ) model.to(A ) model.eval() lowerCamelCase_ : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ : Union[str, Any] = model(A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Tuple = self.prepare_config_and_inputs() ( ( lowerCamelCase_ ), ( lowerCamelCase_ ), ( lowerCamelCase_ ), ( lowerCamelCase_ ), ( lowerCamelCase_ ), ( lowerCamelCase_ ), ( lowerCamelCase_ ), ) : Optional[int] = config_and_inputs lowerCamelCase_ : Any = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_torch class __lowercase ( _lowercase , _lowercase , _lowercase , unittest.TestCase ): lowerCamelCase : List[Any] = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) lowerCamelCase : List[Any] = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly lowerCamelCase : str = ( { "feature-extraction": OpenAIGPTModel, "text-classification": OpenAIGPTForSequenceClassification, "text-generation": OpenAIGPTLMHeadModel, "zero-shot": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def UpperCAmelCase__ (self , A , A , A , A , A ): if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def UpperCAmelCase__ (self , A , A , A=False ): lowerCamelCase_ : Optional[Any] = super()._prepare_for_class(A , A , return_labels=A ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": lowerCamelCase_ : Tuple = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=A , ) lowerCamelCase_ : Tuple = inputs_dict['''labels'''] lowerCamelCase_ : Dict = inputs_dict['''labels'''] lowerCamelCase_ : Dict = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=A , ) lowerCamelCase_ : Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=A ) return inputs_dict def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = OpenAIGPTModelTester(self ) lowerCamelCase_ : Optional[Any] = ConfigTester(self , config_class=A , n_embd=3_7 ) def UpperCAmelCase__ (self ): self.config_tester.run_common_tests() def UpperCAmelCase__ (self ): lowerCamelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*A ) @slow def UpperCAmelCase__ (self ): for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ : Tuple = OpenAIGPTModel.from_pretrained(A ) self.assertIsNotNone(A ) @require_torch class __lowercase ( unittest.TestCase ): @slow def UpperCAmelCase__ (self ): lowerCamelCase_ : int = OpenAIGPTLMHeadModel.from_pretrained('''openai-gpt''' ) model.to(A ) lowerCamelCase_ : Tuple = torch.tensor([[4_8_1, 4_7_3_5, 5_4_4]] , dtype=torch.long , device=A ) # the president is lowerCamelCase_ : Dict = [ 4_8_1, 4_7_3_5, 5_4_4, 2_4_6, 9_6_3, 8_7_0, 7_6_2, 2_3_9, 2_4_4, 4_0_4_7_7, 2_4_4, 2_4_9, 7_1_9, 8_8_1, 4_8_7, 5_4_4, 2_4_0, 2_4_4, 6_0_3, 4_8_1, ] # the president is a very good man. " \n " i\'m sure he is, " said the lowerCamelCase_ : List[str] = model.generate(A , do_sample=A ) self.assertListEqual(output_ids[0].tolist() , A )
318
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') __lowercase : Dict = logging.getLogger(__name__) @dataclass class __lowercase : lowerCamelCase : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) lowerCamelCase : Optional[str] = field( default=_lowercase , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowerCamelCase : Optional[str] = field( default=_lowercase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) lowerCamelCase : Optional[str] = field( default=_lowercase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) lowerCamelCase : bool = field( default=_lowercase , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) lowerCamelCase : str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) lowerCamelCase : bool = field( default=_lowercase , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) @dataclass class __lowercase : lowerCamelCase : Optional[str] = field(default=_lowercase , metadata={"help": "The input training data file (a text file)."} ) lowerCamelCase : Optional[str] = field( default=_lowercase , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) lowerCamelCase : bool = field( default=_lowercase , metadata={"help": "Overwrite the cached training and evaluation sets"} ) lowerCamelCase : Optional[int] = field( default=_lowercase , metadata={"help": "The number of processes to use for the preprocessing."} , ) lowerCamelCase : Optional[int] = field( default=_lowercase , metadata={ "help": ( "The maximum total input sequence length after tokenization. If passed, sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) lowerCamelCase : bool = field( default=_lowercase , metadata={ "help": ( "Whether to pad all samples to the maximum sentence length. " "If False, will pad the samples dynamically when batching to the maximum length in the batch. More " "efficient on GPU but very bad for TPU." ) } , ) lowerCamelCase : Optional[int] = field( default=_lowercase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) lowerCamelCase : Optional[int] = field( default=_lowercase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def UpperCAmelCase__ (self ): if self.train_file is not None: lowerCamelCase_ : Optional[Any] = self.train_file.split('''.''' )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: lowerCamelCase_ : Optional[Any] = self.validation_file.split('''.''' )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class __lowercase : lowerCamelCase : PreTrainedTokenizerBase lowerCamelCase : Union[bool, str, PaddingStrategy] = True lowerCamelCase : Optional[int] = None lowerCamelCase : Optional[int] = None def __call__(self , A ): lowerCamelCase_ : List[str] = '''label''' if '''label''' in features[0].keys() else '''labels''' lowerCamelCase_ : str = [feature.pop(A ) for feature in features] lowerCamelCase_ : Any = len(A ) lowerCamelCase_ : List[Any] = len(features[0]['''input_ids'''] ) lowerCamelCase_ : Union[str, Any] = [ [{k: v[i] for k, v in feature.items()} for i in range(A )] for feature in features ] lowerCamelCase_ : str = list(chain(*A ) ) lowerCamelCase_ : Any = self.tokenizer.pad( A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , ) # Un-flatten lowerCamelCase_ : int = {k: v.view(A , A , -1 ) for k, v in batch.items()} # Add back labels lowerCamelCase_ : Tuple = torch.tensor(A , dtype=torch.intaa ) return batch def lowercase_ ( ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase_ : int = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ : str = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_swag''' , _lowercase , _lowercase ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowerCamelCase_ : Optional[int] = training_args.get_process_log_level() logger.setLevel(_lowercase ) datasets.utils.logging.set_verbosity(_lowercase ) transformers.utils.logging.set_verbosity(_lowercase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. lowerCamelCase_ : Any = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCamelCase_ : str = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: lowerCamelCase_ : Optional[Any] = {} if data_args.train_file is not None: lowerCamelCase_ : Union[str, Any] = data_args.train_file if data_args.validation_file is not None: lowerCamelCase_ : Tuple = data_args.validation_file lowerCamelCase_ : Optional[Any] = data_args.train_file.split('''.''' )[-1] lowerCamelCase_ : Dict = load_dataset( _lowercase , data_files=_lowercase , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. lowerCamelCase_ : Optional[Any] = load_dataset( '''swag''' , '''regular''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase_ : str = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase_ : Any = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase_ : List[Any] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=_lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. lowerCamelCase_ : int = [F"""ending{i}""" for i in range(4 )] lowerCamelCase_ : List[Any] = '''sent1''' lowerCamelCase_ : Dict = '''sent2''' if data_args.max_seq_length is None: lowerCamelCase_ : str = tokenizer.model_max_length if max_seq_length > 1_024: logger.warning( '''The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value''' ''' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can''' ''' override this default with `--block_size xxx`.''' ) lowerCamelCase_ : Optional[int] = 1_024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) lowerCamelCase_ : Optional[int] = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(_lowercase ): lowerCamelCase_ : Tuple = [[context] * 4 for context in examples[context_name]] lowerCamelCase_ : List[Any] = examples[question_header_name] lowerCamelCase_ : Optional[Any] = [ [F"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(_lowercase ) ] # Flatten out lowerCamelCase_ : Optional[Any] = list(chain(*_lowercase ) ) lowerCamelCase_ : List[Any] = list(chain(*_lowercase ) ) # Tokenize lowerCamelCase_ : List[str] = tokenizer( _lowercase , _lowercase , truncation=_lowercase , max_length=_lowercase , padding='''max_length''' if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(_lowercase ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError('''--do_train requires a train dataset''' ) lowerCamelCase_ : Union[str, Any] = raw_datasets['''train'''] if data_args.max_train_samples is not None: lowerCamelCase_ : List[str] = min(len(_lowercase ) , data_args.max_train_samples ) lowerCamelCase_ : List[str] = train_dataset.select(range(_lowercase ) ) with training_args.main_process_first(desc='''train dataset map pre-processing''' ): lowerCamelCase_ : Dict = train_dataset.map( _lowercase , batched=_lowercase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError('''--do_eval requires a validation dataset''' ) lowerCamelCase_ : Optional[int] = raw_datasets['''validation'''] if data_args.max_eval_samples is not None: lowerCamelCase_ : Optional[int] = min(len(_lowercase ) , data_args.max_eval_samples ) lowerCamelCase_ : Any = eval_dataset.select(range(_lowercase ) ) with training_args.main_process_first(desc='''validation dataset map pre-processing''' ): lowerCamelCase_ : Tuple = eval_dataset.map( _lowercase , batched=_lowercase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator lowerCamelCase_ : int = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=_lowercase , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(_lowercase ): lowerCamelCase_, lowerCamelCase_ : Optional[Any] = eval_predictions lowerCamelCase_ : Any = np.argmax(_lowercase , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer lowerCamelCase_ : Any = Trainer( model=_lowercase , args=_lowercase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=_lowercase , data_collator=_lowercase , compute_metrics=_lowercase , ) # Training if training_args.do_train: lowerCamelCase_ : int = None if training_args.resume_from_checkpoint is not None: lowerCamelCase_ : Dict = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCamelCase_ : List[Any] = last_checkpoint lowerCamelCase_ : Dict = trainer.train(resume_from_checkpoint=_lowercase ) trainer.save_model() # Saves the tokenizer too for easy upload lowerCamelCase_ : Any = train_result.metrics lowerCamelCase_ : Union[str, Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(_lowercase ) ) lowerCamelCase_ : List[Any] = min(_lowercase , len(_lowercase ) ) trainer.log_metrics('''train''' , _lowercase ) trainer.save_metrics('''train''' , _lowercase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowerCamelCase_ : str = trainer.evaluate() lowerCamelCase_ : Dict = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_lowercase ) lowerCamelCase_ : Union[str, Any] = min(_lowercase , len(_lowercase ) ) trainer.log_metrics('''eval''' , _lowercase ) trainer.save_metrics('''eval''' , _lowercase ) lowerCamelCase_ : List[str] = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''multiple-choice''', '''dataset_tags''': '''swag''', '''dataset_args''': '''regular''', '''dataset''': '''SWAG''', '''language''': '''en''', } if training_args.push_to_hub: trainer.push_to_hub(**_lowercase ) else: trainer.create_model_card(**_lowercase ) def lowercase_ ( _lowercase ) -> Dict: '''simple docstring''' main() if __name__ == "__main__": main()
318
1
def lowerCAmelCase__ ( lowerCamelCase_ : str ,lowerCamelCase_ : bool = False): '''simple docstring''' if not isinstance(lowerCamelCase_ ,lowerCamelCase_): lowerCAmelCase__ : int = f"""Expected string as input, found {type(lowerCamelCase_)}""" raise ValueError(lowerCamelCase_) if not isinstance(lowerCamelCase_ ,lowerCamelCase_): lowerCAmelCase__ : str = f"""Expected boolean as use_pascal parameter, found {type(lowerCamelCase_)}""" raise ValueError(lowerCamelCase_) lowerCAmelCase__ : List[str] = input_str.split('''_''') lowerCAmelCase__ : Dict = 0 if use_pascal else 1 lowerCAmelCase__ : List[str] = words[start_index:] lowerCAmelCase__ : Union[str, Any] = [word[0].upper() + word[1:] for word in words_to_capitalize] lowerCAmelCase__ : List[Any] = '''''' if use_pascal else words[0] return "".join([initial_word, *capitalized_words]) if __name__ == "__main__": from doctest import testmod testmod()
369
import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __snake_case : int =get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece class lowerCamelCase__ ( lowerCamelCase__ , unittest.TestCase): '''simple docstring''' snake_case_ =XLMProphetNetTokenizer snake_case_ =False snake_case_ =True def lowerCAmelCase__ (self ) -> Tuple: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase__ : int = XLMProphetNetTokenizer(__lowerCamelCase ,keep_accents=__lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase__ (self ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ : str = '''[PAD]''' lowerCAmelCase__ : Tuple = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCamelCase ) ,__lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCamelCase ) ,__lowerCamelCase ) def lowerCAmelCase__ (self ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,'''[PAD]''' ) self.assertEqual(vocab_keys[1] ,'''[CLS]''' ) self.assertEqual(vocab_keys[-1] ,'''j''' ) self.assertEqual(len(__lowerCamelCase ) ,10_12 ) def lowerCAmelCase__ (self ) -> Union[str, Any]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size ,10_12 ) def lowerCAmelCase__ (self ) -> Tuple: """simple docstring""" lowerCAmelCase__ : Dict = XLMProphetNetTokenizer(__lowerCamelCase ,keep_accents=__lowerCamelCase ) lowerCAmelCase__ : Tuple = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(__lowerCamelCase ,['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowerCamelCase ) ,[value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] ,) lowerCAmelCase__ : Dict = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __lowerCamelCase ,[ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] ,) lowerCAmelCase__ : Optional[Any] = tokenizer.convert_tokens_to_ids(__lowerCamelCase ) self.assertListEqual( __lowerCamelCase ,[ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] ,) lowerCAmelCase__ : Optional[Any] = tokenizer.convert_ids_to_tokens(__lowerCamelCase ) self.assertListEqual( __lowerCamelCase ,[ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''[UNK]''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''[UNK]''', '''.''', ] ,) @cached_property def lowerCAmelCase__ (self ) -> List[str]: """simple docstring""" return XLMProphetNetTokenizer.from_pretrained('''microsoft/xprophetnet-large-wiki100-cased''' ) @slow def lowerCAmelCase__ (self ) -> Tuple: """simple docstring""" lowerCAmelCase__ : Optional[int] = '''Hello World!''' lowerCAmelCase__ : str = [3_53_89, 66_72, 49, 2] self.assertListEqual(__lowerCamelCase ,self.big_tokenizer.encode(__lowerCamelCase ) ) @slow def lowerCAmelCase__ (self ) -> List[str]: """simple docstring""" lowerCAmelCase__ : Any = {'''input_ids''': [[1_10_73, 8_27_83, 18, 26, 8_27_83, 5_49, 5_15_40, 2_48, 1_72_09, 13_01, 2_17, 20, 21_51_86, 13_25, 1_47, 1_72_09, 13_01, 2_17, 20, 5_63_70, 53, 12_20_20, 20, 1_64_77, 27, 8_73_55, 45_48, 20, 47_28, 7_83_92, 17, 15_99_69, 18, 26, 2_44_91, 6_29, 15, 5_38, 2_27_04, 54_39, 15, 27_88, 2_44_91, 98_85, 15, 4_35_34, 6_05, 15, 8_14, 1_84_03, 3_32_00, 29, 15, 4_35_34, 2_44_58, 1_24_10, 1_11, 2_49_66, 8_36_69, 96_37, 14_40_68, 26, 8_50, 2_23_46, 27, 1_47, 2_49_66, 8_36_69, 8_34_90, 26, 3_91_13, 7_35, 27, 6_89, 6_56, 28_00, 13_39, 46_00, 53, 12_20_20, 11_57_85, 34, 8_16, 13_39, 4_68_87, 18, 1_47, 5_39_05, 19_51, 4_22_38, 4_11_70, 1_77_32, 8_34, 4_36, 15, 2_75_23, 9_87_33, 2_17, 1_47, 55_42, 49_81, 9_30, 1_73_47, 16, 2], [2_00_91, 6_29, 94, 8_27_86, 58, 4_90, 20, 15_28, 84, 5_39_05, 3_44, 8_05_92, 11_01_28, 1_88_22, 52_67, 13_06, 62, 15_25_37, 3_08, 79_97, 4_01, 12_44_27, 5_49, 3_54_42, 2_25, 1_09, 1_50_55, 2_57_48, 1_47, 71_19, 4_37_12, 34, 7_67, 13_53_66, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_92, 6_37_84, 11_94_66, 17, 14_78_08, 8_82_14, 18, 6_56, 81, 32, 32_96, 1_02_80, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowerCamelCase ,model_name='''microsoft/xprophetnet-large-wiki100-cased''' ,revision='''1acad1643ddd54a44df6a1b797ada8373685d90e''' ,)
94
0
"""simple docstring""" from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> list[float]: snake_case_ , snake_case_ = coefficient_matrix.shape snake_case_ , snake_case_ = constant_matrix.shape if rowsa != colsa: snake_case_ = f"""Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}""" raise ValueError(_SCREAMING_SNAKE_CASE ) if colsa != 1: snake_case_ = f"""Constant matrix must be nx1 but received {rowsa}x{colsa}""" raise ValueError(_SCREAMING_SNAKE_CASE ) if rowsa != rowsa: snake_case_ = ( """Coefficient and constant matrices dimensions must be nxn and nx1 but """ f"""received {rowsa}x{colsa} and {rowsa}x{colsa}""" ) raise ValueError(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) != rowsa: snake_case_ = ( """Number of initial values must be equal to number of rows in coefficient """ f"""matrix but received {len(_SCREAMING_SNAKE_CASE )} and {rowsa}""" ) raise ValueError(_SCREAMING_SNAKE_CASE ) if iterations <= 0: raise ValueError("""Iterations must be at least 1""" ) snake_case_ = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) snake_case_ , snake_case_ = table.shape strictly_diagonally_dominant(_SCREAMING_SNAKE_CASE ) # Iterates the whole matrix for given number of times for _ in range(_SCREAMING_SNAKE_CASE ): snake_case_ = [] for row in range(_SCREAMING_SNAKE_CASE ): snake_case_ = 0 for col in range(_SCREAMING_SNAKE_CASE ): if col == row: snake_case_ = table[row][col] elif col == cols - 1: snake_case_ = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] snake_case_ = (temp + val) / denom new_val.append(_SCREAMING_SNAKE_CASE ) snake_case_ = new_val return [float(_SCREAMING_SNAKE_CASE ) for i in new_val] def _a ( _SCREAMING_SNAKE_CASE ) -> bool: snake_case_ , snake_case_ = table.shape snake_case_ = True for i in range(0 , _SCREAMING_SNAKE_CASE ): snake_case_ = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("""Coefficient matrix is not strictly diagonally dominant""" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
347
"""simple docstring""" import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class __A (unittest.TestCase): '''simple docstring''' def lowerCAmelCase ( self : Optional[int] ) ->Dict: """simple docstring""" snake_case_ = """ylacombe/bark-small""" snake_case_ = tempfile.mkdtemp() snake_case_ = """en_speaker_1""" snake_case_ = """This is a test string""" snake_case_ = """speaker_embeddings_path.json""" snake_case_ = """speaker_embeddings""" def lowerCAmelCase ( self : List[str] , **UpperCAmelCase_ : str ) ->Optional[int]: """simple docstring""" return AutoTokenizer.from_pretrained(self.checkpoint , **UpperCAmelCase_ ) def lowerCAmelCase ( self : Any ) ->Dict: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCAmelCase ( self : List[Any] ) ->Dict: """simple docstring""" snake_case_ = self.get_tokenizer() snake_case_ = BarkProcessor(tokenizer=UpperCAmelCase_ ) processor.save_pretrained(self.tmpdirname ) snake_case_ = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def lowerCAmelCase ( self : Dict ) ->int: """simple docstring""" snake_case_ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) snake_case_ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) snake_case_ = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def lowerCAmelCase ( self : Optional[Any] ) ->Any: """simple docstring""" snake_case_ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) snake_case_ = 35 snake_case_ = 2 snake_case_ = 8 snake_case_ = { """semantic_prompt""": np.ones(UpperCAmelCase_ ), """coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ), """fine_prompt""": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset snake_case_ = processor(text=self.input_string , voice_preset=UpperCAmelCase_ ) snake_case_ = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(UpperCAmelCase_ , np.array([] ) ).tolist() ) # test loading voice preset from npz file snake_case_ = os.path.join(self.tmpdirname , """file.npz""" ) np.savez(UpperCAmelCase_ , **UpperCAmelCase_ ) snake_case_ = processor(text=self.input_string , voice_preset=UpperCAmelCase_ ) snake_case_ = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(UpperCAmelCase_ , np.array([] ) ).tolist() ) # test loading voice preset from the hub snake_case_ = processor(text=self.input_string , voice_preset=self.voice_preset ) def lowerCAmelCase ( self : Tuple ) ->Dict: """simple docstring""" snake_case_ = self.get_tokenizer() snake_case_ = BarkProcessor(tokenizer=UpperCAmelCase_ ) snake_case_ = processor(text=self.input_string ) snake_case_ = tokenizer( self.input_string , padding="""max_length""" , max_length=256 , add_special_tokens=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , return_token_type_ids=UpperCAmelCase_ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
347
1
'''simple docstring''' import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __A ( UpperCamelCase__ , unittest.TestCase ): a__ : List[Any] = MobileBertTokenizer a__ : str = MobileBertTokenizerFast a__ : List[str] = True a__ : Dict = True a__ : Optional[int] = filter_non_english a__ : int = """google/mobilebert-uncased""" def _lowercase (self : List[str] ): super().setUp() UpperCAmelCase_ = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] UpperCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) UpperCAmelCase_ = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def _lowercase (self : Tuple , __a : str ): UpperCAmelCase_ = "UNwant\u00E9d,running" UpperCAmelCase_ = "unwanted, running" return input_text, output_text def _lowercase (self : List[Any] ): UpperCAmelCase_ = self.tokenizer_class(self.vocab_file ) UpperCAmelCase_ = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(__a , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , [9, 6, 7, 12, 10, 11] ) def _lowercase (self : Dict ): if not self.test_rust_tokenizer: return UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_rust_tokenizer() UpperCAmelCase_ = "UNwant\u00E9d,running" UpperCAmelCase_ = tokenizer.tokenize(__a ) UpperCAmelCase_ = rust_tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) UpperCAmelCase_ = tokenizer.encode(__a , add_special_tokens=__a ) UpperCAmelCase_ = rust_tokenizer.encode(__a , add_special_tokens=__a ) self.assertListEqual(__a , __a ) UpperCAmelCase_ = self.get_rust_tokenizer() UpperCAmelCase_ = tokenizer.encode(__a ) UpperCAmelCase_ = rust_tokenizer.encode(__a ) self.assertListEqual(__a , __a ) # With lower casing UpperCAmelCase_ = self.get_tokenizer(do_lower_case=__a ) UpperCAmelCase_ = self.get_rust_tokenizer(do_lower_case=__a ) UpperCAmelCase_ = "UNwant\u00E9d,running" UpperCAmelCase_ = tokenizer.tokenize(__a ) UpperCAmelCase_ = rust_tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) UpperCAmelCase_ = tokenizer.encode(__a , add_special_tokens=__a ) UpperCAmelCase_ = rust_tokenizer.encode(__a , add_special_tokens=__a ) self.assertListEqual(__a , __a ) UpperCAmelCase_ = self.get_rust_tokenizer() UpperCAmelCase_ = tokenizer.encode(__a ) UpperCAmelCase_ = rust_tokenizer.encode(__a ) self.assertListEqual(__a , __a ) def _lowercase (self : Dict ): UpperCAmelCase_ = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] ) def _lowercase (self : Optional[int] ): UpperCAmelCase_ = BasicTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def _lowercase (self : Any ): UpperCAmelCase_ = BasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] ) def _lowercase (self : Optional[int] ): UpperCAmelCase_ = BasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def _lowercase (self : Optional[int] ): UpperCAmelCase_ = BasicTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def _lowercase (self : Optional[Any] ): UpperCAmelCase_ = BasicTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def _lowercase (self : Optional[int] ): UpperCAmelCase_ = BasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def _lowercase (self : Tuple ): UpperCAmelCase_ = BasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def _lowercase (self : Tuple ): UpperCAmelCase_ = BasicTokenizer(do_lower_case=__a , never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def _lowercase (self : Any ): UpperCAmelCase_ = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] UpperCAmelCase_ = {} for i, token in enumerate(__a ): UpperCAmelCase_ = i UpperCAmelCase_ = WordpieceTokenizer(vocab=__a , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] ) def _lowercase (self : Optional[int] ): self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def _lowercase (self : str ): self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def _lowercase (self : Any ): self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) def _lowercase (self : Any ): UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(__a ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) self.assertListEqual( [rust_tokenizer.tokenize(__a ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) @slow def _lowercase (self : Dict ): UpperCAmelCase_ = self.tokenizer_class.from_pretrained("google/mobilebert-uncased" ) UpperCAmelCase_ = tokenizer.encode("sequence builders" , add_special_tokens=__a ) UpperCAmelCase_ = tokenizer.encode("multi-sequence build" , add_special_tokens=__a ) UpperCAmelCase_ = tokenizer.build_inputs_with_special_tokens(__a ) UpperCAmelCase_ = tokenizer.build_inputs_with_special_tokens(__a , __a ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def _lowercase (self : Dict ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase_ = self.rust_tokenizer_class.from_pretrained(__a , **__a ) UpperCAmelCase_ = f"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" UpperCAmelCase_ = tokenizer_r.encode_plus( __a , return_attention_mask=__a , return_token_type_ids=__a , return_offsets_mapping=__a , add_special_tokens=__a , ) UpperCAmelCase_ = tokenizer_r.do_lower_case if hasattr(__a , "do_lower_case" ) else False UpperCAmelCase_ = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "A"), ((1, 2), ","), ((3, 5), "na"), ((5, 6), "##ï"), ((6, 8), "##ve"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "Allen"), ((21, 23), "##NL"), ((23, 24), "##P"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "a"), ((1, 2), ","), ((3, 8), "naive"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "allen"), ((21, 23), "##nl"), ((23, 24), "##p"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["input_ids"] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["offset_mapping"] ) def _lowercase (self : Optional[int] ): UpperCAmelCase_ = ["的", "人", "有"] UpperCAmelCase_ = "".join(__a ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase_ = True UpperCAmelCase_ = self.tokenizer_class.from_pretrained(__a , **__a ) UpperCAmelCase_ = self.rust_tokenizer_class.from_pretrained(__a , **__a ) UpperCAmelCase_ = tokenizer_p.encode(__a , add_special_tokens=__a ) UpperCAmelCase_ = tokenizer_r.encode(__a , add_special_tokens=__a ) UpperCAmelCase_ = tokenizer_r.convert_ids_to_tokens(__a ) UpperCAmelCase_ = tokenizer_p.convert_ids_to_tokens(__a ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(__a , __a ) self.assertListEqual(__a , __a ) UpperCAmelCase_ = False UpperCAmelCase_ = self.rust_tokenizer_class.from_pretrained(__a , **__a ) UpperCAmelCase_ = self.tokenizer_class.from_pretrained(__a , **__a ) UpperCAmelCase_ = tokenizer_r.encode(__a , add_special_tokens=__a ) UpperCAmelCase_ = tokenizer_p.encode(__a , add_special_tokens=__a ) UpperCAmelCase_ = tokenizer_r.convert_ids_to_tokens(__a ) UpperCAmelCase_ = tokenizer_p.convert_ids_to_tokens(__a ) # it is expected that only the first Chinese character is not preceded by "##". UpperCAmelCase_ = [ f"""##{token}""" if idx != 0 else token for idx, token in enumerate(__a ) ] self.assertListEqual(__a , __a ) self.assertListEqual(__a , __a )
106
'''simple docstring''' import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation SCREAMING_SNAKE_CASE_: Tuple =logging.get_logger(__name__) SCREAMING_SNAKE_CASE_: List[str] ={'vocab_file': 'vocab.txt', 'emoji_file': 'emoji.json'} SCREAMING_SNAKE_CASE_: Union[str, Any] ={ 'vocab_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt', }, 'emoji_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json', }, } SCREAMING_SNAKE_CASE_: Optional[int] ={ 'abeja/gpt-neox-japanese-2.7b': 20_48, } def lowerCAmelCase_ ( snake_case_ : List[str] , snake_case_ : Tuple ) -> Union[str, Any]: '''simple docstring''' with open(snake_case_ , "r" , encoding="utf-8" ) as f: UpperCAmelCase_ = json.loads(f.read() ) UpperCAmelCase_ = collections.OrderedDict() UpperCAmelCase_ = collections.OrderedDict() UpperCAmelCase_ = collections.OrderedDict() with open(snake_case_ , "r" , encoding="utf-8" ) as f: UpperCAmelCase_ = f.readlines() UpperCAmelCase_ = [[t.rstrip("\n" )] if (t == "," or "," not in t) else t.rstrip("\n" ).split("," ) for t in token] for idx, b in enumerate(snake_case_ ): UpperCAmelCase_ = b UpperCAmelCase_ = idx for wd in b: UpperCAmelCase_ = idx return vocab, raw_vocab, ids_to_tokens, emoji class __A ( UpperCamelCase__ ): a__ : List[str] = VOCAB_FILES_NAMES a__ : Tuple = PRETRAINED_VOCAB_FILES_MAP a__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : Optional[Any] = ["""input_ids""", """attention_mask"""] def __init__(self : Any , __a : List[Any] , __a : Dict , __a : int="<|endoftext|>" , __a : Union[str, Any]="<|endoftext|>" , __a : int="<|startoftext|>" , __a : Tuple="<|endoftext|>" , __a : Optional[int]=False , **__a : int , ): super().__init__( unk_token=__a , pad_token=__a , bos_token=__a , eos_token=__a , do_clean_text=__a , **__a , ) if not os.path.isfile(__a ): raise ValueError( f"""Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained""" " model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) if not os.path.isfile(__a ): raise ValueError( f"""Can't find a emoji file at path '{emoji_file}'. To load the emoji information from a Google""" " pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) UpperCAmelCase_ = do_clean_text UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = load_vocab_and_emoji(__a , __a ) UpperCAmelCase_ = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def _lowercase (self : Optional[Any] ): # self.vocab contains support for character fluctuation unique to Japanese, and has a large number of vocab return len(self.raw_vocab ) def _lowercase (self : List[Any] ): return dict(self.raw_vocab , **self.added_tokens_encoder ) def _lowercase (self : List[Any] , __a : int ): return self.subword_tokenizer.tokenize(__a , clean=self.do_clean_text ) def _lowercase (self : List[Any] , __a : List[str] ): return self.vocab.get(__a , self.vocab.get(self.unk_token ) ) def _lowercase (self : int , __a : List[Any] ): return self.subword_tokenizer.convert_id_to_token(__a ) def _lowercase (self : Dict , __a : str ): UpperCAmelCase_ = "".join(__a ).strip() return out_string def _lowercase (self : int , __a : "Conversation" ): UpperCAmelCase_ = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__a , add_special_tokens=__a ) + [self.eos_token_id] ) if len(__a ) > self.model_max_length: UpperCAmelCase_ = input_ids[-self.model_max_length :] return input_ids def _lowercase (self : int , __a : str , __a : Optional[str] = None ): UpperCAmelCase_ = 0 if os.path.isdir(__a ): UpperCAmelCase_ = os.path.join( __a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase_ = os.path.join( __a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["emoji_file"] ) else: UpperCAmelCase_ = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase_ = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["emoji_file"] ) with open(__a , "w" , encoding="utf-8" ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" " Please check that the vocabulary is not corrupted!" ) UpperCAmelCase_ = token_index writer.write(",".join(__a ) + "\n" ) index += 1 with open(__a , "w" , encoding="utf-8" ) as writer: json.dump(self.emoji , __a ) return vocab_file, emoji_file class __A ( UpperCamelCase__ ): def __init__(self : List[Any] , __a : Dict , __a : Any , __a : int ): UpperCAmelCase_ = vocab # same as swe UpperCAmelCase_ = ids_to_tokens # same as bpe UpperCAmelCase_ = emoji UpperCAmelCase_ = np.max([len(__a ) for w in self.vocab.keys()] ) UpperCAmelCase_ = re.compile(r"(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)" ) UpperCAmelCase_ = re.compile(r"[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*" ) UpperCAmelCase_ = re.compile(r"[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}" ) UpperCAmelCase_ = re.compile( r"([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" ) UpperCAmelCase_ = re.compile( r"(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" ) UpperCAmelCase_ = re.compile( r"((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*" ) UpperCAmelCase_ = "─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿" UpperCAmelCase_ = "▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟" UpperCAmelCase_ = str.maketrans({k: "<BLOCK>" for k in keisen + blocks} ) def __len__(self : Dict ): return len(self.ids_to_tokens ) def _lowercase (self : str , __a : Union[str, Any] ): UpperCAmelCase_ = self.content_repattera.sub("<URL>" , __a ) UpperCAmelCase_ = self.content_repattera.sub("<EMAIL>" , __a ) UpperCAmelCase_ = self.content_repattera.sub("<TEL>" , __a ) UpperCAmelCase_ = self.content_repattera.sub("<DATE>" , __a ) UpperCAmelCase_ = self.content_repattera.sub("<DATE>" , __a ) UpperCAmelCase_ = self.content_repattera.sub("<PRICE>" , __a ) UpperCAmelCase_ = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: UpperCAmelCase_ = content.replace("<BLOCK><BLOCK>" , "<BLOCK>" ) return content def _lowercase (self : Optional[Any] , __a : Union[str, Any] , __a : str=False ): UpperCAmelCase_ = text.replace(" " , "<SP>" ) UpperCAmelCase_ = text.replace(" " , "<SP>" ) UpperCAmelCase_ = text.replace("\r\n" , "<BR>" ) UpperCAmelCase_ = text.replace("\n" , "<BR>" ) UpperCAmelCase_ = text.replace("\r" , "<BR>" ) UpperCAmelCase_ = text.replace("\t" , "<TAB>" ) UpperCAmelCase_ = text.replace("—" , "ー" ) UpperCAmelCase_ = text.replace("−" , "ー" ) for k, v in self.emoji["emoji"].items(): if k in text: UpperCAmelCase_ = text.replace(__a , __a ) if clean: UpperCAmelCase_ = self.clean_text(__a ) def check_simbol(__a : List[Any] ): UpperCAmelCase_ = x.encode() if len(__a ) == 1 and len(__a ) == 2: UpperCAmelCase_ = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0Xc2_a1 and c <= 0Xc2_bf) or (c >= 0Xc7_80 and c <= 0Xc7_83) or (c >= 0Xca_b9 and c <= 0Xcb_bf) or (c >= 0Xcc_80 and c <= 0Xcd_a2) ): return True return False def checkuae(__a : Tuple ): UpperCAmelCase_ = x.encode() if len(__a ) == 1 and len(__a ) == 3: UpperCAmelCase_ = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0Xe2_80_80 and c <= 0Xe2_b0_7f: return True return False UpperCAmelCase_ = 0 UpperCAmelCase_ = [] while pos < len(__a ): UpperCAmelCase_ = min(len(__a ) , pos + self.maxlen + 1 ) if text[pos] == "<" else pos + 3 UpperCAmelCase_ = [] # (token_id, token, pos) for e in range(__a , __a , -1 ): UpperCAmelCase_ = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(__a ) > 2: UpperCAmelCase_ = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(__a ) > 0: # the smallest token_id is adopted UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = sorted(__a , key=lambda __a : x[0] )[0] result.append(__a ) UpperCAmelCase_ = e else: UpperCAmelCase_ = pos + 1 UpperCAmelCase_ = text[pos:end] if check_simbol(__a ): result.append("<KIGOU>" ) elif checkuae(__a ): result.append("<U2000U2BFF>" ) else: for i in wd.encode("utf-8" ): result.append("<|byte%d|>" % i ) UpperCAmelCase_ = end return result def _lowercase (self : int , __a : Optional[Any] , __a : Optional[int]="\n" ): UpperCAmelCase_ = [] UpperCAmelCase_ = [] UpperCAmelCase_ = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(__a ) > 0: words.append(bytearray(__a ).decode("utf-8" , errors="replace" ) ) UpperCAmelCase_ = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji["emoji_inv"][word] ) elif word == "<SP>": words.append(" " ) elif word == "<BR>": words.append(__a ) elif word == "<TAB>": words.append("\t" ) elif word == "<BLOCK>": words.append("▀" ) elif word == "<KIGOU>": words.append("ǀ" ) elif word == "<U2000U2BFF>": words.append("‖" ) else: words.append(__a ) if len(__a ) > 0: words.append(bytearray(__a ).decode("utf-8" , errors="replace" ) ) UpperCAmelCase_ = "".join(__a ) return text
106
1
"""simple docstring""" import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed lowerCamelCase_ = """true""" def __lowerCamelCase ( a_ : List[Any] , a_ : Dict=82 , a_ : List[str]=16 ) -> int: set_seed(42 ) __SCREAMING_SNAKE_CASE :Optional[int] = RegressionModel() __SCREAMING_SNAKE_CASE :List[str] = deepcopy(_UpperCAmelCase ) __SCREAMING_SNAKE_CASE :Union[str, Any] = RegressionDataset(length=_UpperCAmelCase ) __SCREAMING_SNAKE_CASE :Tuple = DataLoader(_UpperCAmelCase , batch_size=_UpperCAmelCase ) model.to(accelerator.device ) __SCREAMING_SNAKE_CASE :int = accelerator.prepare(_UpperCAmelCase , _UpperCAmelCase ) return model, ddp_model, dataloader def __lowerCamelCase ( a_ : Union[str, Any] , a_ : Optional[int]=False ) -> Tuple: __SCREAMING_SNAKE_CASE :Dict = AutoTokenizer.from_pretrained('''hf-internal-testing/mrpc-bert-base-cased''' ) __SCREAMING_SNAKE_CASE :int = load_dataset('''glue''' , '''mrpc''' , split='''validation''' ) def tokenize_function(a_ : Tuple ): __SCREAMING_SNAKE_CASE :int = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase ) return outputs with accelerator.main_process_first(): __SCREAMING_SNAKE_CASE :int = dataset.map( _UpperCAmelCase , batched=_UpperCAmelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) __SCREAMING_SNAKE_CASE :Dict = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(a_ : Any ): if use_longest: return tokenizer.pad(_UpperCAmelCase , padding='''longest''' , return_tensors='''pt''' ) return tokenizer.pad(_UpperCAmelCase , padding='''max_length''' , max_length=1_28 , return_tensors='''pt''' ) return DataLoader(_UpperCAmelCase , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=16 ) def __lowerCamelCase ( a_ : Tuple , a_ : Any ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE :Union[str, Any] = Accelerator(dispatch_batches=_UpperCAmelCase , split_batches=_UpperCAmelCase ) __SCREAMING_SNAKE_CASE :Dict = get_dataloader(_UpperCAmelCase , not dispatch_batches ) __SCREAMING_SNAKE_CASE :List[Any] = AutoModelForSequenceClassification.from_pretrained( '''hf-internal-testing/mrpc-bert-base-cased''' , return_dict=_UpperCAmelCase ) __SCREAMING_SNAKE_CASE :str = accelerator.prepare(_UpperCAmelCase , _UpperCAmelCase ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def __lowerCamelCase ( a_ : Optional[int] , a_ : Optional[Any] , a_ : Dict ) -> int: __SCREAMING_SNAKE_CASE :Optional[int] = [] for batch in dataloader: __SCREAMING_SNAKE_CASE :Any = batch.values() with torch.no_grad(): __SCREAMING_SNAKE_CASE :Optional[int] = model(_UpperCAmelCase ) __SCREAMING_SNAKE_CASE :Any = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) __SCREAMING_SNAKE_CASE :Any = [], [] for logit, targ in logits_and_targets: logits.append(_UpperCAmelCase ) targs.append(_UpperCAmelCase ) __SCREAMING_SNAKE_CASE :str = torch.cat(_UpperCAmelCase ), torch.cat(_UpperCAmelCase ) return logits, targs def __lowerCamelCase ( a_ : List[Any] , a_ : str=82 , a_ : str=False , a_ : Optional[int]=False , a_ : Dict=16 ) -> int: __SCREAMING_SNAKE_CASE :Union[str, Any] = get_basic_setup(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __SCREAMING_SNAKE_CASE :Optional[int] = generate_predictions(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) assert ( len(_UpperCAmelCase ) == num_samples ), f'''Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(_UpperCAmelCase )}''' def __lowerCamelCase ( a_ : Optional[Any] = False , a_ : int = False ) -> List[str]: __SCREAMING_SNAKE_CASE :int = evaluate.load('''glue''' , '''mrpc''' ) __SCREAMING_SNAKE_CASE :Any = get_mrpc_setup(_UpperCAmelCase , _UpperCAmelCase ) # First do baseline __SCREAMING_SNAKE_CASE :int = setup["no"] model.to(_UpperCAmelCase ) model.eval() for batch in dataloader: batch.to(_UpperCAmelCase ) with torch.inference_mode(): __SCREAMING_SNAKE_CASE :Optional[Any] = model(**_UpperCAmelCase ) __SCREAMING_SNAKE_CASE :List[str] = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=_UpperCAmelCase , references=batch['''labels'''] ) __SCREAMING_SNAKE_CASE :List[Any] = metric.compute() # Then do distributed __SCREAMING_SNAKE_CASE :str = setup["ddp"] model.eval() for batch in dataloader: with torch.inference_mode(): __SCREAMING_SNAKE_CASE :Union[str, Any] = model(**_UpperCAmelCase ) __SCREAMING_SNAKE_CASE :Union[str, Any] = outputs.logits.argmax(dim=-1 ) __SCREAMING_SNAKE_CASE :Any = batch["labels"] __SCREAMING_SNAKE_CASE :str = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=_UpperCAmelCase , references=_UpperCAmelCase ) __SCREAMING_SNAKE_CASE :Optional[int] = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), f'''Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n''' def __lowerCamelCase ( ) -> Dict: __SCREAMING_SNAKE_CASE :Tuple = Accelerator(split_batches=_UpperCAmelCase , dispatch_batches=_UpperCAmelCase ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('''**Testing gather_for_metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(f'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`''' ) test_mrpc(_UpperCAmelCase , _UpperCAmelCase ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test torch metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: __SCREAMING_SNAKE_CASE :int = Accelerator(split_batches=_UpperCAmelCase , dispatch_batches=_UpperCAmelCase ) if accelerator.is_local_main_process: print(f'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99''' ) test_torch_metrics(_UpperCAmelCase , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test last batch is not dropped when perfectly divisible**''' ) __SCREAMING_SNAKE_CASE :Optional[int] = Accelerator() test_torch_metrics(_UpperCAmelCase , 5_12 ) accelerator.state._reset_state() def __lowerCamelCase ( a_ : Tuple ) -> List[str]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
191
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase : Any = logging.get_logger(__name__) lowerCAmelCase : Tuple = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} lowerCAmelCase : Optional[int] = { """vocab_file""": { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json""", """allenai/longformer-large-4096""": ( """https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json""" ), """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json""" ), }, """merges_file""": { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt""", """allenai/longformer-large-4096""": ( """https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt""" ), """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt""" ), }, } lowerCAmelCase : Optional[Any] = { """allenai/longformer-base-4096""": 4096, """allenai/longformer-large-4096""": 4096, """allenai/longformer-large-4096-finetuned-triviaqa""": 4096, """allenai/longformer-base-4096-extra.pos.embd.only""": 4096, """allenai/longformer-large-4096-extra.pos.embd.only""": 4096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def A_ ( ): SCREAMING_SNAKE_CASE_: Any = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) SCREAMING_SNAKE_CASE_: Tuple = bs[:] SCREAMING_SNAKE_CASE_: str = 0 for b in range(2**8 ): if b not in bs: bs.append(_UpperCAmelCase ) cs.append(2**8 + n ) n += 1 SCREAMING_SNAKE_CASE_: Optional[int] = [chr(_UpperCAmelCase ) for n in cs] return dict(zip(_UpperCAmelCase , _UpperCAmelCase ) ) def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: str = set() SCREAMING_SNAKE_CASE_: Union[str, Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE_: Tuple = char return pairs class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : Any = VOCAB_FILES_NAMES _UpperCAmelCase : Dict = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase : List[str] = ['''input_ids''', '''attention_mask'''] def __init__( self : str , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any]="replace" , lowerCAmelCase__ : Optional[Any]="<s>" , lowerCAmelCase__ : int="</s>" , lowerCAmelCase__ : Optional[Any]="</s>" , lowerCAmelCase__ : int="<s>" , lowerCAmelCase__ : Optional[Any]="<unk>" , lowerCAmelCase__ : List[Any]="<pad>" , lowerCAmelCase__ : Any="<mask>" , lowerCAmelCase__ : Union[str, Any]=False , **lowerCAmelCase__ : Tuple , ): SCREAMING_SNAKE_CASE_: int = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else bos_token SCREAMING_SNAKE_CASE_: str = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else eos_token SCREAMING_SNAKE_CASE_: Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else sep_token SCREAMING_SNAKE_CASE_: Union[str, Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else cls_token SCREAMING_SNAKE_CASE_: int = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else unk_token SCREAMING_SNAKE_CASE_: Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else pad_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE_: Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else mask_token super().__init__( errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , ) with open(lowerCAmelCase__ , encoding="utf-8") as vocab_handle: SCREAMING_SNAKE_CASE_: Tuple = json.load(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = {v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE_: Optional[Any] = errors # how to handle errors in decoding SCREAMING_SNAKE_CASE_: List[Any] = bytes_to_unicode() SCREAMING_SNAKE_CASE_: Optional[Any] = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase__ , encoding="utf-8") as merges_handle: SCREAMING_SNAKE_CASE_: List[Any] = merges_handle.read().split("\n")[1:-1] SCREAMING_SNAKE_CASE_: str = [tuple(merge.split()) for merge in bpe_merges] SCREAMING_SNAKE_CASE_: List[Any] = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__)))) SCREAMING_SNAKE_CASE_: str = {} SCREAMING_SNAKE_CASE_: Optional[Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions SCREAMING_SNAKE_CASE_: List[Any] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+") @property def _SCREAMING_SNAKE_CASE ( self : int): return len(self.encoder) def _SCREAMING_SNAKE_CASE ( self : int): return dict(self.encoder , **self.added_tokens_encoder) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : List[str]): if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE_: Optional[int] = tuple(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = get_pairs(lowerCAmelCase__) if not pairs: return token while True: SCREAMING_SNAKE_CASE_: int = min(lowerCAmelCase__ , key=lambda lowerCAmelCase__: self.bpe_ranks.get(lowerCAmelCase__ , float("inf"))) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = bigram SCREAMING_SNAKE_CASE_: Optional[int] = [] SCREAMING_SNAKE_CASE_: List[Any] = 0 while i < len(lowerCAmelCase__): try: SCREAMING_SNAKE_CASE_: List[Any] = word.index(lowerCAmelCase__ , lowerCAmelCase__) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) SCREAMING_SNAKE_CASE_: Tuple = j if word[i] == first and i < len(lowerCAmelCase__) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 SCREAMING_SNAKE_CASE_: str = tuple(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = new_word if len(lowerCAmelCase__) == 1: break else: SCREAMING_SNAKE_CASE_: Dict = get_pairs(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = " ".join(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = word return word def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Tuple): SCREAMING_SNAKE_CASE_: Optional[Any] = [] for token in re.findall(self.pat , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: str = "".join( self.byte_encoder[b] for b in token.encode("utf-8")) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__).split(" ")) return bpe_tokens def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Tuple): return self.encoder.get(lowerCAmelCase__ , self.encoder.get(self.unk_token)) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : Union[str, Any]): return self.decoder.get(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Optional[int]): SCREAMING_SNAKE_CASE_: Any = "".join(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8" , errors=self.errors) return text def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None): if not os.path.isdir(lowerCAmelCase__): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return SCREAMING_SNAKE_CASE_: Any = os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) SCREAMING_SNAKE_CASE_: Any = os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]) with open(lowerCAmelCase__ , "w" , encoding="utf-8") as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__) + "\n") SCREAMING_SNAKE_CASE_: List[Any] = 0 with open(lowerCAmelCase__ , "w" , encoding="utf-8") as writer: writer.write("#version: 0.2\n") for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase__: kv[1]): if index != token_index: logger.warning( F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!") SCREAMING_SNAKE_CASE_: List[Any] = token_index writer.write(" ".join(lowerCAmelCase__) + "\n") index += 1 return vocab_file, merge_file def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE_: Optional[int] = [self.cls_token_id] SCREAMING_SNAKE_CASE_: Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : bool = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__)) + [1] return [1] + ([0] * len(lowerCAmelCase__)) + [1, 1] + ([0] * len(lowerCAmelCase__)) + [1] def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None): SCREAMING_SNAKE_CASE_: Optional[int] = [self.sep_token_id] SCREAMING_SNAKE_CASE_: int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[str]=False , **lowerCAmelCase__ : str): SCREAMING_SNAKE_CASE_: List[Any] = kwargs.pop("add_prefix_space" , self.add_prefix_space) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__) > 0 and not text[0].isspace()): SCREAMING_SNAKE_CASE_: Optional[Any] = " " + text return (text, kwargs)
13
0
"""simple docstring""" from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf __UpperCamelCase : List[Any] = logging.get_logger(__name__) @dataclass class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowercase__ = [ "no_inference", "no_cuda", "no_tpu", "no_speed", "no_memory", "no_env_print", "no_multi_process", ] def __init__( self : str ,**lowercase_ : int ): for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: lowerCAmelCase__ : List[Any] = deprecated_arg[3:] lowerCAmelCase__ : str = not kwargs.pop(lowercase_ ) logger.warning( F'{deprecated_arg} is depreciated. Please use --no-{positive_arg} or' F' {positive_arg}={kwargs[positive_arg]}' ) lowerCAmelCase__ : str = kwargs.pop('''tpu_name''' ,self.tpu_name ) lowerCAmelCase__ : Union[str, Any] = kwargs.pop('''device_idx''' ,self.device_idx ) lowerCAmelCase__ : int = kwargs.pop('''eager_mode''' ,self.eager_mode ) lowerCAmelCase__ : Tuple = kwargs.pop('''use_xla''' ,self.use_xla ) super().__init__(**lowercase_ ) lowercase__ = field( default=a_ , metadata={"help": "Name of TPU"} , ) lowercase__ = field( default=0 , metadata={"help": "CPU / GPU device index. Defaults to 0."} , ) lowercase__ = field(default=a_ , metadata={"help": "Benchmark models in eager model."} ) lowercase__ = field( default=a_ , metadata={ "help": "Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`." } , ) @cached_property def __lowerCAmelCase ( self : Tuple ): requires_backends(self ,['''tf'''] ) lowerCAmelCase__ : Optional[int] = None if self.tpu: try: if self.tpu_name: lowerCAmelCase__ : str = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: lowerCAmelCase__ : Tuple = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: lowerCAmelCase__ : Optional[int] = None return tpu @cached_property def __lowerCAmelCase ( self : Dict ): requires_backends(self ,['''tf'''] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) lowerCAmelCase__ : Dict = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] ,'''GPU''' ) lowerCAmelCase__ : int = tf.distribute.OneDeviceStrategy(device=F'/gpu:{self.device_idx}' ) else: tf.config.set_visible_devices([] ,'''GPU''' ) # disable GPU lowerCAmelCase__ : Any = tf.distribute.OneDeviceStrategy(device=F'/cpu:{self.device_idx}' ) return strategy @property def __lowerCAmelCase ( self : Optional[int] ): requires_backends(self ,['''tf'''] ) return self._setup_tpu is not None @property def __lowerCAmelCase ( self : List[Any] ): requires_backends(self ,['''tf'''] ) return self._setup_strategy @property def __lowerCAmelCase ( self : Tuple ): requires_backends(self ,['''tf'''] ) return tf.config.list_physical_devices('''GPU''' ) @property def __lowerCAmelCase ( self : Dict ): requires_backends(self ,['''tf'''] ) if self.cuda: return len(self.gpu_list ) return 0 @property def __lowerCAmelCase ( self : Optional[int] ): return self.n_gpu > 0
362
"""simple docstring""" import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowercase__ = "" lowercase__ = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) lowercase__ = None # compression type in fsspec. ex: "gzip" lowercase__ = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self : Dict ,lowercase_ : str = "" ,lowercase_ : Optional[str] = None ,lowercase_ : Optional[dict] = None ,**lowercase_ : Any ): super().__init__(self ,**lowercase_ ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode lowerCAmelCase__ : Dict = fsspec.open( lowercase_ ,mode='''rb''' ,protocol=lowercase_ ,compression=self.compression ,client_kwargs={ '''requote_redirect_url''': False, # see https://github.com/huggingface/datasets/pull/5459 '''trust_env''': True, # Enable reading proxy env variables. **(target_options or {}).pop('''client_kwargs''' ,{} ), # To avoid issues if it was already passed. } ,**(target_options or {}) ,) lowerCAmelCase__ : Any = os.path.basename(self.file.path.split('''::''' )[0] ) lowerCAmelCase__ : Tuple = ( self.compressed_name[: self.compressed_name.rindex('''.''' )] if '''.''' in self.compressed_name else self.compressed_name ) lowerCAmelCase__ : Any = None @classmethod def __lowerCAmelCase ( cls : Optional[int] ,lowercase_ : int ): # compressed file paths are always relative to the archive root return super()._strip_protocol(lowercase_ ).lstrip('''/''' ) def __lowerCAmelCase ( self : Optional[Any] ): if self.dir_cache is None: lowerCAmelCase__ : List[Any] = {**self.file.fs.info(self.file.path ), '''name''': self.uncompressed_name} lowerCAmelCase__ : str = {f['''name''']: f} def __lowerCAmelCase ( self : Union[str, Any] ,lowercase_ : str ): return self.file.open().read() def __lowerCAmelCase ( self : Tuple ,lowercase_ : str ,lowercase_ : str = "rb" ,lowercase_ : List[Any]=None ,lowercase_ : Dict=True ,lowercase_ : Any=None ,**lowercase_ : Tuple ,): lowerCAmelCase__ : Union[str, Any] = self._strip_protocol(lowercase_ ) if mode != "rb": raise ValueError(F'Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'' ) return self.file.open() class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowercase__ = "bz2" lowercase__ = "bz2" lowercase__ = ".bz2" class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowercase__ = "gzip" lowercase__ = "gzip" lowercase__ = ".gz" class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowercase__ = "lz4" lowercase__ = "lz4" lowercase__ = ".lz4" class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowercase__ = "xz" lowercase__ = "xz" lowercase__ = ".xz" class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowercase__ = "zstd" lowercase__ = "zstd" lowercase__ = ".zst" def __init__( self : str ,lowercase_ : str ,lowercase_ : str = "rb" ,lowercase_ : Optional[str] = None ,lowercase_ : Optional[dict] = None ,lowercase_ : int = DEFAULT_BLOCK_SIZE ,**lowercase_ : Union[str, Any] ,): super().__init__( fo=lowercase_ ,mode=lowercase_ ,target_protocol=lowercase_ ,target_options=lowercase_ ,block_size=lowercase_ ,**lowercase_ ,) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 lowerCAmelCase__ : List[str] = self.file.__enter__ class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : List[Any] ,lowercase_ : Union[str, Any] ): lowerCAmelCase__ : Tuple = file_ def __enter__( self : Optional[int] ): self._file.__enter__() return self def __exit__( self : int ,*lowercase_ : str ,**lowercase_ : Optional[Any] ): self._file.__exit__(*lowercase_ ,**lowercase_ ) def __iter__( self : Union[str, Any] ): return iter(self._file ) def __lowerCAmelCase ( self : Tuple ): return next(self._file ) def __getattr__( self : str ,lowercase_ : Any ): return getattr(self._file ,lowercase_ ) def fixed_enter(*lowercase_ : List[Any] ,**lowercase_ : Dict ): return WrappedFile(_enter(*lowercase_ ,**lowercase_ ) ) lowerCAmelCase__ : Any = fixed_enter
74
0
'''simple docstring''' import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging A =logging.get_logger(__name__) A ='▁' A ={'vocab_file': 'vocab.txt', 'sentencepiece_model_ckpt': 'sentencepiece.bpe.model'} A ={ 'sentencepiece_model_file': 'sentencepiece.bpe.model', 'vocab_file': 'vocab.txt', } A ={ 'vocab_file': { 'ernie-m-base': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt', 'ernie-m-large': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt', }, 'sentencepiece_model_file': { 'ernie-m-base': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model', 'ernie-m-large': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model', }, } A ={ 'ernie-m-base': 5_14, 'ernie-m-large': 5_14, } A ={ 'ernie-m-base': {'do_lower_case': False}, 'ernie-m-large': {'do_lower_case': False}, } class _a ( __lowerCamelCase ): __a : List[str] = ["input_ids"] __a : List[str] = VOCAB_FILES_NAMES __a : Tuple = PRETRAINED_INIT_CONFIGURATION __a : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP __a : Optional[Any] = RESOURCE_FILES_NAMES def __init__( self : Any , lowercase : int , lowercase : Union[str, Any]=None , lowercase : List[Any]=False , lowercase : Union[str, Any]="utf8" , lowercase : Dict="[UNK]" , lowercase : Any="[SEP]" , lowercase : int="[PAD]" , lowercase : Union[str, Any]="[CLS]" , lowercase : int="[MASK]" , lowercase : Optional[Any] = None , **lowercase : int , ): '''simple docstring''' UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=lowercase , unk_token=lowercase , sep_token=lowercase , pad_token=lowercase , cls_token=lowercase , mask_token=lowercase , vocab_file=lowercase , encoding=lowercase , sp_model_kwargs=self.sp_model_kwargs , **lowercase , ) UpperCAmelCase = do_lower_case UpperCAmelCase = sentencepiece_model_ckpt UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowercase ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: UpperCAmelCase = self.load_vocab(filepath=lowercase ) else: UpperCAmelCase = {self.sp_model.id_to_piece(lowercase ): id for id in range(self.sp_model.get_piece_size() )} UpperCAmelCase = {v: k for k, v in self.vocab.items()} def A ( self : Optional[Any] , lowercase : int ): '''simple docstring''' if text is None: return None UpperCAmelCase = self.tokenize(lowercase ) UpperCAmelCase , UpperCAmelCase = '''''', [] for i, ch in enumerate(lowercase ): if ch in self.SP_CHAR_MAPPING: UpperCAmelCase = self.SP_CHAR_MAPPING.get(lowercase ) else: UpperCAmelCase = unicodedata.normalize('''NFKC''' , lowercase ) if self.is_whitespace(lowercase ): continue normalized_text += ch char_mapping.extend([i] * len(lowercase ) ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = normalized_text, [], 0 if self.do_lower_case: UpperCAmelCase = text.lower() for token in split_tokens: if token[:1] == "▁": UpperCAmelCase = token[1:] UpperCAmelCase = text[offset:].index(lowercase ) + offset UpperCAmelCase = start + len(lowercase ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) UpperCAmelCase = end return token_mapping @property def A ( self : Optional[int] ): '''simple docstring''' return len(self.vocab ) def A ( self : Dict ): '''simple docstring''' return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__( self : Optional[int] ): '''simple docstring''' UpperCAmelCase = self.__dict__.copy() UpperCAmelCase = None return state def __setstate__( self : List[str] , lowercase : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCAmelCase = {} UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def A ( self : Any , lowercase : List[Any] ): '''simple docstring''' return "".join((self.SP_CHAR_MAPPING.get(lowercase , lowercase ) for c in text) ) def A ( self : Optional[int] , lowercase : Tuple , lowercase : str=False , lowercase : Dict=64 , lowercase : Dict=0.1 ): '''simple docstring''' if self.sp_model_kwargs.get('''enable_sampling''' ) is True: UpperCAmelCase = True if self.sp_model_kwargs.get('''alpha''' ) is not None: UpperCAmelCase = self.sp_model_kwargs.get('''alpha''' ) if self.sp_model_kwargs.get('''nbest_size''' ) is not None: UpperCAmelCase = self.sp_model_kwargs.get('''nbest_size''' ) if not enable_sampling: UpperCAmelCase = self.sp_model.EncodeAsPieces(lowercase ) else: UpperCAmelCase = self.sp_model.SampleEncodeAsPieces(lowercase , lowercase , lowercase ) UpperCAmelCase = [] for pi, piece in enumerate(lowercase ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(lowercase ) and pi != 0: new_pieces.append(lowercase ) continue else: continue UpperCAmelCase = 0 for i, chunk in enumerate(lowercase ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(lowercase ) or self.is_punct(lowercase ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(lowercase ) UpperCAmelCase = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) UpperCAmelCase = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) UpperCAmelCase = i if len(lowercase ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def A ( self : Optional[Any] , lowercase : Optional[int] ): '''simple docstring''' UpperCAmelCase = ''''''.join(lowercase ).replace(lowercase , ''' ''' ).strip() return out_string def A ( self : Dict , lowercase : Any ): '''simple docstring''' UpperCAmelCase = self.convert_ids_to_tokens(lowercase ) UpperCAmelCase = ''''''.join(lowercase ).replace(lowercase , ''' ''' ).strip() return out_string def A ( self : str , lowercase : Dict ): '''simple docstring''' return self.vocab.get(lowercase , self.vocab.get(self.unk_token ) ) def A ( self : Optional[int] , lowercase : int ): '''simple docstring''' return self.reverse_vocab.get(lowercase , self.unk_token ) def A ( self : Optional[int] , lowercase : Any , lowercase : Any=None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase = [self.cls_token_id] UpperCAmelCase = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def A ( self : Optional[Any] , lowercase : List[str] , lowercase : str=None ): '''simple docstring''' if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def A ( self : int , lowercase : List[str] , lowercase : Optional[Any]=None , lowercase : List[str]=False ): '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(lowercase )) + [1, 1] + ([0] * len(lowercase )) + [1] return [1] + ([0] * len(lowercase )) + [1] def A ( self : int , lowercase : Any , lowercase : str = None ): '''simple docstring''' if token_ids_a is None: # [CLS] X [SEP] return (len(lowercase ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(lowercase ) + 1) + [1] * (len(lowercase ) + 3) def A ( self : List[Any] , lowercase : Dict ): '''simple docstring''' if "\u4e00" <= char <= "\u9fff": return True return False def A ( self : List[Any] , lowercase : Optional[int] ): '''simple docstring''' if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def A ( self : str , lowercase : List[str] ): '''simple docstring''' if char in ",;:.?!~,;:。?!《》【】": return True return False def A ( self : Optional[Any] , lowercase : str ): '''simple docstring''' if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(lowercase ) == 1: UpperCAmelCase = unicodedata.category(lowercase ) if cat == "Zs": return True return False def A ( self : List[str] , lowercase : List[str] ): '''simple docstring''' UpperCAmelCase = {} with io.open(lowercase , '''r''' , encoding='''utf-8''' ) as f: for index, line in enumerate(lowercase ): UpperCAmelCase = line.rstrip('''\n''' ) UpperCAmelCase = int(lowercase ) return token_to_idx def A ( self : Optional[Any] , lowercase : List[str] , lowercase : List[Any] = None ): '''simple docstring''' UpperCAmelCase = 0 if os.path.isdir(lowercase ): UpperCAmelCase = os.path.join( lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) else: UpperCAmelCase = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory with open(lowercase , '''w''' , encoding='''utf-8''' ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda lowercase : kv[1] ): if index != token_index: logger.warning( f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." ''' Please check that the vocabulary is not corrupted!''' ) UpperCAmelCase = token_index writer.write(token + '''\n''' ) index += 1 UpperCAmelCase = os.path.join(lowercase , '''sentencepiece.bpe.model''' ) with open(lowercase , '''wb''' ) as fi: UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(lowercase ) return (vocab_file,)
34
import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase = 1.5 lowercase = int(factor * num_class_images ) lowercase = ClipClient( url='https://knn.laion.ai/knn-service' , indice_name='laion_400m' , num_images=__SCREAMING_SNAKE_CASE , aesthetic_weight=0.1 ) os.makedirs(F'''{class_data_dir}/images''' , exist_ok=__SCREAMING_SNAKE_CASE ) if len(list(Path(F'''{class_data_dir}/images''' ).iterdir() ) ) >= num_class_images: return while True: lowercase = client.query(text=__SCREAMING_SNAKE_CASE ) if len(__SCREAMING_SNAKE_CASE ) >= factor * num_class_images or num_images > 1e4: break else: lowercase = int(factor * num_images ) lowercase = ClipClient( url='https://knn.laion.ai/knn-service' , indice_name='laion_400m' , num_images=__SCREAMING_SNAKE_CASE , aesthetic_weight=0.1 , ) lowercase = 0 lowercase = 0 lowercase = tqdm(desc='downloading real regularization images' , total=__SCREAMING_SNAKE_CASE ) with open(F'''{class_data_dir}/caption.txt''' , 'w' ) as fa, open(F'''{class_data_dir}/urls.txt''' , 'w' ) as fa, open( F'''{class_data_dir}/images.txt''' , 'w' ) as fa: while total < num_class_images: lowercase = class_images[count] count += 1 try: lowercase = requests.get(images['url'] ) if img.status_code == 200: lowercase = Image.open(BytesIO(img.content ) ) with open(F'''{class_data_dir}/images/{total}.jpg''' , 'wb' ) as f: f.write(img.content ) fa.write(images['caption'] + '\n' ) fa.write(images['url'] + '\n' ) fa.write(F'''{class_data_dir}/images/{total}.jpg''' + '\n' ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def UpperCAmelCase_ ( ): lowercase = argparse.ArgumentParser('' , add_help=__SCREAMING_SNAKE_CASE ) parser.add_argument('--class_prompt' , help='text prompt to retrieve images' , required=__SCREAMING_SNAKE_CASE , type=__SCREAMING_SNAKE_CASE ) parser.add_argument('--class_data_dir' , help='path to save images' , required=__SCREAMING_SNAKE_CASE , type=__SCREAMING_SNAKE_CASE ) parser.add_argument('--num_class_images' , help='number of images to download' , default=200 , type=__SCREAMING_SNAKE_CASE ) return parser.parse_args() if __name__ == "__main__": UpperCAmelCase = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
195
0
"""simple docstring""" import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def SCREAMING_SNAKE_CASE__ ( snake_case : dict )-> int: '''simple docstring''' return (data["data"], data["target"]) def SCREAMING_SNAKE_CASE__ ( snake_case : np.ndarray , snake_case : np.ndarray , snake_case : np.ndarray )-> List[Any]: '''simple docstring''' UpperCAmelCase__ : Dict = XGBRegressor(verbosity=0 , random_state=42 ) xgb.fit(lowerCAmelCase__ , lowerCAmelCase__ ) # Predict target for test data UpperCAmelCase__ : Any = xgb.predict(lowerCAmelCase__ ) UpperCAmelCase__ : List[str] = predictions.reshape(len(lowerCAmelCase__ ) , 1 ) return predictions def SCREAMING_SNAKE_CASE__ ( )-> Any: '''simple docstring''' UpperCAmelCase__ : List[Any] = fetch_california_housing() UpperCAmelCase__ : str = data_handling(lowerCAmelCase__ ) UpperCAmelCase__ : List[Any] = train_test_split( lowerCAmelCase__ , lowerCAmelCase__ , test_size=0.25 , random_state=1 ) UpperCAmelCase__ : Union[str, Any] = xgboost(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Error printing print(f'Mean Absolute Error : {mean_absolute_error(lowerCAmelCase__ , lowerCAmelCase__ )}' ) print(f'Mean Square Error : {mean_squared_error(lowerCAmelCase__ , lowerCAmelCase__ )}' ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
352
"""simple docstring""" import functools def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : str )-> int: '''simple docstring''' UpperCAmelCase__ : List[str] = len(snake_case ) UpperCAmelCase__ : str = len(snake_case ) @functools.cache def min_distance(snake_case : int , snake_case : int ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa UpperCAmelCase__ : Optional[int] = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , snake_case ) , 1 + min_distance(snake_case , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
298
0
'''simple docstring''' def a ( __a ) -> "list[int]": '''simple docstring''' if upper_limit < 0: raise ValueError('''Limit for the Catalan sequence must be ≥ 0''' ) UpperCamelCase__ :Optional[Any] = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 UpperCamelCase__ :int = 1 if upper_limit > 0: UpperCamelCase__ :int = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(__a ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print('''\n********* Catalan Numbers Using Dynamic Programming ************\n''') print('''\n*** Enter -1 at any time to quit ***''') print('''\nEnter the upper limit (≥ 0) for the Catalan number sequence: ''', end='''''') try: while True: __snake_case = int(input().strip()) if N < 0: print('''\n********* Goodbye!! ************''') break else: print(F"""The Catalan numbers from 0 through {N} are:""") print(catalan_numbers(N)) print('''Try another upper limit for the sequence: ''', end='''''') except (NameError, ValueError): print('''\n********* Invalid input, goodbye! ************\n''') import doctest doctest.testmod()
97
'''simple docstring''' # # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def __lowerCAmelCase (*__lowerCAmelCase ): with open(__lowerCAmelCase , "r" ) as fh: fcntl.flock(__lowerCAmelCase , fcntl.LOCK_EX ) try: print(*__lowerCAmelCase ) finally: fcntl.flock(__lowerCAmelCase , fcntl.LOCK_UN ) lowerCamelCase__ = int(os.environ['LOCAL_RANK']) torch.cuda.set_device(local_rank) lowerCamelCase__ = torch.device('cuda', local_rank) lowerCamelCase__ = socket.gethostname() lowerCamelCase__ = F'''[{hostname}-{local_rank}]''' try: # test distributed dist.init_process_group('nccl') dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank lowerCamelCase__ = dist.get_rank() lowerCamelCase__ = dist.get_world_size() printflock(F'''{gpu} is OK (global rank: {rank}/{world_size})''') dist.barrier() if rank == 0: printflock(F'''pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}''') except Exception: printflock(F'''{gpu} is broken''') raise
234
0
"""simple docstring""" import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class snake_case__ : def __init__( self , lowerCamelCase , lowerCamelCase=13 , lowerCamelCase=30 , lowerCamelCase=2 , lowerCamelCase=3 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=32 , lowerCamelCase=5 , lowerCamelCase=4 , lowerCamelCase=37 , lowerCamelCase="gelu" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=10 , lowerCamelCase=0.02 , lowerCamelCase=3 , lowerCamelCase=None , lowerCamelCase=2 , ): __a = parent __a = batch_size __a = image_size __a = patch_size __a = num_channels __a = is_training __a = use_labels __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = type_sequence_label_size __a = initializer_range __a = scope __a = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) __a = (image_size // patch_size) ** 2 __a = num_patches + 2 def a__ ( self ): __a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __a = None if self.use_labels: __a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a = self.get_config() return config, pixel_values, labels def a__ ( self ): return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCamelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def a__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): __a = DeiTModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __a = model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): __a = DeiTForMaskedImageModeling(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __a = model(lowerCamelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __a = 1 __a = DeiTForMaskedImageModeling(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __a = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __a = model(lowerCamelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def a__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): __a = self.type_sequence_label_size __a = DeiTForImageClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __a = model(lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __a = 1 __a = DeiTForImageClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __a = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __a = model(lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def a__ ( self ): __a = self.prepare_config_and_inputs() ( ( __a ) , ( __a ) , ( __a ) , ) = config_and_inputs __a = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class snake_case__ ( snake_case_, snake_case_, unittest.TestCase ): _snake_case : Tuple = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) _snake_case : Dict = ( { """feature-extraction""": DeiTModel, """image-classification""": (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) _snake_case : Union[str, Any] = False _snake_case : Tuple = False _snake_case : Any = False def a__ ( self ): __a = DeiTModelTester(self ) __a = ConfigTester(self , config_class=lowerCamelCase , has_text_modality=lowerCamelCase , hidden_size=37 ) def a__ ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="DeiT does not use inputs_embeds" ) def a__ ( self ): pass def a__ ( self ): __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = model_class(lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __a = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase , nn.Linear ) ) def a__ ( self ): __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = model_class(lowerCamelCase ) __a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a = [*signature.parameters.keys()] __a = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCamelCase ) def a__ ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def a__ ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCamelCase ) def a__ ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase ) def a__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase=False ): __a = super()._prepare_for_class(lowerCamelCase , lowerCamelCase , return_labels=lowerCamelCase ) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def a__ ( self ): if not self.model_tester.is_training: return __a , __a = self.model_tester.prepare_config_and_inputs_for_common() __a = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(lowerCamelCase ) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue __a = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.train() __a = self._prepare_for_class(lowerCamelCase , lowerCamelCase , return_labels=lowerCamelCase ) __a = model(**lowerCamelCase ).loss loss.backward() def a__ ( self ): __a , __a = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return __a = False __a = True for model_class in self.all_model_classes: if model_class in get_values(lowerCamelCase ) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue __a = model_class(lowerCamelCase ) model.gradient_checkpointing_enable() model.to(lowerCamelCase ) model.train() __a = self._prepare_for_class(lowerCamelCase , lowerCamelCase , return_labels=lowerCamelCase ) __a = model(**lowerCamelCase ).loss loss.backward() def a__ ( self ): __a , __a = self.model_tester.prepare_config_and_inputs_for_common() __a = [ {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float}, {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long}, {"title": "regression", "num_labels": 1, "dtype": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(lowerCamelCase ), *get_values(lowerCamelCase ), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F"Testing {model_class} with {problem_type['title']}" ): __a = problem_type["title"] __a = problem_type["num_labels"] __a = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.train() __a = self._prepare_for_class(lowerCamelCase , lowerCamelCase , return_labels=lowerCamelCase ) if problem_type["num_labels"] > 1: __a = inputs["labels"].unsqueeze(1 ).repeat(1 , problem_type["num_labels"] ) __a = inputs["labels"].to(problem_type["dtype"] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=lowerCamelCase ) as warning_list: __a = model(**lowerCamelCase ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F"Something is going wrong in the regression problem: intercepted {w.message}" ) loss.backward() @slow def a__ ( self ): for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a = DeiTModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def _lowerCamelCase( ): __a = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class snake_case__ ( unittest.TestCase ): @cached_property def a__ ( self ): return ( DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224" ) if is_vision_available() else None ) @slow def a__ ( self ): __a = DeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224" ).to( lowerCamelCase ) __a = self.default_image_processor __a = prepare_img() __a = image_processor(images=lowerCamelCase , return_tensors="pt" ).to(lowerCamelCase ) # forward pass with torch.no_grad(): __a = model(**lowerCamelCase ) # verify the logits __a = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCamelCase ) __a = torch.tensor([-1.0266, 0.1912, -1.2861] ).to(lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase , atol=1E-4 ) ) @slow @require_accelerate @require_torch_gpu def a__ ( self ): __a = DeiTModel.from_pretrained( "facebook/deit-base-distilled-patch16-224" , torch_dtype=torch.floataa , device_map="auto" ) __a = self.default_image_processor __a = prepare_img() __a = image_processor(images=lowerCamelCase , return_tensors="pt" ) __a = inputs.pixel_values.to(lowerCamelCase ) # forward pass to make sure inference works in fp16 with torch.no_grad(): __a = model(lowerCamelCase )
268
"""simple docstring""" from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE__:Optional[Any] = logging.get_logger(__name__) @add_end_docstrings(snake_case_ ) class snake_case__ ( snake_case_ ): def __init__( self , *lowerCamelCase , **lowerCamelCase ): super().__init__(*lowerCamelCase , **lowerCamelCase ) requires_backends(self , "vision" ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def a__ ( self , lowerCamelCase=None ): __a = {} if top_k is not None: __a = top_k return {}, {}, postprocess_params def __call__( self , lowerCamelCase , **lowerCamelCase ): return super().__call__(lowerCamelCase , **lowerCamelCase ) def a__ ( self , lowerCamelCase ): __a = load_image(lowerCamelCase ) __a = self.image_processor(images=lowerCamelCase , return_tensors=self.framework ) return model_inputs def a__ ( self , lowerCamelCase ): __a = self.model(**lowerCamelCase ) return model_outputs def a__ ( self , lowerCamelCase , lowerCamelCase=5 ): if top_k > self.model.config.num_labels: __a = self.model.config.num_labels if self.framework == "pt": __a = model_outputs.logits.softmax(-1 )[0] __a , __a = probs.topk(lowerCamelCase ) elif self.framework == "tf": __a = stable_softmax(model_outputs.logits , axis=-1 )[0] __a = tf.math.top_k(lowerCamelCase , k=lowerCamelCase ) __a , __a = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(F"Unsupported framework: {self.framework}" ) __a = scores.tolist() __a = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(lowerCamelCase , lowerCamelCase )]
268
1
"""simple docstring""" import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _snake_case ( a__ , unittest.TestCase ): snake_case__ = CTRLTokenizer snake_case__ = False snake_case__ = False def lowerCamelCase__ ( self : Union[str, Any] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowerCamelCase : Optional[int] = ["adapt", "re@@", "a@@", "apt", "c@@", "t", "<unk>"] __lowerCamelCase : str = dict(zip(UpperCAmelCase , range(len(UpperCAmelCase ) ) ) ) __lowerCamelCase : Any = ["#version: 0.2", "a p", "ap t</w>", "r e", "a d", "ad apt</w>", ""] __lowerCamelCase : Dict = {"unk_token": "<unk>"} __lowerCamelCase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) __lowerCamelCase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(UpperCAmelCase ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(UpperCAmelCase ) ) def lowerCamelCase__ ( self : Tuple , **UpperCAmelCase : List[str] ): kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def lowerCamelCase__ ( self : Dict , UpperCAmelCase : Dict ): __lowerCamelCase : Any = "adapt react readapt apt" __lowerCamelCase : Dict = "adapt react readapt apt" return input_text, output_text def lowerCamelCase__ ( self : List[Any] ): __lowerCamelCase : List[str] = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __lowerCamelCase : Dict = "adapt react readapt apt" __lowerCamelCase : Dict = "adapt re@@ a@@ c@@ t re@@ adapt apt".split() __lowerCamelCase : List[str] = tokenizer.tokenize(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) __lowerCamelCase : Any = tokens + [tokenizer.unk_token] __lowerCamelCase : Any = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , UpperCAmelCase )
135
"""simple docstring""" from __future__ import annotations import string from itertools import cycle, product from pathlib import Path __A = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) __A = [ord(letter) for letter in string.ascii_lowercase] __A = {ord(char) for char in VALID_CHARS} __A = ["the", "be", "to", "of", "and", "in", "that", "have"] def lowercase_ ( _lowerCamelCase: list[int] , _lowerCamelCase: tuple[int, ...] ) -> str | None: '''simple docstring''' __lowerCamelCase : str = "" __lowerCamelCase : int __lowerCamelCase : int __lowerCamelCase : int for keychar, cipherchar in zip(cycle(_lowerCamelCase ) , _lowerCamelCase ): __lowerCamelCase : str = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(_lowerCamelCase ) return decoded def lowercase_ ( _lowerCamelCase: list[int] ) -> list[str]: '''simple docstring''' __lowerCamelCase : list[str] = [] for key in product(_lowerCamelCase , repeat=3 ): __lowerCamelCase : Tuple = try_key(_lowerCamelCase , _lowerCamelCase ) if encoded is not None: possibles.append(_lowerCamelCase ) return possibles def lowercase_ ( _lowerCamelCase: list[str] , _lowerCamelCase: str ) -> list[str]: '''simple docstring''' return [possible for possible in possibles if common_word in possible.lower()] def lowercase_ ( _lowerCamelCase: str = "p059_cipher.txt" ) -> int: '''simple docstring''' __lowerCamelCase : list[int] __lowerCamelCase : list[str] __lowerCamelCase : str __lowerCamelCase : str __lowerCamelCase : str = Path(_lowerCamelCase ).parent.joinpath(_lowerCamelCase ).read_text(encoding="utf-8" ) __lowerCamelCase : Any = [int(_lowerCamelCase ) for number in data.strip().split("," )] __lowerCamelCase : Any = filter_valid_chars(_lowerCamelCase ) for common_word in COMMON_WORDS: __lowerCamelCase : Dict = filter_common_word(_lowerCamelCase , _lowerCamelCase ) if len(_lowerCamelCase ) == 1: break __lowerCamelCase : List[Any] = possibles[0] return sum(ord(_lowerCamelCase ) for char in decoded_text ) if __name__ == "__main__": print(F"""{solution() = }""")
135
1
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## a_ = 1_6 a_ = 3_2 def _a( UpperCamelCase__ : Accelerator, UpperCamelCase__ : int = 1_6 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple =AutoTokenizer.from_pretrained('''bert-base-cased''' ) SCREAMING_SNAKE_CASE__ : Optional[Any] =load_dataset('''glue''', '''mrpc''' ) def tokenize_function(UpperCamelCase__ : str ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE__ : Tuple =tokenizer(examples['''sentence1'''], examples['''sentence2'''], truncation=UpperCamelCase__, max_length=UpperCamelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): SCREAMING_SNAKE_CASE__ : Tuple =datasets.map( UpperCamelCase__, batched=UpperCamelCase__, remove_columns=['''idx''', '''sentence1''', '''sentence2'''], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE__ : Union[str, Any] =tokenized_datasets.rename_column('''label''', '''labels''' ) def collate_fn(UpperCamelCase__ : Union[str, Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. SCREAMING_SNAKE_CASE__ : int =1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": SCREAMING_SNAKE_CASE__ : List[Any] =1_6 elif accelerator.mixed_precision != "no": SCREAMING_SNAKE_CASE__ : str =8 else: SCREAMING_SNAKE_CASE__ : Union[str, Any] =None return tokenizer.pad( UpperCamelCase__, padding='''longest''', max_length=UpperCamelCase__, pad_to_multiple_of=UpperCamelCase__, return_tensors='''pt''', ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE__ : List[Any] =DataLoader( tokenized_datasets['''train'''], shuffle=UpperCamelCase__, collate_fn=UpperCamelCase__, batch_size=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : str =DataLoader( tokenized_datasets['''validation'''], shuffle=UpperCamelCase__, collate_fn=UpperCamelCase__, batch_size=UpperCamelCase__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders a_ = mocked_dataloaders # noqa: F811 def _a( UpperCamelCase__ : Optional[int], UpperCamelCase__ : Optional[Any] ): '''simple docstring''' if os.environ.get('''TESTING_MOCKED_DATALOADERS''', UpperCamelCase__ ) == "1": SCREAMING_SNAKE_CASE__ : Dict =2 # New Code # SCREAMING_SNAKE_CASE__ : str =int(args.gradient_accumulation_steps ) # Initialize accelerator SCREAMING_SNAKE_CASE__ : int =Accelerator( cpu=args.cpu, mixed_precision=args.mixed_precision, gradient_accumulation_steps=UpperCamelCase__ ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( '''Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`''' ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE__ : str =config['''lr'''] SCREAMING_SNAKE_CASE__ : str =int(config['''num_epochs'''] ) SCREAMING_SNAKE_CASE__ : int =int(config['''seed'''] ) SCREAMING_SNAKE_CASE__ : int =int(config['''batch_size'''] ) SCREAMING_SNAKE_CASE__ : Optional[int] =evaluate.load('''glue''', '''mrpc''' ) set_seed(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict =get_dataloaders(UpperCamelCase__, UpperCamelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE__ : Any =AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''', return_dict=UpperCamelCase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). SCREAMING_SNAKE_CASE__ : Dict =model.to(accelerator.device ) # Instantiate optimizer SCREAMING_SNAKE_CASE__ : Union[str, Any] =AdamW(params=model.parameters(), lr=UpperCamelCase__ ) # Instantiate scheduler SCREAMING_SNAKE_CASE__ : Any =get_linear_schedule_with_warmup( optimizer=UpperCamelCase__, num_warmup_steps=1_0_0, num_training_steps=(len(UpperCamelCase__ ) * num_epochs), ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] =accelerator.prepare( UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) # Now we train the model for epoch in range(UpperCamelCase__ ): model.train() for step, batch in enumerate(UpperCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ : Dict =model(**UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Optional[int] =output.loss accelerator.backward(UpperCamelCase__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(UpperCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ : List[str] =model(**UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Tuple =outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple =accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=UpperCamelCase__, references=UpperCamelCase__, ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:", UpperCamelCase__ ) def _a( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any =argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''', type=UpperCamelCase__, default=UpperCamelCase__, choices=['''no''', '''fp16''', '''bf16''', '''fp8'''], help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''', ) # New Code # parser.add_argument( '''--gradient_accumulation_steps''', type=UpperCamelCase__, default=1, help='''The number of minibatches to be ran before gradients are accumulated.''', ) parser.add_argument('''--cpu''', action='''store_true''', help='''If passed, will train on the CPU.''' ) SCREAMING_SNAKE_CASE__ : Optional[int] =parser.parse_args() SCREAMING_SNAKE_CASE__ : str ={'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 4_2, '''batch_size''': 1_6} training_function(UpperCamelCase__, UpperCamelCase__ ) if __name__ == "__main__": main()
222
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __SCREAMING_SNAKE_CASE ( lowerCamelCase , lowerCamelCase , unittest.TestCase ): snake_case_ = StableDiffusionSAGPipeline snake_case_ = TEXT_TO_IMAGE_PARAMS snake_case_ = TEXT_TO_IMAGE_BATCH_PARAMS snake_case_ = TEXT_TO_IMAGE_IMAGE_PARAMS snake_case_ = TEXT_TO_IMAGE_IMAGE_PARAMS snake_case_ = False def __magic_name__ ( self : str ) -> Union[str, Any]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Tuple =UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) SCREAMING_SNAKE_CASE__ : Optional[Any] =DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=__lowercase , set_alpha_to_one=__lowercase , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : List[Any] =AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : List[Any] =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) SCREAMING_SNAKE_CASE__ : Optional[Any] =CLIPTextModel(__lowercase ) SCREAMING_SNAKE_CASE__ : List[str] =CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) SCREAMING_SNAKE_CASE__ : List[Any] ={ '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __magic_name__ ( self : int , __lowercase : Union[str, Any] , __lowercase : Any=0 ) -> Optional[Any]: if str(__lowercase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE__ : Optional[int] =torch.manual_seed(__lowercase ) else: SCREAMING_SNAKE_CASE__ : Optional[int] =torch.Generator(device=__lowercase ).manual_seed(__lowercase ) SCREAMING_SNAKE_CASE__ : Dict ={ '''prompt''': '''.''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 1.0, '''sag_scale''': 1.0, '''output_type''': '''numpy''', } return inputs def __magic_name__ ( self : int ) -> str: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __magic_name__ ( self : int ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__ ( self : int ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ : Any =StableDiffusionSAGPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' ) SCREAMING_SNAKE_CASE__ : Optional[Any] =sag_pipe.to(__lowercase ) sag_pipe.set_progress_bar_config(disable=__lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] ='''.''' SCREAMING_SNAKE_CASE__ : Tuple =torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : List[Any] =sag_pipe( [prompt] , generator=__lowercase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' ) SCREAMING_SNAKE_CASE__ : int =output.images SCREAMING_SNAKE_CASE__ : int =image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) SCREAMING_SNAKE_CASE__ : str =np.array([0.1568, 0.1738, 0.1695, 0.1693, 0.1507, 0.1705, 0.1547, 0.1751, 0.1949] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def __magic_name__ ( self : List[Any] ) -> Any: SCREAMING_SNAKE_CASE__ : Tuple =StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) SCREAMING_SNAKE_CASE__ : List[Any] =sag_pipe.to(__lowercase ) sag_pipe.set_progress_bar_config(disable=__lowercase ) SCREAMING_SNAKE_CASE__ : List[str] ='''.''' SCREAMING_SNAKE_CASE__ : Optional[Any] =torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =sag_pipe( [prompt] , generator=__lowercase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' ) SCREAMING_SNAKE_CASE__ : Tuple =output.images SCREAMING_SNAKE_CASE__ : Tuple =image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) SCREAMING_SNAKE_CASE__ : List[Any] =np.array([0.3459, 0.2876, 0.2537, 0.3002, 0.2671, 0.2160, 0.3026, 0.2262, 0.2371] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def __magic_name__ ( self : str ) -> Any: SCREAMING_SNAKE_CASE__ : Union[str, Any] =StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) SCREAMING_SNAKE_CASE__ : Optional[int] =sag_pipe.to(__lowercase ) sag_pipe.set_progress_bar_config(disable=__lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] ='''.''' SCREAMING_SNAKE_CASE__ : Dict =torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Tuple =sag_pipe( [prompt] , width=7_68 , height=5_12 , generator=__lowercase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' , ) SCREAMING_SNAKE_CASE__ : Any =output.images assert image.shape == (1, 5_12, 7_68, 3)
222
1
"""simple docstring""" from __future__ import annotations from random import choice def __UpperCAmelCase ( lowercase ): """simple docstring""" return choice(lowercase ) def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = random_pivot(lowercase ) # partition based on pivot # linear time _UpperCAmelCase = [e for e in lst if e < pivot] _UpperCAmelCase = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(lowercase ) == k - 1: return pivot # pivot is in elements bigger than k elif len(lowercase ) < k - 1: return kth_number(lowercase ,k - len(lowercase ) - 1 ) # pivot is in elements smaller than k else: return kth_number(lowercase ,lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
289
"""simple docstring""" import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html UpperCAmelCase__ = """platform""" import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class a : _snake_case : Tuple = PegasusConfig _snake_case : int = {} _snake_case : str = 'gelu' def __init__( self : Optional[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : int=13 , __lowerCAmelCase : Any=7 , __lowerCAmelCase : str=True , __lowerCAmelCase : Optional[int]=False , __lowerCAmelCase : int=99 , __lowerCAmelCase : List[Any]=32 , __lowerCAmelCase : Dict=5 , __lowerCAmelCase : int=4 , __lowerCAmelCase : Dict=37 , __lowerCAmelCase : Union[str, Any]=0.1 , __lowerCAmelCase : List[str]=0.1 , __lowerCAmelCase : Union[str, Any]=20 , __lowerCAmelCase : Optional[Any]=2 , __lowerCAmelCase : Union[str, Any]=1 , __lowerCAmelCase : Any=0 , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = eos_token_id _UpperCAmelCase = pad_token_id _UpperCAmelCase = bos_token_id def lowerCAmelCase_ ( self : Any ): _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) _UpperCAmelCase = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) _UpperCAmelCase = np.concatenate([input_ids, eos_tensor] , axis=1 ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _UpperCAmelCase = prepare_pegasus_inputs_dict(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return config, inputs_dict def lowerCAmelCase_ ( self : Tuple , __lowerCAmelCase : Dict , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : int ): _UpperCAmelCase = 20 _UpperCAmelCase = model_class_name(__lowerCAmelCase ) _UpperCAmelCase = model.encode(inputs_dict["""input_ids"""] ) _UpperCAmelCase , _UpperCAmelCase = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) _UpperCAmelCase = model.init_cache(decoder_input_ids.shape[0] , __lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) _UpperCAmelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _UpperCAmelCase = model.decode( decoder_input_ids[:, :-1] , __lowerCAmelCase , decoder_attention_mask=__lowerCAmelCase , past_key_values=__lowerCAmelCase , decoder_position_ids=__lowerCAmelCase , ) _UpperCAmelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) _UpperCAmelCase = model.decode( decoder_input_ids[:, -1:] , __lowerCAmelCase , decoder_attention_mask=__lowerCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=__lowerCAmelCase , ) _UpperCAmelCase = model.decode(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' ) def lowerCAmelCase_ ( self : str , __lowerCAmelCase : Dict , __lowerCAmelCase : List[str] , __lowerCAmelCase : Any ): _UpperCAmelCase = 20 _UpperCAmelCase = model_class_name(__lowerCAmelCase ) _UpperCAmelCase = model.encode(inputs_dict["""input_ids"""] ) _UpperCAmelCase , _UpperCAmelCase = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) _UpperCAmelCase = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) _UpperCAmelCase = model.init_cache(decoder_input_ids.shape[0] , __lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _UpperCAmelCase = model.decode( decoder_input_ids[:, :-1] , __lowerCAmelCase , decoder_attention_mask=__lowerCAmelCase , past_key_values=__lowerCAmelCase , decoder_position_ids=__lowerCAmelCase , ) _UpperCAmelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) _UpperCAmelCase = model.decode( decoder_input_ids[:, -1:] , __lowerCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=__lowerCAmelCase , decoder_position_ids=__lowerCAmelCase , ) _UpperCAmelCase = model.decode(__lowerCAmelCase , __lowerCAmelCase , decoder_attention_mask=__lowerCAmelCase ) _UpperCAmelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' ) def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ,lowercase=None ,lowercase=None ,): """simple docstring""" if attention_mask is None: _UpperCAmelCase = np.not_equal(lowercase ,config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: _UpperCAmelCase = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape ,dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] ,config.pad_token_id ).astype(np.inta ), ] ,axis=-1 ,) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class a ( lowerCAmelCase_ , unittest.TestCase ): _snake_case : Dict = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) _snake_case : Optional[int] = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () _snake_case : Optional[Any] = True _snake_case : List[str] = False _snake_case : Dict = False _snake_case : str = False def lowerCAmelCase_ ( self : Optional[int] ): _UpperCAmelCase = FlaxPegasusModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=__lowerCAmelCase ) def lowerCAmelCase_ ( self : List[Any] ): self.config_tester.run_common_tests() def lowerCAmelCase_ ( self : Union[str, Any] ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def lowerCAmelCase_ ( self : str ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def lowerCAmelCase_ ( self : Any ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _UpperCAmelCase = self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = model_class(__lowerCAmelCase ) @jax.jit def encode_jitted(__lowerCAmelCase : str , __lowerCAmelCase : Tuple=None , **__lowerCAmelCase : Dict ): return model.encode(input_ids=__lowerCAmelCase , attention_mask=__lowerCAmelCase ) with self.subTest("""JIT Enabled""" ): _UpperCAmelCase = encode_jitted(**__lowerCAmelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): _UpperCAmelCase = encode_jitted(**__lowerCAmelCase ).to_tuple() self.assertEqual(len(__lowerCAmelCase ) , len(__lowerCAmelCase ) ) for jitted_output, output in zip(__lowerCAmelCase , __lowerCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCAmelCase_ ( self : Optional[Any] ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _UpperCAmelCase = model_class(__lowerCAmelCase ) _UpperCAmelCase = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] ) _UpperCAmelCase = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(__lowerCAmelCase : Dict , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[int] ): return model.decode( decoder_input_ids=__lowerCAmelCase , decoder_attention_mask=__lowerCAmelCase , encoder_outputs=__lowerCAmelCase , ) with self.subTest("""JIT Enabled""" ): _UpperCAmelCase = decode_jitted(**__lowerCAmelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): _UpperCAmelCase = decode_jitted(**__lowerCAmelCase ).to_tuple() self.assertEqual(len(__lowerCAmelCase ) , len(__lowerCAmelCase ) ) for jitted_output, output in zip(__lowerCAmelCase , __lowerCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowerCAmelCase_ ( self : Optional[int] ): for model_class_name in self.all_model_classes: _UpperCAmelCase = model_class_name.from_pretrained("""google/pegasus-large""" , from_pt=__lowerCAmelCase ) _UpperCAmelCase = np.ones((1, 1) ) _UpperCAmelCase = model(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) @slow def lowerCAmelCase_ ( self : Dict ): _UpperCAmelCase = FlaxPegasusForConditionalGeneration.from_pretrained("""google/pegasus-xsum""" ) _UpperCAmelCase = PegasusTokenizer.from_pretrained("""google/pegasus-xsum""" ) _UpperCAmelCase = [ """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""", """ The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """, ] _UpperCAmelCase = [ """California's largest electricity provider has turned off power to hundreds of thousands of customers.""", """Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.""", ] _UpperCAmelCase = tokenizer(__lowerCAmelCase , return_tensors="""np""" , truncation=__lowerCAmelCase , max_length=512 , padding=__lowerCAmelCase ) _UpperCAmelCase = model.generate(**__lowerCAmelCase , num_beams=2 ).sequences _UpperCAmelCase = tokenizer.batch_decode(__lowerCAmelCase , skip_special_tokens=__lowerCAmelCase ) assert tgt_text == decoded
289
1
"""simple docstring""" import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowerCamelCase ( _UpperCamelCase : Any , _UpperCamelCase : Dict ) -> Any: '''simple docstring''' assert isinstance(_UpperCamelCase , _UpperCamelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def lowerCamelCase ( _UpperCamelCase : int , _UpperCamelCase : List[Any] , _UpperCamelCase : List[str] ) -> int: '''simple docstring''' __UpperCAmelCase : Tuple = tmp_path / """cache""" __UpperCAmelCase : str = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __UpperCAmelCase : Union[str, Any] = JsonDatasetReader(_UpperCamelCase , cache_dir=_UpperCamelCase , keep_in_memory=_UpperCamelCase ).read() _check_json_dataset(_UpperCamelCase , _UpperCamelCase ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def lowerCamelCase ( _UpperCamelCase : Dict , _UpperCamelCase : Optional[int] , _UpperCamelCase : Optional[int] ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Any = tmp_path / """cache""" __UpperCAmelCase : Dict = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} __UpperCAmelCase : List[str] = features.copy() if features else default_expected_features __UpperCAmelCase : List[str] = ( Features({feature: Value(_UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCAmelCase : Optional[int] = JsonDatasetReader(_UpperCamelCase , features=_UpperCamelCase , cache_dir=_UpperCamelCase ).read() _check_json_dataset(_UpperCamelCase , _UpperCamelCase ) @pytest.mark.parametrize( """features""" , [ None, {"""col_3""": """float64""", """col_1""": """string""", """col_2""": """int64"""}, ] , ) def lowerCamelCase ( _UpperCamelCase : str , _UpperCamelCase : List[Any] , _UpperCamelCase : Tuple ) -> Any: '''simple docstring''' __UpperCAmelCase : Tuple = tmp_path / """cache""" __UpperCAmelCase : Any = {"""col_3""": """float64""", """col_1""": """string""", """col_2""": """int64"""} __UpperCAmelCase : List[Any] = features.copy() if features else default_expected_features __UpperCAmelCase : Tuple = ( Features({feature: Value(_UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCAmelCase : Tuple = JsonDatasetReader(_UpperCamelCase , features=_UpperCamelCase , cache_dir=_UpperCamelCase ).read() assert isinstance(_UpperCamelCase , _UpperCamelCase ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def lowerCamelCase ( _UpperCamelCase : str , _UpperCamelCase : List[Any] ) -> Dict: '''simple docstring''' __UpperCAmelCase : List[Any] = {"""col_2""": """int64""", """col_3""": """float64""", """col_1""": """string"""} __UpperCAmelCase : str = features.copy() __UpperCAmelCase : str = ( Features({feature: Value(_UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCAmelCase : Union[str, Any] = tmp_path / """cache""" __UpperCAmelCase : Tuple = JsonDatasetReader(_UpperCamelCase , features=_UpperCamelCase , cache_dir=_UpperCamelCase ).read() assert isinstance(_UpperCamelCase , _UpperCamelCase ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def lowerCamelCase ( _UpperCamelCase : Optional[int] , _UpperCamelCase : int , _UpperCamelCase : Tuple ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Any = tmp_path / """cache""" __UpperCAmelCase : Union[str, Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} __UpperCAmelCase : Optional[int] = JsonDatasetReader(_UpperCamelCase , cache_dir=_UpperCamelCase , split=_UpperCamelCase ).read() _check_json_dataset(_UpperCamelCase , _UpperCamelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def lowerCamelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Optional[Any] ) -> Tuple: '''simple docstring''' if issubclass(_UpperCamelCase , _UpperCamelCase ): __UpperCAmelCase : int = jsonl_path elif issubclass(_UpperCamelCase , _UpperCamelCase ): __UpperCAmelCase : str = [jsonl_path] __UpperCAmelCase : Any = tmp_path / """cache""" __UpperCAmelCase : Optional[Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} __UpperCAmelCase : List[Any] = JsonDatasetReader(_UpperCamelCase , cache_dir=_UpperCamelCase ).read() _check_json_dataset(_UpperCamelCase , _UpperCamelCase ) def lowerCamelCase ( _UpperCamelCase : List[str] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str=("train",) ) -> List[Any]: '''simple docstring''' assert isinstance(_UpperCamelCase , _UpperCamelCase ) for split in splits: __UpperCAmelCase : List[Any] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def lowerCamelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : List[str] ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = tmp_path / """cache""" __UpperCAmelCase : str = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __UpperCAmelCase : int = JsonDatasetReader({"""train""": jsonl_path} , cache_dir=_UpperCamelCase , keep_in_memory=_UpperCamelCase ).read() _check_json_datasetdict(_UpperCamelCase , _UpperCamelCase ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def lowerCamelCase ( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Union[str, Any] ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Dict = tmp_path / """cache""" __UpperCAmelCase : Union[str, Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} __UpperCAmelCase : Optional[Any] = features.copy() if features else default_expected_features __UpperCAmelCase : str = ( Features({feature: Value(_UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCAmelCase : List[str] = JsonDatasetReader({"""train""": jsonl_path} , features=_UpperCamelCase , cache_dir=_UpperCamelCase ).read() _check_json_datasetdict(_UpperCamelCase , _UpperCamelCase ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def lowerCamelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : int ) -> Optional[int]: '''simple docstring''' if split: __UpperCAmelCase : Dict = {split: jsonl_path} else: __UpperCAmelCase : Dict = """train""" __UpperCAmelCase : str = {"""train""": jsonl_path, """test""": jsonl_path} __UpperCAmelCase : Optional[int] = tmp_path / """cache""" __UpperCAmelCase : Tuple = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} __UpperCAmelCase : Tuple = JsonDatasetReader(_UpperCamelCase , cache_dir=_UpperCamelCase ).read() _check_json_datasetdict(_UpperCamelCase , _UpperCamelCase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def lowerCamelCase ( _UpperCamelCase : Tuple ) -> int: '''simple docstring''' return json.load(_UpperCamelCase ) def lowerCamelCase ( _UpperCamelCase : Tuple ) -> int: '''simple docstring''' return [json.loads(_UpperCamelCase ) for line in buffer] class lowerCamelCase__ : """simple docstring""" @pytest.mark.parametrize("""lines, load_json_function""" , [(True, load_json_lines), (False, load_json)] ) def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase : str , UpperCamelCase : List[Any] , UpperCamelCase : Any ): '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase , UpperCamelCase , lines=UpperCamelCase ).write() buffer.seek(0 ) __UpperCAmelCase : Optional[Any] = load_json_function(UpperCamelCase ) assert isinstance(UpperCamelCase , UpperCamelCase ) assert isinstance(exported_content[0] , UpperCamelCase ) assert len(UpperCamelCase ) == 10 @pytest.mark.parametrize( """orient, container, keys, len_at""" , [ ("""records""", list, {"""tokens""", """labels""", """answers""", """id"""}, None), ("""split""", dict, {"""columns""", """data"""}, """data"""), ("""index""", dict, set("""0123456789""" ), None), ("""columns""", dict, {"""tokens""", """labels""", """answers""", """id"""}, """tokens"""), ("""values""", list, None, None), ("""table""", dict, {"""schema""", """data"""}, """data"""), ] , ) def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase : int , UpperCamelCase : Any , UpperCamelCase : Optional[int] , UpperCamelCase : Dict , UpperCamelCase : Any ): '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase , UpperCamelCase , lines=UpperCamelCase , orient=UpperCamelCase ).write() buffer.seek(0 ) __UpperCAmelCase : int = load_json(UpperCamelCase ) assert isinstance(UpperCamelCase , UpperCamelCase ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(UpperCamelCase , """keys""" ) and not hasattr(exported_content[0] , """keys""" ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(UpperCamelCase ) == 10 @pytest.mark.parametrize("""lines, load_json_function""" , [(True, load_json_lines), (False, load_json)] ) def lowerCamelCase__ ( self : int , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : List[Any] ): '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase , UpperCamelCase , lines=UpperCamelCase , num_proc=2 ).write() buffer.seek(0 ) __UpperCAmelCase : Optional[Any] = load_json_function(UpperCamelCase ) assert isinstance(UpperCamelCase , UpperCamelCase ) assert isinstance(exported_content[0] , UpperCamelCase ) assert len(UpperCamelCase ) == 10 @pytest.mark.parametrize( """orient, container, keys, len_at""" , [ ("""records""", list, {"""tokens""", """labels""", """answers""", """id"""}, None), ("""split""", dict, {"""columns""", """data"""}, """data"""), ("""index""", dict, set("""0123456789""" ), None), ("""columns""", dict, {"""tokens""", """labels""", """answers""", """id"""}, """tokens"""), ("""values""", list, None, None), ("""table""", dict, {"""schema""", """data"""}, """data"""), ] , ) def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase : Optional[int] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : int , UpperCamelCase : Dict ): '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase , UpperCamelCase , lines=UpperCamelCase , orient=UpperCamelCase , num_proc=2 ).write() buffer.seek(0 ) __UpperCAmelCase : int = load_json(UpperCamelCase ) assert isinstance(UpperCamelCase , UpperCamelCase ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(UpperCamelCase , """keys""" ) and not hasattr(exported_content[0] , """keys""" ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(UpperCamelCase ) == 10 def lowerCamelCase__ ( self : str , UpperCamelCase : List[Any] ): '''simple docstring''' with pytest.raises(UpperCamelCase ): with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase , UpperCamelCase , num_proc=0 ) @pytest.mark.parametrize("""compression, extension""" , [("""gzip""", """gz"""), ("""bz2""", """bz2"""), ("""xz""", """xz""")] ) def lowerCamelCase__ ( self : List[str] , UpperCamelCase : Union[str, Any] , UpperCamelCase : int , UpperCamelCase : str , UpperCamelCase : Tuple , UpperCamelCase : List[str] ): '''simple docstring''' __UpperCAmelCase : List[str] = tmp_path_factory.mktemp("""data""" ) / f'''test.json.{extension}''' __UpperCAmelCase : Union[str, Any] = str(shared_datadir / f'''test_file.json.{extension}''' ) JsonDatasetWriter(UpperCamelCase , UpperCamelCase , compression=UpperCamelCase ).write() with fsspec.open(UpperCamelCase , """rb""" , compression="""infer""" ) as f: __UpperCAmelCase : Tuple = f.read() with fsspec.open(UpperCamelCase , """rb""" , compression="""infer""" ) as f: __UpperCAmelCase : List[Any] = f.read() assert exported_content == original_content
320
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase : Tuple = { 'configuration_electra': ['ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ElectraConfig', 'ElectraOnnxConfig'], 'tokenization_electra': ['ElectraTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[Any] = ['ElectraTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Any = [ 'ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'ElectraForCausalLM', 'ElectraForMaskedLM', 'ElectraForMultipleChoice', 'ElectraForPreTraining', 'ElectraForQuestionAnswering', 'ElectraForSequenceClassification', 'ElectraForTokenClassification', 'ElectraModel', 'ElectraPreTrainedModel', 'load_tf_weights_in_electra', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Optional[Any] = [ 'TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFElectraForMaskedLM', 'TFElectraForMultipleChoice', 'TFElectraForPreTraining', 'TFElectraForQuestionAnswering', 'TFElectraForSequenceClassification', 'TFElectraForTokenClassification', 'TFElectraModel', 'TFElectraPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : str = [ 'FlaxElectraForCausalLM', 'FlaxElectraForMaskedLM', 'FlaxElectraForMultipleChoice', 'FlaxElectraForPreTraining', 'FlaxElectraForQuestionAnswering', 'FlaxElectraForSequenceClassification', 'FlaxElectraForTokenClassification', 'FlaxElectraModel', 'FlaxElectraPreTrainedModel', ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys UpperCAmelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
320
1
"""simple docstring""" def lowerCAmelCase_ ( snake_case_ : str ) ->bool: lowerCamelCase__ : Tuple =0 for ch in input_str: lowerCamelCase__ : List[str] =ord(snake_case_ ) lowerCamelCase__ : str =pow(2 , snake_case_ ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
126
"""simple docstring""" import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class A_ : """simple docstring""" def __init__( self :Any , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Any=13 , lowerCamelCase_ :int=32 , lowerCamelCase_ :Tuple=2 , lowerCamelCase_ :int=3 , lowerCamelCase_ :Any=16 , lowerCamelCase_ :int=[1, 2, 1] , lowerCamelCase_ :List[Any]=[2, 2, 4] , lowerCamelCase_ :Any=2 , lowerCamelCase_ :str=2.0 , lowerCamelCase_ :Optional[Any]=True , lowerCamelCase_ :int=0.0 , lowerCamelCase_ :List[str]=0.0 , lowerCamelCase_ :List[Any]=0.1 , lowerCamelCase_ :Union[str, Any]="gelu" , lowerCamelCase_ :Tuple=False , lowerCamelCase_ :str=True , lowerCamelCase_ :Optional[int]=0.02 , lowerCamelCase_ :Optional[int]=1e-5 , lowerCamelCase_ :Tuple=True , lowerCamelCase_ :List[str]=None , lowerCamelCase_ :List[str]=True , lowerCamelCase_ :List[Any]=10 , lowerCamelCase_ :Any=8 , lowerCamelCase_ :Any=["stage1", "stage2", "stage3"] , lowerCamelCase_ :Union[str, Any]=[1, 2, 3] , ): """simple docstring""" lowerCamelCase__ : str =parent lowerCamelCase__ : Optional[int] =batch_size lowerCamelCase__ : List[str] =image_size lowerCamelCase__ : Optional[Any] =patch_size lowerCamelCase__ : str =num_channels lowerCamelCase__ : Union[str, Any] =embed_dim lowerCamelCase__ : int =depths lowerCamelCase__ : str =num_heads lowerCamelCase__ : List[str] =window_size lowerCamelCase__ : List[Any] =mlp_ratio lowerCamelCase__ : List[str] =qkv_bias lowerCamelCase__ : Dict =hidden_dropout_prob lowerCamelCase__ : Union[str, Any] =attention_probs_dropout_prob lowerCamelCase__ : List[str] =drop_path_rate lowerCamelCase__ : List[str] =hidden_act lowerCamelCase__ : int =use_absolute_embeddings lowerCamelCase__ : List[Any] =patch_norm lowerCamelCase__ : Optional[Any] =layer_norm_eps lowerCamelCase__ : Dict =initializer_range lowerCamelCase__ : Dict =is_training lowerCamelCase__ : Optional[Any] =scope lowerCamelCase__ : List[str] =use_labels lowerCamelCase__ : Optional[int] =type_sequence_label_size lowerCamelCase__ : List[str] =encoder_stride lowerCamelCase__ : Tuple =out_features lowerCamelCase__ : Any =out_indices def UpperCAmelCase__ ( self :Union[str, Any] ): """simple docstring""" lowerCamelCase__ : int =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ : List[str] =None if self.use_labels: lowerCamelCase__ : List[str] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ : Optional[Any] =self.get_config() return config, pixel_values, labels def UpperCAmelCase__ ( self :int ): """simple docstring""" return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def UpperCAmelCase__ ( self :Union[str, Any] , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :str ): """simple docstring""" lowerCamelCase__ : List[str] =MaskFormerSwinModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Tuple =model(lowerCamelCase_ ) lowerCamelCase__ : Any =((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowerCamelCase__ : Any =int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def UpperCAmelCase__ ( self :Optional[Any] , lowerCamelCase_ :Tuple , lowerCamelCase_ :List[str] , lowerCamelCase_ :Optional[int] ): """simple docstring""" lowerCamelCase__ : Optional[Any] =MaskFormerSwinBackbone(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : List[str] =model(lowerCamelCase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(lowerCamelCase_ ): lowerCamelCase__ : Tuple =['stem'] lowerCamelCase__ : Optional[int] =MaskFormerSwinBackbone(config=lowerCamelCase_ ) def UpperCAmelCase__ ( self :Optional[Any] ): """simple docstring""" lowerCamelCase__ : Union[str, Any] =self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Optional[Any] =config_and_inputs lowerCamelCase__ : List[Any] ={'pixel_values': pixel_values} return config, inputs_dict @require_torch class A_ ( A__ , A__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ = {"""feature-extraction""": MaskFormerSwinModel} if is_torch_available() else {} SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False def UpperCAmelCase__ ( self :Optional[Any] ): """simple docstring""" lowerCamelCase__ : str =MaskFormerSwinModelTester(self ) lowerCamelCase__ : Dict =ConfigTester(self , config_class=lowerCamelCase_ , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( '`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with' ' `nn.DataParallel`' ) ) def UpperCAmelCase__ ( self :List[str] ): """simple docstring""" pass def UpperCAmelCase__ ( self :int ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase__ ( self :Tuple ): """simple docstring""" return def UpperCAmelCase__ ( self :Dict ): """simple docstring""" lowerCamelCase__ : Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def UpperCAmelCase__ ( self :Optional[int] ): """simple docstring""" lowerCamelCase__ : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCamelCase_ ) @unittest.skip('Swin does not use inputs_embeds' ) def UpperCAmelCase__ ( self :List[Any] ): """simple docstring""" pass @unittest.skip('Swin does not support feedforward chunking' ) def UpperCAmelCase__ ( self :List[str] ): """simple docstring""" pass def UpperCAmelCase__ ( self :int ): """simple docstring""" lowerCamelCase__ , lowerCamelCase__ : str =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Union[str, Any] =model_class(lowerCamelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCamelCase__ : int =model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase_ , nn.Linear ) ) def UpperCAmelCase__ ( self :Any ): """simple docstring""" lowerCamelCase__ , lowerCamelCase__ : Optional[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Tuple =model_class(lowerCamelCase_ ) lowerCamelCase__ : Dict =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ : Optional[int] =[*signature.parameters.keys()] lowerCamelCase__ : Tuple =['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCamelCase_ ) @unittest.skip(reason='MaskFormerSwin is only used as backbone and doesn\'t support output_attentions' ) def UpperCAmelCase__ ( self :Union[str, Any] ): """simple docstring""" pass @unittest.skip(reason='MaskFormerSwin is only used as an internal backbone' ) def UpperCAmelCase__ ( self :Union[str, Any] ): """simple docstring""" pass def UpperCAmelCase__ ( self :Tuple , lowerCamelCase_ :int , lowerCamelCase_ :List[Any] , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :List[Any] ): """simple docstring""" lowerCamelCase__ : List[str] =model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): lowerCamelCase__ : Optional[int] =model(**self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) lowerCamelCase__ : List[Any] =outputs.hidden_states lowerCamelCase__ : Optional[Any] =getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(lowerCamelCase_ ) , lowerCamelCase_ ) # Swin has a different seq_length lowerCamelCase__ : Dict =( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCamelCase__ : Dict =(image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def UpperCAmelCase__ ( self :List[str] ): """simple docstring""" lowerCamelCase__ , lowerCamelCase__ : List[Any] =self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ : Optional[int] =( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: lowerCamelCase__ : List[Any] =True self.check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase__ : int =True self.check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def UpperCAmelCase__ ( self :List[Any] ): """simple docstring""" lowerCamelCase__ , lowerCamelCase__ : Dict =self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ : Union[str, Any] =3 lowerCamelCase__ : List[Any] =( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowerCamelCase__ : Union[str, Any] =( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCamelCase__ : Optional[Any] =image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowerCamelCase__ : Union[str, Any] =image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: lowerCamelCase__ : Any =True self.check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase__ : Any =True self.check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , (padded_height, padded_width) ) @unittest.skip(reason='MaskFormerSwin doesn\'t have pretrained checkpoints' ) def UpperCAmelCase__ ( self :Optional[Any] ): """simple docstring""" pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def UpperCAmelCase__ ( self :Union[str, Any] ): """simple docstring""" pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def UpperCAmelCase__ ( self :Optional[int] ): """simple docstring""" pass def UpperCAmelCase__ ( self :str ): """simple docstring""" lowerCamelCase__ , lowerCamelCase__ : Tuple =self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(lowerCamelCase_ :Any ): lowerCamelCase__ : List[str] =0 return t def check_equivalence(lowerCamelCase_ :Any , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :str={} ): with torch.no_grad(): lowerCamelCase__ : int =model(**lowerCamelCase_ , return_dict=lowerCamelCase_ , **lowerCamelCase_ ) lowerCamelCase__ : Dict =model(**lowerCamelCase_ , return_dict=lowerCamelCase_ , **lowerCamelCase_ ).to_tuple() def recursive_check(lowerCamelCase_ :List[str] , lowerCamelCase_ :Dict ): if isinstance(lowerCamelCase_ , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(lowerCamelCase_ , lowerCamelCase_ ): recursive_check(lowerCamelCase_ , lowerCamelCase_ ) elif isinstance(lowerCamelCase_ , lowerCamelCase_ ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(lowerCamelCase_ , lowerCamelCase_ ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(lowerCamelCase_ ) , set_nan_tensor_to_zero(lowerCamelCase_ ) , atol=1e-5 ) , msg=( 'Tuple and dict output are not equal. Difference:' f""" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:""" f""" {torch.isnan(lowerCamelCase_ ).any()} and `inf`: {torch.isinf(lowerCamelCase_ )}. Dict has""" f""" `nan`: {torch.isnan(lowerCamelCase_ ).any()} and `inf`: {torch.isinf(lowerCamelCase_ )}.""" ) , ) recursive_check(lowerCamelCase_ , lowerCamelCase_ ) for model_class in self.all_model_classes: lowerCamelCase__ : int =model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : int =self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) lowerCamelCase__ : Tuple =self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) check_equivalence(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] =self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ , return_labels=lowerCamelCase_ ) lowerCamelCase__ : Tuple =self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ , return_labels=lowerCamelCase_ ) check_equivalence(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) lowerCamelCase__ : List[Any] =self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) lowerCamelCase__ : Dict =self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) check_equivalence(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , {'output_hidden_states': True} ) lowerCamelCase__ : Optional[int] =self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ , return_labels=lowerCamelCase_ ) lowerCamelCase__ : Optional[int] =self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ , return_labels=lowerCamelCase_ ) check_equivalence(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , {'output_hidden_states': True} ) @require_torch class A_ ( unittest.TestCase , A__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = (MaskFormerSwinBackbone,) if is_torch_available() else () SCREAMING_SNAKE_CASE_ = MaskFormerSwinConfig def UpperCAmelCase__ ( self :Optional[int] ): """simple docstring""" lowerCamelCase__ : Dict =MaskFormerSwinModelTester(self ) def UpperCAmelCase__ ( self :Optional[int] ): """simple docstring""" lowerCamelCase__ , lowerCamelCase__ : List[Any] =self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ : Any =inputs_dict['pixel_values'].shape[0] for backbone_class in self.all_model_classes: lowerCamelCase__ : Optional[Any] =backbone_class(lowerCamelCase_ ) backbone.to(lowerCamelCase_ ) backbone.eval() lowerCamelCase__ : Any =backbone(**lowerCamelCase_ ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , lowerCamelCase_ ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True lowerCamelCase__ : Union[str, Any] =backbone(**lowerCamelCase_ , output_hidden_states=lowerCamelCase_ ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Optional[Any] =hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: lowerCamelCase__ : Optional[int] =backbone(**lowerCamelCase_ , output_attentions=lowerCamelCase_ ) self.assertIsNotNone(outputs.attentions )
126
1
"""simple docstring""" def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase ) -> float: '''simple docstring''' if digit_amount > 0: return round(number - int(_UpperCAmelCase ) , _UpperCAmelCase ) return number - int(_UpperCAmelCase ) if __name__ == "__main__": print(decimal_isolate(1.5_3, 0)) print(decimal_isolate(3_5.3_4_5, 1)) print(decimal_isolate(3_5.3_4_5, 2)) print(decimal_isolate(3_5.3_4_5, 3)) print(decimal_isolate(-1_4.7_8_9, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-1_4.1_2_3, 1)) print(decimal_isolate(-1_4.1_2_3, 2)) print(decimal_isolate(-1_4.1_2_3, 3))
353
"""simple docstring""" import datasets from .evaluate import evaluate _UpperCamelCase: str = '\\n@article{hendrycks2021cuad,\n title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review},\n author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},\n journal={arXiv preprint arXiv:2103.06268},\n year={2021}\n}\n' _UpperCamelCase: int = '\nThis metric wrap the official scoring script for version 1 of the Contract\nUnderstanding Atticus Dataset (CUAD).\nContract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510\ncommercial legal contracts that have been manually labeled to identify 41 categories of important\nclauses that lawyers look for when reviewing contracts in connection with corporate transactions.\n' _UpperCamelCase: Optional[Any] = '\nComputes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': list of possible texts for the answer, as a list of strings\n depending on a threshold on the confidence probability of each prediction.\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the CUAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\n \'aupr\': Area Under the Precision-Recall curve\n \'prec_at_80_recall\': Precision at 80% recall\n \'prec_at_90_recall\': Precision at 90% recall\nExamples:\n >>> predictions = [{\'prediction_text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\'], \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]\n >>> references = [{\'answers\': {\'answer_start\': [143, 49], \'text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\']}, \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]\n >>> cuad_metric = datasets.load_metric("cuad")\n >>> results = cuad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0, \'aupr\': 0.0, \'prec_at_80_recall\': 1.0, \'prec_at_90_recall\': 1.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class a__ ( datasets.Metric ): def lowercase ( self : List[str] ) -> Tuple: return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { 'predictions': { 'id': datasets.Value('string' ), 'prediction_text': datasets.features.Sequence(datasets.Value('string' ) ), }, 'references': { 'id': datasets.Value('string' ), 'answers': datasets.features.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), }, } ), codebase_urls=['https://www.atticusprojectai.org/cuad'], reference_urls=['https://www.atticusprojectai.org/cuad'], ) def lowercase ( self : Any, lowerCAmelCase : int, lowerCAmelCase : Optional[Any] ) -> Optional[Any]: lowercase : int = {prediction['id']: prediction['prediction_text'] for prediction in predictions} lowercase : Any = [ { 'paragraphs': [ { 'qas': [ { 'answers': [{'text': answer_text} for answer_text in ref['answers']['text']], 'id': ref['id'], } for ref in references ] } ] } ] lowercase : int = evaluate(dataset=lowerCAmelCase, predictions=lowerCAmelCase ) return score
53
0
# Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a_ = { 'configuration_cpmant': ['CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CpmAntConfig'], 'tokenization_cpmant': ['CpmAntTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST', 'CpmAntForCausalLM', 'CpmAntModel', 'CpmAntPreTrainedModel', ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
175
import argparse import torch from transformers import GPTaLMHeadModel, RobertaForMaskedLM if __name__ == "__main__": a_ = argparse.ArgumentParser( description=( 'Extraction some layers of the full RobertaForMaskedLM or GPT2LMHeadModel for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='roberta', choices=['roberta', 'gpt2']) parser.add_argument('--model_name', default='roberta-large', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_roberta_048131723.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') a_ = parser.parse_args() if args.model_type == "roberta": a_ = RobertaForMaskedLM.from_pretrained(args.model_name) a_ = 'roberta' elif args.model_type == "gpt2": a_ = GPTaLMHeadModel.from_pretrained(args.model_name) a_ = 'transformer' a_ = model.state_dict() a_ = {} # Embeddings # if args.model_type == "gpt2": for param_name in ["wte.weight", "wpe.weight"]: a_ = state_dict[F"""{prefix}.{param_name}"""] else: for w in ["word_embeddings", "position_embeddings", "token_type_embeddings"]: a_ = F"""{prefix}.embeddings.{w}.weight""" a_ = state_dict[param_name] for w in ["weight", "bias"]: a_ = F"""{prefix}.embeddings.LayerNorm.{w}""" a_ = state_dict[param_name] # Transformer Blocks # a_ = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: if args.model_type == "gpt2": for layer in ["ln_1", "attn.c_attn", "attn.c_proj", "ln_2", "mlp.c_fc", "mlp.c_proj"]: for w in ["weight", "bias"]: a_ = state_dict[ F"""{prefix}.h.{teacher_idx}.{layer}.{w}""" ] a_ = state_dict[F"""{prefix}.h.{teacher_idx}.attn.bias"""] else: for layer in [ "attention.self.query", "attention.self.key", "attention.self.value", "attention.output.dense", "attention.output.LayerNorm", "intermediate.dense", "output.dense", "output.LayerNorm", ]: for w in ["weight", "bias"]: a_ = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.{layer}.{w}""" ] std_idx += 1 # Language Modeling Head ###s if args.model_type == "roberta": for layer in ["lm_head.decoder.weight", "lm_head.bias"]: a_ = state_dict[F"""{layer}"""] if args.vocab_transform: for w in ["weight", "bias"]: a_ = state_dict[F"""lm_head.dense.{w}"""] a_ = state_dict[F"""lm_head.layer_norm.{w}"""] elif args.model_type == "gpt2": for w in ["weight", "bias"]: a_ = state_dict[F"""{prefix}.ln_f.{w}"""] a_ = state_dict['lm_head.weight'] print(F"""N layers selected for distillation: {std_idx}""") print(F"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(F"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
175
1
from __future__ import annotations import numpy as np def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : np.ndarray ): '''simple docstring''' __snake_case , __snake_case : List[Any] = np.shape(__SCREAMING_SNAKE_CASE ) if rows != columns: __snake_case : Dict = ( """'table' has to be of square shaped array but got a """ F'''{rows}x{columns} array:\n{table}''' ) raise ValueError(__SCREAMING_SNAKE_CASE ) __snake_case : List[Any] = np.zeros((rows, columns) ) __snake_case : int = np.zeros((rows, columns) ) for i in range(__SCREAMING_SNAKE_CASE ): for j in range(__SCREAMING_SNAKE_CASE ): __snake_case : Dict = sum(lower[i][k] * upper[k][j] for k in range(__SCREAMING_SNAKE_CASE ) ) if upper[j][j] == 0: raise ArithmeticError("""No LU decomposition exists""" ) __snake_case : Tuple = (table[i][j] - total) / upper[j][j] __snake_case : Optional[int] = 1 for j in range(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): __snake_case : Any = sum(lower[i][k] * upper[k][j] for k in range(__SCREAMING_SNAKE_CASE ) ) __snake_case : Tuple = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
20
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING lowercase_ = logging.get_logger(__name__) @add_end_docstrings(__UpperCamelCase ) class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): def __init__( self : Dict , *_lowerCAmelCase : Dict , **_lowerCAmelCase : int ): super().__init__(*_lowerCAmelCase , **_lowerCAmelCase ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == """tf""" else MODEL_FOR_VISION_2_SEQ_MAPPING ) def snake_case__ ( self : List[Any] , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : Any=None , _lowerCAmelCase : List[str]=None ): __snake_case : Optional[Any] = {} __snake_case : int = {} if prompt is not None: __snake_case : Dict = prompt if generate_kwargs is not None: __snake_case : List[Any] = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: __snake_case : Optional[int] = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( """'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter,""" """ please use only one""" ) __snake_case : Any = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self : Optional[Any] , _lowerCAmelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **_lowerCAmelCase : Union[str, Any] ): return super().__call__(_lowerCAmelCase , **_lowerCAmelCase ) def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str]=None ): __snake_case : Optional[Any] = load_image(_lowerCAmelCase ) if prompt is not None: if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise ValueError( f'''Received an invalid text input, got - {type(_lowerCAmelCase )} - but expected a single string. ''' """Note also that one single text can be provided for conditional image to text generation.""" ) __snake_case : Tuple = self.model.config.model_type if model_type == "git": __snake_case : Tuple = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework ) __snake_case : Any = self.tokenizer(text=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ).input_ids __snake_case : Tuple = [self.tokenizer.cls_token_id] + input_ids __snake_case : int = torch.tensor(_lowerCAmelCase ).unsqueeze(0 ) model_inputs.update({"""input_ids""": input_ids} ) elif model_type == "pix2struct": __snake_case : Dict = self.image_processor(images=_lowerCAmelCase , header_text=_lowerCAmelCase , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation __snake_case : int = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework ) __snake_case : Optional[Any] = self.tokenizer(_lowerCAmelCase , return_tensors=self.framework ) model_inputs.update(_lowerCAmelCase ) else: raise ValueError(f'''Model type {model_type} does not support conditional text generation''' ) else: __snake_case : Tuple = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: __snake_case : int = None return model_inputs def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str=None ): # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs["""input_ids"""] , _lowerCAmelCase ) and all(x is None for x in model_inputs["""input_ids"""] ) ): __snake_case : List[Any] = None if generate_kwargs is None: __snake_case : Dict = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. __snake_case : Dict = model_inputs.pop(self.model.main_input_name ) __snake_case : Optional[int] = self.model.generate(_lowerCAmelCase , **_lowerCAmelCase , **_lowerCAmelCase ) return model_outputs def snake_case__ ( self : List[Any] , _lowerCAmelCase : str ): __snake_case : Union[str, Any] = [] for output_ids in model_outputs: __snake_case : Union[str, Any] = { """generated_text""": self.tokenizer.decode( _lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , ) } records.append(_lowerCAmelCase ) return records
20
1
"""simple docstring""" import fire from utils import calculate_rouge, save_json def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None , **_UpperCamelCase ): __lowerCAmelCase : Optional[int] = [x.strip() for x in open(_UpperCamelCase ).readlines()] __lowerCAmelCase : List[Any] = [x.strip() for x in open(_UpperCamelCase ).readlines()][: len(_UpperCamelCase )] __lowerCAmelCase : List[Any] = calculate_rouge(_UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ) if save_path is not None: save_json(_UpperCamelCase , _UpperCamelCase , indent=_UpperCamelCase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
86
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class A__ ( unittest.TestCase): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=30 , _SCREAMING_SNAKE_CASE=4_00 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=1 / 2_55 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , _SCREAMING_SNAKE_CASE=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p __lowerCAmelCase : Any = size if size is not None else {'shortest_edge': 18, 'longest_edge': 13_33} __lowerCAmelCase : Optional[int] = parent __lowerCAmelCase : int = batch_size __lowerCAmelCase : str = num_channels __lowerCAmelCase : Optional[int] = min_resolution __lowerCAmelCase : List[Any] = max_resolution __lowerCAmelCase : Union[str, Any] = do_resize __lowerCAmelCase : Optional[Any] = size __lowerCAmelCase : Dict = do_rescale __lowerCAmelCase : Optional[Any] = rescale_factor __lowerCAmelCase : Any = do_normalize __lowerCAmelCase : List[str] = image_mean __lowerCAmelCase : Union[str, Any] = image_std __lowerCAmelCase : Optional[int] = do_pad def __lowerCamelCase ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ): if not batched: __lowerCAmelCase : str = image_inputs[0] if isinstance(_SCREAMING_SNAKE_CASE , Image.Image ): __lowerCAmelCase , __lowerCAmelCase : Optional[int] = image.size else: __lowerCAmelCase , __lowerCAmelCase : Union[str, Any] = image.shape[1], image.shape[2] if w < h: __lowerCAmelCase : str = int(self.size['shortest_edge'] * h / w ) __lowerCAmelCase : Optional[int] = self.size['shortest_edge'] elif w > h: __lowerCAmelCase : str = self.size['shortest_edge'] __lowerCAmelCase : Union[str, Any] = int(self.size['shortest_edge'] * w / h ) else: __lowerCAmelCase : str = self.size['shortest_edge'] __lowerCAmelCase : Optional[Any] = self.size['shortest_edge'] else: __lowerCAmelCase : str = [] for image in image_inputs: __lowerCAmelCase , __lowerCAmelCase : List[Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __lowerCAmelCase : Any = max(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : item[0] )[0] __lowerCAmelCase : Dict = max(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class A__ ( _lowerCamelCase , unittest.TestCase): A_ : List[str] = DetrImageProcessor if is_vision_available() else None def __lowerCamelCase ( self ): __lowerCAmelCase : List[Any] = DetrImageProcessingTester(self ) @property def __lowerCamelCase ( self ): return self.image_processor_tester.prepare_image_processor_dict() def __lowerCamelCase ( self ): __lowerCAmelCase : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_mean' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_std' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_normalize' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_rescale' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'rescale_factor' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_resize' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'size' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_pad' ) ) def __lowerCamelCase ( self ): __lowerCAmelCase : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 13_33} ) self.assertEqual(image_processor.do_pad , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[Any] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=_SCREAMING_SNAKE_CASE ) self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} ) self.assertEqual(image_processor.do_pad , _SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): pass def __lowerCamelCase ( self ): # Initialize image_processing __lowerCAmelCase : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCAmelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input __lowerCAmelCase : int = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values __lowerCAmelCase , __lowerCAmelCase : List[Any] = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase , __lowerCAmelCase : int = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Union[str, Any] = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __lowerCamelCase ( self ): # Initialize image_processing __lowerCAmelCase : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowerCAmelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , numpify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input __lowerCAmelCase : Tuple = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values __lowerCAmelCase , __lowerCAmelCase : Tuple = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase : Union[str, Any] = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values __lowerCAmelCase , __lowerCAmelCase : List[Any] = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __lowerCamelCase ( self ): # Initialize image_processing __lowerCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowerCAmelCase : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , torchify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input __lowerCAmelCase : Any = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values __lowerCAmelCase , __lowerCAmelCase : Dict = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase : Tuple = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values __lowerCAmelCase , __lowerCAmelCase : Any = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def __lowerCamelCase ( self ): # prepare image and target __lowerCAmelCase : Union[str, Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: __lowerCAmelCase : Any = json.loads(f.read() ) __lowerCAmelCase : Tuple = {'image_id': 3_97_69, 'annotations': target} # encode them __lowerCAmelCase : Dict = DetrImageProcessor.from_pretrained('facebook/detr-resnet-50' ) __lowerCAmelCase : int = image_processing(images=_SCREAMING_SNAKE_CASE , annotations=_SCREAMING_SNAKE_CASE , return_tensors='pt' ) # verify pixel values __lowerCAmelCase : str = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['pixel_values'].shape , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : int = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) ) # verify area __lowerCAmelCase : List[str] = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _SCREAMING_SNAKE_CASE ) ) # verify boxes __lowerCAmelCase : Tuple = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : str = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _SCREAMING_SNAKE_CASE , atol=1E-3 ) ) # verify image_id __lowerCAmelCase : Dict = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _SCREAMING_SNAKE_CASE ) ) # verify is_crowd __lowerCAmelCase : Optional[int] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _SCREAMING_SNAKE_CASE ) ) # verify class_labels __lowerCAmelCase : Union[str, Any] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _SCREAMING_SNAKE_CASE ) ) # verify orig_size __lowerCAmelCase : int = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _SCREAMING_SNAKE_CASE ) ) # verify size __lowerCAmelCase : List[Any] = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _SCREAMING_SNAKE_CASE ) ) @slow def __lowerCamelCase ( self ): # prepare image, target and masks_path __lowerCAmelCase : Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: __lowerCAmelCase : Optional[int] = json.loads(f.read() ) __lowerCAmelCase : Optional[int] = {'file_name': '000000039769.png', 'image_id': 3_97_69, 'segments_info': target} __lowerCAmelCase : Union[str, Any] = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them __lowerCAmelCase : Optional[int] = DetrImageProcessor.from_pretrained('facebook/detr-resnet-50-panoptic' ) __lowerCAmelCase : Optional[Any] = image_processing(images=_SCREAMING_SNAKE_CASE , annotations=_SCREAMING_SNAKE_CASE , masks_path=_SCREAMING_SNAKE_CASE , return_tensors='pt' ) # verify pixel values __lowerCAmelCase : str = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['pixel_values'].shape , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Dict = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) ) # verify area __lowerCAmelCase : int = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _SCREAMING_SNAKE_CASE ) ) # verify boxes __lowerCAmelCase : Optional[int] = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Dict = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _SCREAMING_SNAKE_CASE , atol=1E-3 ) ) # verify image_id __lowerCAmelCase : str = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _SCREAMING_SNAKE_CASE ) ) # verify is_crowd __lowerCAmelCase : Optional[int] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _SCREAMING_SNAKE_CASE ) ) # verify class_labels __lowerCAmelCase : str = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _SCREAMING_SNAKE_CASE ) ) # verify masks __lowerCAmelCase : Dict = 82_28_73 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , _SCREAMING_SNAKE_CASE ) # verify orig_size __lowerCAmelCase : str = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _SCREAMING_SNAKE_CASE ) ) # verify size __lowerCAmelCase : List[Any] = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _SCREAMING_SNAKE_CASE ) )
86
1
def A (__A : int , __A : int ) -> str: """simple docstring""" return "\n".join( F"""{number} * {i} = {number * i}""" for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
7
import sys def A (__A : int ) -> Dict: """simple docstring""" UpperCAmelCase_ = len(__A ) UpperCAmelCase_ = [[0 for x in range(__A )] for x in range(__A )] UpperCAmelCase_ = [[0 for x in range(__A )] for x in range(__A )] for chain_length in range(2 , __A ): for a in range(1 , n - chain_length + 1 ): UpperCAmelCase_ = a + chain_length - 1 UpperCAmelCase_ = sys.maxsize for c in range(__A , __A ): UpperCAmelCase_ = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: UpperCAmelCase_ = cost UpperCAmelCase_ = c return matrix, sol def A (__A : Any , __A : Dict , __A : Optional[int] ) -> Optional[int]: """simple docstring""" if i == j: print('''A''' + str(__A ) , end=''' ''' ) else: print('''(''' , end=''' ''' ) print_optiomal_solution(__A , __A , optimal_solution[i][j] ) print_optiomal_solution(__A , optimal_solution[i][j] + 1 , __A ) print(''')''' , end=''' ''' ) def A () -> List[str]: """simple docstring""" UpperCAmelCase_ = [30, 35, 15, 5, 10, 20, 25] UpperCAmelCase_ = len(__A ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 UpperCAmelCase_ , UpperCAmelCase_ = matrix_chain_order(__A ) print('''No. of Operation required: ''' + str(matrix[1][n - 1] ) ) print_optiomal_solution(__A , 1 , n - 1 ) if __name__ == "__main__": main()
7
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { """sayakpaul/vit-msn-base""": """https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json""", # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class lowerCamelCase_ ( a_ ): """simple docstring""" a_ ="""vit_msn""" def __init__( self : Optional[Any] , _a : str=768 , _a : List[str]=12 , _a : List[Any]=12 , _a : int=3072 , _a : Dict="gelu" , _a : str=0.0 , _a : Optional[Any]=0.0 , _a : Any=0.02 , _a : Union[str, Any]=1e-06 , _a : Union[str, Any]=224 , _a : Optional[Any]=16 , _a : Tuple=3 , _a : Optional[Any]=True , **_a : List[Any] , ) -> str: super().__init__(**snake_case__ ) __lowerCamelCase : Dict = hidden_size __lowerCamelCase : List[str] = num_hidden_layers __lowerCamelCase : int = num_attention_heads __lowerCamelCase : Union[str, Any] = intermediate_size __lowerCamelCase : Optional[Any] = hidden_act __lowerCamelCase : Optional[Any] = hidden_dropout_prob __lowerCamelCase : List[str] = attention_probs_dropout_prob __lowerCamelCase : int = initializer_range __lowerCamelCase : Union[str, Any] = layer_norm_eps __lowerCamelCase : Optional[Any] = image_size __lowerCamelCase : Any = patch_size __lowerCamelCase : List[str] = num_channels __lowerCamelCase : List[str] = qkv_bias
208
from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) UpperCAmelCase : Tuple =2_9979_2458 # Symbols UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int =symbols("""ct x y z""") def _lowerCAmelCase (_lowerCAmelCase): if velocity > c: raise ValueError("Speed must not exceed light speed 299,792,458 [m/s]!") elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError("Speed must be greater than or equal to 1!") return velocity / c def _lowerCAmelCase (_lowerCAmelCase): return 1 / sqrt(1 - beta(_lowerCAmelCase) ** 2) def _lowerCAmelCase (_lowerCAmelCase): return np.array( [ [gamma(_lowerCAmelCase), -gamma(_lowerCAmelCase) * beta(_lowerCAmelCase), 0, 0], [-gamma(_lowerCAmelCase) * beta(_lowerCAmelCase), gamma(_lowerCAmelCase), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ]) def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase = None): # Ensure event is not empty if event is None: UpperCamelCase_ = np.array([ct, x, y, z]) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(_lowerCAmelCase) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: UpperCAmelCase : Optional[Any] =transform(2997_9245) print("""Example of four vector: """) print(F"ct' = {four_vector[0]}") print(F"x' = {four_vector[1]}") print(F"y' = {four_vector[2]}") print(F"z' = {four_vector[3]}") # Substitute symbols with numerical values UpperCAmelCase : List[Any] ={ct: c, x: 1, y: 1, z: 1} UpperCAmelCase : Optional[Any] =[four_vector[i].subs(sub_dict) for i in range(4)] print(F"\n{numerical_vector}")
128
0
import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def UpperCAmelCase_ (_lowerCAmelCase : list , _lowerCAmelCase : list , _lowerCAmelCase : list , _lowerCAmelCase : list , _lowerCAmelCase : list ): __UpperCamelCase : Tuple = np.array([[1, item, train_mtch[i]] for i, item in enumerate(_lowerCAmelCase )] ) __UpperCamelCase : Tuple = np.array(_lowerCAmelCase ) __UpperCamelCase : int = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , _lowerCAmelCase ) ) , x.transpose() ) , _lowerCAmelCase ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def UpperCAmelCase_ (_lowerCAmelCase : list , _lowerCAmelCase : list , _lowerCAmelCase : list ): __UpperCamelCase : Any = (1, 2, 1) __UpperCamelCase : Dict = (1, 1, 0, 7) __UpperCamelCase : Dict = SARIMAX( _lowerCAmelCase , exog=_lowerCAmelCase , order=_lowerCAmelCase , seasonal_order=_lowerCAmelCase ) __UpperCamelCase : str = model.fit(disp=_lowerCAmelCase , maxiter=6_00 , method="nm" ) __UpperCamelCase : Dict = model_fit.predict(1 , len(_lowerCAmelCase ) , exog=[test_match] ) return result[0] def UpperCAmelCase_ (_lowerCAmelCase : list , _lowerCAmelCase : list , _lowerCAmelCase : list ): __UpperCamelCase : Optional[Any] = SVR(kernel="rbf" , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(_lowerCAmelCase , _lowerCAmelCase ) __UpperCamelCase : Union[str, Any] = regressor.predict(_lowerCAmelCase ) return y_pred[0] def UpperCAmelCase_ (_lowerCAmelCase : list ): train_user.sort() __UpperCamelCase : Optional[int] = np.percentile(_lowerCAmelCase , 25 ) __UpperCamelCase : Optional[int] = np.percentile(_lowerCAmelCase , 75 ) __UpperCamelCase : Any = qa - qa __UpperCamelCase : Optional[int] = qa - (iqr * 0.1) return low_lim def UpperCAmelCase_ (_lowerCAmelCase : list , _lowerCAmelCase : float ): __UpperCamelCase : Optional[Any] = 0 __UpperCamelCase : List[str] = 0 for i in list_vote: if i > actual_result: __UpperCamelCase : Union[str, Any] = not_safe + 1 else: if abs(abs(_lowerCAmelCase ) - abs(_lowerCAmelCase ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) lowercase : Optional[Any] = [[18231, 0.0, 1], [22621, 1.0, 2], [15675, 0.0, 3], [23583, 1.0, 4]] lowercase : Optional[int] = pd.DataFrame( data_input, columns=["total_user", "total_even", "days"] ) lowercase : Optional[int] = Normalizer().fit_transform(data_input_df.values) # split data lowercase : List[Any] = normalize_df[:, 2].tolist() lowercase : Dict = normalize_df[:, 0].tolist() lowercase : Union[str, Any] = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) lowercase : Any = normalize_df[:, [1, 2]].tolist() lowercase : int = x[: len(x) - 1] lowercase : Dict = x[len(x) - 1 :] # for linear regression & sarimax lowercase : str = total_date[: len(total_date) - 1] lowercase : Optional[int] = total_user[: len(total_user) - 1] lowercase : int = total_match[: len(total_match) - 1] lowercase : int = total_date[len(total_date) - 1 :] lowercase : List[Any] = total_user[len(total_user) - 1 :] lowercase : Union[str, Any] = total_match[len(total_match) - 1 :] # voting system with forecasting lowercase : str = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data lowercase : Optional[Any] = "" if data_safety_checker(res_vote, tst_user) else "not " print("Today's data is {not_str}safe.")
171
import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , __UpperCamelCase , __UpperCamelCase=13 , __UpperCamelCase=7 , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=False , __UpperCamelCase=True , __UpperCamelCase=99 , __UpperCamelCase=32 , __UpperCamelCase=5 , __UpperCamelCase=4 , __UpperCamelCase=37 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=5_12 , __UpperCamelCase=16 , __UpperCamelCase=2 , __UpperCamelCase=0.02 , __UpperCamelCase=3 , __UpperCamelCase=4 , __UpperCamelCase=None , ) -> Tuple: '''simple docstring''' __UpperCamelCase : Dict = parent __UpperCamelCase : List[str] = batch_size __UpperCamelCase : str = seq_length __UpperCamelCase : List[Any] = is_training __UpperCamelCase : str = use_input_mask __UpperCamelCase : int = use_token_type_ids __UpperCamelCase : str = use_labels __UpperCamelCase : List[str] = vocab_size __UpperCamelCase : List[str] = hidden_size __UpperCamelCase : List[Any] = num_hidden_layers __UpperCamelCase : Union[str, Any] = num_attention_heads __UpperCamelCase : Optional[Any] = intermediate_size __UpperCamelCase : Optional[int] = hidden_act __UpperCamelCase : List[str] = hidden_dropout_prob __UpperCamelCase : List[Any] = attention_probs_dropout_prob __UpperCamelCase : List[str] = max_position_embeddings __UpperCamelCase : Union[str, Any] = type_vocab_size __UpperCamelCase : Optional[Any] = type_sequence_label_size __UpperCamelCase : Union[str, Any] = initializer_range __UpperCamelCase : Union[str, Any] = num_labels __UpperCamelCase : Any = num_choices __UpperCamelCase : Optional[Any] = scope def __lowerCamelCase ( self ) -> int: '''simple docstring''' __UpperCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase : Tuple = None if self.use_input_mask: __UpperCamelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase : Optional[int] = None if self.use_token_type_ids: __UpperCamelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCamelCase : List[str] = None __UpperCamelCase : Optional[int] = None __UpperCamelCase : int = None if self.use_labels: __UpperCamelCase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase : List[str] = ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase : Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCamelCase ( self ) -> List[str]: '''simple docstring''' return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> int: '''simple docstring''' __UpperCamelCase : Union[str, Any] = LlamaModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() __UpperCamelCase : List[Any] = model(__UpperCamelCase , attention_mask=__UpperCamelCase ) __UpperCamelCase : Any = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ) -> List[str]: '''simple docstring''' __UpperCamelCase : int = True __UpperCamelCase : Tuple = LlamaModel(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() __UpperCamelCase : Optional[int] = model( __UpperCamelCase , attention_mask=__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , encoder_attention_mask=__UpperCamelCase , ) __UpperCamelCase : Union[str, Any] = model( __UpperCamelCase , attention_mask=__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , ) __UpperCamelCase : Dict = model(__UpperCamelCase , attention_mask=__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ) -> Any: '''simple docstring''' __UpperCamelCase : Optional[Any] = LlamaForCausalLM(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() __UpperCamelCase : Union[str, Any] = model(__UpperCamelCase , attention_mask=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ) -> Union[str, Any]: '''simple docstring''' __UpperCamelCase : Any = True __UpperCamelCase : Optional[Any] = True __UpperCamelCase : List[str] = LlamaForCausalLM(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() # first forward pass __UpperCamelCase : Optional[Any] = model( __UpperCamelCase , attention_mask=__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , encoder_attention_mask=__UpperCamelCase , use_cache=__UpperCamelCase , ) __UpperCamelCase : str = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __UpperCamelCase : str = ids_tensor((self.batch_size, 3) , config.vocab_size ) __UpperCamelCase : int = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __UpperCamelCase : Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) __UpperCamelCase : Union[str, Any] = torch.cat([input_mask, next_mask] , dim=-1 ) __UpperCamelCase : Any = model( __UpperCamelCase , attention_mask=__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , encoder_attention_mask=__UpperCamelCase , output_hidden_states=__UpperCamelCase , )["hidden_states"][0] __UpperCamelCase : List[Any] = model( __UpperCamelCase , attention_mask=__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , encoder_attention_mask=__UpperCamelCase , past_key_values=__UpperCamelCase , output_hidden_states=__UpperCamelCase , )["hidden_states"][0] # select random slice __UpperCamelCase : str = ids_tensor((1,) , output_from_past.shape[-1] ).item() __UpperCamelCase : Any = output_from_no_past[:, -3:, random_slice_idx].detach() __UpperCamelCase : Tuple = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1E-3 ) ) def __lowerCamelCase ( self ) -> List[Any]: '''simple docstring''' __UpperCamelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) : Optional[int] = config_and_inputs __UpperCamelCase : int = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" lowercase : List[str] = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () lowercase : Dict = (LlamaForCausalLM,) if is_torch_available() else () lowercase : Tuple = ( { 'feature-extraction': LlamaModel, 'text-classification': LlamaForSequenceClassification, 'text-generation': LlamaForCausalLM, 'zero-shot': LlamaForSequenceClassification, } if is_torch_available() else {} ) lowercase : Tuple = False lowercase : List[Any] = False def __lowerCamelCase ( self ) -> List[str]: '''simple docstring''' __UpperCamelCase : Union[str, Any] = LlamaModelTester(self ) __UpperCamelCase : List[str] = ConfigTester(self , config_class=__UpperCamelCase , hidden_size=37 ) def __lowerCamelCase ( self ) -> int: '''simple docstring''' self.config_tester.run_common_tests() def __lowerCamelCase ( self ) -> int: '''simple docstring''' __UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def __lowerCamelCase ( self ) -> int: '''simple docstring''' __UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __UpperCamelCase : Tuple = type self.model_tester.create_and_check_model(*__UpperCamelCase ) def __lowerCamelCase ( self ) -> List[Any]: '''simple docstring''' __UpperCamelCase , __UpperCamelCase : str = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase : Optional[int] = 3 __UpperCamelCase : int = input_dict["input_ids"] __UpperCamelCase : Optional[Any] = input_ids.ne(1 ).to(__UpperCamelCase ) __UpperCamelCase : int = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __UpperCamelCase : List[str] = LlamaForSequenceClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() __UpperCamelCase : Optional[Any] = model(__UpperCamelCase , attention_mask=__UpperCamelCase , labels=__UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __lowerCamelCase ( self ) -> List[str]: '''simple docstring''' __UpperCamelCase , __UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase : List[str] = 3 __UpperCamelCase : Any = "single_label_classification" __UpperCamelCase : List[str] = input_dict["input_ids"] __UpperCamelCase : Tuple = input_ids.ne(1 ).to(__UpperCamelCase ) __UpperCamelCase : int = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __UpperCamelCase : Optional[int] = LlamaForSequenceClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() __UpperCamelCase : str = model(__UpperCamelCase , attention_mask=__UpperCamelCase , labels=__UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __lowerCamelCase ( self ) -> int: '''simple docstring''' __UpperCamelCase , __UpperCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase : Dict = 3 __UpperCamelCase : Tuple = "multi_label_classification" __UpperCamelCase : Any = input_dict["input_ids"] __UpperCamelCase : str = input_ids.ne(1 ).to(__UpperCamelCase ) __UpperCamelCase : Any = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) __UpperCamelCase : Optional[Any] = LlamaForSequenceClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() __UpperCamelCase : int = model(__UpperCamelCase , attention_mask=__UpperCamelCase , labels=__UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("LLaMA buffers include complex numbers, which breaks this test" ) def __lowerCamelCase ( self ) -> List[Any]: '''simple docstring''' pass @parameterized.expand([("linear",), ("dynamic",)] ) def __lowerCamelCase ( self , __UpperCamelCase ) -> List[str]: '''simple docstring''' __UpperCamelCase , __UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase : Any = ids_tensor([1, 10] , config.vocab_size ) __UpperCamelCase : int = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __UpperCamelCase : Union[str, Any] = LlamaModel(__UpperCamelCase ) original_model.to(__UpperCamelCase ) original_model.eval() __UpperCamelCase : int = original_model(__UpperCamelCase ).last_hidden_state __UpperCamelCase : List[Any] = original_model(__UpperCamelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __UpperCamelCase : Dict = {"type": scaling_type, "factor": 10.0} __UpperCamelCase : Optional[Any] = LlamaModel(__UpperCamelCase ) scaled_model.to(__UpperCamelCase ) scaled_model.eval() __UpperCamelCase : Optional[int] = scaled_model(__UpperCamelCase ).last_hidden_state __UpperCamelCase : Tuple = scaled_model(__UpperCamelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1E-5 ) ) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @unittest.skip("Logits are not exactly the same, once we fix the instabalities somehow, will update!" ) @slow def __lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' __UpperCamelCase : Tuple = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] __UpperCamelCase : Tuple = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf" , device_map="auto" ) __UpperCamelCase : Tuple = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 __UpperCamelCase : List[str] = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] ) torch.testing.assert_close(out.mean(-1 ) , __UpperCamelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __UpperCamelCase : Tuple = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __UpperCamelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip("Logits are not exactly the same, once we fix the instabalities somehow, will update!" ) @slow def __lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' __UpperCamelCase : List[Any] = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] __UpperCamelCase : Dict = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-13b-hf" , device_map="auto" ) __UpperCamelCase : str = model(torch.tensor(__UpperCamelCase ) ) # Expected mean on dim = -1 __UpperCamelCase : int = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] ) torch.testing.assert_close(out.mean(-1 ) , __UpperCamelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __UpperCamelCase : Any = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __UpperCamelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip("Logits are not exactly the same, once we fix the instabalities somehow, will update!" ) @slow def __lowerCamelCase ( self ) -> str: '''simple docstring''' __UpperCamelCase : Dict = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] __UpperCamelCase : List[Any] = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-13b-chat-hf" , device_map="auto" ) __UpperCamelCase : Any = model(torch.tensor(__UpperCamelCase ) ) # Expected mean on dim = -1 __UpperCamelCase : Any = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] ) torch.testing.assert_close(out.mean(-1 ) , __UpperCamelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __UpperCamelCase : Union[str, Any] = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , __UpperCamelCase , atol=1E-2 , rtol=1E-2 ) @unittest.skip( "Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test" ) @slow def __lowerCamelCase ( self ) -> Tuple: '''simple docstring''' __UpperCamelCase : Optional[int] = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] __UpperCamelCase : Optional[int] = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-70b-hf" , device_map="auto" ) __UpperCamelCase : Optional[Any] = model(torch.tensor(__UpperCamelCase ) ) __UpperCamelCase : Dict = torch.tensor( [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , __UpperCamelCase , atol=1E-2 , rtol=1E-2 ) # fmt: off __UpperCamelCase : Tuple = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __UpperCamelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip("Model is curently gated" ) @slow def __lowerCamelCase ( self ) -> Any: '''simple docstring''' __UpperCamelCase : List[str] = "Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the \"princi" __UpperCamelCase : List[str] = "Simply put, the theory of relativity states that " __UpperCamelCase : Optional[Any] = LlamaTokenizer.from_pretrained("meta-llama/Llama-2-13b-chat-hf" ) __UpperCamelCase : Dict = tokenizer.encode(__UpperCamelCase , return_tensors="pt" ) __UpperCamelCase : Optional[Any] = LlamaForCausalLM.from_pretrained( "meta-llama/Llama-2-13b-chat-hf" , device_map="sequential" , use_safetensors=__UpperCamelCase ) # greedy generation outputs __UpperCamelCase : List[Any] = model.generate(__UpperCamelCase , max_new_tokens=64 , top_p=__UpperCamelCase , temperature=1 , do_sample=__UpperCamelCase ) __UpperCamelCase : Optional[Any] = tokenizer.decode(generated_ids[0] , skip_special_tokens=__UpperCamelCase ) self.assertEqual(__UpperCamelCase , __UpperCamelCase )
171
1
_UpperCAmelCase : Any = tuple[float, float, float] _UpperCAmelCase : Dict = tuple[float, float, float] def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase ): lowercase :Tuple = end_pointa[0] - end_pointa[0] lowercase :Union[str, Any] = end_pointa[1] - end_pointa[1] lowercase :Optional[int] = end_pointa[2] - end_pointa[2] return (x, y, z) def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase ): lowercase :List[Any] = ab[1] * ac[2] - ab[2] * ac[1] # *i lowercase :Union[str, Any] = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j lowercase :List[str] = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase ): return tuple(round(lowerCamelCase, lowerCamelCase ) for x in vector ) == (0, 0, 0) def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = 10 ): lowercase :List[str] = create_vector(lowerCamelCase, lowerCamelCase ) lowercase :Any = create_vector(lowerCamelCase, lowerCamelCase ) return is_zero_vector(get_ad_vectors_cross(lowerCamelCase, lowerCamelCase ), lowerCamelCase )
236
import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class __lowerCAmelCase ( datasets.BuilderConfig): _a = None class __lowerCAmelCase ( datasets.ArrowBasedBuilder): _a = PandasConfig def SCREAMING_SNAKE_CASE ( self: Any ): return datasets.DatasetInfo(features=self.config.features ) def SCREAMING_SNAKE_CASE ( self: str , _lowerCAmelCase: List[str] ): if not self.config.data_files: raise ValueError(F"At least one data file must be specified, but got data_files={self.config.data_files}" ) lowercase :int = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_lowerCAmelCase , (str, list, tuple) ): lowercase :Union[str, Any] = data_files if isinstance(_lowerCAmelCase , _lowerCAmelCase ): lowercase :str = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive lowercase :Optional[int] = [dl_manager.iter_files(_lowerCAmelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] lowercase :List[Any] = [] for split_name, files in data_files.items(): if isinstance(_lowerCAmelCase , _lowerCAmelCase ): lowercase :Optional[Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive lowercase :Optional[Any] = [dl_manager.iter_files(_lowerCAmelCase ) for file in files] splits.append(datasets.SplitGenerator(name=_lowerCAmelCase , gen_kwargs={"files": files} ) ) return splits def SCREAMING_SNAKE_CASE ( self: int , _lowerCAmelCase: pa.Table ): if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example lowercase :Any = table_cast(_lowerCAmelCase , self.config.features.arrow_schema ) return pa_table def SCREAMING_SNAKE_CASE ( self: Optional[int] , _lowerCAmelCase: Union[str, Any] ): for i, file in enumerate(itertools.chain.from_iterable(_lowerCAmelCase ) ): with open(_lowerCAmelCase , "rb" ) as f: lowercase :int = pa.Table.from_pandas(pd.read_pickle(_lowerCAmelCase ) ) yield i, self._cast_table(_lowerCAmelCase )
236
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _a : Optional[int]= logging.get_logger(__name__) _a : Any= { "sayakpaul/vit-msn-base": "https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json", # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class UpperCamelCase ( _snake_case ): UpperCAmelCase : Tuple = """vit_msn""" def __init__(self : Dict , _A : Any=7_68 , _A : Tuple=12 , _A : List[Any]=12 , _A : Any=30_72 , _A : List[Any]="gelu" , _A : str=0.0 , _A : List[Any]=0.0 , _A : Union[str, Any]=0.02 , _A : List[Any]=1E-06 , _A : Any=2_24 , _A : int=16 , _A : Dict=3 , _A : int=True , **_A : Union[str, Any] , ) -> Optional[Any]: super().__init__(**UpperCamelCase__) __snake_case : Dict = hidden_size __snake_case : Optional[Any] = num_hidden_layers __snake_case : List[str] = num_attention_heads __snake_case : Any = intermediate_size __snake_case : List[str] = hidden_act __snake_case : Any = hidden_dropout_prob __snake_case : Union[str, Any] = attention_probs_dropout_prob __snake_case : Optional[int] = initializer_range __snake_case : List[str] = layer_norm_eps __snake_case : int = image_size __snake_case : Any = patch_size __snake_case : str = num_channels __snake_case : Optional[Any] = qkv_bias
362
"""simple docstring""" from __future__ import annotations import math def __UpperCAmelCase ( UpperCAmelCase_ : int ) -> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(UpperCAmelCase_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True _a : Any= [num for num in range(3, 100_001, 2) if not is_prime(num)] def __UpperCAmelCase ( UpperCAmelCase_ : int ) -> list[int]: '''simple docstring''' if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): raise ValueError('n must be an integer' ) if n <= 0: raise ValueError('n must be >= 0' ) __snake_case : int = [] for num in range(len(UpperCAmelCase_ ) ): __snake_case : List[str] = 0 while 2 * i * i <= odd_composites[num]: __snake_case : List[Any] = odd_composites[num] - 2 * i * i if is_prime(UpperCAmelCase_ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(UpperCAmelCase_ ) == n: return list_nums return [] def __UpperCAmelCase ( ) -> int: '''simple docstring''' return compute_nums(1 )[0] if __name__ == "__main__": print(f'''{solution() = }''')
95
0
"""simple docstring""" from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def snake_case ( A__ ): if isinstance(A__ ,collections.abc.Iterable ): return x return (x, x) @require_tf class UpperCamelCase_ : def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] ) -> int: pass def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Tuple: pass def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: pass def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[Any]=None , **lowerCAmelCase_ : Union[str, Any] ) -> Any: UpperCAmelCase_ : List[str] = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : Optional[Any] = TFVisionTextDualEncoderModel(lowerCAmelCase_ ) UpperCAmelCase_ : Tuple = model(input_ids=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ ) self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], config.projection_dim) ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : int=None , **lowerCAmelCase_ : str ) -> str: UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.get_vision_text_model(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : Union[str, Any] = TFVisionTextDualEncoderModel(vision_model=lowerCAmelCase_ , text_model=lowerCAmelCase_ ) UpperCAmelCase_ : Dict = model(input_ids=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ ) self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : List[Any]=None , **lowerCAmelCase_ : str ) -> Optional[Any]: UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self.get_vision_text_model(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : Optional[Any] = {"vision_model": vision_model, "text_model": text_model} UpperCAmelCase_ : Optional[int] = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCAmelCase_ ) UpperCAmelCase_ : Optional[Any] = model(input_ids=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ ) self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str]=None , **lowerCAmelCase_ : List[str] ) -> Union[str, Any]: UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.get_vision_text_model(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : Optional[int] = TFVisionTextDualEncoderModel(vision_model=lowerCAmelCase_ , text_model=lowerCAmelCase_ ) UpperCAmelCase_ : Optional[Any] = model(input_ids=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ ) UpperCAmelCase_ : Any = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCAmelCase_ ) UpperCAmelCase_ : Tuple = TFVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase_ ) UpperCAmelCase_ : List[Any] = model(input_ids=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ ) UpperCAmelCase_ : List[str] = after_output[0].numpy() UpperCAmelCase_ : Any = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCAmelCase_ , 1e-5 ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : int , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[Any]=None , **lowerCAmelCase_ : int ) -> Union[str, Any]: UpperCAmelCase_ , UpperCAmelCase_ : Dict = self.get_vision_text_model(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : Tuple = TFVisionTextDualEncoderModel(vision_model=lowerCAmelCase_ , text_model=lowerCAmelCase_ ) UpperCAmelCase_ : List[str] = model( input_ids=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , output_attentions=lowerCAmelCase_ ) UpperCAmelCase_ : str = output.vision_model_output.attentions self.assertEqual(len(lowerCAmelCase_ ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase_ : Dict = to_atuple(vision_model.config.image_size ) UpperCAmelCase_ : Optional[Any] = to_atuple(vision_model.config.patch_size ) UpperCAmelCase_ : Union[str, Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) UpperCAmelCase_ : Dict = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) UpperCAmelCase_ : Tuple = output.text_model_output.attentions self.assertEqual(len(lowerCAmelCase_ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : float ) -> str: UpperCAmelCase_ : Dict = np.abs((a - b) ).max() self.assertLessEqual(lowerCAmelCase_ , lowerCAmelCase_ , f"""Difference between torch and flax is {diff} (>= {tol}).""" ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: UpperCAmelCase_ : List[Any] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: UpperCAmelCase_ : int = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: UpperCAmelCase_ : Tuple = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Tuple: UpperCAmelCase_ : str = self.prepare_config_and_inputs() self.check_save_load(**lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: UpperCAmelCase_ : Tuple = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**lowerCAmelCase_ ) @slow def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]: UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self.get_pretrained_model_and_inputs() UpperCAmelCase_ : str = model_a(**lowerCAmelCase_ ) UpperCAmelCase_ : Optional[Any] = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(lowerCAmelCase_ ) UpperCAmelCase_ : Optional[int] = TFVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase_ ) UpperCAmelCase_ : str = model_a(**lowerCAmelCase_ ) UpperCAmelCase_ : str = after_outputs[0].numpy() UpperCAmelCase_ : Optional[int] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCAmelCase_ , 1e-5 ) @require_tf class UpperCamelCase_ (__A , unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: UpperCAmelCase_ : List[str] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( "hf-internal-testing/tiny-random-vit" , "hf-internal-testing/tiny-random-bert" ) UpperCAmelCase_ : Optional[int] = 13 UpperCAmelCase_ : Optional[Any] = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) UpperCAmelCase_ : int = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) UpperCAmelCase_ : Tuple = random_attention_mask([batch_size, 4] ) UpperCAmelCase_ : Optional[int] = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[Any] ) -> List[Any]: UpperCAmelCase_ : int = TFViTModel(lowerCAmelCase_ , name="vision_model" ) UpperCAmelCase_ : Optional[Any] = TFBertModel(lowerCAmelCase_ , name="text_model" ) return vision_model, text_model def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: UpperCAmelCase_ : List[Any] = TFViTModelTester(self ) UpperCAmelCase_ : List[Any] = TFBertModelTester(self ) UpperCAmelCase_ : Optional[int] = vit_model_tester.prepare_config_and_inputs() UpperCAmelCase_ : Any = bert_model_tester.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = vision_config_and_inputs ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : List[Any] = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class UpperCamelCase_ (__A , unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: # DeiT repo doesn't have TF weights, but we don't actually use the weights at all so let's # just reinitialize it. UpperCAmelCase_ : Tuple = TFVisionTextDualEncoderModel.from_vision_text_pretrained( "Rocketknight1/tiny-random-deit-tf" , "hf-internal-testing/tiny-random-roberta" ) UpperCAmelCase_ : Any = 13 UpperCAmelCase_ : List[str] = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) UpperCAmelCase_ : Optional[Any] = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) UpperCAmelCase_ : Union[str, Any] = random_attention_mask([batch_size, 4] ) UpperCAmelCase_ : List[str] = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int=None , **lowerCAmelCase_ : Optional[Any] ) -> Union[str, Any]: UpperCAmelCase_ , UpperCAmelCase_ : Dict = self.get_vision_text_model(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : Union[str, Any] = TFVisionTextDualEncoderModel(vision_model=lowerCAmelCase_ , text_model=lowerCAmelCase_ ) UpperCAmelCase_ : List[Any] = model( input_ids=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , output_attentions=lowerCAmelCase_ ) UpperCAmelCase_ : Tuple = output.vision_model_output.attentions self.assertEqual(len(lowerCAmelCase_ ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) UpperCAmelCase_ : List[Any] = to_atuple(vision_model.config.image_size ) UpperCAmelCase_ : Union[str, Any] = to_atuple(vision_model.config.patch_size ) UpperCAmelCase_ : Optional[int] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) UpperCAmelCase_ : str = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) UpperCAmelCase_ : List[str] = output.text_model_output.attentions self.assertEqual(len(lowerCAmelCase_ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple ) -> Union[str, Any]: UpperCAmelCase_ : Optional[Any] = TFDeiTModel(lowerCAmelCase_ , name="vision_model" ) UpperCAmelCase_ : str = TFRobertaModel(lowerCAmelCase_ , name="text_model" ) return vision_model, text_model def _SCREAMING_SNAKE_CASE ( self : int ) -> str: UpperCAmelCase_ : Dict = TFDeiTModelTester(self ) UpperCAmelCase_ : Optional[Any] = TFRobertaModelTester(self ) UpperCAmelCase_ : Union[str, Any] = vit_model_tester.prepare_config_and_inputs() UpperCAmelCase_ : Tuple = bert_model_tester.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Dict = vision_config_and_inputs ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Optional[int] = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class UpperCamelCase_ (__A , unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: UpperCAmelCase_ : Optional[int] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( "Rocketknight1/tiny-random-clip-tf" , "hf-internal-testing/tiny-random-bert" ) UpperCAmelCase_ : List[Any] = 13 UpperCAmelCase_ : Dict = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) UpperCAmelCase_ : Optional[int] = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) UpperCAmelCase_ : Optional[Any] = random_attention_mask([batch_size, 4] ) UpperCAmelCase_ : Dict = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[int] ) -> Optional[int]: UpperCAmelCase_ : Tuple = TFCLIPVisionModel(lowerCAmelCase_ , name="vision_model" ) UpperCAmelCase_ : Optional[int] = TFBertModel(lowerCAmelCase_ , name="text_model" ) return vision_model, text_model def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Union[str, Any]: UpperCAmelCase_ : str = TFCLIPVisionModelTester(self ) UpperCAmelCase_ : str = TFBertModelTester(self ) UpperCAmelCase_ : str = clip_model_tester.prepare_config_and_inputs() UpperCAmelCase_ : int = bert_model_tester.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ : List[str] = vision_config_and_inputs ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Optional[int] = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class UpperCamelCase_ (unittest.TestCase ): @slow def _SCREAMING_SNAKE_CASE ( self : str ) -> int: UpperCAmelCase_ : Any = TFVisionTextDualEncoderModel.from_pretrained( "clip-italian/clip-italian" , logit_scale_init_value=1.0 , from_pt=lowerCAmelCase_ ) UpperCAmelCase_ : Tuple = VisionTextDualEncoderProcessor.from_pretrained("clip-italian/clip-italian" ) UpperCAmelCase_ : str = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) UpperCAmelCase_ : Dict = processor( text=["una foto di un gatto", "una foto di un cane"] , images=lowerCAmelCase_ , padding=lowerCAmelCase_ , return_tensors="np" ) UpperCAmelCase_ : Any = model(**lowerCAmelCase_ ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) UpperCAmelCase_ : List[Any] = np.array([[1.2_2_8_4_7_2_7, 0.3_1_0_4_1_2_2]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , lowerCAmelCase_ , atol=1e-3 ) )
268
"""simple docstring""" from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING lowerCamelCase_ = logging.get_logger(__name__) @add_end_docstrings(__A ) class UpperCamelCase_ (__A ): def __init__( self : int , *lowerCAmelCase_ : Tuple , **lowerCAmelCase_ : List[str] ) -> Optional[Any]: super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ ) requires_backends(self , "vision" ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase_ : Optional[int]=None ) -> List[Any]: UpperCAmelCase_ : str = {} if top_k is not None: UpperCAmelCase_ : List[str] = top_k return {}, {}, postprocess_params def __call__( self : str , lowerCAmelCase_ : Union[str, List[str], "Image.Image", List["Image.Image"]] , **lowerCAmelCase_ : Any ) -> Tuple: return super().__call__(lowerCAmelCase_ , **lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase_ : str ) -> Any: UpperCAmelCase_ : Tuple = load_image(lowerCAmelCase_ ) UpperCAmelCase_ : Dict = self.image_processor(images=lowerCAmelCase_ , return_tensors=self.framework ) return model_inputs def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase_ : Dict ) -> str: UpperCAmelCase_ : Any = self.model(**lowerCAmelCase_ ) return model_outputs def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int]=5 ) -> Any: if top_k > self.model.config.num_labels: UpperCAmelCase_ : int = self.model.config.num_labels if self.framework == "pt": UpperCAmelCase_ : str = model_outputs.logits.softmax(-1 )[0] UpperCAmelCase_ , UpperCAmelCase_ : Tuple = probs.topk(lowerCAmelCase_ ) elif self.framework == "tf": UpperCAmelCase_ : str = stable_softmax(model_outputs.logits , axis=-1 )[0] UpperCAmelCase_ : Union[str, Any] = tf.math.top_k(lowerCAmelCase_ , k=lowerCAmelCase_ ) UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(f"""Unsupported framework: {self.framework}""" ) UpperCAmelCase_ : int = scores.tolist() UpperCAmelCase_ : Optional[Any] = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(lowerCAmelCase_ , lowerCAmelCase_ )]
268
1
'''simple docstring''' import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase__ ( a , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = MgpstrTokenizer lowerCAmelCase__ = False lowerCAmelCase__ = {} lowerCAmelCase__ = False def UpperCAmelCase__ ( self : Optional[int] ) -> int: """simple docstring""" super().setUp() # fmt: off __SCREAMING_SNAKE_CASE = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] # fmt: on __SCREAMING_SNAKE_CASE = dict(zip(_A , range(len(_A ) ) ) ) __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_A ) + """\n""" ) def UpperCAmelCase__ ( self : Union[str, Any] , **__SCREAMING_SNAKE_CASE : str ) -> Optional[int]: """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_A ) def UpperCAmelCase__ ( self : Tuple , __SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = 'tester' __SCREAMING_SNAKE_CASE = 'tester' return input_text, output_text @unittest.skip("""MGP-STR always lower cases letters.""" ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" pass def UpperCAmelCase__ ( self : str ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = self.get_tokenizers(do_lower_case=_A ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): __SCREAMING_SNAKE_CASE = '[SPECIAL_TOKEN]' tokenizer.add_special_tokens({"""cls_token""": special_token} ) __SCREAMING_SNAKE_CASE = tokenizer.encode([special_token] , add_special_tokens=_A ) self.assertEqual(len(_A ) , 1 ) __SCREAMING_SNAKE_CASE = tokenizer.decode(_A , skip_special_tokens=_A ) self.assertTrue(special_token not in decoded ) def UpperCAmelCase__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): __SCREAMING_SNAKE_CASE = self.get_input_output_texts(_A ) __SCREAMING_SNAKE_CASE = tokenizer.tokenize(_A ) __SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(_A ) __SCREAMING_SNAKE_CASE = tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) __SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(_A ) self.assertNotEqual(len(_A ) , 0 ) __SCREAMING_SNAKE_CASE = tokenizer.decode(_A ) self.assertIsInstance(_A , _A ) self.assertEqual(text_a.replace(""" """ , """""" ) , _A ) @unittest.skip("""MGP-STR tokenizer only handles one sequence.""" ) def UpperCAmelCase__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip("""inputs cannot be pretokenized in MgpstrTokenizer""" ) def UpperCAmelCase__ ( self : Any ) -> Optional[int]: """simple docstring""" pass
357
'''simple docstring''' import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version UpperCAmelCase : Any = logging.getLogger(__name__) require_version('pytorch_lightning>=1.0.4') UpperCAmelCase : Optional[Any] = { 'base': AutoModel, 'sequence-classification': AutoModelForSequenceClassification, 'question-answering': AutoModelForQuestionAnswering, 'pretraining': AutoModelForPreTraining, 'token-classification': AutoModelForTokenClassification, 'language-modeling': AutoModelWithLMHead, 'summarization': AutoModelForSeqaSeqLM, 'translation': AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization UpperCAmelCase : Dict = { 'linear': get_linear_schedule_with_warmup, 'cosine': get_cosine_schedule_with_warmup, 'cosine_w_restarts': get_cosine_with_hard_restarts_schedule_with_warmup, 'polynomial': get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } UpperCAmelCase : Optional[Any] = sorted(arg_to_scheduler.keys()) UpperCAmelCase : str = '{' + ', '.join(arg_to_scheduler_choices) + '}' class lowerCAmelCase__ ( pl.LightningModule ): """simple docstring""" def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : argparse.Namespace , __SCREAMING_SNAKE_CASE : Optional[Any]=None , __SCREAMING_SNAKE_CASE : Dict="base" , __SCREAMING_SNAKE_CASE : Dict=None , __SCREAMING_SNAKE_CASE : str=None , __SCREAMING_SNAKE_CASE : List[str]=None , **__SCREAMING_SNAKE_CASE : Union[str, Any] , ) -> Any: """simple docstring""" super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = Path(self.hparams.output_dir ) __SCREAMING_SNAKE_CASE = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({"""num_labels""": num_labels} if num_labels is not None else {}) , cache_dir=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) else: __SCREAMING_SNAKE_CASE = config __SCREAMING_SNAKE_CASE = ("""encoder_layerdrop""", """decoder_layerdrop""", """dropout""", """attention_dropout""") for p in extra_model_params: if getattr(self.hparams , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): assert hasattr(self.config , __SCREAMING_SNAKE_CASE ), f'model config doesn\'t have a `{p}` attribute' setattr(self.config , __SCREAMING_SNAKE_CASE , getattr(self.hparams , __SCREAMING_SNAKE_CASE ) ) if tokenizer is None: __SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=__SCREAMING_SNAKE_CASE , ) else: __SCREAMING_SNAKE_CASE = tokenizer __SCREAMING_SNAKE_CASE = MODEL_MODES[mode] if model is None: __SCREAMING_SNAKE_CASE = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool(""".ckpt""" in self.hparams.model_name_or_path ) , config=self.config , cache_dir=__SCREAMING_SNAKE_CASE , ) else: __SCREAMING_SNAKE_CASE = model def UpperCAmelCase__ ( self : List[str] , *__SCREAMING_SNAKE_CASE : List[Any] , **__SCREAMING_SNAKE_CASE : List[Any] ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_type.from_pretrained(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : List[Any] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = arg_to_scheduler[self.hparams.lr_scheduler] __SCREAMING_SNAKE_CASE = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) __SCREAMING_SNAKE_CASE = {"""scheduler""": scheduler, """interval""": """step""", """frequency""": 1} return scheduler def UpperCAmelCase__ ( self : int ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model __SCREAMING_SNAKE_CASE = ["""bias""", """LayerNorm.weight"""] __SCREAMING_SNAKE_CASE = [ { """params""": [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters """weight_decay""": self.hparams.weight_decay, }, { """params""": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], """weight_decay""": 0.0, }, ] if self.hparams.adafactor: __SCREAMING_SNAKE_CASE = Adafactor( __SCREAMING_SNAKE_CASE , lr=self.hparams.learning_rate , scale_parameter=__SCREAMING_SNAKE_CASE , relative_step=__SCREAMING_SNAKE_CASE ) else: __SCREAMING_SNAKE_CASE = AdamW( __SCREAMING_SNAKE_CASE , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) __SCREAMING_SNAKE_CASE = optimizer __SCREAMING_SNAKE_CASE = self.get_lr_scheduler() return [optimizer], [scheduler] def UpperCAmelCase__ ( self : Any , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> int: """simple docstring""" return self.validation_step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : int , __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Dict: """simple docstring""" return self.validation_end(__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Tuple ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores __SCREAMING_SNAKE_CASE = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def UpperCAmelCase__ ( self : Any , __SCREAMING_SNAKE_CASE : int ) -> Union[str, Any]: """simple docstring""" if stage == "test": __SCREAMING_SNAKE_CASE = len(self.test_dataloader().dataset ) else: __SCREAMING_SNAKE_CASE = self.get_dataloader("""train""" , self.hparams.train_batch_size , shuffle=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = len(self.train_dataloader().dataset ) def UpperCAmelCase__ ( self : List[str] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : bool = False ) -> int: """simple docstring""" raise NotImplementedError("""You must implement this for your task""" ) def UpperCAmelCase__ ( self : Optional[int] ) -> List[str]: """simple docstring""" return self.train_loader def UpperCAmelCase__ ( self : str ) -> Optional[Any]: """simple docstring""" return self.get_dataloader("""dev""" , self.hparams.eval_batch_size , shuffle=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : str ) -> Any: """simple docstring""" return self.get_dataloader("""test""" , self.hparams.eval_batch_size , shuffle=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : str , __SCREAMING_SNAKE_CASE : Dict ) -> Union[str, Any]: """simple docstring""" return os.path.join( self.hparams.data_dir , """cached_{}_{}_{}""".format( __SCREAMING_SNAKE_CASE , list(filter(__SCREAMING_SNAKE_CASE , self.hparams.model_name_or_path.split("""/""" ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def UpperCAmelCase__ ( self : List[str] , __SCREAMING_SNAKE_CASE : Dict[str, Any] ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = self.output_dir.joinpath("""best_tfmr""" ) __SCREAMING_SNAKE_CASE = self.step_count self.model.save_pretrained(__SCREAMING_SNAKE_CASE ) self.tokenizer.save_pretrained(__SCREAMING_SNAKE_CASE ) @staticmethod def UpperCAmelCase__ ( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any ) -> int: """simple docstring""" parser.add_argument( """--model_name_or_path""" , default=__SCREAMING_SNAKE_CASE , type=__SCREAMING_SNAKE_CASE , required=__SCREAMING_SNAKE_CASE , help="""Path to pretrained model or model identifier from huggingface.co/models""" , ) parser.add_argument( """--config_name""" , default="""""" , type=__SCREAMING_SNAKE_CASE , help="""Pretrained config name or path if not the same as model_name""" ) parser.add_argument( """--tokenizer_name""" , default=__SCREAMING_SNAKE_CASE , type=__SCREAMING_SNAKE_CASE , help="""Pretrained tokenizer name or path if not the same as model_name""" , ) parser.add_argument( """--cache_dir""" , default=str(Path(__SCREAMING_SNAKE_CASE ).parent / """test_run""" / """cache""" ) , type=__SCREAMING_SNAKE_CASE , help="""Where do you want to store the pre-trained models downloaded from huggingface.co""" , ) parser.add_argument( """--encoder_layerdrop""" , type=__SCREAMING_SNAKE_CASE , help="""Encoder layer dropout probability (Optional). Goes into model.config""" , ) parser.add_argument( """--decoder_layerdrop""" , type=__SCREAMING_SNAKE_CASE , help="""Decoder layer dropout probability (Optional). Goes into model.config""" , ) parser.add_argument( """--dropout""" , type=__SCREAMING_SNAKE_CASE , help="""Dropout probability (Optional). Goes into model.config""" , ) parser.add_argument( """--attention_dropout""" , type=__SCREAMING_SNAKE_CASE , help="""Attention dropout probability (Optional). Goes into model.config""" , ) parser.add_argument("""--learning_rate""" , default=5E-5 , type=__SCREAMING_SNAKE_CASE , help="""The initial learning rate for Adam.""" ) parser.add_argument( """--lr_scheduler""" , default="""linear""" , choices=__SCREAMING_SNAKE_CASE , metavar=__SCREAMING_SNAKE_CASE , type=__SCREAMING_SNAKE_CASE , help="""Learning rate scheduler""" , ) parser.add_argument("""--weight_decay""" , default=0.0 , type=__SCREAMING_SNAKE_CASE , help="""Weight decay if we apply some.""" ) parser.add_argument("""--adam_epsilon""" , default=1E-8 , type=__SCREAMING_SNAKE_CASE , help="""Epsilon for Adam optimizer.""" ) parser.add_argument("""--warmup_steps""" , default=0 , type=__SCREAMING_SNAKE_CASE , help="""Linear warmup over warmup_steps.""" ) parser.add_argument("""--num_workers""" , default=4 , type=__SCREAMING_SNAKE_CASE , help="""kwarg passed to DataLoader""" ) parser.add_argument("""--num_train_epochs""" , dest="""max_epochs""" , default=3 , type=__SCREAMING_SNAKE_CASE ) parser.add_argument("""--train_batch_size""" , default=32 , type=__SCREAMING_SNAKE_CASE ) parser.add_argument("""--eval_batch_size""" , default=32 , type=__SCREAMING_SNAKE_CASE ) parser.add_argument("""--adafactor""" , action="""store_true""" ) class lowerCAmelCase__ ( pl.Callback ): """simple docstring""" def UpperCAmelCase__ ( self : Tuple , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> List[Any]: """simple docstring""" if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class lowerCAmelCase__ ( pl.Callback ): """simple docstring""" def UpperCAmelCase__ ( self : Dict , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Any: """simple docstring""" for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(__SCREAMING_SNAKE_CASE ) class lowerCAmelCase__ ( pl.Callback ): """simple docstring""" def UpperCAmelCase__ ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : str ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = trainer.lr_schedulers[0]["""scheduler"""] __SCREAMING_SNAKE_CASE = {f'lr_group_{i}': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Optional[int] , __SCREAMING_SNAKE_CASE : pl.Trainer , __SCREAMING_SNAKE_CASE : pl.LightningModule ) -> List[Any]: """simple docstring""" rank_zero_info("""***** Validation results *****""" ) __SCREAMING_SNAKE_CASE = trainer.callback_metrics # Log results for key in sorted(__SCREAMING_SNAKE_CASE ): if key not in ["log", "progress_bar"]: rank_zero_info("""{} = {}\n""".format(__SCREAMING_SNAKE_CASE , str(metrics[key] ) ) ) def UpperCAmelCase__ ( self : Tuple , __SCREAMING_SNAKE_CASE : pl.Trainer , __SCREAMING_SNAKE_CASE : pl.LightningModule ) -> str: """simple docstring""" rank_zero_info("""***** Test results *****""" ) __SCREAMING_SNAKE_CASE = trainer.callback_metrics # Log and save results to file __SCREAMING_SNAKE_CASE = os.path.join(pl_module.hparams.output_dir , """test_results.txt""" ) with open(__SCREAMING_SNAKE_CASE , """w""" ) as writer: for key in sorted(__SCREAMING_SNAKE_CASE ): if key not in ["log", "progress_bar"]: rank_zero_info("""{} = {}\n""".format(__SCREAMING_SNAKE_CASE , str(metrics[key] ) ) ) writer.write("""{} = {}\n""".format(__SCREAMING_SNAKE_CASE , str(metrics[key] ) ) ) def a__ ( a__ , a__ ): """simple docstring""" parser.add_argument( """--output_dir""" , default=str(Path(a__ ).parent / """test_run""" / """model_checkpoints""" ) , type=a__ , help="""The output directory where the model predictions and checkpoints will be written.""" , ) parser.add_argument( """--fp16""" , action="""store_true""" , help="""Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit""" , ) parser.add_argument( """--fp16_opt_level""" , type=a__ , default="""O2""" , help=( """For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3'].""" """See details at https://nvidia.github.io/apex/amp.html""" ) , ) parser.add_argument("""--n_tpu_cores""" , dest="""tpu_cores""" , type=a__ ) parser.add_argument("""--max_grad_norm""" , dest="""gradient_clip_val""" , default=1.0 , type=a__ , help="""Max gradient norm""" ) parser.add_argument("""--do_train""" , action="""store_true""" , help="""Whether to run training.""" ) parser.add_argument("""--do_predict""" , action="""store_true""" , help="""Whether to run predictions on the test set.""" ) parser.add_argument( """--gradient_accumulation_steps""" , dest="""accumulate_grad_batches""" , type=a__ , default=1 , help="""Number of updates steps to accumulate before performing a backward/update pass.""" , ) parser.add_argument("""--seed""" , type=a__ , default=42 , help="""random seed for initialization""" ) parser.add_argument( """--data_dir""" , default=str(Path(a__ ).parent / """test_run""" / """dummy-train-data""" ) , type=a__ , help="""The input data dir. Should contain the training files for the CoNLL-2003 NER task.""" , ) def a__ ( a__ , a__ , a__=None , a__=True , a__=[] , a__=None , a__=None , **a__ , ): """simple docstring""" pl.seed_everything(args.seed ) # init model __SCREAMING_SNAKE_CASE = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=a__ ) # add custom checkpoints if checkpoint_callback is None: __SCREAMING_SNAKE_CASE = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix="""checkpoint""" , monitor="""val_loss""" , mode="""min""" , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(a__ ) if logging_callback is None: __SCREAMING_SNAKE_CASE = LoggingCallback() __SCREAMING_SNAKE_CASE = {} if args.fpaa: __SCREAMING_SNAKE_CASE = 16 if args.gpus > 1: __SCREAMING_SNAKE_CASE = """auto""" __SCREAMING_SNAKE_CASE = """ddp""" __SCREAMING_SNAKE_CASE = args.accumulate_grad_batches __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = """auto""" __SCREAMING_SNAKE_CASE = pl.Trainer.from_argparse_args( a__ , weights_summary=a__ , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=a__ , val_check_interval=1 , num_sanity_val_steps=2 , **a__ , ) if args.do_train: trainer.fit(a__ ) else: print("""RAG modeling tests with new set functions successfuly executed!""" ) return trainer
331
0
'''simple docstring''' import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.g4dn.xlarge", "results": {"train_runtime": 6_5_0, "eval_accuracy": 0.6, "eval_loss": 0.9}, }, { "framework": "tensorflow", "script": "run_tf.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.g4dn.xlarge", "results": {"train_runtime": 6_0_0, "eval_accuracy": 0.3, "eval_loss": 0.9}, }, ] ) class a__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" if self.framework == "pytorch": subprocess.run( f"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding='''utf-8''' , check=a , ) assert hasattr(self , '''env''' ) def SCREAMING_SNAKE_CASE__ ( self : int , a : Optional[int]=1 ): """simple docstring""" return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f"""{self.env.base_job_name}-single""" , instance_count=a , instance_type=self.instance_type , debugger_hook_config=a , hyperparameters={**self.env.hyperparameters, '''model_name_or_path''': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version='''py36''' , ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , a : str ): """simple docstring""" TrainingJobAnalytics(a ).export_csv(f"""{self.env.test_path}/{job_name}_metrics.csv""" ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" __lowerCamelCase = self.create_estimator() # run training estimator.fit() # result dataframe __lowerCamelCase = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis __lowerCamelCase = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] ) __lowerCamelCase = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping __lowerCamelCase = ( Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''' , 99_99_99 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy ) assert all(t <= self.results['''eval_loss'''] for t in eval_loss ) # dump tests result into json file to share in PR with open(f"""{estimator.latest_training_job.name}.json""" , '''w''' ) as outfile: json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , a )
67
def lowerCAmelCase ( _lowerCAmelCase : int = 100 ): """simple docstring""" UpperCAmelCase__ = set() UpperCAmelCase__ = 0 UpperCAmelCase__ = n + 1 # maximum limit for a in range(2 , _lowerCAmelCase ): for b in range(2 , _lowerCAmelCase ): UpperCAmelCase__ = a**b # calculates the current power collect_powers.add(_lowerCAmelCase ) # adds the result to the set return len(_lowerCAmelCase ) if __name__ == "__main__": print("Number of terms ", solution(int(str(input()).strip())))
169
0
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __magic_name__ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" __UpperCamelCase = CycleDiffusionPipeline __UpperCamelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { '''negative_prompt''', '''height''', '''width''', '''negative_prompt_embeds''', } __UpperCamelCase = PipelineTesterMixin.required_optional_params - {'''latents'''} __UpperCamelCase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''source_prompt'''} ) __UpperCamelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS __UpperCamelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS def SCREAMING_SNAKE_CASE ( self :Union[str, Any] ): '''simple docstring''' torch.manual_seed(0 ) A_ : Union[str, Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) A_ : List[str] = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="scaled_linear" , num_train_timesteps=1_000 , clip_sample=snake_case , set_alpha_to_one=snake_case , ) torch.manual_seed(0 ) A_ : Dict = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) A_ : Union[str, Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) A_ : str = CLIPTextModel(snake_case ) A_ : Union[str, Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) A_ : List[str] = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def SCREAMING_SNAKE_CASE ( self :Dict , snake_case :List[Any] , snake_case :Any=0 ): '''simple docstring''' A_ : List[str] = floats_tensor((1, 3, 32, 32) , rng=random.Random(snake_case ) ).to(snake_case ) A_ : Dict = image / 2 + 0.5 if str(snake_case ).startswith("mps" ): A_ : Optional[Any] = torch.manual_seed(snake_case ) else: A_ : Union[str, Any] = torch.Generator(device=snake_case ).manual_seed(snake_case ) A_ : Dict = { "prompt": "An astronaut riding an elephant", "source_prompt": "An astronaut riding a horse", "image": image, "generator": generator, "num_inference_steps": 2, "eta": 0.1, "strength": 0.8, "guidance_scale": 3, "source_guidance_scale": 1, "output_type": "numpy", } return inputs def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' A_ : List[str] = "cpu" # ensure determinism for the device-dependent torch.Generator A_ : Optional[int] = self.get_dummy_components() A_ : List[Any] = CycleDiffusionPipeline(**snake_case ) A_ : List[str] = pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) A_ : Optional[int] = self.get_dummy_inputs(snake_case ) A_ : List[Any] = pipe(**snake_case ) A_ : Optional[Any] = output.images A_ : Any = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) A_ : List[str] = np.array([0.4459, 0.4943, 0.4544, 0.6643, 0.5474, 0.4327, 0.5701, 0.5959, 0.5179] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def SCREAMING_SNAKE_CASE ( self :int ): '''simple docstring''' A_ : Optional[int] = self.get_dummy_components() for name, module in components.items(): if hasattr(snake_case , "half" ): A_ : int = module.half() A_ : List[Any] = CycleDiffusionPipeline(**snake_case ) A_ : int = pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) A_ : Union[str, Any] = self.get_dummy_inputs(snake_case ) A_ : Optional[Any] = pipe(**snake_case ) A_ : List[Any] = output.images A_ : Optional[int] = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) A_ : Any = np.array([0.3506, 0.4543, 0.446, 0.4575, 0.5195, 0.4155, 0.5273, 0.518, 0.4116] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' return super().test_save_load_local() @unittest.skip("non-deterministic pipeline" ) def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' return super().test_inference_batch_single_identical() @skip_mps def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' return super().test_dict_tuple_outputs_equivalent() @skip_mps def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' return super().test_save_load_optional_components() @skip_mps def SCREAMING_SNAKE_CASE ( self :int ): '''simple docstring''' return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class __magic_name__ ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' A_ : Any = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/cycle-diffusion/black_colored_car.png" ) A_ : Tuple = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy" ) A_ : List[str] = init_image.resize((512, 512) ) A_ : List[str] = "CompVis/stable-diffusion-v1-4" A_ : str = DDIMScheduler.from_pretrained(snake_case , subfolder="scheduler" ) A_ : List[Any] = CycleDiffusionPipeline.from_pretrained( snake_case , scheduler=snake_case , safety_checker=snake_case , torch_dtype=torch.floataa , revision="fp16" ) pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) pipe.enable_attention_slicing() A_ : Dict = "A black colored car" A_ : int = "A blue colored car" A_ : Union[str, Any] = torch.manual_seed(0 ) A_ : Optional[Any] = pipe( prompt=snake_case , source_prompt=snake_case , image=snake_case , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=snake_case , output_type="np" , ) A_ : Tuple = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5e-1 def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' A_ : str = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/cycle-diffusion/black_colored_car.png" ) A_ : List[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy" ) A_ : Optional[int] = init_image.resize((512, 512) ) A_ : Union[str, Any] = "CompVis/stable-diffusion-v1-4" A_ : List[str] = DDIMScheduler.from_pretrained(snake_case , subfolder="scheduler" ) A_ : Tuple = CycleDiffusionPipeline.from_pretrained(snake_case , scheduler=snake_case , safety_checker=snake_case ) pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) pipe.enable_attention_slicing() A_ : Union[str, Any] = "A black colored car" A_ : Optional[Any] = "A blue colored car" A_ : Optional[int] = torch.manual_seed(0 ) A_ : Optional[Any] = pipe( prompt=snake_case , source_prompt=snake_case , image=snake_case , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=snake_case , output_type="np" , ) A_ : Union[str, Any] = output.images assert np.abs(image - expected_image ).max() < 2e-2
356
from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class __magic_name__ ( nn.Module ): """simple docstring""" def __init__( self :int , snake_case :int = 16 , snake_case :int = 88 , snake_case :Optional[int] = None , snake_case :int = 1 , snake_case :float = 0.0 , snake_case :int = 32 , snake_case :Optional[int] = None , snake_case :bool = False , snake_case :Optional[int] = None , snake_case :Optional[int] = None , snake_case :str = "geglu" , snake_case :Optional[int] = None , ): '''simple docstring''' super().__init__() A_ : Optional[int] = nn.ModuleList( [ TransformeraDModel( num_attention_heads=snake_case , attention_head_dim=snake_case , in_channels=snake_case , num_layers=snake_case , dropout=snake_case , norm_num_groups=snake_case , cross_attention_dim=snake_case , attention_bias=snake_case , sample_size=snake_case , num_vector_embeds=snake_case , activation_fn=snake_case , num_embeds_ada_norm=snake_case , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference A_ : Tuple = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` A_ : Optional[Any] = [77, 257] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` A_ : Union[str, Any] = [1, 0] def SCREAMING_SNAKE_CASE ( self :int , snake_case :int , snake_case :List[Any] , snake_case :int=None , snake_case :Optional[Any]=None , snake_case :Tuple=None , snake_case :bool = True , ): '''simple docstring''' A_ : List[str] = hidden_states A_ : Optional[Any] = [] A_ : List[str] = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens A_ : str = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] A_ : Optional[int] = self.transformer_index_for_condition[i] A_ : Union[str, Any] = self.transformers[transformer_index]( snake_case , encoder_hidden_states=snake_case , timestep=snake_case , cross_attention_kwargs=snake_case , return_dict=snake_case , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] A_ : Optional[int] = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) A_ : Optional[int] = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=snake_case )
70
0
"""simple docstring""" import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class lowercase( __a ): '''simple docstring''' def __init__( self: str, a_: str = "▁", a_: bool = True, a_: Union[str, AddedToken] = "<unk>", a_: Union[str, AddedToken] = "</s>", a_: Union[str, AddedToken] = "<pad>", ): '''simple docstring''' _snake_case : Optional[Any] = { """pad""": {"""id""": 0, """token""": pad_token}, """eos""": {"""id""": 1, """token""": eos_token}, """unk""": {"""id""": 2, """token""": unk_token}, } _snake_case : List[str] = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): _snake_case : Optional[Any] = token_dict["""token"""] _snake_case : Tuple = Tokenizer(Unigram() ) _snake_case : int = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(""" {2,}""" ), """ """ ), normalizers.Lowercase(), ] ) _snake_case : Any = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=a_, add_prefix_space=a_ ), pre_tokenizers.Digits(individual_digits=a_ ), pre_tokenizers.Punctuation(), ] ) _snake_case : Any = decoders.Metaspace(replacement=a_, add_prefix_space=a_ ) _snake_case : List[Any] = TemplateProcessing( single=f"$A {self.special_tokens['eos']['token']}", special_tokens=[(self.special_tokens["""eos"""]["""token"""], self.special_tokens["""eos"""]["""id"""])], ) _snake_case : int = { """model""": """SentencePieceUnigram""", """replacement""": replacement, """add_prefix_space""": add_prefix_space, } super().__init__(a_, a_ ) def UpperCamelCase_ ( self: Optional[Any], a_: Union[str, List[str]], a_: int = 8_000, a_: bool = True, ): '''simple docstring''' _snake_case : Dict = trainers.UnigramTrainer( vocab_size=a_, special_tokens=self.special_tokens_list, show_progress=a_, ) if isinstance(a_, a_ ): _snake_case : str = [files] self._tokenizer.train(a_, trainer=a_ ) self.add_unk_id() def UpperCamelCase_ ( self: str, a_: Union[Iterator[str], Iterator[Iterator[str]]], a_: int = 8_000, a_: bool = True, ): '''simple docstring''' _snake_case : Optional[int] = trainers.UnigramTrainer( vocab_size=a_, special_tokens=self.special_tokens_list, show_progress=a_, ) self._tokenizer.train_from_iterator(a_, trainer=a_ ) self.add_unk_id() def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : int = json.loads(self._tokenizer.to_str() ) _snake_case : Tuple = self.special_tokens["""unk"""]["""id"""] _snake_case : Dict = Tokenizer.from_str(json.dumps(a_ ) )
64
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ : Tuple = logging.get_logger(__name__) snake_case_ : Optional[int] = { "SCUT-DLVCLab/lilt-roberta-en-base": ( "https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json" ), } class __a (lowerCamelCase ): __a : Union[str, Any] = "lilt" def __init__( self : Any , __magic_name__ : Tuple=3_05_22 , __magic_name__ : str=7_68 , __magic_name__ : Tuple=12 , __magic_name__ : int=12 , __magic_name__ : str=30_72 , __magic_name__ : List[Any]="gelu" , __magic_name__ : Optional[Any]=0.1 , __magic_name__ : int=0.1 , __magic_name__ : Any=5_12 , __magic_name__ : List[Any]=2 , __magic_name__ : Dict=0.0_2 , __magic_name__ : List[Any]=1E-12 , __magic_name__ : List[str]=0 , __magic_name__ : List[str]="absolute" , __magic_name__ : str=None , __magic_name__ : Dict=4 , __magic_name__ : str=10_24 , **__magic_name__ : Optional[Any] , ) -> int: """simple docstring""" super().__init__(pad_token_id=__magic_name__ , **__magic_name__ ) UpperCAmelCase_ : Any = vocab_size UpperCAmelCase_ : Tuple = hidden_size UpperCAmelCase_ : Union[str, Any] = num_hidden_layers UpperCAmelCase_ : Tuple = num_attention_heads UpperCAmelCase_ : List[str] = hidden_act UpperCAmelCase_ : List[Any] = intermediate_size UpperCAmelCase_ : str = hidden_dropout_prob UpperCAmelCase_ : Optional[int] = attention_probs_dropout_prob UpperCAmelCase_ : List[Any] = max_position_embeddings UpperCAmelCase_ : str = type_vocab_size UpperCAmelCase_ : List[str] = initializer_range UpperCAmelCase_ : Any = layer_norm_eps UpperCAmelCase_ : int = position_embedding_type UpperCAmelCase_ : Tuple = classifier_dropout UpperCAmelCase_ : Dict = channel_shrink_ratio UpperCAmelCase_ : int = max_ad_position_embeddings
125
0
"""simple docstring""" import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=99 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=4 , ) -> Any: '''simple docstring''' UpperCAmelCase : Union[str, Any] = parent UpperCAmelCase : Optional[int] = batch_size UpperCAmelCase : Tuple = seq_length UpperCAmelCase : List[Any] = is_training UpperCAmelCase : Tuple = use_attention_mask UpperCAmelCase : List[Any] = use_token_type_ids UpperCAmelCase : Tuple = use_labels UpperCAmelCase : List[Any] = vocab_size UpperCAmelCase : Optional[Any] = hidden_size UpperCAmelCase : List[Any] = num_hidden_layers UpperCAmelCase : Tuple = num_attention_heads UpperCAmelCase : Optional[Any] = intermediate_size UpperCAmelCase : List[str] = hidden_act UpperCAmelCase : str = hidden_dropout_prob UpperCAmelCase : Optional[Any] = attention_probs_dropout_prob UpperCAmelCase : str = max_position_embeddings UpperCAmelCase : Union[str, Any] = type_vocab_size UpperCAmelCase : Union[str, Any] = type_sequence_label_size UpperCAmelCase : Dict = initializer_range UpperCAmelCase : Union[str, Any] = num_choices def SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Union[str, Any] = None if self.use_attention_mask: UpperCAmelCase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : Optional[Any] = None if self.use_token_type_ids: UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase : Union[str, Any] = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' UpperCAmelCase : Any = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict = config_and_inputs UpperCAmelCase : List[Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ , unittest.TestCase ): __lowerCAmelCase : Union[str, Any] = True __lowerCAmelCase : Dict = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase : Tuple = FlaxRoFormerModelTester(self ) @slow def SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' for model_class_name in self.all_model_classes: UpperCAmelCase : List[Any] = model_class_name.from_pretrained("""junnyu/roformer_chinese_small""" , from_pt=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : int = model(np.ones((1, 1) ) ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : List[Any] = FlaxRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" ) UpperCAmelCase : Any = jnp.array([[0, 1, 2, 3, 4, 5]] ) UpperCAmelCase : List[str] = model(_SCREAMING_SNAKE_CASE )[0] UpperCAmelCase : Optional[Any] = 50000 UpperCAmelCase : List[str] = (1, 6, vocab_size) self.assertEqual(output.shape , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : Union[str, Any] = jnp.array( [[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) )
76
"""simple docstring""" import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> List[Any]: '''simple docstring''' super().__init__() UpperCAmelCase : Tuple = value_function UpperCAmelCase : Dict = unet UpperCAmelCase : Union[str, Any] = scheduler UpperCAmelCase : List[Any] = env UpperCAmelCase : int = env.get_dataset() UpperCAmelCase : Optional[int] = {} for key in self.data.keys(): try: UpperCAmelCase : Dict = self.data[key].mean() except: # noqa: E722 pass UpperCAmelCase : int = {} for key in self.data.keys(): try: UpperCAmelCase : Optional[Any] = self.data[key].std() except: # noqa: E722 pass UpperCAmelCase : Any = env.observation_space.shape[0] UpperCAmelCase : str = env.action_space.shape[0] def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: '''simple docstring''' return (x_in - self.means[key]) / self.stds[key] def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' return x_in * self.stds[key] + self.means[key] def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: '''simple docstring''' if type(_SCREAMING_SNAKE_CASE ) is dict: return {k: self.to_torch(_SCREAMING_SNAKE_CASE ) for k, v in x_in.items()} elif torch.is_tensor(_SCREAMING_SNAKE_CASE ): return x_in.to(self.unet.device ) return torch.tensor(_SCREAMING_SNAKE_CASE , device=self.unet.device ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' for key, val in cond.items(): UpperCAmelCase : Optional[Any] = val.clone() return x_in def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' UpperCAmelCase : Dict = x.shape[0] UpperCAmelCase : Optional[int] = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model UpperCAmelCase : Tuple = torch.full((batch_size,) , _SCREAMING_SNAKE_CASE , device=self.unet.device , dtype=torch.long ) for _ in range(_SCREAMING_SNAKE_CASE ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models UpperCAmelCase : Dict = self.value_function(x.permute(0 , 2 , 1 ) , _SCREAMING_SNAKE_CASE ).sample UpperCAmelCase : Optional[int] = torch.autograd.grad([y.sum()] , [x] )[0] UpperCAmelCase : List[Any] = self.scheduler._get_variance(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[str] = torch.exp(0.5 * posterior_variance ) UpperCAmelCase : str = model_std * grad UpperCAmelCase : str = 0 UpperCAmelCase : Any = x.detach() UpperCAmelCase : int = x + scale * grad UpperCAmelCase : Any = self.reset_xa(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.action_dim ) UpperCAmelCase : Optional[int] = self.unet(x.permute(0 , 2 , 1 ) , _SCREAMING_SNAKE_CASE ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg UpperCAmelCase : Any = self.scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , predict_epsilon=_SCREAMING_SNAKE_CASE )["""prev_sample"""] # apply conditions to the trajectory (set the initial state) UpperCAmelCase : Dict = self.reset_xa(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.action_dim ) UpperCAmelCase : int = self.to_torch(_SCREAMING_SNAKE_CASE ) return x, y def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=64 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.1 ) -> Tuple: '''simple docstring''' UpperCAmelCase : int = self.normalize(_SCREAMING_SNAKE_CASE , """observations""" ) UpperCAmelCase : int = obs[None].repeat(_SCREAMING_SNAKE_CASE , axis=0 ) UpperCAmelCase : Dict = {0: self.to_torch(_SCREAMING_SNAKE_CASE )} UpperCAmelCase : Dict = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) UpperCAmelCase : str = randn_tensor(_SCREAMING_SNAKE_CASE , device=self.unet.device ) UpperCAmelCase : Any = self.reset_xa(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.action_dim ) UpperCAmelCase : str = self.to_torch(_SCREAMING_SNAKE_CASE ) # run the diffusion process UpperCAmelCase , UpperCAmelCase : Any = self.run_diffusion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # sort output trajectories by value UpperCAmelCase : List[str] = y.argsort(0 , descending=_SCREAMING_SNAKE_CASE ).squeeze() UpperCAmelCase : Any = x[sorted_idx] UpperCAmelCase : Dict = sorted_values[:, :, : self.action_dim] UpperCAmelCase : int = actions.detach().cpu().numpy() UpperCAmelCase : List[str] = self.de_normalize(_SCREAMING_SNAKE_CASE , key="""actions""" ) # select the action with the highest value if y is not None: UpperCAmelCase : Any = 0 else: # if we didn't run value guiding, select a random action UpperCAmelCase : Optional[int] = np.random.randint(0 , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : Any = denorm_actions[selected_index, 0] return denorm_actions
76
1
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" __magic_name__ :int = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING __magic_name__ :Dict = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = TextaTextGenerationPipeline(model=__a , tokenizer=__a ) return generator, ["Something to write", "Something else"] def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Tuple = generator('Something there' ) self.assertEqual(__a , [{'generated_text': ANY(__a )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]['generated_text'].startswith('Something there' ) ) lowerCAmelCase__ :Tuple = generator(['This is great !', 'Something else'] , num_return_sequences=2 , do_sample=__a ) self.assertEqual( __a , [ [{'generated_text': ANY(__a )}, {'generated_text': ANY(__a )}], [{'generated_text': ANY(__a )}, {'generated_text': ANY(__a )}], ] , ) lowerCAmelCase__ :Dict = generator( ['This is great !', 'Something else'] , num_return_sequences=2 , batch_size=2 , do_sample=__a ) self.assertEqual( __a , [ [{'generated_text': ANY(__a )}, {'generated_text': ANY(__a )}], [{'generated_text': ANY(__a )}, {'generated_text': ANY(__a )}], ] , ) with self.assertRaises(__a ): generator(4 ) @require_torch def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :str = pipeline('text2text-generation' , model='patrickvonplaten/t5-tiny-random' , framework='pt' ) # do_sample=False necessary for reproducibility lowerCAmelCase__ :Dict = generator('Something there' , do_sample=__a ) self.assertEqual(__a , [{'generated_text': ''}] ) lowerCAmelCase__ :str = 3 lowerCAmelCase__ :Union[str, Any] = generator( 'Something there' , num_return_sequences=__a , num_beams=__a , ) lowerCAmelCase__ :str = [ {'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide Beide'}, {'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide'}, {'generated_text': ''}, ] self.assertEqual(__a , __a ) lowerCAmelCase__ :Optional[Any] = generator('This is a test' , do_sample=__a , num_return_sequences=2 , return_tensors=__a ) self.assertEqual( __a , [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ] , ) lowerCAmelCase__ :int = generator.model.config.eos_token_id lowerCAmelCase__ :Dict = '<pad>' lowerCAmelCase__ :Optional[Any] = generator( ['This is a test', 'This is a second test'] , do_sample=__a , num_return_sequences=2 , batch_size=2 , return_tensors=__a , ) self.assertEqual( __a , [ [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ], [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ], ] , ) @require_tf def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :str = pipeline('text2text-generation' , model='patrickvonplaten/t5-tiny-random' , framework='tf' ) # do_sample=False necessary for reproducibility lowerCAmelCase__ :List[Any] = generator('Something there' , do_sample=__a ) self.assertEqual(__a , [{'generated_text': ''}] )
293
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ : Dict = logging.get_logger(__name__) lowerCAmelCase_ : int = { 'bigcode/gpt_bigcode-santacoder': 'https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json', } class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a ='gpt_bigcode' __a =['past_key_values'] __a ={ 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : Optional[Any] , __a : Tuple=5_02_57 , __a : str=10_24 , __a : Dict=7_68 , __a : Tuple=12 , __a : str=12 , __a : Optional[int]=None , __a : Dict="gelu_pytorch_tanh" , __a : Tuple=0.1 , __a : Tuple=0.1 , __a : Union[str, Any]=0.1 , __a : Tuple=1e-5 , __a : str=0.02 , __a : Dict=True , __a : Union[str, Any]=True , __a : Optional[int]=5_02_56 , __a : Optional[int]=5_02_56 , __a : Union[str, Any]=True , __a : Dict=True , __a : Union[str, Any]=True , **__a : List[Any] , ): _a = vocab_size _a = n_positions _a = n_embd _a = n_layer _a = n_head _a = n_inner _a = activation_function _a = resid_pdrop _a = embd_pdrop _a = attn_pdrop _a = layer_norm_epsilon _a = initializer_range _a = scale_attn_weights _a = use_cache _a = attention_softmax_in_fpaa _a = scale_attention_softmax_in_fpaa _a = multi_query _a = bos_token_id _a = eos_token_id super().__init__(bos_token_id=__a , eos_token_id=__a , **__a )
63
0
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class snake_case__ ( unittest.TestCase ): @slow def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ : Any = FlaxMTaForConditionalGeneration.from_pretrained("""google/mt5-small""" ) __magic_name__ : Dict = AutoTokenizer.from_pretrained("""google/mt5-small""" ) __magic_name__ : Tuple = tokenizer("""Hello there""" , return_tensors="""np""" ).input_ids __magic_name__ : List[Any] = tokenizer("""Hi I am""" , return_tensors="""np""" ).input_ids __magic_name__ : Any = shift_tokens_right(lowerCAmelCase__ , model.config.pad_token_id , model.config.decoder_start_token_id ) __magic_name__ : List[Any] = model(lowerCAmelCase__ , decoder_input_ids=lowerCAmelCase__ ).logits __magic_name__ : Tuple = optax.softmax_cross_entropy(lowerCAmelCase__ , onehot(lowerCAmelCase__ , logits.shape[-1] ) ).mean() __magic_name__ : List[Any] = -(labels.shape[-1] * loss.item()) __magic_name__ : List[Any] = -84.91_27 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
368
from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class snake_case__ : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=30 , lowerCAmelCase__=2 , lowerCAmelCase__=3 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=32 , lowerCAmelCase__=2 , lowerCAmelCase__=4 , lowerCAmelCase__=37 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=10 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=3 , lowerCAmelCase__=None , lowerCAmelCase__=2 , ) -> Optional[Any]: __magic_name__ : Optional[Any] = parent __magic_name__ : List[str] = batch_size __magic_name__ : Union[str, Any] = image_size __magic_name__ : Optional[Any] = patch_size __magic_name__ : Union[str, Any] = num_channels __magic_name__ : Union[str, Any] = is_training __magic_name__ : Union[str, Any] = use_labels __magic_name__ : Tuple = hidden_size __magic_name__ : List[str] = num_hidden_layers __magic_name__ : Optional[Any] = num_attention_heads __magic_name__ : Tuple = intermediate_size __magic_name__ : Union[str, Any] = hidden_act __magic_name__ : str = hidden_dropout_prob __magic_name__ : List[str] = attention_probs_dropout_prob __magic_name__ : Tuple = type_sequence_label_size __magic_name__ : Any = initializer_range __magic_name__ : str = scope __magic_name__ : str = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) __magic_name__ : Dict = (image_size // patch_size) ** 2 __magic_name__ : int = num_patches + 2 def __magic_name__ ( self ) -> Union[str, Any]: __magic_name__ : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __magic_name__ : Tuple = None if self.use_labels: __magic_name__ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ : Union[str, Any] = self.get_config() return config, pixel_values, labels def __magic_name__ ( self ) -> List[str]: return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Any: __magic_name__ : int = TFDeiTModel(config=lowerCAmelCase__ ) __magic_name__ : List[Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: __magic_name__ : int = TFDeiTForMaskedImageModeling(config=lowerCAmelCase__ ) __magic_name__ : List[str] = model(lowerCAmelCase__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __magic_name__ : Tuple = 1 __magic_name__ : List[Any] = TFDeiTForMaskedImageModeling(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __magic_name__ : Any = model(lowerCAmelCase__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: __magic_name__ : Union[str, Any] = self.type_sequence_label_size __magic_name__ : str = TFDeiTForImageClassification(lowerCAmelCase__ ) __magic_name__ : List[str] = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __magic_name__ : int = 1 __magic_name__ : List[str] = TFDeiTForImageClassification(lowerCAmelCase__ ) __magic_name__ : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __magic_name__ : Dict = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __magic_name__ ( self ) -> List[str]: __magic_name__ : Union[str, Any] = self.prepare_config_and_inputs() __magic_name__ ,__magic_name__ ,__magic_name__ : Union[str, Any] = config_and_inputs __magic_name__ : str = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class snake_case__ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): lowercase__ : int = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) lowercase__ : Any = ( { '''feature-extraction''': TFDeiTModel, '''image-classification''': (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) lowercase__ : int = False lowercase__ : List[Any] = False lowercase__ : Tuple = False lowercase__ : int = False def __magic_name__ ( self ) -> str: __magic_name__ : str = TFDeiTModelTester(self ) __magic_name__ : Optional[Any] = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=37 ) def __magic_name__ ( self ) -> Tuple: self.config_tester.run_common_tests() @unittest.skip(reason="""DeiT does not use inputs_embeds""" ) def __magic_name__ ( self ) -> Union[str, Any]: pass def __magic_name__ ( self ) -> Union[str, Any]: __magic_name__ ,__magic_name__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : List[Any] = model_class(lowerCAmelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) __magic_name__ : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__ , tf.keras.layers.Dense ) ) def __magic_name__ ( self ) -> Optional[int]: __magic_name__ ,__magic_name__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : Any = model_class(lowerCAmelCase__ ) __magic_name__ : List[Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ : int = [*signature.parameters.keys()] __magic_name__ : List[str] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[str]: __magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def __magic_name__ ( self ) -> Tuple: __magic_name__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase__ ) def __magic_name__ ( self ) -> Any: __magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ) -> str: __magic_name__ : Any = super()._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def __magic_name__ ( self ) -> Dict: for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : int = TFDeiTModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def UpperCamelCase ( ): """simple docstring""" __magic_name__ : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class snake_case__ ( unittest.TestCase ): @cached_property def __magic_name__ ( self ) -> Optional[int]: return ( DeiTImageProcessor.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) if is_vision_available() else None ) @slow def __magic_name__ ( self ) -> List[Any]: __magic_name__ : Optional[int] = TFDeiTForImageClassificationWithTeacher.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) __magic_name__ : Any = self.default_image_processor __magic_name__ : Tuple = prepare_img() __magic_name__ : Tuple = image_processor(images=lowerCAmelCase__ , return_tensors="""tf""" ) # forward pass __magic_name__ : Dict = model(**lowerCAmelCase__ ) # verify the logits __magic_name__ : Optional[Any] = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) __magic_name__ : List[Any] = tf.constant([-1.0_2_6_6, 0.1_9_1_2, -1.2_8_6_1] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) )
138
0
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
20
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def _snake_case( *SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=2 ) -> Optional[Any]: from .. import __version__ lowercase : int = take_from lowercase : Tuple = () if not isinstance(args[0] , SCREAMING_SNAKE_CASE__ ): lowercase : Dict = (args,) for attribute, version_name, message in args: if version.parse(version.parse(SCREAMING_SNAKE_CASE__ ).base_version ) >= version.parse(SCREAMING_SNAKE_CASE__ ): raise ValueError( f"The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'" f" version {__version__} is >= {version_name}" ) lowercase : int = None if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(SCREAMING_SNAKE_CASE__ ),) lowercase : Union[str, Any] = f"The `{attribute}` argument is deprecated and will be removed in version {version_name}." elif hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): values += (getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ),) lowercase : int = f"The `{attribute}` attribute is deprecated and will be removed in version {version_name}." elif deprecated_kwargs is None: lowercase : Dict = f"`{attribute}` is deprecated and will be removed in version {version_name}." if warning is not None: lowercase : Dict = warning + """ """ if standard_warn else """""" warnings.warn(warning + message , SCREAMING_SNAKE_CASE__ , stacklevel=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and len(SCREAMING_SNAKE_CASE__ ) > 0: lowercase : str = inspect.getouterframes(inspect.currentframe() )[1] lowercase : List[str] = call_frame.filename lowercase : Tuple = call_frame.lineno lowercase : List[str] = call_frame.function lowercase , lowercase : Optional[Any] = next(iter(deprecated_kwargs.items() ) ) raise TypeError(f"{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`" ) if len(SCREAMING_SNAKE_CASE__ ) == 0: return elif len(SCREAMING_SNAKE_CASE__ ) == 1: return values[0] return values
20
1
"""simple docstring""" import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class _lowerCamelCase ( unittest.TestCase , lowercase_ ): def snake_case_ (self ) -> Optional[int]: UpperCamelCase = load_tool("text-classification" ) self.tool.setup() UpperCamelCase = load_tool("text-classification" , remote=a__ ) def snake_case_ (self ) -> str: UpperCamelCase = self.tool("That's quite cool" , ["positive", "negative"] ) self.assertEqual(a__ , "positive" ) def snake_case_ (self ) -> Optional[int]: UpperCamelCase = self.remote_tool("That's quite cool" , ["positive", "negative"] ) self.assertEqual(a__ , "positive" ) def snake_case_ (self ) -> int: UpperCamelCase = self.tool(text="That's quite cool" , labels=["positive", "negative"] ) self.assertEqual(a__ , "positive" ) def snake_case_ (self ) -> Any: UpperCamelCase = self.remote_tool(text="That's quite cool" , labels=["positive", "negative"] ) self.assertEqual(a__ , "positive" )
354
"""simple docstring""" from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record lowerCAmelCase__ = '''\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } ''' lowerCAmelCase__ = '''\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. ''' lowerCAmelCase__ = ''' Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for \'record\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'prediction_text\': the predicted answer text - for \'multirc\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question-answer pair as specified by the dataset - \'prediction\': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for \'record\': list of question-answers dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'answers\': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for \'record\': - \'exact_match\': Exact match between answer and gold answer - \'f1\': F1 score - for \'multirc\': - \'exact_match\': Exact match between answer and gold answer - \'f1_m\': Per-question macro-F1 score - \'f1_a\': Average F1 score over all answers - for \'axb\': \'matthews_correlation\': Matthew Correlation - for \'cb\': - \'accuracy\': Accuracy - \'f1\': F1 score - for all others: - \'accuracy\': Accuracy Examples: >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\') >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}] >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\') >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" return float((preds == labels).mean() ) def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="binary" ): """simple docstring""" UpperCamelCase = simple_accuracy(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = float(fa_score(y_true=_SCREAMING_SNAKE_CASE , y_pred=_SCREAMING_SNAKE_CASE , average=_SCREAMING_SNAKE_CASE ) ) return { "accuracy": acc, "f1": fa, } def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = {} for id_pred, label in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCamelCase = F"{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}" UpperCamelCase = id_pred["prediction"] if question_id in question_map: question_map[question_id].append((pred, label) ) else: UpperCamelCase = [(pred, label)] UpperCamelCase , UpperCamelCase = [], [] for question, preds_labels in question_map.items(): UpperCamelCase , UpperCamelCase = zip(*_SCREAMING_SNAKE_CASE ) UpperCamelCase = fa_score(y_true=_SCREAMING_SNAKE_CASE , y_pred=_SCREAMING_SNAKE_CASE , average="macro" ) fas.append(_SCREAMING_SNAKE_CASE ) UpperCamelCase = int(sum(pred == label for pred, label in preds_labels ) == len(_SCREAMING_SNAKE_CASE ) ) ems.append(_SCREAMING_SNAKE_CASE ) UpperCamelCase = float(sum(_SCREAMING_SNAKE_CASE ) / len(_SCREAMING_SNAKE_CASE ) ) UpperCamelCase = sum(_SCREAMING_SNAKE_CASE ) / len(_SCREAMING_SNAKE_CASE ) UpperCamelCase = float(fa_score(y_true=_SCREAMING_SNAKE_CASE , y_pred=[id_pred["prediction"] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCamelCase ( datasets.Metric ): def snake_case_ (self ) -> Dict: if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( "You should supply a configuration name selected in " "[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format="numpy" if not self.config_name == "record" and not self.config_name == "multirc" else None , ) def snake_case_ (self ) -> Tuple: if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value("int64" ), "query": datasets.Value("int64" ), }, "prediction_text": datasets.Value("string" ), }, "references": { "idx": { "passage": datasets.Value("int64" ), "query": datasets.Value("int64" ), }, "answers": datasets.Sequence(datasets.Value("string" ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value("int64" ), "paragraph": datasets.Value("int64" ), "question": datasets.Value("int64" ), }, "prediction": datasets.Value("int64" ), }, "references": datasets.Value("int64" ), } else: return { "predictions": datasets.Value("int64" ), "references": datasets.Value("int64" ), } def snake_case_ (self , __a , __a ) -> str: if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(__a , __a )} elif self.config_name == "cb": return acc_and_fa(__a , __a , fa_avg="macro" ) elif self.config_name == "record": UpperCamelCase = [ { "qas": [ {"id": ref["idx"]["query"], "answers": [{"text": ans} for ans in ref["answers"]]} for ref in references ] } ] UpperCamelCase = {pred["idx"]["query"]: pred["prediction_text"] for pred in predictions} return evaluate_record(__a , __a )[0] elif self.config_name == "multirc": return evaluate_multirc(__a , __a ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(__a , __a )} else: raise KeyError( "You should supply a configuration name selected in " "[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]" )
244
0
def _snake_case( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> str: '''simple docstring''' return "\n".join( f'{number} * {i} = {number * i}' for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
7
class A : """simple docstring""" def __init__( self : Any,lowercase_ : Tuple,lowercase_ : Any,lowercase_ : List[str] )-> List[Any]: '''simple docstring''' A__ = name A__ = value A__ = weight def __repr__( self : int )-> Tuple: '''simple docstring''' return F'{self.__class__.__name__}({self.name}, {self.value}, {self.weight})' def snake_case__ ( self : Any )-> str: '''simple docstring''' return self.value def snake_case__ ( self : Any )-> Tuple: '''simple docstring''' return self.name def snake_case__ ( self : Any )-> Dict: '''simple docstring''' return self.weight def snake_case__ ( self : Union[str, Any] )-> Optional[Any]: '''simple docstring''' return self.value / self.weight def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] ) -> List[Any]: '''simple docstring''' A__ = [] for i in range(len(SCREAMING_SNAKE_CASE__ ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def _snake_case( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int ) -> Any: '''simple docstring''' A__ = sorted(SCREAMING_SNAKE_CASE__ , key=SCREAMING_SNAKE_CASE__ , reverse=SCREAMING_SNAKE_CASE__ ) A__ = [] A__ , A__ = 0.0, 0.0 for i in range(len(SCREAMING_SNAKE_CASE__ ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def _snake_case( ) -> Any: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
7
1
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : Tuple ) -> Optional[int]: """simple docstring""" _lowerCAmelCase = [False] * len(snake_case_ ) _lowerCAmelCase = [-1] * len(snake_case_ ) def dfs(snake_case_ : Union[str, Any] , snake_case_ : Tuple ): _lowerCAmelCase = True _lowerCAmelCase = c for u in graph[v]: if not visited[u]: dfs(snake_case_ , 1 - c ) for i in range(len(snake_case_ ) ): if not visited[i]: dfs(snake_case_ , 0 ) for i in range(len(snake_case_ ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph SCREAMING_SNAKE_CASE : Any = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
370
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __lowerCamelCase ( __lowercase , unittest.TestCase ): __UpperCamelCase = DiTPipeline __UpperCamelCase = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS __UpperCamelCase = PipelineTesterMixin.required_optional_params - { 'latents', 'num_images_per_prompt', 'callback', 'callback_steps', } __UpperCamelCase = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS __UpperCamelCase = False def A__ (self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=lowerCamelCase , activation_fn="""gelu-approximate""" , num_embeds_ada_norm=1_000 , norm_type="""ada_norm_zero""" , norm_elementwise_affine=lowerCamelCase , ) _lowerCAmelCase = AutoencoderKL() _lowerCAmelCase = DDIMScheduler() _lowerCAmelCase = {"""transformer""": transformer.eval(), """vae""": vae.eval(), """scheduler""": scheduler} return components def A__ (self , lowerCamelCase , lowerCamelCase=0 ): '''simple docstring''' if str(lowerCamelCase ).startswith("""mps""" ): _lowerCAmelCase = torch.manual_seed(lowerCamelCase ) else: _lowerCAmelCase = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase ) _lowerCAmelCase = { """class_labels""": [1], """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def A__ (self ): '''simple docstring''' _lowerCAmelCase = """cpu""" _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = self.pipeline_class(**lowerCamelCase ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) _lowerCAmelCase = self.get_dummy_inputs(lowerCamelCase ) _lowerCAmelCase = pipe(**lowerCamelCase ).images _lowerCAmelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) _lowerCAmelCase = np.array([0.2946, 0.6601, 0.4329, 0.3296, 0.4144, 0.5319, 0.7273, 0.5013, 0.4457] ) _lowerCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCamelCase , 1e-3 ) def A__ (self ): '''simple docstring''' self._test_inference_batch_single_identical(relax_max_difference=lowerCamelCase , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def A__ (self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class __lowerCamelCase ( unittest.TestCase ): def A__ (self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ (self ): '''simple docstring''' _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-256""" ) pipe.to("""cuda""" ) _lowerCAmelCase = ["""vase""", """umbrella""", """white shark""", """white wolf"""] _lowerCAmelCase = pipe.get_label_ids(lowerCamelCase ) _lowerCAmelCase = pipe(lowerCamelCase , generator=lowerCamelCase , num_inference_steps=40 , output_type="""np""" ).images for word, image in zip(lowerCamelCase , lowerCamelCase ): _lowerCAmelCase = load_numpy( f"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy""" ) assert np.abs((expected_image - image).max() ) < 1e-2 def A__ (self ): '''simple docstring''' _lowerCAmelCase = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-512""" ) _lowerCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("""cuda""" ) _lowerCAmelCase = ["""vase""", """umbrella"""] _lowerCAmelCase = pipe.get_label_ids(lowerCamelCase ) _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = pipe(lowerCamelCase , generator=lowerCamelCase , num_inference_steps=25 , output_type="""np""" ).images for word, image in zip(lowerCamelCase , lowerCamelCase ): _lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" f"""/dit/{word}_512.npy""" ) assert np.abs((expected_image - image).max() ) < 1e-1
317
0
'''simple docstring''' import os from typing import Dict, List, Tuple, TypeVar, Union UpperCAmelCase = TypeVar('''T''') UpperCAmelCase = Union[List[T], Tuple[T, ...]] UpperCAmelCase = Union[T, List[T], Dict[str, T]] UpperCAmelCase = Union[str, bytes, os.PathLike]
141
'''simple docstring''' import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 6_5_0, "eval_accuracy": 0.7, "eval_loss": 0.6}, }, { "framework": "pytorch", "script": "run_ddp.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 6_0_0, "eval_accuracy": 0.7, "eval_loss": 0.6}, }, { "framework": "tensorflow", "script": "run_tf_dist.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 6_0_0, "eval_accuracy": 0.6, "eval_loss": 0.7}, }, ] ) class lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : int ): """simple docstring""" if self.framework == "pytorch": subprocess.run( f'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split() , encoding='utf-8' , check=__lowercase , ) assert hasattr(self , 'env' ) def snake_case ( self : Tuple , __lowercase : List[str] ): """simple docstring""" __lowercase =f'''{self.env.base_job_name}-{instance_count}-{"ddp" if "ddp" in self.script else "smd"}''' # distributed data settings __lowercase ={'smdistributed': {'dataparallel': {'enabled': True}}} if self.script != 'run_ddp.py' else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=__lowercase , instance_count=__lowercase , instance_type=self.instance_type , debugger_hook_config=__lowercase , hyperparameters={**self.env.distributed_hyperparameters, 'model_name_or_path': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=__lowercase , py_version='py36' , ) def snake_case ( self : int , __lowercase : List[str] ): """simple docstring""" TrainingJobAnalytics(__lowercase ).export_csv(f'''{self.env.test_path}/{job_name}_metrics.csv''' ) @parameterized.expand([(2,)] ) def snake_case ( self : Tuple , __lowercase : List[Any] ): """simple docstring""" __lowercase =self.create_estimator(__lowercase ) # run training estimator.fit() # result dataframe __lowercase =TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis __lowercase =list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value'] ) __lowercase =list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value'] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping __lowercase =( Session().describe_training_job(estimator.latest_training_job.name ).get('TrainingTimeInSeconds' , 999999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy ) assert all(t <= self.results['eval_loss'] for t in eval_loss ) # dump tests result into json file to share in PR with open(f'''{estimator.latest_training_job.name}.json''' , 'w' ) as outfile: json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss} , __lowercase )
141
1
from __future__ import annotations import math def __lowerCamelCase (UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : bool , UpperCAmelCase__ : list[int] , UpperCAmelCase__ : float ): if depth < 0: raise ValueError("Depth cannot be less than 0" ) if not scores: raise ValueError("Scores cannot be empty" ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) , minimax(depth + 1 , node_index * 2 + 1 , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) , minimax(depth + 1 , node_index * 2 + 1 , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) , ) ) def __lowerCamelCase (): SCREAMING_SNAKE_CASE = [9_0, 2_3, 6, 3_3, 2_1, 6_5, 1_2_3, 3_4_4_2_3] SCREAMING_SNAKE_CASE = math.log(len(UpperCAmelCase__ ) , 2 ) print(F"Optimal value : {minimax(0 , 0 , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )}" ) if __name__ == "__main__": import doctest doctest.testmod() main()
206
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class lowercase ( a ): lowercase__ : Optional[Any] = ( """This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.""" """It takes two arguments named `image` which should be the original image, and `label` which should be a text """ """describing the elements what should be identified in the segmentation mask. The tool returns the mask.""" ) lowercase__ : Optional[int] = """CIDAS/clipseg-rd64-refined""" lowercase__ : Tuple = """image_segmenter""" lowercase__ : Optional[Any] = CLIPSegForImageSegmentation lowercase__ : int = ["""image""", """text"""] lowercase__ : List[str] = ["""image"""] def __init__( self : str , *_UpperCamelCase : str , **_UpperCamelCase : Union[str, Any] ) -> Optional[int]: '''simple docstring''' requires_backends(self , ["vision"] ) super().__init__(*_UpperCamelCase , **_UpperCamelCase ) def __snake_case( self : int , _UpperCamelCase : "Image" , _UpperCamelCase : str ) -> Optional[int]: '''simple docstring''' return self.pre_processor(text=[label] , images=[image] , padding=_UpperCamelCase , return_tensors="pt" ) def __snake_case( self : Union[str, Any] , _UpperCamelCase : str ) -> Union[str, Any]: '''simple docstring''' with torch.no_grad(): SCREAMING_SNAKE_CASE = self.model(**_UpperCamelCase ).logits return logits def __snake_case( self : Any , _UpperCamelCase : Optional[Any] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = outputs.cpu().detach().numpy() SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
206
1
'''simple docstring''' from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
70
"""simple docstring""" import os def lowercase_ ( _UpperCAmelCase = "input.txt" ): """simple docstring""" with open(os.path.join(os.path.dirname(_UpperCAmelCase ) , _UpperCAmelCase ) ) as input_file: A_ : List[Any] = [ [int(_UpperCAmelCase ) for element in line.split(''',''' )] for line in input_file.readlines() ] A_ : Dict = len(_UpperCAmelCase ) A_ : Union[str, Any] = len(matrix[0] ) A_ : Optional[Any] = [[-1 for _ in range(_UpperCAmelCase )] for _ in range(_UpperCAmelCase )] for i in range(_UpperCAmelCase ): A_ : str = matrix[i][0] for j in range(1 , _UpperCAmelCase ): for i in range(_UpperCAmelCase ): A_ : Any = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , _UpperCAmelCase ): A_ : Optional[int] = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): A_ : int = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f'{solution() = }')
167
0
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) _snake_case = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", f"""encoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (f"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", f"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.weight""", f"""encoder.layers.{i}.fc1.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.bias""", f"""encoder.layers.{i}.fc1.bias""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.weight""", f"""encoder.layers.{i}.fc2.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.bias""", f"""encoder.layers.{i}.fc2.bias""")) rename_keys.append( (f"""transformer.encoder.layers.{i}.norm1.weight""", f"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm1.bias""", f"""encoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.weight""", f"""encoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.bias""", f"""encoder.layers.{i}.final_layer_norm.bias""")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", f"""decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", f"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( f"""transformer.decoder.layers.{i}.cross_attn.out_proj.weight""", f"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( f"""transformer.decoder.layers.{i}.cross_attn.out_proj.bias""", f"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.weight""", f"""decoder.layers.{i}.fc1.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.bias""", f"""decoder.layers.{i}.fc1.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.weight""", f"""decoder.layers.{i}.fc2.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.bias""", f"""decoder.layers.{i}.fc2.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm1.weight""", f"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm1.bias""", f"""decoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.weight""", f"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.bias""", f"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.weight""", f"""decoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.bias""", f"""decoder.layers.{i}.final_layer_norm.bias""")) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_qcontent_proj.weight""", f"""decoder.layers.{i}.sa_qcontent_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_kcontent_proj.weight""", f"""decoder.layers.{i}.sa_kcontent_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_qpos_proj.weight""", f"""decoder.layers.{i}.sa_qpos_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_kpos_proj.weight""", f"""decoder.layers.{i}.sa_kpos_proj.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.sa_v_proj.weight""", f"""decoder.layers.{i}.sa_v_proj.weight""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_qcontent_proj.weight""", f"""decoder.layers.{i}.ca_qcontent_proj.weight""") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_kcontent_proj.weight""", f"""decoder.layers.{i}.ca_kcontent_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_kpos_proj.weight""", f"""decoder.layers.{i}.ca_kpos_proj.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.ca_v_proj.weight""", f"""decoder.layers.{i}.ca_v_proj.weight""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight""", f"""decoder.layers.{i}.ca_qpos_sine_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_qcontent_proj.bias""", f"""decoder.layers.{i}.sa_qcontent_proj.bias""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_kcontent_proj.bias""", f"""decoder.layers.{i}.sa_kcontent_proj.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.sa_qpos_proj.bias""", f"""decoder.layers.{i}.sa_qpos_proj.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.sa_kpos_proj.bias""", f"""decoder.layers.{i}.sa_kpos_proj.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.sa_v_proj.bias""", f"""decoder.layers.{i}.sa_v_proj.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_qcontent_proj.bias""", f"""decoder.layers.{i}.ca_qcontent_proj.bias""") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_kcontent_proj.bias""", f"""decoder.layers.{i}.ca_kcontent_proj.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.ca_kpos_proj.bias""", f"""decoder.layers.{i}.ca_kpos_proj.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.ca_v_proj.bias""", f"""decoder.layers.{i}.ca_v_proj.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias""", f"""decoder.layers.{i}.ca_qpos_sine_proj.bias""") ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ("transformer.decoder.ref_point_head.layers.0.weight", "decoder.ref_point_head.layers.0.weight"), ("transformer.decoder.ref_point_head.layers.0.bias", "decoder.ref_point_head.layers.0.bias"), ("transformer.decoder.ref_point_head.layers.1.weight", "decoder.ref_point_head.layers.1.weight"), ("transformer.decoder.ref_point_head.layers.1.bias", "decoder.ref_point_head.layers.1.bias"), ("transformer.decoder.query_scale.layers.0.weight", "decoder.query_scale.layers.0.weight"), ("transformer.decoder.query_scale.layers.0.bias", "decoder.query_scale.layers.0.bias"), ("transformer.decoder.query_scale.layers.1.weight", "decoder.query_scale.layers.1.weight"), ("transformer.decoder.query_scale.layers.1.bias", "decoder.query_scale.layers.1.bias"), ("transformer.decoder.layers.0.ca_qpos_proj.weight", "decoder.layers.0.ca_qpos_proj.weight"), ("transformer.decoder.layers.0.ca_qpos_proj.bias", "decoder.layers.0.ca_qpos_proj.bias"), ] ) def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): _A : Union[str, Any] = state_dict.pop(snake_case_ ) _A : Dict = val def lowerCAmelCase_ ( snake_case_ ): _A : Any = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: _A : List[str] = key.replace("""backbone.0.body""","""backbone.conv_encoder.model""" ) _A : Optional[int] = value else: _A : Any = value return new_state_dict def lowerCAmelCase_ ( snake_case_,snake_case_=False ): _A : Dict = """""" if is_panoptic: _A : List[Any] = """conditional_detr.""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) _A : Tuple = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) _A : List[Any] = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict _A : Optional[Any] = in_proj_weight[:256, :] _A : List[str] = in_proj_bias[:256] _A : Optional[Any] = in_proj_weight[256:512, :] _A : Tuple = in_proj_bias[256:512] _A : Dict = in_proj_weight[-256:, :] _A : Optional[Any] = in_proj_bias[-256:] def lowerCAmelCase_ ( ): _A : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg""" _A : Tuple = Image.open(requests.get(snake_case_,stream=snake_case_ ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : List[Any] = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: _A : Union[str, Any] = """resnet101""" if "dc5" in model_name: _A : Optional[int] = True _A : Union[str, Any] = """panoptic""" in model_name if is_panoptic: _A : Tuple = 250 else: _A : Optional[Any] = 91 _A : List[str] = """huggingface/label-files""" _A : Union[str, Any] = """coco-detection-id2label.json""" _A : Optional[int] = json.load(open(hf_hub_download(snake_case_,snake_case_,repo_type="""dataset""" ),"""r""" ) ) _A : List[str] = {int(snake_case_ ): v for k, v in idalabel.items()} _A : Tuple = idalabel _A : Tuple = {v: k for k, v in idalabel.items()} # load image processor _A : Optional[Any] = """coco_panoptic""" if is_panoptic else """coco_detection""" _A : int = ConditionalDetrImageProcessor(format=snake_case_ ) # prepare image _A : Any = prepare_img() _A : List[Any] = image_processor(images=snake_case_,return_tensors="""pt""" ) _A : List[str] = encoding["""pixel_values"""] logger.info(f'''Converting model {model_name}...''' ) # load original model from torch hub _A : Dict = torch.hub.load("""DeppMeng/ConditionalDETR""",snake_case_,pretrained=snake_case_ ).eval() _A : Any = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: _A : Dict = """conditional_detr.""" + src rename_key(snake_case_,snake_case_,snake_case_ ) _A : Dict = rename_backbone_keys(snake_case_ ) # query, key and value matrices need special treatment read_in_q_k_v(snake_case_,is_panoptic=snake_case_ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them _A : str = """conditional_detr.model.""" if is_panoptic else """model.""" for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("""conditional_detr""" ) and not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ) ): _A : str = state_dict.pop(snake_case_ ) _A : str = val elif "class_labels_classifier" in key or "bbox_predictor" in key: _A : Union[str, Any] = state_dict.pop(snake_case_ ) _A : Optional[Any] = val elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ): continue else: _A : str = state_dict.pop(snake_case_ ) _A : Optional[int] = val else: if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): _A : Union[str, Any] = state_dict.pop(snake_case_ ) _A : int = val # finally, create HuggingFace model and load state dict _A : Dict = ConditionalDetrForSegmentation(snake_case_ ) if is_panoptic else ConditionalDetrForObjectDetection(snake_case_ ) model.load_state_dict(snake_case_ ) model.eval() model.push_to_hub(repo_id=snake_case_,organization="""DepuMeng""",commit_message="""Add model""" ) # verify our conversion _A : Tuple = conditional_detr(snake_case_ ) _A : Tuple = model(snake_case_ ) assert torch.allclose(outputs.logits,original_outputs["""pred_logits"""],atol=1e-4 ) assert torch.allclose(outputs.pred_boxes,original_outputs["""pred_boxes"""],atol=1e-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks,original_outputs["""pred_masks"""],atol=1e-4 ) # Save model and image processor logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) model.save_pretrained(snake_case_ ) image_processor.save_pretrained(snake_case_ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument( "--model_name", default="conditional_detr_resnet50", type=str, help="Name of the CONDITIONAL_DETR model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) _snake_case = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
343
import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def lowerCAmelCase_ ( snake_case_,snake_case_ ): # Load checkpoint _A : Optional[int] = torch.load(snake_case_,map_location="""cpu""" ) _A : Any = chkpt["""model"""] # We have the base model one level deeper than the original XLM repository _A : Any = {} for k, v in state_dict.items(): if "pred_layer" in k: _A : Tuple = v else: _A : Dict = v _A : Optional[Any] = chkpt["""params"""] _A : Union[str, Any] = {n: v for n, v in config.items() if not isinstance(snake_case_,(torch.FloatTensor, numpy.ndarray) )} _A : str = chkpt["""dico_word2id"""] _A : Optional[Any] = {s + """</w>""" if s.find("""@@""" ) == -1 and i > 13 else s.replace("""@@""","""""" ): i for s, i in vocab.items()} # Save pytorch-model _A : Dict = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME _A : Any = pytorch_dump_folder_path + """/""" + CONFIG_NAME _A : Optional[int] = pytorch_dump_folder_path + """/""" + VOCAB_FILES_NAMES["""vocab_file"""] print(f'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(snake_case_,snake_case_ ) print(f'''Save configuration file to {pytorch_config_dump_path}''' ) with open(snake_case_,"""w""",encoding="""utf-8""" ) as f: f.write(json.dumps(snake_case_,indent=2 ) + """\n""" ) print(f'''Save vocab file to {pytorch_config_dump_path}''' ) with open(snake_case_,"""w""",encoding="""utf-8""" ) as f: f.write(json.dumps(snake_case_,indent=2 ) + """\n""" ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--xlm_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _snake_case = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
343
1
import functools def _A ( SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : list[int] ): """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or not all(isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for day in days ): raise ValueError("The parameter days should be a list of integers" ) if len(SCREAMING_SNAKE_CASE ) != 3 or not all(isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for cost in costs ): raise ValueError("The parameter costs should be a list of three integers" ) if len(SCREAMING_SNAKE_CASE ) == 0: return 0 if min(SCREAMING_SNAKE_CASE ) <= 0: raise ValueError("All days elements should be greater than 0" ) if max(SCREAMING_SNAKE_CASE ) >= 366: raise ValueError("All days elements should be less than 366" ) a__ : Any =set(SCREAMING_SNAKE_CASE ) @functools.cache def dynamic_programming(SCREAMING_SNAKE_CASE : int ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
95
'''simple docstring''' from __future__ import annotations from math import ceil, floor, sqrt def lowerCamelCase ( lowerCAmelCase : int = 200_0000 ): """simple docstring""" __magic_name__ : list[int] = [0] __magic_name__ : int for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target __magic_name__ : int = 0 # the area corresponding to the grid that gives the product closest to target __magic_name__ : int = 0 # an estimate of b, using the quadratic formula __magic_name__ : float # the largest integer less than b_estimate __magic_name__ : int # the largest integer less than b_estimate __magic_name__ : int # the triangle number corresponding to b_floor __magic_name__ : int # the triangle number corresponding to b_ceil __magic_name__ : int for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): __magic_name__ : Dict = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 __magic_name__ : List[Any] = floor(lowerCAmelCase ) __magic_name__ : Dict = ceil(lowerCAmelCase ) __magic_name__ : Any = triangle_numbers[b_floor] __magic_name__ : Optional[int] = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): __magic_name__ : Any = triangle_b_first_guess * triangle_a __magic_name__ : Any = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): __magic_name__ : List[str] = triangle_b_second_guess * triangle_a __magic_name__ : Optional[int] = idx_a * b_ceil return area if __name__ == "__main__": print(F'{solution() = }')
331
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE (a__ , a__ , a__ , unittest.TestCase ): lowerCAmelCase = StableDiffusionInpaintPipeline lowerCAmelCase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS lowerCAmelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS lowerCAmelCase = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowerCAmelCase = frozenset([] ) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' torch.manual_seed(0) __A : Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_UpperCAmelCase , ) __A : int = PNDMScheduler(skip_prk_steps=_UpperCAmelCase) torch.manual_seed(0) __A : Any = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0) __A : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='gelu' , projection_dim=512 , ) __A : Union[str, Any] = CLIPTextModel(_UpperCAmelCase) __A : Union[str, Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') __A : Any = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase=0): '''simple docstring''' __A : List[str] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_UpperCAmelCase)).to(_UpperCAmelCase) __A : List[str] = image.cpu().permute(0 , 2 , 3 , 1)[0] __A : Any = Image.fromarray(np.uinta(_UpperCAmelCase)).convert('RGB').resize((64, 64)) __A : str = Image.fromarray(np.uinta(image + 4)).convert('RGB').resize((64, 64)) if str(_UpperCAmelCase).startswith('mps'): __A : Any = torch.manual_seed(_UpperCAmelCase) else: __A : List[str] = torch.Generator(device=_UpperCAmelCase).manual_seed(_UpperCAmelCase) __A : Optional[Any] = { 'prompt': 'A painting of a squirrel eating a burger', 'image': init_image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = 'cpu' # ensure determinism for the device-dependent torch.Generator __A : Dict = self.get_dummy_components() __A : Dict = StableDiffusionInpaintPipeline(**_UpperCAmelCase) __A : Dict = sd_pipe.to(_UpperCAmelCase) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase) __A : int = self.get_dummy_inputs(_UpperCAmelCase) __A : List[str] = sd_pipe(**_UpperCAmelCase).images __A : int = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __A : int = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png') __A : int = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png') __A : Any = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench.npy') __A : Any = 'stabilityai/stable-diffusion-2-inpainting' __A : List[Any] = StableDiffusionInpaintPipeline.from_pretrained(_UpperCAmelCase , safety_checker=_UpperCAmelCase) pipe.to(_UpperCAmelCase) pipe.set_progress_bar_config(disable=_UpperCAmelCase) pipe.enable_attention_slicing() __A : Dict = 'Face of a yellow cat, high resolution, sitting on a park bench' __A : str = torch.manual_seed(0) __A : Dict = pipe( prompt=_UpperCAmelCase , image=_UpperCAmelCase , mask_image=_UpperCAmelCase , generator=_UpperCAmelCase , output_type='np' , ) __A : Any = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image).max() < 9e-3 def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : str = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png') __A : Tuple = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png') __A : Optional[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench_fp16.npy') __A : Optional[Any] = 'stabilityai/stable-diffusion-2-inpainting' __A : Any = StableDiffusionInpaintPipeline.from_pretrained( _UpperCAmelCase , torch_dtype=torch.floataa , safety_checker=_UpperCAmelCase , ) pipe.to(_UpperCAmelCase) pipe.set_progress_bar_config(disable=_UpperCAmelCase) pipe.enable_attention_slicing() __A : Optional[Any] = 'Face of a yellow cat, high resolution, sitting on a park bench' __A : Tuple = torch.manual_seed(0) __A : Optional[int] = pipe( prompt=_UpperCAmelCase , image=_UpperCAmelCase , mask_image=_UpperCAmelCase , generator=_UpperCAmelCase , output_type='np' , ) __A : Dict = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image).max() < 5e-1 def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __A : Union[str, Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png') __A : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png') __A : Tuple = 'stabilityai/stable-diffusion-2-inpainting' __A : Any = PNDMScheduler.from_pretrained(_UpperCAmelCase , subfolder='scheduler') __A : Union[str, Any] = StableDiffusionInpaintPipeline.from_pretrained( _UpperCAmelCase , safety_checker=_UpperCAmelCase , scheduler=_UpperCAmelCase , torch_dtype=torch.floataa , ) pipe.to(_UpperCAmelCase) pipe.set_progress_bar_config(disable=_UpperCAmelCase) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() __A : int = 'Face of a yellow cat, high resolution, sitting on a park bench' __A : Optional[Any] = torch.manual_seed(0) __A : str = pipe( prompt=_UpperCAmelCase , image=_UpperCAmelCase , mask_image=_UpperCAmelCase , generator=_UpperCAmelCase , num_inference_steps=2 , output_type='np' , ) __A : Optional[int] = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
351
'''simple docstring''' from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration lowercase__ : List[Any] = HfArgumentParser(InitializationArguments) lowercase__ : List[Any] = parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization lowercase__ : Union[str, Any] = AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks lowercase__ : List[str] = { '''vocab_size''': len(tokenizer), '''scale_attn_by_inverse_layer_idx''': True, '''reorder_and_upcast_attn''': True, } # Load model config (GPT-2 large in this case) lowercase__ : Optional[int] = AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config lowercase__ : Optional[int] = AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
190
0
"""simple docstring""" import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor UpperCAmelCase_ : Optional[Any] = logging.getLogger(__name__) UpperCAmelCase_ : Any = 50 # max width of layer names UpperCAmelCase_ : List[Any] = 70 # max width of quantizer names def _A (__a ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = parser.add_argument_group('''quant_trainer arguments''' ) group.add_argument('''--wprec''' , type=__a , default=8 , help='''weight precision''' ) group.add_argument('''--aprec''' , type=__a , default=8 , help='''activation precision''' ) group.add_argument('''--quant-per-tensor''' , action='''store_true''' , help='''per tensor weight scaling''' ) group.add_argument('''--quant-disable''' , action='''store_true''' , help='''disable all quantizers''' ) group.add_argument('''--quant-disable-embeddings''' , action='''store_true''' , help='''disable all embeddings quantizers''' ) group.add_argument('''--quant-disable-keyword''' , type=__a , nargs='''+''' , help='''disable quantizers by keyword''' ) group.add_argument('''--quant-disable-layer-module''' , type=__a , help='''disable quantizers by keyword under layer.''' ) group.add_argument('''--quant-enable-layer-module''' , type=__a , help='''enable quantizers by keyword under layer''' ) group.add_argument('''--calibrator''' , default='''max''' , help='''which quantization range calibrator to use''' ) group.add_argument('''--percentile''' , default=__a , type=__a , help='''percentile for PercentileCalibrator''' ) group.add_argument('''--fuse-qkv''' , action='''store_true''' , help='''use the same scale factor for qkv''' ) group.add_argument('''--clip-gelu''' , metavar='''N''' , type=__a , help='''clip gelu output maximum value to N''' ) group.add_argument( '''--recalibrate-weights''' , action='''store_true''' , help=( '''recalibrate weight amaxes by taking the max of the weights.''' ''' amaxes will be computed with the current quantization granularity (axis).''' ) , ) def _A (__a ) -> List[str]: """simple docstring""" if args.calibrator == "max": SCREAMING_SNAKE_CASE_ : Optional[int] = '''max''' elif args.calibrator == "percentile": if args.percentile is None: raise ValueError('''Specify --percentile when using percentile calibrator''' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = '''histogram''' elif args.calibrator == "mse": SCREAMING_SNAKE_CASE_ : List[str] = '''histogram''' else: raise ValueError(f'Invalid calibrator {args.calibrator}' ) SCREAMING_SNAKE_CASE_ : List[str] = QuantDescriptor(num_bits=args.aprec , calib_method=__a ) SCREAMING_SNAKE_CASE_ : Dict = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(__a ) quant_nn.QuantLinear.set_default_quant_desc_weight(__a ) def _A (__a , __a , __a=False , __a=False ) -> Optional[Any]: """simple docstring""" logger.info('''Configuring Model for Quantization''' ) logger.info(f'using quantization package {pytorch_quantization.__file__}' ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(__a , ['''embeddings'''] , which='''weight''' , _disabled=__a ) if args.quant_disable: set_quantizer_by_name(__a , [''''''] , _disabled=__a ) if args.quant_disable_keyword: set_quantizer_by_name(__a , args.quant_disable_keyword , _disabled=__a ) if args.quant_disable_layer_module: set_quantizer_by_name(__a , [R'''layer.\d+.''' + args.quant_disable_layer_module] , _disabled=__a ) if args.quant_enable_layer_module: set_quantizer_by_name(__a , [R'''layer.\d+.''' + args.quant_enable_layer_module] , _disabled=__a ) if args.recalibrate_weights: recalibrate_weights(__a ) if args.fuse_qkv: fuse_qkv(__a , __a ) if args.clip_gelu: clip_gelu(__a , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(__a ) def _A (__a ) -> int: """simple docstring""" logger.info('''Enabling Calibration''' ) for name, module in model.named_modules(): if name.endswith('''_quantizer''' ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(f'{name:80}: {module}' ) def _A (__a , __a ) -> Optional[int]: """simple docstring""" logger.info('''Loading calibrated amax''' ) for name, module in model.named_modules(): if name.endswith('''_quantizer''' ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax('''percentile''' , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(__a ) def _A (__a , __a ) -> Optional[int]: """simple docstring""" def fusea(__a , __a , __a ): for mod in [qq, qk, qv]: if not hasattr(__a , '''_amax''' ): print(''' WARNING: NO AMAX BUFFER''' ) return SCREAMING_SNAKE_CASE_ : List[Any] = qq._amax.detach().item() SCREAMING_SNAKE_CASE_ : Dict = qk._amax.detach().item() SCREAMING_SNAKE_CASE_ : List[str] = qv._amax.detach().item() SCREAMING_SNAKE_CASE_ : Union[str, Any] = max(__a , __a , __a ) qq._amax.fill_(__a ) qk._amax.fill_(__a ) qv._amax.fill_(__a ) logger.info(f' q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}' ) for name, mod in model.named_modules(): if name.endswith('''.attention.self''' ): logger.info(f'FUSE_QKV: {name:{name_width}}' ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def _A (__a , __a ) -> List[str]: """simple docstring""" for name, mod in model.named_modules(): if name.endswith('''.output.dense''' ) and not name.endswith('''attention.output.dense''' ): SCREAMING_SNAKE_CASE_ : Optional[Any] = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=__a ) SCREAMING_SNAKE_CASE_ : Optional[int] = mod._input_quantizer._amax.data.detach().item() logger.info(f'CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}' ) def _A (__a ) -> Dict: """simple docstring""" for name, mod in model.named_modules(): if hasattr(__a , '''_weight_quantizer''' ) and mod._weight_quantizer.axis is not None: SCREAMING_SNAKE_CASE_ : Optional[Any] = mod.weight.shape[0] SCREAMING_SNAKE_CASE_ : Tuple = mod._weight_quantizer._amax.detach() SCREAMING_SNAKE_CASE_ : str = torch.ones(__a , dtype=amax.dtype , device=amax.device ) * amax print(f'expanding {name} {amax} -> {mod._weight_quantizer._amax}' ) def _A (__a ) -> List[Any]: """simple docstring""" for name, mod in model.named_modules(): if hasattr(__a , '''_weight_quantizer''' ): if not hasattr(mod.weight_quantizer , '''_amax''' ): print('''RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER''' ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) SCREAMING_SNAKE_CASE_ : int = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) SCREAMING_SNAKE_CASE_ : Tuple = set(range(len(mod.weight.size() ) ) ) - axis_set SCREAMING_SNAKE_CASE_ : Any = pytorch_quantization.utils.reduce_amax(mod.weight , axis=__a , keepdims=__a ).detach() logger.info(f'RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}' ) SCREAMING_SNAKE_CASE_ : Dict = amax def _A (__a , __a=25 , __a=1_80 , __a=None ) -> List[str]: """simple docstring""" if ignore is None: SCREAMING_SNAKE_CASE_ : Union[str, Any] = [] elif not isinstance(__a , __a ): SCREAMING_SNAKE_CASE_ : int = [ignore] SCREAMING_SNAKE_CASE_ : List[Any] = 0 for name, mod in model.named_modules(): if not hasattr(__a , '''weight''' ): continue SCREAMING_SNAKE_CASE_ : List[str] = max(__a , len(__a ) ) for name, mod in model.named_modules(): SCREAMING_SNAKE_CASE_ : int = getattr(__a , '''_input_quantizer''' , __a ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = getattr(__a , '''_weight_quantizer''' , __a ) if not hasattr(__a , '''weight''' ): continue if type(__a ) in ignore: continue if [True for s in ignore if type(__a ) is str and s in name]: continue SCREAMING_SNAKE_CASE_ : List[str] = f'Act:{input_q.extra_repr()}' SCREAMING_SNAKE_CASE_ : Tuple = f'Wgt:{weight_q.extra_repr()}' SCREAMING_SNAKE_CASE_ : List[Any] = f'{name:{name_width}} {act_str} {wgt_str}' if len(__a ) <= line_width: logger.info(__a ) else: logger.info(f'{name:{name_width}} {act_str}' ) logger.info(f'{" ":{name_width}} {wgt_str}' ) def _A (__a ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = 0 for name, mod in model.named_modules(): if isinstance(__a , pytorch_quantization.nn.TensorQuantizer ): print(f'{name:80} {mod}' ) count += 1 print(f'{count} TensorQuantizers found in model' ) def _A (__a , __a , __a , __a , __a ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = getattr(__a , __a , __a ) if quantizer_mod is not None: assert hasattr(__a , __a ) setattr(__a , __a , __a ) else: logger.warning(f'{name} has no {quantizer}' ) def _A (__a , __a , __a="both" , **__a ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = f'Warning: changing {which} quantizers of {name:{qname_width}}' for k, v in kwargs.items(): s += f' {k}={v}' if which in ["input", "both"]: set_quantizer(__a , __a , '''_input_quantizer''' , __a , __a ) if which in ["weight", "both"]: set_quantizer(__a , __a , '''_weight_quantizer''' , __a , __a ) logger.info(__a ) def _A (__a , __a , **__a ) -> List[str]: """simple docstring""" for name, mod in model.named_modules(): if hasattr(__a , '''_input_quantizer''' ) or hasattr(__a , '''_weight_quantizer''' ): for n in names: if re.search(__a , __a ): set_quantizers(__a , __a , **__a ) elif name.endswith('''_quantizer''' ): for n in names: if re.search(__a , __a ): SCREAMING_SNAKE_CASE_ : Dict = f'Warning: changing {name:{name_width}}' for k, v in kwargs.items(): s += f' {k}={v}' setattr(__a , __a , __a ) logger.info(__a )
91
"""simple docstring""" # Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def lowerCamelCase__ ( __snake_case ) -> Tuple: """simple docstring""" return 1 / (1 + np.exp(-z )) def lowerCamelCase__ ( __snake_case, __snake_case ) -> List[str]: """simple docstring""" return (-y * np.log(__snake_case ) - (1 - y) * np.log(1 - h )).mean() def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> int: """simple docstring""" _UpperCamelCase = np.dot(__snake_case, __snake_case ) return np.sum(y * scores - np.log(1 + np.exp(__snake_case ) ) ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case=7_00_00 ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = np.zeros(x.shape[1] ) for iterations in range(__snake_case ): _UpperCamelCase = np.dot(__snake_case, __snake_case ) _UpperCamelCase = sigmoid_function(__snake_case ) _UpperCamelCase = np.dot(x.T, h - y ) / y.size _UpperCamelCase = theta - alpha * gradient # updating the weights _UpperCamelCase = np.dot(__snake_case, __snake_case ) _UpperCamelCase = sigmoid_function(__snake_case ) _UpperCamelCase = cost_function(__snake_case, __snake_case ) if iterations % 1_00 == 0: print(F'''loss: {j} \t''' ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": _a = datasets.load_iris() _a = iris.data[:, :2] _a = (iris.target != 0) * 1 _a = 0.1 _a = logistic_reg(alpha, x, y, max_iterations=7_0000) print("""theta: """, theta) # printing the theta i.e our weights vector def lowerCamelCase__ ( __snake_case ) -> Tuple: """simple docstring""" return sigmoid_function( np.dot(__snake_case, __snake_case ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color="""b""", label="""0""") plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color="""r""", label="""1""") ((_a) , (_a)) = (x[:, 0].min(), x[:, 0].max()) ((_a) , (_a)) = (x[:, 1].min(), x[:, 1].max()) ((_a) , (_a)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) _a = np.c_[xxa.ravel(), xxa.ravel()] _a = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors="""black""") plt.legend() plt.show()
194
0
import argparse import importlib from pathlib import Path # Test all the extensions added in the setup _A = [ '''kernels/rwkv/wkv_cuda.cu''', '''kernels/rwkv/wkv_op.cpp''', '''kernels/deformable_detr/ms_deform_attn.h''', '''kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh''', '''models/graphormer/algos_graphormer.pyx''', ] def lowerCamelCase__ ( a__ : Any ) -> Dict: # Test all the extensions added in the setup for file in FILES_TO_FIND: if not (transformers_path / file).exists(): return False return True if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument('''--check_lib''', action='''store_true''', help='''Whether to check the build or the actual package.''') _A = parser.parse_args() if args.check_lib: _A = importlib.import_module('''transformers''') _A = Path(transformers_module.__file__).parent else: _A = Path.cwd() / '''build/lib/transformers''' if not test_custom_files_are_present(transformers_path): raise ValueError('''The built release does not contain the custom files. Fix this before going further!''')
356
import comet # From: unbabel-comet import torch import datasets _A = datasets.logging.get_logger(__name__) _A = '''\ @inproceedings{rei-EtAl:2020:WMT, author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon}, title = {Unbabel\'s Participation in the WMT20 Metrics Shared Task}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, month = {November}, year = {2020}, address = {Online}, publisher = {Association for Computational Linguistics}, pages = {909--918}, } @inproceedings{rei-etal-2020-comet, title = "{COMET}: A Neural Framework for {MT} Evaluation", author = "Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.emnlp-main.213", pages = "2685--2702", } ''' _A = '''\ Crosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA\'s or MQM). With the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition. See the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information. ''' _A = ''' COMET score. Args: `sources` (list of str): Source sentences `predictions` (list of str): candidate translations `references` (list of str): reference translations `cuda` (bool): If set to True, runs COMET using GPU `show_progress` (bool): Shows progress `model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None. Returns: `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`. `scores`: List of scores. Examples: >>> comet_metric = datasets.load_metric(\'comet\') >>> # comet_metric = load_metric(\'comet\', \'wmt20-comet-da\') # you can also choose which model to use >>> source = ["Dem Feuer konnte Einhalt geboten werden", "Schulen und Kindergärten wurden eröffnet."] >>> hypothesis = ["The fire could be stopped", "Schools and kindergartens were open"] >>> reference = ["They were able to control the fire.", "Schools and kindergartens opened"] >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source) >>> print([round(v, 2) for v in results["scores"]]) [0.19, 0.92] ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase_ ( datasets.Metric ): def lowerCamelCase_ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://unbabel.github.io/COMET/html/index.html""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """sources""": datasets.Value("""string""" , id="""sequence""" ), """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/Unbabel/COMET"""] , reference_urls=[ """https://github.com/Unbabel/COMET""", """https://www.aclweb.org/anthology/2020.emnlp-main.213/""", """http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6""", ] , ) def lowerCamelCase_ ( self , __UpperCamelCase ): """simple docstring""" if self.config_name == "default": UpperCamelCase_ = comet.load_from_checkpoint(comet.download_model("""wmt20-comet-da""" ) ) else: UpperCamelCase_ = comet.load_from_checkpoint(comet.download_model(self.config_name ) ) def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=False ): """simple docstring""" if gpus is None: UpperCamelCase_ = 1 if torch.cuda.is_available() else 0 UpperCamelCase_ = {"""src""": sources, """mt""": predictions, """ref""": references} UpperCamelCase_ = [dict(zip(__UpperCamelCase , __UpperCamelCase ) ) for t in zip(*data.values() )] UpperCamelCase_ , UpperCamelCase_ = self.scorer.predict(__UpperCamelCase , gpus=__UpperCamelCase , progress_bar=__UpperCamelCase ) return {"mean_score": mean_score, "scores": scores}
261
0
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _A = logging.get_logger(__name__) _A = {"""tokenizer_file""": """tokenizer.json"""} _A = { """tokenizer_file""": { """bigscience/tokenizer""": """https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json""", """bigscience/bloom-560m""": """https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json""", """bigscience/bloom-1b1""": """https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json""", """bigscience/bloom-1b7""": """https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json""", """bigscience/bloom-3b""": """https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json""", """bigscience/bloom-7b1""": """https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json""", """bigscience/bloom""": """https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json""", }, } class _lowerCamelCase ( a_ ): _lowerCamelCase :str = VOCAB_FILES_NAMES _lowerCamelCase :int = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase :str = ["input_ids", "attention_mask"] _lowerCamelCase :Tuple = None def __init__( self : str , UpperCamelCase : Optional[int]=None , UpperCamelCase : str=None , UpperCamelCase : Optional[Any]=None , UpperCamelCase : str="<unk>" , UpperCamelCase : Tuple="<s>" , UpperCamelCase : str="</s>" , UpperCamelCase : Optional[Any]="<pad>" , UpperCamelCase : int=False , UpperCamelCase : Optional[Any]=False , **UpperCamelCase : str , ) -> Tuple: """simple docstring""" super().__init__( UpperCamelCase , UpperCamelCase , tokenizer_file=UpperCamelCase , unk_token=UpperCamelCase , bos_token=UpperCamelCase , eos_token=UpperCamelCase , pad_token=UpperCamelCase , add_prefix_space=UpperCamelCase , clean_up_tokenization_spaces=UpperCamelCase , **UpperCamelCase , ) lowerCAmelCase__ : Dict = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , UpperCamelCase ) != add_prefix_space: lowerCAmelCase__ : Optional[Any] = getattr(UpperCamelCase , pre_tok_state.pop("""type""" ) ) lowerCAmelCase__ : Optional[Any] = add_prefix_space lowerCAmelCase__ : Tuple = pre_tok_class(**UpperCamelCase ) lowerCAmelCase__ : Optional[int] = add_prefix_space def _lowerCAmelCase ( self : Optional[int] , *UpperCamelCase : int , **UpperCamelCase : List[Any] ) -> BatchEncoding: """simple docstring""" lowerCAmelCase__ : List[Any] = kwargs.get("""is_split_into_words""" , UpperCamelCase ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with""" """ pretokenized inputs.""" ) return super()._batch_encode_plus(*UpperCamelCase , **UpperCamelCase ) def _lowerCAmelCase ( self : Any , *UpperCamelCase : Optional[int] , **UpperCamelCase : Union[str, Any] ) -> BatchEncoding: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = kwargs.get("""is_split_into_words""" , UpperCamelCase ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with""" """ pretokenized inputs.""" ) return super()._encode_plus(*UpperCamelCase , **UpperCamelCase ) def _lowerCAmelCase ( self : Optional[int] , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" lowerCAmelCase__ : Tuple = self._tokenizer.model.save(UpperCamelCase , name=UpperCamelCase ) return tuple(UpperCamelCase ) def _lowerCAmelCase ( self : Optional[Any] , UpperCamelCase : "Conversation" ) -> List[int]: """simple docstring""" lowerCAmelCase__ : List[str] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) + [self.eos_token_id] ) if len(UpperCamelCase ) > self.model_max_length: lowerCAmelCase__ : List[Any] = input_ids[-self.model_max_length :] return input_ids
242
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _A = logging.get_logger(__name__) _A = { """SenseTime/deformable-detr""": """https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json""", # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class _lowerCamelCase ( a_ ): _lowerCamelCase :Any = "deformable_detr" _lowerCamelCase :Union[str, Any] = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self : int , UpperCamelCase : Optional[Any]=True , UpperCamelCase : str=None , UpperCamelCase : int=3 , UpperCamelCase : Dict=3_00 , UpperCamelCase : int=10_24 , UpperCamelCase : List[str]=6 , UpperCamelCase : Optional[Any]=10_24 , UpperCamelCase : Any=8 , UpperCamelCase : List[str]=6 , UpperCamelCase : Dict=10_24 , UpperCamelCase : Optional[Any]=8 , UpperCamelCase : Tuple=0.0 , UpperCamelCase : Optional[Any]=True , UpperCamelCase : int="relu" , UpperCamelCase : List[Any]=2_56 , UpperCamelCase : Union[str, Any]=0.1 , UpperCamelCase : Dict=0.0 , UpperCamelCase : Optional[Any]=0.0 , UpperCamelCase : Any=0.02 , UpperCamelCase : int=1.0 , UpperCamelCase : Dict=True , UpperCamelCase : Dict=False , UpperCamelCase : Any="sine" , UpperCamelCase : int="resnet50" , UpperCamelCase : str=True , UpperCamelCase : str=False , UpperCamelCase : Any=4 , UpperCamelCase : List[str]=4 , UpperCamelCase : Dict=4 , UpperCamelCase : List[str]=False , UpperCamelCase : Tuple=3_00 , UpperCamelCase : int=False , UpperCamelCase : List[str]=1 , UpperCamelCase : List[str]=5 , UpperCamelCase : str=2 , UpperCamelCase : List[Any]=1 , UpperCamelCase : Tuple=1 , UpperCamelCase : str=5 , UpperCamelCase : List[str]=2 , UpperCamelCase : Any=0.1 , UpperCamelCase : Union[str, Any]=0.25 , UpperCamelCase : Any=False , **UpperCamelCase : int , ) -> Dict: """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) lowerCAmelCase__ : List[str] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(UpperCamelCase , UpperCamelCase ): lowerCAmelCase__ : Dict = backbone_config.get("""model_type""" ) lowerCAmelCase__ : Dict = CONFIG_MAPPING[backbone_model_type] lowerCAmelCase__ : Any = config_class.from_dict(UpperCamelCase ) lowerCAmelCase__ : List[str] = use_timm_backbone lowerCAmelCase__ : List[str] = backbone_config lowerCAmelCase__ : Dict = num_channels lowerCAmelCase__ : int = num_queries lowerCAmelCase__ : Any = max_position_embeddings lowerCAmelCase__ : List[Any] = d_model lowerCAmelCase__ : Tuple = encoder_ffn_dim lowerCAmelCase__ : Tuple = encoder_layers lowerCAmelCase__ : List[Any] = encoder_attention_heads lowerCAmelCase__ : Optional[int] = decoder_ffn_dim lowerCAmelCase__ : Dict = decoder_layers lowerCAmelCase__ : Any = decoder_attention_heads lowerCAmelCase__ : int = dropout lowerCAmelCase__ : List[str] = attention_dropout lowerCAmelCase__ : str = activation_dropout lowerCAmelCase__ : Optional[int] = activation_function lowerCAmelCase__ : Optional[Any] = init_std lowerCAmelCase__ : Optional[int] = init_xavier_std lowerCAmelCase__ : Optional[int] = encoder_layerdrop lowerCAmelCase__ : Any = auxiliary_loss lowerCAmelCase__ : List[str] = position_embedding_type lowerCAmelCase__ : Optional[Any] = backbone lowerCAmelCase__ : Tuple = use_pretrained_backbone lowerCAmelCase__ : Union[str, Any] = dilation # deformable attributes lowerCAmelCase__ : Optional[int] = num_feature_levels lowerCAmelCase__ : int = encoder_n_points lowerCAmelCase__ : Optional[int] = decoder_n_points lowerCAmelCase__ : Tuple = two_stage lowerCAmelCase__ : Any = two_stage_num_proposals lowerCAmelCase__ : Optional[int] = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError("""If two_stage is True, with_box_refine must be True.""" ) # Hungarian matcher lowerCAmelCase__ : Union[str, Any] = class_cost lowerCAmelCase__ : Optional[int] = bbox_cost lowerCAmelCase__ : str = giou_cost # Loss coefficients lowerCAmelCase__ : Optional[Any] = mask_loss_coefficient lowerCAmelCase__ : Tuple = dice_loss_coefficient lowerCAmelCase__ : Optional[Any] = bbox_loss_coefficient lowerCAmelCase__ : Optional[int] = giou_loss_coefficient lowerCAmelCase__ : Optional[Any] = eos_coefficient lowerCAmelCase__ : Tuple = focal_alpha lowerCAmelCase__ : Tuple = disable_custom_kernels super().__init__(is_encoder_decoder=UpperCamelCase , **UpperCamelCase ) @property def _lowerCAmelCase ( self : str ) -> int: """simple docstring""" return self.encoder_attention_heads @property def _lowerCAmelCase ( self : Optional[int] ) -> int: """simple docstring""" return self.d_model def _lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" lowerCAmelCase__ : Dict = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: lowerCAmelCase__ : Union[str, Any] = self.backbone_config.to_dict() lowerCAmelCase__ : Union[str, Any] = self.__class__.model_type return output
242
1
import math from collections.abc import Iterator from itertools import takewhile def A__ ( lowerCamelCase ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCamelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A__ ( ) -> Iterator[int]: UpperCamelCase_: List[Any] = 2 while True: if is_prime(lowerCamelCase ): yield num num += 1 def A__ ( lowerCamelCase = 2_00_00_00 ) -> int: return sum(takewhile(lambda lowerCamelCase : x < n , prime_generator() ) ) if __name__ == "__main__": print(F"""{solution() = }""")
223
from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class _UpperCamelCase : '''simple docstring''' __UpperCamelCase : str = PegasusConfig __UpperCamelCase : str = {} __UpperCamelCase : Optional[Any] = """gelu""" def __init__( self : Optional[Any] , snake_case_ : Optional[Any] , snake_case_ : str=13 , snake_case_ : Dict=7 , snake_case_ : List[Any]=True , snake_case_ : Optional[int]=False , snake_case_ : Any=99 , snake_case_ : Optional[Any]=32 , snake_case_ : Dict=2 , snake_case_ : Any=4 , snake_case_ : Optional[Any]=37 , snake_case_ : Dict=0.1 , snake_case_ : Optional[int]=0.1 , snake_case_ : List[str]=40 , snake_case_ : Tuple=2 , snake_case_ : Optional[int]=1 , snake_case_ : str=0 , ): UpperCamelCase_: List[str] = parent UpperCamelCase_: Optional[Any] = batch_size UpperCamelCase_: Union[str, Any] = seq_length UpperCamelCase_: Tuple = is_training UpperCamelCase_: Tuple = use_labels UpperCamelCase_: Tuple = vocab_size UpperCamelCase_: Tuple = hidden_size UpperCamelCase_: Optional[Any] = num_hidden_layers UpperCamelCase_: List[Any] = num_attention_heads UpperCamelCase_: Optional[int] = intermediate_size UpperCamelCase_: Dict = hidden_dropout_prob UpperCamelCase_: str = attention_probs_dropout_prob UpperCamelCase_: Optional[int] = max_position_embeddings UpperCamelCase_: Union[str, Any] = eos_token_id UpperCamelCase_: Optional[int] = pad_token_id UpperCamelCase_: List[Any] = bos_token_id def lowerCAmelCase__ ( self : str ): UpperCamelCase_: List[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCamelCase_: int = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCamelCase_: List[Any] = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCamelCase_: List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_: Optional[int] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCamelCase_: List[str] = prepare_pegasus_inputs_dict(snake_case_ , snake_case_ , snake_case_ ) return config, inputs_dict def lowerCAmelCase__ ( self : Any , snake_case_ : List[str] , snake_case_ : Dict ): UpperCamelCase_: Any = TFPegasusModel(config=snake_case_ ).get_decoder() UpperCamelCase_: Any = inputs_dict["""input_ids"""] UpperCamelCase_: int = input_ids[:1, :] UpperCamelCase_: List[str] = inputs_dict["""attention_mask"""][:1, :] UpperCamelCase_: Tuple = inputs_dict["""head_mask"""] UpperCamelCase_: int = 1 # first forward pass UpperCamelCase_: Dict = model(snake_case_ , attention_mask=snake_case_ , head_mask=snake_case_ , use_cache=snake_case_ ) UpperCamelCase_, UpperCamelCase_: List[str] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCamelCase_: Optional[int] = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase_: Union[str, Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCamelCase_: Union[str, Any] = tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCamelCase_: Optional[int] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCamelCase_: List[Any] = model(snake_case_ , attention_mask=snake_case_ )[0] UpperCamelCase_: Dict = model(snake_case_ , attention_mask=snake_case_ , past_key_values=snake_case_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCamelCase_: str = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCamelCase_: str = output_from_no_past[:, -3:, random_slice_idx] UpperCamelCase_: int = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(snake_case_ , snake_case_ , rtol=1e-3 ) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , ) -> Optional[int]: if attention_mask is None: UpperCamelCase_: Union[str, Any] = tf.cast(tf.math.not_equal(lowerCamelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCamelCase_: str = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCamelCase_: Tuple = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCamelCase_: Dict = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCamelCase_: str = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class _UpperCamelCase ( _A , _A , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Union[str, Any] = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () __UpperCamelCase : str = (TFPegasusForConditionalGeneration,) if is_tf_available() else () __UpperCamelCase : int = ( { """conversational""": TFPegasusForConditionalGeneration, """feature-extraction""": TFPegasusModel, """summarization""": TFPegasusForConditionalGeneration, """text2text-generation""": TFPegasusForConditionalGeneration, """translation""": TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) __UpperCamelCase : Optional[Any] = True __UpperCamelCase : Any = False __UpperCamelCase : Dict = False def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: Tuple = TFPegasusModelTester(self ) UpperCamelCase_: List[Any] = ConfigTester(self , config_class=snake_case_ ) def lowerCAmelCase__ ( self : Dict ): self.config_tester.run_common_tests() def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*snake_case_ ) @require_sentencepiece @require_tokenizers @require_tf class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Union[str, Any] = [ """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""", """ The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """, ] __UpperCamelCase : Optional[int] = [ """California's largest electricity provider has cut power to hundreds of thousands of customers in an effort to""" """ reduce the risk of wildfires.""", """N-Dubz have revealed they\'re \"grateful\" to have been nominated for four Mobo Awards.""", ] # differs slightly from pytorch, likely due to numerical differences in linear layers __UpperCamelCase : Union[str, Any] = """google/pegasus-xsum""" @cached_property def lowerCAmelCase__ ( self : Dict ): return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def lowerCAmelCase__ ( self : int ): UpperCamelCase_: List[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def lowerCAmelCase__ ( self : Union[str, Any] , **snake_case_ : Optional[int] ): UpperCamelCase_: str = self.translate_src_text(**snake_case_ ) assert self.expected_text == generated_words def lowerCAmelCase__ ( self : Optional[Any] , **snake_case_ : int ): UpperCamelCase_: Tuple = self.tokenizer(self.src_text , **snake_case_ , padding=snake_case_ , return_tensors="""tf""" ) UpperCamelCase_: Tuple = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=snake_case_ , ) UpperCamelCase_: Tuple = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=snake_case_ ) return generated_words @slow def lowerCAmelCase__ ( self : Optional[Any] ): self._assert_generated_batch_equal_expected()
223
1
import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def UpperCamelCase ( __lowerCamelCase : Optional[int] ): monkeypatch.setattr("datasets.utils.deprecation_utils._emitted_deprecation_warnings" , set() ) @pytest.fixture def UpperCamelCase ( __lowerCamelCase : str ): class UpperCAmelCase : def __init__(self : Optional[int] , snake_case__ : str ) -> Any: '''simple docstring''' snake_case : List[str] = metric_id class UpperCAmelCase : A__ : List[str] = [MetricMock(A_ ) for metric_id in ["accuracy", "mse", "precision", "codeparrot/apps_metric"]] def _SCREAMING_SNAKE_CASE (self : int ) -> List[str]: '''simple docstring''' return self._metrics monkeypatch.setattr("datasets.inspect.huggingface_hub" , HfhMock() ) @pytest.mark.parametrize( "func, args" , [(load_metric, ("metrics/mse",)), (list_metrics, ()), (inspect_metric, ("metrics/mse", "tmp_path"))] ) def UpperCamelCase ( __lowerCamelCase : Optional[int] , __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : int , __lowerCamelCase : Any ): if "tmp_path" in args: snake_case : str = tuple(arg if arg != "tmp_path" else tmp_path for arg in args ) with pytest.warns(__lowerCamelCase , match="https://huggingface.co/docs/evaluate" ): func(*__lowerCamelCase )
59
import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def UpperCamelCase ( __lowerCamelCase : Optional[int] ): monkeypatch.setattr("datasets.utils.deprecation_utils._emitted_deprecation_warnings" , set() ) @pytest.fixture def UpperCamelCase ( __lowerCamelCase : str ): class UpperCAmelCase : def __init__(self : Optional[int] , snake_case__ : str ) -> Any: '''simple docstring''' snake_case : List[str] = metric_id class UpperCAmelCase : A__ : List[str] = [MetricMock(A_ ) for metric_id in ["accuracy", "mse", "precision", "codeparrot/apps_metric"]] def _SCREAMING_SNAKE_CASE (self : int ) -> List[str]: '''simple docstring''' return self._metrics monkeypatch.setattr("datasets.inspect.huggingface_hub" , HfhMock() ) @pytest.mark.parametrize( "func, args" , [(load_metric, ("metrics/mse",)), (list_metrics, ()), (inspect_metric, ("metrics/mse", "tmp_path"))] ) def UpperCamelCase ( __lowerCamelCase : Optional[int] , __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : int , __lowerCamelCase : Any ): if "tmp_path" in args: snake_case : str = tuple(arg if arg != "tmp_path" else tmp_path for arg in args ) with pytest.warns(__lowerCamelCase , match="https://huggingface.co/docs/evaluate" ): func(*__lowerCamelCase )
59
1
"""simple docstring""" # We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings('ignore', category=UserWarning, module='torch.optim.lr_scheduler') class a__ : def __init__( self : List[Any], lowerCAmelCase : Tuple, lowerCAmelCase : int, lowerCAmelCase : bool = True, lowerCAmelCase : bool = False ) -> Tuple: lowercase : Dict = scheduler lowercase : List[Any] = optimizers if isinstance(lowerCAmelCase, (list, tuple) ) else [optimizers] lowercase : int = split_batches lowercase : int = step_with_optimizer lowercase : int = GradientState() def lowercase ( self : str, *lowerCAmelCase : Optional[int], **lowerCAmelCase : Optional[int] ) -> Optional[int]: if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*lowerCAmelCase, **lowerCAmelCase ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*lowerCAmelCase, **lowerCAmelCase ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step lowercase : Optional[Any] = AcceleratorState().num_processes for _ in range(lowerCAmelCase ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler, 'total_steps' ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*lowerCAmelCase, **lowerCAmelCase ) else: self.scheduler.step(*lowerCAmelCase, **lowerCAmelCase ) def lowercase ( self : Dict ) -> Optional[int]: return self.scheduler.get_last_lr() def lowercase ( self : Optional[int] ) -> str: return self.scheduler.state_dict() def lowercase ( self : Dict, lowerCAmelCase : List[str] ) -> Dict: self.scheduler.load_state_dict(lowerCAmelCase ) def lowercase ( self : List[Any] ) -> List[Any]: return self.scheduler.get_lr() def lowercase ( self : Tuple, *lowerCAmelCase : int, **lowerCAmelCase : Any ) -> int: return self.scheduler.print_lr(*lowerCAmelCase, **lowerCAmelCase )
53
"""simple docstring""" def lowercase__ ( _UpperCAmelCase ) -> int: '''simple docstring''' assert isinstance(_UpperCAmelCase , _UpperCAmelCase ), f'''The input value of [n={number}] is not an integer''' if number == 1: return 2 elif number < 1: lowercase : List[Any] = f'''The input value of [n={number}] has to be > 0''' raise ValueError(_UpperCAmelCase ) else: lowercase : str = sylvester(number - 1 ) lowercase : Union[str, Any] = num - 1 lowercase : List[Any] = num return lower * upper + 1 if __name__ == "__main__": print(f'''The 8th number in Sylvester\'s sequence: {sylvester(8)}''')
53
1
import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError('At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training') # TF training parameters SCREAMING_SNAKE_CASE__ : Tuple = False SCREAMING_SNAKE_CASE__ : int = False def A ( _SCREAMING_SNAKE_CASE ) -> Tuple: return TrainCommand(_SCREAMING_SNAKE_CASE ) class UpperCamelCase__ (lowerCAmelCase__ ): '''simple docstring''' @staticmethod def _lowercase ( UpperCamelCase__ ) -> Union[str, Any]: lowerCamelCase : int = parser.add_parser("train" , help="CLI tool to train a model on a task." ) train_parser.add_argument( "--train_data" , type=UpperCamelCase__ , required=UpperCamelCase__ , help="path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences." , ) train_parser.add_argument( "--column_label" , type=UpperCamelCase__ , default=0 , help="Column of the dataset csv file with example labels." ) train_parser.add_argument( "--column_text" , type=UpperCamelCase__ , default=1 , help="Column of the dataset csv file with example texts." ) train_parser.add_argument( "--column_id" , type=UpperCamelCase__ , default=2 , help="Column of the dataset csv file with example ids." ) train_parser.add_argument( "--skip_first_row" , action="store_true" , help="Skip the first row of the csv file (headers)." ) train_parser.add_argument("--validation_data" , type=UpperCamelCase__ , default="" , help="path to validation dataset." ) train_parser.add_argument( "--validation_split" , type=UpperCamelCase__ , default=0.1 , help="if validation dataset is not provided, fraction of train dataset to use as validation dataset." , ) train_parser.add_argument("--output" , type=UpperCamelCase__ , default="./" , help="path to saved the trained model." ) train_parser.add_argument( "--task" , type=UpperCamelCase__ , default="text_classification" , help="Task to train the model on." ) train_parser.add_argument( "--model" , type=UpperCamelCase__ , default="bert-base-uncased" , help="Model's name or path to stored model." ) train_parser.add_argument("--train_batch_size" , type=UpperCamelCase__ , default=32 , help="Batch size for training." ) train_parser.add_argument("--valid_batch_size" , type=UpperCamelCase__ , default=64 , help="Batch size for validation." ) train_parser.add_argument("--learning_rate" , type=UpperCamelCase__ , default=3e-5 , help="Learning rate." ) train_parser.add_argument("--adam_epsilon" , type=UpperCamelCase__ , default=1e-08 , help="Epsilon for Adam optimizer." ) train_parser.set_defaults(func=UpperCamelCase__ ) def __init__( self , UpperCamelCase__ ) -> Optional[Any]: lowerCamelCase : List[Any] = logging.get_logger("transformers-cli/training" ) lowerCamelCase : str = "tf" if is_tf_available() else "torch" os.makedirs(args.output , exist_ok=UpperCamelCase__ ) lowerCamelCase : Any = args.output lowerCamelCase : List[Any] = args.column_label lowerCamelCase : List[Any] = args.column_text lowerCamelCase : List[Any] = args.column_id self.logger.info(F'''Loading {args.task} pipeline for {args.model}''' ) if args.task == "text_classification": lowerCamelCase : Tuple = TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(F'''Loading dataset from {args.train_data}''' ) lowerCamelCase : Dict = Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) lowerCamelCase : Optional[Any] = None if args.validation_data: self.logger.info(F'''Loading validation dataset from {args.validation_data}''' ) lowerCamelCase : Dict = Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) lowerCamelCase : Optional[int] = args.validation_split lowerCamelCase : Dict = args.train_batch_size lowerCamelCase : Union[str, Any] = args.valid_batch_size lowerCamelCase : Any = args.learning_rate lowerCamelCase : Optional[int] = args.adam_epsilon def _lowercase ( self ) -> Any: if self.framework == "tf": return self.run_tf() return self.run_torch() def _lowercase ( self ) -> Any: raise NotImplementedError def _lowercase ( self ) -> Any: self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output )
48
from __future__ import annotations _SCREAMING_SNAKE_CASE = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } class a : """simple docstring""" def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> None: _A = graph # mapping node to its parent in resulting breadth first tree _A = {} _A = source_vertex def UpperCAmelCase ( self ) -> None: _A = {self.source_vertex} _A = None _A = [self.source_vertex] # first in first out queue while queue: _A = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(lowerCAmelCase_ ) _A = vertex queue.append(lowerCAmelCase_ ) def UpperCAmelCase ( self , lowerCAmelCase_ ) -> str: if target_vertex == self.source_vertex: return self.source_vertex _A = self.parent.get(lowerCAmelCase_ ) if target_vertex_parent is None: _A = ( F'''No path from vertex: {self.source_vertex} to vertex: {target_vertex}''' ) raise ValueError(lowerCAmelCase_ ) return self.shortest_path(lowerCAmelCase_ ) + F'''->{target_vertex}''' if __name__ == "__main__": _SCREAMING_SNAKE_CASE = Graph(graph, 'G') g.breath_first_search() print(g.shortest_path('D')) print(g.shortest_path('G')) print(g.shortest_path('Foo'))
180
0
from collections.abc import Sequence def _snake_case( SCREAMING_SNAKE_CASE__ : Sequence[int] | None = None ) -> int: '''simple docstring''' if nums is None or not nums: raise ValueError('Input sequence should not be empty' ) A__ = nums[0] for i in range(1 , len(SCREAMING_SNAKE_CASE__ ) ): A__ = nums[i] A__ = max(SCREAMING_SNAKE_CASE__ , ans + num , SCREAMING_SNAKE_CASE__ ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user lowercase_ = int(input("Enter number of elements : ").strip()) lowercase_ = list(map(int, input("\nEnter the numbers : ").strip().split()))[:n] print(max_subsequence_sum(array))
282
import argparse import collections import torch from flax import traverse_util from tax import checkpoints from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def _snake_case( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int]="attention" ) -> Union[str, Any]: '''simple docstring''' A__ = params[f'{prefix}/layers_{i}/{layer_name}/key/kernel'] A__ = params[f'{prefix}/layers_{i}/{layer_name}/out/kernel'] A__ = params[f'{prefix}/layers_{i}/{layer_name}/query/kernel'] A__ = params[f'{prefix}/layers_{i}/{layer_name}/value/kernel'] return k, o, q, v def _snake_case( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Dict=False ) -> str: '''simple docstring''' if split_mlp_wi: A__ = params[f'{prefix}/layers_{i}/mlp/wi_0/kernel'] A__ = params[f'{prefix}/layers_{i}/mlp/wi_1/kernel'] A__ = (wi_a, wi_a) else: A__ = params[f'{prefix}/layers_{i}/mlp/wi/kernel'] A__ = params[f'{prefix}/layers_{i}/mlp/wo/kernel'] return wi, wo def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : int ) -> str: '''simple docstring''' return params[f'{prefix}/layers_{i}/{layer_name}/scale'] def _snake_case( SCREAMING_SNAKE_CASE__ : dict , *, SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : bool ) -> int: '''simple docstring''' A__ = traverse_util.flatten_dict(variables['target'] ) A__ = {'/'.join(SCREAMING_SNAKE_CASE__ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi A__ = 'encoder/layers_0/mlp/wi_0/kernel' in old print('Split MLP:' , SCREAMING_SNAKE_CASE__ ) A__ = collections.OrderedDict() # Shared embeddings. A__ = old['token_embedder/embedding'] # Encoder. for i in range(SCREAMING_SNAKE_CASE__ ): # Block i, layer 0 (Self Attention). A__ = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'encoder' , 'pre_attention_layer_norm' ) A__ , A__ , A__ , A__ = tax_attention_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'encoder' , 'attention' ) A__ = layer_norm A__ = k.T A__ = o.T A__ = q.T A__ = v.T # Block i, layer 1 (MLP). A__ = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'encoder' , 'pre_mlp_layer_norm' ) A__ , A__ = tax_mlp_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'encoder' , SCREAMING_SNAKE_CASE__ ) A__ = layer_norm if split_mlp_wi: A__ = wi[0].T A__ = wi[1].T else: A__ = wi.T A__ = wo.T A__ = old[ 'encoder/relpos_bias/rel_embedding' ].T A__ = old['encoder/encoder_norm/scale'] if not is_encoder_only: # Decoder. for i in range(SCREAMING_SNAKE_CASE__ ): # Block i, layer 0 (Self Attention). A__ = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'decoder' , 'pre_self_attention_layer_norm' ) A__ , A__ , A__ , A__ = tax_attention_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'decoder' , 'self_attention' ) A__ = layer_norm A__ = k.T A__ = o.T A__ = q.T A__ = v.T # Block i, layer 1 (Cross Attention). A__ = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'decoder' , 'pre_cross_attention_layer_norm' ) A__ , A__ , A__ , A__ = tax_attention_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'decoder' , 'encoder_decoder_attention' ) A__ = layer_norm A__ = k.T A__ = o.T A__ = q.T A__ = v.T # Block i, layer 2 (MLP). A__ = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'decoder' , 'pre_mlp_layer_norm' ) A__ , A__ = tax_mlp_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'decoder' , SCREAMING_SNAKE_CASE__ ) A__ = layer_norm if split_mlp_wi: A__ = wi[0].T A__ = wi[1].T else: A__ = wi.T A__ = wo.T A__ = old['decoder/decoder_norm/scale'] A__ = old[ 'decoder/relpos_bias/rel_embedding' ].T # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: A__ = old['decoder/logits_dense/kernel'].T return new def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : bool ) -> Dict: '''simple docstring''' A__ = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: A__ = state_dict['shared.weight'] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: A__ = state_dict['shared.weight'] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('Using shared word embeddings as lm_head.' ) A__ = state_dict['shared.weight'] return state_dict def _snake_case( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Tuple ) -> int: '''simple docstring''' A__ = checkpoints.load_tax_checkpoint(SCREAMING_SNAKE_CASE__ ) A__ = convert_tax_to_pytorch(SCREAMING_SNAKE_CASE__ , num_layers=config.num_layers , is_encoder_only=SCREAMING_SNAKE_CASE__ ) A__ = make_state_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ , strict=SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : bool = False ) -> Any: '''simple docstring''' A__ = TaConfig.from_json_file(SCREAMING_SNAKE_CASE__ ) print(f'Building PyTorch model from configuration: {config}' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: A__ = TaEncoderModel(SCREAMING_SNAKE_CASE__ ) else: A__ = TaForConditionalGeneration(SCREAMING_SNAKE_CASE__ ) # Load weights from tf checkpoint load_tax_weights_in_ta(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) # Verify that we can load the checkpoint. model.from_pretrained(SCREAMING_SNAKE_CASE__ ) print('Done' ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser(description="Converts a native T5X checkpoint into a PyTorch checkpoint.") # Required parameters parser.add_argument( "--t5x_checkpoint_path", default=None, type=str, required=True, help="Path to the T5X checkpoint." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--is_encoder_only", action="store_true", help="Check if the model is encoder-decoder model", default=False ) lowercase_ = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only )
282
1
"""simple docstring""" from __future__ import annotations def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): if days_between_payments <= 0: raise ValueError('days_between_payments must be > 0' ) if daily_interest_rate < 0: raise ValueError('daily_interest_rate must be >= 0' ) if principal <= 0: raise ValueError('principal must be > 0' ) return principal * daily_interest_rate * days_between_payments def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ): if number_of_compounding_periods <= 0: raise ValueError('number_of_compounding_periods must be > 0' ) if nominal_annual_interest_rate_percentage < 0: raise ValueError('nominal_annual_interest_rate_percentage must be >= 0' ) if principal <= 0: raise ValueError('principal must be > 0' ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ): if number_of_years <= 0: raise ValueError('number_of_years must be > 0' ) if nominal_annual_percentage_rate < 0: raise ValueError('nominal_annual_percentage_rate must be >= 0' ) if principal <= 0: raise ValueError('principal must be > 0' ) return compound_interest( _UpperCamelCase , nominal_annual_percentage_rate / 365 , number_of_years * 365 ) if __name__ == "__main__": import doctest doctest.testmod()
86
def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> list: _snake_case : Optional[Any] = [0] * len(SCREAMING_SNAKE_CASE__ ) for i in range(1 , len(SCREAMING_SNAKE_CASE__ ) ): # use last results for better performance - dynamic programming _snake_case : Optional[Any] = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: _snake_case : List[Any] = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 _snake_case : Optional[int] = j return prefix_result def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> int: return max(prefix_function(SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": import doctest doctest.testmod()
317
0
import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py UpperCAmelCase_ : str = '''.''' # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) UpperCAmelCase_ : Optional[int] = [ '''Assert''', '''AssignVariableOp''', '''EmptyTensorList''', '''MergeV2Checkpoints''', '''ReadVariableOp''', '''ResourceGather''', '''RestoreV2''', '''SaveV2''', '''ShardedFilename''', '''StatefulPartitionedCall''', '''StaticRegexFullMatch''', '''VarHandleOp''', ] def SCREAMING_SNAKE_CASE_ ( __magic_name__ : str , __magic_name__ : Any , __magic_name__ : List[str] ) -> List[str]: """simple docstring""" UpperCamelCase :int = SavedModel() UpperCamelCase :Optional[int] = [] with open(os.path.join(__magic_name__ , """utils""" , """tf_ops""" , """onnx.json""" ) ) as f: UpperCamelCase :Tuple = json.load(__magic_name__ )["""opsets"""] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(__magic_name__ )] ) with open(__magic_name__ , """rb""" ) as f: saved_model.ParseFromString(f.read() ) UpperCamelCase :Optional[int] = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want UpperCamelCase :int = sorted(__magic_name__ ) UpperCamelCase :str = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(__magic_name__ ) if strict and len(__magic_name__ ) > 0: raise Exception(f"""Found the following incompatible ops for the opset {opset}:\n""" + incompatible_ops ) elif len(__magic_name__ ) > 0: print(f"""Found the following incompatible ops for the opset {opset}:""" ) print(*__magic_name__ , sep="""\n""" ) else: print(f"""The saved model {saved_model_path} can properly be converted with ONNX.""" ) if __name__ == "__main__": UpperCAmelCase_ : int = argparse.ArgumentParser() parser.add_argument('''--saved_model_path''', help='''Path of the saved model to check (the .pb file).''') parser.add_argument( '''--opset''', default=12, type=int, help='''The ONNX opset against which the model has to be tested.''' ) parser.add_argument( '''--framework''', choices=['''onnx'''], default='''onnx''', help='''Frameworks against which to test the saved model.''' ) parser.add_argument( '''--strict''', action='''store_true''', help='''Whether make the checking strict (raise errors) or not (raise warnings)''' ) UpperCAmelCase_ : Tuple = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
62
from __future__ import annotations def SCREAMING_SNAKE_CASE_ ( __magic_name__ : tuple[int, int] , __magic_name__ : int ) -> list[tuple[int, int]]: """simple docstring""" UpperCamelCase , UpperCamelCase :Union[str, Any] = position UpperCamelCase :int = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] UpperCamelCase :Tuple = [] for position in positions: UpperCamelCase , UpperCamelCase :int = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(__magic_name__ ) return permissible_positions def SCREAMING_SNAKE_CASE_ ( __magic_name__ : list[list[int]] ) -> bool: """simple docstring""" return not any(elem == 0 for row in board for elem in row ) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : list[list[int]] , __magic_name__ : tuple[int, int] , __magic_name__ : int ) -> bool: """simple docstring""" if is_complete(__magic_name__ ): return True for position in get_valid_pos(__magic_name__ , len(__magic_name__ ) ): UpperCamelCase , UpperCamelCase :Any = position if board[y][x] == 0: UpperCamelCase :Optional[int] = curr + 1 if open_knight_tour_helper(__magic_name__ , __magic_name__ , curr + 1 ): return True UpperCamelCase :List[Any] = 0 return False def SCREAMING_SNAKE_CASE_ ( __magic_name__ : int ) -> list[list[int]]: """simple docstring""" UpperCamelCase :Any = [[0 for i in range(__magic_name__ )] for j in range(__magic_name__ )] for i in range(__magic_name__ ): for j in range(__magic_name__ ): UpperCamelCase :int = 1 if open_knight_tour_helper(__magic_name__ , (i, j) , 1 ): return board UpperCamelCase :Optional[int] = 0 UpperCamelCase :Union[str, Any] = f"""Open Kight Tour cannot be performed on a board of size {n}""" raise ValueError(__magic_name__ ) if __name__ == "__main__": import doctest doctest.testmod()
62
1
'''simple docstring''' from __future__ import annotations import math def _A (lowerCAmelCase__ :int ) -> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_lowerCamelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _A (lowerCAmelCase__ :int ) -> list[int]: '''simple docstring''' _a = str(_lowerCamelCase ) _a = [n] for i in range(1 , len(_lowerCamelCase ) ): list_nums.append(int(str_num[i:] ) ) list_nums.append(int(str_num[:-i] ) ) return list_nums def _A (lowerCAmelCase__ :int ) -> bool: '''simple docstring''' if len(str(_lowerCamelCase ) ) > 3: if not is_prime(int(str(_lowerCamelCase )[-3:] ) ) or not is_prime(int(str(_lowerCamelCase )[:3] ) ): return False return True def _A (lowerCAmelCase__ :int = 11 ) -> list[int]: '''simple docstring''' _a = [] _a = 13 while len(_lowerCamelCase ) != count: if validate(_lowerCamelCase ): _a = list_truncated_nums(_lowerCamelCase ) if all(is_prime(_lowerCamelCase ) for i in list_nums ): list_truncated_primes.append(_lowerCamelCase ) num += 2 return list_truncated_primes def _A () -> int: '''simple docstring''' return sum(compute_truncated_primes(11 ) ) if __name__ == "__main__": print(f'''{sum(compute_truncated_primes(1_1)) = }''')
168
"""simple docstring""" import argparse import json import subprocess def lowerCamelCase__ ( _lowerCamelCase : Tuple , _lowerCamelCase : str ) -> List[Any]: lowerCamelCase_ = [] lowerCamelCase_ = ( F'''curl -H "Accept: application/vnd.github+json" -H "Authorization: Bearer {token}"''' ' https://api.github.com/repos/huggingface/transformers/actions/runners' ) lowerCamelCase_ = subprocess.run(_lowerCamelCase , shell=_lowerCamelCase , stdout=subprocess.PIPE ) lowerCamelCase_ = output.stdout.decode('utf-8' ) lowerCamelCase_ = json.loads(_lowerCamelCase ) lowerCamelCase_ = status['runners'] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(_lowerCamelCase ) # save the result so we can report them on Slack with open('offline_runners.txt' , 'w' ) as fp: fp.write(json.dumps(_lowerCamelCase ) ) if len(_lowerCamelCase ) > 0: lowerCamelCase_ = '\n'.join([x['name'] for x in offline_runners] ) raise ValueError(F'''The following runners are offline:\n{failed}''' ) if __name__ == "__main__": def lowerCamelCase__ ( _lowerCamelCase : Dict ) -> Tuple: return values.split(',' ) _SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--target_runners''', default=None, type=list_str, required=True, help='''Comma-separated list of runners to check status.''', ) parser.add_argument( '''--token''', default=None, type=str, required=True, help='''A token that has actions:read permission.''' ) _SCREAMING_SNAKE_CASE : Any = parser.parse_args() get_runner_status(args.target_runners, args.token)
183
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE : Dict = {'configuration_wavlm': ['WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WavLMConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[int] = [ 'WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'WavLMForAudioFrameClassification', 'WavLMForCTC', 'WavLMForSequenceClassification', 'WavLMForXVector', 'WavLMModel', 'WavLMPreTrainedModel', ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
359
import math class A__ : """simple docstring""" def a_ ( self , __snake_case , __snake_case ): snake_case = 0.0 snake_case = 0.0 for i in range(len(__snake_case ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def a_ ( self , __snake_case , __snake_case , __snake_case , __snake_case ): for i in range(len(__snake_case ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def UpperCAmelCase__ (): """simple docstring""" snake_case = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) snake_case = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training snake_case = SelfOrganizingMap() snake_case = 3 snake_case = 0.5 for _ in range(UpperCamelCase_ ): for j in range(len(UpperCamelCase_ ) ): # training sample snake_case = training_samples[j] # Compute the winning vector snake_case = self_organizing_map.get_winner(UpperCamelCase_ ,UpperCamelCase_ ) # Update the winning vector snake_case = self_organizing_map.update(UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ) # classify test sample snake_case = [0, 0, 0, 1] snake_case = self_organizing_map.get_winner(UpperCamelCase_ ,UpperCamelCase_ ) # results print(F'''Clusters that the test sample belongs to : {winner}''' ) print(F'''Weights that have been trained : {weights}''' ) # running the main() function if __name__ == "__main__": main()
213
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __magic_name__ ( unittest.TestCase ): '''simple docstring''' def __init__( self, lowercase_, lowercase_=13, lowercase_=3, lowercase_=224, lowercase_=30, lowercase_=400, lowercase_=True, lowercase_=None, lowercase_=True, lowercase_=[0.5, 0.5, 0.5], lowercase_=[0.5, 0.5, 0.5], ) -> Tuple: """simple docstring""" a__ =size if size is not None else {'''height''': 18, '''width''': 18} a__ =parent a__ =batch_size a__ =num_channels a__ =image_size a__ =min_resolution a__ =max_resolution a__ =do_resize a__ =size a__ =do_normalize a__ =image_mean a__ =image_std def _UpperCAmelCase ( self ) -> int: """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class __magic_name__ ( lowerCamelCase__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Tuple = ViTImageProcessor if is_vision_available() else None def _UpperCAmelCase ( self ) -> int: """simple docstring""" a__ =EfficientFormerImageProcessorTester(self ) @property def _UpperCAmelCase ( self ) -> Optional[int]: """simple docstring""" return self.image_proc_tester.prepare_image_processor_dict() def _UpperCAmelCase ( self ) -> Any: """simple docstring""" a__ =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase_, '''image_mean''' ) ) self.assertTrue(hasattr(lowercase_, '''image_std''' ) ) self.assertTrue(hasattr(lowercase_, '''do_normalize''' ) ) self.assertTrue(hasattr(lowercase_, '''do_resize''' ) ) self.assertTrue(hasattr(lowercase_, '''size''' ) ) def _UpperCAmelCase ( self ) -> Optional[Any]: """simple docstring""" pass def _UpperCAmelCase ( self ) -> Any: """simple docstring""" a__ =self.image_processing_class(**self.image_processor_dict ) # create random PIL images a__ =prepare_image_inputs(self.image_proc_tester, equal_resolution=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_, Image.Image ) # Test not batched input a__ =image_processor(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ), ) # Test batched a__ =image_processor(lowercase_, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ), ) def _UpperCAmelCase ( self ) -> Optional[Any]: """simple docstring""" a__ =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors a__ =prepare_image_inputs(self.image_proc_tester, equal_resolution=lowercase_, numpify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_, np.ndarray ) # Test not batched input a__ =image_processor(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ), ) # Test batched a__ =image_processor(lowercase_, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ), ) def _UpperCAmelCase ( self ) -> Any: """simple docstring""" a__ =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors a__ =prepare_image_inputs(self.image_proc_tester, equal_resolution=lowercase_, torchify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_, torch.Tensor ) # Test not batched input a__ =image_processor(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ), ) # Test batched a__ =image_processor(lowercase_, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ), )
188
from math import factorial def UpperCAmelCase__ ( _A : int = 1_00 ): '''simple docstring''' return sum(int(_A ) for x in str(factorial(_A ) ) ) if __name__ == "__main__": print(solution(int(input('''Enter the Number: ''').strip())))
188
1
from __future__ import annotations import time _lowerCamelCase : Tuple = list[tuple[int, int]] _lowerCamelCase : int = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _lowerCamelCase : str = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class lowerCamelCase : """simple docstring""" def __init__( self : Optional[int], _UpperCAmelCase : int, _UpperCAmelCase : int, _UpperCAmelCase : int, _UpperCAmelCase : int, _UpperCAmelCase : Node | None ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = pos_x SCREAMING_SNAKE_CASE__ : List[Any] = pos_y SCREAMING_SNAKE_CASE__ : str = (pos_y, pos_x) SCREAMING_SNAKE_CASE__ : Dict = goal_x SCREAMING_SNAKE_CASE__ : List[Any] = goal_y SCREAMING_SNAKE_CASE__ : str = parent class lowerCamelCase : """simple docstring""" def __init__( self : Dict, _UpperCAmelCase : tuple[int, int], _UpperCAmelCase : tuple[int, int] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = Node(start[1], start[0], goal[1], goal[0], _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = Node(goal[1], goal[0], goal[1], goal[0], _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[int] = [self.start] SCREAMING_SNAKE_CASE__ : str = False def A_ ( self : Dict ) -> Path | None: """simple docstring""" while self.node_queue: SCREAMING_SNAKE_CASE__ : int = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: SCREAMING_SNAKE_CASE__ : Dict = True return self.retrace_path(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_successors(_UpperCAmelCase ) for node in successors: self.node_queue.append(_UpperCAmelCase ) if not self.reached: return [self.start.pos] return None def A_ ( self : Any, _UpperCAmelCase : Node ) -> list[Node]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = [] for action in delta: SCREAMING_SNAKE_CASE__ : str = parent.pos_x + action[1] SCREAMING_SNAKE_CASE__ : Union[str, Any] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_UpperCAmelCase ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(_UpperCAmelCase, _UpperCAmelCase, self.target.pos_y, self.target.pos_x, _UpperCAmelCase ) ) return successors def A_ ( self : List[str], _UpperCAmelCase : Node | None ) -> Path: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = node SCREAMING_SNAKE_CASE__ : Tuple = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = current_node.parent path.reverse() return path class lowerCamelCase : """simple docstring""" def __init__( self : List[str], _UpperCAmelCase : Union[str, Any], _UpperCAmelCase : List[str] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = BreadthFirstSearch(_UpperCAmelCase, _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = BreadthFirstSearch(_UpperCAmelCase, _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Dict = False def A_ ( self : List[str] ) -> Path | None: """simple docstring""" while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: SCREAMING_SNAKE_CASE__ : int = self.fwd_bfs.node_queue.pop(0 ) SCREAMING_SNAKE_CASE__ : Optional[int] = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: SCREAMING_SNAKE_CASE__ : List[Any] = True return self.retrace_bidirectional_path( _UpperCAmelCase, _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = current_bwd_node SCREAMING_SNAKE_CASE__ : Union[str, Any] = current_fwd_node SCREAMING_SNAKE_CASE__ : List[str] = { self.fwd_bfs: self.fwd_bfs.get_successors(_UpperCAmelCase ), self.bwd_bfs: self.bwd_bfs.get_successors(_UpperCAmelCase ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(_UpperCAmelCase ) if not self.reached: return [self.fwd_bfs.start.pos] return None def A_ ( self : int, _UpperCAmelCase : Node, _UpperCAmelCase : Node ) -> Path: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = self.fwd_bfs.retrace_path(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Any = self.bwd_bfs.retrace_path(_UpperCAmelCase ) bwd_path.pop() bwd_path.reverse() SCREAMING_SNAKE_CASE__ : List[Any] = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() _lowerCamelCase : Optional[Any] = (0, 0) _lowerCamelCase : Dict = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) _lowerCamelCase : Dict = time.time() _lowerCamelCase : List[Any] = BreadthFirstSearch(init, goal) _lowerCamelCase : Optional[Any] = bfs.search() _lowerCamelCase : Dict = time.time() - start_bfs_time print('''Unidirectional BFS computation time : ''', bfs_time) _lowerCamelCase : str = time.time() _lowerCamelCase : Dict = BidirectionalBreadthFirstSearch(init, goal) _lowerCamelCase : Optional[Any] = bd_bfs.search() _lowerCamelCase : Optional[Any] = time.time() - start_bd_bfs_time print('''Bidirectional BFS computation time : ''', bd_bfs_time)
191
from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowerCamelCase : """simple docstring""" def __init__( self : List[Any], _UpperCAmelCase : List[str], _UpperCAmelCase : Any=2, _UpperCAmelCase : List[str]=3, _UpperCAmelCase : Union[str, Any]=4, _UpperCAmelCase : Union[str, Any]=2, _UpperCAmelCase : int=7, _UpperCAmelCase : Tuple=True, _UpperCAmelCase : int=True, _UpperCAmelCase : List[str]=True, _UpperCAmelCase : List[str]=True, _UpperCAmelCase : Tuple=9_9, _UpperCAmelCase : Any=3_6, _UpperCAmelCase : List[str]=2, _UpperCAmelCase : int=4, _UpperCAmelCase : str=3_7, _UpperCAmelCase : List[str]="gelu", _UpperCAmelCase : Optional[int]=0.1, _UpperCAmelCase : str=0.1, _UpperCAmelCase : Optional[int]=5_1_2, _UpperCAmelCase : Optional[Any]=1_6, _UpperCAmelCase : int=2, _UpperCAmelCase : Tuple=0.02, _UpperCAmelCase : Optional[int]=6, _UpperCAmelCase : List[Any]=6, _UpperCAmelCase : Any=3, _UpperCAmelCase : List[str]=4, _UpperCAmelCase : Tuple=None, _UpperCAmelCase : str=1_0_0_0, ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = parent SCREAMING_SNAKE_CASE__ : Union[str, Any] = batch_size SCREAMING_SNAKE_CASE__ : int = num_channels SCREAMING_SNAKE_CASE__ : List[Any] = image_size SCREAMING_SNAKE_CASE__ : List[Any] = patch_size SCREAMING_SNAKE_CASE__ : List[Any] = is_training SCREAMING_SNAKE_CASE__ : List[Any] = use_input_mask SCREAMING_SNAKE_CASE__ : Optional[int] = use_token_type_ids SCREAMING_SNAKE_CASE__ : List[Any] = use_labels SCREAMING_SNAKE_CASE__ : int = vocab_size SCREAMING_SNAKE_CASE__ : Union[str, Any] = hidden_size SCREAMING_SNAKE_CASE__ : Tuple = num_hidden_layers SCREAMING_SNAKE_CASE__ : int = num_attention_heads SCREAMING_SNAKE_CASE__ : List[str] = intermediate_size SCREAMING_SNAKE_CASE__ : Optional[int] = hidden_act SCREAMING_SNAKE_CASE__ : List[str] = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : Union[str, Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : Optional[int] = max_position_embeddings SCREAMING_SNAKE_CASE__ : Union[str, Any] = type_vocab_size SCREAMING_SNAKE_CASE__ : List[str] = type_sequence_label_size SCREAMING_SNAKE_CASE__ : Dict = initializer_range SCREAMING_SNAKE_CASE__ : List[str] = coordinate_size SCREAMING_SNAKE_CASE__ : Tuple = shape_size SCREAMING_SNAKE_CASE__ : Dict = num_labels SCREAMING_SNAKE_CASE__ : List[str] = num_choices SCREAMING_SNAKE_CASE__ : Optional[Any] = scope SCREAMING_SNAKE_CASE__ : Any = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) SCREAMING_SNAKE_CASE__ : str = text_seq_length SCREAMING_SNAKE_CASE__ : Dict = (image_size // patch_size) ** 2 + 1 SCREAMING_SNAKE_CASE__ : List[str] = self.text_seq_length + self.image_seq_length def A_ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = ids_tensor([self.batch_size, self.text_seq_length], self.vocab_size ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = ids_tensor([self.batch_size, self.text_seq_length, 4], self.range_bbox ) SCREAMING_SNAKE_CASE__ : List[Any] = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: SCREAMING_SNAKE_CASE__ : Optional[Any] = bbox[i, j, 3] SCREAMING_SNAKE_CASE__ : Optional[Any] = bbox[i, j, 1] SCREAMING_SNAKE_CASE__ : Tuple = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: SCREAMING_SNAKE_CASE__ : Tuple = bbox[i, j, 2] SCREAMING_SNAKE_CASE__ : str = bbox[i, j, 0] SCREAMING_SNAKE_CASE__ : Dict = tmp_coordinate SCREAMING_SNAKE_CASE__ : Optional[int] = tf.constant(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE__ : List[Any] = None if self.use_input_mask: SCREAMING_SNAKE_CASE__ : Dict = random_attention_mask([self.batch_size, self.text_seq_length] ) SCREAMING_SNAKE_CASE__ : Tuple = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE__ : Dict = ids_tensor([self.batch_size, self.text_seq_length], self.type_vocab_size ) SCREAMING_SNAKE_CASE__ : int = None SCREAMING_SNAKE_CASE__ : Tuple = None if self.use_labels: SCREAMING_SNAKE_CASE__ : Optional[int] = ids_tensor([self.batch_size], self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ : Dict = ids_tensor([self.batch_size, self.text_seq_length], self.num_labels ) SCREAMING_SNAKE_CASE__ : List[Any] = LayoutLMvaConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, coordinate_size=self.coordinate_size, shape_size=self.shape_size, input_size=self.image_size, patch_size=self.patch_size, ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def A_ ( self : Tuple, _UpperCAmelCase : str, _UpperCAmelCase : Optional[Any], _UpperCAmelCase : Any, _UpperCAmelCase : List[Any], _UpperCAmelCase : Union[str, Any], _UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = TFLayoutLMvaModel(config=_UpperCAmelCase ) # text + image SCREAMING_SNAKE_CASE__ : str = model(_UpperCAmelCase, pixel_values=_UpperCAmelCase, training=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = model( _UpperCAmelCase, bbox=_UpperCAmelCase, pixel_values=_UpperCAmelCase, attention_mask=_UpperCAmelCase, token_type_ids=_UpperCAmelCase, training=_UpperCAmelCase, ) SCREAMING_SNAKE_CASE__ : List[Any] = model(_UpperCAmelCase, bbox=_UpperCAmelCase, pixel_values=_UpperCAmelCase, training=_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) # text only SCREAMING_SNAKE_CASE__ : Optional[Any] = model(_UpperCAmelCase, training=_UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only SCREAMING_SNAKE_CASE__ : Union[str, Any] = model({"pixel_values": pixel_values}, training=_UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.image_seq_length, self.hidden_size) ) def A_ ( self : List[Any], _UpperCAmelCase : List[Any], _UpperCAmelCase : int, _UpperCAmelCase : Union[str, Any], _UpperCAmelCase : Dict, _UpperCAmelCase : List[str], _UpperCAmelCase : Dict, _UpperCAmelCase : List[Any] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = self.num_labels SCREAMING_SNAKE_CASE__ : List[str] = TFLayoutLMvaForSequenceClassification(config=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = model( _UpperCAmelCase, bbox=_UpperCAmelCase, pixel_values=_UpperCAmelCase, attention_mask=_UpperCAmelCase, token_type_ids=_UpperCAmelCase, labels=_UpperCAmelCase, training=_UpperCAmelCase, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def A_ ( self : List[Any], _UpperCAmelCase : str, _UpperCAmelCase : int, _UpperCAmelCase : str, _UpperCAmelCase : Any, _UpperCAmelCase : List[str], _UpperCAmelCase : List[str], _UpperCAmelCase : Dict ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = self.num_labels SCREAMING_SNAKE_CASE__ : Dict = TFLayoutLMvaForTokenClassification(config=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Tuple = model( _UpperCAmelCase, bbox=_UpperCAmelCase, pixel_values=_UpperCAmelCase, attention_mask=_UpperCAmelCase, token_type_ids=_UpperCAmelCase, labels=_UpperCAmelCase, training=_UpperCAmelCase, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.text_seq_length, self.num_labels) ) def A_ ( self : Dict, _UpperCAmelCase : Optional[int], _UpperCAmelCase : Optional[Any], _UpperCAmelCase : Dict, _UpperCAmelCase : Union[str, Any], _UpperCAmelCase : int, _UpperCAmelCase : Any, _UpperCAmelCase : Optional[Any] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = 2 SCREAMING_SNAKE_CASE__ : str = TFLayoutLMvaForQuestionAnswering(config=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : int = model( _UpperCAmelCase, bbox=_UpperCAmelCase, pixel_values=_UpperCAmelCase, attention_mask=_UpperCAmelCase, token_type_ids=_UpperCAmelCase, start_positions=_UpperCAmelCase, end_positions=_UpperCAmelCase, training=_UpperCAmelCase, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def A_ ( self : List[Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.prepare_config_and_inputs() ((SCREAMING_SNAKE_CASE__) ,(SCREAMING_SNAKE_CASE__) ,(SCREAMING_SNAKE_CASE__) ,(SCREAMING_SNAKE_CASE__) ,(SCREAMING_SNAKE_CASE__) ,(SCREAMING_SNAKE_CASE__) ,(SCREAMING_SNAKE_CASE__) ,(SCREAMING_SNAKE_CASE__)) : Optional[Any] = config_and_inputs SCREAMING_SNAKE_CASE__ : List[str] = { "input_ids": input_ids, "bbox": bbox, "pixel_values": pixel_values, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_tf class lowerCamelCase (__lowerCamelCase , __lowerCamelCase , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) UpperCAmelCase_ = ( {"document-question-answering": TFLayoutLMvaForQuestionAnswering, "feature-extraction": TFLayoutLMvaModel} if is_tf_available() else {} ) UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = False def A_ ( self : Optional[Any], _UpperCAmelCase : Tuple, _UpperCAmelCase : Any, _UpperCAmelCase : Dict, _UpperCAmelCase : str, _UpperCAmelCase : Optional[int] ) -> List[str]: """simple docstring""" return True def A_ ( self : Optional[int], _UpperCAmelCase : Optional[int], _UpperCAmelCase : str, _UpperCAmelCase : Dict=False ) -> dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = copy.deepcopy(_UpperCAmelCase ) if model_class in get_values(_UpperCAmelCase ): SCREAMING_SNAKE_CASE__ : Tuple = { k: tf.tile(tf.expand_dims(_UpperCAmelCase, 1 ), (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(_UpperCAmelCase, tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(_UpperCAmelCase ): SCREAMING_SNAKE_CASE__ : List[Any] = tf.ones(self.model_tester.batch_size, dtype=tf.intaa ) elif model_class in get_values(_UpperCAmelCase ): SCREAMING_SNAKE_CASE__ : Tuple = tf.zeros(self.model_tester.batch_size, dtype=tf.intaa ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = tf.zeros(self.model_tester.batch_size, dtype=tf.intaa ) elif model_class in get_values(_UpperCAmelCase ): SCREAMING_SNAKE_CASE__ : str = tf.zeros(self.model_tester.batch_size, dtype=tf.intaa ) elif model_class in get_values(_UpperCAmelCase ): SCREAMING_SNAKE_CASE__ : Tuple = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length), dtype=tf.intaa ) return inputs_dict def A_ ( self : Union[str, Any] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = TFLayoutLMvaModelTester(self ) SCREAMING_SNAKE_CASE__ : List[Any] = ConfigTester(self, config_class=_UpperCAmelCase, hidden_size=3_7 ) def A_ ( self : Optional[int] ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def A_ ( self : List[Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : Dict = model_class(_UpperCAmelCase ) if getattr(_UpperCAmelCase, "hf_compute_loss", _UpperCAmelCase ): # The number of elements in the loss should be the same as the number of elements in the label SCREAMING_SNAKE_CASE__ : Optional[Any] = self._prepare_for_class(inputs_dict.copy(), _UpperCAmelCase, return_labels=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[int] = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys(), reverse=_UpperCAmelCase )[0] ] SCREAMING_SNAKE_CASE__ : Dict = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs SCREAMING_SNAKE_CASE__ : List[Any] = self._prepare_for_class(inputs_dict.copy(), _UpperCAmelCase, return_labels=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : int = prepared_for_class.pop("input_ids" ) SCREAMING_SNAKE_CASE__ : Dict = model(_UpperCAmelCase, **_UpperCAmelCase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions SCREAMING_SNAKE_CASE__ : List[Any] = self._prepare_for_class(inputs_dict.copy(), _UpperCAmelCase, return_labels=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Tuple = prepared_for_class.pop("input_ids" ) if "labels" in prepared_for_class: SCREAMING_SNAKE_CASE__ : str = prepared_for_class["labels"].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: SCREAMING_SNAKE_CASE__ : Any = -1_0_0 SCREAMING_SNAKE_CASE__ : Dict = tf.convert_to_tensor(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Tuple = model(_UpperCAmelCase, **_UpperCAmelCase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict SCREAMING_SNAKE_CASE__ : List[Any] = self._prepare_for_class(inputs_dict.copy(), _UpperCAmelCase, return_labels=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = model(_UpperCAmelCase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple SCREAMING_SNAKE_CASE__ : int = self._prepare_for_class(inputs_dict.copy(), _UpperCAmelCase, return_labels=_UpperCAmelCase ) # Get keys that were added with the _prepare_for_class function SCREAMING_SNAKE_CASE__ : List[Any] = prepared_for_class.keys() - inputs_dict.keys() SCREAMING_SNAKE_CASE__ : List[Any] = inspect.signature(model.call ).parameters SCREAMING_SNAKE_CASE__ : Dict = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple SCREAMING_SNAKE_CASE__ : Tuple = {0: "input_ids"} for label_key in label_keys: SCREAMING_SNAKE_CASE__ : str = signature_names.index(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = label_key SCREAMING_SNAKE_CASE__ : str = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple SCREAMING_SNAKE_CASE__ : Any = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: SCREAMING_SNAKE_CASE__ : int = prepared_for_class[value] SCREAMING_SNAKE_CASE__ : List[Any] = tuple(_UpperCAmelCase ) # Send to model SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def A_ ( self : Dict ) -> int: """simple docstring""" ( ( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) , ) : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) def A_ ( self : List[Any] ) -> int: """simple docstring""" ( ( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) , ) : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE__ : Optional[int] = type self.model_tester.create_and_check_model(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) def A_ ( self : Dict ) -> Optional[Any]: """simple docstring""" ( ( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) , ) : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) def A_ ( self : Dict ) -> str: """simple docstring""" ( ( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) , ) : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) def A_ ( self : Any ) -> int: """simple docstring""" ( ( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) , ) : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) @slow def A_ ( self : Optional[int] ) -> int: """simple docstring""" for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ : List[Any] = TFLayoutLMvaModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def _a ( ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf class lowerCamelCase (unittest.TestCase ): """simple docstring""" @cached_property def A_ ( self : Tuple ) -> List[Any]: """simple docstring""" return LayoutLMvaImageProcessor(apply_ocr=_UpperCAmelCase ) if is_vision_available() else None @slow def A_ ( self : Any ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = TFLayoutLMvaModel.from_pretrained("microsoft/layoutlmv3-base" ) SCREAMING_SNAKE_CASE__ : Optional[int] = self.default_image_processor SCREAMING_SNAKE_CASE__ : Dict = prepare_img() SCREAMING_SNAKE_CASE__ : List[str] = image_processor(images=_UpperCAmelCase, return_tensors="tf" ).pixel_values SCREAMING_SNAKE_CASE__ : int = tf.constant([[1, 2]] ) SCREAMING_SNAKE_CASE__ : int = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ), axis=0 ) # forward pass SCREAMING_SNAKE_CASE__ : Dict = model(input_ids=_UpperCAmelCase, bbox=_UpperCAmelCase, pixel_values=_UpperCAmelCase, training=_UpperCAmelCase ) # verify the logits SCREAMING_SNAKE_CASE__ : Union[str, Any] = (1, 1_9_9, 7_6_8) self.assertEqual(outputs.last_hidden_state.shape, _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[int] = tf.constant( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3], _UpperCAmelCase, atol=1E-4 ) )
191
1
"""simple docstring""" class snake_case_: # Public class to implement a graph def __init__( self : List[Any] , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : List[Any] ): lowerCAmelCase : str = row lowerCAmelCase : str = col lowerCAmelCase : int = graph def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Dict , UpperCamelCase_ : int ): return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : int , UpperCamelCase_ : List[Any] ): lowerCAmelCase : str = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order lowerCAmelCase : Dict = [-1, 0, 1, -1, 1, -1, 0, 1] lowerCAmelCase : Optional[Any] = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , _UpperCAmelCase ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , _UpperCAmelCase ) def lowerCamelCase__ ( self : Optional[int] ): # And finally, count all islands. lowerCAmelCase : Union[str, Any] = [[False for j in range(self.COL )] for i in range(self.ROW )] lowerCAmelCase : List[Any] = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) count += 1 return count
60
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : List[Any] = logging.get_logger(__name__) lowercase__ : str = {} class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''llama''' lowerCAmelCase = ['''past_key_values'''] def __init__( self , _UpperCAmelCase=3_2000 , _UpperCAmelCase=4096 , _UpperCAmelCase=1_1008 , _UpperCAmelCase=32 , _UpperCAmelCase=32 , _UpperCAmelCase=None , _UpperCAmelCase="silu" , _UpperCAmelCase=2048 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-6 , _UpperCAmelCase=True , _UpperCAmelCase=0 , _UpperCAmelCase=1 , _UpperCAmelCase=2 , _UpperCAmelCase=1 , _UpperCAmelCase=False , _UpperCAmelCase=None , **_UpperCAmelCase , ): '''simple docstring''' __A : Union[str, Any] = vocab_size __A : Union[str, Any] = max_position_embeddings __A : Any = hidden_size __A : Optional[Any] = intermediate_size __A : str = num_hidden_layers __A : Optional[Any] = num_attention_heads # for backward compatibility if num_key_value_heads is None: __A : List[Any] = num_attention_heads __A : int = num_key_value_heads __A : List[Any] = hidden_act __A : Union[str, Any] = initializer_range __A : List[Any] = rms_norm_eps __A : Any = pretraining_tp __A : Optional[Any] = use_cache __A : Dict = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , tie_word_embeddings=_UpperCAmelCase , **_UpperCAmelCase , ) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' if self.rope_scaling is None: return if not isinstance(self.rope_scaling , _UpperCAmelCase) or len(self.rope_scaling) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' F'got {self.rope_scaling}') __A : Optional[Any] = self.rope_scaling.get('type' , _UpperCAmelCase) __A : Tuple = self.rope_scaling.get('factor' , _UpperCAmelCase) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F'`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}') if rope_scaling_factor is None or not isinstance(_UpperCAmelCase , _UpperCAmelCase) or rope_scaling_factor <= 1.0: raise ValueError(F'`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}')
190
0
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : int = {'''vocab_file''': '''spiece.model'''} __SCREAMING_SNAKE_CASE : Union[str, Any] = { '''vocab_file''': { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/spiece.model''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/spiece.model''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/spiece.model''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model''', } } __SCREAMING_SNAKE_CASE : str = { '''albert-base-v1''': 5_1_2, '''albert-large-v1''': 5_1_2, '''albert-xlarge-v1''': 5_1_2, '''albert-xxlarge-v1''': 5_1_2, '''albert-base-v2''': 5_1_2, '''albert-large-v2''': 5_1_2, '''albert-xlarge-v2''': 5_1_2, '''albert-xxlarge-v2''': 5_1_2, } __SCREAMING_SNAKE_CASE : str = '''▁''' class lowerCamelCase_( A__ ): '''simple docstring''' lowercase__ : List[Any] = VOCAB_FILES_NAMES lowercase__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP lowercase__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , lowerCamelCase__ , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__="[CLS]" , lowerCamelCase__="[SEP]" , lowerCamelCase__="<unk>" , lowerCamelCase__="[SEP]" , lowerCamelCase__="<pad>" , lowerCamelCase__="[CLS]" , lowerCamelCase__="[MASK]" , lowerCamelCase__ = None , **lowerCamelCase__ , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. _lowerCamelCase = ( AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ , normalized=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else mask_token ) _lowerCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=lowerCamelCase__ , remove_space=lowerCamelCase__ , keep_accents=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase__ , ) _lowerCamelCase = do_lower_case _lowerCamelCase = remove_space _lowerCamelCase = keep_accents _lowerCamelCase = vocab_file _lowerCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCamelCase__ ) @property def snake_case__ ( self ): return len(self.sp_model ) def snake_case__ ( self ): _lowerCamelCase = {self.convert_ids_to_tokens(lowerCamelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): _lowerCamelCase = self.__dict__.copy() _lowerCamelCase = None return state def __setstate__( self , lowerCamelCase__ ): _lowerCamelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _lowerCamelCase = {} _lowerCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def snake_case__ ( self , lowerCamelCase__ ): if self.remove_space: _lowerCamelCase = ''' '''.join(inputs.strip().split() ) else: _lowerCamelCase = inputs _lowerCamelCase = outputs.replace('''``''' , '''"''' ).replace('''\'\'''' , '''"''' ) if not self.keep_accents: _lowerCamelCase = unicodedata.normalize('''NFKD''' , lowerCamelCase__ ) _lowerCamelCase = ''''''.join([c for c in outputs if not unicodedata.combining(lowerCamelCase__ )] ) if self.do_lower_case: _lowerCamelCase = outputs.lower() return outputs def snake_case__ ( self , lowerCamelCase__ ): _lowerCamelCase = self.preprocess_text(lowerCamelCase__ ) _lowerCamelCase = self.sp_model.encode(lowerCamelCase__ , out_type=lowerCamelCase__ ) _lowerCamelCase = [] for piece in pieces: if len(lowerCamelCase__ ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): _lowerCamelCase = self.sp_model.EncodeAsPieces(piece[:-1].replace(lowerCamelCase__ , '''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _lowerCamelCase = cur_pieces[1:] else: _lowerCamelCase = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(lowerCamelCase__ ) else: new_pieces.append(lowerCamelCase__ ) return new_pieces def snake_case__ ( self , lowerCamelCase__ ): return self.sp_model.PieceToId(lowerCamelCase__ ) def snake_case__ ( self , lowerCamelCase__ ): return self.sp_model.IdToPiece(lowerCamelCase__ ) def snake_case__ ( self , lowerCamelCase__ ): _lowerCamelCase = [] _lowerCamelCase = '''''' _lowerCamelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCamelCase__ ) + token _lowerCamelCase = True _lowerCamelCase = [] else: current_sub_tokens.append(lowerCamelCase__ ) _lowerCamelCase = False out_string += self.sp_model.decode(lowerCamelCase__ ) return out_string.strip() def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ = None ): _lowerCamelCase = [self.sep_token_id] _lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase__ , token_ids_a=lowerCamelCase__ , already_has_special_tokens=lowerCamelCase__ ) if token_ids_a is not None: return [1] + ([0] * len(lowerCamelCase__ )) + [1] + ([0] * len(lowerCamelCase__ )) + [1] return [1] + ([0] * len(lowerCamelCase__ )) + [1] def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ = None ): _lowerCamelCase = [self.sep_token_id] _lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ = None ): if not os.path.isdir(lowerCamelCase__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _lowerCamelCase = os.path.join( lowerCamelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCamelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase__ , '''wb''' ) as fi: _lowerCamelCase = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase__ ) return (out_vocab_file,)
73
"""simple docstring""" import math from numpy import inf from scipy.integrate import quad def lowerCAmelCase_( lowercase_ : float ) -> float: if num <= 0: raise ValueError('''math domain error''' ) return quad(lowercase_ , 0 , lowercase_ , args=(lowercase_) )[0] def lowerCAmelCase_( lowercase_ : float , lowercase_ : float ) -> float: return math.pow(lowercase_ , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
73
1
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class snake_case__ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self : int ) ->Tuple: snake_case__ : List[Any] = tempfile.mkdtemp() snake_case__ : str = BlipImageProcessor() snake_case__ : Any = GPTaTokenizer.from_pretrained('hf-internal-testing/tiny-random-GPT2Model' ) snake_case__ : int = BlipaProcessor(_snake_case, _snake_case ) processor.save_pretrained(self.tmpdirname ) def lowercase_ ( self : Optional[Any], **_snake_case : Tuple ) ->Dict: return AutoProcessor.from_pretrained(self.tmpdirname, **_snake_case ).tokenizer def lowercase_ ( self : Optional[Any], **_snake_case : Union[str, Any] ) ->str: return AutoProcessor.from_pretrained(self.tmpdirname, **_snake_case ).image_processor def lowercase_ ( self : int ) ->List[str]: shutil.rmtree(self.tmpdirname ) def lowercase_ ( self : Tuple ) ->Any: snake_case__ : str = [np.random.randint(2_5_5, size=(3, 3_0, 4_0_0), dtype=np.uinta )] snake_case__ : Optional[int] = [Image.fromarray(np.moveaxis(_snake_case, 0, -1 ) ) for x in image_inputs] return image_inputs def lowercase_ ( self : List[Any] ) ->Optional[Any]: snake_case__ : Union[str, Any] = BlipaProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) snake_case__ : Optional[Any] = self.get_tokenizer(bos_token='(BOS)', eos_token='(EOS)' ) snake_case__ : int = self.get_image_processor(do_normalize=_snake_case, padding_value=1.0 ) snake_case__ : Optional[int] = BlipaProcessor.from_pretrained( self.tmpdirname, bos_token='(BOS)', eos_token='(EOS)', do_normalize=_snake_case, padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer, _snake_case ) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor, _snake_case ) def lowercase_ ( self : int ) ->List[Any]: snake_case__ : Optional[Any] = self.get_image_processor() snake_case__ : List[Any] = self.get_tokenizer() snake_case__ : Union[str, Any] = BlipaProcessor(tokenizer=_snake_case, image_processor=_snake_case ) snake_case__ : Tuple = self.prepare_image_inputs() snake_case__ : Optional[Any] = image_processor(_snake_case, return_tensors='np' ) snake_case__ : Tuple = processor(images=_snake_case, return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2 ) def lowercase_ ( self : Any ) ->Union[str, Any]: snake_case__ : str = self.get_image_processor() snake_case__ : List[Any] = self.get_tokenizer() snake_case__ : int = BlipaProcessor(tokenizer=_snake_case, image_processor=_snake_case ) snake_case__ : List[Any] = 'lower newer' snake_case__ : str = processor(text=_snake_case ) snake_case__ : Dict = tokenizer(_snake_case, return_token_type_ids=_snake_case ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key] ) def lowercase_ ( self : Optional[int] ) ->List[Any]: snake_case__ : Tuple = self.get_image_processor() snake_case__ : Optional[int] = self.get_tokenizer() snake_case__ : Optional[Any] = BlipaProcessor(tokenizer=_snake_case, image_processor=_snake_case ) snake_case__ : Dict = 'lower newer' snake_case__ : Dict = self.prepare_image_inputs() snake_case__ : Union[str, Any] = processor(text=_snake_case, images=_snake_case ) self.assertListEqual(list(inputs.keys() ), ['pixel_values', 'input_ids', 'attention_mask'] ) # test if it raises when no input is passed with pytest.raises(_snake_case ): processor() def lowercase_ ( self : Union[str, Any] ) ->Optional[int]: snake_case__ : Optional[int] = self.get_image_processor() snake_case__ : int = self.get_tokenizer() snake_case__ : List[Any] = BlipaProcessor(tokenizer=_snake_case, image_processor=_snake_case ) snake_case__ : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] snake_case__ : Union[str, Any] = processor.batch_decode(_snake_case ) snake_case__ : List[str] = tokenizer.batch_decode(_snake_case ) self.assertListEqual(_snake_case, _snake_case ) def lowercase_ ( self : List[Any] ) ->Optional[int]: snake_case__ : Dict = self.get_image_processor() snake_case__ : List[Any] = self.get_tokenizer() snake_case__ : Optional[int] = BlipaProcessor(tokenizer=_snake_case, image_processor=_snake_case ) snake_case__ : Tuple = 'lower newer' snake_case__ : Optional[int] = self.prepare_image_inputs() snake_case__ : str = processor(text=_snake_case, images=_snake_case ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ), ['pixel_values', 'input_ids', 'attention_mask'] )
277
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class snake_case__ : """simple docstring""" def __init__( self : List[str], _snake_case : Any, _snake_case : int=1_3, _snake_case : Optional[int]=7, _snake_case : int=True, _snake_case : Optional[Any]=True, _snake_case : Optional[Any]=True, _snake_case : Union[str, Any]=9_9, _snake_case : Optional[Any]=3_2, _snake_case : Tuple=5, _snake_case : str=4, _snake_case : Any=3_7, _snake_case : int="gelu", _snake_case : Optional[Any]=0.1, _snake_case : str=0.1, _snake_case : str=5_1_2, _snake_case : Dict=1_6, _snake_case : str=2, _snake_case : Union[str, Any]=0.0_2, _snake_case : Optional[int]=3, _snake_case : Union[str, Any]=4, _snake_case : Tuple=None, ) ->Optional[Any]: snake_case__ : Optional[int] = parent snake_case__ : List[Any] = batch_size snake_case__ : Tuple = seq_length snake_case__ : str = is_training snake_case__ : Optional[int] = use_token_type_ids snake_case__ : Any = use_labels snake_case__ : Dict = vocab_size snake_case__ : str = hidden_size snake_case__ : Union[str, Any] = num_hidden_layers snake_case__ : List[str] = num_attention_heads snake_case__ : Union[str, Any] = intermediate_size snake_case__ : List[Any] = hidden_act snake_case__ : int = hidden_dropout_prob snake_case__ : str = attention_probs_dropout_prob snake_case__ : Any = max_position_embeddings snake_case__ : Union[str, Any] = type_vocab_size snake_case__ : Optional[Any] = type_sequence_label_size snake_case__ : Optional[int] = initializer_range snake_case__ : Optional[int] = num_labels snake_case__ : str = num_choices snake_case__ : int = scope snake_case__ : List[str] = self.vocab_size - 1 def lowercase_ ( self : Union[str, Any] ) ->Tuple: snake_case__ : List[str] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) snake_case__ : List[str] = None if self.use_token_type_ids: snake_case__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) snake_case__ : Tuple = None snake_case__ : str = None snake_case__ : List[Any] = None if self.use_labels: snake_case__ : Dict = ids_tensor([self.batch_size], self.type_sequence_label_size ) snake_case__ : int = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) snake_case__ : List[str] = ids_tensor([self.batch_size], self.num_choices ) snake_case__ : Union[str, Any] = OpenAIGPTConfig( vocab_size=self.vocab_size, n_embd=self.hidden_size, n_layer=self.num_hidden_layers, n_head=self.num_attention_heads, n_positions=self.max_position_embeddings, pad_token_id=self.pad_token_id, ) snake_case__ : List[str] = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def lowercase_ ( self : Any, _snake_case : List[str], _snake_case : Any, _snake_case : List[Any], _snake_case : Tuple, *_snake_case : Optional[Any] ) ->Tuple: snake_case__ : Union[str, Any] = OpenAIGPTModel(config=_snake_case ) model.to(_snake_case ) model.eval() snake_case__ : Optional[Any] = model(_snake_case, token_type_ids=_snake_case, head_mask=_snake_case ) snake_case__ : Union[str, Any] = model(_snake_case, token_type_ids=_snake_case ) snake_case__ : Optional[Any] = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase_ ( self : Optional[int], _snake_case : Optional[Any], _snake_case : Union[str, Any], _snake_case : Optional[int], _snake_case : List[Any], *_snake_case : Dict ) ->Optional[int]: snake_case__ : Optional[Any] = OpenAIGPTLMHeadModel(_snake_case ) model.to(_snake_case ) model.eval() snake_case__ : Tuple = model(_snake_case, token_type_ids=_snake_case, labels=_snake_case ) self.parent.assertEqual(result.loss.shape, () ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase_ ( self : int, _snake_case : Tuple, _snake_case : List[str], _snake_case : List[Any], _snake_case : List[Any], *_snake_case : List[Any] ) ->Optional[int]: snake_case__ : List[str] = OpenAIGPTDoubleHeadsModel(_snake_case ) model.to(_snake_case ) model.eval() snake_case__ : Optional[Any] = model(_snake_case, token_type_ids=_snake_case, labels=_snake_case ) self.parent.assertEqual(result.loss.shape, () ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase_ ( self : Optional[int], _snake_case : Tuple, _snake_case : Dict, _snake_case : List[str], _snake_case : Optional[Any], *_snake_case : Union[str, Any] ) ->str: snake_case__ : List[str] = self.num_labels snake_case__ : Dict = OpenAIGPTForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() snake_case__ : List[str] = ids_tensor([self.batch_size], self.type_sequence_label_size ) snake_case__ : List[str] = model(_snake_case, token_type_ids=_snake_case, labels=_snake_case ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def lowercase_ ( self : Dict ) ->int: snake_case__ : List[Any] = self.prepare_config_and_inputs() ( ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ) : Optional[Any] = config_and_inputs snake_case__ : str = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask, } return config, inputs_dict @require_torch class snake_case__ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly _SCREAMING_SNAKE_CASE = ( { """feature-extraction""": OpenAIGPTModel, """text-classification""": OpenAIGPTForSequenceClassification, """text-generation""": OpenAIGPTLMHeadModel, """zero-shot""": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def lowercase_ ( self : Optional[int], _snake_case : Union[str, Any], _snake_case : int, _snake_case : Tuple, _snake_case : Tuple, _snake_case : List[str] ) ->Optional[Any]: if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def lowercase_ ( self : Optional[Any], _snake_case : Union[str, Any], _snake_case : List[str], _snake_case : Any=False ) ->Tuple: snake_case__ : Optional[int] = super()._prepare_for_class(_snake_case, _snake_case, return_labels=_snake_case ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": snake_case__ : Union[str, Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length), dtype=torch.long, device=_snake_case, ) snake_case__ : List[Any] = inputs_dict['labels'] snake_case__ : List[Any] = inputs_dict['labels'] snake_case__ : Any = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices), dtype=torch.long, device=_snake_case, ) snake_case__ : Tuple = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=_snake_case ) return inputs_dict def lowercase_ ( self : Union[str, Any] ) ->List[str]: snake_case__ : List[str] = OpenAIGPTModelTester(self ) snake_case__ : Any = ConfigTester(self, config_class=_snake_case, n_embd=3_7 ) def lowercase_ ( self : Optional[int] ) ->str: self.config_tester.run_common_tests() def lowercase_ ( self : int ) ->Tuple: snake_case__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*_snake_case ) def lowercase_ ( self : Tuple ) ->List[str]: snake_case__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*_snake_case ) def lowercase_ ( self : Dict ) ->int: snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*_snake_case ) def lowercase_ ( self : int ) ->str: snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*_snake_case ) @slow def lowercase_ ( self : Optional[Any] ) ->str: for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : Optional[int] = OpenAIGPTModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) @require_torch class snake_case__ ( unittest.TestCase ): """simple docstring""" @slow def lowercase_ ( self : Tuple ) ->Optional[int]: snake_case__ : Union[str, Any] = OpenAIGPTLMHeadModel.from_pretrained('openai-gpt' ) model.to(_snake_case ) snake_case__ : Tuple = torch.tensor([[4_8_1, 4_7_3_5, 5_4_4]], dtype=torch.long, device=_snake_case ) # the president is snake_case__ : int = [ 4_8_1, 4_7_3_5, 5_4_4, 2_4_6, 9_6_3, 8_7_0, 7_6_2, 2_3_9, 2_4_4, 4_0_4_7_7, 2_4_4, 2_4_9, 7_1_9, 8_8_1, 4_8_7, 5_4_4, 2_4_0, 2_4_4, 6_0_3, 4_8_1, ] # the president is a very good man. " \n " i\'m sure he is, " said the snake_case__ : Optional[int] = model.generate(_snake_case, do_sample=_snake_case ) self.assertListEqual(output_ids[0].tolist(), _snake_case )
277
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a__ : List[str] = { '''configuration_biogpt''': ['''BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BioGptConfig'''], '''tokenization_biogpt''': ['''BioGptTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Union[str, Any] = [ '''BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BioGptForCausalLM''', '''BioGptForTokenClassification''', '''BioGptForSequenceClassification''', '''BioGptModel''', '''BioGptPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys a__ : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
195
"""simple docstring""" from datetime import datetime import requests def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = "https://downloadgram.net/wp-json/wppress/video-downloader/video?url=" __SCREAMING_SNAKE_CASE = requests.get(base_url + url ).json()[0]["urls"][0]["src"] return requests.get(lowerCAmelCase_ ).content if __name__ == "__main__": a__ : str = input('''Enter Video/IGTV url: ''').strip() a__ : List[Any] = F"{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4" with open(file_name, '''wb''') as fp: fp.write(download_video(url)) print(F"Done. Video saved to disk as {file_name}.")
195
1
"""simple docstring""" import math import flax.linen as nn import jax.numpy as jnp def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = 1 , UpperCamelCase__ = 1 , UpperCamelCase__ = 1.0e4 , UpperCamelCase__ = False , UpperCamelCase__ = 1.0 , ): '''simple docstring''' assert timesteps.ndim == 1, "Timesteps should be a 1d-array" assert embedding_dim % 2 == 0, F"""Embedding dimension {embedding_dim} should be even""" _a : int = float(embedding_dim // 2 ) _a : Any = math.log(max_timescale / min_timescale ) / (num_timescales - freq_shift) _a : Optional[int] = min_timescale * jnp.exp(jnp.arange(UpperCamelCase__ , dtype=jnp.floataa ) * -log_timescale_increment ) _a : str = jnp.expand_dims(UpperCamelCase__ , 1 ) * jnp.expand_dims(UpperCamelCase__ , 0 ) # scale embeddings _a : Union[str, Any] = scale * emb if flip_sin_to_cos: _a : Any = jnp.concatenate([jnp.cos(UpperCamelCase__ ), jnp.sin(UpperCamelCase__ )] , axis=1 ) else: _a : Dict = jnp.concatenate([jnp.sin(UpperCamelCase__ ), jnp.cos(UpperCamelCase__ )] , axis=1 ) _a : List[str] = jnp.reshape(UpperCamelCase__ , [jnp.shape(UpperCamelCase__ )[0], embedding_dim] ) return signal class UpperCamelCase ( nn.Module ): UpperCamelCase : int = 32 UpperCamelCase : jnp.dtype = jnp.floataa @nn.compact def __call__( self : str , UpperCAmelCase__ : int ) -> Optional[Any]: _a : Optional[int] = nn.Dense(self.time_embed_dim , dtype=self.dtype , name="""linear_1""" )(lowerCAmelCase_ ) _a : Union[str, Any] = nn.silu(lowerCAmelCase_ ) _a : Tuple = nn.Dense(self.time_embed_dim , dtype=self.dtype , name="""linear_2""" )(lowerCAmelCase_ ) return temb class UpperCamelCase ( nn.Module ): UpperCamelCase : int = 32 UpperCamelCase : bool = False UpperCamelCase : float = 1 @nn.compact def __call__( self : Dict , UpperCAmelCase__ : Dict ) -> List[Any]: return get_sinusoidal_embeddings( lowerCAmelCase_ , embedding_dim=self.dim , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.freq_shift )
294
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase__ : Any = { 'huggingface/informer-tourism-monthly': ( 'https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json' ), # See all Informer models at https://huggingface.co/models?filter=informer } class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : List[Any] = '''informer''' __UpperCamelCase : List[str] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self : Optional[Any] , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : str = "student_t" , lowerCAmelCase_ : str = "nll" , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : List[int] = None , lowerCAmelCase_ : Optional[Union[str, bool]] = "mean" , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : Optional[List[int]] = None , lowerCAmelCase_ : Optional[List[int]] = None , lowerCAmelCase_ : int = 6_4 , lowerCAmelCase_ : int = 3_2 , lowerCAmelCase_ : int = 3_2 , lowerCAmelCase_ : int = 2 , lowerCAmelCase_ : int = 2 , lowerCAmelCase_ : int = 2 , lowerCAmelCase_ : int = 2 , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : str = "gelu" , lowerCAmelCase_ : float = 0.05 , lowerCAmelCase_ : float = 0.1 , lowerCAmelCase_ : float = 0.1 , lowerCAmelCase_ : float = 0.1 , lowerCAmelCase_ : float = 0.1 , lowerCAmelCase_ : int = 1_0_0 , lowerCAmelCase_ : float = 0.02 , lowerCAmelCase_ : Tuple=True , lowerCAmelCase_ : str = "prob" , lowerCAmelCase_ : int = 5 , lowerCAmelCase_ : bool = True , **lowerCAmelCase_ : str , ): """simple docstring""" # time series specific configuration _A: Optional[Any] = prediction_length _A: Optional[Any] = context_length or prediction_length _A: Dict = distribution_output _A: List[str] = loss _A: int = input_size _A: List[str] = num_time_features _A: Optional[Any] = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] _A: str = scaling _A: Optional[Any] = num_dynamic_real_features _A: List[Any] = num_static_real_features _A: Tuple = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(lowerCAmelCase_ ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) _A: str = cardinality else: _A: Union[str, Any] = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(lowerCAmelCase_ ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) _A: List[str] = embedding_dimension else: _A: Union[str, Any] = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] _A: int = num_parallel_samples # Transformer architecture configuration _A: Union[str, Any] = input_size * len(self.lags_sequence ) + self._number_of_features _A: Union[str, Any] = d_model _A: Optional[Any] = encoder_attention_heads _A: Optional[Any] = decoder_attention_heads _A: Optional[Any] = encoder_ffn_dim _A: Union[str, Any] = decoder_ffn_dim _A: Any = encoder_layers _A: str = decoder_layers _A: List[str] = dropout _A: Any = attention_dropout _A: Optional[int] = activation_dropout _A: List[Any] = encoder_layerdrop _A: str = decoder_layerdrop _A: int = activation_function _A: Tuple = init_std _A: Union[str, Any] = use_cache # Informer _A: Union[str, Any] = attention_type _A: str = sampling_factor _A: List[str] = distil super().__init__(is_encoder_decoder=lowerCAmelCase_ , **lowerCAmelCase_ ) @property def __magic_name__ ( self : List[str] ): """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
121
0
"""simple docstring""" import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py __lowercase = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. __lowercase = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. __lowercase = re.compile(R"""TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") __lowercase = re.compile(R"""Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. __lowercase = re.compile(R"""(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") # Fill this with tuples (pipeline_tag, model_mapping, auto_model) __lowercase = [ ("pretraining", "MODEL_FOR_PRETRAINING_MAPPING_NAMES", "AutoModelForPreTraining"), ("feature-extraction", "MODEL_MAPPING_NAMES", "AutoModel"), ("audio-classification", "MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForAudioClassification"), ("text-generation", "MODEL_FOR_CAUSAL_LM_MAPPING_NAMES", "AutoModelForCausalLM"), ("automatic-speech-recognition", "MODEL_FOR_CTC_MAPPING_NAMES", "AutoModelForCTC"), ("image-classification", "MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForImageClassification"), ("image-segmentation", "MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES", "AutoModelForImageSegmentation"), ("fill-mask", "MODEL_FOR_MASKED_LM_MAPPING_NAMES", "AutoModelForMaskedLM"), ("object-detection", "MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES", "AutoModelForObjectDetection"), ( "zero-shot-object-detection", "MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES", "AutoModelForZeroShotObjectDetection", ), ("question-answering", "MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForQuestionAnswering"), ("text2text-generation", "MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES", "AutoModelForSeq2SeqLM"), ("text-classification", "MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForSequenceClassification"), ("automatic-speech-recognition", "MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES", "AutoModelForSpeechSeq2Seq"), ( "table-question-answering", "MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForTableQuestionAnswering", ), ("token-classification", "MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES", "AutoModelForTokenClassification"), ("multiple-choice", "MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES", "AutoModelForMultipleChoice"), ( "next-sentence-prediction", "MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES", "AutoModelForNextSentencePrediction", ), ( "audio-frame-classification", "MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES", "AutoModelForAudioFrameClassification", ), ("audio-xvector", "MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES", "AutoModelForAudioXVector"), ( "document-question-answering", "MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForDocumentQuestionAnswering", ), ( "visual-question-answering", "MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForVisualQuestionAnswering", ), ("image-to-text", "MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES", "AutoModelForVision2Seq"), ( "zero-shot-image-classification", "MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForZeroShotImageClassification", ), ("depth-estimation", "MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES", "AutoModelForDepthEstimation"), ("video-classification", "MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForVideoClassification"), ("mask-generation", "MODEL_FOR_MASK_GENERATION_MAPPING_NAMES", "AutoModelForMaskGeneration"), ] def lowercase ( A_ )-> Dict: '''simple docstring''' a : str = re.finditer(".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)" , lowerCamelCase_ ) return [m.group(0 ) for m in matches] def lowercase ( )-> Dict: '''simple docstring''' a : Optional[Any] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES a : Any = { config.replace("Config" , "" ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. a : Union[str, Any] = collections.defaultdict(lowerCamelCase_ ) a : Any = collections.defaultdict(lowerCamelCase_ ) a : int = collections.defaultdict(lowerCamelCase_ ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(lowerCamelCase_ ): a : Union[str, Any] = None if _re_tf_models.match(lowerCamelCase_ ) is not None: a : Any = tf_models a : int = _re_tf_models.match(lowerCamelCase_ ).groups()[0] elif _re_flax_models.match(lowerCamelCase_ ) is not None: a : List[str] = flax_models a : Tuple = _re_flax_models.match(lowerCamelCase_ ).groups()[0] elif _re_pt_models.match(lowerCamelCase_ ) is not None: a : List[Any] = pt_models a : int = _re_pt_models.match(lowerCamelCase_ ).groups()[0] if lookup_dict is not None: while len(lowerCamelCase_ ) > 0: if attr_name in model_prefix_to_model_type: a : Tuple = True break # Try again after removing the last word in the name a : List[Any] = ''.join(camel_case_split(lowerCamelCase_ )[:-1] ) a : List[Any] = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) a : Dict = list(lowerCamelCase_ ) all_models.sort() a : Tuple = {'model_type': all_models} a : Dict = [pt_models[t] for t in all_models] a : List[Any] = [tf_models[t] for t in all_models] a : Any = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure a : str = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: a : int = 'AutoProcessor' elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: a : Union[str, Any] = 'AutoTokenizer' elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: a : Optional[Any] = 'AutoFeatureExtractor' else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. a : Optional[int] = 'AutoTokenizer' a : Any = [processors[t] for t in all_models] return pd.DataFrame(lowerCamelCase_ ) def lowercase ( A_ )-> Any: '''simple docstring''' a : Union[str, Any] = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: a : int = [model_mapping, F'''TF_{model_mapping}''', F'''FLAX_{model_mapping}'''] a : List[str] = [auto_class, F'''TF_{auto_class}''', F'''Flax_{auto_class}'''] # Loop through all three frameworks for module, cls, mapping in zip(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): # The type of pipeline may not exist in this framework if not hasattr(lowerCamelCase_ , lowerCamelCase_ ): continue # First extract all model_names a : Union[str, Any] = [] for name in getattr(lowerCamelCase_ , lowerCamelCase_ ).values(): if isinstance(lowerCamelCase_ , lowerCamelCase_ ): model_names.append(lowerCamelCase_ ) else: model_names.extend(list(lowerCamelCase_ ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def lowercase ( A_ , A_ )-> List[Any]: '''simple docstring''' a : Tuple = get_frameworks_table() a : Any = Dataset.from_pandas(lowerCamelCase_ ) a : Tuple = hf_hub_download( "huggingface/transformers-metadata" , "pipeline_tags.json" , repo_type="dataset" , token=lowerCamelCase_ ) a : List[str] = Dataset.from_json(lowerCamelCase_ ) a : Dict = { tags_dataset[i]['model_class']: (tags_dataset[i]['pipeline_tag'], tags_dataset[i]['auto_class']) for i in range(len(lowerCamelCase_ ) ) } a : Any = update_pipeline_and_auto_class_table(lowerCamelCase_ ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. a : int = sorted(table.keys() ) a : Optional[Any] = pd.DataFrame( { "model_class": model_classes, "pipeline_tag": [table[m][0] for m in model_classes], "auto_class": [table[m][1] for m in model_classes], } ) a : int = Dataset.from_pandas(lowerCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(lowerCamelCase_ , "frameworks.json" ) ) tags_dataset.to_json(os.path.join(lowerCamelCase_ , "pipeline_tags.json" ) ) if commit_sha is not None: a : List[Any] = ( F'''Update with commit {commit_sha}\n\nSee: ''' F'''https://github.com/huggingface/transformers/commit/{commit_sha}''' ) else: a : Tuple = 'Update' upload_folder( repo_id="huggingface/transformers-metadata" , folder_path=lowerCamelCase_ , repo_type="dataset" , token=lowerCamelCase_ , commit_message=lowerCamelCase_ , ) def lowercase ( )-> Optional[Any]: '''simple docstring''' a : List[str] = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} a : Optional[int] = transformers_module.pipelines.SUPPORTED_TASKS a : str = [] for key in pipeline_tasks: if key not in in_table: a : List[Any] = pipeline_tasks[key]['pt'] if isinstance(lowerCamelCase_ , (list, tuple) ): a : str = model[0] a : Dict = model.__name__ if model not in in_table.values(): missing.append(lowerCamelCase_ ) if len(lowerCamelCase_ ) > 0: a : Dict = ', '.join(lowerCamelCase_ ) raise ValueError( "The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside " F'''`utils/update_metadata.py`: {msg}. Please add them!''' ) if __name__ == "__main__": __lowercase = argparse.ArgumentParser() parser.add_argument("""--token""", type=str, help="""The token to use to push to the transformers-metadata dataset.""") parser.add_argument("""--commit_sha""", type=str, help="""The sha of the commit going with this update.""") parser.add_argument("""--check-only""", action="""store_true""", help="""Activate to just check all pipelines are present.""") __lowercase = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
368
"""simple docstring""" import sys import turtle def lowercase ( A_ , A_ )-> tuple[float, float]: '''simple docstring''' return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def lowercase ( A_ , A_ , A_ , A_ , )-> None: '''simple docstring''' my_pen.up() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) if depth == 0: return triangle(A_ , get_mid(A_ , A_ ) , get_mid(A_ , A_ ) , depth - 1 ) triangle(A_ , get_mid(A_ , A_ ) , get_mid(A_ , A_ ) , depth - 1 ) triangle(A_ , get_mid(A_ , A_ ) , get_mid(A_ , A_ ) , depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( """Correct format for using this script: """ """python fractals.py <int:depth_for_fractal>""" ) __lowercase = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor("""red""") __lowercase = [(-175, -125), (0, 175), (175, -125)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
226
0
"""simple docstring""" import math def lowercase_ ( _UpperCAmelCase ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_UpperCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowercase_ ( _UpperCAmelCase = 1_0001 ): """simple docstring""" try: A_ : Optional[int] = int(_UpperCAmelCase ) except (TypeError, ValueError): raise TypeError('''Parameter nth must be int or castable to int.''' ) from None if nth <= 0: raise ValueError('''Parameter nth must be greater than or equal to one.''' ) A_ : list[int] = [] A_ : int = 2 while len(_UpperCAmelCase ) < nth: if is_prime(_UpperCAmelCase ): primes.append(_UpperCAmelCase ) num += 1 else: num += 1 return primes[len(_UpperCAmelCase ) - 1] if __name__ == "__main__": print(f'{solution() = }')
167
from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class __lowerCAmelCase : def _lowercase ( self , lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' raise NotImplementedError() def _lowercase ( self ) -> int: '''simple docstring''' raise NotImplementedError() class __lowerCAmelCase ( UpperCamelCase__): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ = False , **lowerCAmelCase__ ) -> int: '''simple docstring''' a__ : str =tokenizer a__ : List[str] =skip_prompt a__ : List[Any] =decode_kwargs # variables used in the streaming process a__ : Dict =[] a__ : int =0 a__ : str =True def _lowercase ( self , lowerCAmelCase__ ) -> Union[str, Any]: '''simple docstring''' if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError("TextStreamer only supports batch size 1" ) elif len(value.shape ) > 1: a__ : Any =value[0] if self.skip_prompt and self.next_tokens_are_prompt: a__ : Dict =False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) a__ : Union[str, Any] =self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith("\n" ): a__ : List[Any] =text[self.print_len :] a__ : List[str] =[] a__ : Optional[int] =0 # If the last token is a CJK character, we print the characters. elif len(lowerCAmelCase__ ) > 0 and self._is_chinese_char(ord(text[-1] ) ): a__ : List[str] =text[self.print_len :] self.print_len += len(lowerCAmelCase__ ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: a__ : str =text[self.print_len : text.rfind(" " ) + 1] self.print_len += len(lowerCAmelCase__ ) self.on_finalized_text(lowerCAmelCase__ ) def _lowercase ( self ) -> Any: '''simple docstring''' if len(self.token_cache ) > 0: a__ : Union[str, Any] =self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) a__ : List[Any] =text[self.print_len :] a__ : List[str] =[] a__ : Optional[int] =0 else: a__ : Union[str, Any] ="" a__ : Any =True self.on_finalized_text(lowerCAmelCase__ , stream_end=lowerCAmelCase__ ) def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ = False ) -> Optional[Any]: '''simple docstring''' print(lowerCAmelCase__ , flush=lowerCAmelCase__ , end="" if not stream_end else None ) def _lowercase ( self , lowerCAmelCase__ ) -> str: '''simple docstring''' if ( (cp >= 0X4E_00 and cp <= 0X9F_FF) or (cp >= 0X34_00 and cp <= 0X4D_BF) # or (cp >= 0X2_00_00 and cp <= 0X2_A6_DF) # or (cp >= 0X2_A7_00 and cp <= 0X2_B7_3F) # or (cp >= 0X2_B7_40 and cp <= 0X2_B8_1F) # or (cp >= 0X2_B8_20 and cp <= 0X2_CE_AF) # or (cp >= 0XF9_00 and cp <= 0XFA_FF) or (cp >= 0X2_F8_00 and cp <= 0X2_FA_1F) # ): # return True return False class __lowerCAmelCase ( UpperCamelCase__): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ = False , lowerCAmelCase__ = None , **lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' super().__init__(lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) a__ : str =Queue() a__ : Optional[Any] =None a__ : Any =timeout def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ = False ) -> List[str]: '''simple docstring''' self.text_queue.put(lowerCAmelCase__ , timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal , timeout=self.timeout ) def __iter__( self ) -> Dict: '''simple docstring''' return self def _lowercase ( self ) -> int: '''simple docstring''' a__ : int =self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
95
0
import math __A = 10 __A = 7 __A = BALLS_PER_COLOUR * NUM_COLOURS def lowerCamelCase_ ( UpperCamelCase__ : int = 20 ) -> str: """simple docstring""" __lowerCamelCase = math.comb(UpperCamelCase__ , UpperCamelCase__ ) __lowerCamelCase = math.comb(NUM_BALLS - BALLS_PER_COLOUR , UpperCamelCase__ ) __lowerCamelCase = NUM_COLOURS * (1 - missing_colour / total) return F"""{result:.9f}""" if __name__ == "__main__": print(solution(20))
348
import requests __A = "https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=" def lowerCamelCase_ ( UpperCamelCase__ : str ) -> None: """simple docstring""" __lowerCamelCase = requests.get(_NEWS_API + bbc_news_api_key ).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page['articles'] , 1 ): print(F"""{i}.) {article['title']}""" ) if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key="<Your BBC News API key goes here>")
348
1