code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
from ..utils import DummyObject, requires_backends class A__ ( metaclass=__UpperCAmelCase ): """simple docstring""" __A : Any = ['''onnx'''] def __init__( self , *lowercase , **lowercase) -> List[str]: '''simple docstring''' requires_backends(self , ['onnx']) @classmethod def __lowercase ( cls , *lowercase , **lowercase) -> List[Any]: '''simple docstring''' requires_backends(cls , ['onnx']) @classmethod def __lowercase ( cls , *lowercase , **lowercase) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['onnx'])
99
'''simple docstring''' # We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings('ignore', category=UserWarning, module='torch.optim.lr_scheduler') class _snake_case : def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = True , _lowerCamelCase = False): UpperCAmelCase__ : str = scheduler UpperCAmelCase__ : Dict = optimizers if isinstance(_lowerCamelCase , (list, tuple)) else [optimizers] UpperCAmelCase__ : List[Any] = split_batches UpperCAmelCase__ : Tuple = step_with_optimizer UpperCAmelCase__ : Union[str, Any] = GradientState() def snake_case__ ( self , *_lowerCamelCase , **_lowerCamelCase): if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*_lowerCamelCase , **_lowerCamelCase) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*_lowerCamelCase , **_lowerCamelCase) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step UpperCAmelCase__ : Dict = AcceleratorState().num_processes for _ in range(_lowerCamelCase): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , """total_steps"""): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*_lowerCamelCase , **_lowerCamelCase) else: self.scheduler.step(*_lowerCamelCase , **_lowerCamelCase) def snake_case__ ( self): return self.scheduler.get_last_lr() def snake_case__ ( self): return self.scheduler.state_dict() def snake_case__ ( self , _lowerCamelCase): self.scheduler.load_state_dict(_lowerCamelCase) def snake_case__ ( self): return self.scheduler.get_lr() def snake_case__ ( self , *_lowerCamelCase , **_lowerCamelCase): return self.scheduler.print_lr(*_lowerCamelCase , **_lowerCamelCase)
163
0
import argparse import json import subprocess def lowerCAmelCase__ ( _a : Optional[Any] , _a : Optional[Any] ): snake_case_ : int = [] snake_case_ : Optional[int] = ( F'''curl -H "Accept: application/vnd.github+json" -H "Authorization: Bearer {token}"''' " https://api.github.com/repos/huggingface/transformers/actions/runners" ) snake_case_ : Optional[Any] = subprocess.run(_a , shell=_a , stdout=subprocess.PIPE ) snake_case_ : Union[str, Any] = output.stdout.decode("utf-8" ) snake_case_ : Tuple = json.loads(_a ) snake_case_ : List[str] = status["runners"] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(_a ) # save the result so we can report them on Slack with open("offline_runners.txt" , "w" ) as fp: fp.write(json.dumps(_a ) ) if len(_a ) > 0: snake_case_ : Tuple = "\n".join([x["name"] for x in offline_runners] ) raise ValueError(F'''The following runners are offline:\n{failed}''' ) if __name__ == "__main__": def lowerCAmelCase__ ( _a : int ): return values.split("," ) lowercase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--target_runners''', default=None, type=list_str, required=True, help='''Comma-separated list of runners to check status.''', ) parser.add_argument( '''--token''', default=None, type=str, required=True, help='''A token that has actions:read permission.''' ) lowercase : str = parser.parse_args() get_runner_status(args.target_runners, args.token)
36
def lowerCAmelCase__ ( _a : float , _a : float ): if density <= 0: raise ValueError("Impossible fluid density" ) if bulk_modulus <= 0: raise ValueError("Impossible bulk modulus" ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
36
1
'''simple docstring''' def a ( __a ) -> List[Any]: '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ :Optional[int] = [], [] while len(__a ) > 1: UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = min(__a ), max(__a ) start.append(__a ) end.append(__a ) collection.remove(__a ) collection.remove(__a ) end.reverse() return start + collection + end if __name__ == "__main__": __snake_case = input('''Enter numbers separated by a comma:\n''').strip() __snake_case = [int(item) for item in user_input.split(''',''')] print(*merge_sort(unsorted), sep=''',''')
97
'''simple docstring''' from datetime import datetime as dt import os from github import Github __snake_case = [ '''good first issue''', '''good second issue''', '''good difficult issue''', '''feature request''', '''new model''', '''wip''', ] def a ( ) -> List[str]: '''simple docstring''' UpperCamelCase__ :List[str] = Github(os.environ['''GITHUB_TOKEN'''] ) UpperCamelCase__ :Tuple = g.get_repo('''huggingface/transformers''' ) UpperCamelCase__ :Union[str, Any] = repo.get_issues(state='''open''' ) for issue in open_issues: UpperCamelCase__ :List[Any] = sorted([comment for comment in issue.get_comments()] , key=lambda __a : i.created_at , reverse=__a ) UpperCamelCase__ :List[Any] = comments[0] if len(__a ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state='''closed''' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) if __name__ == "__main__": main()
97
1
"""simple docstring""" from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class __SCREAMING_SNAKE_CASE : '''simple docstring''' SCREAMING_SNAKE_CASE__ :List[str] SCREAMING_SNAKE_CASE__ :Optional[str] = None # Automatically constructed SCREAMING_SNAKE_CASE__ :ClassVar[str] = "dict" SCREAMING_SNAKE_CASE__ :ClassVar[Any] = None SCREAMING_SNAKE_CASE__ :str = field(default="Translation" , init=_UpperCamelCase , repr=_UpperCamelCase ) def __call__( self : Dict ) -> List[str]: return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value return {k: Value("string" ) for k in sorted(self.languages )} @dataclass class __SCREAMING_SNAKE_CASE : '''simple docstring''' SCREAMING_SNAKE_CASE__ :Optional[List] = None SCREAMING_SNAKE_CASE__ :Optional[int] = None SCREAMING_SNAKE_CASE__ :Optional[str] = None # Automatically constructed SCREAMING_SNAKE_CASE__ :ClassVar[str] = "dict" SCREAMING_SNAKE_CASE__ :ClassVar[Any] = None SCREAMING_SNAKE_CASE__ :str = field(default="TranslationVariableLanguages" , init=_UpperCamelCase , repr=_UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Union[str, Any]: _UpperCamelCase : Union[str, Any] = sorted(set(self.languages ) ) if self.languages else None _UpperCamelCase : str = len(self.languages ) if self.languages else None def __call__( self : str ) -> Union[str, Any]: return pa.struct({"language": pa.list_(pa.string() ), "translation": pa.list_(pa.string() )} ) def __SCREAMING_SNAKE_CASE ( self : int , __a : str ) -> List[Any]: _UpperCamelCase : Optional[Any] = set(self.languages ) if self.languages and set(__a ) - lang_set: raise ValueError( F'''Some languages in example ({', '.join(sorted(set(__a ) - lang_set ) )}) are not in valid set ({', '.join(__a )}).''' ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. _UpperCamelCase : Any = [] for lang, text in translation_dict.items(): if isinstance(__a , __a ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. _UpperCamelCase : Optional[Any] = zip(*sorted(__a ) ) return {"language": languages, "translation": translations} def __SCREAMING_SNAKE_CASE ( self : int ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Sequence, Value return { "language": Sequence(Value("string" ) ), "translation": Sequence(Value("string" ) ), }
351
"""simple docstring""" import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[int]: _UpperCamelCase : List[Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _UpperCamelCase : Union[str, Any] = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__a ) _UpperCamelCase : Optional[int] = -1 _UpperCamelCase : List[str] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__a ) _UpperCamelCase : Union[str, Any] = model.generate(__a , max_new_tokens=10 , do_sample=__a ) _UpperCamelCase : Optional[Any] = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: _UpperCamelCase : Any = TextStreamer(__a ) model.generate(__a , max_new_tokens=10 , do_sample=__a , streamer=__a ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer _UpperCamelCase : Optional[int] = cs.out[:-1] self.assertEqual(__a , __a ) def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: _UpperCamelCase : List[str] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _UpperCamelCase : Tuple = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__a ) _UpperCamelCase : Dict = -1 _UpperCamelCase : Dict = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__a ) _UpperCamelCase : List[str] = model.generate(__a , max_new_tokens=10 , do_sample=__a ) _UpperCamelCase : Optional[int] = tokenizer.decode(greedy_ids[0] ) _UpperCamelCase : Tuple = TextIteratorStreamer(__a ) _UpperCamelCase : Union[str, Any] = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} _UpperCamelCase : Optional[Any] = Thread(target=model.generate , kwargs=__a ) thread.start() _UpperCamelCase : Tuple = "" for new_text in streamer: streamer_text += new_text self.assertEqual(__a , __a ) def __SCREAMING_SNAKE_CASE ( self : str ) -> Dict: _UpperCamelCase : Tuple = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _UpperCamelCase : int = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__a ) _UpperCamelCase : Union[str, Any] = -1 _UpperCamelCase : str = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__a ) _UpperCamelCase : Union[str, Any] = model.generate(__a , max_new_tokens=10 , do_sample=__a ) _UpperCamelCase : str = greedy_ids[:, input_ids.shape[1] :] _UpperCamelCase : Dict = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: _UpperCamelCase : Optional[int] = TextStreamer(__a , skip_prompt=__a ) model.generate(__a , max_new_tokens=10 , do_sample=__a , streamer=__a ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer _UpperCamelCase : Tuple = cs.out[:-1] self.assertEqual(__a , __a ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[str]: # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them _UpperCamelCase : Dict = AutoTokenizer.from_pretrained("distilgpt2" ) _UpperCamelCase : Optional[int] = AutoModelForCausalLM.from_pretrained("distilgpt2" ).to(__a ) _UpperCamelCase : int = -1 _UpperCamelCase : Any = torch.ones((1, 5) , device=__a ).long() * model.config.bos_token_id with CaptureStdout() as cs: _UpperCamelCase : List[str] = TextStreamer(__a , skip_special_tokens=__a ) model.generate(__a , max_new_tokens=1 , do_sample=__a , streamer=__a ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token _UpperCamelCase : int = cs.out[:-1] # Remove the final "\n" _UpperCamelCase : int = tokenizer(__a , return_tensors="pt" ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: _UpperCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _UpperCamelCase : Union[str, Any] = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__a ) _UpperCamelCase : Optional[Any] = -1 _UpperCamelCase : Tuple = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__a ) _UpperCamelCase : Any = TextIteratorStreamer(__a , timeout=0.0_01 ) _UpperCamelCase : Optional[int] = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} _UpperCamelCase : List[Any] = Thread(target=model.generate , kwargs=__a ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(__a ): _UpperCamelCase : List[str] = "" for new_text in streamer: streamer_text += new_text
310
0
import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class lowercase__( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Any ) -> Union[str, Any]: debug_launcher(test_script.main ) def _lowercase ( self : List[Any] ) -> Tuple: debug_launcher(test_ops.main )
30
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase :int = {'configuration_vit_msn': ['VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMSNConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase :Any = [ 'VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMSNModel', 'ViTMSNForImageClassification', 'ViTMSNPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys _lowerCAmelCase :int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
263
0
from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class a_ ( _A ): '''simple docstring''' def __init__( self : Dict , lowercase__ : Callable , lowercase__ : Optional[Features] = None , lowercase__ : str = None , lowercase__ : bool = False , lowercase__ : bool = False , lowercase__ : Optional[dict] = None , lowercase__ : Optional[int] = None , **lowercase__ : str , ): '''simple docstring''' super().__init__( features=__SCREAMING_SNAKE_CASE , cache_dir=__SCREAMING_SNAKE_CASE , keep_in_memory=__SCREAMING_SNAKE_CASE , streaming=__SCREAMING_SNAKE_CASE , num_proc=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) lowerCAmelCase__ = Generator( cache_dir=__SCREAMING_SNAKE_CASE , features=__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , gen_kwargs=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) def __snake_case ( self : List[str]): '''simple docstring''' if self.streaming: lowerCAmelCase__ = self.builder.as_streaming_dataset(split='train') # Build regular (map-style) dataset else: lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = None self.builder.download_and_prepare( download_config=__SCREAMING_SNAKE_CASE , download_mode=__SCREAMING_SNAKE_CASE , verification_mode=__SCREAMING_SNAKE_CASE , base_path=__SCREAMING_SNAKE_CASE , num_proc=self.num_proc , ) lowerCAmelCase__ = self.builder.as_dataset( split='train' , verification_mode=__SCREAMING_SNAKE_CASE , in_memory=self.keep_in_memory) return dataset
363
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCAmelCase__ = { 'configuration_transfo_xl': ['TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TransfoXLConfig'], 'tokenization_transfo_xl': ['TransfoXLCorpus', 'TransfoXLTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ 'TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'AdaptiveEmbedding', 'TransfoXLForSequenceClassification', 'TransfoXLLMHeadModel', 'TransfoXLModel', 'TransfoXLPreTrainedModel', 'load_tf_weights_in_transfo_xl', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ 'TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFAdaptiveEmbedding', 'TFTransfoXLForSequenceClassification', 'TFTransfoXLLMHeadModel', 'TFTransfoXLMainLayer', 'TFTransfoXLModel', 'TFTransfoXLPreTrainedModel', ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
119
0
"""simple docstring""" from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
288
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCAmelCase__ : def __init__( self : Dict , _lowerCamelCase : int , _lowerCamelCase : Optional[int]=3 , _lowerCamelCase : List[str]=32 , _lowerCamelCase : Optional[int]=3 , _lowerCamelCase : Dict=10 , _lowerCamelCase : Tuple=[10, 20, 30, 40] , _lowerCamelCase : int=[1, 1, 2, 1] , _lowerCamelCase : int=True , _lowerCamelCase : Optional[int]=True , _lowerCamelCase : Optional[int]="relu" , _lowerCamelCase : List[Any]=3 , _lowerCamelCase : Dict=None , ): _snake_case = parent _snake_case = batch_size _snake_case = image_size _snake_case = num_channels _snake_case = embeddings_size _snake_case = hidden_sizes _snake_case = depths _snake_case = is_training _snake_case = use_labels _snake_case = hidden_act _snake_case = num_labels _snake_case = scope _snake_case = len(_lowerCamelCase ) def lowercase ( self : Optional[int] ): _snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case = None if self.use_labels: _snake_case = ids_tensor([self.batch_size] , self.num_labels ) _snake_case = self.get_config() return config, pixel_values, labels def lowercase ( self : Tuple ): return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowercase ( self : List[Any] , _lowerCamelCase : List[str] , _lowerCamelCase : str , _lowerCamelCase : List[Any] ): _snake_case = TFResNetModel(config=_lowerCamelCase ) _snake_case = model(_lowerCamelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowercase ( self : Dict , _lowerCamelCase : str , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Tuple ): _snake_case = self.num_labels _snake_case = TFResNetForImageClassification(_lowerCamelCase ) _snake_case = model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self : Tuple ): _snake_case = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case = config_and_inputs _snake_case = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class lowerCAmelCase__ ( A_ , A_ , unittest.TestCase ): __a = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () __a = ( {"""feature-extraction""": TFResNetModel, """image-classification""": TFResNetForImageClassification} if is_tf_available() else {} ) __a = False __a = False __a = False __a = False __a = False def lowercase ( self : List[Any] ): _snake_case = TFResNetModelTester(self ) _snake_case = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase ) def lowercase ( self : Tuple ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase ( self : List[Any] ): return @unittest.skip(reason='''ResNet does not use inputs_embeds''' ) def lowercase ( self : Any ): pass @unittest.skip(reason='''ResNet does not support input and output embeddings''' ) def lowercase ( self : List[str] ): pass def lowercase ( self : int ): _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(_lowerCamelCase ) _snake_case = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case = [*signature.parameters.keys()] _snake_case = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def lowercase ( self : List[str] ): _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def lowercase ( self : Union[str, Any] ): def check_hidden_states_output(_lowerCamelCase : int , _lowerCamelCase : List[Any] , _lowerCamelCase : str ): _snake_case = model_class(_lowerCamelCase ) _snake_case = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) _snake_case = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _snake_case = self.model_tester.num_stages self.assertEqual(len(_lowerCamelCase ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() _snake_case = ['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: _snake_case = layer_type _snake_case = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def lowercase ( self : Union[str, Any] ): _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase ) @slow def lowercase ( self : List[str] ): for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = TFResNetModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def _UpperCAmelCase ( ) -> Union[str, Any]: _snake_case = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class lowerCAmelCase__ ( unittest.TestCase ): @cached_property def lowercase ( self : Dict ): return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowercase ( self : List[Any] ): _snake_case = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(images=_lowerCamelCase , return_tensors='''tf''' ) # forward pass _snake_case = model(**_lowerCamelCase ) # verify the logits _snake_case = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) _snake_case = tf.constant([-1_1.1_0_6_9, -9.7_8_7_7, -8.3_7_7_7] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , _lowerCamelCase , atol=1e-4 ) )
288
1
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=__A ) class UpperCamelCase_ (__A ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization __magic_name__ = field(default='''text-classification''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) __magic_name__ = Features({'''text''': Value('''string''' )} ) __magic_name__ = Features({'''labels''': ClassLabel} ) __magic_name__ = '''text''' __magic_name__ = '''labels''' def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase_ : Optional[Any] ) -> Tuple: if self.label_column not in features: raise ValueError(f"""Column {self.label_column} is not present in features.""" ) if not isinstance(features[self.label_column] , lowerCAmelCase_ ): raise ValueError(f"""Column {self.label_column} is not a ClassLabel.""" ) UpperCAmelCase_ : Optional[int] = copy.deepcopy(self ) UpperCAmelCase_ : Any = self.label_schema.copy() UpperCAmelCase_ : Dict = features[self.label_column] UpperCAmelCase_ : Optional[Any] = label_schema return task_template @property def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict[str, str]: return { self.text_column: "text", self.label_column: "labels", }
364
"""simple docstring""" import math import sys import cva import numpy as np def snake_case ( A__ ,A__ ): # For applying gaussian function for each element in matrix. UpperCAmelCase_ : int = math.sqrt(A__ ) UpperCAmelCase_ : Tuple = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def snake_case ( A__ ,A__ ,A__ ,A__ ): UpperCAmelCase_ : int = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def snake_case ( A__ ,A__ ): # Creates a gaussian kernel of given dimension. UpperCAmelCase_ : List[Any] = np.zeros((kernel_size, kernel_size) ) for i in range(0 ,A__ ): for j in range(0 ,A__ ): UpperCAmelCase_ : List[Any] = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(A__ ,A__ ) def snake_case ( A__ ,A__ ,A__ ,A__ ,): UpperCAmelCase_ : Union[str, Any] = np.zeros(img.shape ) UpperCAmelCase_ : Tuple = get_gauss_kernel(A__ ,A__ ) UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = img.shape for i in range(kernel_size // 2 ,size_x - kernel_size // 2 ): for j in range(kernel_size // 2 ,size_y - kernel_size // 2 ): UpperCAmelCase_ : str = get_slice(A__ ,A__ ,A__ ,A__ ) UpperCAmelCase_ : int = img_s - img_s[kernel_size // 2, kernel_size // 2] UpperCAmelCase_ : Optional[Any] = vec_gaussian(A__ ,A__ ) UpperCAmelCase_ : int = np.multiply(A__ ,A__ ) UpperCAmelCase_ : List[Any] = np.multiply(A__ ,A__ ) UpperCAmelCase_ : str = np.sum(A__ ) / np.sum(A__ ) UpperCAmelCase_ : Tuple = val return imga def snake_case ( A__ ): UpperCAmelCase_ : Optional[int] = args[1] if args[1:] else "../image_data/lena.jpg" UpperCAmelCase_ : Tuple = float(args[2] ) if args[2:] else 1.0 UpperCAmelCase_ : Optional[int] = float(args[3] ) if args[3:] else 1.0 if args[4:]: UpperCAmelCase_ : Dict = int(args[4] ) UpperCAmelCase_ : List[str] = kernel_size + abs(kernel_size % 2 - 1 ) else: UpperCAmelCase_ : Dict = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = parse_args(sys.argv) lowerCamelCase_ = cva.imread(filename, 0) cva.imshow('''input image''', img) lowerCamelCase_ = img / 255 lowerCamelCase_ = out.astype('''float32''') lowerCamelCase_ = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) lowerCamelCase_ = out * 255 lowerCamelCase_ = np.uinta(out) cva.imshow('''output image''', out) cva.waitKey(0) cva.destroyAllWindows()
253
0
import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def A_ ( _UpperCAmelCase ): return x + 2 class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: Optional[int] = """x = 3""" SCREAMING_SNAKE_CASE_: int = {} SCREAMING_SNAKE_CASE_: Union[str, Any] = evaluate(A__ , {} , state=A__) assert result == 3 self.assertDictEqual(A__ , {"x": 3}) SCREAMING_SNAKE_CASE_: Any = """x = y""" SCREAMING_SNAKE_CASE_: int = {"""y""": 5} SCREAMING_SNAKE_CASE_: List[Any] = evaluate(A__ , {} , state=A__) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(A__ , {"x": 5, "y": 5}) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Any = """y = add_two(x)""" SCREAMING_SNAKE_CASE_: List[str] = {"""x""": 3} SCREAMING_SNAKE_CASE_: Optional[int] = evaluate(A__ , {"add_two": add_two} , state=A__) assert result == 5 self.assertDictEqual(A__ , {"x": 3, "y": 5}) # Won't work without the tool with CaptureStdout() as out: SCREAMING_SNAKE_CASE_: Union[str, Any] = evaluate(A__ , {} , state=A__) assert result is None assert "tried to execute add_two" in out.out def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_: Optional[Any] = """x = 3""" SCREAMING_SNAKE_CASE_: List[Any] = {} SCREAMING_SNAKE_CASE_: List[Any] = evaluate(A__ , {} , state=A__) assert result == 3 self.assertDictEqual(A__ , {"x": 3}) def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_: List[str] = """test_dict = {'x': x, 'y': add_two(x)}""" SCREAMING_SNAKE_CASE_: Dict = {"""x""": 3} SCREAMING_SNAKE_CASE_: List[Any] = evaluate(A__ , {"add_two": add_two} , state=A__) self.assertDictEqual(A__ , {"x": 3, "y": 5}) self.assertDictEqual(A__ , {"x": 3, "test_dict": {"x": 3, "y": 5}}) def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: Dict = """x = 3\ny = 5""" SCREAMING_SNAKE_CASE_: Optional[int] = {} SCREAMING_SNAKE_CASE_: Tuple = evaluate(A__ , {} , state=A__) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(A__ , {"x": 3, "y": 5}) def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_: Any = """text = f'This is x: {x}.'""" SCREAMING_SNAKE_CASE_: Optional[Any] = {"""x""": 3} SCREAMING_SNAKE_CASE_: int = evaluate(A__ , {} , state=A__) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(A__ , {"x": 3, "text": "This is x: 3."}) def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_: Optional[Any] = """if x <= 3:\n y = 2\nelse:\n y = 5""" SCREAMING_SNAKE_CASE_: str = {"""x""": 3} SCREAMING_SNAKE_CASE_: Optional[Any] = evaluate(A__ , {} , state=A__) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(A__ , {"x": 3, "y": 2}) SCREAMING_SNAKE_CASE_: Union[str, Any] = {"""x""": 8} SCREAMING_SNAKE_CASE_: int = evaluate(A__ , {} , state=A__) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(A__ , {"x": 8, "y": 5}) def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Optional[Any] = """test_list = [x, add_two(x)]""" SCREAMING_SNAKE_CASE_: List[Any] = {"""x""": 3} SCREAMING_SNAKE_CASE_: Optional[Any] = evaluate(A__ , {"add_two": add_two} , state=A__) self.assertListEqual(A__ , [3, 5]) self.assertDictEqual(A__ , {"x": 3, "test_list": [3, 5]}) def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: Tuple = """y = x""" SCREAMING_SNAKE_CASE_: List[Any] = {"""x""": 3} SCREAMING_SNAKE_CASE_: List[Any] = evaluate(A__ , {} , state=A__) assert result == 3 self.assertDictEqual(A__ , {"x": 3, "y": 3}) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: List[Any] = """test_list = [x, add_two(x)]\ntest_list[1]""" SCREAMING_SNAKE_CASE_: str = {"""x""": 3} SCREAMING_SNAKE_CASE_: Union[str, Any] = evaluate(A__ , {"add_two": add_two} , state=A__) assert result == 5 self.assertDictEqual(A__ , {"x": 3, "test_list": [3, 5]}) SCREAMING_SNAKE_CASE_: Tuple = """test_dict = {'x': x, 'y': add_two(x)}\ntest_dict['y']""" SCREAMING_SNAKE_CASE_: Tuple = {"""x""": 3} SCREAMING_SNAKE_CASE_: Dict = evaluate(A__ , {"add_two": add_two} , state=A__) assert result == 5 self.assertDictEqual(A__ , {"x": 3, "test_dict": {"x": 3, "y": 5}}) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: Optional[Any] = """x = 0\nfor i in range(3):\n x = i""" SCREAMING_SNAKE_CASE_: List[str] = {} SCREAMING_SNAKE_CASE_: List[str] = evaluate(A__ , {"range": range} , state=A__) assert result == 2 self.assertDictEqual(A__ , {"x": 2, "i": 2})
13
import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def UpperCamelCase (lowercase_: Optional[int] , lowercase_: Union[str, Any] , lowercase_: Optional[Any] ) -> Tuple: # Initialise PyTorch model A__ : str = AlbertConfig.from_json_file(lowercase_ ) print(f"""Building PyTorch model from configuration: {config}""" ) A__ : List[Any] = AlbertForPreTraining(lowercase_ ) # Load weights from tf checkpoint load_tf_weights_in_albert(lowercase_ , lowercase_ , lowercase_ ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , lowercase_ ) if __name__ == "__main__": A_ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--albert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained ALBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) A_ : int = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
192
0
"""simple docstring""" class A__ : def __init__( self , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Any = set_counts __lowerCAmelCase : List[Any] = max(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : str = len(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[int] = [1] * num_sets __lowerCAmelCase : Any = list(range(_SCREAMING_SNAKE_CASE ) ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : str = self.get_parent(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Tuple = self.get_parent(_SCREAMING_SNAKE_CASE ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] __lowerCAmelCase : List[str] = 0 __lowerCAmelCase : Dict = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 __lowerCAmelCase : Any = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] __lowerCAmelCase : int = 0 __lowerCAmelCase : Union[str, Any] = src_parent __lowerCAmelCase : List[Any] = self.set_counts[src_parent] __lowerCAmelCase : int = max(self.max_set , _SCREAMING_SNAKE_CASE ) return True def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE ): if self.parents[disj_set] == disj_set: return disj_set __lowerCAmelCase : Optional[Any] = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
353
"""simple docstring""" import warnings from functools import wraps from typing import Callable def __lowerCAmelCase (_UpperCamelCase ): @wraps(_UpperCamelCase ) def _inner_fn(*_UpperCamelCase , **_UpperCamelCase ): warnings.warn( (F"'{fn.__name__}' is experimental and might be subject to breaking changes in the future.") , _UpperCamelCase , ) return fn(*_UpperCamelCase , **_UpperCamelCase ) return _inner_fn
182
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __snake_case ( lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : Union[str, Any] = KandinskyInpaintPipeline __lowerCamelCase : List[Any] = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""] __lowerCamelCase : Tuple = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image""", ] __lowerCamelCase : List[str] = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] __lowerCamelCase : Dict = False @property def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' return 32 @property def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' return 32 @property def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' return self.time_input_dim @property def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' return self.time_input_dim * 4 @property def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' return 100 @property def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : Optional[int] =XLMRobertaTokenizerFast.from_pretrained('''YiYiXu/tiny-random-mclip-base''' ) return tokenizer @property def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase : Tuple =MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) UpperCAmelCase : Dict =MultilingualCLIP(snake_case__ ) UpperCAmelCase : int =text_encoder.eval() return text_encoder @property def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase : Union[str, Any] ={ '''in_channels''': 9, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''text_image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''text_image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } UpperCAmelCase : List[str] =UNetaDConditionModel(**snake_case__ ) return model @property def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase : int =VQModel(**self.dummy_movq_kwargs ) return model def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' UpperCAmelCase : List[Any] =self.dummy_text_encoder UpperCAmelCase : Optional[Any] =self.dummy_tokenizer UpperCAmelCase : int =self.dummy_unet UpperCAmelCase : List[str] =self.dummy_movq UpperCAmelCase : int =DDIMScheduler( num_train_timesteps=1000 , beta_schedule='''linear''' , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , steps_offset=1 , prediction_type='''epsilon''' , thresholding=snake_case__ , ) UpperCAmelCase : Dict ={ '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def UpperCAmelCase__ ( self , snake_case__ , snake_case__=0 ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : Dict =floats_tensor((1, self.cross_attention_dim) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) UpperCAmelCase : int =floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(snake_case__ ) # create init_image UpperCAmelCase : int =floats_tensor((1, 3, 64, 64) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) UpperCAmelCase : Any =image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase : str =Image.fromarray(np.uinta(snake_case__ ) ).convert('''RGB''' ).resize((256, 256) ) # create mask UpperCAmelCase : Any =np.ones((64, 64) , dtype=np.floataa ) UpperCAmelCase : Tuple =0 if str(snake_case__ ).startswith('''mps''' ): UpperCAmelCase : Any =torch.manual_seed(snake_case__ ) else: UpperCAmelCase : Optional[Any] =torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) UpperCAmelCase : int ={ '''prompt''': '''horse''', '''image''': init_image, '''mask_image''': mask, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 2, '''guidance_scale''': 4.0, '''output_type''': '''np''', } return inputs def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase : List[str] ='''cpu''' UpperCAmelCase : Dict =self.get_dummy_components() UpperCAmelCase : Any =self.pipeline_class(**snake_case__ ) UpperCAmelCase : Optional[Any] =pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) UpperCAmelCase : List[Any] =pipe(**self.get_dummy_inputs(snake_case__ ) ) UpperCAmelCase : Dict =output.images UpperCAmelCase : Optional[Any] =pipe( **self.get_dummy_inputs(snake_case__ ) , return_dict=snake_case__ , )[0] UpperCAmelCase : str =image[0, -3:, -3:, -1] UpperCAmelCase : Tuple =image_from_tuple[0, -3:, -3:, -1] print(f'''image.shape {image.shape}''' ) assert image.shape == (1, 64, 64, 3) UpperCAmelCase : Optional[Any] =np.array( [0.832_6919, 0.7379_0467, 0.2091_8581, 0.930_9612, 0.551_1791, 0.4371_3328, 0.551_3321, 0.4992_2934, 0.5949_7786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : str =load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy''' ) UpperCAmelCase : Any =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) UpperCAmelCase : Any =np.ones((768, 768) , dtype=np.floataa ) UpperCAmelCase : List[str] =0 UpperCAmelCase : Tuple ='''a hat''' UpperCAmelCase : List[Any] =KandinskyPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(snake_case__ ) UpperCAmelCase : Optional[Any] =KandinskyInpaintPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-inpaint''' , torch_dtype=torch.floataa ) UpperCAmelCase : Union[str, Any] =pipeline.to(snake_case__ ) pipeline.set_progress_bar_config(disable=snake_case__ ) UpperCAmelCase : Any =torch.Generator(device='''cpu''' ).manual_seed(0 ) UpperCAmelCase , UpperCAmelCase : Union[str, Any] =pipe_prior( snake_case__ , generator=snake_case__ , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() UpperCAmelCase : Union[str, Any] =pipeline( snake_case__ , image=snake_case__ , mask_image=snake_case__ , image_embeds=snake_case__ , negative_image_embeds=snake_case__ , generator=snake_case__ , num_inference_steps=100 , height=768 , width=768 , output_type='''np''' , ) UpperCAmelCase : Dict =output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(snake_case__ , snake_case__ )
348
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def lowerCAmelCase_ ( __lowerCAmelCase )-> Optional[Any]: '''simple docstring''' def is_in_circle(__lowerCAmelCase , __lowerCAmelCase ) -> bool: UpperCAmelCase : List[Any] =sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle UpperCAmelCase : List[Any] =mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(__lowerCAmelCase ) ) # The ratio of the area for circle to square is pi/4. UpperCAmelCase : Dict =proportion * 4 print(f'''The estimated value of pi is {pi_estimate}''' ) print(f'''The numpy value of pi is {pi}''' ) print(f'''The total error is {abs(pi - pi_estimate )}''' ) def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 0.0 , __lowerCAmelCase = 1.0 , )-> float: '''simple docstring''' return mean( function_to_integrate(uniform(__lowerCAmelCase , __lowerCAmelCase ) ) for _ in range(__lowerCAmelCase ) ) * (max_value - min_value) def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase = 0.0 , __lowerCAmelCase = 1.0 )-> None: '''simple docstring''' def identity_function(__lowerCAmelCase ) -> float: return x UpperCAmelCase : List[Any] =area_under_curve_estimator( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) UpperCAmelCase : Dict =(max_value * max_value - min_value * min_value) / 2 print('''******************''' ) print(f'''Estimating area under y=x where x varies from {min_value} to {max_value}''' ) print(f'''Estimated value is {estimated_value}''' ) print(f'''Expected value is {expected_value}''' ) print(f'''Total error is {abs(estimated_value - expected_value )}''' ) print('''******************''' ) def lowerCAmelCase_ ( __lowerCAmelCase )-> None: '''simple docstring''' def function_to_integrate(__lowerCAmelCase ) -> float: return sqrt(4.0 - x * x ) UpperCAmelCase : Dict =area_under_curve_estimator( __lowerCAmelCase , __lowerCAmelCase , 0.0 , 2.0 ) print('''******************''' ) print('''Estimating pi using area_under_curve_estimator''' ) print(f'''Estimated value is {estimated_value}''' ) print(f'''Expected value is {pi}''' ) print(f'''Total error is {abs(estimated_value - pi )}''' ) print('''******************''' ) if __name__ == "__main__": import doctest doctest.testmod()
348
1
import os import pytest from transformers.dynamic_module_utils import get_imports __UpperCamelCase : Optional[Any] = ''' import os ''' __UpperCamelCase : List[str] = ''' def foo(): import os return False ''' __UpperCamelCase : List[Any] = ''' def foo(): def bar(): if True: import os return False return bar() ''' __UpperCamelCase : Optional[int] = ''' import os try: import bar except ImportError: raise ValueError() ''' __UpperCamelCase : Dict = ''' import os def foo(): try: import bar except ImportError: raise ValueError() ''' __UpperCamelCase : Optional[int] = ''' import os try: import bar except (ImportError, AttributeError): raise ValueError() ''' __UpperCamelCase : List[Any] = ''' import os try: import bar except ImportError as e: raise ValueError() ''' __UpperCamelCase : Tuple = ''' import os try: import bar except: raise ValueError() ''' __UpperCamelCase : str = ''' import os try: import bar import baz except ImportError: raise ValueError() ''' __UpperCamelCase : List[str] = ''' import os try: import bar import baz except ImportError: x = 1 raise ValueError() ''' __UpperCamelCase : List[Any] = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize("""case""" , _lowercase ) def __A ( __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]: a = os.path.join(_lowercase , """test_file.py""" ) with open(_lowercase , """w""" ) as _tmp_file: _tmp_file.write(_lowercase ) a = get_imports(_lowercase ) assert parsed_imports == ["os"]
363
def __A ( __lowerCamelCase ) -> int: if not numbers: return 0 if not isinstance(__lowerCamelCase , (list, tuple) ) or not all( isinstance(__lowerCamelCase , __lowerCamelCase ) for number in numbers ): raise ValueError("""numbers must be an iterable of integers""" ) a = a = a = numbers[0] for i in range(1 , len(__lowerCamelCase ) ): # update the maximum and minimum subarray products a = numbers[i] if number < 0: a , a = min_till_now, max_till_now a = max(__lowerCamelCase , max_till_now * number ) a = min(__lowerCamelCase , min_till_now * number ) # update the maximum product found till now a = max(__lowerCamelCase , __lowerCamelCase ) return max_prod
347
0
'''simple docstring''' def snake_case_ ( __SCREAMING_SNAKE_CASE : int = 10 , __SCREAMING_SNAKE_CASE : int = 22 ): """simple docstring""" lowercase_ : Tuple = range(1 , __SCREAMING_SNAKE_CASE ) lowercase_ : Tuple = range(1 , __SCREAMING_SNAKE_CASE ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(f"""{solution(1_0, 2_2) = }""")
93
"""simple docstring""" from __future__ import annotations def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = get_failure_array(lowercase ) # 2) Step through text searching for pattern _UpperCAmelCase , _UpperCAmelCase = 0, 0 # index into text, pattern while i < len(lowercase ): if pattern[j] == text[i]: if j == (len(lowercase ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: _UpperCAmelCase = failure[j - 1] continue i += 1 return False def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = [0] _UpperCAmelCase = 0 _UpperCAmelCase = 1 while j < len(lowercase ): if pattern[i] == pattern[j]: i += 1 elif i > 0: _UpperCAmelCase = failure[i - 1] continue j += 1 failure.append(lowercase ) return failure if __name__ == "__main__": # Test 1) UpperCAmelCase__ = """abc1abc12""" UpperCAmelCase__ = """alskfjaldsabc1abc1abc12k23adsfabcabc""" UpperCAmelCase__ = """alskfjaldsk23adsfabcabc""" assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) UpperCAmelCase__ = """ABABX""" UpperCAmelCase__ = """ABABZABABYABABX""" assert kmp(pattern, text) # Test 3) UpperCAmelCase__ = """AAAB""" UpperCAmelCase__ = """ABAAAAAB""" assert kmp(pattern, text) # Test 4) UpperCAmelCase__ = """abcdabcy""" UpperCAmelCase__ = """abcxabcdabxabcdabcdabcy""" assert kmp(pattern, text) # Test 5) UpperCAmelCase__ = """aabaabaaa""" assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
289
0
'''simple docstring''' import numpy as np class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = (0, 0) UpperCAmelCase__ = None UpperCAmelCase__ = 0 UpperCAmelCase__ = 0 UpperCAmelCase__ = 0 def __eq__( self : Dict , _UpperCAmelCase : Optional[Any] ): """simple docstring""" return self.position == cell.position def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" print(self.position ) class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Tuple , _UpperCAmelCase : List[Any]=(5, 5) ): """simple docstring""" UpperCAmelCase__ = np.zeros(_UpperCAmelCase ) UpperCAmelCase__ = world_size[0] UpperCAmelCase__ = world_size[1] def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" print(self.w ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : Dict ): """simple docstring""" UpperCAmelCase__ = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] UpperCAmelCase__ = cell.position[0] UpperCAmelCase__ = cell.position[1] UpperCAmelCase__ = [] for n in neughbour_cord: UpperCAmelCase__ = current_x + n[0] UpperCAmelCase__ = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: UpperCAmelCase__ = Cell() UpperCAmelCase__ = (x, y) UpperCAmelCase__ = cell neighbours.append(_UpperCAmelCase ) return neighbours def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[int] ): '''simple docstring''' UpperCAmelCase__ = [] UpperCAmelCase__ = [] _open.append(SCREAMING_SNAKE_CASE__ ) while _open: UpperCAmelCase__ = np.argmin([n.f for n in _open] ) UpperCAmelCase__ = _open[min_f] _closed.append(_open.pop(SCREAMING_SNAKE_CASE__ ) ) if current == goal: break for n in world.get_neigbours(SCREAMING_SNAKE_CASE__ ): for c in _closed: if c == n: continue UpperCAmelCase__ = current.g + 1 UpperCAmelCase__ , UpperCAmelCase__ = n.position UpperCAmelCase__ , UpperCAmelCase__ = goal.position UpperCAmelCase__ = (ya - ya) ** 2 + (xa - xa) ** 2 UpperCAmelCase__ = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = [] while current.parent is not None: path.append(current.position ) UpperCAmelCase__ = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": UpperCAmelCase_ = Gridworld() # Start position and goal UpperCAmelCase_ = Cell() UpperCAmelCase_ = (0, 0) UpperCAmelCase_ = Cell() UpperCAmelCase_ = (4, 4) print(f"path from {start.position} to {goal.position}") UpperCAmelCase_ = astar(world, start, goal) # Just for visual reasons. for i in s: UpperCAmelCase_ = 1 print(world.w)
367
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'hustvl/yolos-small': 'https://huggingface.co/hustvl/yolos-small/resolve/main/config.json', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase_ : List[str] = """yolos""" def __init__( self : str , _UpperCAmelCase : int=7_68 , _UpperCAmelCase : Dict=12 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : Tuple=30_72 , _UpperCAmelCase : int="gelu" , _UpperCAmelCase : Optional[Any]=0.0 , _UpperCAmelCase : List[str]=0.0 , _UpperCAmelCase : Dict=0.02 , _UpperCAmelCase : Optional[Any]=1E-12 , _UpperCAmelCase : Tuple=[5_12, 8_64] , _UpperCAmelCase : str=16 , _UpperCAmelCase : Optional[int]=3 , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : int=1_00 , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Dict=False , _UpperCAmelCase : Dict=1 , _UpperCAmelCase : Union[str, Any]=5 , _UpperCAmelCase : Dict=2 , _UpperCAmelCase : int=5 , _UpperCAmelCase : str=2 , _UpperCAmelCase : Tuple=0.1 , **_UpperCAmelCase : List[Any] , ): """simple docstring""" super().__init__(**_UpperCAmelCase ) UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_act UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = initializer_range UpperCAmelCase__ = layer_norm_eps UpperCAmelCase__ = image_size UpperCAmelCase__ = patch_size UpperCAmelCase__ = num_channels UpperCAmelCase__ = qkv_bias UpperCAmelCase__ = num_detection_tokens UpperCAmelCase__ = use_mid_position_embeddings UpperCAmelCase__ = auxiliary_loss # Hungarian matcher UpperCAmelCase__ = class_cost UpperCAmelCase__ = bbox_cost UpperCAmelCase__ = giou_cost # Loss coefficients UpperCAmelCase__ = bbox_loss_coefficient UpperCAmelCase__ = giou_loss_coefficient UpperCAmelCase__ = eos_coefficient class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase_ : List[str] = version.parse("""1.11""" ) @property def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" return 1E-4 @property def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" return 12
61
0
'''simple docstring''' from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING _lowerCamelCase : Any = logging.get_logger(__name__) @add_end_docstrings(_a ) class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" def __init__( self : Any , *UpperCamelCase__ : Dict , **UpperCamelCase__ : Union[str, Any] ): """simple docstring""" super().__init__(*UpperCamelCase__ , **UpperCamelCase__ ) requires_backends(self , 'decord' ) self.check_model_type(UpperCamelCase__ ) def A ( self : Optional[int] , UpperCamelCase__ : Optional[int]=None , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : Optional[Any]=None ): """simple docstring""" UpperCamelCase = {} if frame_sampling_rate is not None: UpperCamelCase = frame_sampling_rate if num_frames is not None: UpperCamelCase = num_frames UpperCamelCase = {} if top_k is not None: UpperCamelCase = top_k return preprocess_params, {}, postprocess_params def __call__( self : List[str] , UpperCamelCase__ : Union[str, List[str]] , **UpperCamelCase__ : Dict ): """simple docstring""" return super().__call__(UpperCamelCase__ , **UpperCamelCase__ ) def A ( self : Tuple , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Tuple=None , UpperCamelCase__ : Tuple=1 ): """simple docstring""" if num_frames is None: UpperCamelCase = self.model.config.num_frames if video.startswith('http://' ) or video.startswith('https://' ): UpperCamelCase = BytesIO(requests.get(UpperCamelCase__ ).content ) UpperCamelCase = VideoReader(UpperCamelCase__ ) videoreader.seek(0 ) UpperCamelCase = 0 UpperCamelCase = num_frames * frame_sampling_rate - 1 UpperCamelCase = np.linspace(UpperCamelCase__ , UpperCamelCase__ , num=UpperCamelCase__ , dtype=np.intaa ) UpperCamelCase = videoreader.get_batch(UpperCamelCase__ ).asnumpy() UpperCamelCase = list(UpperCamelCase__ ) UpperCamelCase = self.image_processor(UpperCamelCase__ , return_tensors=self.framework ) return model_inputs def A ( self : Union[str, Any] , UpperCamelCase__ : List[str] ): """simple docstring""" UpperCamelCase = self.model(**UpperCamelCase__ ) return model_outputs def A ( self : int , UpperCamelCase__ : str , UpperCamelCase__ : List[Any]=5 ): """simple docstring""" if top_k > self.model.config.num_labels: UpperCamelCase = self.model.config.num_labels if self.framework == "pt": UpperCamelCase = model_outputs.logits.softmax(-1 )[0] UpperCamelCase , UpperCamelCase = probs.topk(UpperCamelCase__ ) else: raise ValueError(f"""Unsupported framework: {self.framework}""" ) UpperCamelCase = scores.tolist() UpperCamelCase = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(UpperCamelCase__ , UpperCamelCase__ )]
28
'''simple docstring''' import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Any , UpperCamelCase__ : Dict , UpperCamelCase__ : Any=2 , UpperCamelCase__ : Union[str, Any]=8 , UpperCamelCase__ : List[Any]=True , UpperCamelCase__ : Any=True , UpperCamelCase__ : str=True , UpperCamelCase__ : Dict=True , UpperCamelCase__ : List[Any]=9_9 , UpperCamelCase__ : List[Any]=1_6 , UpperCamelCase__ : List[str]=5 , UpperCamelCase__ : Dict=2 , UpperCamelCase__ : Optional[int]=3_6 , UpperCamelCase__ : str="gelu" , UpperCamelCase__ : Dict=0.0 , UpperCamelCase__ : Dict=0.0 , UpperCamelCase__ : Optional[int]=5_1_2 , UpperCamelCase__ : Dict=1_6 , UpperCamelCase__ : List[str]=2 , UpperCamelCase__ : Any=0.0_2 , UpperCamelCase__ : str=3 , UpperCamelCase__ : Tuple=4 , UpperCamelCase__ : Union[str, Any]=None , ): """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = seq_length UpperCamelCase = is_training UpperCamelCase = use_input_mask UpperCamelCase = use_token_type_ids UpperCamelCase = use_labels UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = num_labels UpperCamelCase = num_choices UpperCamelCase = scope def A ( self : int ): """simple docstring""" UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase = None if self.use_input_mask: UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase = None if self.use_token_type_ids: UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A ( self : Optional[int] ): """simple docstring""" return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , ) def A ( self : Any ): """simple docstring""" UpperCamelCase = self.get_config() UpperCamelCase = 3_0_0 return config def A ( self : Tuple ): """simple docstring""" ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) = self.prepare_config_and_inputs() UpperCamelCase = True UpperCamelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def A ( self : Tuple , UpperCamelCase__ : Tuple , UpperCamelCase__ : int , UpperCamelCase__ : Any , UpperCamelCase__ : Dict , UpperCamelCase__ : int , UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict ): """simple docstring""" UpperCamelCase = MraModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCamelCase = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ ) UpperCamelCase = model(UpperCamelCase__ , token_type_ids=UpperCamelCase__ ) UpperCamelCase = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : List[str] , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] , UpperCamelCase__ : str , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[Any] , ): """simple docstring""" UpperCamelCase = True UpperCamelCase = MraModel(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCamelCase = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , ) UpperCamelCase = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , ) UpperCamelCase = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : int , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[str] ): """simple docstring""" UpperCamelCase = MraForMaskedLM(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCamelCase = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A ( self : Any , UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : List[str] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] ): """simple docstring""" UpperCamelCase = MraForQuestionAnswering(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCamelCase = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , start_positions=UpperCamelCase__ , end_positions=UpperCamelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A ( self : Optional[int] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : int , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple ): """simple docstring""" UpperCamelCase = self.num_labels UpperCamelCase = MraForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCamelCase = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : Any , UpperCamelCase__ : Any , UpperCamelCase__ : str , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : Optional[Any] ): """simple docstring""" UpperCamelCase = self.num_labels UpperCamelCase = MraForTokenClassification(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCamelCase = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A ( self : int , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Dict , UpperCamelCase__ : str , UpperCamelCase__ : Dict ): """simple docstring""" UpperCamelCase = self.num_choices UpperCamelCase = MraForMultipleChoice(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCamelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A ( self : int ): """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) = config_and_inputs UpperCamelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( _a , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = () def A ( self : str ): """simple docstring""" UpperCamelCase = MraModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=3_7 ) def A ( self : str ): """simple docstring""" self.config_tester.run_common_tests() def A ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def A ( self : str ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCamelCase = type self.model_tester.create_and_check_model(*UpperCamelCase__ ) def A ( self : Optional[int] ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase__ ) def A ( self : List[Any] ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCamelCase__ ) def A ( self : Tuple ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCamelCase__ ) def A ( self : Any ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCamelCase__ ) def A ( self : Any ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCamelCase__ ) @slow def A ( self : List[Any] ): """simple docstring""" for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = MraModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) @unittest.skip(reason='MRA does not output attentions' ) def A ( self : List[str] ): """simple docstring""" return @require_torch class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @slow def A ( self : Optional[int] ): """simple docstring""" UpperCamelCase = MraModel.from_pretrained('uw-madison/mra-base-512-4' ) UpperCamelCase = torch.arange(2_5_6 ).unsqueeze(0 ) with torch.no_grad(): UpperCamelCase = model(UpperCamelCase__ )[0] UpperCamelCase = torch.Size((1, 2_5_6, 7_6_8) ) self.assertEqual(output.shape , UpperCamelCase__ ) UpperCamelCase = torch.tensor( [[[-0.0_1_4_0, 0.0_8_3_0, -0.0_3_8_1], [0.1_5_4_6, 0.1_4_0_2, 0.0_2_2_0], [0.1_1_6_2, 0.0_8_5_1, 0.0_1_6_5]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCamelCase__ , atol=1E-4 ) ) @slow def A ( self : List[Any] ): """simple docstring""" UpperCamelCase = MraForMaskedLM.from_pretrained('uw-madison/mra-base-512-4' ) UpperCamelCase = torch.arange(2_5_6 ).unsqueeze(0 ) with torch.no_grad(): UpperCamelCase = model(UpperCamelCase__ )[0] UpperCamelCase = 5_0_2_6_5 UpperCamelCase = torch.Size((1, 2_5_6, vocab_size) ) self.assertEqual(output.shape , UpperCamelCase__ ) UpperCamelCase = torch.tensor( [[[9.2_5_9_5, -3.6_0_3_8, 1_1.8_8_1_9], [9.3_8_6_9, -3.2_6_9_3, 1_1.0_9_5_6], [1_1.8_5_2_4, -3.4_9_3_8, 1_3.1_2_1_0]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCamelCase__ , atol=1E-4 ) ) @slow def A ( self : List[Any] ): """simple docstring""" UpperCamelCase = MraForMaskedLM.from_pretrained('uw-madison/mra-base-4096-8-d3' ) UpperCamelCase = torch.arange(4_0_9_6 ).unsqueeze(0 ) with torch.no_grad(): UpperCamelCase = model(UpperCamelCase__ )[0] UpperCamelCase = 5_0_2_6_5 UpperCamelCase = torch.Size((1, 4_0_9_6, vocab_size) ) self.assertEqual(output.shape , UpperCamelCase__ ) UpperCamelCase = torch.tensor( [[[5.4_7_8_9, -2.3_5_6_4, 7.5_0_6_4], [7.9_0_6_7, -1.3_3_6_9, 9.9_6_6_8], [9.0_7_1_2, -1.8_1_0_6, 7.0_3_8_0]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCamelCase__ , atol=1E-4 ) )
28
1
'''simple docstring''' import re from filelock import FileLock try: import nltk _lowerCAmelCase = True except (ImportError, ModuleNotFoundError): _lowerCAmelCase = False if NLTK_AVAILABLE: with FileLock('''.lock''') as lock: nltk.download('''punkt''', quiet=True) def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" re.sub("""<n>""" , """""" , UpperCamelCase ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(UpperCamelCase ) )
184
'''simple docstring''' import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): '''simple docstring''' __lowercase : Optional[Any] = VQModel __lowercase : Tuple = '''sample''' @property def UpperCAmelCase_ ( self ,__UpperCAmelCase=(32, 32) ) -> List[Any]: lowerCAmelCase__ : Dict = 4 lowerCAmelCase__ : List[str] = 3 lowerCAmelCase__ : Dict = floats_tensor((batch_size, num_channels) + sizes ).to(__UpperCAmelCase ) return {"sample": image} @property def UpperCAmelCase_ ( self ) -> List[Any]: return (3, 32, 32) @property def UpperCAmelCase_ ( self ) -> Optional[Any]: return (3, 32, 32) def UpperCAmelCase_ ( self ) -> List[Any]: lowerCAmelCase__ : Dict = { """block_out_channels""": [32, 64], """in_channels""": 3, """out_channels""": 3, """down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""], """up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""], """latent_channels""": 3, } lowerCAmelCase__ : Any = self.dummy_input return init_dict, inputs_dict def UpperCAmelCase_ ( self ) -> Union[str, Any]: pass def UpperCAmelCase_ ( self ) -> Optional[int]: pass def UpperCAmelCase_ ( self ) -> Tuple: lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = VQModel.from_pretrained("""fusing/vqgan-dummy""" ,output_loading_info=__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertEqual(len(loading_info["""missing_keys"""] ) ,0 ) model.to(__UpperCAmelCase ) lowerCAmelCase__ : List[Any] = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def UpperCAmelCase_ ( self ) -> List[str]: lowerCAmelCase__ : Tuple = VQModel.from_pretrained("""fusing/vqgan-dummy""" ) model.to(__UpperCAmelCase ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) lowerCAmelCase__ : List[str] = torch.randn(1 ,model.config.in_channels ,model.config.sample_size ,model.config.sample_size ) lowerCAmelCase__ : Optional[Any] = image.to(__UpperCAmelCase ) with torch.no_grad(): lowerCAmelCase__ : Optional[Any] = model(__UpperCAmelCase ).sample lowerCAmelCase__ : Tuple = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off lowerCAmelCase__ : Tuple = torch.tensor([-0.0_1_5_3, -0.4_0_4_4, -0.1_8_8_0, -0.5_1_6_1, -0.2_4_1_8, -0.4_0_7_2, -0.1_6_1_2, -0.0_6_3_3, -0.0_1_4_3] ) # fmt: on self.assertTrue(torch.allclose(__UpperCAmelCase ,__UpperCAmelCase ,atol=1E-3 ) )
184
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig a = { 'google/tapas-base-finetuned-sqa': ( 'https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json' ), 'google/tapas-base-finetuned-wtq': ( 'https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json' ), 'google/tapas-base-finetuned-wikisql-supervised': ( 'https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json' ), 'google/tapas-base-finetuned-tabfact': ( 'https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json' ), } class SCREAMING_SNAKE_CASE__ ( _lowerCamelCase ): _a = 'tapas' def __init__( self : str , lowerCAmelCase : str=3_0522 , lowerCAmelCase : int=768 , lowerCAmelCase : Union[str, Any]=12 , lowerCAmelCase : List[str]=12 , lowerCAmelCase : Union[str, Any]=3072 , lowerCAmelCase : str="gelu" , lowerCAmelCase : Optional[int]=0.1 , lowerCAmelCase : str=0.1 , lowerCAmelCase : Union[str, Any]=1024 , lowerCAmelCase : Tuple=[3, 256, 256, 2, 256, 256, 10] , lowerCAmelCase : Any=0.02 , lowerCAmelCase : List[str]=1e-12 , lowerCAmelCase : Tuple=0 , lowerCAmelCase : str=10.0 , lowerCAmelCase : int=0 , lowerCAmelCase : Tuple=1.0 , lowerCAmelCase : Tuple=None , lowerCAmelCase : Any=1.0 , lowerCAmelCase : int=False , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : int=1.0 , lowerCAmelCase : List[Any]=1.0 , lowerCAmelCase : Dict=False , lowerCAmelCase : List[str]=False , lowerCAmelCase : List[Any]="ratio" , lowerCAmelCase : Any=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Tuple=64 , lowerCAmelCase : Union[str, Any]=32 , lowerCAmelCase : Union[str, Any]=False , lowerCAmelCase : List[str]=True , lowerCAmelCase : str=False , lowerCAmelCase : str=False , lowerCAmelCase : Optional[int]=True , lowerCAmelCase : int=False , lowerCAmelCase : str=None , lowerCAmelCase : str=None , **lowerCAmelCase : List[Any] , ): super().__init__(pad_token_id=lowerCAmelCase , **lowerCAmelCase ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = hidden_act lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_sizes lowerCAmelCase = initializer_range lowerCAmelCase = layer_norm_eps # Fine-tuning task hyperparameters lowerCAmelCase = positive_label_weight lowerCAmelCase = num_aggregation_labels lowerCAmelCase = aggregation_loss_weight lowerCAmelCase = use_answer_as_supervision lowerCAmelCase = answer_loss_importance lowerCAmelCase = use_normalized_answer_loss lowerCAmelCase = huber_loss_delta lowerCAmelCase = temperature lowerCAmelCase = aggregation_temperature lowerCAmelCase = use_gumbel_for_cells lowerCAmelCase = use_gumbel_for_aggregation lowerCAmelCase = average_approximation_function lowerCAmelCase = cell_selection_preference lowerCAmelCase = answer_loss_cutoff lowerCAmelCase = max_num_rows lowerCAmelCase = max_num_columns lowerCAmelCase = average_logits_per_cell lowerCAmelCase = select_one_column lowerCAmelCase = allow_empty_column_selection lowerCAmelCase = init_cell_selection_weights_to_zero lowerCAmelCase = reset_position_index_per_cell lowerCAmelCase = disable_per_token_loss # Aggregation hyperparameters lowerCAmelCase = aggregation_labels lowerCAmelCase = no_aggregation_label_index if isinstance(self.aggregation_labels , lowerCAmelCase ): lowerCAmelCase = {int(lowerCAmelCase ): v for k, v in aggregation_labels.items()}
155
"""simple docstring""" import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class a ( _lowerCamelCase ): """simple docstring""" def __init__( self: Optional[int] , *UpperCamelCase: Optional[Any] , UpperCamelCase: Tuple=None , UpperCamelCase: Tuple=None , **UpperCamelCase: Dict ): """simple docstring""" super().__init__(*UpperCamelCase , **UpperCamelCase ) A__ = eval_examples A__ = post_process_function def UpperCamelCase ( self: Optional[Any] , UpperCamelCase: Optional[Dataset] = None , UpperCamelCase: List[Any]=None , UpperCamelCase: Optional[List[str]] = None , UpperCamelCase: str = "eval" , **UpperCamelCase: Optional[int] , ): """simple docstring""" A__ = gen_kwargs.copy() A__ = ( gen_kwargs["""max_length"""] if gen_kwargs.get("""max_length""" ) is not None else self.args.generation_max_length ) A__ = ( gen_kwargs["""num_beams"""] if gen_kwargs.get("""num_beams""" ) is not None else self.args.generation_num_beams ) A__ = gen_kwargs A__ = self.eval_dataset if eval_dataset is None else eval_dataset A__ = self.get_eval_dataloader(UpperCamelCase ) A__ = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. A__ = self.compute_metrics A__ = None A__ = time.time() A__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: A__ = eval_loop( UpperCamelCase , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCamelCase , metric_key_prefix=UpperCamelCase , ) finally: A__ = compute_metrics A__ = self.args.eval_batch_size * self.args.world_size if f"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[f"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( UpperCamelCase , UpperCamelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default A__ = self.post_process_function(UpperCamelCase , UpperCamelCase , UpperCamelCase ) A__ = self.compute_metrics(UpperCamelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"""{metric_key_prefix}_""" ): A__ = metrics.pop(UpperCamelCase ) metrics.update(output.metrics ) else: A__ = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(UpperCamelCase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) A__ = self.callback_handler.on_evaluate(self.args , self.state , self.control , UpperCamelCase ) return metrics def UpperCamelCase ( self: List[Any] , UpperCamelCase: Dict , UpperCamelCase: List[str] , UpperCamelCase: Dict=None , UpperCamelCase: str = "test" , **UpperCamelCase: Optional[int] ): """simple docstring""" A__ = gen_kwargs.copy() A__ = self.get_test_dataloader(UpperCamelCase ) # Temporarily disable metric computation, we will do it in the loop here. A__ = self.compute_metrics A__ = None A__ = time.time() A__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: A__ = eval_loop( UpperCamelCase , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCamelCase , metric_key_prefix=UpperCamelCase , ) finally: A__ = compute_metrics A__ = self.args.eval_batch_size * self.args.world_size if f"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[f"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( UpperCamelCase , UpperCamelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output A__ = self.post_process_function(UpperCamelCase , UpperCamelCase , UpperCamelCase , """predict""" ) A__ = self.compute_metrics(UpperCamelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"""{metric_key_prefix}_""" ): A__ = metrics.pop(UpperCamelCase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=UpperCamelCase )
335
0
"""simple docstring""" import random from typing import Any def a__ ( __SCREAMING_SNAKE_CASE ) -> list[Any]: for _ in range(len(__SCREAMING_SNAKE_CASE ) ): __lowerCAmelCase: List[Any] = random.randint(0 , len(__SCREAMING_SNAKE_CASE ) - 1 ) __lowerCAmelCase: Optional[Any] = random.randint(0 , len(__SCREAMING_SNAKE_CASE ) - 1 ) __lowerCAmelCase , __lowerCAmelCase: Optional[int] = data[b], data[a] return data if __name__ == "__main__": __A = [0, 1, 2, 3, 4, 5, 6, 7] __A = ["python", "says", "hello", "!"] print("Fisher-Yates Shuffle:") print("List", integers, strings) print("FY Shuffle", fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
108
"""simple docstring""" import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Any: # Load configuration defined in the metadata file with open(__SCREAMING_SNAKE_CASE ) as metadata_file: __lowerCAmelCase: List[Any] = json.load(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Dict = LukeConfig(use_entity_aware_attention=__SCREAMING_SNAKE_CASE , **metadata["model_config"] ) # Load in the weights from the checkpoint_path __lowerCAmelCase: Optional[Any] = torch.load(__SCREAMING_SNAKE_CASE , map_location="cpu" )["module"] # Load the entity vocab file __lowerCAmelCase: List[Any] = load_original_entity_vocab(__SCREAMING_SNAKE_CASE ) # add an entry for [MASK2] __lowerCAmelCase: Any = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 __lowerCAmelCase: Union[str, Any] = XLMRobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] ) # Add special tokens to the token vocabulary for downstream tasks __lowerCAmelCase: str = AddedToken("<ent>" , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Optional[int] = AddedToken("<ent2>" , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F"Saving tokenizer to {pytorch_dump_folder_path}" ) tokenizer.save_pretrained(__SCREAMING_SNAKE_CASE ) with open(os.path.join(__SCREAMING_SNAKE_CASE , "tokenizer_config.json" ) , "r" ) as f: __lowerCAmelCase: Optional[int] = json.load(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Any = "MLukeTokenizer" with open(os.path.join(__SCREAMING_SNAKE_CASE , "tokenizer_config.json" ) , "w" ) as f: json.dump(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) with open(os.path.join(__SCREAMING_SNAKE_CASE , MLukeTokenizer.vocab_files_names["entity_vocab_file"] ) , "w" ) as f: json.dump(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Tuple = MLukeTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) # Initialize the embeddings of the special tokens __lowerCAmelCase: Union[str, Any] = tokenizer.convert_tokens_to_ids(["@"] )[0] __lowerCAmelCase: Optional[int] = tokenizer.convert_tokens_to_ids(["#"] )[0] __lowerCAmelCase: Dict = state_dict["embeddings.word_embeddings.weight"] __lowerCAmelCase: Optional[int] = word_emb[ent_init_index].unsqueeze(0 ) __lowerCAmelCase: int = word_emb[enta_init_index].unsqueeze(0 ) __lowerCAmelCase: str = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: __lowerCAmelCase: Dict = state_dict[bias_name] __lowerCAmelCase: Union[str, Any] = decoder_bias[ent_init_index].unsqueeze(0 ) __lowerCAmelCase: Optional[int] = decoder_bias[enta_init_index].unsqueeze(0 ) __lowerCAmelCase: Optional[int] = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: __lowerCAmelCase: Optional[int] = F"encoder.layer.{layer_index}.attention.self." __lowerCAmelCase: Tuple = state_dict[prefix + matrix_name] __lowerCAmelCase: Dict = state_dict[prefix + matrix_name] __lowerCAmelCase: Optional[Any] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks __lowerCAmelCase: int = state_dict["entity_embeddings.entity_embeddings.weight"] __lowerCAmelCase: Dict = entity_emb[entity_vocab["[MASK]"]].unsqueeze(0 ) __lowerCAmelCase: str = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' __lowerCAmelCase: List[str] = state_dict["entity_predictions.bias"] __lowerCAmelCase: Dict = entity_prediction_bias[entity_vocab["[MASK]"]].unsqueeze(0 ) __lowerCAmelCase: str = torch.cat([entity_prediction_bias, entity_mask_bias] ) __lowerCAmelCase: Optional[int] = LukeForMaskedLM(config=__SCREAMING_SNAKE_CASE ).eval() state_dict.pop("entity_predictions.decoder.weight" ) state_dict.pop("lm_head.decoder.weight" ) state_dict.pop("lm_head.decoder.bias" ) __lowerCAmelCase: Tuple = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("lm_head" ) or key.startswith("entity_predictions" )): __lowerCAmelCase: Any = state_dict[key] else: __lowerCAmelCase: Tuple = state_dict[key] __lowerCAmelCase , __lowerCAmelCase: Tuple = model.load_state_dict(__SCREAMING_SNAKE_CASE , strict=__SCREAMING_SNAKE_CASE ) if set(__SCREAMING_SNAKE_CASE ) != {"luke.embeddings.position_ids"}: raise ValueError(F"Unexpected unexpected_keys: {unexpected_keys}" ) if set(__SCREAMING_SNAKE_CASE ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F"Unexpected missing_keys: {missing_keys}" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs __lowerCAmelCase: Tuple = MLukeTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE , task="entity_classification" ) __lowerCAmelCase: Tuple = "ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)." __lowerCAmelCase: Optional[Any] = (0, 9) __lowerCAmelCase: Optional[int] = tokenizer(__SCREAMING_SNAKE_CASE , entity_spans=[span] , return_tensors="pt" ) __lowerCAmelCase: int = model(**__SCREAMING_SNAKE_CASE ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base __lowerCAmelCase: Dict = torch.Size((1, 3_3, 7_6_8) ) __lowerCAmelCase: Optional[int] = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F"Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base __lowerCAmelCase: Union[str, Any] = torch.Size((1, 1, 7_6_8) ) __lowerCAmelCase: Any = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F"Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is" F" {expected_shape}" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction __lowerCAmelCase: Tuple = MLukeTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase: List[Any] = "Tokyo is the capital of <mask>." __lowerCAmelCase: List[str] = (2_4, 3_0) __lowerCAmelCase: int = tokenizer(__SCREAMING_SNAKE_CASE , entity_spans=[span] , return_tensors="pt" ) __lowerCAmelCase: Union[str, Any] = model(**__SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Optional[int] = encoding["input_ids"][0].tolist() __lowerCAmelCase: int = input_ids.index(tokenizer.convert_tokens_to_ids("<mask>" ) ) __lowerCAmelCase: Optional[Any] = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Any = outputs.entity_logits[0][0].argmax().item() __lowerCAmelCase: Union[str, Any] = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("en:" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("Saving PyTorch model to {}".format(__SCREAMING_SNAKE_CASE ) ) model.save_pretrained(__SCREAMING_SNAKE_CASE ) def a__ ( __SCREAMING_SNAKE_CASE ) -> Any: __lowerCAmelCase: Tuple = ["[MASK]", "[PAD]", "[UNK]"] __lowerCAmelCase: Optional[Any] = [json.loads(__SCREAMING_SNAKE_CASE ) for line in open(__SCREAMING_SNAKE_CASE )] __lowerCAmelCase: str = {} for entry in data: __lowerCAmelCase: Tuple = entry["id"] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: __lowerCAmelCase: Optional[int] = entity_id break __lowerCAmelCase: Optional[Any] = F"{language}:{entity_name}" __lowerCAmelCase: Optional[int] = entity_id return new_mapping if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.") parser.add_argument( "--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration." ) parser.add_argument( "--entity_vocab_path", default=None, type=str, help="Path to an entity_vocab.tsv file, containing the entity vocabulary.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model." ) parser.add_argument( "--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted." ) __A = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
108
1
def lowerCAmelCase ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any] ): """simple docstring""" UpperCAmelCase__ = 0 UpperCAmelCase__ = len(SCREAMING_SNAKE_CASE__ ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None UpperCAmelCase__ = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(SCREAMING_SNAKE_CASE__ ): return None UpperCAmelCase__ = sorted_collection[point] if current_item == item: return point else: if point < left: UpperCAmelCase__ = left UpperCAmelCase__ = point elif point > right: UpperCAmelCase__ = right UpperCAmelCase__ = point else: if item < current_item: UpperCAmelCase__ = point - 1 else: UpperCAmelCase__ = point + 1 return None def lowerCAmelCase ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[str] ): """simple docstring""" if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None UpperCAmelCase__ = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(SCREAMING_SNAKE_CASE__ ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif point > right: return interpolation_search_by_recursion(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , point - 1 ) else: return interpolation_search_by_recursion( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , point + 1 , SCREAMING_SNAKE_CASE__ ) def lowerCAmelCase ( _lowerCAmelCase : Tuple ): """simple docstring""" if collection != sorted(SCREAMING_SNAKE_CASE__ ): raise ValueError("Collection must be ascending sorted" ) return True if __name__ == "__main__": import sys _lowerCAmelCase : Optional[int] = 0 if debug == 1: _lowerCAmelCase : Any = [1_0, 3_0, 4_0, 4_5, 5_0, 6_6, 7_7, 9_3] try: __assert_sorted(collection) except ValueError: sys.exit("Sequence must be ascending sorted to apply interpolation search") _lowerCAmelCase : Union[str, Any] = 6_7 _lowerCAmelCase : str = interpolation_search(collection, target) if result is not None: print(F'''{target} found at positions: {result}''') else: print("Not found")
169
import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowercase_ = get_tests_dir("fixtures/spiece.model") @require_sentencepiece @require_tokenizers class A ( _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase = AlbertTokenizer lowerCamelCase = AlbertTokenizerFast lowerCamelCase = True lowerCamelCase = True lowerCamelCase = True def snake_case__ ( self : Dict )-> Any: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing A__ = AlbertTokenizer(lowercase_ ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case__ ( self : List[str],lowercase_ : str )-> Any: '''simple docstring''' A__ = 'this is a test' A__ = 'this is a test' return input_text, output_text def snake_case__ ( self : List[Any] )-> Optional[int]: '''simple docstring''' A__ = '<pad>' A__ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase_ ),lowercase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase_ ),lowercase_ ) def snake_case__ ( self : List[str] )-> str: '''simple docstring''' A__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0],'<pad>' ) self.assertEqual(vocab_keys[1],'<unk>' ) self.assertEqual(vocab_keys[-1],'▁eloquent' ) self.assertEqual(len(lowercase_ ),3_0_0_0_0 ) def snake_case__ ( self : int )-> List[Any]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size,3_0_0_0_0 ) def snake_case__ ( self : Union[str, Any] )-> List[Any]: '''simple docstring''' if not self.test_rust_tokenizer: return A__ = self.get_tokenizer() A__ = self.get_rust_tokenizer() A__ = 'I was born in 92000, and this is falsé.' A__ = tokenizer.tokenize(lowercase_ ) A__ = rust_tokenizer.tokenize(lowercase_ ) self.assertListEqual(lowercase_,lowercase_ ) A__ = tokenizer.encode(lowercase_,add_special_tokens=lowercase_ ) A__ = rust_tokenizer.encode(lowercase_,add_special_tokens=lowercase_ ) self.assertListEqual(lowercase_,lowercase_ ) A__ = self.get_rust_tokenizer() A__ = tokenizer.encode(lowercase_ ) A__ = rust_tokenizer.encode(lowercase_ ) self.assertListEqual(lowercase_,lowercase_ ) def snake_case__ ( self : int )-> int: '''simple docstring''' A__ = AlbertTokenizer(lowercase_,keep_accents=lowercase_ ) A__ = tokenizer.tokenize('This is a test' ) self.assertListEqual(lowercase_,['▁this', '▁is', '▁a', '▁test'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase_ ),[4_8, 2_5, 2_1, 1_2_8_9] ) A__ = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( lowercase_,['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', 'é', '.'] ) A__ = tokenizer.convert_tokens_to_ids(lowercase_ ) self.assertListEqual(lowercase_,[3_1, 2_3, 3_8_6, 1_9, 5_6_1, 3_0_5_0, 1_5, 1_7, 4_8, 2_5, 8_2_5_6, 1_8, 1, 9] ) A__ = tokenizer.convert_ids_to_tokens(lowercase_ ) self.assertListEqual( lowercase_,['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.'],) def snake_case__ ( self : Union[str, Any] )-> str: '''simple docstring''' A__ = AlbertTokenizer(lowercase_ ) A__ = tokenizer.encode('sequence builders' ) A__ = tokenizer.encode('multi-sequence build' ) A__ = tokenizer.build_inputs_with_special_tokens(lowercase_ ) A__ = tokenizer.build_inputs_with_special_tokens(lowercase_,lowercase_ ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def snake_case__ ( self : Any )-> Tuple: '''simple docstring''' A__ = {'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'input_ids': [[2, 2_1_9_7_0, 1_3, 5, 6_0_9_2, 1_6_7, 2_8, 7_1_0_3, 2_1_5_3, 6_7_3, 8, 7_0_2_8, 1_2_0_5_1, 1_8, 1_7, 7_1_0_3, 2_1_5_3, 6_7_3, 8, 3_5_1_5, 1_8_6_8_4, 8, 4_4_6_1, 6, 1_9_2_7, 2_9_7, 8, 1_2_0_6_0, 2_6_0_7, 1_8, 1_3, 5, 4_4_6_1, 1_5, 1_0_5_3_8, 3_8, 8, 1_3_5, 1_5, 8_2_2, 5_8, 1_5, 9_9_3, 1_0_3_6_3, 1_5, 1_4_6_0, 8_0_0_5, 4_4_6_1, 1_5, 9_9_3, 2_5_5, 2_3_2_8, 9, 9, 9, 6, 2_6, 1_1_1_2, 8_1_6, 3_2_6_0, 1_3, 5, 1_0_3, 2_3_7_7, 6, 1_7, 1_1_1_2, 8_1_6, 2_7_8_2, 1_3, 5, 1_0_3, 1_0_6_4_1, 6, 2_9, 8_4, 2_5_1_2, 2_4_3_0, 7_8_2, 1_8_6_8_4, 2_7_6_1, 1_9, 8_0_8, 2_4_3_0, 2_5_5_6, 1_7, 8_5_5, 1_4_8_0, 9_4_7_7, 4_0_9_1, 1_2_8, 1_1_7_1_2, 1_5, 7_1_0_3, 2_1_5_3, 6_7_3, 1_7, 2_4_8_8_3, 9_9_9_0, 9, 3], [2, 1_1_5_0_2, 2_5, 1_0_0_6, 2_0, 7_8_2, 8, 1_1_8_0_9, 8_5_5, 1_7_3_2, 1_9_3_9_3, 1_8_6_6_7, 3_7, 3_6_7, 2_1_0_1_8, 6_9, 1_8_5_4, 3_4, 1_1_8_6_0, 1_9_1_2_4, 2_7, 1_5_6, 2_2_5, 1_7, 1_9_3, 4_1_4_1, 1_9, 6_5, 9_1_2_4, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 1_4, 2_2_3_1, 8_8_6, 2_3_8_5, 1_7_6_5_9, 8_4, 1_4, 1_6_7_9_2, 1_9_5_2, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase_,model_name='albert-base-v2',revision='6b6560eaf5ff2e250b00c50f380c5389a9c2d82e',)
7
0
import unittest from transformers import AutoTokenizer, FalconConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, ) class __A : def __init__( self : str , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str]=3 , UpperCAmelCase_ : str=7 , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : str=99 , UpperCAmelCase_ : Tuple=32 , UpperCAmelCase_ : Optional[Any]=5 , UpperCAmelCase_ : int=4 , UpperCAmelCase_ : List[Any]=37 , UpperCAmelCase_ : List[str]="gelu" , UpperCAmelCase_ : str=0.1 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : int=512 , UpperCAmelCase_ : str=16 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : int=0.02 , UpperCAmelCase_ : List[str]=3 , UpperCAmelCase_ : int=4 , UpperCAmelCase_ : List[Any]=None , ): lowerCAmelCase : List[str] = parent lowerCAmelCase : int = batch_size lowerCAmelCase : Union[str, Any] = seq_length lowerCAmelCase : Dict = is_training lowerCAmelCase : str = use_input_mask lowerCAmelCase : Optional[int] = use_token_type_ids lowerCAmelCase : Any = use_labels lowerCAmelCase : Union[str, Any] = vocab_size lowerCAmelCase : List[Any] = hidden_size lowerCAmelCase : str = num_hidden_layers lowerCAmelCase : Union[str, Any] = num_attention_heads lowerCAmelCase : Optional[Any] = intermediate_size lowerCAmelCase : Any = hidden_act lowerCAmelCase : Any = hidden_dropout_prob lowerCAmelCase : Optional[int] = attention_probs_dropout_prob lowerCAmelCase : Optional[Any] = max_position_embeddings lowerCAmelCase : int = type_vocab_size lowerCAmelCase : Dict = type_sequence_label_size lowerCAmelCase : Optional[Any] = initializer_range lowerCAmelCase : Optional[int] = num_labels lowerCAmelCase : Dict = num_choices lowerCAmelCase : Optional[Any] = scope def lowercase__ ( self : List[str] ): lowerCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Any = None if self.use_input_mask: lowerCAmelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : Tuple = None lowerCAmelCase : Optional[Any] = None lowerCAmelCase : int = None lowerCAmelCase : Optional[int] = None if self.use_labels: lowerCAmelCase : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : List[str] = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : List[str] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : Dict ): return FalconConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase_ , initializer_range=self.initializer_range , pad_token_id=1 , new_decoder_architecture=lowercase_ , ) def lowercase__ ( self : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : str ): lowerCAmelCase : List[str] = FalconModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() lowerCAmelCase : Tuple = model(lowercase_ , attention_mask=lowercase_ ) lowerCAmelCase : Optional[Any] = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , ): lowerCAmelCase : Dict = True lowerCAmelCase : Any = FalconModel(lowercase_ ) model.to(lowercase_ ) model.eval() lowerCAmelCase : Optional[Any] = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , ) lowerCAmelCase : str = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , ) lowerCAmelCase : int = model(lowercase_ , attention_mask=lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int , ): lowerCAmelCase : Dict = FalconForCausalLM(config=lowercase_ ) model.to(lowercase_ ) model.eval() lowerCAmelCase : int = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[str] , ): lowerCAmelCase : str = True lowerCAmelCase : Any = True lowerCAmelCase : Union[str, Any] = FalconForCausalLM(config=lowercase_ ) model.to(lowercase_ ) model.eval() # first forward pass lowerCAmelCase : List[str] = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , use_cache=lowercase_ , ) lowerCAmelCase : List[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCAmelCase : Union[str, Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase : int = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowerCAmelCase : Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCAmelCase : int = torch.cat([input_mask, next_mask] , dim=-1 ) lowerCAmelCase : str = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , output_hidden_states=lowercase_ , )['hidden_states'][0] lowerCAmelCase : Union[str, Any] = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , past_key_values=lowercase_ , output_hidden_states=lowercase_ , )['hidden_states'][0] # select random slice lowerCAmelCase : Optional[int] = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCAmelCase : List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCAmelCase : List[str] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1E-3 ) ) def lowercase__ ( self : Optional[int] ): lowerCAmelCase : List[Any] = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) : Optional[int] = config_and_inputs lowerCAmelCase : Tuple = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): lowerCAmelCase_ : str = ( ( FalconModel, FalconForCausalLM, FalconForSequenceClassification, FalconForTokenClassification, FalconForQuestionAnswering, ) if is_torch_available() else () ) lowerCAmelCase_ : Any = (FalconForCausalLM,) if is_torch_available() else () lowerCAmelCase_ : Optional[int] = ( { "feature-extraction": FalconModel, "text-classification": FalconForSequenceClassification, "text-generation": FalconForCausalLM, "question-answering": FalconForQuestionAnswering, "token-classification": FalconForTokenClassification, "zero-shot": FalconForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase_ : Tuple = False lowerCAmelCase_ : Any = False def lowercase__ ( self : Optional[int] ): lowerCAmelCase : Optional[Any] = FalconModelTester(self ) lowerCAmelCase : Dict = ConfigTester(self , config_class=lowercase_ , hidden_size=37 ) def lowercase__ ( self : Optional[int] ): self.config_tester.run_common_tests() def lowercase__ ( self : List[str] ): lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def lowercase__ ( self : Dict ): lowerCAmelCase , *lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() for alibi in [True, False]: lowerCAmelCase : Optional[Any] = alibi self.model_tester.create_and_check_model(lowercase_ , *lowercase_ ) def lowercase__ ( self : Optional[int] ): lowerCAmelCase , lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : Union[str, Any] = 3 lowerCAmelCase : int = input_dict['input_ids'] lowerCAmelCase : List[str] = input_ids.ne(1 ).to(lowercase_ ) lowerCAmelCase : Optional[Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase : List[str] = FalconForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() lowerCAmelCase : Union[str, Any] = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowercase__ ( self : int ): lowerCAmelCase , lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : Tuple = 3 lowerCAmelCase : Tuple = 'single_label_classification' lowerCAmelCase : int = input_dict['input_ids'] lowerCAmelCase : Dict = input_ids.ne(1 ).to(lowercase_ ) lowerCAmelCase : int = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase : int = FalconForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() lowerCAmelCase : List[str] = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowercase__ ( self : List[str] ): lowerCAmelCase , lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : Optional[int] = input_dict['input_ids'] lowerCAmelCase : List[str] = FalconForCausalLM(lowercase_ ) model.to(lowercase_ ) model.eval() lowerCAmelCase : str = model(lowercase_ , use_cache=lowercase_ ) lowerCAmelCase : Tuple = input_ids.shape[0] lowerCAmelCase : int = model._convert_to_rw_cache(result.past_key_values ) lowerCAmelCase : Optional[int] = model._convert_cache_to_standard_format(lowercase_ , lowercase_ ) for layer in range(len(lowercase_ ) ): for tensor_idx in range(2 ): self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3 ) self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4 ) self.assertTrue( torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx] ) ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase , lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : Union[str, Any] = 3 lowerCAmelCase : Union[str, Any] = 'multi_label_classification' lowerCAmelCase : str = input_dict['input_ids'] lowerCAmelCase : Optional[Any] = input_ids.ne(1 ).to(lowercase_ ) lowerCAmelCase : Optional[Any] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowerCAmelCase : List[Any] = FalconForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() lowerCAmelCase : Dict = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowercase__ ( self : Tuple ): # Falcon can have different numbers of KV-heads than the number of query heads, so we need # to override this test to use the right head counts. for model_class in self.all_generative_model_classes: lowerCAmelCase , lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() # If it doesn't support cache, pass the test if not hasattr(lowercase_ , 'use_cache' ): return lowerCAmelCase : str = model_class(lowercase_ ).to(lowercase_ ) if "use_cache" not in inputs: lowerCAmelCase : int = True lowerCAmelCase : Optional[int] = model(**lowercase_ ) # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format) if "past_key_values" not in outputs: return lowerCAmelCase : List[Any] = ( getattr(lowercase_ , 'decoder_layers' , lowercase_ ) or getattr(lowercase_ , 'num_decoder_layers' , lowercase_ ) or config.num_hidden_layers ) lowerCAmelCase : Optional[Any] = getattr(lowercase_ , 'num_kv_heads' , config.num_attention_heads ) lowerCAmelCase : str = getattr(lowercase_ , 'd_model' , config.hidden_size ) lowerCAmelCase : List[Any] = embed_dim // num_attention_heads lowerCAmelCase : Dict = outputs['past_key_values'] self.assertEqual(len(lowercase_ ) , lowercase_ ) lowerCAmelCase , lowerCAmelCase : Optional[Any] = inputs['input_ids'].shape for i in range(lowercase_ ): if config.new_decoder_architecture: lowerCAmelCase : str = config.num_attention_heads elif config.multi_query: lowerCAmelCase : List[Any] = 1 self.assertEqual(len(past_kv[0] ) , 2 ) # K V for the decoder = 2 self.assertEqual( past_kv[i][0].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) self.assertEqual( past_kv[i][1].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) @require_torch class __A ( unittest.TestCase ): @slow def lowercase__ ( self : str ): lowerCAmelCase : Any = AutoTokenizer.from_pretrained('Rocketknight1/falcon-rw-1b' ) lowerCAmelCase : Dict = FalconForCausalLM.from_pretrained('Rocketknight1/falcon-rw-1b' ) model.eval() model.to(lowercase_ ) lowerCAmelCase : Dict = tokenizer('My favorite food is' , return_tensors='pt' ).to(lowercase_ ) lowerCAmelCase : Optional[Any] = ( 'My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday.' ) lowerCAmelCase : int = model.generate(**lowercase_ , do_sample=lowercase_ , max_new_tokens=19 ) lowerCAmelCase : Optional[Any] = tokenizer.batch_decode(lowercase_ )[0] self.assertEqual(lowercase_ , lowercase_ ) @slow def lowercase__ ( self : List[str] ): # The big models are way too big for the CI, so we use tiny random models that resemble their # architectures but with much smaller and fewer layers for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]: lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained(lowercase_ ) lowerCAmelCase : List[str] = FalconForCausalLM.from_pretrained(lowercase_ ) model.eval() model.to(lowercase_ ) lowerCAmelCase : int = tokenizer('My favorite food is' , return_tensors='pt' ).to(lowercase_ ) # We just test that these run without errors - the models are randomly initialized # and so the actual text outputs will be garbage model.generate(**lowercase_ , do_sample=lowercase_ , max_new_tokens=4 ) model.generate(**lowercase_ , do_sample=lowercase_ , max_new_tokens=4 ) model.generate(**lowercase_ , num_beams=2 , max_new_tokens=4 ) @slow def lowercase__ ( self : Optional[int] ): # The big models are way too big for the CI, so we use tiny random models that resemble their # architectures but with much smaller and fewer layers with torch.no_grad(): for repo in [ "Rocketknight1/falcon-rw-1b", "Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b", ]: lowerCAmelCase : int = AutoTokenizer.from_pretrained(lowercase_ ) lowerCAmelCase : Tuple = FalconForCausalLM.from_pretrained(lowercase_ ) model.eval() model.to(device=lowercase_ ) lowerCAmelCase : List[Any] = tokenizer('My favorite food is' , return_tensors='pt' ).to(lowercase_ ) # Test results are the same with and without cache lowerCAmelCase : List[str] = model.generate(**lowercase_ , do_sample=lowercase_ , max_new_tokens=20 , use_cache=lowercase_ ) lowerCAmelCase : Any = model.generate(**lowercase_ , do_sample=lowercase_ , max_new_tokens=20 , use_cache=lowercase_ ) self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0 )
356
from collections.abc import Sequence def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' return sum(c * (x**i) for i, c in enumerate(_UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' lowerCAmelCase : Optional[int] = 0.0 for coeff in reversed(_UpperCAmelCase ): lowerCAmelCase : Union[str, Any] = result * x + coeff return result if __name__ == "__main__": __A : Optional[int] = (0.0, 0.0, 5.0, 9.3, 7.0) __A : str = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
323
0
import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument("""--user""", type=str, default="""ubuntu""") parser.add_argument("""--host""", type=str, default="""localhost""") parser.add_argument("""--key_path""", type=str, default=None) parser.add_argument("""--instance""", type=str, default="""V100:1""") parser.add_argument("""--provider""", type=str, default="""cheapest""") parser.add_argument("""--use_spot""", type=bool, default=False) parser.add_argument("""--example""", type=str, default="""pytorch/text-generation/run_generation.py""") UpperCamelCase__ , UpperCamelCase__ = parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError("""Cannot specify both BYO and on-demand cluster args""") UpperCamelCase__ = rh.cluster( name="""rh-cluster""", ips=[args.host], ssh_creds={"""ssh_user""": args.user, """ssh_private_key""": args.key_path} ) else: UpperCamelCase__ = rh.cluster( name="""rh-cluster""", instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) UpperCamelCase__ = args.example.rsplit("""/""", 1)[0] # Set up remote environment cluster.install_packages(["""pip:./"""]) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([f'''pip install -r transformers/examples/{example_dir}/requirements.txt''']) cluster.run(["""pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117"""]) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([f'''python transformers/examples/{args.example} {" ".join(shlex.quote(arg) for arg in unknown)}''']) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
92
'''simple docstring''' import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class lowerCamelCase_ ( unittest.TestCase ): def lowercase_ ( self : Tuple ): '''simple docstring''' debug_launcher(test_script.main ) def lowercase_ ( self : List[str] ): '''simple docstring''' debug_launcher(test_ops.main )
181
0
"""simple docstring""" def lowercase__( __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : str ): lowercase_ : Tuple = '' for i in table: res += inp[i - 1] return res def lowercase__( __SCREAMING_SNAKE_CASE : Optional[Any] ): return data[1:] + data[0] def lowercase__( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : str ): lowercase_ : Any = '' for i in range(len(__SCREAMING_SNAKE_CASE ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def lowercase__( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any ): lowercase_ : List[Any] = int('0b' + data[0] + data[-1] , 2 ) lowercase_ : Tuple = int('0b' + data[1:3] , 2 ) return bin(s[row][col] )[2:] def lowercase__( __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Union[str, Any] ): lowercase_ : Optional[int] = message[:4] lowercase_ : List[str] = message[4:] lowercase_ : Optional[Any] = apply_table(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase_ : str = xor(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase_ : Union[str, Any] = apply_sbox(__SCREAMING_SNAKE_CASE , temp[:4] ) # noqa: E741 lowercase_ : List[Any] = apply_sbox(__SCREAMING_SNAKE_CASE , temp[4:] ) lowercase_ : str = '0' * (2 - len(__SCREAMING_SNAKE_CASE )) + l # noqa: E741 lowercase_ : Union[str, Any] = '0' * (2 - len(__SCREAMING_SNAKE_CASE )) + r lowercase_ : Any = apply_table(l + r , __SCREAMING_SNAKE_CASE ) lowercase_ : int = xor(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return temp + right if __name__ == "__main__": __SCREAMING_SNAKE_CASE =input("Enter 10 bit key: ") __SCREAMING_SNAKE_CASE =input("Enter 8 bit message: ") __SCREAMING_SNAKE_CASE =[6, 3, 7, 4, 8, 5, 10, 9] __SCREAMING_SNAKE_CASE =[3, 5, 2, 7, 4, 10, 1, 9, 8, 6] __SCREAMING_SNAKE_CASE =[2, 4, 3, 1] __SCREAMING_SNAKE_CASE =[2, 6, 3, 1, 4, 8, 5, 7] __SCREAMING_SNAKE_CASE =[4, 1, 3, 5, 7, 2, 8, 6] __SCREAMING_SNAKE_CASE =[4, 1, 2, 3, 2, 3, 4, 1] __SCREAMING_SNAKE_CASE =[[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] __SCREAMING_SNAKE_CASE =[[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation __SCREAMING_SNAKE_CASE =apply_table(key, paa_table) __SCREAMING_SNAKE_CASE =temp[:5] __SCREAMING_SNAKE_CASE =temp[5:] __SCREAMING_SNAKE_CASE =left_shift(left) __SCREAMING_SNAKE_CASE =left_shift(right) __SCREAMING_SNAKE_CASE =apply_table(left + right, pa_table) __SCREAMING_SNAKE_CASE =left_shift(left) __SCREAMING_SNAKE_CASE =left_shift(right) __SCREAMING_SNAKE_CASE =left_shift(left) __SCREAMING_SNAKE_CASE =left_shift(right) __SCREAMING_SNAKE_CASE =apply_table(left + right, pa_table) # encryption __SCREAMING_SNAKE_CASE =apply_table(message, IP) __SCREAMING_SNAKE_CASE =function(expansion, sa, sa, keya, temp) __SCREAMING_SNAKE_CASE =temp[4:] + temp[:4] __SCREAMING_SNAKE_CASE =function(expansion, sa, sa, keya, temp) __SCREAMING_SNAKE_CASE =apply_table(temp, IP_inv) print("Cipher text is:", CT) # decryption __SCREAMING_SNAKE_CASE =apply_table(CT, IP) __SCREAMING_SNAKE_CASE =function(expansion, sa, sa, keya, temp) __SCREAMING_SNAKE_CASE =temp[4:] + temp[:4] __SCREAMING_SNAKE_CASE =function(expansion, sa, sa, keya, temp) __SCREAMING_SNAKE_CASE =apply_table(temp, IP_inv) print("Plain text after decypting is:", PT)
321
"""simple docstring""" import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class UpperCamelCase : def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> int: '''simple docstring''' return None class UpperCamelCase : def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> str: '''simple docstring''' return None class UpperCamelCase ( unittest.TestCase ): lowercase = [ # (model_name, model_kwargs) ('bert-base-cased', {}), ('gpt2', {'use_cache': False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def _UpperCAmelCase ( self ) -> str: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__UpperCamelCase ,'tf' ,12 ,**__UpperCamelCase ) @require_torch @slow def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__UpperCamelCase ,'pt' ,12 ,**__UpperCamelCase ) @require_torch @slow def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' from transformers import BertModel lowercase_ : Union[str, Any] = ['[UNK]', '[SEP]', '[CLS]', '[PAD]', '[MASK]', 'some', 'other', 'words'] with NamedTemporaryFile(mode='w+t' ) as vocab_file: vocab_file.write('\n'.join(__UpperCamelCase ) ) vocab_file.flush() lowercase_ : List[str] = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: lowercase_ : Optional[Any] = BertModel(BertConfig(vocab_size=len(__UpperCamelCase ) ) ) model.save_pretrained(__UpperCamelCase ) self._test_export(__UpperCamelCase ,'pt' ,12 ,__UpperCamelCase ) @require_tf @slow def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowercase_ : Optional[int] = self._test_export(__UpperCamelCase ,'tf' ,12 ,**__UpperCamelCase ) lowercase_ : int = quantize(Path(__UpperCamelCase ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__UpperCamelCase ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) @require_torch @slow def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowercase_ : Tuple = self._test_export(__UpperCamelCase ,'pt' ,12 ,**__UpperCamelCase ) lowercase_ : Tuple = quantize(__UpperCamelCase ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__UpperCamelCase ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=None ,**__UpperCamelCase ) -> Optional[int]: '''simple docstring''' try: # Compute path with TemporaryDirectory() as tempdir: lowercase_ : Dict = Path(__UpperCamelCase ).joinpath('model.onnx' ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ) return path except Exception as e: self.fail(__UpperCamelCase ) @require_torch @require_tokenizers @slow def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' from transformers import BertModel lowercase_ : List[Any] = BertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) lowercase_ : Union[str, Any] = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(__UpperCamelCase ,__UpperCamelCase ,'pt' ) @require_tf @require_tokenizers @slow def _UpperCAmelCase ( self ) -> str: '''simple docstring''' from transformers import TFBertModel lowercase_ : Optional[Any] = TFBertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) lowercase_ : Any = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(__UpperCamelCase ,__UpperCamelCase ,'tf' ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Dict: '''simple docstring''' lowercase_ : Tuple = FeatureExtractionPipeline(__UpperCamelCase ,__UpperCamelCase ) lowercase_ : Dict = ['input_ids', 'token_type_ids', 'attention_mask', 'output_0', 'output_1'] lowercase_ , lowercase_ , lowercase_ , lowercase_ : Any = infer_shapes(__UpperCamelCase ,__UpperCamelCase ) # Assert all variables are present self.assertEqual(len(__UpperCamelCase ) ,len(__UpperCamelCase ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] ,__UpperCamelCase ) self.assertSequenceEqual(variable_names[3:] ,__UpperCamelCase ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] ,{0: 'batch', 1: 'sequence'} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes['output_0'] ,{0: 'batch', 1: 'sequence'} ) self.assertDictEqual(shapes['output_1'] ,{0: 'batch'} ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : Any = ['input_ids', 'attention_mask', 'token_type_ids'] lowercase_ : List[Any] = {'input_ids': [1, 2, 3, 4], 'attention_mask': [0, 0, 0, 0], 'token_type_ids': [1, 1, 1, 1]} lowercase_ , lowercase_ : int = ensure_valid_input(FuncContiguousArgs() ,__UpperCamelCase ,__UpperCamelCase ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(__UpperCamelCase ) ,3 ) # Should have exactly the same input names self.assertEqual(set(__UpperCamelCase ) ,set(__UpperCamelCase ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(__UpperCamelCase ,(tokens['input_ids'], tokens['token_type_ids'], tokens['attention_mask']) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) lowercase_ , lowercase_ : Optional[int] = ensure_valid_input(FuncNonContiguousArgs() ,__UpperCamelCase ,__UpperCamelCase ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(__UpperCamelCase ) ,1 ) self.assertEqual(len(__UpperCamelCase ) ,1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] ,tokens['input_ids'] ) self.assertEqual(ordered_input_names[0] ,'input_ids' ) def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ : Dict = generate_identified_filename(Path('/home/something/my_fake_model.onnx' ) ,'-test' ) self.assertEqual('/home/something/my_fake_model-test.onnx' ,generated.as_posix() )
321
1
def __a ( SCREAMING_SNAKE_CASE = 1_0_0_0 ) -> int: '''simple docstring''' __UpperCAmelCase = 2**power __UpperCAmelCase = str(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = list(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = 0 for i in list_num: sum_of_num += int(SCREAMING_SNAKE_CASE ) return sum_of_num if __name__ == "__main__": A_ : int = int(input('Enter the power of 2: ').strip()) print('2 ^ ', power, ' = ', 2**power) A_ : List[Any] = solution(power) print('Sum of the digits is: ', result)
333
import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore A_ : Optional[Any] = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" A_ : Optional[Any] = [file for file in filepaths if file != file.lower()] if upper_files: print(F"""{len(upper_files)} files contain uppercase characters:""") print('\n'.join(upper_files) + '\n') A_ : Tuple = [file for file in filepaths if ' ' in file] if space_files: print(F"""{len(space_files)} files contain space characters:""") print('\n'.join(space_files) + '\n') A_ : str = [file for file in filepaths if '-' in file] if hyphen_files: print(F"""{len(hyphen_files)} files contain hyphen characters:""") print('\n'.join(hyphen_files) + '\n') A_ : Optional[Any] = [file for file in filepaths if os.sep not in file] if nodir_files: print(F"""{len(nodir_files)} files are not in a directory:""") print('\n'.join(nodir_files) + '\n') A_ : Union[str, Any] = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
333
1
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'Create a default config file for Accelerate with only a few flags set.' def _snake_case ( UpperCAmelCase_ : Union[str, Any]="no" , UpperCAmelCase_ : str = default_json_config_file , UpperCAmelCase_ : bool = False ): A__ = Path(UpperCAmelCase_ ) path.parent.mkdir(parents=UpperCAmelCase_ , exist_ok=UpperCAmelCase_ ) if path.exists(): print( F"""Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.""" ) return False A__ = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F"""`mixed_precision` should be one of 'no', 'fp16', 'bf16', or 'fp8'. Received {mixed_precision}""" ) A__ = { """compute_environment""": """LOCAL_MACHINE""", """mixed_precision""": mixed_precision, } if torch.cuda.is_available(): A__ = torch.cuda.device_count() A__ = num_gpus A__ = False if num_gpus > 1: A__ = """MULTI_GPU""" else: A__ = """NO""" elif is_xpu_available() and use_xpu: A__ = torch.xpu.device_count() A__ = num_xpus A__ = False if num_xpus > 1: A__ = """MULTI_XPU""" else: A__ = """NO""" elif is_npu_available(): A__ = torch.npu.device_count() A__ = num_npus A__ = False if num_npus > 1: A__ = """MULTI_NPU""" else: A__ = """NO""" else: A__ = 0 A__ = True A__ = 1 A__ = """NO""" A__ = ClusterConfig(**UpperCAmelCase_ ) config.to_json_file(UpperCAmelCase_ ) return path def _snake_case ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] ): A__ = parser.add_parser("""default""" , parents=UpperCAmelCase_ , help=UpperCAmelCase_ , formatter_class=UpperCAmelCase_ ) parser.add_argument( """--config_file""" , default=UpperCAmelCase_ , help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """ """such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """ """with 'huggingface'.""" ) , dest="""save_location""" , ) parser.add_argument( """--mixed_precision""" , choices=["""no""", """fp16""", """bf16"""] , type=UpperCAmelCase_ , help="""Whether or not to use mixed precision training. """ """Choose between FP16 and BF16 (bfloat16) training. """ """BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.""" , default="""no""" , ) parser.set_defaults(func=UpperCAmelCase_ ) return parser def _snake_case ( UpperCAmelCase_ : int ): A__ = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(F"""accelerate configuration saved at {config_file}""" )
69
"""simple docstring""" from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class a : """simple docstring""" UpperCAmelCase = BlenderbotConfig UpperCAmelCase = {} UpperCAmelCase = "gelu" def __init__( self: Optional[Any] , UpperCamelCase: str , UpperCamelCase: str=13 , UpperCamelCase: Union[str, Any]=7 , UpperCamelCase: int=True , UpperCamelCase: List[Any]=False , UpperCamelCase: Optional[int]=99 , UpperCamelCase: Optional[int]=32 , UpperCamelCase: Optional[int]=2 , UpperCamelCase: Tuple=4 , UpperCamelCase: List[Any]=37 , UpperCamelCase: int=0.1 , UpperCamelCase: Any=0.1 , UpperCamelCase: Tuple=20 , UpperCamelCase: List[str]=2 , UpperCamelCase: Dict=1 , UpperCamelCase: Optional[int]=0 , ): """simple docstring""" A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = eos_token_id A__ = pad_token_id A__ = bos_token_id def UpperCamelCase ( self: Any ): """simple docstring""" A__ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) A__ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) A__ = tf.concat([input_ids, eos_tensor] , axis=1 ) A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) A__ = prepare_blenderbot_inputs_dict(UpperCamelCase , UpperCamelCase , UpperCamelCase ) return config, inputs_dict def UpperCamelCase ( self: int , UpperCamelCase: Optional[Any] , UpperCamelCase: int ): """simple docstring""" A__ = TFBlenderbotModel(config=UpperCamelCase ).get_decoder() A__ = inputs_dict["""input_ids"""] A__ = input_ids[:1, :] A__ = inputs_dict["""attention_mask"""][:1, :] A__ = inputs_dict["""head_mask"""] A__ = 1 # first forward pass A__ = model(UpperCamelCase , attention_mask=UpperCamelCase , head_mask=UpperCamelCase , use_cache=UpperCamelCase ) A__ , A__ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids A__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) A__ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and A__ = tf.concat([input_ids, next_tokens] , axis=-1 ) A__ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) A__ = model(UpperCamelCase , attention_mask=UpperCamelCase )[0] A__ = model(UpperCamelCase , attention_mask=UpperCamelCase , past_key_values=UpperCamelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice A__ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) A__ = output_from_no_past[:, -3:, random_slice_idx] A__ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(UpperCamelCase , UpperCamelCase , rtol=1e-3 ) def _snake_case ( UpperCAmelCase_ : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : int=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Dict=None , ): if attention_mask is None: A__ = tf.cast(tf.math.not_equal(UpperCAmelCase_ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: A__ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: A__ = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: A__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: A__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class a ( _lowerCamelCase, _lowerCamelCase, unittest.TestCase ): """simple docstring""" UpperCAmelCase = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () UpperCAmelCase = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () UpperCAmelCase = ( { "conversational": TFBlenderbotForConditionalGeneration, "feature-extraction": TFBlenderbotModel, "summarization": TFBlenderbotForConditionalGeneration, "text2text-generation": TFBlenderbotForConditionalGeneration, "translation": TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) UpperCAmelCase = True UpperCAmelCase = False UpperCAmelCase = False def UpperCamelCase ( self: Dict ): """simple docstring""" A__ = TFBlenderbotModelTester(self ) A__ = ConfigTester(self , config_class=UpperCamelCase ) def UpperCamelCase ( self: List[Any] ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase ( self: str ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*UpperCamelCase ) @require_tokenizers @require_tf class a ( unittest.TestCase ): """simple docstring""" UpperCAmelCase = ["My friends are cool but they eat too many carbs."] UpperCAmelCase = "facebook/blenderbot-400M-distill" @cached_property def UpperCamelCase ( self: Union[str, Any] ): """simple docstring""" return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def UpperCamelCase ( self: List[str] ): """simple docstring""" A__ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def UpperCamelCase ( self: Optional[Any] ): """simple docstring""" A__ = self.tokenizer(self.src_text , return_tensors="""tf""" ) A__ = self.model.generate( model_inputs.input_ids , ) A__ = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=UpperCamelCase )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
69
1
def _snake_case ( lowerCAmelCase : int = 1_0_0_0 ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = 3 SCREAMING_SNAKE_CASE_ : List[str] = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 1_5 == 0: result -= a a += 1 return result if __name__ == "__main__": print(f'''{solution() = }''')
18
"""simple docstring""" import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger('transformers.models.speecht5') UpperCAmelCase__ = { 'speech_encoder_prenet.layer_norm': 'speecht5.encoder.prenet.feature_projection.layer_norm', 'speech_encoder_prenet.post_extract_proj': 'speecht5.encoder.prenet.feature_projection.projection', 'speech_encoder_prenet.pos_conv.0': 'speecht5.encoder.prenet.pos_conv_embed.conv', 'speech_encoder_prenet.mask_emb': 'speecht5.encoder.prenet.masked_spec_embed', } UpperCAmelCase__ = { 'text_encoder_prenet.encoder_prenet.0': 'speecht5.encoder.prenet.embed_tokens', 'text_encoder_prenet.encoder_prenet.1.alpha': 'speecht5.encoder.prenet.encode_positions.alpha', } UpperCAmelCase__ = { 'speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0': 'speecht5.decoder.prenet.layers.0', 'speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0': 'speecht5.decoder.prenet.layers.1', 'speech_decoder_prenet.decoder_prenet.0.1': 'speecht5.decoder.prenet.final_layer', 'speech_decoder_prenet.decoder_prenet.1.alpha': 'speecht5.decoder.prenet.encode_positions.alpha', 'speech_decoder_prenet.spkembs_layer.0': 'speecht5.decoder.prenet.speaker_embeds_layer', } UpperCAmelCase__ = { 'speech_decoder_postnet.feat_out': 'speech_decoder_postnet.feat_out', 'speech_decoder_postnet.prob_out': 'speech_decoder_postnet.prob_out', 'speech_decoder_postnet.postnet.postnet.0.0': 'speech_decoder_postnet.layers.0.conv', 'speech_decoder_postnet.postnet.postnet.0.1': 'speech_decoder_postnet.layers.0.batch_norm', 'speech_decoder_postnet.postnet.postnet.1.0': 'speech_decoder_postnet.layers.1.conv', 'speech_decoder_postnet.postnet.postnet.1.1': 'speech_decoder_postnet.layers.1.batch_norm', 'speech_decoder_postnet.postnet.postnet.2.0': 'speech_decoder_postnet.layers.2.conv', 'speech_decoder_postnet.postnet.postnet.2.1': 'speech_decoder_postnet.layers.2.batch_norm', 'speech_decoder_postnet.postnet.postnet.3.0': 'speech_decoder_postnet.layers.3.conv', 'speech_decoder_postnet.postnet.postnet.3.1': 'speech_decoder_postnet.layers.3.batch_norm', 'speech_decoder_postnet.postnet.postnet.4.0': 'speech_decoder_postnet.layers.4.conv', 'speech_decoder_postnet.postnet.postnet.4.1': 'speech_decoder_postnet.layers.4.batch_norm', } UpperCAmelCase__ = { 'text_decoder_prenet.embed_tokens': 'speecht5.decoder.prenet.embed_tokens', } UpperCAmelCase__ = { 'text_decoder_postnet.output_projection': 'text_decoder_postnet.lm_head', } UpperCAmelCase__ = { 'encoder.layers.*.self_attn.k_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj', 'encoder.layers.*.self_attn.v_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj', 'encoder.layers.*.self_attn.q_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj', 'encoder.layers.*.self_attn.out_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj', 'encoder.layers.*.self_attn_layer_norm': 'speecht5.encoder.wrapped_encoder.layers.*.layer_norm', 'encoder.layers.*.fc1': 'speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense', 'encoder.layers.*.fc2': 'speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense', 'encoder.layers.*.final_layer_norm': 'speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'speecht5.encoder.wrapped_encoder.layer_norm', 'encoder.pos_emb.pe_k': 'speecht5.encoder.wrapped_encoder.embed_positions.pe_k', } UpperCAmelCase__ = { 'decoder.layers.*.self_attn.k_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj', 'decoder.layers.*.self_attn.v_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj', 'decoder.layers.*.self_attn.q_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj', 'decoder.layers.*.self_attn.out_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj', 'decoder.layers.*.self_attn_layer_norm': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm', 'decoder.layers.*.encoder_attn.k_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj', 'decoder.layers.*.encoder_attn.v_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj', 'decoder.layers.*.encoder_attn.q_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj', 'decoder.layers.*.encoder_attn.out_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj', 'decoder.layers.*.encoder_attn_layer_norm': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm', 'decoder.layers.*.fc1': 'speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense', 'decoder.layers.*.fc2': 'speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense', 'decoder.layers.*.final_layer_norm': 'speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm', } UpperCAmelCase__ = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } UpperCAmelCase__ = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } UpperCAmelCase__ = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } UpperCAmelCase__ = [] UpperCAmelCase__ = [ 'encoder.version', 'encoder.layers.*.norm_k.weight', 'encoder.layers.*.norm_k.bias', 'decoder.version', 'decoder.layers.*.norm_k.weight', 'decoder.layers.*.norm_k.bias', 'decoder.pos_emb.pe_k', 'speech_encoder_prenet.embed_positions._float_tensor', 'text_decoder_prenet.embed_positions._float_tensor', ] UpperCAmelCase__ = IGNORE_KEYS + [ 'encoder.proj', 'text_encoder_prenet.*', 'speech_decoder_prenet.*', 'speech_decoder_postnet.*', ] UpperCAmelCase__ = IGNORE_KEYS + [ 'encoder.proj', 'speech_encoder_prenet.*', 'text_decoder_prenet.*', 'text_decoder_postnet.*', ] UpperCAmelCase__ = IGNORE_KEYS + [ 'encoder.proj', 'text_encoder_prenet.*', 'text_decoder_prenet.*', 'text_decoder_postnet.*', ] def _UpperCAmelCase ( __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : Dict ) -> List[Any]: for attribute in key.split('''.''' ): _snake_case = getattr(__lowerCamelCase , __lowerCamelCase ) if weight_type is not None: _snake_case = getattr(__lowerCamelCase , __lowerCamelCase ).shape else: _snake_case = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": _snake_case = value elif weight_type == "weight_g": _snake_case = value elif weight_type == "weight_v": _snake_case = value elif weight_type == "bias": _snake_case = value elif weight_type == "running_mean": _snake_case = value elif weight_type == "running_var": _snake_case = value elif weight_type == "num_batches_tracked": _snake_case = value else: _snake_case = value logger.info(f'''{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.''' ) def _UpperCAmelCase ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int] ) -> List[str]: for key in ignore_keys: if key.endswith('''.*''' ): if name.startswith(key[:-1] ): return True elif ".*." in key: _snake_case , _snake_case = key.split('''.*.''' ) if prefix in name and suffix in name: return True elif key in name: return True return False def _UpperCAmelCase ( __lowerCamelCase : Dict , __lowerCamelCase : List[Any] , __lowerCamelCase : Tuple ) -> Optional[Any]: _snake_case = [] if task == "s2t": _snake_case = hf_model.speechta.encoder.prenet.feature_encoder _snake_case = MAPPING_S2T _snake_case = IGNORE_KEYS_S2T elif task == "t2s": _snake_case = None _snake_case = MAPPING_T2S _snake_case = IGNORE_KEYS_T2S elif task == "s2s": _snake_case = hf_model.speechta.encoder.prenet.feature_encoder _snake_case = MAPPING_S2S _snake_case = IGNORE_KEYS_S2S else: raise ValueError(f'''Unsupported task: {task}''' ) for name, value in fairseq_dict.items(): if should_ignore(__lowerCamelCase , __lowerCamelCase ): logger.info(f'''{name} was ignored''' ) continue _snake_case = False if "conv_layers" in name: load_conv_layer( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , hf_model.config.feat_extract_norm == '''group''' , ) _snake_case = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: _snake_case , _snake_case = key.split('''.*.''' ) if prefix in name and suffix in name: _snake_case = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: _snake_case = True if "*" in mapped_key: _snake_case = name.split(__lowerCamelCase )[0].split('''.''' )[-2] _snake_case = mapped_key.replace('''*''' , __lowerCamelCase ) if "weight_g" in name: _snake_case = '''weight_g''' elif "weight_v" in name: _snake_case = '''weight_v''' elif "bias" in name: _snake_case = '''bias''' elif "weight" in name: _snake_case = '''weight''' elif "running_mean" in name: _snake_case = '''running_mean''' elif "running_var" in name: _snake_case = '''running_var''' elif "num_batches_tracked" in name: _snake_case = '''num_batches_tracked''' else: _snake_case = None set_recursively(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) continue if not is_used: unused_weights.append(__lowerCamelCase ) logger.warning(f'''Unused weights: {unused_weights}''' ) def _UpperCAmelCase ( __lowerCamelCase : Any , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : List[Any] , __lowerCamelCase : Tuple ) -> List[Any]: _snake_case = full_name.split('''conv_layers.''' )[-1] _snake_case = name.split('''.''' ) _snake_case = int(items[0] ) _snake_case = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) _snake_case = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) _snake_case = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) _snake_case = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) _snake_case = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__lowerCamelCase ) @torch.no_grad() def _UpperCAmelCase ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : int=None , __lowerCamelCase : Union[str, Any]=None , ) -> Dict: if config_path is not None: _snake_case = SpeechTaConfig.from_pretrained(__lowerCamelCase ) else: _snake_case = SpeechTaConfig() if task == "s2t": _snake_case = config.max_text_positions _snake_case = SpeechTaForSpeechToText(__lowerCamelCase ) elif task == "t2s": _snake_case = 18_76 _snake_case = 6_00 _snake_case = config.max_speech_positions _snake_case = SpeechTaForTextToSpeech(__lowerCamelCase ) elif task == "s2s": _snake_case = 18_76 _snake_case = config.max_speech_positions _snake_case = SpeechTaForSpeechToSpeech(__lowerCamelCase ) else: raise ValueError(f'''Unknown task name: {task}''' ) if vocab_path: _snake_case = SpeechTaTokenizer(__lowerCamelCase , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it _snake_case = AddedToken('''<mask>''' , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) _snake_case = mask_token tokenizer.add_special_tokens({'''mask_token''': mask_token} ) tokenizer.add_tokens(['''<ctc_blank>'''] ) _snake_case = SpeechTaFeatureExtractor() _snake_case = SpeechTaProcessor(tokenizer=__lowerCamelCase , feature_extractor=__lowerCamelCase ) processor.save_pretrained(__lowerCamelCase ) _snake_case = torch.load(__lowerCamelCase ) recursively_load_weights(fairseq_checkpoint['''model'''] , __lowerCamelCase , __lowerCamelCase ) model.save_pretrained(__lowerCamelCase ) if repo_id: print('''Pushing to the hub...''' ) processor.push_to_hub(__lowerCamelCase ) model.push_to_hub(__lowerCamelCase ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument( '--task', default='s2t', type=str, help='Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.', ) parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--vocab_path', default=None, type=str, help='Path to SentencePiece model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) UpperCAmelCase__ = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
288
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __A : Optional[Any] = {"configuration_reformer": ["REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ReformerConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = ["ReformerTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = ["ReformerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = [ "REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "ReformerAttention", "ReformerForMaskedLM", "ReformerForQuestionAnswering", "ReformerForSequenceClassification", "ReformerLayer", "ReformerModel", "ReformerModelWithLMHead", "ReformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys __A : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
369
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : List[str] = { "configuration_bigbird_pegasus": [ "BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP", "BigBirdPegasusConfig", "BigBirdPegasusOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ "BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST", "BigBirdPegasusForCausalLM", "BigBirdPegasusForConditionalGeneration", "BigBirdPegasusForQuestionAnswering", "BigBirdPegasusForSequenceClassification", "BigBirdPegasusModel", "BigBirdPegasusPreTrainedModel", ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
89
0
"""simple docstring""" import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def __SCREAMING_SNAKE_CASE ( ): lowerCAmelCase__ : Optional[Any] = argparse.ArgumentParser() parser.add_argument('''--model_ckpt''' , type=A_ , default='''microsoft/unixcoder-base-nine''' ) parser.add_argument('''--num_epochs''' , type=A_ , default=5 ) parser.add_argument('''--batch_size''' , type=A_ , default=6 ) parser.add_argument('''--gradient_accumulation_steps''' , type=A_ , default=1 ) parser.add_argument('''--freeze''' , type=A_ , default=A_ ) parser.add_argument('''--learning_rate''' , type=A_ , default=5e-4 ) parser.add_argument('''--seed''' , type=A_ , default=0 ) parser.add_argument('''--lr_scheduler_type''' , type=A_ , default='''cosine''' ) parser.add_argument('''--num_warmup_steps''' , type=A_ , default=10 ) parser.add_argument('''--weight_decay''' , type=A_ , default=0.01 ) parser.add_argument('''--output_dir''' , type=A_ , default='''./results''' ) return parser.parse_args() __UpperCamelCase : List[Any] = load('''accuracy''') def __SCREAMING_SNAKE_CASE ( A_ ): lowerCAmelCase__ ,lowerCAmelCase__ : Tuple = eval_pred lowerCAmelCase__ : str = np.argmax(A_ , axis=1 ) return metric.compute(predictions=A_ , references=A_ ) class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" def __init__( self : Optional[Any] ,lowercase_ : Optional[Any] ): super().__init__() lowerCAmelCase__ : List[Any] = trainer def __lowerCAmelCase ( self : Dict ,lowercase_ : str ,lowercase_ : Any ,lowercase_ : Dict ,**lowercase_ : Dict ): if control.should_evaluate: lowerCAmelCase__ : Tuple = deepcopy(lowercase_ ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset ,metric_key_prefix='''train''' ) return control_copy def __SCREAMING_SNAKE_CASE ( ): lowerCAmelCase__ : int = get_args() set_seed(args.seed ) lowerCAmelCase__ : Optional[Any] = load_dataset('''codeparrot/codecomplex''' , split='''train''' ) lowerCAmelCase__ : int = dataset.train_test_split(test_size=0.2 ) lowerCAmelCase__ : Any = train_test['''test'''].train_test_split(test_size=0.5 ) lowerCAmelCase__ : Union[str, Any] = DatasetDict( { '''train''': train_test['''train'''], '''test''': test_validation['''train'''], '''valid''': test_validation['''test'''], } ) print('''Loading tokenizer and model''' ) lowerCAmelCase__ : List[str] = AutoTokenizer.from_pretrained(args.model_ckpt ) lowerCAmelCase__ : Any = tokenizer.eos_token lowerCAmelCase__ : Tuple = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) lowerCAmelCase__ : Tuple = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): lowerCAmelCase__ : Optional[int] = False lowerCAmelCase__ : Union[str, Any] = ClassLabel(num_classes=7 , names=list(set(train_test_validation['''train''']['''complexity'''] ) ) ) def tokenize(A_ ): lowerCAmelCase__ : Dict = tokenizer(example['''src'''] , truncation=A_ , max_length=10_24 ) lowerCAmelCase__ : str = labels.straint(example['''complexity'''] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } lowerCAmelCase__ : Optional[int] = train_test_validation.map( A_ , batched=A_ , remove_columns=train_test_validation['''train'''].column_names , ) lowerCAmelCase__ : Optional[int] = DataCollatorWithPadding(tokenizer=A_ ) lowerCAmelCase__ : Union[str, Any] = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy='''epoch''' , save_strategy='''epoch''' , logging_strategy='''epoch''' , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.01 , metric_for_best_model='''accuracy''' , run_name='''complexity-java''' , report_to='''wandb''' , ) lowerCAmelCase__ : Any = Trainer( model=A_ , args=A_ , train_dataset=tokenized_datasets['''train'''] , eval_dataset=tokenized_datasets['''valid'''] , tokenizer=A_ , data_collator=A_ , compute_metrics=A_ , ) print('''Training...''' ) trainer.add_callback(CustomCallback(A_ ) ) trainer.train() if __name__ == "__main__": main()
106
class lowercase__ : '''simple docstring''' def __init__( self, __magic_name__ = "", __magic_name__ = False ) -> None: """simple docstring""" # Mapping from the first character of the prefix of the node UpperCamelCase__ : dict[str, RadixNode] = {} # A node will be a leaf if the tree contains its word UpperCamelCase__ : Optional[Any] = is_leaf UpperCamelCase__ : List[str] = prefix def UpperCamelCase__ ( self, __magic_name__ ) -> tuple[str, str, str]: """simple docstring""" UpperCamelCase__ : Dict = 0 for q, w in zip(self.prefix, __magic_name__ ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def UpperCamelCase__ ( self, __magic_name__ ) -> None: """simple docstring""" for word in words: self.insert(__magic_name__ ) def UpperCamelCase__ ( self, __magic_name__ ) -> None: """simple docstring""" # Case 1: If the word is the prefix of the node # Solution: We set the current node as leaf if self.prefix == word: UpperCamelCase__ : Union[str, Any] = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: UpperCamelCase__ : Tuple = RadixNode(prefix=__magic_name__, is_leaf=__magic_name__ ) else: UpperCamelCase__ : Any = self.nodes[word[0]] UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : Union[str, Any] = incoming_node.match( __magic_name__ ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(__magic_name__ ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: UpperCamelCase__ : Tuple = remaining_prefix UpperCamelCase__ : Tuple = self.nodes[matching_string[0]] UpperCamelCase__ : List[Any] = RadixNode(__magic_name__, __magic_name__ ) UpperCamelCase__ : str = aux_node if remaining_word == "": UpperCamelCase__ : Any = True else: self.nodes[matching_string[0]].insert(__magic_name__ ) def UpperCamelCase__ ( self, __magic_name__ ) -> bool: """simple docstring""" UpperCamelCase__ : Optional[Any] = self.nodes.get(word[0], __magic_name__ ) if not incoming_node: return False else: UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : Dict = incoming_node.match( __magic_name__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(__magic_name__ ) def UpperCamelCase__ ( self, __magic_name__ ) -> bool: """simple docstring""" UpperCamelCase__ : Optional[Any] = self.nodes.get(word[0], __magic_name__ ) if not incoming_node: return False else: UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : Union[str, Any] = incoming_node.match( __magic_name__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(__magic_name__ ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: UpperCamelCase__ : Optional[Any] = list(self.nodes.values() )[0] UpperCamelCase__ : Union[str, Any] = merging_node.is_leaf self.prefix += merging_node.prefix UpperCamelCase__ : int = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: UpperCamelCase__ : Any = False # If there is 1 edge, we merge it with its child else: UpperCamelCase__ : Union[str, Any] = list(incoming_node.nodes.values() )[0] UpperCamelCase__ : List[str] = merging_node.is_leaf incoming_node.prefix += merging_node.prefix UpperCamelCase__ : int = merging_node.nodes return True def UpperCamelCase__ ( self, __magic_name__ = 0 ) -> None: """simple docstring""" if self.prefix != "": print('''-''' * height, self.prefix, ''' (leaf)''' if self.is_leaf else '''''' ) for value in self.nodes.values(): value.print_tree(height + 1 ) def lowerCAmelCase_ ( ) -> bool: UpperCamelCase__ : Optional[int] = '''banana bananas bandana band apple all beast'''.split() UpperCamelCase__ : Optional[int] = RadixNode() root.insert_many(__UpperCAmelCase ) assert all(root.find(__UpperCAmelCase ) for word in words ) assert not root.find('''bandanas''' ) assert not root.find('''apps''' ) root.delete('''all''' ) assert not root.find('''all''' ) root.delete('''banana''' ) assert not root.find('''banana''' ) assert root.find('''bananas''' ) return True def lowerCAmelCase_ ( ) -> None: assert test_trie() def lowerCAmelCase_ ( ) -> None: UpperCamelCase__ : int = RadixNode() UpperCamelCase__ : Any = '''banana bananas bandanas bandana band apple all beast'''.split() root.insert_many(__UpperCAmelCase ) print('''Words:''' , __UpperCAmelCase ) print('''Tree:''' ) root.print_tree() if __name__ == "__main__": main()
201
0
'''simple docstring''' import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels _lowerCAmelCase = object() # For specifying empty leaf dict `{}` _lowerCAmelCase = object() def UpperCamelCase ( a , a ) -> Union[str, Any]: '''simple docstring''' __magic_name__ = tuple((re.compile(x + '''$''' ) for x in qs) ) for i in range(len(a ) - len(a ) + 1 ): __magic_name__ = [x.match(a ) for x, y in zip(a , ks[i:] )] if matches and all(a ): return True return False def UpperCamelCase ( a ) -> Tuple: '''simple docstring''' def replace(a , a ): for rule, replacement in rules: if _match(a , a ): return replacement return val return replace def UpperCamelCase ( ) -> Union[str, Any]: '''simple docstring''' return [ # embeddings (("transformer", "wpe", "embedding"), P('''mp''' , a )), (("transformer", "wte", "embedding"), P('''mp''' , a )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(a , '''mp''' )), (("attention", "out_proj", "kernel"), P('''mp''' , a )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(a , '''mp''' )), (("mlp", "c_fc", "bias"), P('''mp''' )), (("mlp", "c_proj", "kernel"), P('''mp''' , a )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def UpperCamelCase ( a ) -> str: '''simple docstring''' __magic_name__ = _get_partition_rules() __magic_name__ = _replacement_rules(a ) __magic_name__ = {k: _unmatched for k in flatten_dict(a )} __magic_name__ = {k: replace(a , a ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(a ) )
98
'''simple docstring''' import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging _lowerCAmelCase = "\\n\n" _lowerCAmelCase = "\nPerplexity (PPL) is one of the most common metrics for evaluating language models.\nIt is defined as the exponentiated average negative log-likelihood of a sequence.\n\nFor more information, see https://huggingface.co/docs/transformers/perplexity\n" _lowerCAmelCase = "\nArgs:\n model_id (str): model used for calculating Perplexity\n NOTE: Perplexity can only be calculated for causal language models.\n This includes models such as gpt2, causal variations of bert,\n causal versions of t5, and more (the full list can be found\n in the AutoModelForCausalLM documentation here:\n https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )\n\n input_texts (list of str): input text, each separate text snippet\n is one list entry.\n batch_size (int): the batch size to run texts through the model. Defaults to 16.\n add_start_token (bool): whether to add the start token to the texts,\n so the perplexity can include the probability of the first word. Defaults to True.\n device (str): device to run on, defaults to 'cuda' when available\nReturns:\n perplexity: dictionary containing the perplexity scores for the texts\n in the input list, as well as the mean perplexity. If one of the input texts is\n longer than the max input length of the model, then it is truncated to the\n max length for the perplexity computation.\nExamples:\n Example 1:\n >>> perplexity = datasets.load_metric(\"perplexity\")\n >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"]\n >>> results = perplexity.compute(model_id='gpt2',\n ... add_start_token=False,\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n ['perplexities', 'mean_perplexity']\n >>> print(round(results[\"mean_perplexity\"], 2))\n 78.22\n >>> print(round(results[\"perplexities\"][0], 2))\n 11.11\n\n Example 2:\n >>> perplexity = datasets.load_metric(\"perplexity\")\n >>> input_texts = datasets.load_dataset(\"wikitext\",\n ... \"wikitext-2-raw-v1\",\n ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS\n [...]\n >>> input_texts = [s for s in input_texts if s!='']\n >>> results = perplexity.compute(model_id='gpt2',\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n ['perplexities', 'mean_perplexity']\n >>> print(round(results[\"mean_perplexity\"], 2))\n 60.35\n >>> print(round(results[\"perplexities\"][0], 2))\n 81.12\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class _SCREAMING_SNAKE_CASE ( datasets.Metric ): def snake_case__ ( self : Dict ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''input_texts''': datasets.Value('''string''' ), } ) , reference_urls=['''https://huggingface.co/docs/transformers/perplexity'''] , ) def snake_case__ ( self : Optional[int] , a__ : int , a__ : Dict , a__ : int = 16 , a__ : bool = True , a__ : Any=None ): if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": __magic_name__ = '''cuda''' else: __magic_name__ = '''cuda''' if torch.cuda.is_available() else '''cpu''' __magic_name__ = AutoModelForCausalLM.from_pretrained(a__ ) __magic_name__ = model.to(a__ ) __magic_name__ = AutoTokenizer.from_pretrained(a__ ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: __magic_name__ = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(a__ ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({'''pad_token''': existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" __magic_name__ = model.config.max_length - 1 else: __magic_name__ = model.config.max_length __magic_name__ = tokenizer( a__ , add_special_tokens=a__ , padding=a__ , truncation=a__ , max_length=a__ , return_tensors='''pt''' , return_attention_mask=a__ , ).to(a__ ) __magic_name__ = encodings['''input_ids'''] __magic_name__ = encodings['''attention_mask'''] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." __magic_name__ = [] __magic_name__ = CrossEntropyLoss(reduction='''none''' ) for start_index in logging.tqdm(range(0 , len(a__ ) , a__ ) ): __magic_name__ = min(start_index + batch_size , len(a__ ) ) __magic_name__ = encoded_texts[start_index:end_index] __magic_name__ = attn_masks[start_index:end_index] if add_start_token: __magic_name__ = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(a__ ) __magic_name__ = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) __magic_name__ = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(a__ ), attn_mask] , dim=1 ) __magic_name__ = encoded_batch with torch.no_grad(): __magic_name__ = model(a__ , attention_mask=a__ ).logits __magic_name__ = out_logits[..., :-1, :].contiguous() __magic_name__ = labels[..., 1:].contiguous() __magic_name__ = attn_mask[..., 1:].contiguous() __magic_name__ = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , a__ ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(a__ )}
98
1
def __A ( __lowerCAmelCase )-> set: """simple docstring""" _UpperCAmelCase = set() # edges = list of graph's edges _UpperCAmelCase = get_edges(__lowerCAmelCase ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: _UpperCAmelCase , _UpperCAmelCase = edges.pop() chosen_vertices.add(__lowerCAmelCase ) chosen_vertices.add(__lowerCAmelCase ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(__lowerCAmelCase ) return chosen_vertices def __A ( __lowerCAmelCase )-> set: """simple docstring""" _UpperCAmelCase = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
39
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ = { '''configuration_autoformer''': [ '''AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AutoformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AutoformerForPrediction''', '''AutoformerModel''', '''AutoformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
72
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase__ : str =logging.get_logger(__name__) UpperCAmelCase__ : Optional[Any] ={ '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/config.json''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/config.json''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/config.json''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/config.json''', '''bert-base-multilingual-uncased''': '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json''', '''bert-base-multilingual-cased''': '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json''', '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/config.json''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/config.json''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json''' ), '''bert-base-cased-finetuned-mrpc''': '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json''', '''bert-base-german-dbmdz-cased''': '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json''', '''bert-base-german-dbmdz-uncased''': '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json''', '''cl-tohoku/bert-base-japanese''': '''https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json''', '''cl-tohoku/bert-base-japanese-whole-word-masking''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json''' ), '''cl-tohoku/bert-base-japanese-char''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json''' ), '''cl-tohoku/bert-base-japanese-char-whole-word-masking''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json''' ), '''wietsedv/bert-base-dutch-cased''': '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json''', # See all BERT models at https://huggingface.co/models?filter=bert } class __A ( __a ): __A = """bert""" def __init__( self , UpperCAmelCase_=30522 , UpperCAmelCase_=768 , UpperCAmelCase_=12 , UpperCAmelCase_=12 , UpperCAmelCase_=3072 , UpperCAmelCase_="gelu" , UpperCAmelCase_=0.1 , UpperCAmelCase_=0.1 , UpperCAmelCase_=512 , UpperCAmelCase_=2 , UpperCAmelCase_=0.0_2 , UpperCAmelCase_=1E-12 , UpperCAmelCase_=0 , UpperCAmelCase_="absolute" , UpperCAmelCase_=True , UpperCAmelCase_=None , **UpperCAmelCase_ , ): super().__init__(pad_token_id=a__ , **a__ ) lowerCamelCase =vocab_size lowerCamelCase =hidden_size lowerCamelCase =num_hidden_layers lowerCamelCase =num_attention_heads lowerCamelCase =hidden_act lowerCamelCase =intermediate_size lowerCamelCase =hidden_dropout_prob lowerCamelCase =attention_probs_dropout_prob lowerCamelCase =max_position_embeddings lowerCamelCase =type_vocab_size lowerCamelCase =initializer_range lowerCamelCase =layer_norm_eps lowerCamelCase =position_embedding_type lowerCamelCase =use_cache lowerCamelCase =classifier_dropout class __A ( __a ): @property def _snake_case ( self ): if self.task == "multiple-choice": lowerCamelCase ={0: """batch""", 1: """choice""", 2: """sequence"""} else: lowerCamelCase ={0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
360
import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def _lowercase ( _UpperCAmelCase ) -> str: lowerCamelCase =[] for line in lines: lowerCamelCase =re.sub(r"""#.*""" , """""" , _UpperCAmelCase ) # remove comments if line: filtered_lines.append(_UpperCAmelCase ) lowerCamelCase ="""\n""".join(_UpperCAmelCase ) # Make a hash from all this code lowerCamelCase =full_str.encode("""utf-8""" ) return shaaaa(_UpperCAmelCase ).hexdigest() # get importable module names and hash for caching UpperCAmelCase__ : str ={ '''csv''': (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), '''json''': (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), '''pandas''': (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), '''parquet''': (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), '''arrow''': (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), '''text''': (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), '''imagefolder''': (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), '''audiofolder''': (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions UpperCAmelCase__ : Tuple ={ '''.csv''': ('''csv''', {}), '''.tsv''': ('''csv''', {'''sep''': '''\t'''}), '''.json''': ('''json''', {}), '''.jsonl''': ('''json''', {}), '''.parquet''': ('''parquet''', {}), '''.arrow''': ('''arrow''', {}), '''.txt''': ('''text''', {}), } _EXTENSION_TO_MODULE.update({ext: ('''imagefolder''', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('''imagefolder''', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ('''audiofolder''', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('''audiofolder''', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) UpperCAmelCase__ : Optional[Any] ={'''imagefolder''', '''audiofolder'''} # Used to filter data files based on extensions given a module name UpperCAmelCase__ : Dict[str, List[str]] ={} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append('''.zip''') _MODULE_TO_EXTENSIONS["audiofolder"].append('''.zip''')
262
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowercase : Optional[int] = logging.get_logger(__name__) _lowercase : Union[str, Any] = {"vocab_file": "spiece.model"} _lowercase : Optional[Any] = { "vocab_file": { "bert_for_seq_generation": ( "https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model" ), } } _lowercase : List[str] = {"bert_for_seq_generation": 5_1_2} class lowerCAmelCase__ ( lowerCamelCase_ ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = [] lowerCAmelCase_ = ['''input_ids''', '''attention_mask'''] def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="<unk>" , __SCREAMING_SNAKE_CASE="<pad>" , __SCREAMING_SNAKE_CASE="<::::>" , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" lowercase_ : str = {} if sp_model_kwargs is None else sp_model_kwargs # Add extra_ids to the special token list super().__init__( bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **__SCREAMING_SNAKE_CASE , ) lowercase_ : Dict = vocab_file lowercase_ : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__SCREAMING_SNAKE_CASE ) @property def _snake_case ( self ): """simple docstring""" return self.sp_model.get_piece_size() def _snake_case ( self ): """simple docstring""" lowercase_ : int = {self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): """simple docstring""" lowercase_ : int = self.__dict__.copy() lowercase_ : Union[str, Any] = None return state def __setstate__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Optional[Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowercase_ : List[Any] = {} lowercase_ : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return self.sp_model.encode(__SCREAMING_SNAKE_CASE , out_type=__SCREAMING_SNAKE_CASE ) def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return self.sp_model.piece_to_id(__SCREAMING_SNAKE_CASE ) def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Dict = self.sp_model.IdToPiece(__SCREAMING_SNAKE_CASE ) return token def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Optional[int] = [] lowercase_ : Any = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) + token lowercase_ : List[str] = [] else: current_sub_tokens.append(__SCREAMING_SNAKE_CASE ) out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) return out_string.strip() def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase_ : int = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(__SCREAMING_SNAKE_CASE , '''wb''' ) as fi: lowercase_ : Any = self.sp_model.serialized_model_proto() fi.write(__SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
93
'''simple docstring''' from math import isqrt, loga def snake_case_ ( __SCREAMING_SNAKE_CASE : int ): """simple docstring""" lowercase_ : Any = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase_ : Optional[Any] = False return [i for i in range(2 , __SCREAMING_SNAKE_CASE ) if is_prime[i]] def snake_case_ ( __SCREAMING_SNAKE_CASE : int = 800800 , __SCREAMING_SNAKE_CASE : int = 800800 ): """simple docstring""" lowercase_ : Union[str, Any] = degree * loga(__SCREAMING_SNAKE_CASE ) lowercase_ : Any = int(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = calculate_prime_numbers(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = 0 lowercase_ : List[Any] = 0 lowercase_ : Union[str, Any] = len(__SCREAMING_SNAKE_CASE ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(f"""{solution() = }""")
93
1
"""simple docstring""" def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->bool: return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(_SCREAMING_SNAKE_CASE ) ) def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->bool: # Base Case if index == len(_SCREAMING_SNAKE_CASE ): return True # Recursive Step for i in range(_SCREAMING_SNAKE_CASE ): if valid_coloring(graph[index] , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): # Color current vertex a__: Dict = i # Validate coloring if util_color(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , index + 1 ): return True # Backtrack a__: Tuple = -1 return False def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->list[int]: a__: List[Any] = [-1] * len(_SCREAMING_SNAKE_CASE ) if util_color(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 0 ): return colored_vertices return []
366
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: lowercase__ = None lowercase__ = logging.get_logger(__name__) lowercase__ = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} lowercase__ = { 'vocab_file': { 'facebook/mbart-large-en-ro': ( 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model' ), 'facebook/mbart-large-cc25': ( 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'facebook/mbart-large-en-ro': 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json', 'facebook/mbart-large-cc25': 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json', }, } lowercase__ = { 'facebook/mbart-large-en-ro': 1024, 'facebook/mbart-large-cc25': 1024, } # fmt: off lowercase__ = ['ar_AR', 'cs_CZ', 'de_DE', 'en_XX', 'es_XX', 'et_EE', 'fi_FI', 'fr_XX', 'gu_IN', 'hi_IN', 'it_IT', 'ja_XX', 'kk_KZ', 'ko_KR', 'lt_LT', 'lv_LV', 'my_MM', 'ne_NP', 'nl_XX', 'ro_RO', 'ru_RU', 'si_LK', 'tr_TR', 'vi_VN', 'zh_CN'] class __snake_case ( __lowerCAmelCase ): a__ = VOCAB_FILES_NAMES a__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ = PRETRAINED_VOCAB_FILES_MAP a__ = ["""input_ids""", """attention_mask"""] a__ = MBartTokenizer a__ = [] a__ = [] def __init__( self , lowercase=None , lowercase=None , lowercase="<s>" , lowercase="</s>" , lowercase="</s>" , lowercase="<s>" , lowercase="<unk>" , lowercase="<pad>" , lowercase="<mask>" , lowercase=None , lowercase=None , lowercase=None , **lowercase , ) -> Tuple: '''simple docstring''' a__: List[str] = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase) if isinstance(lowercase , lowercase) else mask_token super().__init__( vocab_file=lowercase , tokenizer_file=lowercase , bos_token=lowercase , eos_token=lowercase , sep_token=lowercase , cls_token=lowercase , unk_token=lowercase , pad_token=lowercase , mask_token=lowercase , src_lang=lowercase , tgt_lang=lowercase , additional_special_tokens=lowercase , **lowercase , ) a__: Tuple = vocab_file a__: Union[str, Any] = False if not self.vocab_file else True a__: Union[str, Any] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens]) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens}) a__: int = { lang_code: self.convert_tokens_to_ids(lowercase) for lang_code in FAIRSEQ_LANGUAGE_CODES } a__: List[Any] = src_lang if src_lang is not None else 'en_XX' a__: Tuple = self.convert_tokens_to_ids(self._src_lang) a__: str = tgt_lang self.set_src_lang_special_tokens(self._src_lang) @property def lowerCamelCase_ ( self) -> str: '''simple docstring''' return self._src_lang @src_lang.setter def lowerCamelCase_ ( self , lowercase) -> None: '''simple docstring''' a__: Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang) def lowerCamelCase_ ( self , lowercase , lowercase = None) -> List[int]: '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowerCamelCase_ ( self , lowercase , lowercase = None) -> List[int]: '''simple docstring''' a__: Any = [self.sep_token_id] a__: List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def lowerCamelCase_ ( self , lowercase , lowercase , lowercase , lowercase , **lowercase) -> Union[str, Any]: '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model') a__: Union[str, Any] = src_lang a__: Any = self(lowercase , add_special_tokens=lowercase , return_tensors=lowercase , **lowercase) a__: str = self.convert_tokens_to_ids(lowercase) a__: Any = tgt_lang_id return inputs def lowerCamelCase_ ( self , lowercase , lowercase = "en_XX" , lowercase = None , lowercase = "ro_RO" , **lowercase , ) -> BatchEncoding: '''simple docstring''' a__: Any = src_lang a__: List[Any] = tgt_lang return super().prepare_seqaseq_batch(lowercase , lowercase , **lowercase) def lowerCamelCase_ ( self) -> Dict: '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang) def lowerCamelCase_ ( self) -> List[Any]: '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang) def lowerCamelCase_ ( self , lowercase) -> None: '''simple docstring''' a__: int = self.convert_tokens_to_ids(lowercase) a__: List[Any] = [] a__: List[str] = [self.eos_token_id, self.cur_lang_code] a__: Dict = self.convert_ids_to_tokens(self.prefix_tokens) a__: Any = self.convert_ids_to_tokens(self.suffix_tokens) a__: int = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , ) def lowerCamelCase_ ( self , lowercase) -> None: '''simple docstring''' a__: str = self.convert_tokens_to_ids(lowercase) a__: List[Any] = [] a__: Dict = [self.eos_token_id, self.cur_lang_code] a__: Any = self.convert_ids_to_tokens(self.prefix_tokens) a__: Optional[Any] = self.convert_ids_to_tokens(self.suffix_tokens) a__: str = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , ) def lowerCamelCase_ ( self , lowercase , lowercase = None) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.') if not os.path.isdir(lowercase): logger.error(f'Vocabulary path ({save_directory}) should be a directory.') return a__: Any = os.path.join( lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowercase): copyfile(self.vocab_file , lowercase) return (out_vocab_file,)
203
0
"""simple docstring""" # Lint as: python3 import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union _lowercase = re.compile(r'''^(?P<major>\d+)''' r'''\.(?P<minor>\d+)''' r'''\.(?P<patch>\d+)$''') @total_ordering @dataclass class lowerCAmelCase_ : '''simple docstring''' _lowerCamelCase: str _lowerCamelCase: Optional[str] = None _lowerCamelCase: Optional[Union[str, int]] = None _lowerCamelCase: Optional[Union[str, int]] = None _lowerCamelCase: Optional[Union[str, int]] = None def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: A , A , A = _str_to_version_tuple(self.version_str ) def __repr__( self : Optional[int] ) -> Dict: return F'{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}' @property def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: return self.major, self.minor, self.patch def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Tuple ) -> Union[str, Any]: if isinstance(A_ ,A_ ): return Version(A_ ) elif isinstance(A_ ,A_ ): return other raise TypeError(F'{other} (type {type(A_ )}) cannot be compared to version.' ) def __eq__( self : List[Any] ,A_ : Dict ) -> Any: try: A = self._validate_operand(A_ ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self : List[Any] ,A_ : Optional[int] ) -> Tuple: A = self._validate_operand(A_ ) return self.tuple < other.tuple def __hash__( self : Union[str, Any] ) -> Union[str, Any]: return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Any ,A_ : List[str] ) -> List[str]: A = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> str: return self.version_str def _snake_case ( snake_case__ : List[str] ): A = _VERSION_REG.match(snake_case__ ) if not res: raise ValueError(F'Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.' ) return tuple(int(snake_case__ ) for v in [res.group('major' ), res.group('minor' ), res.group('patch' )] ) def _snake_case ( snake_case__ : str ): return ".".join(str(snake_case__ ) for v in version_tuple )
74
'''simple docstring''' from __future__ import annotations import math def lowerCAmelCase (__A , __A): """simple docstring""" _a = u for i in range(1 , __A): _a = temp * (u - i) return temp def lowerCAmelCase (): """simple docstring""" _a = int(input('''enter the numbers of values: ''')) _a = [] for _ in range(__A): y.append([]) for i in range(__A): for j in range(__A): y[i].append(__A) _a = 0 print('''enter the values of parameters in a list: ''') _a = list(map(__A , input().split())) print('''enter the values of corresponding parameters: ''') for i in range(__A): _a = float(input()) _a = int(input('''enter the value to interpolate: ''')) _a = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , __A): for j in range(n - i): _a = y[j + 1][i - 1] - y[j][i - 1] _a = y[0][0] for i in range(1 , __A): summ += (ucal(__A , __A) * y[0][i]) / math.factorial(__A) print(F'''the value at {value} is {summ}''') if __name__ == "__main__": main()
211
0
import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging A : str = logging.get_logger(__name__) # pylint: disable=invalid-name class A ( UpperCAmelCase__ ): '''simple docstring''' def __init__(self : List[str] , _UpperCAmelCase : AutoencoderKL , _UpperCAmelCase : CLIPTextModel , _UpperCAmelCase : CLIPTokenizer , _UpperCAmelCase : UNetaDConditionModel , _UpperCAmelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , _UpperCAmelCase : StableDiffusionSafetyChecker , _UpperCAmelCase : CLIPImageProcessor , ) -> Dict: """simple docstring""" super().__init__() self.register_modules( vae=_UpperCAmelCase , text_encoder=_UpperCAmelCase , tokenizer=_UpperCAmelCase , unet=_UpperCAmelCase , scheduler=_UpperCAmelCase , safety_checker=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , ) def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Optional[Union[str, int]] = "auto" ) -> Tuple: """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowercase__ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[Any] ) -> Optional[Any]: """simple docstring""" self.enable_attention_slicing(_UpperCAmelCase ) @torch.no_grad() def __call__(self : Any , _UpperCAmelCase : Union[str, List[str]] , _UpperCAmelCase : int = 512 , _UpperCAmelCase : int = 512 , _UpperCAmelCase : int = 50 , _UpperCAmelCase : float = 7.5 , _UpperCAmelCase : Optional[Union[str, List[str]]] = None , _UpperCAmelCase : Optional[int] = 1 , _UpperCAmelCase : float = 0.0 , _UpperCAmelCase : Optional[torch.Generator] = None , _UpperCAmelCase : Optional[torch.FloatTensor] = None , _UpperCAmelCase : Optional[str] = "pil" , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , _UpperCAmelCase : int = 1 , _UpperCAmelCase : Optional[torch.FloatTensor] = None , **_UpperCAmelCase : Any , ) -> Tuple: """simple docstring""" if isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowercase__ = 1 elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowercase__ = len(_UpperCAmelCase ) else: raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(_UpperCAmelCase )}''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(_UpperCAmelCase )}.''' ) # get prompt text embeddings lowercase__ = self.tokenizer( _UpperCAmelCase , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) lowercase__ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowercase__ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) lowercase__ = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: lowercase__ = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method lowercase__ , lowercase__ , lowercase__ = text_embeddings.shape lowercase__ = text_embeddings.repeat(1 , _UpperCAmelCase , 1 ) lowercase__ = text_embeddings.view(bs_embed * num_images_per_prompt , _UpperCAmelCase , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowercase__ = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowercase__ = 42 if negative_prompt is None: lowercase__ = [""""""] elif type(_UpperCAmelCase ) is not type(_UpperCAmelCase ): raise TypeError( f'''`negative_prompt` should be the same type to `prompt`, but got {type(_UpperCAmelCase )} !=''' f''' {type(_UpperCAmelCase )}.''' ) elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowercase__ = [negative_prompt] elif batch_size != len(_UpperCAmelCase ): raise ValueError( f'''`negative_prompt`: {negative_prompt} has batch size {len(_UpperCAmelCase )}, but `prompt`:''' f''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' """ the batch size of `prompt`.""" ) else: lowercase__ = negative_prompt lowercase__ = text_input_ids.shape[-1] lowercase__ = self.tokenizer( _UpperCAmelCase , padding="""max_length""" , max_length=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors="""pt""" , ) lowercase__ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowercase__ = uncond_embeddings.shape[1] lowercase__ = uncond_embeddings.repeat(_UpperCAmelCase , _UpperCAmelCase , 1 ) lowercase__ = uncond_embeddings.view(batch_size * num_images_per_prompt , _UpperCAmelCase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowercase__ = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowercase__ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) lowercase__ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) lowercase__ = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps lowercase__ = torch.randn( _UpperCAmelCase , generator=_UpperCAmelCase , device="""cpu""" , dtype=_UpperCAmelCase ).to(self.device ) lowercase__ = torch.randn(_UpperCAmelCase , generator=_UpperCAmelCase , device="""cpu""" , dtype=_UpperCAmelCase ).to( self.device ) else: lowercase__ = torch.randn( _UpperCAmelCase , generator=_UpperCAmelCase , device=self.device , dtype=_UpperCAmelCase ) lowercase__ = torch.randn(_UpperCAmelCase , generator=_UpperCAmelCase , device=self.device , dtype=_UpperCAmelCase ) else: if latents_reference.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) lowercase__ = latents_reference.to(self.device ) lowercase__ = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images lowercase__ = (latents_shape[3] - latents_shape_reference[3]) // 2 lowercase__ = (latents_shape[2] - latents_shape_reference[2]) // 2 lowercase__ = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx lowercase__ = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy lowercase__ = 0 if dx < 0 else dx lowercase__ = 0 if dy < 0 else dy lowercase__ = max(-dx , 0 ) lowercase__ = max(-dy , 0 ) # import pdb # pdb.set_trace() lowercase__ = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(_UpperCAmelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand lowercase__ = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowercase__ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowercase__ = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowercase__ = {} if accepts_eta: lowercase__ = eta for i, t in enumerate(self.progress_bar(_UpperCAmelCase ) ): # expand the latents if we are doing classifier free guidance lowercase__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase__ = self.scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) # predict the noise residual lowercase__ = self.unet(_UpperCAmelCase , _UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase ).sample # perform guidance if do_classifier_free_guidance: lowercase__ , lowercase__ = noise_pred.chunk(2 ) lowercase__ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 lowercase__ = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) lowercase__ = 1 / 0.18_215 * latents lowercase__ = self.vae.decode(_UpperCAmelCase ).sample lowercase__ = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowercase__ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: lowercase__ = self.feature_extractor(self.numpy_to_pil(_UpperCAmelCase ) , return_tensors="""pt""" ).to( self.device ) lowercase__ , lowercase__ = self.safety_checker( images=_UpperCAmelCase , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: lowercase__ = None if output_type == "pil": lowercase__ = self.numpy_to_pil(_UpperCAmelCase ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=_UpperCAmelCase , nsfw_content_detected=_UpperCAmelCase )
146
import pytest A : Optional[Any] = '__dummy_dataset1__' A : Tuple = '\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/"\nURLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n "tokens": datasets.Sequence(datasets.Value("string")),\n "ner_tags": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n "O",\n "B-PER",\n "I-PER",\n "B-ORG",\n "I-ORG",\n "B-LOC",\n "I-LOC",\n ]\n )\n ),\n "langs": datasets.Sequence(datasets.Value("string")),\n "spans": datasets.Sequence(datasets.Value("string")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, "r", encoding="utf-8") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n' @pytest.fixture def UpperCamelCase ( ) -> Any: """simple docstring""" return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def UpperCamelCase ( ) -> Union[str, Any]: """simple docstring""" return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def UpperCamelCase ( __magic_name__ : List[str] , __magic_name__ : Dict , __magic_name__ : Any ) -> str: """simple docstring""" lowercase__ = dataset_loading_script_name lowercase__ = tmp_path / """datasets""" / script_name script_dir.mkdir(parents=__magic_name__ ) lowercase__ = script_dir / f'''{script_name}.py''' with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ )
146
1
"""simple docstring""" import pprint import requests lowerCAmelCase__ = '''https://zenquotes.io/api''' def snake_case_ ( ): '''simple docstring''' return requests.get(API_ENDPOINT_URL + '''/today''' ).json() def snake_case_ ( ): '''simple docstring''' return requests.get(API_ENDPOINT_URL + '''/random''' ).json() if __name__ == "__main__": lowerCAmelCase__ = random_quotes() pprint.pprint(response)
72
'''simple docstring''' import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class UpperCamelCase__ ( lowercase_ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = FlaxAutoencoderKL @property def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = 4 SCREAMING_SNAKE_CASE : str = 3 SCREAMING_SNAKE_CASE : List[Any] = (32, 32) SCREAMING_SNAKE_CASE : Tuple = jax.random.PRNGKey(0 ) SCREAMING_SNAKE_CASE : Any = jax.random.uniform(lowerCamelCase_ , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = { """block_out_channels""": [32, 64], """in_channels""": 3, """out_channels""": 3, """down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""], """up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""], """latent_channels""": 4, } SCREAMING_SNAKE_CASE : List[Any] = self.dummy_input return init_dict, inputs_dict
323
0
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowercase : Union[str, Any] = logging.getLogger(__name__) @dataclass class __UpperCAmelCase : __lowercase = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) __lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __lowercase = field( default="""NER""" , metadata={"""help""": """Task type to fine tune in training (e.g. NER, POS, etc)"""} ) __lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) __lowercase = field(default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Set this flag to use fast tokenization."""} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. __lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class __UpperCAmelCase : __lowercase = field( metadata={"""help""": """The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."""} ) __lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."""} , ) __lowercase = field( default=1_28 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) __lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def SCREAMING_SNAKE_CASE__ ( ) -> Optional[int]: _snake_case = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _snake_case = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _snake_case = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. Use' ' --overwrite_output_dir to overcome.' ) _snake_case = import_module('tasks' ) try: _snake_case = getattr(_SCREAMING_SNAKE_CASE , model_args.task_type ) _snake_case = token_classification_task_clazz() except AttributeError: raise ValueError( F'Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ' F'Available tasks classes are: {TokenClassificationTask.__subclasses__()}' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , _SCREAMING_SNAKE_CASE ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task _snake_case = token_classification_task.get_labels(data_args.labels ) _snake_case = dict(enumerate(_SCREAMING_SNAKE_CASE ) ) _snake_case = len(_SCREAMING_SNAKE_CASE ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _snake_case = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_SCREAMING_SNAKE_CASE , idalabel=_SCREAMING_SNAKE_CASE , labelaid={label: i for i, label in enumerate(_SCREAMING_SNAKE_CASE )} , cache_dir=model_args.cache_dir , ) _snake_case = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) _snake_case = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir , ) # Get datasets _snake_case = ( TokenClassificationDataset( token_classification_task=_SCREAMING_SNAKE_CASE , data_dir=data_args.data_dir , tokenizer=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) _snake_case = ( TokenClassificationDataset( token_classification_task=_SCREAMING_SNAKE_CASE , data_dir=data_args.data_dir , tokenizer=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(__A , __A ) -> Tuple[List[int], List[int]]: _snake_case = np.argmax(_SCREAMING_SNAKE_CASE , axis=2 ) _snake_case = preds.shape _snake_case = [[] for _ in range(_SCREAMING_SNAKE_CASE )] _snake_case = [[] for _ in range(_SCREAMING_SNAKE_CASE )] for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(__A ) -> Dict: _snake_case = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "precision": precision_score(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "recall": recall_score(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "f1": fa_score(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), } # Data collator _snake_case = DataCollatorWithPadding(_SCREAMING_SNAKE_CASE , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer _snake_case = Trainer( model=_SCREAMING_SNAKE_CASE , args=_SCREAMING_SNAKE_CASE , train_dataset=_SCREAMING_SNAKE_CASE , eval_dataset=_SCREAMING_SNAKE_CASE , compute_metrics=_SCREAMING_SNAKE_CASE , data_collator=_SCREAMING_SNAKE_CASE , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _snake_case = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) _snake_case = trainer.evaluate() _snake_case = os.path.join(training_args.output_dir , 'eval_results.txt' ) if trainer.is_world_process_zero(): with open(_SCREAMING_SNAKE_CASE , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(' %s = %s' , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) writer.write('%s = %s\n' % (key, value) ) results.update(_SCREAMING_SNAKE_CASE ) # Predict if training_args.do_predict: _snake_case = TokenClassificationDataset( token_classification_task=_SCREAMING_SNAKE_CASE , data_dir=data_args.data_dir , tokenizer=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) _snake_case = trainer.predict(_SCREAMING_SNAKE_CASE ) _snake_case = align_predictions(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _snake_case = os.path.join(training_args.output_dir , 'test_results.txt' ) if trainer.is_world_process_zero(): with open(_SCREAMING_SNAKE_CASE , 'w' ) as writer: for key, value in metrics.items(): logger.info(' %s = %s' , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) writer.write('%s = %s\n' % (key, value) ) # Save predictions _snake_case = os.path.join(training_args.output_dir , 'test_predictions.txt' ) if trainer.is_world_process_zero(): with open(_SCREAMING_SNAKE_CASE , 'w' ) as writer: with open(os.path.join(data_args.data_dir , 'test.txt' ) , 'r' ) as f: token_classification_task.write_predictions_to_file(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return results def SCREAMING_SNAKE_CASE__ ( __A ) -> Optional[int]: main() if __name__ == "__main__": main()
351
'''simple docstring''' from ...processing_utils import ProcessorMixin class __UpperCAmelCase ( _lowerCamelCase ): __lowercase = """SpeechT5FeatureExtractor""" __lowercase = """SpeechT5Tokenizer""" def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" super().__init__(lowerCAmelCase_ , lowerCAmelCase_ ) def __call__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ): """simple docstring""" _snake_case = kwargs.pop('audio' , lowerCAmelCase_ ) _snake_case = kwargs.pop('text' , lowerCAmelCase_ ) _snake_case = kwargs.pop('text_target' , lowerCAmelCase_ ) _snake_case = kwargs.pop('audio_target' , lowerCAmelCase_ ) _snake_case = kwargs.pop('sampling_rate' , lowerCAmelCase_ ) if audio is not None and text is not None: raise ValueError( 'Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?' ) if audio_target is not None and text_target is not None: raise ValueError( 'Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?' ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( 'You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.' ) if audio is not None: _snake_case = self.feature_extractor(lowerCAmelCase_ , *lowerCAmelCase_ , sampling_rate=lowerCAmelCase_ , **lowerCAmelCase_ ) elif text is not None: _snake_case = self.tokenizer(lowerCAmelCase_ , **lowerCAmelCase_ ) else: _snake_case = None if audio_target is not None: _snake_case = self.feature_extractor(audio_target=lowerCAmelCase_ , *lowerCAmelCase_ , sampling_rate=lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = targets['input_values'] elif text_target is not None: _snake_case = self.tokenizer(lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = targets['input_ids'] else: _snake_case = None if inputs is None: return targets if targets is not None: _snake_case = labels _snake_case = targets.get('attention_mask' ) if decoder_attention_mask is not None: _snake_case = decoder_attention_mask return inputs def lowerCamelCase ( self , *lowerCAmelCase_ , **lowerCAmelCase_ ): """simple docstring""" _snake_case = kwargs.pop('input_values' , lowerCAmelCase_ ) _snake_case = kwargs.pop('input_ids' , lowerCAmelCase_ ) _snake_case = kwargs.pop('labels' , lowerCAmelCase_ ) if input_values is not None and input_ids is not None: raise ValueError('Cannot process both `input_values` and `input_ids` inputs.' ) if input_values is None and input_ids is None and labels is None: raise ValueError( 'You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.' ) if input_values is not None: _snake_case = self.feature_extractor.pad(lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ) elif input_ids is not None: _snake_case = self.tokenizer.pad(lowerCAmelCase_ , **lowerCAmelCase_ ) else: _snake_case = None if labels is not None: if "input_ids" in labels or (isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and "input_ids" in labels[0]): _snake_case = self.tokenizer.pad(lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = targets['input_ids'] else: _snake_case = self.feature_extractor.feature_size _snake_case = self.feature_extractor.num_mel_bins _snake_case = self.feature_extractor.pad(lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = feature_size_hack _snake_case = targets['input_values'] else: _snake_case = None if inputs is None: return targets if targets is not None: _snake_case = labels _snake_case = targets.get('attention_mask' ) if decoder_attention_mask is not None: _snake_case = decoder_attention_mask return inputs def lowerCamelCase ( self , *lowerCAmelCase_ , **lowerCAmelCase_ ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCamelCase ( self , *lowerCAmelCase_ , **lowerCAmelCase_ ): """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase_ , **lowerCAmelCase_ )
160
0
'''simple docstring''' def lowercase_ ( lowerCAmelCase__ : List[str] ): """simple docstring""" __UpperCAmelCase : int = abs(__lowerCAmelCase ) __UpperCAmelCase : Dict = 0 while n > 0: res += n % 10 n //= 10 return res def lowercase_ ( lowerCAmelCase__ : Optional[Any] ): """simple docstring""" __UpperCAmelCase : Any = abs(__lowerCAmelCase ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def lowercase_ ( lowerCAmelCase__ : List[Any] ): """simple docstring""" return sum(int(__lowerCAmelCase ) for c in str(abs(__lowerCAmelCase ) ) ) def lowercase_ ( ): """simple docstring""" from collections.abc import Callable from timeit import timeit def benchmark_a_function(lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[int] ) -> None: __UpperCAmelCase : Optional[Any] = f'{func.__name__}({value})' __UpperCAmelCase : List[str] = timeit(f'__main__.{call}' , setup="""import __main__""" ) print(f'{call:56} = {func(__lowerCAmelCase )} -- {timing:.4f} seconds' ) for value in (262144, 1125899906842624, 1267650600228229401496703205376): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(__lowerCAmelCase , __lowerCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
254
import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : Optional[int] = (KDPMaDiscreteScheduler,) __lowerCamelCase : List[str] = 10 def UpperCAmelCase__ ( self , **snake_case__ ) -> str: '''simple docstring''' UpperCAmelCase : int ={ '''num_train_timesteps''': 1100, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**snake_case__ ) return config def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=snake_case__ ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=snake_case__ , beta_end=snake_case__ ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=snake_case__ ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=snake_case__ ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' UpperCAmelCase : Optional[Any] =self.scheduler_classes[0] UpperCAmelCase : Optional[int] =self.get_scheduler_config(prediction_type='''v_prediction''' ) UpperCAmelCase : Optional[Any] =scheduler_class(**snake_case__ ) scheduler.set_timesteps(self.num_inference_steps ) UpperCAmelCase : str =self.dummy_model() UpperCAmelCase : Optional[Any] =self.dummy_sample_deter * scheduler.init_noise_sigma UpperCAmelCase : Union[str, Any] =sample.to(snake_case__ ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase : str =scheduler.scale_model_input(snake_case__ , snake_case__ ) UpperCAmelCase : Any =model(snake_case__ , snake_case__ ) UpperCAmelCase : Union[str, Any] =scheduler.step(snake_case__ , snake_case__ , snake_case__ ) UpperCAmelCase : int =output.prev_sample UpperCAmelCase : Dict =torch.sum(torch.abs(snake_case__ ) ) UpperCAmelCase : Optional[Any] =torch.mean(torch.abs(snake_case__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.69_34e-07 ) < 1e-2 assert abs(result_mean.item() - 6.11_12e-10 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 4.6_93_42_86_50_17_09_72e-07 ) < 1e-2 assert abs(result_mean.item() - 0.0002 ) < 1e-3 def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' if torch_device == "mps": return UpperCAmelCase : Any =self.scheduler_classes[0] UpperCAmelCase : Optional[int] =self.get_scheduler_config() UpperCAmelCase : Optional[Any] =scheduler_class(**snake_case__ ) scheduler.set_timesteps(self.num_inference_steps ) UpperCAmelCase : Optional[int] =self.dummy_model() UpperCAmelCase : Union[str, Any] =self.dummy_sample_deter * scheduler.init_noise_sigma UpperCAmelCase : str =sample.to(snake_case__ ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase : Dict =scheduler.scale_model_input(snake_case__ , snake_case__ ) UpperCAmelCase : Union[str, Any] =model(snake_case__ , snake_case__ ) UpperCAmelCase : List[str] =scheduler.step(snake_case__ , snake_case__ , snake_case__ ) UpperCAmelCase : Optional[int] =output.prev_sample UpperCAmelCase : Any =torch.sum(torch.abs(snake_case__ ) ) UpperCAmelCase : Union[str, Any] =torch.mean(torch.abs(snake_case__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3 def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' if torch_device == "mps": return UpperCAmelCase : List[Any] =self.scheduler_classes[0] UpperCAmelCase : Dict =self.get_scheduler_config() UpperCAmelCase : List[str] =scheduler_class(**snake_case__ ) scheduler.set_timesteps(self.num_inference_steps , device=snake_case__ ) UpperCAmelCase : int =self.dummy_model() UpperCAmelCase : Tuple =self.dummy_sample_deter.to(snake_case__ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: UpperCAmelCase : Optional[Any] =scheduler.scale_model_input(snake_case__ , snake_case__ ) UpperCAmelCase : int =model(snake_case__ , snake_case__ ) UpperCAmelCase : str =scheduler.step(snake_case__ , snake_case__ , snake_case__ ) UpperCAmelCase : List[str] =output.prev_sample UpperCAmelCase : List[str] =torch.sum(torch.abs(snake_case__ ) ) UpperCAmelCase : Dict =torch.mean(torch.abs(snake_case__ ) ) if str(snake_case__ ).startswith('''cpu''' ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3
348
0
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch lowerCAmelCase = logging.get_logger(__name__) class _a ( __SCREAMING_SNAKE_CASE ): _lowercase : Optional[Any] = ['pixel_values'] def __init__( self: Optional[Any] , UpperCamelCase_: Tuple = True , UpperCamelCase_: Union[str, Any] = None , UpperCamelCase_: List[Any] = PILImageResampling.BILINEAR , UpperCamelCase_: Any = True , UpperCamelCase_: List[str] = 1 / 255 , UpperCamelCase_: int = True , UpperCamelCase_: int = None , UpperCamelCase_: Optional[int] = True , **UpperCamelCase_: Optional[Any] , ) -> Tuple: """simple docstring""" super().__init__(**_a ) lowercase__ = size if size is not None else {'''shortest_edge''': 224} lowercase__ = get_size_dict(_a , default_to_square=_a ) lowercase__ = crop_size if crop_size is not None else {'''height''': 256, '''width''': 256} lowercase__ = get_size_dict(_a , param_name='''crop_size''' ) lowercase__ = do_resize lowercase__ = size lowercase__ = resample lowercase__ = do_rescale lowercase__ = rescale_factor lowercase__ = do_center_crop lowercase__ = crop_size lowercase__ = do_flip_channel_order def lowerCamelCase_ ( self: Dict , UpperCamelCase_: Optional[int] , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: Tuple = PIL.Image.BILINEAR , UpperCamelCase_: Any = None , **UpperCamelCase_: Any , ) -> int: """simple docstring""" lowercase__ = get_size_dict(_a , default_to_square=_a ) if "shortest_edge" not in size: raise ValueError(f'The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}' ) lowercase__ = get_resize_output_image_size(_a , size=size['''shortest_edge'''] , default_to_square=_a ) return resize(_a , size=_a , resample=_a , data_format=_a , **_a ) def lowerCamelCase_ ( self: Dict , UpperCamelCase_: List[str] , UpperCamelCase_: Dict , UpperCamelCase_: Any = None , **UpperCamelCase_: Optional[Any] , ) -> int: """simple docstring""" lowercase__ = get_size_dict(_a ) if "height" not in size or "width" not in size: raise ValueError(f'The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}' ) return center_crop(_a , size=(size['''height'''], size['''width''']) , data_format=_a , **_a ) def lowerCamelCase_ ( self: Tuple , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: Optional[int] , UpperCamelCase_: str = None , **UpperCamelCase_: List[Any] , ) -> Any: """simple docstring""" return rescale(_a , scale=_a , data_format=_a , **_a ) def lowerCamelCase_ ( self: int , UpperCamelCase_: str , UpperCamelCase_: Dict = None ) -> Dict: """simple docstring""" return flip_channel_order(_a , data_format=_a ) def lowerCamelCase_ ( self: str , UpperCamelCase_: Any , UpperCamelCase_: str = None , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: Optional[Any] = None , UpperCamelCase_: List[Any] = None , UpperCamelCase_: Dict = None , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: List[Any] = None , UpperCamelCase_: int = None , UpperCamelCase_: Union[str, Any] = None , UpperCamelCase_: int = ChannelDimension.FIRST , **UpperCamelCase_: List[str] , ) -> str: """simple docstring""" lowercase__ = do_resize if do_resize is not None else self.do_resize lowercase__ = resample if resample is not None else self.resample lowercase__ = do_rescale if do_rescale is not None else self.do_rescale lowercase__ = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase__ = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) lowercase__ = size if size is not None else self.size lowercase__ = get_size_dict(_a , default_to_square=_a ) lowercase__ = crop_size if crop_size is not None else self.crop_size lowercase__ = get_size_dict(_a , param_name='''crop_size''' ) lowercase__ = make_list_of_images(_a ) if not valid_images(_a ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) # All transformations expect numpy arrays. lowercase__ = [to_numpy_array(_a ) for image in images] if do_resize: lowercase__ = [self.resize(image=_a , size=_a , resample=_a ) for image in images] if do_center_crop: lowercase__ = [self.center_crop(image=_a , size=_a ) for image in images] if do_rescale: lowercase__ = [self.rescale(image=_a , scale=_a ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: lowercase__ = [self.flip_channel_order(image=_a ) for image in images] lowercase__ = [to_channel_dimension_format(_a , _a ) for image in images] lowercase__ = {'''pixel_values''': images} return BatchFeature(data=_a , tensor_type=_a ) def lowerCamelCase_ ( self: int , UpperCamelCase_: Optional[int] , UpperCamelCase_: Optional[int] = None ) -> Optional[Any]: """simple docstring""" lowercase__ = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_a ) != len(_a ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(_a ): lowercase__ = target_sizes.numpy() lowercase__ = [] for idx in range(len(_a ) ): lowercase__ = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=_a ) lowercase__ = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_a ) else: lowercase__ = logits.argmax(dim=1 ) lowercase__ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
361
def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" return base * power(SCREAMING_SNAKE_CASE , (exponent - 1) ) if exponent else 1 if __name__ == "__main__": print('Raise base to the power of exponent using recursion...') lowerCAmelCase = int(input('Enter the base: ').strip()) lowerCAmelCase = int(input('Enter the exponent: ').strip()) lowerCAmelCase = power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents lowerCAmelCase = 1 / result print(f"""{base} to the power of {exponent} is {result}""")
93
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available A_ = { "configuration_maskformer": ["MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "MaskFormerConfig"], "configuration_maskformer_swin": ["MaskFormerSwinConfig"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = ["MaskFormerFeatureExtractor"] A_ = ["MaskFormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ "MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "MaskFormerForInstanceSegmentation", "MaskFormerModel", "MaskFormerPreTrainedModel", ] A_ = [ "MaskFormerSwinBackbone", "MaskFormerSwinModel", "MaskFormerSwinPreTrainedModel", ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys A_ = _LazyModule(__name__, globals()["__file__"], _import_structure)
139
'''simple docstring''' from collections.abc import Generator from math import sin def lowerCAmelCase (__A): """simple docstring""" if len(__A) != 32: raise ValueError('''Input must be of length 32''') _a = b'''''' for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def lowerCAmelCase (__A): """simple docstring""" if i < 0: raise ValueError('''Input must be non-negative''') _a = format(__A , '''08x''')[-8:] _a = b'''''' for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('''utf-8''') return little_endian_hex def lowerCAmelCase (__A): """simple docstring""" _a = b'''''' for char in message: bit_string += format(__A , '''08b''').encode('''utf-8''') _a = format(len(__A) , '''064b''').encode('''utf-8''') # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(__A) % 512 != 448: bit_string += b"0" bit_string += to_little_endian(start_len[32:]) + to_little_endian(start_len[:32]) return bit_string def lowerCAmelCase (__A): """simple docstring""" if len(__A) % 512 != 0: raise ValueError('''Input must have length that\'s a multiple of 512''') for pos in range(0 , len(__A) , 512): _a = bit_string[pos : pos + 512] _a = [] for i in range(0 , 512 , 32): block_words.append(int(to_little_endian(block[i : i + 32]) , 2)) yield block_words def lowerCAmelCase (__A): """simple docstring""" if i < 0: raise ValueError('''Input must be non-negative''') _a = format(__A , '''032b''') _a = '''''' for c in i_str: new_str += "1" if c == "0" else "0" return int(__A , 2) def lowerCAmelCase (__A , __A): """simple docstring""" return (a + b) % 2**32 def lowerCAmelCase (__A , __A): """simple docstring""" if i < 0: raise ValueError('''Input must be non-negative''') if shift < 0: raise ValueError('''Shift must be non-negative''') return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def lowerCAmelCase (__A): """simple docstring""" _a = preprocess(__A) _a = [int(2**32 * abs(sin(i + 1))) for i in range(64)] # Starting states _a = 0x67_452_301 _a = 0xEF_CDA_B89 _a = 0x98_BAD_CFE _a = 0x10_325_476 _a = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(__A): _a = aa _a = ba _a = ca _a = da # Hash current chunk for i in range(64): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f _a = d ^ (b & (c ^ d)) _a = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f _a = c ^ (d & (b ^ c)) _a = (5 * i + 1) % 16 elif i <= 47: _a = b ^ c ^ d _a = (3 * i + 5) % 16 else: _a = c ^ (b | not_aa(__A)) _a = (7 * i) % 16 _a = (f + a + added_consts[i] + block_words[g]) % 2**32 _a = d _a = c _a = b _a = sum_aa(__A , left_rotate_aa(__A , shift_amounts[i])) # Add hashed chunk to running total _a = sum_aa(__A , __A) _a = sum_aa(__A , __A) _a = sum_aa(__A , __A) _a = sum_aa(__A , __A) _a = reformat_hex(__A) + reformat_hex(__A) + reformat_hex(__A) + reformat_hex(__A) return digest if __name__ == "__main__": import doctest doctest.testmod()
211
0
'''simple docstring''' import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class UpperCAmelCase : def __init__( self : Union[str, Any], a_ : Optional[Any], a_ : str=2, a_ : Dict=True, a_ : Optional[Any]=False, a_ : Tuple=10, a_ : Any=3, a_ : Dict=32 * 4, a_ : str=32 * 6, a_ : int=4, a_ : Dict=32, ): """simple docstring""" UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = is_training UpperCamelCase__ = use_auxiliary_loss UpperCamelCase__ = num_queries UpperCamelCase__ = num_channels UpperCamelCase__ = min_size UpperCamelCase__ = max_size UpperCamelCase__ = num_labels UpperCamelCase__ = mask_feature_size def lowercase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase__ = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _A ) UpperCamelCase__ = torch.ones([self.batch_size, self.min_size, self.max_size], device=_A ) UpperCamelCase__ = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size], device=_A ) > 0.5 ).float() UpperCamelCase__ = (torch.rand((self.batch_size, self.num_labels), device=_A ) > 0.5).long() UpperCamelCase__ = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def lowercase_ ( self : Tuple ): """simple docstring""" return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1], ), decoder_config=DetrConfig( decoder_ffn_dim=128, num_queries=self.num_queries, decoder_attention_heads=2, d_model=self.mask_feature_size, ), mask_feature_size=self.mask_feature_size, fpn_feature_size=self.mask_feature_size, num_channels=self.num_channels, num_labels=self.num_labels, ) def lowercase_ ( self : Tuple ): """simple docstring""" UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self.prepare_config_and_inputs() UpperCamelCase__ = {"pixel_values": pixel_values, "pixel_mask": pixel_mask} return config, inputs_dict def lowercase_ ( self : str, a_ : Optional[int], a_ : Dict ): """simple docstring""" UpperCamelCase__ = output.encoder_hidden_states UpperCamelCase__ = output.pixel_decoder_hidden_states UpperCamelCase__ = output.transformer_decoder_hidden_states self.parent.assertTrue(len(_A ), len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_A ), len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_A ), config.decoder_config.decoder_layers ) def lowercase_ ( self : Tuple, a_ : List[str], a_ : Dict, a_ : Any, a_ : Optional[int]=False ): """simple docstring""" with torch.no_grad(): UpperCamelCase__ = MaskFormerModel(config=_A ) model.to(_A ) model.eval() UpperCamelCase__ = model(pixel_values=_A, pixel_mask=_A ) UpperCamelCase__ = model(_A, output_hidden_states=_A ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape, (self.batch_size, self.num_queries, self.mask_feature_size), ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_A, _A ) def lowercase_ ( self : Tuple, a_ : int, a_ : str, a_ : Dict, a_ : Optional[Any], a_ : int ): """simple docstring""" UpperCamelCase__ = MaskFormerForInstanceSegmentation(config=_A ) model.to(_A ) model.eval() def comm_check_on_output(a_ : Tuple ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape, (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4), ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape, (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): UpperCamelCase__ = model(pixel_values=_A, pixel_mask=_A ) UpperCamelCase__ = model(_A ) comm_check_on_output(_A ) UpperCamelCase__ = model( pixel_values=_A, pixel_mask=_A, mask_labels=_A, class_labels=_A ) comm_check_on_output(_A ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape, torch.Size([1] ) ) @require_torch class UpperCAmelCase ( snake_case__ , snake_case__ , unittest.TestCase): _lowerCamelCase : List[str] = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () _lowerCamelCase : str = ( {"""feature-extraction""": MaskFormerModel, """image-segmentation""": MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) _lowerCamelCase : int = False _lowerCamelCase : str = False _lowerCamelCase : Optional[int] = False _lowerCamelCase : Optional[int] = False def lowercase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase__ = MaskFormerModelTester(self ) UpperCamelCase__ = ConfigTester(self, config_class=_A, has_text_modality=_A ) def lowercase_ ( self : List[Any] ): """simple docstring""" self.config_tester.run_common_tests() def lowercase_ ( self : Tuple ): """simple docstring""" UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(_A, **_A, output_hidden_states=_A ) def lowercase_ ( self : Tuple ): """simple docstring""" UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*_A ) @unittest.skip(reason="MaskFormer does not use inputs_embeds" ) def lowercase_ ( self : str ): """simple docstring""" pass @unittest.skip(reason="MaskFormer does not have a get_input_embeddings method" ) def lowercase_ ( self : List[str] ): """simple docstring""" pass @unittest.skip(reason="MaskFormer is not a generative model" ) def lowercase_ ( self : List[str] ): """simple docstring""" pass @unittest.skip(reason="MaskFormer does not use token embeddings" ) def lowercase_ ( self : List[Any] ): """simple docstring""" pass @require_torch_multi_gpu @unittest.skip( reason="MaskFormer has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def lowercase_ ( self : Dict ): """simple docstring""" pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowercase_ ( self : Union[str, Any] ): """simple docstring""" pass def lowercase_ ( self : int ): """simple docstring""" UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ = model_class(_A ) UpperCamelCase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ = [*signature.parameters.keys()] UpperCamelCase__ = ["pixel_values"] self.assertListEqual(arg_names[:1], _A ) @slow def lowercase_ ( self : Dict ): """simple docstring""" for model_name in ["facebook/maskformer-swin-small-coco"]: UpperCamelCase__ = MaskFormerModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def lowercase_ ( self : List[str] ): """simple docstring""" UpperCamelCase__ = (self.model_tester.min_size,) * 2 UpperCamelCase__ = { "pixel_values": torch.randn((2, 3, *size), device=_A ), "mask_labels": torch.randn((2, 10, *size), device=_A ), "class_labels": torch.zeros(2, 10, device=_A ).long(), } UpperCamelCase__ = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(_A ) UpperCamelCase__ = model(**_A ) self.assertTrue(outputs.loss is not None ) def lowercase_ ( self : int ): """simple docstring""" UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(_A, **_A, output_hidden_states=_A ) def lowercase_ ( self : str ): """simple docstring""" UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ = model_class(_A ).to(_A ) UpperCamelCase__ = model(**_A, output_attentions=_A ) self.assertTrue(outputs.attentions is not None ) def lowercase_ ( self : int ): """simple docstring""" if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss UpperCamelCase__ = self.all_model_classes[1] UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() UpperCamelCase__ = model_class(_A ) model.to(_A ) model.train() UpperCamelCase__ = model(_A, mask_labels=_A, class_labels=_A ).loss loss.backward() def lowercase_ ( self : str ): """simple docstring""" UpperCamelCase__ = self.all_model_classes[1] UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() UpperCamelCase__ = True UpperCamelCase__ = True UpperCamelCase__ = model_class(_A ) model.to(_A ) model.train() UpperCamelCase__ = model(_A, mask_labels=_A, class_labels=_A ) UpperCamelCase__ = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() UpperCamelCase__ = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't UpperCamelCase__ = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() UpperCamelCase__ = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_A ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) __lowercase: Dict = 1e-4 def SCREAMING_SNAKE_CASE__( ) -> Any: '''simple docstring''' UpperCamelCase__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_vision @slow class UpperCAmelCase ( unittest.TestCase): @cached_property def lowercase_ ( self : Union[str, Any] ): """simple docstring""" return ( MaskFormerImageProcessor.from_pretrained("facebook/maskformer-swin-small-coco" ) if is_vision_available() else None ) def lowercase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase__ = MaskFormerModel.from_pretrained("facebook/maskformer-swin-small-coco" ).to(_A ) UpperCamelCase__ = self.default_image_processor UpperCamelCase__ = prepare_img() UpperCamelCase__ = image_processor(_A, return_tensors="pt" ).to(_A ) UpperCamelCase__ = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_A, (1, 3, 800, 1088) ) with torch.no_grad(): UpperCamelCase__ = model(**_A ) UpperCamelCase__ = torch.tensor( [[-0.0_482, 0.9_228, 0.4_951], [-0.2_547, 0.8_017, 0.8_527], [-0.0_069, 0.3_385, -0.0_089]] ).to(_A ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3], _A, atol=_A ) ) UpperCamelCase__ = torch.tensor( [[-0.8_422, -0.8_434, -0.9_718], [-1.0_144, -0.5_565, -0.4_195], [-1.0_038, -0.4_484, -0.1_961]] ).to(_A ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3], _A, atol=_A ) ) UpperCamelCase__ = torch.tensor( [[0.2_852, -0.0_159, 0.9_735], [0.6_254, 0.1_858, 0.8_529], [-0.0_680, -0.4_116, 1.8_413]] ).to(_A ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3], _A, atol=_A ) ) def lowercase_ ( self : Dict ): """simple docstring""" UpperCamelCase__ = ( MaskFormerForInstanceSegmentation.from_pretrained("facebook/maskformer-swin-small-coco" ) .to(_A ) .eval() ) UpperCamelCase__ = self.default_image_processor UpperCamelCase__ = prepare_img() UpperCamelCase__ = image_processor(_A, return_tensors="pt" ).to(_A ) UpperCamelCase__ = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_A, (1, 3, 800, 1088) ) with torch.no_grad(): UpperCamelCase__ = model(**_A ) # masks_queries_logits UpperCamelCase__ = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape, (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4), ) UpperCamelCase__ = [ [-1.3_737_124, -1.7_724_937, -1.9_364_233], [-1.5_977_281, -1.9_867_939, -2.1_523_695], [-1.5_795_398, -1.9_269_832, -2.093_942], ] UpperCamelCase__ = torch.tensor(_A ).to(_A ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3], _A, atol=_A ) ) # class_queries_logits UpperCamelCase__ = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape, (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) UpperCamelCase__ = torch.tensor( [ [1.6_5_1_2e0_0, -5.2_5_7_2e0_0, -3.3_5_1_9e0_0], [3.6_1_6_9e-0_2, -5.9_0_2_5e0_0, -2.9_3_1_3e0_0], [1.0_7_6_6e-0_4, -7.7_6_3_0e0_0, -5.1_2_6_3e0_0], ] ).to(_A ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3], _A, atol=_A ) ) def lowercase_ ( self : Tuple ): """simple docstring""" UpperCamelCase__ = ( MaskFormerForInstanceSegmentation.from_pretrained("facebook/maskformer-resnet101-coco-stuff" ) .to(_A ) .eval() ) UpperCamelCase__ = self.default_image_processor UpperCamelCase__ = prepare_img() UpperCamelCase__ = image_processor(_A, return_tensors="pt" ).to(_A ) UpperCamelCase__ = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_A, (1, 3, 800, 1088) ) with torch.no_grad(): UpperCamelCase__ = model(**_A ) # masks_queries_logits UpperCamelCase__ = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape, (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4), ) UpperCamelCase__ = [[-0.9_046, -2.6_366, -4.6_062], [-3.4_179, -5.7_890, -8.8_057], [-4.9_179, -7.6_560, -10.7_711]] UpperCamelCase__ = torch.tensor(_A ).to(_A ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3], _A, atol=_A ) ) # class_queries_logits UpperCamelCase__ = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape, (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) UpperCamelCase__ = torch.tensor( [[4.7_188, -3.2_585, -2.8_857], [6.6_871, -2.9_181, -1.2_487], [7.2_449, -2.2_764, -2.1_874]] ).to(_A ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3], _A, atol=_A ) ) def lowercase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase__ = ( MaskFormerForInstanceSegmentation.from_pretrained("facebook/maskformer-swin-small-coco" ) .to(_A ) .eval() ) UpperCamelCase__ = self.default_image_processor UpperCamelCase__ = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )], segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )], return_tensors="pt", ) UpperCamelCase__ = inputs["pixel_values"].to(_A ) UpperCamelCase__ = [el.to(_A ) for el in inputs["mask_labels"]] UpperCamelCase__ = [el.to(_A ) for el in inputs["class_labels"]] with torch.no_grad(): UpperCamelCase__ = model(**_A ) self.assertTrue(outputs.loss is not None )
363
'''simple docstring''' def SCREAMING_SNAKE_CASE__( _UpperCamelCase : list ) -> float: '''simple docstring''' UpperCamelCase__ = 0 while len(_UpperCamelCase ) > 1: UpperCamelCase__ = 0 # Consider two files with minimum cost to be merged for _ in range(2 ): UpperCamelCase__ = files.index(min(_UpperCamelCase ) ) temp += files[min_index] files.pop(_UpperCamelCase ) files.append(_UpperCamelCase ) optimal_merge_cost += temp return optimal_merge_cost if __name__ == "__main__": import doctest doctest.testmod()
31
0
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import numpy as np import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForMaskedImageModeling, HfArgumentParser, Trainer, TrainingArguments, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version __a: Optional[int] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt""") __a: Dict = list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING.keys()) __a: Union[str, Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCAmelCase : '''simple docstring''' SCREAMING_SNAKE_CASE = field( default="cifar10" , metadata={"help": "Name of a dataset from the datasets package"} ) SCREAMING_SNAKE_CASE = field( default=a__ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) SCREAMING_SNAKE_CASE = field( default=a__ , metadata={"help": "The column name of the images in the files. If not set, will try to use 'image' or 'img'."} , ) SCREAMING_SNAKE_CASE = field(default=a__ , metadata={"help": "A folder containing the training data."} ) SCREAMING_SNAKE_CASE = field(default=a__ , metadata={"help": "A folder containing the validation data."} ) SCREAMING_SNAKE_CASE = field( default=0.15 , metadata={"help": "Percent to split off of train for validation."} ) SCREAMING_SNAKE_CASE = field(default=3_2 , metadata={"help": "The size of the square patches to use for masking."} ) SCREAMING_SNAKE_CASE = field( default=0.6 , metadata={"help": "Percentage of patches to mask."} , ) SCREAMING_SNAKE_CASE = field( default=a__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) SCREAMING_SNAKE_CASE = field( default=a__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def _lowerCAmelCase( self ) -> str: lowercase__ : List[str] = {} if self.train_dir is not None: lowercase__ : str = self.train_dir if self.validation_dir is not None: lowercase__ : Union[str, Any] = self.validation_dir lowercase__ : Any = data_files if data_files else None @dataclass class UpperCAmelCase : '''simple docstring''' SCREAMING_SNAKE_CASE = field( default=a__ , metadata={ "help": ( "The model checkpoint for weights initialization. Can be a local path to a pytorch_model.bin or a " "checkpoint identifier on the hub. " "Don't set if you want to train a model from scratch." ) } , ) SCREAMING_SNAKE_CASE = field( default=a__ , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(a__ )} , ) SCREAMING_SNAKE_CASE = field( default=a__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) SCREAMING_SNAKE_CASE = field( default=a__ , metadata={ "help": ( "Override some existing default config settings when a model is trained from scratch. Example: " "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index" ) } , ) SCREAMING_SNAKE_CASE = field( default=a__ , metadata={"help": "Where do you want to store (cache) the pretrained models/datasets downloaded from the hub"} , ) SCREAMING_SNAKE_CASE = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) SCREAMING_SNAKE_CASE = field(default=a__ , metadata={"help": "Name or path of preprocessor config."} ) SCREAMING_SNAKE_CASE = field( default=a__ , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) SCREAMING_SNAKE_CASE = field( default=a__ , metadata={ "help": ( "The size (resolution) of each image. If not specified, will use `image_size` of the configuration." ) } , ) SCREAMING_SNAKE_CASE = field( default=a__ , metadata={ "help": ( "The size (resolution) of each patch. If not specified, will use `patch_size` of the configuration." ) } , ) SCREAMING_SNAKE_CASE = field( default=a__ , metadata={"help": "Stride to use for the encoder."} , ) class UpperCAmelCase : '''simple docstring''' def __init__( self , __lowerCAmelCase=192 , __lowerCAmelCase=32 , __lowerCAmelCase=4 , __lowerCAmelCase=0.6 ) -> Optional[int]: lowercase__ : List[str] = input_size lowercase__ : str = mask_patch_size lowercase__ : List[Any] = model_patch_size lowercase__ : int = mask_ratio if self.input_size % self.mask_patch_size != 0: raise ValueError('''Input size must be divisible by mask patch size''' ) if self.mask_patch_size % self.model_patch_size != 0: raise ValueError('''Mask patch size must be divisible by model patch size''' ) lowercase__ : Any = self.input_size // self.mask_patch_size lowercase__ : List[str] = self.mask_patch_size // self.model_patch_size lowercase__ : List[Any] = self.rand_size**2 lowercase__ : Optional[Any] = int(np.ceil(self.token_count * self.mask_ratio ) ) def __call__( self ) -> Optional[Any]: lowercase__ : Optional[Any] = np.random.permutation(self.token_count )[: self.mask_count] lowercase__ : str = np.zeros(self.token_count , dtype=__lowerCAmelCase ) lowercase__ : List[Any] = 1 lowercase__ : Union[str, Any] = mask.reshape((self.rand_size, self.rand_size) ) lowercase__ : List[str] = mask.repeat(self.scale , axis=0 ).repeat(self.scale , axis=1 ) return torch.tensor(mask.flatten() ) def __UpperCamelCase ( UpperCAmelCase ): lowercase__ : Tuple = torch.stack([example['''pixel_values'''] for example in examples] ) lowercase__ : Union[str, Any] = torch.stack([example['''mask'''] for example in examples] ) return {"pixel_values": pixel_values, "bool_masked_pos": mask} def __UpperCamelCase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase__ : Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase__ , lowercase__ , lowercase__ : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase__ , lowercase__ , lowercase__ : int = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_mim''' , UpperCAmelCase , UpperCAmelCase ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowercase__ : Optional[int] = training_args.get_process_log_level() logger.setLevel(UpperCAmelCase ) transformers.utils.logging.set_verbosity(UpperCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. lowercase__ : Optional[Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase__ : str = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Initialize our dataset. lowercase__ : List[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. lowercase__ : List[Any] = None if '''validation''' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , UpperCAmelCase ) and data_args.train_val_split > 0.0: lowercase__ : Optional[Any] = ds['''train'''].train_test_split(data_args.train_val_split ) lowercase__ : Optional[int] = split['''train'''] lowercase__ : Union[str, Any] = split['''test'''] # Create config # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase__ : List[str] = { '''cache_dir''': model_args.cache_dir, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.config_name_or_path: lowercase__ : Union[str, Any] = AutoConfig.from_pretrained(model_args.config_name_or_path , **UpperCAmelCase ) elif model_args.model_name_or_path: lowercase__ : Optional[Any] = AutoConfig.from_pretrained(model_args.model_name_or_path , **UpperCAmelCase ) else: lowercase__ : Optional[int] = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.config_overrides is not None: logger.info(F"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(F"""New config: {config}""" ) # make sure the decoder_type is "simmim" (only relevant for BEiT) if hasattr(UpperCAmelCase , '''decoder_type''' ): lowercase__ : Tuple = '''simmim''' # adapt config lowercase__ : List[Any] = model_args.image_size if model_args.image_size is not None else config.image_size lowercase__ : Dict = model_args.patch_size if model_args.patch_size is not None else config.patch_size lowercase__ : Tuple = ( model_args.encoder_stride if model_args.encoder_stride is not None else config.encoder_stride ) config.update( { '''image_size''': model_args.image_size, '''patch_size''': model_args.patch_size, '''encoder_stride''': model_args.encoder_stride, } ) # create image processor if model_args.image_processor_name: lowercase__ : List[Any] = AutoImageProcessor.from_pretrained(model_args.image_processor_name , **UpperCAmelCase ) elif model_args.model_name_or_path: lowercase__ : Any = AutoImageProcessor.from_pretrained(model_args.model_name_or_path , **UpperCAmelCase ) else: lowercase__ : Tuple = { conf.model_type: image_processor_class for conf, image_processor_class in IMAGE_PROCESSOR_MAPPING.items() } lowercase__ : Tuple = IMAGE_PROCESSOR_TYPES[model_args.model_type]() # create model if model_args.model_name_or_path: lowercase__ : List[str] = AutoModelForMaskedImageModeling.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('''Training new model from scratch''' ) lowercase__ : Tuple = AutoModelForMaskedImageModeling.from_config(UpperCAmelCase ) if training_args.do_train: lowercase__ : List[str] = ds['''train'''].column_names else: lowercase__ : int = ds['''validation'''].column_names if data_args.image_column_name is not None: lowercase__ : Tuple = data_args.image_column_name elif "image" in column_names: lowercase__ : List[Any] = '''image''' elif "img" in column_names: lowercase__ : Optional[int] = '''img''' else: lowercase__ : Optional[Any] = column_names[0] # transformations as done in original SimMIM paper # source: https://github.com/microsoft/SimMIM/blob/main/data/data_simmim.py lowercase__ : Dict = Compose( [ Lambda(lambda UpperCAmelCase : img.convert('''RGB''' ) if img.mode != "RGB" else img ), RandomResizedCrop(model_args.image_size , scale=(0.6_7, 1.0) , ratio=(3.0 / 4.0, 4.0 / 3.0) ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) # create mask generator lowercase__ : str = MaskGenerator( input_size=model_args.image_size , mask_patch_size=data_args.mask_patch_size , model_patch_size=model_args.patch_size , mask_ratio=data_args.mask_ratio , ) def preprocess_images(UpperCAmelCase ): lowercase__ : Optional[int] = [transforms(UpperCAmelCase ) for image in examples[image_column_name]] lowercase__ : List[str] = [mask_generator() for i in range(len(examples[image_column_name] ) )] return examples if training_args.do_train: if "train" not in ds: raise ValueError('''--do_train requires a train dataset''' ) if data_args.max_train_samples is not None: lowercase__ : Tuple = ds['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(UpperCAmelCase ) if training_args.do_eval: if "validation" not in ds: raise ValueError('''--do_eval requires a validation dataset''' ) if data_args.max_eval_samples is not None: lowercase__ : Dict = ( ds['''validation'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(UpperCAmelCase ) # Initialize our trainer lowercase__ : List[Any] = Trainer( model=UpperCAmelCase , args=UpperCAmelCase , train_dataset=ds['''train'''] if training_args.do_train else None , eval_dataset=ds['''validation'''] if training_args.do_eval else None , tokenizer=UpperCAmelCase , data_collator=UpperCAmelCase , ) # Training if training_args.do_train: lowercase__ : int = None if training_args.resume_from_checkpoint is not None: lowercase__ : List[Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowercase__ : Dict = last_checkpoint lowercase__ : Optional[int] = trainer.train(resume_from_checkpoint=UpperCAmelCase ) trainer.save_model() trainer.log_metrics('''train''' , train_result.metrics ) trainer.save_metrics('''train''' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowercase__ : int = trainer.evaluate() trainer.log_metrics('''eval''' , UpperCAmelCase ) trainer.save_metrics('''eval''' , UpperCAmelCase ) # Write model card and (optionally) push to hub lowercase__ : Optional[int] = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''masked-image-modeling''', '''dataset''': data_args.dataset_name, '''tags''': ['''masked-image-modeling'''], } if training_args.push_to_hub: trainer.push_to_hub(**UpperCAmelCase ) else: trainer.create_model_card(**UpperCAmelCase ) if __name__ == "__main__": main()
198
'''simple docstring''' def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): def update_area_of_max_square(UpperCAmelCase , UpperCAmelCase ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 lowercase__ : int = update_area_of_max_square(UpperCAmelCase , col + 1 ) lowercase__ : Any = update_area_of_max_square(row + 1 , col + 1 ) lowercase__ : str = update_area_of_max_square(row + 1 , UpperCAmelCase ) if mat[row][col]: lowercase__ : List[Any] = 1 + min([right, diagonal, down] ) lowercase__ : List[Any] = max(largest_square_area[0] , UpperCAmelCase ) return sub_problem_sol else: return 0 lowercase__ : Dict = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): def update_area_of_max_square_using_dp_array( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] lowercase__ : int = update_area_of_max_square_using_dp_array(UpperCAmelCase , col + 1 , UpperCAmelCase ) lowercase__ : Optional[int] = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , UpperCAmelCase ) lowercase__ : Any = update_area_of_max_square_using_dp_array(row + 1 , UpperCAmelCase , UpperCAmelCase ) if mat[row][col]: lowercase__ : Optional[int] = 1 + min([right, diagonal, down] ) lowercase__ : Any = max(largest_square_area[0] , UpperCAmelCase ) lowercase__ : int = sub_problem_sol return sub_problem_sol else: return 0 lowercase__ : Any = [0] lowercase__ : List[Any] = [[-1] * cols for _ in range(UpperCAmelCase )] update_area_of_max_square_using_dp_array(0 , 0 , UpperCAmelCase ) return largest_square_area[0] def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lowercase__ : Optional[int] = [[0] * (cols + 1) for _ in range(rows + 1 )] lowercase__ : str = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): lowercase__ : str = dp_array[row][col + 1] lowercase__ : Optional[Any] = dp_array[row + 1][col + 1] lowercase__ : str = dp_array[row + 1][col] if mat[row][col] == 1: lowercase__ : Dict = 1 + min(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowercase__ : str = max(dp_array[row][col] , UpperCAmelCase ) else: lowercase__ : Any = 0 return largest_square_area def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lowercase__ : List[str] = [0] * (cols + 1) lowercase__ : str = [0] * (cols + 1) lowercase__ : Tuple = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): lowercase__ : List[Any] = current_row[col + 1] lowercase__ : Any = next_row[col + 1] lowercase__ : Optional[Any] = next_row[col] if mat[row][col] == 1: lowercase__ : List[str] = 1 + min(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowercase__ : List[str] = max(current_row[col] , UpperCAmelCase ) else: lowercase__ : int = 0 lowercase__ : int = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
198
1
def A ( _UpperCAmelCase : List[Any] ) -> str: '''simple docstring''' stooge(_snake_case , 0 , len(_snake_case ) - 1 ) return arr def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : int ) -> List[str]: '''simple docstring''' if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: _UpperCAmelCase = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: _UpperCAmelCase = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(_snake_case , _snake_case , (h - t) ) # Recursively sort last 2/3 elements stooge(_snake_case , i + t , (_snake_case) ) # Recursively sort first 2/3 elements stooge(_snake_case , _snake_case , (h - t) ) if __name__ == "__main__": UpperCAmelCase__ = input("Enter numbers separated by a comma:\n").strip() UpperCAmelCase__ = [int(item) for item in user_input.split(",")] print(stooge_sort(unsorted))
369
from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class __lowerCAmelCase : def __init__( self : str , A : str , A : Dict=13 , A : int=7 , A : Tuple=True , A : Union[str, Any]=True , A : Any=True , A : Dict=True , A : Dict=99 , A : Tuple=32 , A : Any=2 , A : Any=4 , A : Any=37 , A : Optional[Any]="gelu" , A : List[Any]=0.1 , A : Tuple=0.1 , A : Optional[Any]=5_12 , A : Tuple=16 , A : int=2 , A : List[str]=0.0_2 , A : int=False , A : List[Any]=True , A : Optional[Any]="None" , A : Union[str, Any]=3 , A : List[str]=4 , A : List[Any]=None , ) -> int: """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = num_choices _UpperCAmelCase = relative_attention _UpperCAmelCase = position_biased_input _UpperCAmelCase = pos_att_type _UpperCAmelCase = scope def _lowerCamelCase ( self : Any) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length]) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) _UpperCAmelCase = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=A , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCamelCase ( self : Union[str, Any] , A : Optional[int] , A : Tuple , A : int , A : Any , A : List[str] , A : List[str] , A : int) -> Tuple: """simple docstring""" _UpperCAmelCase = TFDebertaVaModel(config=A) _UpperCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _UpperCAmelCase = [input_ids, input_mask] _UpperCAmelCase = model(A) _UpperCAmelCase = model(A) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _lowerCamelCase ( self : str , A : Tuple , A : Tuple , A : Optional[int] , A : List[str] , A : Any , A : List[str] , A : List[str]) -> Optional[int]: """simple docstring""" _UpperCAmelCase = TFDebertaVaForMaskedLM(config=A) _UpperCAmelCase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } _UpperCAmelCase = model(A) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _lowerCamelCase ( self : List[Any] , A : Tuple , A : Tuple , A : Optional[int] , A : Optional[int] , A : List[Any] , A : Any , A : Optional[int]) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFDebertaVaForSequenceClassification(config=A) _UpperCAmelCase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } _UpperCAmelCase = model(A) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def _lowerCamelCase ( self : Union[str, Any] , A : List[Any] , A : List[Any] , A : List[str] , A : Optional[Any] , A : int , A : Any , A : int) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFDebertaVaForTokenClassification(config=A) _UpperCAmelCase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } _UpperCAmelCase = model(A) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def _lowerCamelCase ( self : List[Any] , A : List[Any] , A : List[str] , A : Dict , A : Dict , A : Any , A : Tuple , A : List[Any]) -> List[str]: """simple docstring""" _UpperCAmelCase = TFDebertaVaForQuestionAnswering(config=A) _UpperCAmelCase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } _UpperCAmelCase = model(A) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def _lowerCamelCase ( self : Union[str, Any]) -> List[Any]: """simple docstring""" _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class __lowerCAmelCase ( A , A , unittest.TestCase ): UpperCamelCase = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) UpperCamelCase = ( { '''feature-extraction''': TFDebertaVaModel, '''fill-mask''': TFDebertaVaForMaskedLM, '''question-answering''': TFDebertaVaForQuestionAnswering, '''text-classification''': TFDebertaVaForSequenceClassification, '''token-classification''': TFDebertaVaForTokenClassification, '''zero-shot''': TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase = False UpperCamelCase = False def _lowerCamelCase ( self : int) -> Optional[int]: """simple docstring""" _UpperCAmelCase = TFDebertaVaModelTester(self) _UpperCAmelCase = ConfigTester(self , config_class=A , hidden_size=37) def _lowerCamelCase ( self : Optional[int]) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def _lowerCamelCase ( self : Tuple) -> Optional[int]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A) def _lowerCamelCase ( self : Tuple) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A) def _lowerCamelCase ( self : Tuple) -> str: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A) def _lowerCamelCase ( self : int) -> List[Any]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A) def _lowerCamelCase ( self : Dict) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A) @slow def _lowerCamelCase ( self : List[Any]) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = TFDebertaVaModel.from_pretrained('kamalkraj/deberta-v2-xlarge') self.assertIsNotNone(A) @require_tf class __lowerCAmelCase ( unittest.TestCase ): @unittest.skip(reason='Model not available yet') def _lowerCamelCase ( self : Optional[int]) -> Dict: """simple docstring""" pass @slow def _lowerCamelCase ( self : List[str]) -> Optional[int]: """simple docstring""" _UpperCAmelCase = TFDebertaVaModel.from_pretrained('kamalkraj/deberta-v2-xlarge') _UpperCAmelCase = tf.constant([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]]) _UpperCAmelCase = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) _UpperCAmelCase = model(A , attention_mask=A)[0] _UpperCAmelCase = tf.constant( [[[0.2_3_5_6, 0.1_9_4_8, 0.0_3_6_9], [-0.1_0_6_3, 0.3_5_8_6, -0.5_1_5_2], [-0.6_3_9_9, -0.0_2_5_9, -0.2_5_2_5]]]) tf.debugging.assert_near(output[:, 1:4, 1:4] , A , atol=1E-4)
290
0
def lowerCAmelCase_ ( A_ ,A_): UpperCamelCase__: str = len(A_) + 1 UpperCamelCase__: Dict = len(A_) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. UpperCamelCase__: str = [[0 for i in range(A_)] for j in range(A_)] # since string of zero length match pattern of zero length UpperCamelCase__: int = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 ,A_): UpperCamelCase__: Optional[int] = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 ,A_): UpperCamelCase__: List[str] = dp[0][j - 2] if pattern[j - 1] == "*" else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 ,A_): for j in range(1 ,A_): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": UpperCamelCase__: List[Any] = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: UpperCamelCase__: Any = 1 elif pattern[j - 2] in (input_string[i - 1], "."): UpperCamelCase__: int = dp[i - 1][j] else: UpperCamelCase__: int = 0 else: UpperCamelCase__: Optional[int] = 0 return bool(dp[-1][-1]) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") A__: Any = '''aab''' A__: List[Any] = '''c*a*b''' # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(f"{input_string} matches the given pattern {pattern}") else: print(f"{input_string} does not match with the given pattern {pattern}")
149
from ...configuration_utils import PretrainedConfig from ...utils import logging A__: Any = logging.get_logger(__name__) A__: List[str] = { '''google/pegasus-large''': '''https://huggingface.co/google/pegasus-large/resolve/main/config.json''', # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class _a ( UpperCamelCase__): """simple docstring""" UpperCamelCase__ = """pegasus""" UpperCamelCase__ = ["""past_key_values"""] UpperCamelCase__ = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self: List[str] , __lowerCamelCase: Dict=5_0265 , __lowerCamelCase: int=1024 , __lowerCamelCase: Dict=12 , __lowerCamelCase: Dict=4096 , __lowerCamelCase: str=16 , __lowerCamelCase: List[Any]=12 , __lowerCamelCase: int=4096 , __lowerCamelCase: Optional[Any]=16 , __lowerCamelCase: Union[str, Any]=0.0 , __lowerCamelCase: int=0.0 , __lowerCamelCase: List[str]=True , __lowerCamelCase: Union[str, Any]=True , __lowerCamelCase: List[Any]="gelu" , __lowerCamelCase: List[Any]=1024 , __lowerCamelCase: int=0.1 , __lowerCamelCase: Union[str, Any]=0.0 , __lowerCamelCase: Union[str, Any]=0.0 , __lowerCamelCase: Any=0.02 , __lowerCamelCase: Union[str, Any]=0 , __lowerCamelCase: str=False , __lowerCamelCase: Optional[int]=0 , __lowerCamelCase: Optional[Any]=1 , __lowerCamelCase: Optional[int]=1 , **__lowerCamelCase: Union[str, Any] , ): '''simple docstring''' UpperCamelCase__: Union[str, Any] = vocab_size UpperCamelCase__: List[Any] = max_position_embeddings UpperCamelCase__: Tuple = d_model UpperCamelCase__: str = encoder_ffn_dim UpperCamelCase__: Optional[int] = encoder_layers UpperCamelCase__: List[Any] = encoder_attention_heads UpperCamelCase__: Tuple = decoder_ffn_dim UpperCamelCase__: int = decoder_layers UpperCamelCase__: List[str] = decoder_attention_heads UpperCamelCase__: int = dropout UpperCamelCase__: List[str] = attention_dropout UpperCamelCase__: Tuple = activation_dropout UpperCamelCase__: Optional[int] = activation_function UpperCamelCase__: Dict = init_std UpperCamelCase__: Optional[Any] = encoder_layerdrop UpperCamelCase__: Any = decoder_layerdrop UpperCamelCase__: Optional[int] = use_cache UpperCamelCase__: Optional[int] = encoder_layers UpperCamelCase__: List[Any] = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , is_encoder_decoder=__lowerCamelCase , decoder_start_token_id=__lowerCamelCase , forced_eos_token_id=__lowerCamelCase , **__lowerCamelCase , ) @property def UpperCAmelCase_ ( self: Any ): '''simple docstring''' return self.encoder_attention_heads @property def UpperCAmelCase_ ( self: Tuple ): '''simple docstring''' return self.d_model
149
1
import functools def A ( a_ ,a_ ) -> int: # Validation if not isinstance(a_ ,a_ ) or not all(isinstance(a_ ,a_ ) for day in days ): raise ValueError('The parameter days should be a list of integers' ) if len(a_ ) != 3 or not all(isinstance(a_ ,a_ ) for cost in costs ): raise ValueError('The parameter costs should be a list of three integers' ) if len(a_ ) == 0: return 0 if min(a_ ) <= 0: raise ValueError('All days elements should be greater than 0' ) if max(a_ ) >= 366: raise ValueError('All days elements should be less than 366' ) __UpperCamelCase : str =set(a_ ) @functools.cache def dynamic_programming(a_ ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) ,costs[1] + dynamic_programming(index + 7 ) ,costs[2] + dynamic_programming(index + 30 ) ,) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
245
def A ( a_ ) -> bool: if number < 0: raise ValueError('number must not be negative' ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
245
1
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotSmallConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html _snake_case = '''platform''' import jax import jax.numpy as jnp from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, shift_tokens_right, ) def _UpperCamelCase ( snake_case__, snake_case__, snake_case__=None, snake_case__=None, snake_case__=None, snake_case__=None, snake_case__=None, snake_case__=None, ) -> Tuple: if attention_mask is None: __UpperCAmelCase : Optional[int] = np.where(input_ids != config.pad_token_id, 1, 0 ) if decoder_attention_mask is None: __UpperCAmelCase : List[str] = np.where(decoder_input_ids != config.pad_token_id, 1, 0 ) if head_mask is None: __UpperCAmelCase : Optional[Any] = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __UpperCAmelCase : List[str] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __UpperCAmelCase : Optional[Any] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class _snake_case : def __init__( self: Any , __lowerCamelCase: int , __lowerCamelCase: int=13 , __lowerCamelCase: Optional[Any]=7 , __lowerCamelCase: Union[str, Any]=True , __lowerCamelCase: List[Any]=False , __lowerCamelCase: Optional[int]=99 , __lowerCamelCase: Any=16 , __lowerCamelCase: List[str]=2 , __lowerCamelCase: Optional[int]=4 , __lowerCamelCase: Optional[Any]=4 , __lowerCamelCase: Any="gelu" , __lowerCamelCase: Any=0.1 , __lowerCamelCase: Tuple=0.1 , __lowerCamelCase: Tuple=32 , __lowerCamelCase: Optional[int]=2 , __lowerCamelCase: str=1 , __lowerCamelCase: Optional[int]=0 , __lowerCamelCase: str=0.02 , ) -> int: __UpperCAmelCase : Tuple = parent __UpperCAmelCase : int = batch_size __UpperCAmelCase : Optional[Any] = seq_length __UpperCAmelCase : Any = is_training __UpperCAmelCase : Dict = use_labels __UpperCAmelCase : int = vocab_size __UpperCAmelCase : Tuple = hidden_size __UpperCAmelCase : Optional[Any] = num_hidden_layers __UpperCAmelCase : Tuple = num_attention_heads __UpperCAmelCase : Optional[int] = intermediate_size __UpperCAmelCase : Union[str, Any] = hidden_act __UpperCAmelCase : str = hidden_dropout_prob __UpperCAmelCase : Tuple = attention_probs_dropout_prob __UpperCAmelCase : str = max_position_embeddings __UpperCAmelCase : int = eos_token_id __UpperCAmelCase : Any = pad_token_id __UpperCAmelCase : List[Any] = bos_token_id __UpperCAmelCase : Dict = initializer_range def _lowerCamelCase ( self: Optional[Any] ) -> Dict: __UpperCAmelCase : Any = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) __UpperCAmelCase : Tuple = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) __UpperCAmelCase : Dict = shift_tokens_right(__lowerCamelCase , 1 , 2 ) __UpperCAmelCase : Tuple = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=__lowerCamelCase , ) __UpperCAmelCase : Optional[Any] = prepare_blenderbot_inputs_dict(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return config, inputs_dict def _lowerCamelCase ( self: List[Any] ) -> List[str]: __UpperCAmelCase , __UpperCAmelCase : Tuple = self.prepare_config_and_inputs() return config, inputs_dict def _lowerCamelCase ( self: str , __lowerCamelCase: str , __lowerCamelCase: str , __lowerCamelCase: Tuple ) -> Tuple: __UpperCAmelCase : Optional[Any] = 20 __UpperCAmelCase : str = model_class_name(__lowerCamelCase ) __UpperCAmelCase : Dict = model.encode(inputs_dict["input_ids"] ) __UpperCAmelCase , __UpperCAmelCase : Any = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) __UpperCAmelCase : List[Any] = model.init_cache(decoder_input_ids.shape[0] , __lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4" ) __UpperCAmelCase : List[Any] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __UpperCAmelCase : int = model.decode( decoder_input_ids[:, :-1] , __lowerCamelCase , decoder_attention_mask=__lowerCamelCase , past_key_values=__lowerCamelCase , decoder_position_ids=__lowerCamelCase , ) __UpperCAmelCase : List[str] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) __UpperCAmelCase : int = model.decode( decoder_input_ids[:, -1:] , __lowerCamelCase , decoder_attention_mask=__lowerCamelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=__lowerCamelCase , ) __UpperCAmelCase : Dict = model.decode(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : Optional[int] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' ) def _lowerCamelCase ( self: List[str] , __lowerCamelCase: int , __lowerCamelCase: Tuple , __lowerCamelCase: Tuple ) -> Optional[Any]: __UpperCAmelCase : str = 20 __UpperCAmelCase : List[str] = model_class_name(__lowerCamelCase ) __UpperCAmelCase : Tuple = model.encode(inputs_dict["input_ids"] ) __UpperCAmelCase , __UpperCAmelCase : List[str] = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) __UpperCAmelCase : int = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) __UpperCAmelCase : Dict = model.init_cache(decoder_input_ids.shape[0] , __lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : Dict = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __UpperCAmelCase : Any = model.decode( decoder_input_ids[:, :-1] , __lowerCamelCase , decoder_attention_mask=__lowerCamelCase , past_key_values=__lowerCamelCase , decoder_position_ids=__lowerCamelCase , ) __UpperCAmelCase : str = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) __UpperCAmelCase : Tuple = model.decode( decoder_input_ids[:, -1:] , __lowerCamelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=__lowerCamelCase , decoder_position_ids=__lowerCamelCase , ) __UpperCAmelCase : List[Any] = model.decode(__lowerCamelCase , __lowerCamelCase , decoder_attention_mask=__lowerCamelCase ) __UpperCAmelCase : Optional[int] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' ) @require_flax class _snake_case ( unittest.TestCase ): lowerCamelCase__: int = 99 def _lowerCamelCase ( self: Any ) -> int: __UpperCAmelCase : Union[str, Any] = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) __UpperCAmelCase : Tuple = input_ids.shape[0] __UpperCAmelCase : Optional[Any] = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def _lowerCamelCase ( self: Optional[Any] ) -> List[str]: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = self._get_config_and_data() __UpperCAmelCase : str = FlaxBlenderbotSmallForConditionalGeneration(__lowerCamelCase ) __UpperCAmelCase : Dict = lm_model(input_ids=__lowerCamelCase ) __UpperCAmelCase : Any = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["logits"].shape , __lowerCamelCase ) def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]: __UpperCAmelCase : int = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) __UpperCAmelCase : Dict = FlaxBlenderbotSmallForConditionalGeneration(__lowerCamelCase ) __UpperCAmelCase : Any = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) __UpperCAmelCase : int = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) __UpperCAmelCase : Tuple = lm_model(input_ids=__lowerCamelCase , decoder_input_ids=__lowerCamelCase ) __UpperCAmelCase : Tuple = (*summary.shape, config.vocab_size) self.assertEqual(outputs["logits"].shape , __lowerCamelCase ) def _lowerCamelCase ( self: List[Any] ) -> List[str]: __UpperCAmelCase : Optional[Any] = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) __UpperCAmelCase : str = shift_tokens_right(__lowerCamelCase , 1 , 2 ) __UpperCAmelCase : Union[str, Any] = np.equal(__lowerCamelCase , 1 ).astype(np.floataa ).sum() __UpperCAmelCase : int = np.equal(__lowerCamelCase , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(__lowerCamelCase , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class _snake_case ( _lowercase , unittest.TestCase , _lowercase ): lowerCamelCase__: List[str] = True lowerCamelCase__: List[Any] = ( ( FlaxBlenderbotSmallModel, FlaxBlenderbotSmallForConditionalGeneration, ) if is_flax_available() else () ) lowerCamelCase__: Any = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else () def _lowerCamelCase ( self: List[Any] ) -> str: __UpperCAmelCase : Optional[int] = FlaxBlenderbotSmallModelTester(self ) def _lowerCamelCase ( self: int ) -> Optional[Any]: __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def _lowerCamelCase ( self: Optional[int] ) -> Any: __UpperCAmelCase , __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def _lowerCamelCase ( self: Any ) -> int: __UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __UpperCAmelCase : Optional[Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : Optional[int] = model_class(__lowerCamelCase ) @jax.jit def encode_jitted(__lowerCamelCase: Optional[int] , __lowerCamelCase: List[Any]=None , **__lowerCamelCase: Optional[int] ): return model.encode(input_ids=__lowerCamelCase , attention_mask=__lowerCamelCase ) with self.subTest("JIT Enabled" ): __UpperCAmelCase : List[str] = encode_jitted(**__lowerCamelCase ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): __UpperCAmelCase : Optional[Any] = encode_jitted(**__lowerCamelCase ).to_tuple() self.assertEqual(len(__lowerCamelCase ) , len(__lowerCamelCase ) ) for jitted_output, output in zip(__lowerCamelCase , __lowerCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) def _lowerCamelCase ( self: List[str] ) -> Union[str, Any]: __UpperCAmelCase , __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __UpperCAmelCase : Union[str, Any] = model_class(__lowerCamelCase ) __UpperCAmelCase : Tuple = model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"] ) __UpperCAmelCase : Optional[Any] = { "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(__lowerCamelCase: Union[str, Any] , __lowerCamelCase: List[str] , __lowerCamelCase: List[Any] ): return model.decode( decoder_input_ids=__lowerCamelCase , decoder_attention_mask=__lowerCamelCase , encoder_outputs=__lowerCamelCase , ) with self.subTest("JIT Enabled" ): __UpperCAmelCase : List[Any] = decode_jitted(**__lowerCamelCase ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): __UpperCAmelCase : Any = decode_jitted(**__lowerCamelCase ).to_tuple() self.assertEqual(len(__lowerCamelCase ) , len(__lowerCamelCase ) ) for jitted_output, output in zip(__lowerCamelCase , __lowerCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def _lowerCamelCase ( self: Dict ) -> List[Any]: for model_class_name in self.all_model_classes: __UpperCAmelCase : Union[str, Any] = model_class_name.from_pretrained("facebook/blenderbot_small-90M" ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids __UpperCAmelCase : List[Any] = np.ones((1, 1) ) * model.config.eos_token_id __UpperCAmelCase : Dict = model(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase )
157
import numpy as np import datasets _snake_case = ''' Compute the Mahalanobis Distance Mahalonobis distance is the distance between a point and a distribution. And not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance. It was introduced by Prof. P. C. Mahalanobis in 1936 and has been used in various statistical applications ever since [source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/] ''' _snake_case = '''\ @article{de2000mahalanobis, title={The mahalanobis distance}, author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L}, journal={Chemometrics and intelligent laboratory systems}, volume={50}, number={1}, pages={1--18}, year={2000}, publisher={Elsevier} } ''' _snake_case = ''' Args: X: List of datapoints to be compared with the `reference_distribution`. reference_distribution: List of datapoints from the reference distribution we want to compare to. Returns: mahalanobis: The Mahalonobis distance for each datapoint in `X`. Examples: >>> mahalanobis_metric = datasets.load_metric("mahalanobis") >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]]) >>> print(results) {\'mahalanobis\': array([0.5])} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _snake_case ( datasets.Metric ): def _lowerCamelCase ( self: int ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "X": datasets.Sequence(datasets.Value("float" , id="sequence" ) , id="X" ), } ) , ) def _lowerCamelCase ( self: Optional[int] , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: str ) -> Tuple: # convert to numpy arrays __UpperCAmelCase : Dict = np.array(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = np.array(__lowerCamelCase ) # Assert that arrays are 2D if len(X.shape ) != 2: raise ValueError("Expected `X` to be a 2D vector" ) if len(reference_distribution.shape ) != 2: raise ValueError("Expected `reference_distribution` to be a 2D vector" ) if reference_distribution.shape[0] < 2: raise ValueError( "Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension" ) # Get mahalanobis distance for each prediction __UpperCAmelCase : List[str] = X - np.mean(__lowerCamelCase ) __UpperCAmelCase : Tuple = np.cov(reference_distribution.T ) try: __UpperCAmelCase : int = np.linalg.inv(__lowerCamelCase ) except np.linalg.LinAlgError: __UpperCAmelCase : List[Any] = np.linalg.pinv(__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = np.dot(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : Optional[int] = np.dot(__lowerCamelCase , X_minus_mu.T ).diagonal() return {"mahalanobis": mahal_dist}
157
1
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys SCREAMING_SNAKE_CASE_:str = subprocess.check_output("""git merge-base main HEAD""".split()).decode("""utf-8""") SCREAMING_SNAKE_CASE_:Tuple = ( subprocess.check_output(F"""git diff --diff-filter=d --name-only {fork_point_sha}""".split()).decode("""utf-8""").split() ) SCREAMING_SNAKE_CASE_:Optional[int] = """|""".join(sys.argv[1:]) SCREAMING_SNAKE_CASE_:Union[str, Any] = re.compile(RF"""^({joined_dirs}).*?\.py$""") SCREAMING_SNAKE_CASE_:Optional[int] = [x for x in modified_files if regex.match(x)] print(""" """.join(relevant_modified_files), end="""""")
355
import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py SCREAMING_SNAKE_CASE_:Any = """src/diffusers""" # Matches is_xxx_available() SCREAMING_SNAKE_CASE_:Optional[Any] = re.compile(R"""is\_([a-z_]*)_available\(\)""") # Matches from xxx import bla SCREAMING_SNAKE_CASE_:Union[str, Any] = re.compile(R"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") SCREAMING_SNAKE_CASE_:List[Any] = """ {0} = None """ SCREAMING_SNAKE_CASE_:Optional[Any] = """ class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, {1}) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, {1}) """ SCREAMING_SNAKE_CASE_:int = """ def {0}(*args, **kwargs): requires_backends({0}, {1}) """ def __UpperCamelCase ( _lowerCAmelCase ) -> Tuple: """simple docstring""" A : Union[str, Any] = _re_backend.findall(_lowerCAmelCase ) if len(_lowerCAmelCase ) == 0: return None return "_and_".join(_lowerCAmelCase ) def __UpperCamelCase ( ) -> str: """simple docstring""" with open(os.path.join(_lowerCAmelCase , """__init__.py""" ) , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: A : Dict = f.readlines() # Get to the point we do the actual imports for type checking A : Dict = 0 A : List[Any] = {} # Go through the end of the file while line_index < len(_lowerCAmelCase ): # If the line contains is_backend_available, we grab all objects associated with the `else` block A : Optional[int] = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith("""else:""" ): line_index += 1 line_index += 1 A : str = [] # Until we unindent, add backend objects to the list while line_index < len(_lowerCAmelCase ) and len(lines[line_index] ) > 1: A : Tuple = lines[line_index] A : List[str] = _re_single_line_import.search(_lowerCAmelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(_lowerCAmelCase ) > 0: A : List[str] = objects else: line_index += 1 return backend_specific_objects def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> str: """simple docstring""" if name.isupper(): return DUMMY_CONSTANT.format(_lowerCAmelCase ) elif name.islower(): return DUMMY_FUNCTION.format(_lowerCAmelCase , _lowerCAmelCase ) else: return DUMMY_CLASS.format(_lowerCAmelCase , _lowerCAmelCase ) def __UpperCamelCase ( _lowerCAmelCase=None ) -> Tuple: """simple docstring""" if backend_specific_objects is None: A : Union[str, Any] = read_init() # For special correspondence backend to module name as used in the function requires_modulename A : Any = {} for backend, objects in backend_specific_objects.items(): A : str = """[""" + """, """.join(f'''"{b}"''' for b in backend.split("""_and_""" ) ) + """]""" A : Any = """# This file is autogenerated by the command `make fix-copies`, do not edit.\n""" dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(_lowerCAmelCase , _lowerCAmelCase ) for o in objects] ) A : Optional[Any] = dummy_file return dummy_files def __UpperCamelCase ( _lowerCAmelCase=False ) -> str: """simple docstring""" A : str = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py A : List[str] = {"""torch""": """pt"""} # Locate actual dummy modules and read their content. A : Union[str, Any] = os.path.join(_lowerCAmelCase , """utils""" ) A : Any = { backend: os.path.join(_lowerCAmelCase , f'''dummy_{short_names.get(_lowerCAmelCase , _lowerCAmelCase )}_objects.py''' ) for backend in dummy_files.keys() } A : List[Any] = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(_lowerCAmelCase ): with open(_lowerCAmelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: A : Dict = f.read() else: A : str = """""" for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( f'''Updating diffusers.utils.dummy_{short_names.get(_lowerCAmelCase , _lowerCAmelCase )}_objects.py as the main ''' """__init__ has new objects.""" ) with open(dummy_file_paths[backend] , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.write(dummy_files[backend] ) else: raise ValueError( """The main __init__ has objects that are not present in """ f'''diffusers.utils.dummy_{short_names.get(_lowerCAmelCase , _lowerCAmelCase )}_objects.py. Run `make fix-copies` ''' """to fix this.""" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_:List[Any] = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") SCREAMING_SNAKE_CASE_:Any = parser.parse_args() check_dummies(args.fix_and_overwrite)
115
0
from __future__ import annotations from collections.abc import Iterator from typing import Any class snake_case__ : """simple docstring""" def __init__( self : List[str] , __lowerCamelCase : Any ) -> Union[str, Any]: a = data a = None class snake_case__ : """simple docstring""" def __init__( self : Tuple ) -> List[Any]: a = None a = None def __iter__( self : Any ) -> Iterator[Any]: a = self.head while self.head: yield node.data a = node.next if node == self.head: break def __len__( self : Optional[int] ) -> int: return sum(1 for _ in self ) def __repr__( self : Optional[Any] ) -> Optional[int]: return "->".join(str(__lowerCamelCase ) for item in iter(self ) ) def __UpperCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Any ) -> None: self.insert_nth(len(self ) , __lowerCamelCase ) def __UpperCAmelCase ( self : Dict , __lowerCamelCase : Any ) -> None: self.insert_nth(0 , __lowerCamelCase ) def __UpperCAmelCase ( self : List[str] , __lowerCamelCase : int , __lowerCamelCase : Any ) -> None: if index < 0 or index > len(self ): raise IndexError("list index out of range." ) a = Node(__lowerCamelCase ) if self.head is None: a = new_node # first node points itself a = a = new_node elif index == 0: # insert at head a = self.head a = a = new_node else: a = self.head for _ in range(index - 1 ): a = temp.next a = temp.next a = new_node if index == len(self ) - 1: # insert at tail a = new_node def __UpperCAmelCase ( self : List[Any] ) -> List[str]: return self.delete_nth(0 ) def __UpperCAmelCase ( self : Optional[int] ) -> Any: return self.delete_nth(len(self ) - 1 ) def __UpperCAmelCase ( self : Tuple , __lowerCamelCase : int = 0 ) -> Any: if not 0 <= index < len(self ): raise IndexError("list index out of range." ) a = self.head if self.head == self.tail: # just one node a = a = None elif index == 0: # delete head node a = self.tail.next.next a = self.head.next else: a = self.head for _ in range(index - 1 ): a = temp.next a = temp.next a = temp.next.next if index == len(self ) - 1: # delete at tail a = temp return delete_node.data def __UpperCAmelCase ( self : str ) -> bool: return len(self ) == 0 def __magic_name__ ( ): '''simple docstring''' a = CircularLinkedList() assert len(A ) == 0 assert circular_linked_list.is_empty() is True assert str(A ) == "" try: circular_linked_list.delete_front() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_tail() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_nth(-1 ) raise AssertionError except IndexError: assert True try: circular_linked_list.delete_nth(0 ) raise AssertionError except IndexError: assert True assert circular_linked_list.is_empty() is True for i in range(5 ): assert len(A ) == i circular_linked_list.insert_nth(A, i + 1 ) assert str(A ) == "->".join(str(A ) for i in range(1, 6 ) ) circular_linked_list.insert_tail(6 ) assert str(A ) == "->".join(str(A ) for i in range(1, 7 ) ) circular_linked_list.insert_head(0 ) assert str(A ) == "->".join(str(A ) for i in range(0, 7 ) ) assert circular_linked_list.delete_front() == 0 assert circular_linked_list.delete_tail() == 6 assert str(A ) == "->".join(str(A ) for i in range(1, 6 ) ) assert circular_linked_list.delete_nth(2 ) == 3 circular_linked_list.insert_nth(2, 3 ) assert str(A ) == "->".join(str(A ) for i in range(1, 6 ) ) assert circular_linked_list.is_empty() is False if __name__ == "__main__": import doctest doctest.testmod()
107
import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model __lowerCAmelCase : List[Any] = '0.12' # assumed parallelism: 8 if is_torch_available(): import torch def __magic_name__ ( A : Dict, A : Union[str, Any], A : Optional[int]=None ): '''simple docstring''' if rng is None: a = random.Random() a = 1 for dim in shape: total_dims *= dim a = [] for _ in range(A ): values.append(rng.randint(0, vocab_size - 1 ) ) a = np.array(A, dtype=jnp.intaa ).reshape(A ) return output def __magic_name__ ( A : Dict, A : Union[str, Any]=None ): '''simple docstring''' a = ids_tensor(A, vocab_size=2, rng=A ) # make sure that at least one token is attended to for each batch a = 1 return attn_mask @require_flax class snake_case__ : """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = None SCREAMING_SNAKE_CASE_ : Any = () def __UpperCAmelCase ( self : int ) -> List[str]: a , a = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 a = 2 a = inputs["input_ids"].shape[-1] // 2 a = inputs["input_ids"][:max_batch_size, :sequence_length] a = jnp.ones_like(__lowerCamelCase ) a = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens a = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` a = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def __UpperCAmelCase ( self : Optional[Any] ) -> int: a , a , a , a = self._get_input_ids_and_config() a = False a = max_length a = 0 for model_class in self.all_generative_model_classes: a = model_class(__lowerCamelCase ) a = model_class.__name__[4:] # Skip the "Flax" at the beginning a = getattr(__lowerCamelCase , __lowerCamelCase ) a = pt_model_class(__lowerCamelCase ).eval() a = load_flax_weights_in_pytorch_model(__lowerCamelCase , flax_model.params ) a = flax_model.generate(__lowerCamelCase ).sequences a = pt_model.generate(torch.tensor(__lowerCamelCase , dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: a = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist() ) def __UpperCAmelCase ( self : List[str] ) -> Optional[int]: a , a , a , a = self._get_input_ids_and_config() a = False a = max_length for model_class in self.all_generative_model_classes: a = model_class(__lowerCamelCase ) a = model.generate(__lowerCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __lowerCamelCase ) a = jit(model.generate ) a = jit_generate(__lowerCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __UpperCAmelCase ( self : Optional[int] ) -> Any: a , a , a , a = self._get_input_ids_and_config() a = True a = max_length for model_class in self.all_generative_model_classes: a = model_class(__lowerCamelCase ) a = model.generate(__lowerCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __lowerCamelCase ) a = jit(model.generate ) a = jit_generate(__lowerCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __UpperCAmelCase ( self : int ) -> Dict: a , a , a , a = self._get_input_ids_and_config() a = False a = max_length a = 2 for model_class in self.all_generative_model_classes: a = model_class(__lowerCamelCase ) a = model.generate(__lowerCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __lowerCamelCase ) a = jit(model.generate ) a = jit_generate(__lowerCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __UpperCAmelCase ( self : Any ) -> Union[str, Any]: a , a , a , a = self._get_input_ids_and_config() a = False a = max_length a = 2 a = 2 for model_class in self.all_generative_model_classes: a = model_class(__lowerCamelCase ) a = model.generate(__lowerCamelCase ).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences ) def __UpperCAmelCase ( self : Optional[Any] ) -> Dict: a , a , a , a = self._get_input_ids_and_config() a = True a = max_length a = 0.8 a = 10 a = 0.3 a = 1 a = 8 a = 9 for model_class in self.all_generative_model_classes: a = model_class(__lowerCamelCase ) a = model.generate(__lowerCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __lowerCamelCase ) a = jit(model.generate ) a = jit_generate(__lowerCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __UpperCAmelCase ( self : Optional[Any] ) -> Optional[Any]: a , a , a , a = self._get_input_ids_and_config() a = max_length a = 1 a = 8 a = 9 for model_class in self.all_generative_model_classes: a = model_class(__lowerCamelCase ) a = model.generate(__lowerCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __lowerCamelCase ) a = jit(model.generate ) a = jit_generate(__lowerCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: a , a , a , a = self._get_input_ids_and_config() a = max_length a = 2 a = 1 a = 8 a = 9 for model_class in self.all_generative_model_classes: a = model_class(__lowerCamelCase ) a = model.generate(__lowerCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __lowerCamelCase ) a = jit(model.generate ) a = jit_generate(__lowerCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Dict: a , a , a , a = self._get_input_ids_and_config() # pad attention mask on the left a = attention_mask.at[(0, 0)].set(0 ) a = False a = max_length for model_class in self.all_generative_model_classes: a = model_class(__lowerCamelCase ) a = model.generate(__lowerCamelCase , attention_mask=__lowerCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __lowerCamelCase ) a = jit(model.generate ) a = jit_generate(__lowerCamelCase , attention_mask=__lowerCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __UpperCAmelCase ( self : Tuple ) -> Tuple: a , a , a , a = self._get_input_ids_and_config() # pad attention mask on the left a = attention_mask.at[(0, 0)].set(0 ) a = True a = max_length for model_class in self.all_generative_model_classes: a = model_class(__lowerCamelCase ) a = model.generate(__lowerCamelCase , attention_mask=__lowerCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __lowerCamelCase ) a = jit(model.generate ) a = jit_generate(__lowerCamelCase , attention_mask=__lowerCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __UpperCAmelCase ( self : Optional[int] ) -> List[Any]: a , a , a , a = self._get_input_ids_and_config() # pad attention mask on the left a = attention_mask.at[(0, 0)].set(0 ) a = 2 a = max_length for model_class in self.all_generative_model_classes: a = model_class(__lowerCamelCase ) a = model.generate(__lowerCamelCase , attention_mask=__lowerCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __lowerCamelCase ) a = jit(model.generate ) a = jit_generate(__lowerCamelCase , attention_mask=__lowerCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) @require_flax class snake_case__ (unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : Dict ) -> Optional[Any]: a = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-bert" ) a = FlaxAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-bert-flax-only" ) a = "Hello world" a = tokenizer(__lowerCamelCase , return_tensors="np" ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(__lowerCamelCase , "do_samples" ): model.generate(__lowerCamelCase , do_samples=__lowerCamelCase ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(__lowerCamelCase , "foo" ): a = {"foo": "bar"} model.generate(__lowerCamelCase , **__lowerCamelCase )
107
1
"""simple docstring""" def _lowerCAmelCase ( UpperCAmelCase__ : Any ) ->Any: A__ , A__ : Optional[Any] = [], [] while len(UpperCAmelCase__ ) > 1: A__ , A__ : Dict = min(UpperCAmelCase__ ), max(UpperCAmelCase__ ) start.append(UpperCAmelCase__ ) end.append(UpperCAmelCase__ ) collection.remove(UpperCAmelCase__ ) collection.remove(UpperCAmelCase__ ) end.reverse() return start + collection + end if __name__ == "__main__": A_ = input('''Enter numbers separated by a comma:\n''').strip() A_ = [int(item) for item in user_input.split(''',''')] print(*merge_sort(unsorted), sep=''',''')
296
"""simple docstring""" from __future__ import annotations class __SCREAMING_SNAKE_CASE : def __init__( self : Dict , snake_case : int ): '''simple docstring''' A__ : List[Any] = order # a_{0} ... a_{k} A__ : List[Any] = [1.0] + [0.0] * order # b_{0} ... b_{k} A__ : str = [1.0] + [0.0] * order # x[n-1] ... x[n-k] A__ : Union[str, Any] = [0.0] * self.order # y[n-1] ... y[n-k] A__ : List[str] = [0.0] * self.order def _UpperCamelCase ( self : Optional[int] , snake_case : list[float] , snake_case : list[float] ): '''simple docstring''' if len(snake_case ) < self.order: A__ : Any = [1.0, *a_coeffs] if len(snake_case ) != self.order + 1: A__ : str = ( F'Expected a_coeffs to have {self.order + 1} elements ' F'for {self.order}-order filter, got {len(snake_case )}' ) raise ValueError(snake_case ) if len(snake_case ) != self.order + 1: A__ : Union[str, Any] = ( F'Expected b_coeffs to have {self.order + 1} elements ' F'for {self.order}-order filter, got {len(snake_case )}' ) raise ValueError(snake_case ) A__ : Dict = a_coeffs A__ : Any = b_coeffs def _UpperCamelCase ( self : List[str] , snake_case : float ): '''simple docstring''' A__ : str = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) A__ : Dict = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] A__ : Tuple = self.input_history[:-1] A__ : int = self.output_history[:-1] A__ : Dict = sample A__ : Tuple = result return result
296
1
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
146
import json import os import re import sys import urllib.request import requests from bsa import BeautifulSoup __UpperCamelCase : Dict = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36" " (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582" } def _a ( SCREAMING_SNAKE_CASE : str = "dhaka" , SCREAMING_SNAKE_CASE : int = 5 ): """simple docstring""" UpperCamelCase__ : Optional[int] = min(SCREAMING_SNAKE_CASE , 50 ) # Prevent abuse! UpperCamelCase__ : str = { '''q''': query, '''tbm''': '''isch''', '''hl''': '''en''', '''ijn''': '''0''', } UpperCamelCase__ : List[str] = requests.get('''https://www.google.com/search''' , params=SCREAMING_SNAKE_CASE , headers=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Any = BeautifulSoup(html.text , '''html.parser''' ) UpperCamelCase__ : Union[str, Any] = ''''''.join( re.findall(r'''AF_initDataCallback\(([^<]+)\);''' , str(soup.select('''script''' ) ) ) ) UpperCamelCase__ : Optional[Any] = json.dumps(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = json.loads(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = re.findall( r'''\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\",''' , SCREAMING_SNAKE_CASE , ) if not matched_google_image_data: return 0 UpperCamelCase__ : Optional[Any] = re.sub( r'''\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]''' , '''''' , str(SCREAMING_SNAKE_CASE ) , ) UpperCamelCase__ : List[Any] = re.findall( r'''(?:\'|,),\[\"(https:|http.*?)\",\d+,\d+\]''' , SCREAMING_SNAKE_CASE , ) for index, fixed_full_res_image in enumerate(SCREAMING_SNAKE_CASE ): if index >= max_images: return index UpperCamelCase__ : Optional[int] = bytes(SCREAMING_SNAKE_CASE , '''ascii''' ).decode( '''unicode-escape''' ) UpperCamelCase__ : List[Any] = bytes(SCREAMING_SNAKE_CASE , '''ascii''' ).decode( '''unicode-escape''' ) UpperCamelCase__ : List[Any] = urllib.request.build_opener() UpperCamelCase__ : Optional[Any] = [ ( '''User-Agent''', '''Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36''' ''' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582''', ) ] urllib.request.install_opener(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = F"query_{query.replace(' ' , '_' )}" if not os.path.exists(SCREAMING_SNAKE_CASE ): os.makedirs(SCREAMING_SNAKE_CASE ) urllib.request.urlretrieve( # noqa: S310 SCREAMING_SNAKE_CASE , F"{path_name}/original_size_img_{index}.jpg" ) return index if __name__ == "__main__": try: __UpperCamelCase : List[Any] = download_images_from_google_query(sys.argv[1]) print(f"{image_count} images were downloaded to disk.") except IndexError: print("Please provide a search term.") raise
146
1
'''simple docstring''' import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def lowerCamelCase__ ( A : str , A : Tuple , A : Optional[Any] , A : Optional[int] , A : int ): '''simple docstring''' UpperCAmelCase = StableDiffusionPipeline.from_pretrained(a_ , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors UpperCAmelCase = load_file(a_ ) UpperCAmelCase = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: UpperCAmelCase = key.split('''.''' )[0].split(LORA_PREFIX_TEXT_ENCODER + '''_''' )[-1].split('''_''' ) UpperCAmelCase = pipeline.text_encoder else: UpperCAmelCase = key.split('''.''' )[0].split(LORA_PREFIX_UNET + '''_''' )[-1].split('''_''' ) UpperCAmelCase = pipeline.unet # find the target layer UpperCAmelCase = layer_infos.pop(0 ) while len(a_ ) > -1: try: UpperCAmelCase = curr_layer.__getattr__(a_ ) if len(a_ ) > 0: UpperCAmelCase = layer_infos.pop(0 ) elif len(a_ ) == 0: break except Exception: if len(a_ ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: UpperCAmelCase = layer_infos.pop(0 ) UpperCAmelCase = [] if "lora_down" in key: pair_keys.append(key.replace('''lora_down''' , '''lora_up''' ) ) pair_keys.append(a_ ) else: pair_keys.append(a_ ) pair_keys.append(key.replace('''lora_up''' , '''lora_down''' ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: UpperCAmelCase = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) UpperCAmelCase = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(a_ , a_ ).unsqueeze(2 ).unsqueeze(3 ) else: UpperCAmelCase = state_dict[pair_keys[0]].to(torch.floataa ) UpperCAmelCase = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(a_ , a_ ) # update visited list for item in pair_keys: visited.append(a_ ) return pipeline if __name__ == "__main__": _lowercase : int = argparse.ArgumentParser() parser.add_argument( """--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format.""" ) parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors""" ) parser.add_argument( """--lora_prefix_text_encoder""", default="""lora_te""", type=str, help="""The prefix of text encoder weight in safetensors""", ) parser.add_argument("""--alpha""", default=0.75, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""") parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""" ) parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") _lowercase : Dict = parser.parse_args() _lowercase : int = args.base_model_path _lowercase : Optional[int] = args.checkpoint_path _lowercase : Union[str, Any] = args.dump_path _lowercase : List[Any] = args.lora_prefix_unet _lowercase : Union[str, Any] = args.lora_prefix_text_encoder _lowercase : List[str] = args.alpha _lowercase : Optional[Any] = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) _lowercase : Optional[Any] = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
367
'''simple docstring''' import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model _lowercase : List[str] = """0.12""" # assumed parallelism: 8 if is_torch_available(): import torch def lowerCamelCase__ ( A : str , A : str , A : List[Any]=None ): '''simple docstring''' if rng is None: UpperCAmelCase = random.Random() UpperCAmelCase = 1 for dim in shape: total_dims *= dim UpperCAmelCase = [] for _ in range(A ): values.append(rng.randint(0 , vocab_size - 1 ) ) UpperCAmelCase = np.array(A , dtype=jnp.intaa ).reshape(A ) return output def lowerCamelCase__ ( A : int , A : Optional[int]=None ): '''simple docstring''' UpperCAmelCase = ids_tensor(A , vocab_size=2 , rng=A ) # make sure that at least one token is attended to for each batch UpperCAmelCase = 1 return attn_mask @require_flax class UpperCamelCase__: __magic_name__ : Optional[int] = None __magic_name__ : Optional[Any] = () def a__( self : str )-> Optional[Any]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 UpperCAmelCase = 2 UpperCAmelCase = inputs['''input_ids'''].shape[-1] // 2 UpperCAmelCase = inputs['''input_ids'''][:max_batch_size, :sequence_length] UpperCAmelCase = jnp.ones_like(lowerCAmelCase ) UpperCAmelCase = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens UpperCAmelCase = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` UpperCAmelCase = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def a__( self : Dict )-> Optional[int]: """simple docstring""" UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = self._get_input_ids_and_config() UpperCAmelCase = False UpperCAmelCase = max_length UpperCAmelCase = 0 for model_class in self.all_generative_model_classes: UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning UpperCAmelCase = getattr(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = pt_model_class(lowerCAmelCase ).eval() UpperCAmelCase = load_flax_weights_in_pytorch_model(lowerCAmelCase , flax_model.params ) UpperCAmelCase = flax_model.generate(lowerCAmelCase ).sequences UpperCAmelCase = pt_model.generate(torch.tensor(lowerCAmelCase , dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: UpperCAmelCase = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist() ) def a__( self : Any )-> Optional[Any]: """simple docstring""" UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = self._get_input_ids_and_config() UpperCAmelCase = False UpperCAmelCase = max_length for model_class in self.all_generative_model_classes: UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = model.generate(lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase ) UpperCAmelCase = jit(model.generate ) UpperCAmelCase = jit_generate(lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def a__( self : Optional[Any] )-> int: """simple docstring""" UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = self._get_input_ids_and_config() UpperCAmelCase = True UpperCAmelCase = max_length for model_class in self.all_generative_model_classes: UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = model.generate(lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase ) UpperCAmelCase = jit(model.generate ) UpperCAmelCase = jit_generate(lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def a__( self : str )-> List[str]: """simple docstring""" UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = self._get_input_ids_and_config() UpperCAmelCase = False UpperCAmelCase = max_length UpperCAmelCase = 2 for model_class in self.all_generative_model_classes: UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = model.generate(lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase ) UpperCAmelCase = jit(model.generate ) UpperCAmelCase = jit_generate(lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def a__( self : List[Any] )-> List[str]: """simple docstring""" UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = self._get_input_ids_and_config() UpperCAmelCase = False UpperCAmelCase = max_length UpperCAmelCase = 2 UpperCAmelCase = 2 for model_class in self.all_generative_model_classes: UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = model.generate(lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences ) def a__( self : Tuple )-> List[str]: """simple docstring""" UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = self._get_input_ids_and_config() UpperCAmelCase = True UpperCAmelCase = max_length UpperCAmelCase = 0.8 UpperCAmelCase = 10 UpperCAmelCase = 0.3 UpperCAmelCase = 1 UpperCAmelCase = 8 UpperCAmelCase = 9 for model_class in self.all_generative_model_classes: UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = model.generate(lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase ) UpperCAmelCase = jit(model.generate ) UpperCAmelCase = jit_generate(lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def a__( self : Optional[Any] )-> Optional[int]: """simple docstring""" UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = self._get_input_ids_and_config() UpperCAmelCase = max_length UpperCAmelCase = 1 UpperCAmelCase = 8 UpperCAmelCase = 9 for model_class in self.all_generative_model_classes: UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = model.generate(lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase ) UpperCAmelCase = jit(model.generate ) UpperCAmelCase = jit_generate(lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def a__( self : Tuple )-> Tuple: """simple docstring""" UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = self._get_input_ids_and_config() UpperCAmelCase = max_length UpperCAmelCase = 2 UpperCAmelCase = 1 UpperCAmelCase = 8 UpperCAmelCase = 9 for model_class in self.all_generative_model_classes: UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = model.generate(lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase ) UpperCAmelCase = jit(model.generate ) UpperCAmelCase = jit_generate(lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def a__( self : Union[str, Any] )-> Any: """simple docstring""" UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = self._get_input_ids_and_config() # pad attention mask on the left UpperCAmelCase = attention_mask.at[(0, 0)].set(0 ) UpperCAmelCase = False UpperCAmelCase = max_length for model_class in self.all_generative_model_classes: UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = model.generate(lowerCAmelCase , attention_mask=lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase ) UpperCAmelCase = jit(model.generate ) UpperCAmelCase = jit_generate(lowerCAmelCase , attention_mask=lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def a__( self : Optional[Any] )-> int: """simple docstring""" UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = self._get_input_ids_and_config() # pad attention mask on the left UpperCAmelCase = attention_mask.at[(0, 0)].set(0 ) UpperCAmelCase = True UpperCAmelCase = max_length for model_class in self.all_generative_model_classes: UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = model.generate(lowerCAmelCase , attention_mask=lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase ) UpperCAmelCase = jit(model.generate ) UpperCAmelCase = jit_generate(lowerCAmelCase , attention_mask=lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def a__( self : Tuple )-> Union[str, Any]: """simple docstring""" UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = self._get_input_ids_and_config() # pad attention mask on the left UpperCAmelCase = attention_mask.at[(0, 0)].set(0 ) UpperCAmelCase = 2 UpperCAmelCase = max_length for model_class in self.all_generative_model_classes: UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = model.generate(lowerCAmelCase , attention_mask=lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase ) UpperCAmelCase = jit(model.generate ) UpperCAmelCase = jit_generate(lowerCAmelCase , attention_mask=lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) @require_flax class UpperCamelCase__( unittest.TestCase ): def a__( self : Union[str, Any] )-> Optional[int]: """simple docstring""" UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-bert''' ) UpperCAmelCase = FlaxAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) UpperCAmelCase = '''Hello world''' UpperCAmelCase = tokenizer(lowerCAmelCase , return_tensors='''np''' ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(lowerCAmelCase , '''do_samples''' ): model.generate(lowerCAmelCase , do_samples=lowerCAmelCase ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(lowerCAmelCase , '''foo''' ): UpperCAmelCase = {'''foo''': '''bar'''} model.generate(lowerCAmelCase , **lowerCAmelCase )
91
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A = { '''configuration_roberta_prelayernorm''': [ '''ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RobertaPreLayerNormConfig''', '''RobertaPreLayerNormOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ '''ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RobertaPreLayerNormForCausalLM''', '''RobertaPreLayerNormForMaskedLM''', '''RobertaPreLayerNormForMultipleChoice''', '''RobertaPreLayerNormForQuestionAnswering''', '''RobertaPreLayerNormForSequenceClassification''', '''RobertaPreLayerNormForTokenClassification''', '''RobertaPreLayerNormModel''', '''RobertaPreLayerNormPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ '''TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRobertaPreLayerNormForCausalLM''', '''TFRobertaPreLayerNormForMaskedLM''', '''TFRobertaPreLayerNormForMultipleChoice''', '''TFRobertaPreLayerNormForQuestionAnswering''', '''TFRobertaPreLayerNormForSequenceClassification''', '''TFRobertaPreLayerNormForTokenClassification''', '''TFRobertaPreLayerNormMainLayer''', '''TFRobertaPreLayerNormModel''', '''TFRobertaPreLayerNormPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ '''FlaxRobertaPreLayerNormForCausalLM''', '''FlaxRobertaPreLayerNormForMaskedLM''', '''FlaxRobertaPreLayerNormForMultipleChoice''', '''FlaxRobertaPreLayerNormForQuestionAnswering''', '''FlaxRobertaPreLayerNormForSequenceClassification''', '''FlaxRobertaPreLayerNormForTokenClassification''', '''FlaxRobertaPreLayerNormModel''', '''FlaxRobertaPreLayerNormPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
160
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer A = logging.get_logger(__name__) A = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} A = { '''vocab_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/vocab.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/vocab.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/vocab.json''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json''', '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json''' ), }, '''merges_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/merges.txt''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/merges.txt''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/merges.txt''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt''', '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt''' ), }, '''tokenizer_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/tokenizer.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/tokenizer.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json''', '''roberta-base-openai-detector''': ( '''https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json''' ), '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json''' ), }, } A = { '''roberta-base''': 512, '''roberta-large''': 512, '''roberta-large-mnli''': 512, '''distilroberta-base''': 512, '''roberta-base-openai-detector''': 512, '''roberta-large-openai-detector''': 512, } class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = ['''input_ids''', '''attention_mask'''] __lowerCAmelCase = RobertaTokenizer def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="replace" , _UpperCAmelCase="<s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="<s>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase="<mask>" , _UpperCAmelCase=False , _UpperCAmelCase=True , **_UpperCAmelCase , ): super().__init__( _UpperCAmelCase , _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , errors=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , trim_offsets=_UpperCAmelCase , **_UpperCAmelCase , ) __a : str = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , _UpperCAmelCase ) != add_prefix_space: __a : Tuple = getattr(_UpperCAmelCase , pre_tok_state.pop('''type''' ) ) __a : Dict = add_prefix_space __a : str = pre_tok_class(**_UpperCAmelCase ) __a : Optional[int] = add_prefix_space __a : str = '''post_processor''' __a : int = getattr(self.backend_tokenizer , _UpperCAmelCase , _UpperCAmelCase ) if tokenizer_component_instance: __a : Dict = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __a : Optional[Any] = tuple(state['''sep'''] ) if "cls" in state: __a : List[Any] = tuple(state['''cls'''] ) __a : Optional[Any] = False if state.get('''add_prefix_space''' , _UpperCAmelCase ) != add_prefix_space: __a : Any = add_prefix_space __a : List[Any] = True if state.get('''trim_offsets''' , _UpperCAmelCase ) != trim_offsets: __a : List[Any] = trim_offsets __a : List[str] = True if changes_to_apply: __a : Any = getattr(_UpperCAmelCase , state.pop('''type''' ) ) __a : Any = component_class(**_UpperCAmelCase ) setattr(self.backend_tokenizer , _UpperCAmelCase , _UpperCAmelCase ) @property def _lowerCamelCase ( self ): if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def _lowerCamelCase ( self , _UpperCAmelCase ): __a : int = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else value __a : Tuple = value def _lowerCamelCase ( self , *_UpperCAmelCase , **_UpperCAmelCase ): __a : Tuple = kwargs.get('''is_split_into_words''' , _UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_UpperCAmelCase , **_UpperCAmelCase ) def _lowerCamelCase ( self , *_UpperCAmelCase , **_UpperCAmelCase ): __a : str = kwargs.get('''is_split_into_words''' , _UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*_UpperCAmelCase , **_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ): __a : Optional[int] = self._tokenizer.model.save(_UpperCAmelCase , name=_UpperCAmelCase ) return tuple(_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase=None ): __a : int = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ): __a : Dict = [self.sep_token_id] __a : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
160
1
'''simple docstring''' from abc import ABC, abstractmethod from argparse import ArgumentParser class SCREAMING_SNAKE_CASE__ ( snake_case__ ): """simple docstring""" @staticmethod @abstractmethod def lowerCamelCase_ ( UpperCAmelCase_ : ArgumentParser ): """simple docstring""" raise NotImplementedError() @abstractmethod def lowerCamelCase_ ( self : Dict ): """simple docstring""" raise NotImplementedError()
360
'''simple docstring''' from datetime import datetime as dt import os from github import Github lowerCAmelCase__ : Union[str, Any] = [ "good first issue", "good second issue", "good difficult issue", "feature request", "new model", "wip", ] def __UpperCamelCase ( ): __UpperCAmelCase : Optional[int] = Github(os.environ["GITHUB_TOKEN"] ) __UpperCAmelCase : Union[str, Any] = g.get_repo("huggingface/transformers" ) __UpperCAmelCase : Union[str, Any] = repo.get_issues(state="open" ) for issue in open_issues: __UpperCAmelCase : int = sorted([comment for comment in issue.get_comments()], key=lambda _UpperCAmelCase : i.created_at, reverse=_UpperCAmelCase ) __UpperCAmelCase : Any = comments[0] if len(_UpperCAmelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="closed" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( "This issue has been automatically marked as stale because it has not had " "recent activity. If you think this still needs to be addressed " "please comment on this thread.\n\nPlease note that issues that do not follow the " "[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) " "are likely to be ignored." ) if __name__ == "__main__": main()
37
0
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowercase ( UpperCamelCase__ ): _a = ["image_processor", "tokenizer"] _a = "CLIPImageProcessor" _a = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self , _a=None , _a=None , **_a ) -> Dict: _A : Any = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , _a , ) _A : Union[str, Any] = kwargs.pop("""feature_extractor""" ) _A : Optional[int] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(_a , _a ) def __call__( self , _a=None , _a=None , _a=None , **_a ) -> int: if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: _A : List[str] = self.tokenizer(_a , return_tensors=_a , **_a ) if images is not None: _A : Dict = self.image_processor(_a , return_tensors=_a , **_a ) if text is not None and images is not None: _A : Tuple = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_a ) , tensor_type=_a ) def a__ ( self , *_a , **_a ) -> List[Any]: return self.tokenizer.batch_decode(*_a , **_a ) def a__ ( self , *_a , **_a ) -> Any: return self.tokenizer.decode(*_a , **_a ) @property def a__ ( self ) -> List[Any]: _A : Union[str, Any] = self.tokenizer.model_input_names _A : str = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def a__ ( self ) -> List[str]: warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , _a , ) return self.image_processor_class @property def a__ ( self ) -> List[Any]: warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , _a , ) return self.image_processor
26
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( unittest.TestCase ): @slow def _snake_case ( self ): """simple docstring""" lowercase_ : Dict = AutoModelForSeqaSeqLM.from_pretrained('''google/mt5-small''' , return_dict=__SCREAMING_SNAKE_CASE ).to(__SCREAMING_SNAKE_CASE ) lowercase_ : Union[str, Any] = AutoTokenizer.from_pretrained('''google/mt5-small''' ) lowercase_ : int = tokenizer('''Hello there''' , return_tensors='''pt''' ).input_ids lowercase_ : Union[str, Any] = tokenizer('''Hi I am''' , return_tensors='''pt''' ).input_ids lowercase_ : Union[str, Any] = model(input_ids.to(__SCREAMING_SNAKE_CASE ) , labels=labels.to(__SCREAMING_SNAKE_CASE ) ).loss lowercase_ : int = -(labels.shape[-1] * loss.item()) lowercase_ : Any = -84.9_127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
93
0
import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _lowerCamelCase : List[str] = 16 _lowerCamelCase : Any = 32 def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ = 16 ) -> Optional[Any]: """simple docstring""" A__ = AutoTokenizer.from_pretrained('''bert-base-cased''' ) A__ = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(lowercase_ ): # max_length=None => use the model max length (it's actually the default) A__ = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=lowercase_ , max_length=lowercase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): A__ = datasets.map( lowercase_ , batched=lowercase_ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library A__ = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(lowercase_ ): # On TPU it's best to pad everything to the same length or training will be very slow. A__ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": A__ = 16 elif accelerator.mixed_precision != "no": A__ = 8 else: A__ = None return tokenizer.pad( lowercase_ , padding='''longest''' , max_length=lowercase_ , pad_to_multiple_of=lowercase_ , return_tensors='''pt''' , ) # Instantiate dataloaders. A__ = DataLoader( tokenized_datasets['''train'''] , shuffle=lowercase_ , collate_fn=lowercase_ , batch_size=lowercase_ , drop_last=lowercase_ ) A__ = DataLoader( tokenized_datasets['''validation'''] , shuffle=lowercase_ , collate_fn=lowercase_ , batch_size=lowercase_ , drop_last=(accelerator.mixed_precision == '''fp8''') , ) return train_dataloader, eval_dataloader def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int: """simple docstring""" A__ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A__ = config['''lr'''] A__ = int(config['''num_epochs'''] ) A__ = int(config['''seed'''] ) A__ = int(config['''batch_size'''] ) A__ = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation A__ = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: A__ = batch_size // MAX_GPU_BATCH_SIZE A__ = MAX_GPU_BATCH_SIZE set_seed(lowercase_ ) A__ , A__ = get_dataloaders(lowercase_ , lowercase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) A__ = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=lowercase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). A__ = model.to(accelerator.device ) # Instantiate optimizer A__ = AdamW(params=model.parameters() , lr=lowercase_ ) # Instantiate scheduler A__ = get_linear_schedule_with_warmup( optimizer=lowercase_ , num_warmup_steps=100 , num_training_steps=(len(lowercase_ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A__ , A__ , A__ , A__ , A__ = accelerator.prepare( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # Now we train the model for epoch in range(lowercase_ ): model.train() for step, batch in enumerate(lowercase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) A__ = model(**lowercase_ ) A__ = outputs.loss A__ = loss / gradient_accumulation_steps accelerator.backward(lowercase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowercase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): A__ = model(**lowercase_ ) A__ = outputs.logits.argmax(dim=-1 ) A__ , A__ = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=lowercase_ , references=lowercase_ , ) A__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , lowercase_ ) def SCREAMING_SNAKE_CASE ( ) -> Dict: """simple docstring""" A__ = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=lowercase_ , default=lowercase_ , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) A__ = parser.parse_args() A__ = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(lowercase_ , lowercase_ ) if __name__ == "__main__": main()
231
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCamelCase : Union[str, Any] = """▁""" _lowerCamelCase : Optional[Any] = {"""vocab_file""": """spiece.model"""} _lowerCamelCase : str = { """vocab_file""": {"""google/pegasus-xsum""": """https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"""} } _lowerCamelCase : List[str] = { """google/pegasus-xsum""": 512, } _lowerCamelCase : int = logging.get_logger(__name__) class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = ['''input_ids''', '''attention_mask'''] def __init__( self : Optional[int] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : str="<pad>" , UpperCAmelCase__ : Optional[Any]="</s>" , UpperCAmelCase__ : Any="<unk>" , UpperCAmelCase__ : Union[str, Any]="<mask_2>" , UpperCAmelCase__ : List[str]="<mask_1>" , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : Optional[Any]=103 , UpperCAmelCase__ : Optional[Dict[str, Any]] = None , **UpperCAmelCase__ : Dict , ) ->None: '''simple docstring''' A__ = offset if additional_special_tokens is not None: if not isinstance(UpperCAmelCase__ , UpperCAmelCase__): raise TypeError( f"""additional_special_tokens should be of type {type(UpperCAmelCase__)}, but is""" f""" {type(UpperCAmelCase__)}""") A__ = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f"""<unk_{i}>""" for i in range(len(UpperCAmelCase__) , self.offset - 1) ] if len(set(UpperCAmelCase__)) != len(UpperCAmelCase__): raise ValueError( '''Please make sure that the provided additional_special_tokens do not contain an incorrectly''' f""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""") A__ = additional_special_tokens_extended else: A__ = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f"""<unk_{i}>""" for i in range(2 , self.offset)] A__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , mask_token_sent=UpperCAmelCase__ , offset=UpperCAmelCase__ , additional_special_tokens=UpperCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase__ , ) A__ = mask_token_sent A__ = vocab_file A__ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(UpperCAmelCase__) # add special tokens to encoder dict A__ = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, }) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1)}) A__ = {v: k for k, v in self.encoder.items()} @property def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->int: '''simple docstring''' return len(self.sp_model) + self.offset def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Dict[str, int]: '''simple docstring''' A__ = {self.convert_ids_to_tokens(UpperCAmelCase__): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self : Any) ->Union[str, Any]: '''simple docstring''' A__ = self.__dict__.copy() A__ = None return state def __setstate__( self : int , UpperCAmelCase__ : Optional[int]) ->Optional[int]: '''simple docstring''' A__ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs'''): A__ = {} A__ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def SCREAMING_SNAKE_CASE ( self : str , UpperCAmelCase__ : str) ->List[str]: '''simple docstring''' return self.sp_model.encode(UpperCAmelCase__ , out_type=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : str) ->int: '''simple docstring''' if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] A__ = self.sp_model.piece_to_id(UpperCAmelCase__) return sp_id + self.offset def SCREAMING_SNAKE_CASE ( self : List[Any] , UpperCAmelCase__ : int) ->str: '''simple docstring''' if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: A__ = self.sp_model.IdToPiece(index - self.offset) return token def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : int) ->Optional[int]: '''simple docstring''' A__ = [] A__ = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(UpperCAmelCase__) + token A__ = [] else: current_sub_tokens.append(UpperCAmelCase__) out_string += self.sp_model.decode(UpperCAmelCase__) return out_string.strip() def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase__ : Optional[int]=False) ->Union[str, Any]: '''simple docstring''' return 1 def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : Union[str, Any]) ->Optional[Any]: '''simple docstring''' A__ = set(self.all_special_ids) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : List , UpperCAmelCase__ : Optional[List] = None , UpperCAmelCase__ : bool = False) ->List[int]: '''simple docstring''' if already_has_special_tokens: return self._special_token_mask(UpperCAmelCase__) elif token_ids_a is None: return self._special_token_mask(UpperCAmelCase__) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a) + [1] def SCREAMING_SNAKE_CASE ( self : Tuple , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[str]=None) ->List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def SCREAMING_SNAKE_CASE ( self : str , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None) ->Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCAmelCase__): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""") return A__ = os.path.join( UpperCAmelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(UpperCAmelCase__) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , UpperCAmelCase__) elif not os.path.isfile(self.vocab_file): with open(UpperCAmelCase__ , '''wb''') as fi: A__ = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase__) return (out_vocab_file,)
231
1
from __future__ import annotations from typing import Any class lowercase : def __init__( self ,A__ = 6): lowercase = None lowercase = None self.create_linked_list(A__) def A__ ( self ,A__): lowercase = Node() lowercase = current_node lowercase = current_node lowercase = current_node for _ in range(1 ,A__): lowercase = Node() lowercase = current_node lowercase = previous_node lowercase = current_node lowercase = self.front lowercase = previous_node def A__ ( self): return ( self.front == self.rear and self.front is not None and self.front.data is None ) def A__ ( self): self.check_can_perform_operation() return self.front.data if self.front else None def A__ ( self ,A__): if self.rear is None: return self.check_is_full() if not self.is_empty(): lowercase = self.rear.next if self.rear: lowercase = data def A__ ( self): self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: lowercase = self.front.data lowercase = None return data lowercase = self.front lowercase = old_front.next lowercase = old_front.data lowercase = None return data def A__ ( self): if self.is_empty(): raise Exception('''Empty Queue''') def A__ ( self): if self.rear and self.rear.next == self.front: raise Exception('''Full Queue''') class lowercase : def __init__( self): lowercase = None lowercase = None lowercase = None if __name__ == "__main__": import doctest doctest.testmod()
101
'''simple docstring''' def UpperCamelCase_ ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> int: """simple docstring""" _UpperCAmelCase : List[str] = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): _UpperCAmelCase : Any = n - k # Calculate C(n,k) for i in range(_UpperCAmelCase ): result *= n - i result //= i + 1 return result def UpperCamelCase_ ( _UpperCAmelCase : int ) -> int: """simple docstring""" return binomial_coefficient(2 * node_count , _UpperCAmelCase ) // (node_count + 1) def UpperCamelCase_ ( _UpperCAmelCase : int ) -> int: """simple docstring""" if n < 0: raise ValueError("factorial() not defined for negative values" ) _UpperCAmelCase : List[str] = 1 for i in range(1 , n + 1 ): result *= i return result def UpperCamelCase_ ( _UpperCAmelCase : int ) -> int: """simple docstring""" return catalan_number(_UpperCAmelCase ) * factorial(_UpperCAmelCase ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Dict = int(input("""Enter the number of nodes: """).strip() or 0) if node_count <= 0: raise ValueError("""We need some nodes to work with.""") print( F'Given {node_count} nodes, there are {binary_tree_count(node_count)} ' F'binary trees and {catalan_number(node_count)} binary search trees.' )
31
0
"""simple docstring""" class UpperCAmelCase_ : def __init__( self : Dict , A : int ): _UpperCAmelCase : List[Any] = size _UpperCAmelCase : Dict = [0] * size _UpperCAmelCase : Optional[int] = [0] * size @staticmethod def snake_case_ ( A : int ): return index | (index + 1) @staticmethod def snake_case_ ( A : int ): return (index & (index + 1)) - 1 def snake_case_ ( self : Dict , A : int , A : int ): _UpperCAmelCase : Any = value while index < self.size: _UpperCAmelCase : Optional[int] = self.get_prev(A ) + 1 if current_left_border == index: _UpperCAmelCase : Dict = value else: _UpperCAmelCase : List[str] = max(A , A , A ) _UpperCAmelCase : List[Any] = self.get_next(A ) def snake_case_ ( self : Union[str, Any] , A : int , A : int ): right -= 1 # Because of right is exclusive _UpperCAmelCase : Tuple = 0 while left <= right: _UpperCAmelCase : Optional[int] = self.get_prev(A ) if left <= current_left: _UpperCAmelCase : List[str] = max(A , self.tree[right] ) _UpperCAmelCase : Optional[Any] = current_left else: _UpperCAmelCase : Tuple = max(A , self.arr[right] ) right -= 1 return result if __name__ == "__main__": import doctest doctest.testmod()
202
"""simple docstring""" import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def __snake_case ( *SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[Union[Dict, Any]] = None , SCREAMING_SNAKE_CASE__ : int=True , SCREAMING_SNAKE_CASE__ : Tuple=2 ) -> Optional[Any]: '''simple docstring''' from .. import __version__ _UpperCAmelCase : Tuple = take_from _UpperCAmelCase : Optional[int] = () if not isinstance(args[0] , SCREAMING_SNAKE_CASE__ ): _UpperCAmelCase : int = (args,) for attribute, version_name, message in args: if version.parse(version.parse(SCREAMING_SNAKE_CASE__ ).base_version ) >= version.parse(SCREAMING_SNAKE_CASE__ ): raise ValueError( f'The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers\'' f' version {__version__} is >= {version_name}' ) _UpperCAmelCase : Any = None if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(SCREAMING_SNAKE_CASE__ ),) _UpperCAmelCase : Tuple = f'The `{attribute}` argument is deprecated and will be removed in version {version_name}.' elif hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): values += (getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ),) _UpperCAmelCase : str = f'The `{attribute}` attribute is deprecated and will be removed in version {version_name}.' elif deprecated_kwargs is None: _UpperCAmelCase : Tuple = f'`{attribute}` is deprecated and will be removed in version {version_name}.' if warning is not None: _UpperCAmelCase : Optional[int] = warning + " " if standard_warn else "" warnings.warn(warning + message , SCREAMING_SNAKE_CASE__ , stacklevel=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and len(SCREAMING_SNAKE_CASE__ ) > 0: _UpperCAmelCase : List[Any] = inspect.getouterframes(inspect.currentframe() )[1] _UpperCAmelCase : Optional[int] = call_frame.filename _UpperCAmelCase : Dict = call_frame.lineno _UpperCAmelCase : List[Any] = call_frame.function _UpperCAmelCase , _UpperCAmelCase : Optional[int] = next(iter(deprecated_kwargs.items() ) ) raise TypeError(f'{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`' ) if len(SCREAMING_SNAKE_CASE__ ) == 0: return elif len(SCREAMING_SNAKE_CASE__ ) == 1: return values[0] return values
202
1
'''simple docstring''' from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging a : Tuple = logging.get_logger(__name__) class a ( _lowerCamelCase ): snake_case_ = ["pixel_values"] def __init__( self : List[str] , lowercase_ : bool = True , lowercase_ : Dict[str, int] = None , lowercase_ : PILImageResampling = PILImageResampling.BICUBIC , lowercase_ : bool = True , lowercase_ : Dict[str, int] = None , lowercase_ : bool = True , lowercase_ : Union[int, float] = 1 / 255 , lowercase_ : bool = True , lowercase_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , lowercase_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **lowercase_ : Union[str, Any] , ): super().__init__(**lowercase_ ) snake_case_ = size if size is not None else {'''shortest_edge''': 224} snake_case_ = get_size_dict(lowercase_ , default_to_square=lowercase_ ) snake_case_ = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} snake_case_ = get_size_dict(lowercase_ , param_name='''crop_size''' ) snake_case_ = do_resize snake_case_ = size snake_case_ = resample snake_case_ = do_center_crop snake_case_ = crop_size snake_case_ = do_rescale snake_case_ = rescale_factor snake_case_ = do_normalize snake_case_ = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN snake_case_ = image_std if image_std is not None else IMAGENET_DEFAULT_STD def A_ ( self : Optional[Any] , lowercase_ : np.ndarray , lowercase_ : Dict[str, int] , lowercase_ : PILImageResampling = PILImageResampling.BICUBIC , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : Any , ): snake_case_ = get_size_dict(lowercase_ , default_to_square=lowercase_ ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: snake_case_ = int((256 / 224) * size['''shortest_edge'''] ) snake_case_ = get_resize_output_image_size(lowercase_ , size=lowercase_ , default_to_square=lowercase_ ) snake_case_ = {'''height''': output_size[0], '''width''': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( F"Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}" ) return resize( lowercase_ , size=(size_dict['''height'''], size_dict['''width''']) , resample=lowercase_ , data_format=lowercase_ , **lowercase_ ) def A_ ( self : Tuple , lowercase_ : np.ndarray , lowercase_ : Dict[str, int] , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : Dict , ): snake_case_ = get_size_dict(lowercase_ ) if "height" not in size or "width" not in size: raise ValueError(F"Size dict must have keys 'height' and 'width'. Got {size.keys()}" ) return center_crop(lowercase_ , size=(size['''height'''], size['''width''']) , data_format=lowercase_ , **lowercase_ ) def A_ ( self : Optional[Any] , lowercase_ : np.ndarray , lowercase_ : Union[int, float] , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : Optional[int] , ): return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_ ) def A_ ( self : Union[str, Any] , lowercase_ : np.ndarray , lowercase_ : Union[float, List[float]] , lowercase_ : Union[float, List[float]] , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : int , ): return normalize(lowercase_ , mean=lowercase_ , std=lowercase_ , data_format=lowercase_ , **lowercase_ ) def A_ ( self : Optional[int] , lowercase_ : ImageInput , lowercase_ : Optional[bool] = None , lowercase_ : Optional[Dict[str, int]] = None , lowercase_ : PILImageResampling = None , lowercase_ : Optional[bool] = None , lowercase_ : Optional[Dict[str, int]] = None , lowercase_ : Optional[bool] = None , lowercase_ : Optional[float] = None , lowercase_ : Optional[bool] = None , lowercase_ : Optional[Union[float, Iterable[float]]] = None , lowercase_ : Optional[Union[float, Iterable[float]]] = None , lowercase_ : Optional[TensorType] = None , lowercase_ : ChannelDimension = ChannelDimension.FIRST , **lowercase_ : int , ): snake_case_ = do_resize if do_resize is not None else self.do_resize snake_case_ = resample if resample is not None else self.resample snake_case_ = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case_ = do_rescale if do_rescale is not None else self.do_rescale snake_case_ = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case_ = do_normalize if do_normalize is not None else self.do_normalize snake_case_ = image_mean if image_mean is not None else self.image_mean snake_case_ = image_std if image_std is not None else self.image_std snake_case_ = size if size is not None else self.size snake_case_ = get_size_dict(lowercase_ , default_to_square=lowercase_ ) snake_case_ = crop_size if crop_size is not None else self.crop_size snake_case_ = get_size_dict(lowercase_ , param_name='''crop_size''' ) snake_case_ = make_list_of_images(lowercase_ ) if not valid_images(lowercase_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. snake_case_ = [to_numpy_array(lowercase_ ) for image in images] if do_resize: snake_case_ = [self.resize(lowercase_ , lowercase_ , lowercase_ ) for image in images] if do_center_crop: snake_case_ = [self.center_crop(lowercase_ , lowercase_ ) for image in images] if do_rescale: snake_case_ = [self.rescale(lowercase_ , lowercase_ ) for image in images] if do_normalize: snake_case_ = [self.normalize(lowercase_ , lowercase_ , lowercase_ ) for image in images] snake_case_ = [to_channel_dimension_format(lowercase_ , lowercase_ ) for image in images] snake_case_ = {'''pixel_values''': images} return BatchFeature(data=lowercase_ , tensor_type=lowercase_ )
56
'''simple docstring''' from __future__ import annotations import math def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) -> int: '''simple docstring''' if depth < 0: raise ValueError('''Depth cannot be less than 0''' ) if len(__UpperCAmelCase ) == 0: raise ValueError('''Scores cannot be empty''' ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1, node_index * 2, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ), minimax(depth + 1, node_index * 2 + 1, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ), ) return min( minimax(depth + 1, node_index * 2, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ), minimax(depth + 1, node_index * 2 + 1, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ), ) def __magic_name__ ( ) -> None: '''simple docstring''' snake_case_ = [90, 23, 6, 33, 21, 65, 123, 3_4423] snake_case_ = math.log(len(__UpperCAmelCase ), 2 ) print('''Optimal value : ''', end='''''' ) print(minimax(0, 0, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
56
1
import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def __A ( _lowercase ): '''simple docstring''' _A = os.path.join(args.tf_model_dir , '''parameters.json''' ) _A = json.loads(open(_lowercase ).read() ) if not params: raise ValueError( f"""It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.""" ) if not args.output.endswith('''.pt''' ): _A = args.output + '''.pt''' _A = OrderedDict() with tf.device('''/CPU:0''' ): _A = tf.train.load_checkpoint(args.tf_model_dir ) _A = reader.get_variable_to_shape_map() for key_name in shapes.keys(): _A = reader.get_tensor(_lowercase ).astype(np.floataa ) if key_name.endswith('''/adam_m''' ) or key_name.endswith('''/adam_v''' ): continue if key_name.startswith('''pasts/''' ): if key_name.startswith('''pasts/mlp''' ): _A = int(key_name[9] ) elif key_name.startswith('''pasts/out''' ): _A = 8 _A = '''model.sqout.%d.weight''' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time _A = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _A = torch.tensor(_lowercase ) elif key_name.startswith('''model/moe''' ): _A = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/switch_gating/kernel''' ): _A = '''model.blocks.%d.feed_forward.mlp.router.classifier.weight''' % player _A = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _A = torch.tensor(_lowercase ) elif key_name.endswith('''/softmlp/kernel''' ): _A = '''model.blocks.%d.feed_forward.soft_bypass_mlp.weight''' % player _A = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _A = torch.tensor(_lowercase ) elif key_name.endswith('''/wo/kernel''' ) or key_name.endswith('''/wi/kernel''' ): _A = key_name[-9:-7] for i in range(16 ): _A = '''model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight''' % (player, i, nlayer) _A = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided _A = torch.tensor(_lowercase ) elif key_name.startswith('''model/mlp''' ): _A = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/p1/kernel''' ): _A = '''model.blocks.%d.feed_forward.mlp.wi.weight''' % player _A = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _A = torch.tensor(_lowercase ) elif key_name.endswith('''/p1/bias''' ): _A = '''model.blocks.%d.feed_forward.mlp.wi.bias''' % player _A = vnp.copy() # same because it is one dimensional _A = torch.tensor(_lowercase ) elif key_name.endswith('''/p2/kernel''' ): _A = '''model.blocks.%d.feed_forward.mlp.wo.weight''' % player _A = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _A = torch.tensor(_lowercase ) elif key_name.endswith('''/p2/bias''' ): _A = '''model.blocks.%d.feed_forward.mlp.wo.bias''' % player _A = vnp.copy() # same because it is one dimensional _A = torch.tensor(_lowercase ) elif key_name.startswith('''model/ln''' ): _A = int(key_name[8:].split('''/''' )[0] ) if key_name.endswith('''/b''' ): _A = '''model.blocks.%d.feed_forward.norm.bias''' % player _A = vnp.copy() # same because it is one dimensional _A = torch.tensor(_lowercase ) elif key_name.endswith('''/g''' ): _A = '''model.blocks.%d.feed_forward.norm.weight''' % player _A = vnp.copy() # same because it is one dimensional _A = torch.tensor(_lowercase ) elif key_name.startswith('''model/att''' ): _A = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/qkv/kernel''' ): _A = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum _A = state[:, 0, :, :] _A = state[:, 1, :, :] _A = state[:, 2, :, :] _A = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _A = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _A = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _A = '''model.blocks.%d.self_attn.self_attn.q_proj.weight''' % player _A = torch.tensor(_lowercase ) _A = '''model.blocks.%d.self_attn.self_attn.k_proj.weight''' % player _A = torch.tensor(_lowercase ) _A = '''model.blocks.%d.self_attn.self_attn.v_proj.weight''' % player _A = torch.tensor(_lowercase ) elif key_name.endswith('''/o/kernel''' ): _A = '''model.blocks.%d.self_attn.self_attn.out_proj.weight''' % player _A = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix _A = torch.tensor(_lowercase ) elif key_name.startswith('''model/an''' ): _A = int(key_name[8:].split('''/''' )[0] ) if key_name.endswith('''/b''' ): _A = '''model.blocks.%d.self_attn.norm.bias''' % player _A = vnp.copy() # same because it is one dimensional _A = torch.tensor(_lowercase ) elif key_name.endswith('''/g''' ): _A = '''model.blocks.%d.self_attn.norm.weight''' % player _A = vnp.copy() # same because it is one dimensional _A = torch.tensor(_lowercase ) elif ( key_name.startswith('''model/wte''' ) or key_name.startswith('''model/wpe''' ) or key_name.startswith('''model/ete''' ) ): _A = {'''wte''': '''embed_tokens''', '''wpe''': '''position_embeddings''', '''ete''': '''extra_position_embeddings'''}[ key_name[-3:] ] _A = '''model.%s.weight''' % nlayer _A = vnp.copy() # same in embedded _A = torch.tensor(_lowercase ) if key_name.startswith('''model/wte''' ): _A = '''lm_head.weight''' _A = vnp.copy() # same in embedded _A = torch.tensor(_lowercase ) elif key_name.startswith('''model/wob''' ): _A = '''final_logits_bias''' _A = vnp.copy() # same in embedded _A = state.reshape((1, -1) ) _A = torch.tensor(_lowercase ) elif key_name == "model/dense/kernel": _A = '''model.last_project.weight''' _A = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _A = torch.tensor(_lowercase ) elif key_name == "model/dense_1/bias": _A = '''model.last_project.bias''' _A = vnp.copy() # same because it is one dimensional _A = torch.tensor(_lowercase ) torch.save(_lowercase , args.output ) if __name__ == "__main__": __A = argparse.ArgumentParser( description='model converter.', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('--tf_model_dir', metavar='PATH', type=str, required=True, help='import model') parser.add_argument('--output', metavar='PATH', type=str, required=True, help='output model') __A = parser.parse_args() convert_tf_gptsan_to_pt(args)
371
import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class SCREAMING_SNAKE_CASE ( snake_case ): """simple docstring""" def __A ( self: str ) -> Any: _A = tempfile.mkdtemp() _A = 8 # DPR tok _A = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] _A = os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) os.makedirs(__A , exist_ok=__A ) _A = os.path.join(__A , DPR_VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) # BART tok _A = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] _A = dict(zip(__A , range(len(__A ) ) ) ) _A = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] _A = {'''unk_token''': '''<unk>'''} _A = os.path.join(self.tmpdirname , '''bart_tokenizer''' ) os.makedirs(__A , exist_ok=__A ) _A = os.path.join(__A , BART_VOCAB_FILES_NAMES['''vocab_file'''] ) _A = os.path.join(__A , BART_VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__A ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__A ) ) def __A ( self: List[str] ) -> DPRQuestionEncoderTokenizer: return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def __A ( self: List[str] ) -> DPRContextEncoderTokenizer: return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def __A ( self: Tuple ) -> BartTokenizer: return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''bart_tokenizer''' ) ) def __A ( self: Union[str, Any] ) -> List[str]: shutil.rmtree(self.tmpdirname ) def __A ( self: Dict ) -> Dict: _A = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def __A ( self: Dict ) -> Union[str, Any]: _A = self.get_dummy_dataset() _A = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , ) with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: _A = dataset _A = RagRetriever( __A , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) return retriever def __A ( self: Optional[int] , __A: bool ) -> Any: _A = self.get_dummy_dataset() _A = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''custom''' , ) if from_disk: _A = os.path.join(self.tmpdirname , '''dataset''' ) _A = os.path.join(self.tmpdirname , '''index.faiss''' ) dataset.get_index('''embeddings''' ).save(os.path.join(self.tmpdirname , '''index.faiss''' ) ) dataset.drop_index('''embeddings''' ) dataset.save_to_disk(os.path.join(self.tmpdirname , '''dataset''' ) ) del dataset _A = RagRetriever( __A , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) else: _A = RagRetriever( __A , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , __A ) , ) return retriever def __A ( self: Dict ) -> Dict: _A = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT ) _A = os.path.join(self.tmpdirname , '''hf_bert_base.hnswSQ8_correct_phi_128.c_index''' ) dataset.save_faiss_index('''embeddings''' , index_file_name + '''.index.dpr''' ) pickle.dump(dataset['''id'''] , open(index_file_name + '''.index_meta.dpr''' , '''wb''' ) ) _A = os.path.join(self.tmpdirname , '''psgs_w100.tsv.pkl''' ) _A = {sample['''id''']: [sample['''text'''], sample['''title''']] for sample in dataset} pickle.dump(__A , open(__A , '''wb''' ) ) _A = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''legacy''' , index_path=self.tmpdirname , ) _A = RagRetriever( __A , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() ) return retriever def __A ( self: Tuple ) -> Optional[int]: _A = 1 _A = self.get_dummy_canonical_hf_index_retriever() _A = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _A ,_A ,_A = retriever.retrieve(__A , n_docs=__A ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__A ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , __A ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def __A ( self: Any ) -> Optional[Any]: _A = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: _A = self.get_dummy_dataset() retriever.save_pretrained(__A ) _A = RagRetriever.from_pretrained(__A ) self.assertIsInstance(__A , __A ) _A = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _A = retriever.retrieve(__A , n_docs=1 ) self.assertTrue(out is not None ) def __A ( self: str ) -> Any: _A = 1 _A = self.get_dummy_custom_hf_index_retriever(from_disk=__A ) _A = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _A ,_A ,_A = retriever.retrieve(__A , n_docs=__A ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__A ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , __A ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def __A ( self: int ) -> Optional[int]: _A = self.get_dummy_custom_hf_index_retriever(from_disk=__A ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__A ) _A = RagRetriever.from_pretrained(__A ) self.assertIsInstance(__A , __A ) _A = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _A = retriever.retrieve(__A , n_docs=1 ) self.assertTrue(out is not None ) def __A ( self: str ) -> List[Any]: _A = 1 _A = self.get_dummy_custom_hf_index_retriever(from_disk=__A ) _A = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _A ,_A ,_A = retriever.retrieve(__A , n_docs=__A ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__A ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , __A ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def __A ( self: List[Any] ) -> Any: _A = self.get_dummy_custom_hf_index_retriever(from_disk=__A ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__A ) _A = RagRetriever.from_pretrained(__A ) self.assertIsInstance(__A , __A ) _A = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _A = retriever.retrieve(__A , n_docs=1 ) self.assertTrue(out is not None ) def __A ( self: Tuple ) -> List[Any]: _A = 1 _A = self.get_dummy_legacy_index_retriever() _A = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _A ,_A ,_A = retriever.retrieve(__A , n_docs=__A ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__A ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''text'''] ) , __A ) self.assertEqual(doc_dicts[0]['''text'''][0] , '''bar''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''text'''][0] , '''foo''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def __A ( self: List[str] ) -> Optional[int]: _A = self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__A ) _A = RagRetriever.from_pretrained(__A ) self.assertIsInstance(__A , __A ) _A = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _A = retriever.retrieve(__A , n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def __A ( self: Tuple ) -> Union[str, Any]: import torch _A = 1 _A = self.get_dummy_canonical_hf_index_retriever() _A = [[5, 7], [10, 11]] _A = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _A = retriever(__A , __A , prefix=retriever.config.generator.prefix , n_docs=__A ) _A ,_A ,_A = ( out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(__A , __A ) self.assertIsInstance(__A , __A ) self.assertIsInstance(__A , np.ndarray ) _A = retriever( __A , __A , prefix=retriever.config.generator.prefix , n_docs=__A , return_tensors='''pt''' , ) _A ,_A ,_A ,_A = ( # noqa: F841 out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], out['''doc_ids'''], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(__A , torch.Tensor ) self.assertIsInstance(__A , torch.Tensor ) self.assertIsInstance(__A , torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def __A ( self: int ) -> Dict: _A = self.get_dpr_ctx_encoder_tokenizer() _A = 1 _A = self.get_dummy_custom_hf_index_retriever(from_disk=__A ) retriever.set_ctx_encoder_tokenizer(__A ) _A = [[5, 7], [10, 11]] _A = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _A = retriever(__A , __A , prefix=retriever.config.generator.prefix , n_docs=__A ) self.assertEqual( len(__A ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ('''tokenized_doc_ids''', '''tokenized_doc_attention_mask''') ) , __A ) # check for doc token related keys in dictionary.
75
0
'''simple docstring''' # Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def a_ ( __snake_case : List[str] , __snake_case : int , __snake_case : Any , __snake_case : int ) -> int: """simple docstring""" lowerCamelCase_ ={ '''en''': '''Machine learning is great, isn\'t it?''', '''ru''': '''Машинное обучение - это здорово, не так ли?''', '''de''': '''Maschinelles Lernen ist großartig, nicht wahr?''', } # BLUE scores as follows: # "pair": [fairseq, transformers] lowerCamelCase_ ={ '''wmt16-en-de-dist-12-1''': [2_8.3, 2_7.5_2], '''wmt16-en-de-dist-6-1''': [2_7.4, 2_7.1_1], '''wmt16-en-de-12-1''': [2_6.9, 2_5.7_5], } lowerCamelCase_ =F'''{src_lang}-{tgt_lang}''' lowerCamelCase_ =F''' --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt16 - allenai license: apache-2.0 datasets: - wmt16 metrics: - bleu --- # FSMT ## Model description This is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}. For more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369). All 3 models are available: * [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1) * [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1) * [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = "allenai/{model_name}" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = "{texts[src_lang]}" input_ids = tokenizer.encode(input, return_tensors="pt") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias ## Training data Pretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369). ## Eval results Here are the BLEU scores: model | fairseq | transformers -------|---------|---------- {model_name} | {scores[model_name][0]} | {scores[model_name][1]} The score is slightly below the score reported in the paper, as the researchers don\'t use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs. The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=5 mkdir -p $DATA_DIR sacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` ## Data Sources - [training, etc.](http://www.statmt.org/wmt16/) - [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372) ### BibTeX entry and citation info ``` @misc{{kasai2020deep, title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}}, author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}}, year={{2020}}, eprint={{2006.10369}}, archivePrefix={{arXiv}}, primaryClass={{cs.CL}} }} ``` ''' model_card_dir.mkdir(parents=__snake_case , exist_ok=__snake_case ) lowerCamelCase_ =os.path.join(__snake_case , '''README.md''' ) print(F'''Generating {path}''' ) with open(__snake_case , '''w''' , encoding='''utf-8''' ) as f: f.write(__snake_case ) # make sure we are under the root of the project a_ : List[Any] = Path(__file__).resolve().parent.parent.parent a_ : List[Any] = repo_dir / """model_cards""" for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: a_ : Dict = model_cards_dir / """allenai""" / model_name write_model_card(model_card_dir, src_lang="""en""", tgt_lang="""de""", model_name=model_name)
75
'''simple docstring''' from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class __UpperCamelCase ( lowerCamelCase__ ): def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" return 0.0 def a_ ( __snake_case : np.ndarray , __snake_case : int ) -> tuple[int | float, int | float]: """simple docstring""" lowerCamelCase_ =min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) lowerCamelCase_ =max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def a_ ( __snake_case : FilterType , __snake_case : int ) -> None: """simple docstring""" lowerCamelCase_ =512 lowerCamelCase_ =[1] + [0] * (size - 1) lowerCamelCase_ =[filter_type.process(__snake_case ) for item in inputs] lowerCamelCase_ =[0] * (samplerate - size) # zero-padding outputs += filler lowerCamelCase_ =np.abs(np.fft.fft(__snake_case ) ) lowerCamelCase_ =20 * np.logaa(__snake_case ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel('''Frequency (Hz)''' ) plt.xscale('''log''' ) # Display within reasonable bounds lowerCamelCase_ =get_bounds(__snake_case , __snake_case ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel('''Gain (dB)''' ) plt.plot(__snake_case ) plt.show() def a_ ( __snake_case : FilterType , __snake_case : int ) -> None: """simple docstring""" lowerCamelCase_ =512 lowerCamelCase_ =[1] + [0] * (size - 1) lowerCamelCase_ =[filter_type.process(__snake_case ) for item in inputs] lowerCamelCase_ =[0] * (samplerate - size) # zero-padding outputs += filler lowerCamelCase_ =np.angle(np.fft.fft(__snake_case ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel('''Frequency (Hz)''' ) plt.xscale('''log''' ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel('''Phase shift (Radians)''' ) plt.plot(np.unwrap(__snake_case , -2 * pi ) ) plt.show()
75
1
'''simple docstring''' from sklearn.metrics import fa_score import datasets lowerCamelCase_ = '\nThe F1 score is the harmonic mean of the precision and recall. It can be computed with the equation:\nF1 = 2 * (precision * recall) / (precision + recall)\n' lowerCamelCase_ = '\nArgs:\n predictions (`list` of `int`): Predicted labels.\n references (`list` of `int`): Ground truth labels.\n labels (`list` of `int`): The set of labels to include when `average` is not set to `\'binary\'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.\n pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.\n average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`.\n\n - \'binary\': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary.\n - \'micro\': Calculate metrics globally by counting the total true positives, false negatives and false positives.\n - \'macro\': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - \'weighted\': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. This option can result in an F-score that is not between precision and recall.\n - \'samples\': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n sample_weight (`list` of `float`): Sample weights Defaults to None.\n\nReturns:\n f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better.\n\nExamples:\n\n Example 1-A simple binary example\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0])\n >>> print(results)\n {\'f1\': 0.5}\n\n Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`.\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0)\n >>> print(round(results[\'f1\'], 2))\n 0.67\n\n Example 3-The same simple binary example as in Example 1, but with `sample_weight` included.\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3])\n >>> print(round(results[\'f1\'], 2))\n 0.35\n\n Example 4-A multiclass example, with different values for the `average` input.\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="macro")\n >>> print(round(results[\'f1\'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="micro")\n >>> print(round(results[\'f1\'], 2))\n 0.33\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted")\n >>> print(round(results[\'f1\'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {\'f1\': array([0.8, 0. , 0. ])}\n' lowerCamelCase_ = '\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase_ ( datasets.Metric ): """simple docstring""" def lowerCAmelCase_ ( self : Dict ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("int32" ) ), "references": datasets.Sequence(datasets.Value("int32" ) ), } if self.config_name == "multilabel" else { "predictions": datasets.Value("int32" ), "references": datasets.Value("int32" ), } ) , reference_urls=["https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html"] , ) def lowerCAmelCase_ ( self : Union[str, Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : str , __lowerCamelCase : Dict=None , __lowerCamelCase : List[Any]=1 , __lowerCamelCase : str="binary" , __lowerCamelCase : Optional[int]=None ): """simple docstring""" _SCREAMING_SNAKE_CASE = fa_score( __lowerCamelCase , __lowerCamelCase , labels=__lowerCamelCase , pos_label=__lowerCamelCase , average=__lowerCamelCase , sample_weight=__lowerCamelCase ) return {"f1": float(__lowerCamelCase ) if score.size == 1 else score}
111
'''simple docstring''' import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging lowerCamelCase_ = logging.get_logger(__name__) class lowercase_ ( A ): """simple docstring""" lowerCamelCase_ = '''linear''' lowerCamelCase_ = '''cosine''' lowerCamelCase_ = '''cosine_with_restarts''' lowerCamelCase_ = '''polynomial''' lowerCamelCase_ = '''constant''' lowerCamelCase_ = '''constant_with_warmup''' lowerCamelCase_ = '''piecewise_constant''' def SCREAMING_SNAKE_CASE_ ( __A : Optimizer , __A : int = -1 ) -> Optional[int]: return LambdaLR(__A , lambda __A : 1 , last_epoch=__A ) def SCREAMING_SNAKE_CASE_ ( __A : Optimizer , __A : int , __A : int = -1 ) -> Dict: def lr_lambda(__A : int ): if current_step < num_warmup_steps: return float(__A ) / float(max(1.0 , __A ) ) return 1.0 return LambdaLR(__A , __A , last_epoch=__A ) def SCREAMING_SNAKE_CASE_ ( __A : Optimizer , __A : str , __A : int = -1 ) -> Tuple: _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = step_rules.split("," ) for rule_str in rule_list[:-1]: _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = rule_str.split(":" ) _SCREAMING_SNAKE_CASE = int(__A ) _SCREAMING_SNAKE_CASE = float(__A ) _SCREAMING_SNAKE_CASE = value _SCREAMING_SNAKE_CASE = float(rule_list[-1] ) def create_rules_function(__A : Tuple , __A : List[Any] ): def rule_func(__A : int ) -> float: _SCREAMING_SNAKE_CASE = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(__A ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func _SCREAMING_SNAKE_CASE = create_rules_function(__A , __A ) return LambdaLR(__A , __A , last_epoch=__A ) def SCREAMING_SNAKE_CASE_ ( __A : Union[str, Any] , __A : Optional[Any] , __A : List[str] , __A : Union[str, Any]=-1 ) -> str: def lr_lambda(__A : int ): if current_step < num_warmup_steps: return float(__A ) / float(max(1 , __A ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(__A , __A , __A ) def SCREAMING_SNAKE_CASE_ ( __A : Optimizer , __A : int , __A : int , __A : float = 0.5 , __A : int = -1 ) -> Any: def lr_lambda(__A : int ): if current_step < num_warmup_steps: return float(__A ) / float(max(1 , __A ) ) _SCREAMING_SNAKE_CASE = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(__A ) * 2.0 * progress )) ) return LambdaLR(__A , __A , __A ) def SCREAMING_SNAKE_CASE_ ( __A : Optimizer , __A : int , __A : int , __A : int = 1 , __A : int = -1 ) -> str: def lr_lambda(__A : Optional[int] ): if current_step < num_warmup_steps: return float(__A ) / float(max(1 , __A ) ) _SCREAMING_SNAKE_CASE = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(__A ) * progress) % 1.0) )) ) return LambdaLR(__A , __A , __A ) def SCREAMING_SNAKE_CASE_ ( __A : Optional[int] , __A : Optional[Any] , __A : List[str] , __A : Any=1e-7 , __A : Optional[Any]=1.0 , __A : List[Any]=-1 ) -> Tuple: _SCREAMING_SNAKE_CASE = optimizer.defaults["lr"] if not (lr_init > lr_end): raise ValueError(f"""lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})""" ) def lr_lambda(__A : int ): if current_step < num_warmup_steps: return float(__A ) / float(max(1 , __A ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: _SCREAMING_SNAKE_CASE = lr_init - lr_end _SCREAMING_SNAKE_CASE = num_training_steps - num_warmup_steps _SCREAMING_SNAKE_CASE = 1 - (current_step - num_warmup_steps) / decay_steps _SCREAMING_SNAKE_CASE = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(__A , __A , __A ) lowerCamelCase_ = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def SCREAMING_SNAKE_CASE_ ( __A : Union[str, SchedulerType] , __A : Optimizer , __A : Optional[str] = None , __A : Optional[int] = None , __A : Optional[int] = None , __A : int = 1 , __A : float = 1.0 , __A : int = -1 , ) -> Optional[Any]: _SCREAMING_SNAKE_CASE = SchedulerType(__A ) _SCREAMING_SNAKE_CASE = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(__A , last_epoch=__A ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(__A , step_rules=__A , last_epoch=__A ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(f"""{name} requires `num_warmup_steps`, please provide that argument.""" ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(__A , num_warmup_steps=__A , last_epoch=__A ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(f"""{name} requires `num_training_steps`, please provide that argument.""" ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( __A , num_warmup_steps=__A , num_training_steps=__A , num_cycles=__A , last_epoch=__A , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( __A , num_warmup_steps=__A , num_training_steps=__A , power=__A , last_epoch=__A , ) return schedule_func( __A , num_warmup_steps=__A , num_training_steps=__A , last_epoch=__A )
111
1
def A_ ( _lowerCAmelCase ) -> Dict: stooge(_lowerCAmelCase , 0 , len(_lowerCAmelCase ) - 1 ) return arr def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Union[str, Any]: if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: UpperCamelCase , UpperCamelCase : Tuple = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: UpperCamelCase : int = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(_lowerCAmelCase , _lowerCAmelCase , (h - t) ) # Recursively sort last 2/3 elements stooge(_lowerCAmelCase , i + t , (_lowerCAmelCase) ) # Recursively sort first 2/3 elements stooge(_lowerCAmelCase , _lowerCAmelCase , (h - t) ) if __name__ == "__main__": __lowerCamelCase : Any = input("""Enter numbers separated by a comma:\n""").strip() __lowerCamelCase : Optional[Any] = [int(item) for item in user_input.split(""",""")] print(stooge_sort(unsorted))
52
'''simple docstring''' import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging lowerCAmelCase : int =logging.get_logger(__name__) lowerCAmelCase : List[str] ='''▁''' lowerCAmelCase : List[str] ={ '''vocab_file''': '''vocab.json''', '''spm_file''': '''sentencepiece.bpe.model''', '''tokenizer_config_file''': '''tokenizer_config.json''', } lowerCAmelCase : Optional[Any] ={ '''vocab_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json''', }, '''spm_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model''', }, '''tokenizer_config_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json''', }, } lowerCAmelCase : int ={ '''facebook/m2m100_418M''': 1_024, } # fmt: off lowerCAmelCase : str ={ '''m2m100''': ['''af''', '''am''', '''ar''', '''ast''', '''az''', '''ba''', '''be''', '''bg''', '''bn''', '''br''', '''bs''', '''ca''', '''ceb''', '''cs''', '''cy''', '''da''', '''de''', '''el''', '''en''', '''es''', '''et''', '''fa''', '''ff''', '''fi''', '''fr''', '''fy''', '''ga''', '''gd''', '''gl''', '''gu''', '''ha''', '''he''', '''hi''', '''hr''', '''ht''', '''hu''', '''hy''', '''id''', '''ig''', '''ilo''', '''is''', '''it''', '''ja''', '''jv''', '''ka''', '''kk''', '''km''', '''kn''', '''ko''', '''lb''', '''lg''', '''ln''', '''lo''', '''lt''', '''lv''', '''mg''', '''mk''', '''ml''', '''mn''', '''mr''', '''ms''', '''my''', '''ne''', '''nl''', '''no''', '''ns''', '''oc''', '''or''', '''pa''', '''pl''', '''ps''', '''pt''', '''ro''', '''ru''', '''sd''', '''si''', '''sk''', '''sl''', '''so''', '''sq''', '''sr''', '''ss''', '''su''', '''sv''', '''sw''', '''ta''', '''th''', '''tl''', '''tn''', '''tr''', '''uk''', '''ur''', '''uz''', '''vi''', '''wo''', '''xh''', '''yi''', '''yo''', '''zh''', '''zu'''], '''wmt21''': ['''en''', '''ha''', '''is''', '''ja''', '''cs''', '''ru''', '''zh''', '''de'''] } class a_ ( _lowerCAmelCase ): __A = VOCAB_FILES_NAMES __A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A = PRETRAINED_VOCAB_FILES_MAP __A = ["input_ids", "attention_mask"] __A = [] __A = [] def __init__( self : Any , lowercase : Any , lowercase : List[Any] , lowercase : int=None , lowercase : Optional[Any]=None , lowercase : Union[str, Any]="<s>" , lowercase : Any="</s>" , lowercase : Optional[int]="</s>" , lowercase : List[Any]="<pad>" , lowercase : Optional[int]="<unk>" , lowercase : Optional[int]="m2m100" , lowercase : Optional[Dict[str, Any]] = None , lowercase : Any=8 , **lowercase : int , ): """simple docstring""" lowercase_ :Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs lowercase_ :Optional[Any] = language_codes lowercase_ :Tuple = FAIRSEQ_LANGUAGE_CODES[language_codes] lowercase_ :List[Any] = {lang_code: F'__{lang_code}__' for lang_code in fairseq_language_code} lowercase_ :Union[str, Any] = kwargs.get("additional_special_tokens" , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(lowercase ) for lang_code in fairseq_language_code if self.get_lang_token(lowercase ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=lowercase , tgt_lang=lowercase , bos_token=lowercase , eos_token=lowercase , sep_token=lowercase , unk_token=lowercase , pad_token=lowercase , language_codes=lowercase , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=lowercase , **lowercase , ) lowercase_ :Optional[int] = vocab_file lowercase_ :Any = load_json(lowercase ) lowercase_ :Optional[Any] = {v: k for k, v in self.encoder.items()} lowercase_ :List[str] = spm_file lowercase_ :List[str] = load_spm(lowercase , self.sp_model_kwargs ) lowercase_ :Optional[int] = len(self.encoder ) lowercase_ :int = { self.get_lang_token(lowercase ): self.encoder_size + i for i, lang_code in enumerate(lowercase ) } lowercase_ :List[Any] = {lang_code: self.encoder_size + i for i, lang_code in enumerate(lowercase )} lowercase_ :List[Any] = {v: k for k, v in self.lang_token_to_id.items()} lowercase_ :int = src_lang if src_lang is not None else "en" lowercase_ :Union[str, Any] = tgt_lang lowercase_ :List[Any] = self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) lowercase_ :int = num_madeup_words @property def lowercase__ ( self : List[str] ): """simple docstring""" return len(self.encoder ) + len(self.lang_token_to_id ) @property def lowercase__ ( self : Any ): """simple docstring""" return self._src_lang @src_lang.setter def lowercase__ ( self : Optional[int] , lowercase : str ): """simple docstring""" lowercase_ :str = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowercase__ ( self : Dict , lowercase : str ): """simple docstring""" return self.sp_model.encode(lowercase , out_type=lowercase ) def lowercase__ ( self : Tuple , lowercase : Dict ): """simple docstring""" if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(lowercase , self.encoder[self.unk_token] ) def lowercase__ ( self : Any , lowercase : int ): """simple docstring""" if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(lowercase , self.unk_token ) def lowercase__ ( self : int , lowercase : int ): """simple docstring""" lowercase_ :Optional[Any] = [] lowercase_ :Any = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowercase ) + token lowercase_ :str = [] else: current_sub_tokens.append(lowercase ) out_string += self.sp_model.decode(lowercase ) return out_string.strip() def lowercase__ ( self : Any , lowercase : List[int] , lowercase : Optional[List[int]] = None , lowercase : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase , token_ids_a=lowercase , already_has_special_tokens=lowercase ) lowercase_ :List[Any] = [1] * len(self.prefix_tokens ) lowercase_ :List[Any] = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(lowercase )) + suffix_ones return prefix_ones + ([0] * len(lowercase )) + ([0] * len(lowercase )) + suffix_ones def lowercase__ ( self : Union[str, Any] , lowercase : List[int] , lowercase : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowercase__ ( self : Union[str, Any] ): """simple docstring""" lowercase_ :str = {self.convert_ids_to_tokens(lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : str ): """simple docstring""" lowercase_ :Any = self.__dict__.copy() lowercase_ :str = None return state def __setstate__( self : Tuple , lowercase : Dict ): """simple docstring""" lowercase_ :int = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): lowercase_ :List[str] = {} lowercase_ :List[Any] = load_spm(self.spm_file , self.sp_model_kwargs ) def lowercase__ ( self : str , lowercase : str , lowercase : Optional[str] = None ): """simple docstring""" lowercase_ :Dict = Path(lowercase ) if not save_dir.is_dir(): raise OSError(F'{save_directory} should be a directory' ) lowercase_ :Dict = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["vocab_file"] ) lowercase_ :Dict = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["spm_file"] ) save_json(self.encoder , lowercase ) if os.path.abspath(self.spm_file ) != os.path.abspath(lowercase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , lowercase ) elif not os.path.isfile(self.spm_file ): with open(lowercase , "wb" ) as fi: lowercase_ :List[str] = self.sp_model.serialized_model_proto() fi.write(lowercase ) return (str(lowercase ), str(lowercase )) def lowercase__ ( self : List[str] , lowercase : List[str] , lowercase : str = "en" , lowercase : Optional[List[str]] = None , lowercase : str = "ro" , **lowercase : Optional[int] , ): """simple docstring""" lowercase_ :int = src_lang lowercase_ :Optional[int] = tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(lowercase , lowercase , **lowercase ) def lowercase__ ( self : List[Any] , lowercase : Any , lowercase : Optional[str] , lowercase : Optional[str] , **lowercase : Union[str, Any] ): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) lowercase_ :List[str] = src_lang lowercase_ :Union[str, Any] = self(lowercase , add_special_tokens=lowercase , **lowercase ) lowercase_ :str = self.get_lang_id(lowercase ) lowercase_ :Union[str, Any] = tgt_lang_id return inputs def lowercase__ ( self : str ): """simple docstring""" self.set_src_lang_special_tokens(self.src_lang ) def lowercase__ ( self : Tuple ): """simple docstring""" self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowercase__ ( self : str , lowercase : str ): """simple docstring""" lowercase_ :List[str] = self.get_lang_token(lowercase ) lowercase_ :List[str] = self.lang_token_to_id[lang_token] lowercase_ :List[Any] = [self.cur_lang_id] lowercase_ :str = [self.eos_token_id] def lowercase__ ( self : str , lowercase : str ): """simple docstring""" lowercase_ :Optional[int] = self.get_lang_token(lowercase ) lowercase_ :Tuple = self.lang_token_to_id[lang_token] lowercase_ :Dict = [self.cur_lang_id] lowercase_ :List[Any] = [self.eos_token_id] def lowercase__ ( self : Union[str, Any] , lowercase : str ): """simple docstring""" return self.lang_code_to_token[lang] def lowercase__ ( self : Dict , lowercase : str ): """simple docstring""" lowercase_ :Union[str, Any] = self.get_lang_token(lowercase ) return self.lang_token_to_id[lang_token] def UpperCAmelCase_ ( __lowerCamelCase : str ,__lowerCamelCase : Dict[str, Any] ): lowercase_ :List[str] = sentencepiece.SentencePieceProcessor(**__lowerCamelCase ) spm.Load(str(__lowerCamelCase ) ) return spm def UpperCAmelCase_ ( __lowerCamelCase : str ): with open(__lowerCamelCase ,"r" ) as f: return json.load(__lowerCamelCase ) def UpperCAmelCase_ ( __lowerCamelCase : int ,__lowerCamelCase : str ): with open(__lowerCamelCase ,"w" ) as f: json.dump(__lowerCamelCase ,__lowerCamelCase ,indent=2 )
223
0
import shutil import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_tf_cross_test, require_tf, require_torch, require_torchvision, require_vision, ) from transformers.utils import is_tf_available, is_torch_available, is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, SamImageProcessor, SamProcessor if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf @require_vision @require_torchvision class _a (unittest.TestCase ): '''simple docstring''' def __A ( self ): A__ : Union[str, Any] = tempfile.mkdtemp() A__ : Union[str, Any] = SamImageProcessor() A__ : Tuple = SamProcessor(A__ ) processor.save_pretrained(self.tmpdirname ) def __A ( self , **A__ ): return AutoProcessor.from_pretrained(self.tmpdirname , **A__ ).image_processor def __A ( self ): shutil.rmtree(self.tmpdirname ) def __A ( self ): A__ : Optional[int] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] A__ : Dict = [Image.fromarray(np.moveaxis(A__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __A ( self ): A__ : Optional[Any] = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A__ : List[str] = self.get_image_processor(do_normalize=A__ , padding_value=1.0 ) A__ : Optional[Any] = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=A__ , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , A__ ) def __A ( self ): A__ : Optional[Any] = self.get_image_processor() A__ : Union[str, Any] = SamProcessor(image_processor=A__ ) A__ : Tuple = self.prepare_image_inputs() A__ : str = image_processor(A__ , return_tensors="""np""" ) A__ : Any = processor(images=A__ , return_tensors="""np""" ) input_feat_extract.pop("""original_sizes""" ) # pop original_sizes as it is popped in the processor input_feat_extract.pop("""reshaped_input_sizes""" ) # pop original_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) @require_torch def __A ( self ): A__ : Tuple = self.get_image_processor() A__ : Optional[Any] = SamProcessor(image_processor=A__ ) A__ : Optional[Any] = [torch.ones((1, 3, 5, 5) )] A__ : Dict = [[1764, 2646]] A__ : Dict = [[683, 1024]] A__ : Dict = processor.post_process_masks(A__ , A__ , A__ ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) A__ : Optional[int] = processor.post_process_masks( A__ , torch.tensor(A__ ) , torch.tensor(A__ ) ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) # should also work with np A__ : Tuple = [np.ones((1, 3, 5, 5) )] A__ : str = processor.post_process_masks(A__ , np.array(A__ ) , np.array(A__ ) ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) A__ : Tuple = [[1, 0], [0, 1]] with self.assertRaises(A__ ): A__ : str = processor.post_process_masks(A__ , np.array(A__ ) , np.array(A__ ) ) @require_vision @require_tf class _a (unittest.TestCase ): '''simple docstring''' def __A ( self ): A__ : List[str] = tempfile.mkdtemp() A__ : Optional[Any] = SamImageProcessor() A__ : Tuple = SamProcessor(A__ ) processor.save_pretrained(self.tmpdirname ) def __A ( self , **A__ ): return AutoProcessor.from_pretrained(self.tmpdirname , **A__ ).image_processor def __A ( self ): shutil.rmtree(self.tmpdirname ) def __A ( self ): A__ : List[Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] A__ : Dict = [Image.fromarray(np.moveaxis(A__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __A ( self ): A__ : Optional[Any] = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A__ : Tuple = self.get_image_processor(do_normalize=A__ , padding_value=1.0 ) A__ : Union[str, Any] = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=A__ , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , A__ ) def __A ( self ): A__ : Union[str, Any] = self.get_image_processor() A__ : List[Any] = SamProcessor(image_processor=A__ ) A__ : Dict = self.prepare_image_inputs() A__ : List[Any] = image_processor(A__ , return_tensors="""np""" ) A__ : str = processor(images=A__ , return_tensors="""np""" ) input_feat_extract.pop("""original_sizes""" ) # pop original_sizes as it is popped in the processor input_feat_extract.pop("""reshaped_input_sizes""" ) # pop reshaped_input_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) @require_tf def __A ( self ): A__ : Union[str, Any] = self.get_image_processor() A__ : Tuple = SamProcessor(image_processor=A__ ) A__ : Tuple = [tf.ones((1, 3, 5, 5) )] A__ : List[str] = [[1764, 2646]] A__ : List[Any] = [[683, 1024]] A__ : Tuple = processor.post_process_masks(A__ , A__ , A__ , return_tensors="""tf""" ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) A__ : Any = processor.post_process_masks( A__ , tf.convert_to_tensor(A__ ) , tf.convert_to_tensor(A__ ) , return_tensors="""tf""" , ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) # should also work with np A__ : int = [np.ones((1, 3, 5, 5) )] A__ : Any = processor.post_process_masks( A__ , np.array(A__ ) , np.array(A__ ) , return_tensors="""tf""" ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) A__ : Optional[int] = [[1, 0], [0, 1]] with self.assertRaises(tf.errors.InvalidArgumentError ): A__ : str = processor.post_process_masks( A__ , np.array(A__ ) , np.array(A__ ) , return_tensors="""tf""" ) @require_vision @require_torchvision class _a (unittest.TestCase ): '''simple docstring''' def __A ( self ): A__ : str = tempfile.mkdtemp() A__ : str = SamImageProcessor() A__ : Optional[Any] = SamProcessor(A__ ) processor.save_pretrained(self.tmpdirname ) def __A ( self , **A__ ): return AutoProcessor.from_pretrained(self.tmpdirname , **A__ ).image_processor def __A ( self ): shutil.rmtree(self.tmpdirname ) def __A ( self ): A__ : str = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] A__ : Tuple = [Image.fromarray(np.moveaxis(A__ , 0 , -1 ) ) for x in image_inputs] return image_inputs @is_pt_tf_cross_test def __A ( self ): A__ : str = self.get_image_processor() A__ : int = SamProcessor(image_processor=A__ ) A__ : str = np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa ) A__ : Any = [tf.convert_to_tensor(A__ )] A__ : Tuple = [torch.tensor(A__ )] A__ : int = [[1764, 2646]] A__ : List[Any] = [[683, 1024]] A__ : str = processor.post_process_masks( A__ , A__ , A__ , return_tensors="""tf""" ) A__ : List[Any] = processor.post_process_masks( A__ , A__ , A__ , return_tensors="""pt""" ) self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) ) @is_pt_tf_cross_test def __A ( self ): A__ : List[Any] = self.get_image_processor() A__ : int = SamProcessor(image_processor=A__ ) A__ : Tuple = self.prepare_image_inputs() A__ : Union[str, Any] = image_processor(A__ , return_tensors="""pt""" )["""pixel_values"""].numpy() A__ : Optional[int] = processor(images=A__ , return_tensors="""pt""" )["""pixel_values"""].numpy() A__ : List[str] = image_processor(A__ , return_tensors="""tf""" )["""pixel_values"""].numpy() A__ : Optional[Any] = processor(images=A__ , return_tensors="""tf""" )["""pixel_values"""].numpy() self.assertTrue(np.allclose(A__ , A__ ) ) self.assertTrue(np.allclose(A__ , A__ ) ) self.assertTrue(np.allclose(A__ , A__ ) )
141
from __future__ import annotations def UpperCamelCase (lowercase_: list[int] , lowercase_: list[int] , lowercase_: int ) -> tuple[float, list[float]]: A__ : Tuple = list(range(len(lowercase_ ) ) ) A__ : Union[str, Any] = [v / w for v, w in zip(lowercase_ , lowercase_ )] index.sort(key=lambda lowercase_ : ratio[i] , reverse=lowercase_ ) A__ : float = 0 A__ : list[float] = [0] * len(lowercase_ ) for i in index: if weight[i] <= capacity: A__ : Optional[int] = 1 max_value += value[i] capacity -= weight[i] else: A__ : Union[str, Any] = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
141
1
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple import torch from torch import nn from transformers import RobertaPreTrainedModel, XLMRobertaConfig, XLMRobertaModel from transformers.utils import ModelOutput @dataclass class a_ ( snake_case_ ): '''simple docstring''' UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None class a_ ( snake_case_ ): '''simple docstring''' def __init__( self , A=1 , A=0 , A=2 , A=512 , A="cls" , A=False , A=True , **A , ) -> int: super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A ) _SCREAMING_SNAKE_CASE = project_dim _SCREAMING_SNAKE_CASE = pooler_fn _SCREAMING_SNAKE_CASE = learn_encoder _SCREAMING_SNAKE_CASE = use_attention_mask class a_ ( snake_case_ ): '''simple docstring''' UpperCamelCase = [R'''pooler''', R'''logit_scale'''] UpperCamelCase = [R'''position_ids''', R'''predictions.decoder.bias'''] UpperCamelCase = '''roberta''' UpperCamelCase = RobertaSeriesConfig def __init__( self , A ) -> Optional[int]: super().__init__(A ) _SCREAMING_SNAKE_CASE = XLMRobertaModel(A ) _SCREAMING_SNAKE_CASE = nn.Linear(config.hidden_size , config.project_dim ) _SCREAMING_SNAKE_CASE = getattr(A , """has_pre_transformation""" , A ) if self.has_pre_transformation: _SCREAMING_SNAKE_CASE = nn.Linear(config.hidden_size , config.project_dim ) _SCREAMING_SNAKE_CASE = nn.LayerNorm(config.hidden_size , eps=config.layer_norm_eps ) self.post_init() def snake_case_( self , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , ) -> Any: _SCREAMING_SNAKE_CASE = return_dict if return_dict is not None else self.config.use_return_dict _SCREAMING_SNAKE_CASE = self.base_model( input_ids=A , attention_mask=A , token_type_ids=A , position_ids=A , head_mask=A , inputs_embeds=A , encoder_hidden_states=A , encoder_attention_mask=A , output_attentions=A , output_hidden_states=True if self.has_pre_transformation else output_hidden_states , return_dict=A , ) if self.has_pre_transformation: _SCREAMING_SNAKE_CASE = outputs["""hidden_states"""][-2] _SCREAMING_SNAKE_CASE = self.pre_LN(A ) _SCREAMING_SNAKE_CASE = self.transformation_pre(A ) return TransformationModelOutput( projection_state=A , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , ) else: _SCREAMING_SNAKE_CASE = self.transformation(outputs.last_hidden_state ) return TransformationModelOutput( projection_state=A , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
58
'''simple docstring''' from string import ascii_lowercase, ascii_uppercase def lowerCamelCase ( __lowerCamelCase : str ) ->str: if not sentence: return "" _SCREAMING_SNAKE_CASE = dict(zip(__lowerCamelCase , __lowerCamelCase ) ) return lower_to_upper.get(sentence[0] , sentence[0] ) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
58
1
"""simple docstring""" import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class _UpperCamelCase ( lowerCAmelCase__ ,lowerCAmelCase__ ,unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Dict =IFInpaintingSuperResolutionPipeline __UpperCAmelCase : Optional[Any] =TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""width""", """height"""} __UpperCAmelCase : List[Any] =TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"""original_image"""} ) __UpperCAmelCase : List[str] =PipelineTesterMixin.required_optional_params - {"""latents"""} def snake_case ( self ): return self._get_superresolution_dummy_components() def snake_case ( self , __a , __a=0 ): if str(__a ).startswith("mps" ): __lowerCAmelCase = torch.manual_seed(__a ) else: __lowerCAmelCase = torch.Generator(device=__a ).manual_seed(__a ) __lowerCAmelCase = floats_tensor((1, 3, 16, 16) , rng=random.Random(__a ) ).to(__a ) __lowerCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(__a ) ).to(__a ) __lowerCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(__a ) ).to(__a ) __lowerCAmelCase = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def snake_case ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def snake_case ( self ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def snake_case ( self ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def snake_case ( self ): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def snake_case ( self ): self._test_save_load_local() def snake_case ( self ): self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
359
"""simple docstring""" from ..utils import DummyObject, requires_backends class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Optional[Any] =["""transformers""", """torch""", """note_seq"""] def __init__( self , *__a , **__a ): requires_backends(self , ["transformers", "torch", "note_seq"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["transformers", "torch", "note_seq"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["transformers", "torch", "note_seq"] )
259
0
"""simple docstring""" import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def __magic_name__ ( *__snake_case : Tuple ) -> Dict: if not isinstance(lowercase__ , lowercase__ ): lowercase : List[str] = list(lowercase__ ) for i in range(len(lowercase__ ) ): lowercase : Dict = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def __magic_name__ ( __snake_case : Exception ) -> Dict: lowercase : int = [ "CUDA out of memory.", # CUDA OOM "cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.", # CUDNN SNAFU "DefaultCPUAllocator: can't allocate memory", # CPU OOM ] if isinstance(lowercase__ , lowercase__ ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def __magic_name__ ( __snake_case : callable = None , __snake_case : int = 128 ) -> Union[str, Any]: if function is None: return functools.partial(lowercase__ , starting_batch_size=lowercase__ ) lowercase : Tuple = starting_batch_size def decorator(*__snake_case : List[Any] , **__snake_case : Optional[Any] ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() lowercase : str = list(inspect.signature(lowercase__ ).parameters.keys() ) # Guard against user error if len(lowercase__ ) < (len(lowercase__ ) + 1): lowercase : Dict = ", ".join([f"""{arg}={value}""" for arg, value in zip(params[1:] , args[1:] )] ) raise TypeError( f"""Batch size was passed into `{function.__name__}` as the first argument when called.""" f"""Remove this as the decorator already does so: `{function.__name__}({arg_str})`""" ) while True: if batch_size == 0: raise RuntimeError("No executable batch size found, reached zero." ) try: return function(lowercase__ , *lowercase__ , **lowercase__ ) except Exception as e: if should_reduce_batch_size(lowercase__ ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
202
"""simple docstring""" import sys from collections import defaultdict class lowerCamelCase__ : def __init__( self ): """simple docstring""" snake_case : Dict = [] def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE ): """simple docstring""" return self.node_position[vertex] def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case : Dict = pos def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if start > size // 2 - 1: return else: if 2 * start + 2 >= size: snake_case : Any = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: snake_case : Any = 2 * start + 1 else: snake_case : Union[str, Any] = 2 * start + 2 if heap[smallest_child] < heap[start]: snake_case , snake_case : Dict = heap[smallest_child], positions[smallest_child] snake_case , snake_case : Any = ( heap[start], positions[start], ) snake_case , snake_case : str = temp, tempa snake_case : Dict = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , SCREAMING_SNAKE_CASE ) self.top_to_bottom(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case : Optional[Any] = position[index] while index != 0: snake_case : Dict = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: snake_case : Tuple = heap[parent] snake_case : str = position[parent] self.set_position(position[parent] , SCREAMING_SNAKE_CASE ) else: snake_case : Union[str, Any] = val snake_case : List[Any] = temp self.set_position(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) break snake_case : Optional[Any] = parent else: snake_case : Optional[int] = val snake_case : List[Any] = temp self.set_position(SCREAMING_SNAKE_CASE , 0 ) def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case : List[str] = len(SCREAMING_SNAKE_CASE ) // 2 - 1 for i in range(SCREAMING_SNAKE_CASE , -1 , -1 ): self.top_to_bottom(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , len(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case : Union[str, Any] = positions[0] snake_case : List[str] = sys.maxsize self.top_to_bottom(SCREAMING_SNAKE_CASE , 0 , len(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) return temp def UpperCamelCase__ ( lowercase__ : Union[str, Any] ): snake_case : Tuple = Heap() snake_case : List[str] = [0] * len(lowercase__ ) snake_case : Optional[int] = [-1] * len(lowercase__ ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph snake_case : Optional[int] = [] # Heap of Distance of vertices from their neighboring vertex snake_case : List[Any] = [] for vertex in range(len(lowercase__ ) ): distance_tv.append(sys.maxsize ) positions.append(lowercase__ ) heap.node_position.append(lowercase__ ) snake_case : Optional[int] = [] snake_case : Union[str, Any] = 1 snake_case : Union[str, Any] = sys.maxsize for neighbor, distance in adjacency_list[0]: snake_case : List[Any] = 0 snake_case : Tuple = distance heap.heapify(lowercase__ , lowercase__ ) for _ in range(1 , len(lowercase__ ) ): snake_case : Optional[Any] = heap.delete_minimum(lowercase__ , lowercase__ ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) snake_case : Optional[int] = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(lowercase__ )] ): snake_case : str = distance heap.bottom_to_top( lowercase__ , heap.get_position(lowercase__ ) , lowercase__ , lowercase__ ) snake_case : Optional[int] = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > __A = int(input("Enter number of edges: ").strip()) __A = defaultdict(list) for _ in range(edges_number): __A = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
148
0
import cva import numpy as np class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self : Tuple , UpperCAmelCase_ : float , UpperCAmelCase_ : int) ->List[Any]: '''simple docstring''' if k in (0.04, 0.06): lowerCamelCase__: int =k lowerCamelCase__: List[Any] =window_size else: raise ValueError("invalid k value") def __str__(self : str) ->str: '''simple docstring''' return str(self.k) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : str) ->tuple[cva.Mat, list[list[int]]]: '''simple docstring''' lowerCamelCase__: int =cva.imread(UpperCAmelCase_ , 0) lowerCamelCase__ , lowerCamelCase__: List[Any] =img.shape lowerCamelCase__: list[list[int]] =[] lowerCamelCase__: List[str] =img.copy() lowerCamelCase__: Optional[Any] =cva.cvtColor(UpperCAmelCase_ , cva.COLOR_GRAY2RGB) lowerCamelCase__ , lowerCamelCase__: int =np.gradient(UpperCAmelCase_) lowerCamelCase__: List[str] =dx**2 lowerCamelCase__: Optional[int] =dy**2 lowerCamelCase__: List[str] =dx * dy lowerCamelCase__: Optional[Any] =0.04 lowerCamelCase__: Optional[Any] =self.window_size // 2 for y in range(UpperCAmelCase_ , h - offset): for x in range(UpperCAmelCase_ , w - offset): lowerCamelCase__: str =ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__: List[str] =iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__: List[str] =ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__: str =(wxx * wyy) - (wxy**2) lowerCamelCase__: Any =wxx + wyy lowerCamelCase__: Any =det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r]) color_img.itemset((y, x, 0) , 0) color_img.itemset((y, x, 1) , 0) color_img.itemset((y, x, 2) , 255) return color_img, corner_list if __name__ == "__main__": __A = HarrisCorner(0.0_4, 3) __A , __A = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
273
from __future__ import annotations from typing import Any class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : float = 0) ->None: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: Any =row, column lowerCamelCase__: List[str] =[[default_value for c in range(UpperCAmelCase_)] for r in range(UpperCAmelCase_)] def __str__(self : Tuple) ->str: '''simple docstring''' lowerCamelCase__: Union[str, Any] =F"""Matrix consist of {self.row} rows and {self.column} columns\n""" # Make string identifier lowerCamelCase__: List[str] =0 for row_vector in self.array: for obj in row_vector: lowerCamelCase__: int =max(UpperCAmelCase_ , len(str(UpperCAmelCase_))) lowerCamelCase__: Any =F"""%{max_element_length}s""" # Make string and return def single_line(UpperCAmelCase_ : list[float]) -> str: nonlocal string_format_identifier lowerCamelCase__: Tuple ="[" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector) line += "]" return line s += "\n".join(single_line(UpperCAmelCase_) for row_vector in self.array) return s def __repr__(self : Optional[int]) ->str: '''simple docstring''' return str(self) def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : tuple[int, int]) ->bool: '''simple docstring''' if not (isinstance(UpperCAmelCase_ , (list, tuple)) and len(UpperCAmelCase_) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__(self : int , UpperCAmelCase_ : tuple[int, int]) ->Any: '''simple docstring''' assert self.validate_indicies(UpperCAmelCase_) return self.array[loc[0]][loc[1]] def __setitem__(self : Optional[Any] , UpperCAmelCase_ : tuple[int, int] , UpperCAmelCase_ : float) ->None: '''simple docstring''' assert self.validate_indicies(UpperCAmelCase_) lowerCamelCase__: str =value def __add__(self : Dict , UpperCAmelCase_ : Matrix) ->Matrix: '''simple docstring''' assert isinstance(UpperCAmelCase_ , UpperCAmelCase_) assert self.row == another.row and self.column == another.column # Add lowerCamelCase__: Dict =Matrix(self.row , self.column) for r in range(self.row): for c in range(self.column): lowerCamelCase__: List[str] =self[r, c] + another[r, c] return result def __neg__(self : str) ->Matrix: '''simple docstring''' lowerCamelCase__: List[Any] =Matrix(self.row , self.column) for r in range(self.row): for c in range(self.column): lowerCamelCase__: Union[str, Any] =-self[r, c] return result def __sub__(self : str , UpperCAmelCase_ : Matrix) ->Matrix: '''simple docstring''' return self + (-another) def __mul__(self : List[str] , UpperCAmelCase_ : int | float | Matrix) ->Matrix: '''simple docstring''' if isinstance(UpperCAmelCase_ , (int, float)): # Scalar multiplication lowerCamelCase__: List[Any] =Matrix(self.row , self.column) for r in range(self.row): for c in range(self.column): lowerCamelCase__: Union[str, Any] =self[r, c] * another return result elif isinstance(UpperCAmelCase_ , UpperCAmelCase_): # Matrix multiplication assert self.column == another.row lowerCamelCase__: Dict =Matrix(self.row , another.column) for r in range(self.row): for c in range(another.column): for i in range(self.column): result[r, c] += self[r, i] * another[i, c] return result else: lowerCamelCase__: int =F"""Unsupported type given for another ({type(UpperCAmelCase_)})""" raise TypeError(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Matrix: '''simple docstring''' lowerCamelCase__: Optional[Any] =Matrix(self.column , self.row) for r in range(self.row): for c in range(self.column): lowerCamelCase__: Optional[int] =self[r, c] return result def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : Matrix , UpperCAmelCase_ : Matrix) ->Any: '''simple docstring''' assert isinstance(UpperCAmelCase_ , UpperCAmelCase_) and isinstance(UpperCAmelCase_ , UpperCAmelCase_) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate lowerCamelCase__: Tuple =v.transpose() lowerCamelCase__: Optional[Any] =(v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def lowerCAmelCase_ ( ) -> None: """simple docstring""" lowerCamelCase__: List[str] =Matrix(3 , 3 , 0 ) for i in range(3 ): lowerCamelCase__: Union[str, Any] =1 print(F"""a^(-1) is {ainv}""" ) # u, v lowerCamelCase__: Optional[int] =Matrix(3 , 1 , 0 ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: int =1, 2, -3 lowerCamelCase__: Optional[Any] =Matrix(3 , 1 , 0 ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Any =4, -2, 5 print(F"""u is {u}""" ) print(F"""v is {v}""" ) print(F"""uv^T is {u * v.transpose()}""" ) # Sherman Morrison print(F"""(a + uv^T)^(-1) is {ainv.sherman_morrison(__a , __a )}""" ) def lowerCAmelCase_ ( ) -> None: """simple docstring""" import doctest doctest.testmod() testa()
273
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowerCamelCase : Optional[int] = {"""configuration_glpn""": ["""GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GLPNConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Union[str, Any] = ["""GLPNFeatureExtractor"""] _lowerCamelCase : Optional[Any] = ["""GLPNImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Tuple = [ """GLPN_PRETRAINED_MODEL_ARCHIVE_LIST""", """GLPNForDepthEstimation""", """GLPNLayer""", """GLPNModel""", """GLPNPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_glpn import GLPNFeatureExtractor from .image_processing_glpn import GLPNImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_glpn import ( GLPN_PRETRAINED_MODEL_ARCHIVE_LIST, GLPNForDepthEstimation, GLPNLayer, GLPNModel, GLPNPreTrainedModel, ) else: import sys _lowerCamelCase : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
14
'''simple docstring''' from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record _lowerCAmelCase = '''\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } ''' _lowerCAmelCase = '''\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. ''' _lowerCAmelCase = ''' Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for \'record\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'prediction_text\': the predicted answer text - for \'multirc\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question-answer pair as specified by the dataset - \'prediction\': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for \'record\': list of question-answers dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'answers\': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for \'record\': - \'exact_match\': Exact match between answer and gold answer - \'f1\': F1 score - for \'multirc\': - \'exact_match\': Exact match between answer and gold answer - \'f1_m\': Per-question macro-F1 score - \'f1_a\': Average F1 score over all answers - for \'axb\': \'matthews_correlation\': Matthew Correlation - for \'cb\': - \'accuracy\': Accuracy - \'f1\': F1 score - for all others: - \'accuracy\': Accuracy Examples: >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\') >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}] >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\') >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" return float((preds == labels).mean() ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase="binary" ): """simple docstring""" lowerCAmelCase__ : Any = simple_accuracy(UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : Tuple = float(fa_score(y_true=UpperCamelCase , y_pred=UpperCamelCase , average=UpperCamelCase ) ) return { "accuracy": acc, "f1": fa, } def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : List[str] = {} for id_pred, label in zip(UpperCamelCase , UpperCamelCase ): lowerCAmelCase__ : str = f"""{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}""" lowerCAmelCase__ : Dict = id_pred["""prediction"""] if question_id in question_map: question_map[question_id].append((pred, label) ) else: lowerCAmelCase__ : Optional[int] = [(pred, label)] lowerCAmelCase__ , lowerCAmelCase__ : int = [], [] for question, preds_labels in question_map.items(): lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = zip(*UpperCamelCase ) lowerCAmelCase__ : List[Any] = fa_score(y_true=UpperCamelCase , y_pred=UpperCamelCase , average="""macro""" ) fas.append(UpperCamelCase ) lowerCAmelCase__ : Union[str, Any] = int(sum(pred == label for pred, label in preds_labels ) == len(UpperCamelCase ) ) ems.append(UpperCamelCase ) lowerCAmelCase__ : Optional[Any] = float(sum(UpperCamelCase ) / len(UpperCamelCase ) ) lowerCAmelCase__ : List[Any] = sum(UpperCamelCase ) / len(UpperCamelCase ) lowerCAmelCase__ : Dict = float(fa_score(y_true=UpperCamelCase , y_pred=[id_pred["""prediction"""] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase_( datasets.Metric ): '''simple docstring''' def UpperCAmelCase_ ( self ) -> Optional[Any]: if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( """You should supply a configuration name selected in """ """[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" ) return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features(self._get_feature_types() ) ,codebase_urls=[] ,reference_urls=[] ,format="""numpy""" if not self.config_name == """record""" and not self.config_name == """multirc""" else None ,) def UpperCAmelCase_ ( self ) -> str: if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value("""int64""" ), "query": datasets.Value("""int64""" ), }, "prediction_text": datasets.Value("""string""" ), }, "references": { "idx": { "passage": datasets.Value("""int64""" ), "query": datasets.Value("""int64""" ), }, "answers": datasets.Sequence(datasets.Value("""string""" ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value("""int64""" ), "paragraph": datasets.Value("""int64""" ), "question": datasets.Value("""int64""" ), }, "prediction": datasets.Value("""int64""" ), }, "references": datasets.Value("""int64""" ), } else: return { "predictions": datasets.Value("""int64""" ), "references": datasets.Value("""int64""" ), } def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> Any: if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(__UpperCAmelCase ,__UpperCAmelCase )} elif self.config_name == "cb": return acc_and_fa(__UpperCAmelCase ,__UpperCAmelCase ,fa_avg="""macro""" ) elif self.config_name == "record": lowerCAmelCase__ : Optional[Any] = [ { """qas""": [ {"""id""": ref["""idx"""]["""query"""], """answers""": [{"""text""": ans} for ans in ref["""answers"""]]} for ref in references ] } ] lowerCAmelCase__ : Union[str, Any] = {pred["""idx"""]["""query"""]: pred["""prediction_text"""] for pred in predictions} return evaluate_record(__UpperCAmelCase ,__UpperCAmelCase )[0] elif self.config_name == "multirc": return evaluate_multirc(__UpperCAmelCase ,__UpperCAmelCase ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(__UpperCAmelCase ,__UpperCAmelCase )} else: raise KeyError( """You should supply a configuration name selected in """ """[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" )
37
0
"""simple docstring""" import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def a__ ( __lowercase ) -> Optional[Any]: if isinstance(__lowercase , collections.abc.Iterable ): return x return (x, x) @require_flax class snake_case : def a_ ( self : Optional[int] , a__ : Optional[int] , a__ : Union[str, Any] ) -> Dict: '''simple docstring''' pass def a_ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' pass def a_ ( self : int ) -> Any: '''simple docstring''' pass def a_ ( self : Any , a__ : np.ndarray , a__ : np.ndarray , a__ : float ) -> str: '''simple docstring''' _A = np.abs((a - b) ).max() self.assertLessEqual(a__ , a__ , F"""Difference between torch and flax is {diff} (>= {tol}).""" ) def a_ ( self : str , a__ : Union[str, Any] , a__ : Any , a__ : Dict , a__ : Optional[Any] , a__ : Any=None , **a__ : int ) -> Any: '''simple docstring''' _A = VisionTextDualEncoderConfig.from_vision_text_configs(a__ , a__ ) _A = FlaxVisionTextDualEncoderModel(a__ ) _A = model(input_ids=a__ , pixel_values=a__ , attention_mask=a__ ) self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], config.projection_dim) ) def a_ ( self : Any , a__ : Any , a__ : Optional[Any] , a__ : Optional[int] , a__ : Optional[int] , a__ : Dict=None , **a__ : Union[str, Any] ) -> Optional[int]: '''simple docstring''' _A , _A = self.get_vision_text_model(a__ , a__ ) _A = {"vision_model": vision_model, "text_model": text_model} _A = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**a__ ) _A = model(input_ids=a__ , pixel_values=a__ , attention_mask=a__ ) self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], model.config.projection_dim) ) def a_ ( self : int , a__ : Union[str, Any] , a__ : Optional[int] , a__ : Optional[int] , a__ : Optional[Any] , a__ : Tuple=None , **a__ : Dict ) -> Any: '''simple docstring''' _A , _A = self.get_vision_text_model(a__ , a__ ) _A = {"vision_model": vision_model, "text_model": text_model} _A = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**a__ ) _A = model(input_ids=a__ , pixel_values=a__ , attention_mask=a__ ) _A = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(a__ ) _A = FlaxVisionTextDualEncoderModel.from_pretrained(a__ ) _A = model(input_ids=a__ , pixel_values=a__ , attention_mask=a__ ) _A = after_output[0] _A = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(a__ , 1E-3 ) def a_ ( self : List[str] , a__ : Optional[int] , a__ : int , a__ : List[str] , a__ : List[Any] , a__ : Union[str, Any]=None , **a__ : int ) -> Optional[int]: '''simple docstring''' _A , _A = self.get_vision_text_model(a__ , a__ ) _A = {"vision_model": vision_model, "text_model": text_model} _A = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**a__ ) _A = model( input_ids=a__ , pixel_values=a__ , attention_mask=a__ , output_attentions=a__ ) _A = output.vision_model_output.attentions self.assertEqual(len(a__ ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) _A = to_atuple(vision_model.config.image_size ) _A = to_atuple(vision_model.config.patch_size ) _A = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _A = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) _A = output.text_model_output.attentions self.assertEqual(len(a__ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def a_ ( self : Union[str, Any] , a__ : str , a__ : Optional[int] , a__ : str ) -> Dict: '''simple docstring''' pt_model.to(a__ ) pt_model.eval() # prepare inputs _A = inputs_dict _A = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): _A = pt_model(**a__ ).to_tuple() _A = fx_model(**a__ ).to_tuple() self.assertEqual(len(a__ ) , len(a__ ) , "Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(a__ , pt_output.numpy() , 4E-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(a__ ) _A = FlaxVisionTextDualEncoderModel.from_pretrained(a__ , from_pt=a__ ) _A = fx_model_loaded(**a__ ).to_tuple() self.assertEqual(len(a__ ) , len(a__ ) , "Output lengths differ between Flax and PyTorch" ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(a__ , pt_output.numpy() , 4E-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(a__ ) _A = VisionTextDualEncoderModel.from_pretrained(a__ , from_flax=a__ ) pt_model_loaded.to(a__ ) pt_model_loaded.eval() with torch.no_grad(): _A = pt_model_loaded(**a__ ).to_tuple() self.assertEqual(len(a__ ) , len(a__ ) , "Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(a__ , pt_output_loaded.numpy() , 4E-2 ) def a_ ( self : int , a__ : Dict , a__ : List[str] , a__ : Any ) -> Optional[Any]: '''simple docstring''' _A = VisionTextDualEncoderConfig.from_vision_text_configs(a__ , a__ ) _A = VisionTextDualEncoderModel(a__ ) _A = FlaxVisionTextDualEncoderModel(a__ ) _A = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , a__ ) _A = fx_state self.check_pt_flax_equivalence(a__ , a__ , a__ ) def a_ ( self : int , a__ : str , a__ : Tuple , a__ : str ) -> Optional[int]: '''simple docstring''' _A = VisionTextDualEncoderConfig.from_vision_text_configs(a__ , a__ ) _A = VisionTextDualEncoderModel(a__ ) _A = FlaxVisionTextDualEncoderModel(a__ ) _A = load_flax_weights_in_pytorch_model(a__ , fx_model.params ) self.check_pt_flax_equivalence(a__ , a__ , a__ ) def a_ ( self : Any ) -> int: '''simple docstring''' _A = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**a__ ) def a_ ( self : Dict ) -> Dict: '''simple docstring''' _A = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**a__ ) def a_ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' _A = self.prepare_config_and_inputs() self.check_save_load(**a__ ) def a_ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' _A = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**a__ ) @is_pt_flax_cross_test def a_ ( self : int ) -> str: '''simple docstring''' _A = self.prepare_config_and_inputs() _A = config_inputs_dict.pop("vision_config" ) _A = config_inputs_dict.pop("text_config" ) _A = config_inputs_dict self.check_equivalence_pt_to_flax(a__ , a__ , a__ ) self.check_equivalence_flax_to_pt(a__ , a__ , a__ ) @slow def a_ ( self : Dict ) -> List[str]: '''simple docstring''' _A , _A = self.get_pretrained_model_and_inputs() _A = model_a(**a__ ) _A = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(a__ ) _A = FlaxVisionTextDualEncoderModel.from_pretrained(a__ ) _A = model_a(**a__ ) _A = after_outputs[0] _A = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(a__ , 1E-5 ) @require_flax class snake_case ( _UpperCamelCase , unittest.TestCase): def a_ ( self : Optional[Any] ) -> Any: '''simple docstring''' _A = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( "hf-internal-testing/tiny-random-vit" , "hf-internal-testing/tiny-bert" , vision_from_pt=a__ , text_from_pt=a__ , ) _A = 13 _A = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) _A = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) _A = random_attention_mask([batch_size, 4] ) _A = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def a_ ( self : Union[str, Any] , a__ : Dict , a__ : Optional[int] ) -> Dict: '''simple docstring''' _A = FlaxViTModel(a__ ) _A = FlaxBertModel(a__ ) return vision_model, text_model def a_ ( self : List[str] ) -> Optional[int]: '''simple docstring''' _A = FlaxViTModelTester(self ) _A = FlaxBertModelTester(self ) _A = vit_model_tester.prepare_config_and_inputs() _A = bert_model_tester.prepare_config_and_inputs() _A , _A = vision_config_and_inputs _A , _A , _A , _A = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class snake_case ( _UpperCamelCase , unittest.TestCase): def a_ ( self : Optional[int] ) -> Tuple: '''simple docstring''' _A = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( "hf-internal-testing/tiny-random-clip" , "hf-internal-testing/tiny-bert" , vision_from_pt=a__ , text_from_pt=a__ , ) _A = 13 _A = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) _A = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) _A = random_attention_mask([batch_size, 4] ) _A = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def a_ ( self : Tuple , a__ : Tuple , a__ : Tuple ) -> Tuple: '''simple docstring''' _A = FlaxCLIPVisionModel(a__ ) _A = FlaxBertModel(a__ ) return vision_model, text_model def a_ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' _A = FlaxCLIPVisionModelTester(self ) _A = FlaxBertModelTester(self ) _A = clip_model_tester.prepare_config_and_inputs() _A = bert_model_tester.prepare_config_and_inputs() _A , _A = vision_config_and_inputs _A , _A , _A , _A = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class snake_case ( unittest.TestCase): @slow def a_ ( self : str ) -> List[str]: '''simple docstring''' _A = FlaxVisionTextDualEncoderModel.from_pretrained("clip-italian/clip-italian" , logit_scale_init_value=1.0 ) _A = VisionTextDualEncoderProcessor.from_pretrained("clip-italian/clip-italian" ) _A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) _A = processor( text=["una foto di un gatto", "una foto di un cane"] , images=a__ , padding=a__ , return_tensors="np" ) _A = model(**a__ ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) _A = np.array([[1.2_2_8_4_7_2_7, 0.3_1_0_4_1_2_2]] ) self.assertTrue(np.allclose(outputs.logits_per_image , a__ , atol=1E-3 ) )
163
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = {"ctrl": "https://huggingface.co/ctrl/resolve/main/config.json"} class snake_case ( _UpperCamelCase): __UpperCamelCase = 'ctrl' __UpperCamelCase = ['past_key_values'] __UpperCamelCase = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : Tuple , a__ : Union[str, Any]=24_65_34 , a__ : int=2_56 , a__ : Any=12_80 , a__ : Optional[int]=81_92 , a__ : Union[str, Any]=48 , a__ : Optional[int]=16 , a__ : List[str]=0.1 , a__ : List[str]=0.1 , a__ : Optional[int]=1E-6 , a__ : Optional[int]=0.0_2 , a__ : Tuple=True , **a__ : List[Any] , ) -> Tuple: '''simple docstring''' _A = vocab_size _A = n_positions _A = n_embd _A = n_layer _A = n_head _A = dff _A = resid_pdrop _A = embd_pdrop _A = layer_norm_epsilon _A = initializer_range _A = use_cache super().__init__(**a__ )
163
1
import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin __lowerCamelCase = """ Hugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning. In March 2021, Hugging Face raised $40 million in a Series B funding round.[3] On April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5] """ class UpperCAmelCase ( unittest.TestCase ,A_ ): def _SCREAMING_SNAKE_CASE (self : Dict ) -> int: '''simple docstring''' snake_case : Optional[Any] = load_tool("text-question-answering" ) self.tool.setup() snake_case : str = load_tool("text-question-answering" , remote=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> int: '''simple docstring''' snake_case : Tuple = self.tool(snake_case__ , "What did Hugging Face do in April 2021?" ) self.assertEqual(snake_case__ , "launched the BigScience Research Workshop" ) def _SCREAMING_SNAKE_CASE (self : Any ) -> Optional[int]: '''simple docstring''' snake_case : Optional[int] = self.remote_tool(snake_case__ , "What did Hugging Face do in April 2021?" ) self.assertEqual(snake_case__ , "launched the BigScience Research Workshop" ) def _SCREAMING_SNAKE_CASE (self : int ) -> int: '''simple docstring''' snake_case : Dict = self.tool(text=snake_case__ , question="What did Hugging Face do in April 2021?" ) self.assertEqual(snake_case__ , "launched the BigScience Research Workshop" ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> int: '''simple docstring''' snake_case : List[Any] = self.remote_tool(text=snake_case__ , question="What did Hugging Face do in April 2021?" ) self.assertEqual(snake_case__ , "launched the BigScience Research Workshop" )
59
import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class __snake_case ( UpperCamelCase_ ,UpperCamelCase_ ,unittest.TestCase ): _a = IFPipeline _a = TEXT_TO_IMAGE_PARAMS - {'''width''', '''height''', '''latents'''} _a = TEXT_TO_IMAGE_BATCH_PARAMS _a = PipelineTesterMixin.required_optional_params - {'''latents'''} def UpperCAmelCase__ ( self : List[str]): return self._get_dummy_components() def UpperCAmelCase__ ( self : List[str] , A_ : List[Any] , A_ : Any=0): if str(A_).startswith('''mps'''): lowerCAmelCase_ : List[Any] = torch.manual_seed(A_) else: lowerCAmelCase_ : List[str] = torch.Generator(device=A_).manual_seed(A_) lowerCAmelCase_ : Optional[Any] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def UpperCAmelCase__ ( self : int): self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''') def UpperCAmelCase__ ( self : str): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1) def UpperCAmelCase__ ( self : str): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2) def UpperCAmelCase__ ( self : int): self._test_save_load_local() def UpperCAmelCase__ ( self : str): self._test_inference_batch_single_identical( expected_max_diff=1e-2 , ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def UpperCAmelCase__ ( self : Optional[int]): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3) @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self : Optional[Any]): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self : List[str]): # if lowerCAmelCase_ : Dict = IFPipeline.from_pretrained('''DeepFloyd/IF-I-XL-v1.0''' , variant='''fp16''' , torch_dtype=torch.floataa) lowerCAmelCase_ : Dict = IFSuperResolutionPipeline.from_pretrained( '''DeepFloyd/IF-II-L-v1.0''' , variant='''fp16''' , torch_dtype=torch.floataa , text_encoder=A_ , tokenizer=A_) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to('''cuda''') lowerCAmelCase_ , lowerCAmelCase_ : List[str] = pipe_a.encode_prompt('''anime turtle''' , device='''cuda''') del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() lowerCAmelCase_ : Tuple = None lowerCAmelCase_ : str = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if(A_ , A_ , A_ , A_) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img lowerCAmelCase_ : List[str] = IFImgaImgPipeline(**pipe_a.components) lowerCAmelCase_ : Any = IFImgaImgSuperResolutionPipeline(**pipe_a.components) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if_imgaimg(A_ , A_ , A_ , A_) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting lowerCAmelCase_ : int = IFInpaintingPipeline(**pipe_a.components) lowerCAmelCase_ : Union[str, Any] = IFInpaintingSuperResolutionPipeline(**pipe_a.components) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if_inpainting(A_ , A_ , A_ , A_) def UpperCAmelCase__ ( self : int , A_ : Optional[int] , A_ : Any , A_ : str , A_ : Union[str, Any]): # pipeline 1 _start_torch_memory_measurement() lowerCAmelCase_ : Optional[Any] = torch.Generator(device='''cpu''').manual_seed(0) lowerCAmelCase_ : Optional[Any] = pipe_a( prompt_embeds=A_ , negative_prompt_embeds=A_ , num_inference_steps=2 , generator=A_ , output_type='''np''' , ) lowerCAmelCase_ : Dict = output.images[0] assert image.shape == (6_4, 6_4, 3) lowerCAmelCase_ : Any = torch.cuda.max_memory_allocated() assert mem_bytes < 1_3 * 1_0**9 lowerCAmelCase_ : List[str] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy''') assert_mean_pixel_difference(A_ , A_) # pipeline 2 _start_torch_memory_measurement() lowerCAmelCase_ : List[str] = torch.Generator(device='''cpu''').manual_seed(0) lowerCAmelCase_ : str = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0)).to(A_) lowerCAmelCase_ : Optional[int] = pipe_a( prompt_embeds=A_ , negative_prompt_embeds=A_ , image=A_ , generator=A_ , num_inference_steps=2 , output_type='''np''' , ) lowerCAmelCase_ : Union[str, Any] = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) lowerCAmelCase_ : Any = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 lowerCAmelCase_ : int = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy''') assert_mean_pixel_difference(A_ , A_) def UpperCAmelCase__ ( self : int , A_ : Optional[int] , A_ : Any , A_ : List[str] , A_ : List[str]): # pipeline 1 _start_torch_memory_measurement() lowerCAmelCase_ : Any = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0)).to(A_) lowerCAmelCase_ : Tuple = torch.Generator(device='''cpu''').manual_seed(0) lowerCAmelCase_ : Any = pipe_a( prompt_embeds=A_ , negative_prompt_embeds=A_ , image=A_ , num_inference_steps=2 , generator=A_ , output_type='''np''' , ) lowerCAmelCase_ : Union[str, Any] = output.images[0] assert image.shape == (6_4, 6_4, 3) lowerCAmelCase_ : str = torch.cuda.max_memory_allocated() assert mem_bytes < 1_0 * 1_0**9 lowerCAmelCase_ : Optional[int] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy''') assert_mean_pixel_difference(A_ , A_) # pipeline 2 _start_torch_memory_measurement() lowerCAmelCase_ : int = torch.Generator(device='''cpu''').manual_seed(0) lowerCAmelCase_ : List[Any] = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(0)).to(A_) lowerCAmelCase_ : Any = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0)).to(A_) lowerCAmelCase_ : List[str] = pipe_a( prompt_embeds=A_ , negative_prompt_embeds=A_ , image=A_ , original_image=A_ , generator=A_ , num_inference_steps=2 , output_type='''np''' , ) lowerCAmelCase_ : Union[str, Any] = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) lowerCAmelCase_ : str = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 lowerCAmelCase_ : Tuple = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy''') assert_mean_pixel_difference(A_ , A_) def UpperCAmelCase__ ( self : str , A_ : Optional[Any] , A_ : Optional[Any] , A_ : Dict , A_ : List[str]): # pipeline 1 _start_torch_memory_measurement() lowerCAmelCase_ : Union[str, Any] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0)).to(A_) lowerCAmelCase_ : int = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(1)).to(A_) lowerCAmelCase_ : Optional[Any] = torch.Generator(device='''cpu''').manual_seed(0) lowerCAmelCase_ : Any = pipe_a( prompt_embeds=A_ , negative_prompt_embeds=A_ , image=A_ , mask_image=A_ , num_inference_steps=2 , generator=A_ , output_type='''np''' , ) lowerCAmelCase_ : List[Any] = output.images[0] assert image.shape == (6_4, 6_4, 3) lowerCAmelCase_ : str = torch.cuda.max_memory_allocated() assert mem_bytes < 1_0 * 1_0**9 lowerCAmelCase_ : int = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy''') assert_mean_pixel_difference(A_ , A_) # pipeline 2 _start_torch_memory_measurement() lowerCAmelCase_ : Optional[Any] = torch.Generator(device='''cpu''').manual_seed(0) lowerCAmelCase_ : Optional[Any] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0)).to(A_) lowerCAmelCase_ : Union[str, Any] = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(0)).to(A_) lowerCAmelCase_ : Optional[Any] = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(1)).to(A_) lowerCAmelCase_ : int = pipe_a( prompt_embeds=A_ , negative_prompt_embeds=A_ , image=A_ , mask_image=A_ , original_image=A_ , generator=A_ , num_inference_steps=2 , output_type='''np''' , ) lowerCAmelCase_ : Tuple = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) lowerCAmelCase_ : int = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 lowerCAmelCase_ : Any = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy''') assert_mean_pixel_difference(A_ , A_) def UpperCamelCase( ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
103
0
import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowercase__ : str = 16 lowercase__ : int = 32 def a__ ( lowercase : Accelerator, lowercase : int = 16 ) -> List[str]: """simple docstring""" _UpperCamelCase = AutoTokenizer.from_pretrained('''bert-base-cased''' ) _UpperCamelCase = load_dataset('''glue''', '''mrpc''' ) def tokenize_function(lowercase : Union[str, Any] ): # max_length=None => use the model max length (it's actually the default) _UpperCamelCase = tokenizer(examples['''sentence1'''], examples['''sentence2'''], truncation=lowercase, max_length=lowercase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _UpperCamelCase = datasets.map( lowercase, batched=lowercase, remove_columns=['''idx''', '''sentence1''', '''sentence2'''], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _UpperCamelCase = tokenized_datasets.rename_column('''label''', '''labels''' ) def collate_fn(lowercase : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. _UpperCamelCase = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _UpperCamelCase = 16 elif accelerator.mixed_precision != "no": _UpperCamelCase = 8 else: _UpperCamelCase = None return tokenizer.pad( lowercase, padding='''longest''', max_length=lowercase, pad_to_multiple_of=lowercase, return_tensors='''pt''', ) # Instantiate dataloaders. _UpperCamelCase = DataLoader( tokenized_datasets['''train'''], shuffle=lowercase, collate_fn=lowercase, batch_size=lowercase ) _UpperCamelCase = DataLoader( tokenized_datasets['''validation'''], shuffle=lowercase, collate_fn=lowercase, batch_size=lowercase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowercase__ : str = mocked_dataloaders # noqa: F811 def a__ ( lowercase : List[Any], lowercase : List[str] ) -> Any: """simple docstring""" if os.environ.get('''TESTING_MOCKED_DATALOADERS''', lowercase ) == "1": _UpperCamelCase = 2 # Initialize accelerator _UpperCamelCase = Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _UpperCamelCase = config['''lr'''] _UpperCamelCase = int(config['''num_epochs'''] ) _UpperCamelCase = int(config['''seed'''] ) _UpperCamelCase = int(config['''batch_size'''] ) _UpperCamelCase = evaluate.load('''glue''', '''mrpc''' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=lowercase ) def inner_training_loop(lowercase : List[Any] ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(lowercase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _UpperCamelCase = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''', return_dict=lowercase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _UpperCamelCase = model.to(accelerator.device ) # Instantiate optimizer _UpperCamelCase = AdamW(params=model.parameters(), lr=lowercase ) _UpperCamelCase , _UpperCamelCase = get_dataloaders(lowercase, lowercase ) # Instantiate scheduler _UpperCamelCase = get_linear_schedule_with_warmup( optimizer=lowercase, num_warmup_steps=100, num_training_steps=(len(lowercase ) * num_epochs), ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = accelerator.prepare( lowercase, lowercase, lowercase, lowercase, lowercase ) # Now we train the model for epoch in range(lowercase ): model.train() for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _UpperCamelCase = model(**lowercase ) _UpperCamelCase = outputs.loss accelerator.backward(lowercase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _UpperCamelCase = model(**lowercase ) _UpperCamelCase = outputs.logits.argmax(dim=-1 ) _UpperCamelCase , _UpperCamelCase = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=lowercase, references=lowercase, ) _UpperCamelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""", lowercase ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def a__ ( ) -> str: """simple docstring""" _UpperCamelCase = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''', type=lowercase, default=lowercase, choices=['''no''', '''fp16''', '''bf16''', '''fp8'''], help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''', ) parser.add_argument('''--cpu''', action='''store_true''', help='''If passed, will train on the CPU.''' ) _UpperCamelCase = parser.parse_args() _UpperCamelCase = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(lowercase, lowercase ) if __name__ == "__main__": main()
371
'''simple docstring''' import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowercase__ : Any = logging.getLogger(__name__) def a__ ( lowercase : Optional[Any], lowercase : Tuple ) -> Any: """simple docstring""" return (preds == labels).mean() @dataclass class __lowerCAmelCase : """simple docstring""" _snake_case : str = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) _snake_case : Optional[str] = field( default=__magic_name__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) _snake_case : Optional[str] = field( default=__magic_name__ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) _snake_case : Optional[str] = field( default=__magic_name__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) @dataclass class __lowerCAmelCase : """simple docstring""" _snake_case : str = field(metadata={'help': 'The name of the task to train on: ' + ', '.join(processors.keys() )} ) _snake_case : str = field(metadata={'help': 'Should contain the data files for the task.'} ) _snake_case : int = field( default=1_2_8 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) _snake_case : bool = field( default=__magic_name__ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def a__ ( ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN, ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''', training_args.local_rank, training_args.device, training_args.n_gpu, bool(training_args.local_rank != -1 ), training_args.fpaa, ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''', lowercase ) # Set seed set_seed(training_args.seed ) try: _UpperCamelCase = processors[data_args.task_name]() _UpperCamelCase = processor.get_labels() _UpperCamelCase = len(lowercase ) except KeyError: raise ValueError('''Task not found: %s''' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCamelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, num_labels=lowercase, finetuning_task=data_args.task_name, cache_dir=model_args.cache_dir, ) _UpperCamelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, ) _UpperCamelCase = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path, from_tf=bool('''.ckpt''' in model_args.model_name_or_path ), config=lowercase, cache_dir=model_args.cache_dir, ) # Get datasets _UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir, tokenizer=lowercase, task=data_args.task_name, max_seq_length=data_args.max_seq_length, overwrite_cache=data_args.overwrite_cache, mode=Split.train, ) if training_args.do_train else None ) _UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir, tokenizer=lowercase, task=data_args.task_name, max_seq_length=data_args.max_seq_length, overwrite_cache=data_args.overwrite_cache, mode=Split.dev, ) if training_args.do_eval else None ) def compute_metrics(lowercase : EvalPrediction ) -> Dict: _UpperCamelCase = np.argmax(p.predictions, axis=1 ) return {"acc": simple_accuracy(lowercase, p.label_ids )} # Data collator _UpperCamelCase = DataCollatorWithPadding(lowercase, pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer _UpperCamelCase = Trainer( model=lowercase, args=lowercase, train_dataset=lowercase, eval_dataset=lowercase, compute_metrics=lowercase, data_collator=lowercase, ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _UpperCamelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) _UpperCamelCase = trainer.evaluate() _UpperCamelCase = os.path.join(training_args.output_dir, '''eval_results.txt''' ) if trainer.is_world_master(): with open(lowercase, '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''', lowercase, lowercase ) writer.write('''%s = %s\n''' % (key, value) ) results.update(lowercase ) return results def a__ ( lowercase : Tuple ) -> List[Any]: """simple docstring""" main() if __name__ == "__main__": main()
287
0
UpperCAmelCase_ = 8.31_4462 # Unit - J mol-1 K-1 def lowerCamelCase__ ( A__ : Any , A__ : Optional[Any] , A__ : Union[str, Any] ): '''simple docstring''' if moles < 0 or kelvin < 0 or volume < 0: raise ValueError("""Invalid inputs. Enter positive value.""" ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def lowerCamelCase__ ( A__ : Tuple , A__ : Optional[Any] , A__ : Tuple ): '''simple docstring''' if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError("""Invalid inputs. Enter positive value.""" ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
12
import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def A ( _lowercase ): if "model" in orig_key: SCREAMING_SNAKE_CASE : int = orig_key.replace('''model.''' , '''''' ) if "norm1" in orig_key: SCREAMING_SNAKE_CASE : List[Any] = orig_key.replace('''norm1''' , '''attention.output.LayerNorm''' ) if "norm2" in orig_key: SCREAMING_SNAKE_CASE : str = orig_key.replace('''norm2''' , '''output.LayerNorm''' ) if "norm" in orig_key: SCREAMING_SNAKE_CASE : Tuple = orig_key.replace('''norm''' , '''LayerNorm''' ) if "transformer" in orig_key: SCREAMING_SNAKE_CASE : int = orig_key.split('''.''' )[0].split('''_''' )[-1] SCREAMING_SNAKE_CASE : List[str] = orig_key.replace(f"""transformer_{layer_num}""" , f"""encoder.layer.{layer_num}""" ) if "mha.attn" in orig_key: SCREAMING_SNAKE_CASE : Any = orig_key.replace('''mha.attn''' , '''attention.self''' ) if "mha" in orig_key: SCREAMING_SNAKE_CASE : Optional[int] = orig_key.replace('''mha''' , '''attention''' ) if "W_q" in orig_key: SCREAMING_SNAKE_CASE : List[Any] = orig_key.replace('''W_q''' , '''self.query''' ) if "W_k" in orig_key: SCREAMING_SNAKE_CASE : Optional[int] = orig_key.replace('''W_k''' , '''self.key''' ) if "W_v" in orig_key: SCREAMING_SNAKE_CASE : str = orig_key.replace('''W_v''' , '''self.value''' ) if "ff1" in orig_key: SCREAMING_SNAKE_CASE : Any = orig_key.replace('''ff1''' , '''intermediate.dense''' ) if "ff2" in orig_key: SCREAMING_SNAKE_CASE : List[Any] = orig_key.replace('''ff2''' , '''output.dense''' ) if "ff" in orig_key: SCREAMING_SNAKE_CASE : Dict = orig_key.replace('''ff''' , '''output.dense''' ) if "mlm_class" in orig_key: SCREAMING_SNAKE_CASE : Optional[int] = orig_key.replace('''mlm.mlm_class''' , '''cls.predictions.decoder''' ) if "mlm" in orig_key: SCREAMING_SNAKE_CASE : str = orig_key.replace('''mlm''' , '''cls.predictions.transform''' ) if "cls" not in orig_key: SCREAMING_SNAKE_CASE : List[str] = '''yoso.''' + orig_key return orig_key def A ( _lowercase , _lowercase ): for key in orig_state_dict.copy().keys(): SCREAMING_SNAKE_CASE : Union[str, Any] = orig_state_dict.pop(_lowercase ) if ("pooler" in key) or ("sen_class" in key): continue else: SCREAMING_SNAKE_CASE : Union[str, Any] = val SCREAMING_SNAKE_CASE : List[str] = orig_state_dict['''cls.predictions.decoder.bias'''] SCREAMING_SNAKE_CASE : Dict = torch.arange(_lowercase ).expand((1, -1) ) + 2 return orig_state_dict def A ( _lowercase , _lowercase , _lowercase ): SCREAMING_SNAKE_CASE : Tuple = torch.load(_lowercase , map_location='''cpu''' )['''model_state_dict'''] SCREAMING_SNAKE_CASE : List[Any] = YosoConfig.from_json_file(_lowercase ) SCREAMING_SNAKE_CASE : str = YosoForMaskedLM(_lowercase ) SCREAMING_SNAKE_CASE : Union[str, Any] = convert_checkpoint_helper(config.max_position_embeddings , _lowercase ) print(model.load_state_dict(_lowercase ) ) model.eval() model.save_pretrained(_lowercase ) print(f"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""" ) if __name__ == "__main__": __UpperCamelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '--pytorch_model_path', default=None, type=str, required=True, help='Path to YOSO pytorch checkpoint.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The json file for YOSO model config.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __UpperCamelCase : Optional[Any] = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
182
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : Dict = logging.get_logger(__name__) __snake_case : Dict = { 'facebook/nllb-moe-54B': 'https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json', } class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = 'nllb-moe' __snake_case = ['past_key_values'] __snake_case = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : Optional[Any] , lowerCAmelCase_ : str=12_81_12 , lowerCAmelCase_ : List[str]=10_24 , lowerCAmelCase_ : str=12 , lowerCAmelCase_ : List[str]=40_96 , lowerCAmelCase_ : Optional[Any]=16 , lowerCAmelCase_ : int=12 , lowerCAmelCase_ : int=40_96 , lowerCAmelCase_ : Optional[Any]=16 , lowerCAmelCase_ : Optional[int]=0.05 , lowerCAmelCase_ : Tuple=0.05 , lowerCAmelCase_ : Tuple=True , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : int="relu" , lowerCAmelCase_ : List[str]=10_24 , lowerCAmelCase_ : int=0.1 , lowerCAmelCase_ : Any=0.1 , lowerCAmelCase_ : Any=0.0 , lowerCAmelCase_ : Dict=0.02 , lowerCAmelCase_ : Union[str, Any]=2 , lowerCAmelCase_ : Optional[int]=True , lowerCAmelCase_ : List[Any]=False , lowerCAmelCase_ : List[Any]="float32" , lowerCAmelCase_ : Dict=False , lowerCAmelCase_ : int=1_28 , lowerCAmelCase_ : List[Any]=64 , lowerCAmelCase_ : str=4 , lowerCAmelCase_ : Dict=4 , lowerCAmelCase_ : List[str]=0.001 , lowerCAmelCase_ : Any=0.001 , lowerCAmelCase_ : Union[str, Any]="all" , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : str=1.0 , lowerCAmelCase_ : Tuple=0.2 , lowerCAmelCase_ : Tuple=1 , lowerCAmelCase_ : int=0 , lowerCAmelCase_ : List[str]=2 , lowerCAmelCase_ : Dict=False , **lowerCAmelCase_ : Optional[Any] , ) -> Optional[Any]: '''simple docstring''' A__ : int =vocab_size A__ : List[Any] =max_position_embeddings A__ : Dict =d_model A__ : Optional[int] =encoder_ffn_dim A__ : List[Any] =encoder_layers A__ : int =encoder_attention_heads A__ : List[Any] =decoder_ffn_dim A__ : Union[str, Any] =decoder_layers A__ : Union[str, Any] =decoder_attention_heads A__ : List[str] =dropout A__ : List[Any] =attention_dropout A__ : Any =activation_dropout A__ : Optional[int] =activation_function A__ : Dict =init_std A__ : Union[str, Any] =encoder_layerdrop A__ : Optional[int] =decoder_layerdrop A__ : Any =use_cache A__ : List[str] =encoder_layers A__ : List[Any] =scale_embedding # scale factor will be sqrt(d_model) if True A__ : List[str] =router_z_loss_coef A__ : Dict =router_aux_loss_coef A__ : Optional[Any] =decoder_sparse_step A__ : List[str] =encoder_sparse_step A__ : List[Any] =num_experts A__ : Union[str, Any] =expert_capacity A__ : List[str] =router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f"`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}" ) A__ : Optional[Any] =router_dtype A__ : Dict =router_ignore_padding_tokens A__ : Union[str, Any] =batch_prioritized_routing A__ : int =second_expert_policy A__ : Any =normalize_router_prob_before_dropping A__ : Tuple =moe_eval_capacity_token_fraction A__ : Optional[Any] =moe_token_dropout A__ : Optional[Any] =output_router_logits super().__init__( pad_token_id=lowerCAmelCase_ , bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , is_encoder_decoder=lowerCAmelCase_ , decoder_start_token_id=lowerCAmelCase_ , **lowerCAmelCase_ , )
360
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available __snake_case : Any = { 'configuration_audio_spectrogram_transformer': [ 'AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ASTConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Optional[int] = [ 'AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'ASTForAudioClassification', 'ASTModel', 'ASTPreTrainedModel', ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : List[Any] = ['ASTFeatureExtractor'] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys __snake_case : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
136
0
"""simple docstring""" import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging _a = logging.get_logger(__name__) class _UpperCAmelCase( a__ ): lowercase__ = ['input_features', 'is_longer'] def __init__( self , __a=64 , __a=4_80_00 , __a=4_80 , __a=10 , __a=10_24 , __a=0.0 , __a=False , __a = 0 , __a = 1_40_00 , __a = None , __a = "fusion" , __a = "repeatpad" , **__a , ) -> Union[str, Any]: '''simple docstring''' super().__init__( feature_size=UpperCamelCase_ , sampling_rate=UpperCamelCase_ , padding_value=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , **UpperCamelCase_ , ) _UpperCamelCase = top_db _UpperCamelCase = truncation _UpperCamelCase = padding _UpperCamelCase = fft_window_size _UpperCamelCase = (fft_window_size >> 1) + 1 _UpperCamelCase = hop_length _UpperCamelCase = max_length_s _UpperCamelCase = max_length_s * sampling_rate _UpperCamelCase = sampling_rate _UpperCamelCase = frequency_min _UpperCamelCase = frequency_max _UpperCamelCase = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=UpperCamelCase_ , min_frequency=UpperCamelCase_ , max_frequency=UpperCamelCase_ , sampling_rate=UpperCamelCase_ , norm=UpperCamelCase_ , mel_scale='''htk''' , ) _UpperCamelCase = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=UpperCamelCase_ , min_frequency=UpperCamelCase_ , max_frequency=UpperCamelCase_ , sampling_rate=UpperCamelCase_ , norm='''slaney''' , mel_scale='''slaney''' , ) def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = copy.deepcopy(self.__dict__) _UpperCamelCase = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def UpperCAmelCase ( self , __a , __a = None) -> Any: '''simple docstring''' _UpperCamelCase = spectrogram( UpperCamelCase_ , window_function(self.fft_window_size , '''hann''') , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=UpperCamelCase_ , log_mel='''dB''' , ) return log_mel_spectrogram.T def UpperCAmelCase ( self , __a , __a , __a) -> List[Any]: '''simple docstring''' _UpperCamelCase = np.array_split(list(range(0 , total_frames - chunk_frames + 1)) , 3) if len(ranges[1]) == 0: # if the audio is too short, we just use the first chunk _UpperCamelCase = [0] if len(ranges[2]) == 0: # if the audio is too short, we just use the first chunk _UpperCamelCase = [0] # randomly choose index for each part _UpperCamelCase = np.random.choice(ranges[0]) _UpperCamelCase = np.random.choice(ranges[1]) _UpperCamelCase = np.random.choice(ranges[2]) _UpperCamelCase = mel[idx_front : idx_front + chunk_frames, :] _UpperCamelCase = mel[idx_middle : idx_middle + chunk_frames, :] _UpperCamelCase = mel[idx_back : idx_back + chunk_frames, :] _UpperCamelCase = torch.tensor(mel[None, None, :]) _UpperCamelCase = torch.nn.functional.interpolate( UpperCamelCase_ , size=[chunk_frames, 64] , mode='''bilinear''' , align_corners=UpperCamelCase_) _UpperCamelCase = mel_shrink[0][0].numpy() _UpperCamelCase = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0) return mel_fusion def UpperCAmelCase ( self , __a , __a , __a , __a) -> Tuple: '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": _UpperCamelCase = True # random crop to max_length (for compatibility) -> this should be handled by self.pad _UpperCamelCase = len(UpperCamelCase_) - max_length _UpperCamelCase = np.random.randint(0 , overflow + 1) _UpperCamelCase = waveform[idx : idx + max_length] _UpperCamelCase = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters_slaney)[None, :] elif truncation == "fusion": _UpperCamelCase = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters) _UpperCamelCase = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed _UpperCamelCase = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. _UpperCamelCase = np.stack([mel, mel, mel, mel] , axis=0) _UpperCamelCase = False else: _UpperCamelCase = self._random_mel_fusion(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_) _UpperCamelCase = True else: raise NotImplementedError(F'''data_truncating {truncation} not implemented''') else: _UpperCamelCase = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": _UpperCamelCase = int(max_length / len(UpperCamelCase_)) _UpperCamelCase = np.stack(np.tile(UpperCamelCase_ , n_repeat + 1))[:max_length] if padding == "repeatpad": _UpperCamelCase = int(max_length / len(UpperCamelCase_)) _UpperCamelCase = np.stack(np.tile(UpperCamelCase_ , UpperCamelCase_)) _UpperCamelCase = np.pad(UpperCamelCase_ , (0, max_length - waveform.shape[0]) , mode='''constant''' , constant_values=0) if truncation == "fusion": _UpperCamelCase = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters) _UpperCamelCase = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0) else: _UpperCamelCase = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters_slaney)[None, :] return input_mel, longer def __call__( self , __a , __a = None , __a = None , __a = None , __a = None , __a = None , **__a , ) -> List[str]: '''simple docstring''' _UpperCamelCase = truncation if truncation is not None else self.truncation _UpperCamelCase = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' F''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' F''' was sampled with {self.sampling_rate} and not {sampling_rate}.''') else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''') _UpperCamelCase = isinstance(UpperCamelCase_ , np.ndarray) and len(raw_speech.shape) > 1 if is_batched_numpy and len(raw_speech.shape) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''') _UpperCamelCase = is_batched_numpy or ( isinstance(UpperCamelCase_ , (list, tuple)) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list))) ) if is_batched: _UpperCamelCase = [np.asarray(UpperCamelCase_ , dtype=np.floataa) for speech in raw_speech] elif not is_batched and not isinstance(UpperCamelCase_ , np.ndarray): _UpperCamelCase = np.asarray(UpperCamelCase_ , dtype=np.floataa) elif isinstance(UpperCamelCase_ , np.ndarray) and raw_speech.dtype is np.dtype(np.floataa): _UpperCamelCase = raw_speech.astype(np.floataa) # always return batch if not is_batched: _UpperCamelCase = [np.asarray(UpperCamelCase_)] # convert to mel spectrogram, truncate and pad if needed. _UpperCamelCase = [ self._get_input_mel(UpperCamelCase_ , max_length if max_length else self.nb_max_samples , UpperCamelCase_ , UpperCamelCase_) for waveform in raw_speech ] _UpperCamelCase = [] _UpperCamelCase = [] for mel, longer in padded_inputs: input_mel.append(UpperCamelCase_) is_longer.append(UpperCamelCase_) if truncation == "fusion" and sum(UpperCamelCase_) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer _UpperCamelCase = np.random.randint(0 , len(UpperCamelCase_)) _UpperCamelCase = True if isinstance(input_mel[0] , UpperCamelCase_): _UpperCamelCase = [np.asarray(UpperCamelCase_ , dtype=np.floataa) for feature in input_mel] # is_longer is a list of bool _UpperCamelCase = [[longer] for longer in is_longer] _UpperCamelCase = {'''input_features''': input_mel, '''is_longer''': is_longer} _UpperCamelCase = BatchFeature(UpperCamelCase_) if return_tensors is not None: _UpperCamelCase = input_features.convert_to_tensors(UpperCamelCase_) return input_features
194
"""simple docstring""" import math def _snake_case ( ): lowerCAmelCase : Union[str, Any] = input('''Enter message: ''' ) lowerCAmelCase : Optional[int] = int(input(f'''Enter key [2-{len(_snake_case ) - 1}]: ''' ) ) lowerCAmelCase : str = input('''Encryption/Decryption [e/d]: ''' ) if mode.lower().startswith('''e''' ): lowerCAmelCase : Any = encrypt_message(_snake_case , _snake_case ) elif mode.lower().startswith('''d''' ): lowerCAmelCase : Union[str, Any] = decrypt_message(_snake_case , _snake_case ) # Append pipe symbol (vertical bar) to identify spaces at the end. print(f'''Output:\n{text + "|"}''' ) def _snake_case ( _snake_case : int , _snake_case : str ): lowerCAmelCase : Optional[Any] = [''''''] * key for col in range(_snake_case ): lowerCAmelCase : Optional[Any] = col while pointer < len(_snake_case ): cipher_text[col] += message[pointer] pointer += key return "".join(_snake_case ) def _snake_case ( _snake_case : int , _snake_case : str ): lowerCAmelCase : Union[str, Any] = math.ceil(len(_snake_case ) / key ) lowerCAmelCase : str = key lowerCAmelCase : Any = (num_cols * num_rows) - len(_snake_case ) lowerCAmelCase : Dict = [''''''] * num_cols lowerCAmelCase : int = 0 lowerCAmelCase : int = 0 for symbol in message: plain_text[col] += symbol col += 1 if ( (col == num_cols) or (col == num_cols - 1) and (row >= num_rows - num_shaded_boxes) ): lowerCAmelCase : int = 0 row += 1 return "".join(_snake_case ) if __name__ == "__main__": import doctest doctest.testmod() main()
60
0
import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values snake_case_ = argparse.ArgumentParser() parser.add_argument("""--user""", type=str, default="""ubuntu""") parser.add_argument("""--host""", type=str, default="""localhost""") parser.add_argument("""--key_path""", type=str, default=None) parser.add_argument("""--instance""", type=str, default="""V100:1""") parser.add_argument("""--provider""", type=str, default="""cheapest""") parser.add_argument("""--use_spot""", type=bool, default=False) parser.add_argument("""--example""", type=str, default="""pytorch/text-generation/run_generation.py""") snake_case_ , snake_case_ = parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError("""Cannot specify both BYO and on-demand cluster args""") snake_case_ = rh.cluster( name="""rh-cluster""", ips=[args.host], ssh_creds={"""ssh_user""": args.user, """ssh_private_key""": args.key_path} ) else: snake_case_ = rh.cluster( name="""rh-cluster""", instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) snake_case_ = args.example.rsplit("""/""", 1)[0] # Set up remote environment cluster.install_packages(["""pip:./"""]) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([f'''pip install -r transformers/examples/{example_dir}/requirements.txt''']) cluster.run(["""pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117"""]) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([f'''python transformers/examples/{args.example} {' '.join(shlex.quote(arg) for arg in unknown)}''']) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
350
"""simple docstring""" import json import os import unittest from typing import Tuple from transformers import WavaVecaPhonemeCTCTokenizer from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.models.wavaveca_phoneme.tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizerOutput from transformers.testing_utils import require_phonemizer from ...test_tokenization_common import TokenizerTesterMixin @require_phonemizer class A_ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" __UpperCamelCase = WavaVecaPhonemeCTCTokenizer __UpperCamelCase = False def UpperCAmelCase__ ( self :Optional[int] ) -> int: super().setUp() UpperCAmelCase = ( '<s> <pad> </s> <unk> n s t ə l a i k d m ɛ ɾ e ɪ p o ɐ z ð f j v b ɹ ʁ ʊ iː r w ʌ u ɡ æ aɪ ʃ h ɔ ɑː ' 'ŋ ɚ eɪ β uː y ɑ̃ oʊ ᵻ eː θ aʊ ts oː ɔ̃ ɣ ɜ ɑ dʒ əl x ɜː ç ʒ tʃ ɔː ɑːɹ ɛ̃ ʎ ɔːɹ ʋ aː ɕ œ ø oːɹ ɲ yː ' 'ʔ iə i5 s. tɕ ?? nʲ ɛː œ̃ ɭ ɔø ʑ tʲ ɨ ɛɹ ts. rʲ ɪɹ ɭʲ i.5 ɔɪ q sʲ u5 ʊɹ iɜ a5 iɛ5 øː ʕ ja əɜ th ɑ5 ' 'oɪ dʲ ə5 tɕh ts.h mʲ ɯ dʑ vʲ e̞ tʃʲ ei5 o5 onɡ5 ɑu5 iɑ5 ai5 aɪɚ kh ə1 ʐ i2 ʉ ħ t[ aɪə ʲ ju ə2 u2 oɜ ' 'pː iɛɜ ou5 y5 uɜ tː uo5 d[ uoɜ tsh ɑɜ ɵ i̪5 uei5 ɟ aɜ ɑɨ i.ɜ eʊ o2 ɐ̃ ä pʲ kʲ n̩ ɒ ph ɑu2 uɨ əɪ ɫ ɬ ' 'yɜ bʲ ɑ2 s̪ aiɜ χ ɐ̃ʊ̃ 1 ə4 yæɜ a2 ɨː t̪ iouɜ ũ onɡɜ aɨ iɛ2 ɔɨ ɑuɜ o̞ ei2 iou2 c kː y2 ɖ oe dˤ yɛɜ ' 'əʊ S ɡʲ onɡ2 u" eiɜ ʈ ɯᵝ iou5 dZ r̝̊ i.2 tS s^ ʝ yə5 iɑɜ uə5 pf ɨu iɑ2 ou2 ər2 fʲ ai2 r̝ uəɜ ɳ əɨ ' 'ua5 uɪ ɽ bː yu5 uo2 yɛ5 l̩ ɻ ərɜ ʂ i̪2 ouɜ uaɜ a. a.ː yæ5 dː r̩ ee ɪu ər5 i̪ ɜ æi u: i.ː t^ o1 ɪ^ ' 'ai ueiɜ æː ɛɪ eə i. ɴ ie ua2 ɑ1 o4 tʃː o: ɑ: u1 N i̪1 au yæ2 u. qː yəɜ y: kʰ tʃʰ iʊ sx õ uo tʰ ' 'uai5 bʰ u.ː uə2 ʊə d^ s̪ː yiɜ dʰ r. oe: i1 ɟː yu2 nʲʲ i̪4 uei2 tsʲ ɸ ĩ ɑ4 t̪ː eɑ u4 e: tsː ʈʰ ɡʰ ' 'ɯɯ dʒʲ ʂʲ X ɵː uaiɜ tɕʲ ã t^ː ẽː yɛ2 cː i.1 ɛʊ dˤdˤ dʒː i4 ɡː yi ɕʲ ɟʰ pʰ dʑʲ yuɜ ua1 ua4 æiː ɐɐ ' 'ui iou1 ʊː a1 iou4 cʰ iɛ1 yə2 ɖʰ ẽ ʒʲ ää ər4 iːː ɪː iɑ1 ər1 œː øi ɪuː cʰcʰ əː1 iː1 ũ kʰː o̞o̞ xʲ ' 'ou1 iɛ4 e̞e̞ y1 dzː dʲʲ dʰː ɯᵝɯᵝ lː uo1 i.4 i: yɛ5ʲ a4' ).split(' ' ) UpperCAmelCase = dict(zip(lowercase_ , range(len(lowercase_ ) ) ) ) UpperCAmelCase = {'pad_token': '<pad>', 'unk_token': '<unk>', 'bos_token': '<s>', 'eos_token': '</s>'} UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(lowercase_ ) + '\n' ) def UpperCAmelCase__ ( self :Dict , lowercase_ :Any , lowercase_ :Union[str, Any]=False , lowercase_ :int=20 , lowercase_ :Dict=5 ) -> Tuple[str, list]: UpperCAmelCase = [(i, tokenizer.decode([i] , clean_up_tokenization_spaces=lowercase_ )) for i in range(len(lowercase_ ) )] UpperCAmelCase = list(filter(lambda lowercase_ : [t[0]] == tokenizer.encode(t[1] , do_phonemize=lowercase_ ) , lowercase_ ) ) if max_length is not None and len(lowercase_ ) > max_length: UpperCAmelCase = toks[:max_length] if min_length is not None and len(lowercase_ ) < min_length and len(lowercase_ ) > 0: while len(lowercase_ ) < min_length: UpperCAmelCase = toks + toks # toks_str = [t[1] for t in toks] UpperCAmelCase = [t[0] for t in toks] # Ensure consistency UpperCAmelCase = tokenizer.decode(lowercase_ , clean_up_tokenization_spaces=lowercase_ ) if " " not in output_txt and len(lowercase_ ) > 1: UpperCAmelCase = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=lowercase_ ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=lowercase_ ) ) if with_prefix_space: UpperCAmelCase = ' ' + output_txt UpperCAmelCase = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) return output_txt, output_ids def UpperCAmelCase__ ( self :Union[str, Any] , **lowercase_ :Union[str, Any] ) -> Optional[Any]: kwargs.update(self.special_tokens_map ) return WavaVecaPhonemeCTCTokenizer.from_pretrained(self.tmpdirname , **lowercase_ ) def UpperCAmelCase__ ( self :int ) -> str: UpperCAmelCase = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) # check adding a single token tokenizer.add_tokens('xxx' ) UpperCAmelCase = tokenizer('m xxx ɪ' , do_phonemize=lowercase_ ).input_ids self.assertEqual(lowercase_ , [13, 3_92, 17] ) # xxx should be last token tokenizer.add_tokens(['aaa', 'bbb', 'ccc'] ) UpperCAmelCase = tokenizer('m aaa ɪ ccc' , do_phonemize=lowercase_ ).input_ids self.assertEqual(lowercase_ , [13, 3_93, 17, 3_95] ) # aaa and ccc should be after xxx and 2 after aaa UpperCAmelCase = tokenizer('maɪ c' , do_phonemize=lowercase_ ).input_ids self.assertEqual(lowercase_ , [3, 2_00] ) # mai should be <unk> (=3) def UpperCAmelCase__ ( self :Tuple ) -> Union[str, Any]: UpperCAmelCase = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) UpperCAmelCase = 'Hello how are you' UpperCAmelCase = tokenizer.phonemize(lowercase_ , phonemizer_lang='en-us' ) self.assertEqual(lowercase_ , 'h ə l oʊ h aʊ ɑːɹ j uː' ) def UpperCAmelCase__ ( self :Dict ) -> int: UpperCAmelCase = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) UpperCAmelCase = 'Hello how are you' UpperCAmelCase = tokenizer.phonemize(lowercase_ , phonemizer_lang='en-us' ) self.assertEqual(tokenizer(lowercase_ ).input_ids , tokenizer(lowercase_ , do_phonemize=lowercase_ ).input_ids ) def UpperCAmelCase__ ( self :Optional[Any] ) -> Dict: UpperCAmelCase = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) UpperCAmelCase = 'Hello how are you' UpperCAmelCase = tokenizer.phonemize(lowercase_ , phonemizer_lang='en-us' ) UpperCAmelCase = tokenizer.decode(tokenizer(lowercase_ ).input_ids ) self.assertEqual(lowercase_ , lowercase_ ) def UpperCAmelCase__ ( self :Optional[int] ) -> str: UpperCAmelCase = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) UpperCAmelCase = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98], [24, 22, 5, 24, 22, 5, 77], ] UpperCAmelCase = tokenizer.decode(sample_ids[0] ) UpperCAmelCase = tokenizer.batch_decode(lowercase_ ) self.assertEqual(lowercase_ , batch_tokens[0] ) self.assertEqual(lowercase_ , ['k s ɾ ɾ l ɭʲ', 'j ð s j ð s oːɹ'] ) def UpperCAmelCase__ ( self :Any ) -> str: UpperCAmelCase = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) UpperCAmelCase = 'Hello how are you' UpperCAmelCase = tokenizer.phonemize(lowercase_ , phonemizer_lang='en-us' ) self.assertEqual(lowercase_ , 'h ə l oʊ | h aʊ | ɑːɹ | j uː |' ) def UpperCAmelCase__ ( self :Any ) -> Any: UpperCAmelCase = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) UpperCAmelCase = 'Hello how are you' UpperCAmelCase = tokenizer.phonemize(lowercase_ , phonemizer_lang='en-us' ) self.assertEqual(tokenizer(lowercase_ ).input_ids , tokenizer(lowercase_ , do_phonemize=lowercase_ ).input_ids ) def UpperCAmelCase__ ( self :Dict ) -> Union[str, Any]: UpperCAmelCase = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) # fmt: off UpperCAmelCase = [ [11, 5, 15, tokenizer.pad_token_id, tokenizer.word_delimiter_token_id, 15, 8, tokenizer.word_delimiter_token_id, 98], [tokenizer.word_delimiter_token_id, 24, 22, tokenizer.word_delimiter_token_id, 5, 24, 22, 5, 77], ] # fmt: on # decode with word_del_token filter UpperCAmelCase = tokenizer.decode(sample_ids[0] ) UpperCAmelCase = tokenizer.batch_decode(lowercase_ ) self.assertEqual(lowercase_ , batch_tokens[0] ) self.assertEqual(lowercase_ , ['k s ɾ ɾ l ɭʲ', 'j ð s j ð s oːɹ'] ) # decode with no word_del_token filter UpperCAmelCase = tokenizer.decode(sample_ids[0] , filter_word_delimiter_token=lowercase_ ) UpperCAmelCase = tokenizer.batch_decode(lowercase_ , filter_word_delimiter_token=lowercase_ ) self.assertEqual(lowercase_ , batch_tokens[0] ) self.assertEqual(lowercase_ , ['k s ɾ | ɾ l | ɭʲ', '| j ð | s j ð s oːɹ'] ) def UpperCAmelCase__ ( self :int ) -> int: UpperCAmelCase = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) UpperCAmelCase = 'Hello how are you' UpperCAmelCase = tokenizer.phonemize(lowercase_ , phonemizer_lang='en-us' ) UpperCAmelCase = tokenizer.decode(tokenizer(lowercase_ ).input_ids , filter_word_delimiter_token=lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) def UpperCAmelCase__ ( self :Union[str, Any] ) -> Optional[Any]: UpperCAmelCase = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) UpperCAmelCase = 'Hello how are you' UpperCAmelCase = tokenizer.phonemize(lowercase_ , phonemizer_lang='en-us' ) UpperCAmelCase = tokenizer.decode(tokenizer(lowercase_ ).input_ids , filter_word_delimiter_token=lowercase_ ) self.assertEqual(' '.join([p.strip() for p in phonemes.split(' |' )] ).strip() , lowercase_ ) def UpperCAmelCase__ ( self :int ) -> Optional[Any]: UpperCAmelCase = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token=lowercase_ ) UpperCAmelCase = 'Hello how are you' UpperCAmelCase = tokenizer(lowercase_ , phonemizer_lang='en-us' ).input_ids UpperCAmelCase = tokenizer(lowercase_ , phonemizer_lang='fr-fr' ).input_ids self.assertNotEqual(lowercase_ , lowercase_ ) UpperCAmelCase = tokenizer.decode(lowercase_ ) UpperCAmelCase = tokenizer.decode(lowercase_ ) self.assertEqual(lowercase_ , 'h ə l oʊ h aʊ ɑːɹ j uː' ) self.assertEqual(lowercase_ , 'ɛ l o h aʊ a ʁ j u' ) def UpperCAmelCase__ ( self :int ) -> List[Any]: UpperCAmelCase = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) UpperCAmelCase = 'Hello how Are you' UpperCAmelCase = 'hello how are you' UpperCAmelCase = tokenizer(lowercase_ ).input_ids UpperCAmelCase = tokenizer(lowercase_ ).input_ids self.assertEqual(lowercase_ , lowercase_ ) def UpperCAmelCase__ ( self :Optional[Any] ) -> int: UpperCAmelCase = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) tokenizer.add_tokens(['!', '?'] ) tokenizer.add_special_tokens({'cls_token': '$$$'} ) # fmt: off UpperCAmelCase = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98, 3_92, 3_92, 3_93, 3_92, 3_92, 3_93, 3_94, 3_94], [24, 22, 5, 24, 22, 5, 77, tokenizer.pad_token_id, 3_94, 3_94], ] # fmt: on UpperCAmelCase = tokenizer.batch_decode(lowercase_ ) self.assertEqual(lowercase_ , ['k s ɾ ɾ l ɭʲ!?!? $$$', 'j ð s j ð s oːɹ $$$'] ) @staticmethod def UpperCAmelCase__ ( lowercase_ :List[str] , lowercase_ :List[str] ) -> List[str]: UpperCAmelCase = [d[key] for d in offsets] return retrieved_list def UpperCAmelCase__ ( self :str ) -> Optional[int]: UpperCAmelCase = self.get_tokenizer(word_delimiter_token='|' ) tokenizer.add_tokens('|' ) # fmt: off # ksssɾɾ|ɾɾ<pad>ɾɾ|<pad>ɾlll|ɭʲ -> k s ɾ ɾ | ɾ l | ɭʲ" UpperCAmelCase = [11, 5, 5, 5, 15, 15, tokenizer.pad_token_id, 15, 15, tokenizer.word_delimiter_token_id, tokenizer.pad_token_id, 15, 8, 8, 8, tokenizer.word_delimiter_token_id, 98] # fmt: on UpperCAmelCase = tokenizer.decode(lowercase_ , output_char_offsets=lowercase_ , filter_word_delimiter_token=lowercase_ ) # check Wav2Vec2CTCTokenizerOutput keys for char self.assertEqual(len(outputs.keys() ) , 2 ) self.assertTrue('text' in outputs ) self.assertTrue('char_offsets' in outputs ) self.assertTrue(isinstance(lowercase_ , lowercase_ ) ) # check that order of chars is correct and identical for both outputs self.assertEqual(' '.join(self.get_from_offsets(outputs['char_offsets'] , 'char' ) ) , outputs.text ) self.assertListEqual( self.get_from_offsets(outputs['char_offsets'] , 'char' ) , ['k', 's', 'ɾ', 'ɾ', '|', 'ɾ', 'l', '|', 'ɭʲ'] ) # check that offsets are actually correct for char # 0-1 is 11, 1-4 is 5, 4-6 is first 15, 6-7 is <pad> (thus not shown), 7-9 is second 15, 9-10 is word_delimiter_token, # 10-11 is <pad> (thus not shown), 11-12 is third 15, 12-15 is 8, 15-16 is word_delimiter_token, 16-17 is 98 self.assertListEqual( self.get_from_offsets(outputs['char_offsets'] , 'start_offset' ) , [0, 1, 4, 7, 9, 11, 12, 15, 16] ) self.assertListEqual( self.get_from_offsets(outputs['char_offsets'] , 'end_offset' ) , [1, 4, 6, 9, 10, 12, 15, 16, 17] ) def UpperCAmelCase__ ( self :Optional[int] ) -> Optional[int]: UpperCAmelCase = self.get_tokenizer(word_delimiter_token='|' ) def check_list_tuples_equal(lowercase_ :List[Any] , lowercase_ :str ): self.assertTrue(isinstance(lowercase_ , lowercase_ ) ) self.assertTrue(isinstance(outputs_list[0] , lowercase_ ) ) # transform list to ModelOutput UpperCAmelCase = WavaVecaPhonemeCTCTokenizerOutput( {k: [d[k] for d in outputs_list] for k in outputs_list[0]} ) self.assertListEqual(outputs_batch['text'] , outputs_batch_a['text'] ) def recursive_check(lowercase_ :Any , lowercase_ :str ): if isinstance(lowercase_ , lowercase_ ): [recursive_check(lowercase_ , lowercase_ ) for la, la in zip(lowercase_ , lowercase_ )] self.assertEqual(lowercase_ , lowercase_ ) if "char_offsets" in outputs_batch: recursive_check(outputs_batch['char_offsets'] , outputs_batch_a['char_offsets'] ) # fmt: off UpperCAmelCase = [ [11, 5, 15, tokenizer.pad_token_id, 15, 4, 8, 98, 32, 32, 32, 32, 4, 33, tokenizer.word_delimiter_token_id, 32, 32, 33, 34, 34], [24, 22, 5, tokenizer.word_delimiter_token_id, tokenizer.word_delimiter_token_id, 24, 22, 22, 22, 4, 5, 77, tokenizer.pad_token_id, 22, 22, 4, 34, 34, 34, 34], ] # fmt: on # We assume that `decode` works as expected. All we will check now is # the output type is correct and the output is identical to `decode` # char UpperCAmelCase = tokenizer.batch_decode(lowercase_ , output_char_offsets=lowercase_ ) UpperCAmelCase = [tokenizer.decode(lowercase_ , output_char_offsets=lowercase_ ) for ids in sample_ids] check_list_tuples_equal(lowercase_ , lowercase_ ) @unittest.skip('Wav2Vec2PhonemeTokenizer always lower cases letters to correctly map to phonemes' ) def UpperCAmelCase__ ( self :Any ) -> str: pass @unittest.skip('Wav2Vec2PhonemeTokenizer always puts spaces between phonemes' ) def UpperCAmelCase__ ( self :str ) -> List[str]: pass @unittest.skip('encodes to text to ids, but decodes ids to phonemes -> not possible to have internal consistency' ) def UpperCAmelCase__ ( self :List[str] ) -> int: pass @unittest.skip('Wav2Vec2PhonemeModel has no max model length => no testing' ) def UpperCAmelCase__ ( self :List[Any] ) -> Optional[int]: pass def UpperCAmelCase__ ( self :int ) -> Optional[Any]: UpperCAmelCase = self.get_tokenizers(do_lower_case=lowercase_ ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): UpperCAmelCase = tokenizer.vocab_size UpperCAmelCase = len(lowercase_ ) self.assertNotEqual(lowercase_ , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) UpperCAmelCase = ['aaaaa bbbbbb', 'cccccccccdddddddd'] UpperCAmelCase = tokenizer.add_tokens(lowercase_ ) UpperCAmelCase = tokenizer.vocab_size UpperCAmelCase = len(lowercase_ ) self.assertNotEqual(lowercase_ , 0 ) self.assertEqual(lowercase_ , lowercase_ ) self.assertEqual(lowercase_ , len(lowercase_ ) ) self.assertEqual(lowercase_ , all_size + len(lowercase_ ) ) UpperCAmelCase = tokenizer.encode('aaaaa bbbbbb low cccccccccdddddddd l' , add_special_tokens=lowercase_ ) self.assertGreaterEqual(len(lowercase_ ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) UpperCAmelCase = {'eos_token': '>>>>|||<||<<|<<', 'pad_token': '<<<<<|||>|>>>>|>'} UpperCAmelCase = tokenizer.add_special_tokens(lowercase_ ) UpperCAmelCase = tokenizer.vocab_size UpperCAmelCase = len(lowercase_ ) self.assertNotEqual(lowercase_ , 0 ) self.assertEqual(lowercase_ , lowercase_ ) self.assertEqual(lowercase_ , len(lowercase_ ) ) self.assertEqual(lowercase_ , all_size_a + len(lowercase_ ) ) UpperCAmelCase = tokenizer.encode( '>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l' , add_special_tokens=lowercase_ ) self.assertGreaterEqual(len(lowercase_ ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) @unittest.skip('The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.' ) def UpperCAmelCase__ ( self :Tuple ) -> Optional[Any]: pass @unittest.skip('The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.' ) def UpperCAmelCase__ ( self :int ) -> Any: pass def UpperCAmelCase__ ( self :Tuple ) -> Dict: # The default common tokenizer tests assumes that the output of `convert_tokens_to_string` is a string which # is not the case for Wav2Vec2PhonemeCTCTokenizer. UpperCAmelCase = self.get_tokenizers(fast=lowercase_ , do_lower_case=lowercase_ ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): UpperCAmelCase = ['ð', 'ɪ', 's', 'ɪ', 'z', 'ɐ', 't', 'ɛ', 'k', 's', 't'] UpperCAmelCase = tokenizer.convert_tokens_to_string(lowercase_ ) self.assertIsInstance(output['text'] , lowercase_ )
181
0
"""simple docstring""" from __future__ import annotations from fractions import Fraction def UpperCamelCase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> bool: """simple docstring""" return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def UpperCamelCase_ ( lowerCAmelCase__ : int ) -> list[str]: """simple docstring""" lowerCAmelCase_ : Dict = [] lowerCAmelCase_ : str = 11 lowerCAmelCase_ : Optional[Any] = int('1' + '0' * digit_len ) for num in range(lowerCAmelCase__ , lowerCAmelCase__ ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(lowerCAmelCase__ , lowerCAmelCase__ ): solutions.append(f"{num}/{den}" ) den += 1 num += 1 lowerCAmelCase_ : Tuple = 10 return solutions def UpperCamelCase_ ( lowerCAmelCase__ : int = 2 ) -> int: """simple docstring""" lowerCAmelCase_ : int = 1.0 for fraction in fraction_list(lowerCAmelCase__ ): lowerCAmelCase_ : List[str] = Fraction(lowerCAmelCase__ ) result *= frac.denominator / frac.numerator return int(lowerCAmelCase__ ) if __name__ == "__main__": print(solution())
224
"""simple docstring""" def UpperCamelCase_ ( lowerCAmelCase__ : int = 100 ) -> int: """simple docstring""" lowerCAmelCase_ : Any = (n * (n + 1) // 2) ** 2 lowerCAmelCase_ : Optional[int] = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(f'{solution() = }')
224
1
from math import factorial def __UpperCAmelCase ( __a : int = 100 ) -> List[str]: """simple docstring""" return sum(map(__a ,str(factorial(__a ) ) ) ) if __name__ == "__main__": print(solution(int(input('''Enter the Number: ''').strip())))
355
from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch a__ = logging.get_logger(__name__) @add_end_docstrings( __lowercase , r"\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n " , ) class UpperCAmelCase_ ( __lowercase ): """simple docstring""" def __lowercase ( self , _a ) -> np.ndarray: if self.framework == "tf": _a : List[str] = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": _a : Tuple = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_a ) else: raise ValueError('''Unsupported framework''' ) return masked_index def __lowercase ( self , _a ) -> np.ndarray: _a : int = self.get_masked_index(_a ) _a : Tuple = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , F"""No mask_token ({self.tokenizer.mask_token}) found on the input""" , ) def __lowercase ( self , _a ) -> Optional[int]: if isinstance(_a , _a ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input['''input_ids'''][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(_a ) def __lowercase ( self , _a , _a=None , **_a ) -> Dict[str, GenericTensor]: if return_tensors is None: _a : Union[str, Any] = self.framework _a : str = self.tokenizer(_a , return_tensors=_a ) self.ensure_exactly_one_mask_token(_a ) return model_inputs def __lowercase ( self , _a ) -> Optional[Any]: _a : List[str] = self.model(**_a ) _a : Any = model_inputs['''input_ids'''] return model_outputs def __lowercase ( self , _a , _a=5 , _a=None ) -> str: # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: _a : List[Any] = target_ids.shape[0] _a : Any = model_outputs['''input_ids'''][0] _a : List[str] = model_outputs['''logits'''] if self.framework == "tf": _a : Tuple = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] _a : List[str] = outputs.numpy() _a : Dict = outputs[0, masked_index, :] _a : str = stable_softmax(_a , axis=-1 ) if target_ids is not None: _a : Any = tf.gather_nd(tf.squeeze(_a , 0 ) , target_ids.reshape(-1 , 1 ) ) _a : Union[str, Any] = tf.expand_dims(_a , 0 ) _a : Optional[int] = tf.math.top_k(_a , k=_a ) _a , _a : Optional[Any] = topk.values.numpy(), topk.indices.numpy() else: _a : Optional[Any] = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_a ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample _a : List[str] = outputs[0, masked_index, :] _a : List[Any] = logits.softmax(dim=-1 ) if target_ids is not None: _a : List[Any] = probs[..., target_ids] _a , _a : Optional[Any] = probs.topk(_a ) _a : Dict = [] _a : List[Any] = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): _a : Optional[Any] = [] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place _a : Optional[int] = input_ids.numpy().copy() if target_ids is not None: _a : Tuple = target_ids[p].tolist() _a : List[str] = p # Filter padding out: _a : List[Any] = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back _a : List[str] = self.tokenizer.decode(_a , skip_special_tokens=_a ) _a : List[Any] = {'''score''': v, '''token''': p, '''token_str''': self.tokenizer.decode([p] ), '''sequence''': sequence} row.append(_a ) result.append(_a ) if single_mask: return result[0] return result def __lowercase ( self , _a , _a=None ) -> Dict: if isinstance(_a , _a ): _a : Tuple = [targets] try: _a : int = self.tokenizer.get_vocab() except Exception: _a : Any = {} _a : List[Any] = [] for target in targets: _a : List[Any] = vocab.get(_a , _a ) if id_ is None: _a : Tuple = self.tokenizer( _a , add_special_tokens=_a , return_attention_mask=_a , return_token_type_ids=_a , max_length=1 , truncation=_a , )['''input_ids'''] if len(_a ) == 0: logger.warning( F"""The specified target token `{target}` does not exist in the model vocabulary. """ '''We cannot replace it with anything meaningful, ignoring it''' ) continue _a : Tuple = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( F"""The specified target token `{target}` does not exist in the model vocabulary. """ F"""Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.""" ) target_ids.append(id_ ) _a : List[str] = list(set(_a ) ) if len(_a ) == 0: raise ValueError('''At least one target must be provided when passed.''' ) _a : int = np.array(_a ) return target_ids def __lowercase ( self , _a=None , _a=None ) -> Tuple: _a : str = {} if targets is not None: _a : List[Any] = self.get_target_ids(_a , _a ) _a : Optional[Any] = target_ids if top_k is not None: _a : Union[str, Any] = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , '''The tokenizer does not define a `mask_token`.''' ) return {}, {}, postprocess_params def __call__( self , _a , *_a , **_a ) -> int: _a : Optional[Any] = super().__call__(_a , **_a ) if isinstance(_a , _a ) and len(_a ) == 1: return outputs[0] return outputs
15
0
"""simple docstring""" import math from datetime import datetime, timedelta def UpperCamelCase_ ( lowerCAmelCase__ : int ) -> datetime: """simple docstring""" lowerCAmelCase_ : List[str] = year % 19 lowerCAmelCase_ : str = year % 4 lowerCAmelCase_ : List[str] = year % 7 lowerCAmelCase_ : Tuple = math.floor(year / 100 ) lowerCAmelCase_ : Any = math.floor((13 + 8 * leap_day_inhibits) / 25 ) lowerCAmelCase_ : Tuple = leap_day_inhibits / 4 lowerCAmelCase_ : Dict = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 lowerCAmelCase_ : List[Any] = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 lowerCAmelCase_ : Dict = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon lowerCAmelCase_ : Optional[int] = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(snake_case_ , 4 , 19 ) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(snake_case_ , 4 , 18 ) else: return datetime(snake_case_ , 3 , 22 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1_9_9_4, 2_0_0_0, 2_0_1_0, 2_0_2_1, 2_0_2_3): lowercase__ : Optional[Any] = """will be""" if year > datetime.now().year else """was""" print(f'Easter in {year} {tense} {gauss_easter(year)}')
224
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class A_ : """simple docstring""" def __init__( self :str , lowerCamelCase_ :int , lowerCamelCase_ :List[str]=13 , lowerCamelCase_ :List[Any]=7 , lowerCamelCase_ :str=True , lowerCamelCase_ :int=True , lowerCamelCase_ :List[str]=True , lowerCamelCase_ :Any=99 , lowerCamelCase_ :Optional[int]=32 , lowerCamelCase_ :Dict=5 , lowerCamelCase_ :Any=4 , lowerCamelCase_ :Tuple=37 , lowerCamelCase_ :Union[str, Any]="gelu" , lowerCamelCase_ :Dict=0.1 , lowerCamelCase_ :Any=0.1 , lowerCamelCase_ :List[str]=512 , lowerCamelCase_ :int=16 , lowerCamelCase_ :List[str]=2 , lowerCamelCase_ :List[str]=0.02 , lowerCamelCase_ :List[Any]=3 , lowerCamelCase_ :Dict=4 , lowerCamelCase_ :Optional[Any]=None , ): """simple docstring""" lowerCamelCase__ : Any =parent lowerCamelCase__ : Union[str, Any] =batch_size lowerCamelCase__ : Dict =seq_length lowerCamelCase__ : List[str] =is_training lowerCamelCase__ : List[Any] =use_token_type_ids lowerCamelCase__ : Union[str, Any] =use_labels lowerCamelCase__ : Optional[Any] =vocab_size lowerCamelCase__ : List[Any] =hidden_size lowerCamelCase__ : Optional[int] =num_hidden_layers lowerCamelCase__ : Tuple =num_attention_heads lowerCamelCase__ : Optional[Any] =intermediate_size lowerCamelCase__ : Optional[int] =hidden_act lowerCamelCase__ : List[Any] =hidden_dropout_prob lowerCamelCase__ : str =attention_probs_dropout_prob lowerCamelCase__ : Tuple =max_position_embeddings lowerCamelCase__ : Union[str, Any] =type_vocab_size lowerCamelCase__ : Dict =type_sequence_label_size lowerCamelCase__ : str =initializer_range lowerCamelCase__ : Any =num_labels lowerCamelCase__ : int =num_choices lowerCamelCase__ : List[str] =scope lowerCamelCase__ : List[str] =self.vocab_size - 1 def UpperCAmelCase__ ( self :Any ): """simple docstring""" lowerCamelCase__ : str =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ : Union[str, Any] =None if self.use_token_type_ids: lowerCamelCase__ : Optional[int] =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase__ : Any =None lowerCamelCase__ : Any =None lowerCamelCase__ : str =None if self.use_labels: lowerCamelCase__ : int =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ : List[Any] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase__ : Any =ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase__ : int =OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) lowerCamelCase__ : List[str] =ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def UpperCAmelCase__ ( self :List[str] , lowerCamelCase_ :List[Any] , lowerCamelCase_ :List[str] , lowerCamelCase_ :List[str] , lowerCamelCase_ :Optional[int] , *lowerCamelCase_ :Any ): """simple docstring""" lowerCamelCase__ : Any =OpenAIGPTModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : int =model(lowerCamelCase_ , token_type_ids=lowerCamelCase_ , head_mask=lowerCamelCase_ ) lowerCamelCase__ : Optional[int] =model(lowerCamelCase_ , token_type_ids=lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] =model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self :List[str] , lowerCamelCase_ :str , lowerCamelCase_ :Any , lowerCamelCase_ :Dict , lowerCamelCase_ :List[str] , *lowerCamelCase_ :List[Any] ): """simple docstring""" lowerCamelCase__ : int =OpenAIGPTLMHeadModel(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : int =model(lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__ ( self :Tuple , lowerCamelCase_ :List[str] , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :List[str] , lowerCamelCase_ :str , *lowerCamelCase_ :Dict ): """simple docstring""" lowerCamelCase__ : Tuple =OpenAIGPTDoubleHeadsModel(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Optional[Any] =model(lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__ ( self :List[Any] , lowerCamelCase_ :int , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :str , *lowerCamelCase_ :List[Any] ): """simple docstring""" lowerCamelCase__ : List[str] =self.num_labels lowerCamelCase__ : Tuple =OpenAIGPTForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Optional[int] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ : List[str] =model(lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase__ ( self :List[str] ): """simple docstring""" lowerCamelCase__ : str =self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : Dict =config_and_inputs lowerCamelCase__ : Tuple ={ 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask, } return config, inputs_dict @require_torch class A_ ( A__ , A__ , A__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly SCREAMING_SNAKE_CASE_ = ( { """feature-extraction""": OpenAIGPTModel, """text-classification""": OpenAIGPTForSequenceClassification, """text-generation""": OpenAIGPTLMHeadModel, """zero-shot""": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def UpperCAmelCase__ ( self :int , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :List[Any] , lowerCamelCase_ :List[Any] , lowerCamelCase_ :List[Any] , lowerCamelCase_ :List[str] ): """simple docstring""" if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def UpperCAmelCase__ ( self :Dict , lowerCamelCase_ :Tuple , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :List[Any]=False ): """simple docstring""" lowerCamelCase__ : str =super()._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ , return_labels=lowerCamelCase_ ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": lowerCamelCase__ : Dict =torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=lowerCamelCase_ , ) lowerCamelCase__ : Union[str, Any] =inputs_dict['labels'] lowerCamelCase__ : Tuple =inputs_dict['labels'] lowerCamelCase__ : int =torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=lowerCamelCase_ , ) lowerCamelCase__ : Optional[Any] =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCamelCase_ ) return inputs_dict def UpperCAmelCase__ ( self :str ): """simple docstring""" lowerCamelCase__ : List[str] =OpenAIGPTModelTester(self ) lowerCamelCase__ : Union[str, Any] =ConfigTester(self , config_class=lowerCamelCase_ , n_embd=37 ) def UpperCAmelCase__ ( self :int ): """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase__ ( self :Union[str, Any] ): """simple docstring""" lowerCamelCase__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*lowerCamelCase_ ) def UpperCAmelCase__ ( self :Union[str, Any] ): """simple docstring""" lowerCamelCase__ : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*lowerCamelCase_ ) def UpperCAmelCase__ ( self :Union[str, Any] ): """simple docstring""" lowerCamelCase__ : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*lowerCamelCase_ ) def UpperCAmelCase__ ( self :str ): """simple docstring""" lowerCamelCase__ : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*lowerCamelCase_ ) @slow def UpperCAmelCase__ ( self :List[str] ): """simple docstring""" for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : Optional[Any] =OpenAIGPTModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) @require_torch class A_ ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self :Optional[Any] ): """simple docstring""" lowerCamelCase__ : Optional[Any] =OpenAIGPTLMHeadModel.from_pretrained('openai-gpt' ) model.to(lowerCamelCase_ ) lowerCamelCase__ : List[str] =torch.tensor([[481, 4_735, 544]] , dtype=torch.long , device=lowerCamelCase_ ) # the president is lowerCamelCase__ : List[Any] =[ 481, 4_735, 544, 246, 963, 870, 762, 239, 244, 40_477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the lowerCamelCase__ : Tuple =model.generate(lowerCamelCase_ , do_sample=lowerCamelCase_ ) self.assertListEqual(output_ids[0].tolist() , lowerCamelCase_ )
126
0
from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def __UpperCamelCase ( _A : Any , _A : List[Any] , _A : List[Any]=None , _A : List[str]=None ) ->Dict: """simple docstring""" if attention_mask is None: lowerCamelCase_ =tf.cast(tf.math.not_equal(_A , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class _SCREAMING_SNAKE_CASE : _UpperCamelCase:Tuple = OPTConfig _UpperCamelCase:Any = {} _UpperCamelCase:List[Any] = "gelu" def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=99 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=20 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=16 , )-> Optional[Any]: lowerCamelCase_ =parent lowerCamelCase_ =batch_size lowerCamelCase_ =seq_length lowerCamelCase_ =is_training lowerCamelCase_ =use_labels lowerCamelCase_ =vocab_size lowerCamelCase_ =hidden_size lowerCamelCase_ =num_hidden_layers lowerCamelCase_ =num_attention_heads lowerCamelCase_ =intermediate_size lowerCamelCase_ =hidden_act lowerCamelCase_ =hidden_dropout_prob lowerCamelCase_ =attention_probs_dropout_prob lowerCamelCase_ =max_position_embeddings lowerCamelCase_ =eos_token_id lowerCamelCase_ =pad_token_id lowerCamelCase_ =bos_token_id lowerCamelCase_ =embed_dim lowerCamelCase_ =word_embed_proj_dim lowerCamelCase_ =False def _snake_case ( self )-> List[str]: lowerCamelCase_ =ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) lowerCamelCase_ =tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) lowerCamelCase_ =tf.concat([input_ids, eos_tensor] , axis=1 ) lowerCamelCase_ =self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=_SCREAMING_SNAKE_CASE , **self.config_updates , ) lowerCamelCase_ =prepare_opt_inputs_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return config, inputs_dict def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )-> Union[str, Any]: lowerCamelCase_ =TFOPTModel(config=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =inputs_dict["""input_ids"""] lowerCamelCase_ =input_ids[:1, :] lowerCamelCase_ =inputs_dict["""attention_mask"""][:1, :] lowerCamelCase_ =1 # first forward pass lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , use_cache=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ , lowerCamelCase_ =outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCamelCase_ =ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCamelCase_ =tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and lowerCamelCase_ =tf.concat([input_ids, next_tokens] , axis=-1 ) lowerCamelCase_ =tf.concat([attention_mask, next_attn_mask] , axis=-1 ) lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE )[0] lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , past_key_values=_SCREAMING_SNAKE_CASE )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice lowerCamelCase_ =int(ids_tensor((1,) , output_from_past.shape[-1] ) ) lowerCamelCase_ =output_from_no_past[:, -3:, random_slice_idx] lowerCamelCase_ =output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , rtol=1E-3 ) @require_tf class _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase): _UpperCamelCase:Any = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () _UpperCamelCase:Any = (TFOPTForCausalLM,) if is_tf_available() else () _UpperCamelCase:Any = ( {"feature-extraction": TFOPTModel, "text-generation": TFOPTForCausalLM} if is_tf_available() else {} ) _UpperCamelCase:int = False _UpperCamelCase:List[Any] = False _UpperCamelCase:List[Any] = False _UpperCamelCase:Union[str, Any] = 10 def _snake_case ( self )-> int: lowerCamelCase_ =TFOPTModelTester(self ) lowerCamelCase_ =ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> int: self.config_tester.run_common_tests() def _snake_case ( self )-> Optional[int]: lowerCamelCase_ =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> Union[str, Any]: lowerCamelCase_ , lowerCamelCase_ =self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if hasattr(_SCREAMING_SNAKE_CASE , """weight""" ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(_SCREAMING_SNAKE_CASE , """weight""" ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings lowerCamelCase_ =model_class(config=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =_get_word_embedding_weight(_SCREAMING_SNAKE_CASE , model.get_input_embeddings() ) lowerCamelCase_ =_get_word_embedding_weight(_SCREAMING_SNAKE_CASE , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =_get_word_embedding_weight(_SCREAMING_SNAKE_CASE , model.get_input_embeddings() ) lowerCamelCase_ =_get_word_embedding_weight(_SCREAMING_SNAKE_CASE , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. lowerCamelCase_ =size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , _SCREAMING_SNAKE_CASE ) # check that weights remain the same after resizing lowerCamelCase_ =True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: lowerCamelCase_ =False self.assertTrue(_SCREAMING_SNAKE_CASE ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , _SCREAMING_SNAKE_CASE ) lowerCamelCase_ =True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: lowerCamelCase_ =False self.assertTrue(_SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( _A : str ) ->str: """simple docstring""" return tf.constant(_A , dtype=tf.intaa ) @require_tf class _SCREAMING_SNAKE_CASE ( unittest.TestCase): _UpperCamelCase:List[Any] = 99 def _snake_case ( self )-> Union[str, Any]: lowerCamelCase_ =tf.ones((4, 1) , dtype=tf.intaa ) * 2 lowerCamelCase_ =tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) lowerCamelCase_ =input_ids.shape[0] lowerCamelCase_ =OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class _SCREAMING_SNAKE_CASE ( unittest.TestCase): @slow def _snake_case ( self )-> Dict: lowerCamelCase_ =TFOPTModel.from_pretrained("""facebook/opt-350m""" ) lowerCamelCase_ =_long_tensor([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] ) lowerCamelCase_ =tf.not_equal(_SCREAMING_SNAKE_CASE , model.config.pad_token_id ) with tf.GradientTape(): lowerCamelCase_ =model(input_ids=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE ).last_hidden_state lowerCamelCase_ =(1, 11, 512) self.assertEqual(output.shape , _SCREAMING_SNAKE_CASE ) lowerCamelCase_ =tf.constant( [[-0.2_8_7_3, -1.9_2_1_8, -0.3_0_3_3], [-1.2_7_1_0, -0.1_3_3_8, -0.1_9_0_2], [0.4_0_9_5, 0.1_2_1_4, -1.3_1_2_1]] ) self.assertTrue(np.allclose(output[:, :3, :3] , _SCREAMING_SNAKE_CASE , atol=4E-3 ) ) lowerCamelCase_ =tf.function(_SCREAMING_SNAKE_CASE , jit_compile=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =xla_generate(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )[0] self.assertTrue(np.allclose(output[:, :3, :3] , _SCREAMING_SNAKE_CASE , atol=4E-2 ) ) @require_tf @slow class _SCREAMING_SNAKE_CASE ( unittest.TestCase): def _snake_case ( self )-> List[Any]: super().setUp() lowerCamelCase_ ="""facebook/opt-350m""" def _snake_case ( self )-> Optional[Any]: lowerCamelCase_ =TFOPTForCausalLM.from_pretrained(self.path_model ) lowerCamelCase_ =GPTaTokenizer.from_pretrained(self.path_model ) lowerCamelCase_ =[ """Today is a beautiful day and I want to""", """In the city of""", """Paris is the capital of France and""", """Computers and mobile phones have taken""", ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False lowerCamelCase_ =tokenizer(_SCREAMING_SNAKE_CASE , return_tensors="""tf""" , padding=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) lowerCamelCase_ =tf.constant( [ [1.3_8_5_1, -1_3.8_9_2_3, -1_0.5_2_2_9, -1_0.7_5_3_3, -0.2_3_0_9, -1_0.2_3_8_4, -0.5_3_6_5, -9.0_9_4_7, -5.1_6_7_0], [-4.7_0_7_3, -1_0.6_2_7_6, -3.9_4_1_5, -2_1.5_2_4_2, -0.2_8_2_2, -0.2_8_2_2, -0.2_8_2_2, -0.2_8_2_2, -0.2_8_2_2], [0.6_2_4_7, -3.4_2_2_9, -8.9_1_7_9, -1.4_2_9_7, -1_4.1_6_5_0, 1.4_1_4_6, -9.0_2_1_8, -0.2_7_0_3, -0.2_7_0_3], [6.4_7_8_3, -1.9_9_1_3, -1_0.7_9_2_6, -2.3_3_3_6, 1.5_0_9_2, -0.9_9_7_4, -6.8_2_1_3, 1.3_4_7_7, 1.3_4_7_7], ] ) self.assertTrue(np.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1E-4 ) ) lowerCamelCase_ =tf.function(_SCREAMING_SNAKE_CASE , jit_compile=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1E-4 ) ) @require_tf @slow class _SCREAMING_SNAKE_CASE ( unittest.TestCase): @property def _snake_case ( self )-> Dict: return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def _snake_case ( self )-> Dict: lowerCamelCase_ ="""facebook/opt-125m""" lowerCamelCase_ =[ """Today is a beautiful day and I want to""", """In the city of New York, the city""", """Paris is the capital of France and the capital""", """Computers and mobile phones have taken over the""", ] lowerCamelCase_ =[] lowerCamelCase_ =GPTaTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =TFOPTForCausalLM.from_pretrained(_SCREAMING_SNAKE_CASE ) for prompt in self.prompts: lowerCamelCase_ =tokenizer(_SCREAMING_SNAKE_CASE , return_tensors="""tf""" ).input_ids lowerCamelCase_ =model.generate(_SCREAMING_SNAKE_CASE , max_length=10 ) lowerCamelCase_ =tokenizer.batch_decode(_SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE ) predicted_outputs += generated_string self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> str: lowerCamelCase_ ="""facebook/opt-350m""" lowerCamelCase_ =GPTaTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =TFOPTForCausalLM.from_pretrained(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ ="""left""" # use different length sentences to test batching lowerCamelCase_ =[ """Hello, my dog is a little""", """Today, I""", ] lowerCamelCase_ =tokenizer(_SCREAMING_SNAKE_CASE , return_tensors="""tf""" , padding=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =inputs["""input_ids"""] lowerCamelCase_ =model.generate(input_ids=_SCREAMING_SNAKE_CASE , attention_mask=inputs["""attention_mask"""] ) lowerCamelCase_ =tokenizer(sentences[0] , return_tensors="""tf""" ).input_ids lowerCamelCase_ =model.generate(input_ids=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs["""attention_mask"""][-1] , tf.intaa ) ) lowerCamelCase_ =tokenizer(sentences[1] , return_tensors="""tf""" ).input_ids lowerCamelCase_ =model.generate(input_ids=_SCREAMING_SNAKE_CASE , max_length=model.config.max_length - num_paddings ) lowerCamelCase_ =tokenizer.batch_decode(_SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =tokenizer.decode(output_non_padded[0] , skip_special_tokens=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =tokenizer.decode(output_padded[0] , skip_special_tokens=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =[ """Hello, my dog is a little bit of a dork.\nI'm a little bit""", """Today, I was in the middle of a conversation with a friend about the""", ] self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , [non_padded_sentence, padded_sentence] ) def _snake_case ( self )-> Dict: lowerCamelCase_ ="""facebook/opt-350m""" lowerCamelCase_ =[ """Today is a beautiful day and I want to""", """In the city of San Francisco, the city""", """Paris is the capital of France and the capital""", """Computers and mobile phones have taken over the""", ] lowerCamelCase_ =[] lowerCamelCase_ =GPTaTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =TFOPTForCausalLM.from_pretrained(_SCREAMING_SNAKE_CASE ) for prompt in self.prompts: lowerCamelCase_ =tokenizer(_SCREAMING_SNAKE_CASE , return_tensors="""tf""" ).input_ids lowerCamelCase_ =model.generate(_SCREAMING_SNAKE_CASE , max_length=10 ) lowerCamelCase_ =tokenizer.batch_decode(_SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE ) predicted_outputs += generated_string self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
49
from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class _SCREAMING_SNAKE_CASE ( lowerCAmelCase__): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , )-> Optional[int]: super().__init__( _SCREAMING_SNAKE_CASE , split=_SCREAMING_SNAKE_CASE , features=_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE , keep_in_memory=_SCREAMING_SNAKE_CASE , streaming=_SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) lowerCamelCase_ =path_or_paths if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else {self.split: path_or_paths} lowerCamelCase_ =Text( cache_dir=_SCREAMING_SNAKE_CASE , data_files=_SCREAMING_SNAKE_CASE , features=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) def _snake_case ( self )-> List[str]: # Build iterable dataset if self.streaming: lowerCamelCase_ =self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: lowerCamelCase_ =None lowerCamelCase_ =None lowerCamelCase_ =None lowerCamelCase_ =None self.builder.download_and_prepare( download_config=_SCREAMING_SNAKE_CASE , download_mode=_SCREAMING_SNAKE_CASE , verification_mode=_SCREAMING_SNAKE_CASE , base_path=_SCREAMING_SNAKE_CASE , num_proc=self.num_proc , ) lowerCamelCase_ =self.builder.as_dataset( split=self.split , verification_mode=_SCREAMING_SNAKE_CASE , in_memory=self.keep_in_memory ) return dataset
49
1
'''simple docstring''' __lowerCAmelCase : Dict ={ 0: "0", 1: "1", 2: "2", 3: "3", 4: "4", 5: "5", 6: "6", 7: "7", 8: "8", 9: "9", 10: "a", 11: "b", 12: "c", 13: "d", 14: "e", 15: "f", } def UpperCamelCase ( _lowerCamelCase : float ): assert type(_lowerCamelCase ) in (int, float) and decimal == int(_lowerCamelCase ) A__ = int(_lowerCamelCase ) A__ = "" A__ = False if decimal < 0: A__ = True decimal *= -1 while decimal > 0: A__, A__ = divmod(_lowerCamelCase , 16 ) A__ = values[remainder] + hexadecimal A__ = "0x" + hexadecimal if negative: A__ = "-" + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
237
'''simple docstring''' import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class UpperCAmelCase ( UpperCamelCase__ ): def __get__( self :Optional[int] , lowercase_ :Tuple , lowercase_ :Tuple=None )-> Optional[Any]: # See docs.python.org/3/howto/descriptor.html#properties if obj is None: return self if self.fget is None: raise AttributeError("unreadable attribute" ) A__ = "__cached_" + self.fget.__name__ A__ = getattr(lowercase_ , lowercase_ , lowercase_ ) if cached is None: A__ = self.fget(lowercase_ ) setattr(lowercase_ , lowercase_ , lowercase_ ) return cached def UpperCamelCase ( _lowerCamelCase : Dict ): A__ = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(F"invalid truth value {val!r}" ) def UpperCamelCase ( _lowerCamelCase : Any ): if is_torch_fx_proxy(_lowerCamelCase ): return True if is_torch_available(): import torch if isinstance(_lowerCamelCase , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(_lowerCamelCase , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(_lowerCamelCase , (jnp.ndarray, Tracer) ): return True return isinstance(_lowerCamelCase , np.ndarray ) def UpperCamelCase ( _lowerCamelCase : str ): return isinstance(_lowerCamelCase , np.ndarray ) def UpperCamelCase ( _lowerCamelCase : Union[str, Any] ): return _is_numpy(_lowerCamelCase ) def UpperCamelCase ( _lowerCamelCase : Dict ): import torch return isinstance(_lowerCamelCase , torch.Tensor ) def UpperCamelCase ( _lowerCamelCase : Union[str, Any] ): return False if not is_torch_available() else _is_torch(_lowerCamelCase ) def UpperCamelCase ( _lowerCamelCase : Any ): import torch return isinstance(_lowerCamelCase , torch.device ) def UpperCamelCase ( _lowerCamelCase : int ): return False if not is_torch_available() else _is_torch_device(_lowerCamelCase ) def UpperCamelCase ( _lowerCamelCase : Optional[Any] ): import torch if isinstance(_lowerCamelCase , _lowerCamelCase ): if hasattr(_lowerCamelCase , _lowerCamelCase ): A__ = getattr(_lowerCamelCase , _lowerCamelCase ) else: return False return isinstance(_lowerCamelCase , torch.dtype ) def UpperCamelCase ( _lowerCamelCase : Any ): return False if not is_torch_available() else _is_torch_dtype(_lowerCamelCase ) def UpperCamelCase ( _lowerCamelCase : List[Any] ): import tensorflow as tf return isinstance(_lowerCamelCase , tf.Tensor ) def UpperCamelCase ( _lowerCamelCase : List[str] ): return False if not is_tf_available() else _is_tensorflow(_lowerCamelCase ) def UpperCamelCase ( _lowerCamelCase : Union[str, Any] ): import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(_lowerCamelCase , "is_symbolic_tensor" ): return tf.is_symbolic_tensor(_lowerCamelCase ) return type(_lowerCamelCase ) == tf.Tensor def UpperCamelCase ( _lowerCamelCase : str ): return False if not is_tf_available() else _is_tf_symbolic_tensor(_lowerCamelCase ) def UpperCamelCase ( _lowerCamelCase : str ): import jax.numpy as jnp # noqa: F811 return isinstance(_lowerCamelCase , jnp.ndarray ) def UpperCamelCase ( _lowerCamelCase : Tuple ): return False if not is_flax_available() else _is_jax(_lowerCamelCase ) def UpperCamelCase ( _lowerCamelCase : Optional[int] ): if isinstance(_lowerCamelCase , (dict, UserDict) ): return {k: to_py_obj(_lowerCamelCase ) for k, v in obj.items()} elif isinstance(_lowerCamelCase , (list, tuple) ): return [to_py_obj(_lowerCamelCase ) for o in obj] elif is_tf_tensor(_lowerCamelCase ): return obj.numpy().tolist() elif is_torch_tensor(_lowerCamelCase ): return obj.detach().cpu().tolist() elif is_jax_tensor(_lowerCamelCase ): return np.asarray(_lowerCamelCase ).tolist() elif isinstance(_lowerCamelCase , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def UpperCamelCase ( _lowerCamelCase : int ): if isinstance(_lowerCamelCase , (dict, UserDict) ): return {k: to_numpy(_lowerCamelCase ) for k, v in obj.items()} elif isinstance(_lowerCamelCase , (list, tuple) ): return np.array(_lowerCamelCase ) elif is_tf_tensor(_lowerCamelCase ): return obj.numpy() elif is_torch_tensor(_lowerCamelCase ): return obj.detach().cpu().numpy() elif is_jax_tensor(_lowerCamelCase ): return np.asarray(_lowerCamelCase ) else: return obj class UpperCAmelCase ( UpperCamelCase__ ): def UpperCAmelCase_ ( self :int )-> Any: A__ = fields(self ) # Safety and consistency checks if not len(lowercase_ ): raise ValueError(F"{self.__class__.__name__} has no fields." ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(F"{self.__class__.__name__} should not have more than one required field." ) A__ = getattr(self , class_fields[0].name ) A__ = all(getattr(self , field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(lowercase_ ): if isinstance(lowercase_ , lowercase_ ): A__ = first_field.items() A__ = True else: try: A__ = iter(lowercase_ ) A__ = True except TypeError: A__ = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(lowercase_ ): if ( not isinstance(lowercase_ , (list, tuple) ) or not len(lowercase_ ) == 2 or not isinstance(element[0] , lowercase_ ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute A__ = first_field else: # If we have a mixed iterator, raise an error raise ValueError( F"Cannot set key/value for {element}. It needs to be a tuple (key, value)." ) break setattr(self , element[0] , element[1] ) if element[1] is not None: A__ = element[1] elif first_field is not None: A__ = first_field else: for field in class_fields: A__ = getattr(self , field.name ) if v is not None: A__ = v def __delitem__( self :List[Any] , *lowercase_ :List[Any] , **lowercase_ :Optional[Any] )-> Union[str, Any]: raise Exception(F"You cannot use ``__delitem__`` on a {self.__class__.__name__} instance." ) def UpperCAmelCase_ ( self :Tuple , *lowercase_ :int , **lowercase_ :int )-> Union[str, Any]: raise Exception(F"You cannot use ``setdefault`` on a {self.__class__.__name__} instance." ) def UpperCAmelCase_ ( self :List[Any] , *lowercase_ :Optional[int] , **lowercase_ :Tuple )-> List[Any]: raise Exception(F"You cannot use ``pop`` on a {self.__class__.__name__} instance." ) def UpperCAmelCase_ ( self :Dict , *lowercase_ :Optional[int] , **lowercase_ :Any )-> Any: raise Exception(F"You cannot use ``update`` on a {self.__class__.__name__} instance." ) def __getitem__( self :Optional[Any] , lowercase_ :Optional[Any] )-> Any: if isinstance(lowercase_ , lowercase_ ): A__ = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self :Optional[Any] , lowercase_ :Union[str, Any] , lowercase_ :Union[str, Any] )-> Tuple: if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(lowercase_ , lowercase_ ) super().__setattr__(lowercase_ , lowercase_ ) def __setitem__( self :Tuple , lowercase_ :Optional[int] , lowercase_ :Tuple )-> List[Any]: # Will raise a KeyException if needed super().__setitem__(lowercase_ , lowercase_ ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self :List[Any] )-> Tuple[Any]: return tuple(self[k] for k in self.keys() ) class UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ): @classmethod def UpperCAmelCase_ ( cls :Any , lowercase_ :int )-> List[str]: raise ValueError( F"{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}" ) class UpperCAmelCase ( UpperCamelCase__ ): __lowercase = """longest""" __lowercase = """max_length""" __lowercase = """do_not_pad""" class UpperCAmelCase ( UpperCamelCase__ ): __lowercase = """pt""" __lowercase = """tf""" __lowercase = """np""" __lowercase = """jax""" class UpperCAmelCase : def __init__( self :List[str] , lowercase_ :List[ContextManager] )-> str: A__ = context_managers A__ = ExitStack() def __enter__( self :Dict )-> Any: for context_manager in self.context_managers: self.stack.enter_context(lowercase_ ) def __exit__( self :List[Any] , *lowercase_ :Optional[Any] , **lowercase_ :str )-> Union[str, Any]: self.stack.__exit__(*lowercase_ , **lowercase_ ) def UpperCamelCase ( _lowerCamelCase : Dict ): A__ = infer_framework(_lowerCamelCase ) if framework == "tf": A__ = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": A__ = inspect.signature(model_class.forward ) # PyTorch models else: A__ = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def UpperCamelCase ( _lowerCamelCase : List[str] ): A__ = model_class.__name__ A__ = infer_framework(_lowerCamelCase ) if framework == "tf": A__ = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": A__ = inspect.signature(model_class.forward ) # PyTorch models else: A__ = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def UpperCamelCase ( _lowerCamelCase : MutableMapping , _lowerCamelCase : str = "" , _lowerCamelCase : str = "." ): def _flatten_dict(_lowerCamelCase : List[Any] , _lowerCamelCase : int="" , _lowerCamelCase : Any="." ): for k, v in d.items(): A__ = str(_lowerCamelCase ) + delimiter + str(_lowerCamelCase ) if parent_key else k if v and isinstance(_lowerCamelCase , _lowerCamelCase ): yield from flatten_dict(_lowerCamelCase , _lowerCamelCase , delimiter=_lowerCamelCase ).items() else: yield key, v return dict(_flatten_dict(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ) @contextmanager def UpperCamelCase ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : bool = False ): if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def UpperCamelCase ( _lowerCamelCase : int , _lowerCamelCase : Optional[Any]=None ): if is_numpy_array(_lowerCamelCase ): return np.transpose(_lowerCamelCase , axes=_lowerCamelCase ) elif is_torch_tensor(_lowerCamelCase ): return array.T if axes is None else array.permute(*_lowerCamelCase ) elif is_tf_tensor(_lowerCamelCase ): import tensorflow as tf return tf.transpose(_lowerCamelCase , perm=_lowerCamelCase ) elif is_jax_tensor(_lowerCamelCase ): return jnp.transpose(_lowerCamelCase , axes=_lowerCamelCase ) else: raise ValueError(F"Type not supported for transpose: {type(_lowerCamelCase )}." ) def UpperCamelCase ( _lowerCamelCase : Dict , _lowerCamelCase : Any ): if is_numpy_array(_lowerCamelCase ): return np.reshape(_lowerCamelCase , _lowerCamelCase ) elif is_torch_tensor(_lowerCamelCase ): return array.reshape(*_lowerCamelCase ) elif is_tf_tensor(_lowerCamelCase ): import tensorflow as tf return tf.reshape(_lowerCamelCase , _lowerCamelCase ) elif is_jax_tensor(_lowerCamelCase ): return jnp.reshape(_lowerCamelCase , _lowerCamelCase ) else: raise ValueError(F"Type not supported for reshape: {type(_lowerCamelCase )}." ) def UpperCamelCase ( _lowerCamelCase : List[str] , _lowerCamelCase : Optional[Any]=None ): if is_numpy_array(_lowerCamelCase ): return np.squeeze(_lowerCamelCase , axis=_lowerCamelCase ) elif is_torch_tensor(_lowerCamelCase ): return array.squeeze() if axis is None else array.squeeze(dim=_lowerCamelCase ) elif is_tf_tensor(_lowerCamelCase ): import tensorflow as tf return tf.squeeze(_lowerCamelCase , axis=_lowerCamelCase ) elif is_jax_tensor(_lowerCamelCase ): return jnp.squeeze(_lowerCamelCase , axis=_lowerCamelCase ) else: raise ValueError(F"Type not supported for squeeze: {type(_lowerCamelCase )}." ) def UpperCamelCase ( _lowerCamelCase : List[str] , _lowerCamelCase : Dict ): if is_numpy_array(_lowerCamelCase ): return np.expand_dims(_lowerCamelCase , _lowerCamelCase ) elif is_torch_tensor(_lowerCamelCase ): return array.unsqueeze(dim=_lowerCamelCase ) elif is_tf_tensor(_lowerCamelCase ): import tensorflow as tf return tf.expand_dims(_lowerCamelCase , axis=_lowerCamelCase ) elif is_jax_tensor(_lowerCamelCase ): return jnp.expand_dims(_lowerCamelCase , axis=_lowerCamelCase ) else: raise ValueError(F"Type not supported for expand_dims: {type(_lowerCamelCase )}." ) def UpperCamelCase ( _lowerCamelCase : List[str] ): if is_numpy_array(_lowerCamelCase ): return np.size(_lowerCamelCase ) elif is_torch_tensor(_lowerCamelCase ): return array.numel() elif is_tf_tensor(_lowerCamelCase ): import tensorflow as tf return tf.size(_lowerCamelCase ) elif is_jax_tensor(_lowerCamelCase ): return array.size else: raise ValueError(F"Type not supported for expand_dims: {type(_lowerCamelCase )}." ) def UpperCamelCase ( _lowerCamelCase : List[str] , _lowerCamelCase : Optional[Any] ): for key, value in auto_map.items(): if isinstance(_lowerCamelCase , (tuple, list) ): A__ = [F"{repo_id}--{v}" if (v is not None and "--" not in v) else v for v in value] elif value is not None and "--" not in value: A__ = F"{repo_id}--{value}" return auto_map def UpperCamelCase ( _lowerCamelCase : Dict ): for base_class in inspect.getmro(_lowerCamelCase ): A__ = base_class.__module__ A__ = base_class.__name__ if module.startswith("tensorflow" ) or module.startswith("keras" ) or name == "TFPreTrainedModel": return "tf" elif module.startswith("torch" ) or name == "PreTrainedModel": return "pt" elif module.startswith("flax" ) or module.startswith("jax" ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(F"Could not infer framework from class {model_class}." )
237
1
def lowercase_ ( lowerCAmelCase__ : int ): """simple docstring""" if a < 0: raise ValueError("""Input value must be a positive integer""" ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError("""Input value must be a 'int' type""" ) return bin(_lowerCamelCase ).count("""1""" ) if __name__ == "__main__": import doctest doctest.testmod()
369
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = {'''vocab_file''': '''vocab.txt'''} _UpperCamelCase = { '''vocab_file''': { '''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt''', '''YituTech/conv-bert-medium-small''': ( '''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt''' ), '''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt''', } } _UpperCamelCase = { '''YituTech/conv-bert-base''': 512, '''YituTech/conv-bert-medium-small''': 512, '''YituTech/conv-bert-small''': 512, } _UpperCamelCase = { '''YituTech/conv-bert-base''': {'''do_lower_case''': True}, '''YituTech/conv-bert-medium-small''': {'''do_lower_case''': True}, '''YituTech/conv-bert-small''': {'''do_lower_case''': True}, } class _A ( __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Any = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : Any = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_INIT_CONFIGURATION _SCREAMING_SNAKE_CASE : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : List[Any] = ConvBertTokenizer def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase="[UNK]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="[PAD]" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> Optional[Any]: '''simple docstring''' super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , ) __UpperCAmelCase : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , __UpperCAmelCase ) != do_lower_case or normalizer_state.get("""strip_accents""" , __UpperCAmelCase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , __UpperCAmelCase ) != tokenize_chinese_chars ): __UpperCAmelCase : Dict = getattr(__UpperCAmelCase , normalizer_state.pop("""type""" ) ) __UpperCAmelCase : Union[str, Any] = do_lower_case __UpperCAmelCase : str = strip_accents __UpperCAmelCase : Union[str, Any] = tokenize_chinese_chars __UpperCAmelCase : List[Any] = normalizer_class(**__UpperCAmelCase ) __UpperCAmelCase : List[Any] = do_lower_case def __A ( self , __UpperCAmelCase , __UpperCAmelCase=None ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: '''simple docstring''' __UpperCAmelCase : Optional[int] = [self.sep_token_id] __UpperCAmelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase ) return tuple(__UpperCAmelCase )
16
0
'''simple docstring''' import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" def A ( self : Any ) -> str: UpperCAmelCase : int = '''ylacombe/bark-small''' UpperCAmelCase : int = tempfile.mkdtemp() UpperCAmelCase : Dict = '''en_speaker_1''' UpperCAmelCase : List[str] = '''This is a test string''' UpperCAmelCase : str = '''speaker_embeddings_path.json''' UpperCAmelCase : Optional[int] = '''speaker_embeddings''' def A ( self : Optional[int] , **__snake_case : Union[str, Any] ) -> int: return AutoTokenizer.from_pretrained(self.checkpoint , **__snake_case ) def A ( self : str ) -> int: shutil.rmtree(self.tmpdirname ) def A ( self : int ) -> Optional[int]: UpperCAmelCase : int = self.get_tokenizer() UpperCAmelCase : Tuple = BarkProcessor(tokenizer=__snake_case ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase : Any = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def A ( self : Union[str, Any] ) -> int: UpperCAmelCase : str = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) UpperCAmelCase : Union[str, Any] = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) UpperCAmelCase : List[Any] = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='''(BOS)''' , eos_token='''(EOS)''' , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def A ( self : Any ) -> str: UpperCAmelCase : int = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) UpperCAmelCase : str = 35 UpperCAmelCase : Tuple = 2 UpperCAmelCase : Optional[Any] = 8 UpperCAmelCase : int = { '''semantic_prompt''': np.ones(__snake_case ), '''coarse_prompt''': np.ones((nb_codebooks_coarse, seq_len) ), '''fine_prompt''': np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset UpperCAmelCase : Dict = processor(text=self.input_string , voice_preset=__snake_case ) UpperCAmelCase : List[Any] = inputs['''history_prompt'''] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(__snake_case , np.array([] ) ).tolist() ) # test loading voice preset from npz file UpperCAmelCase : Any = os.path.join(self.tmpdirname , '''file.npz''' ) np.savez(__snake_case , **__snake_case ) UpperCAmelCase : List[str] = processor(text=self.input_string , voice_preset=__snake_case ) UpperCAmelCase : List[Any] = inputs['''history_prompt'''] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(__snake_case , np.array([] ) ).tolist() ) # test loading voice preset from the hub UpperCAmelCase : Any = processor(text=self.input_string , voice_preset=self.voice_preset ) def A ( self : List[str] ) -> str: UpperCAmelCase : int = self.get_tokenizer() UpperCAmelCase : List[Any] = BarkProcessor(tokenizer=__snake_case ) UpperCAmelCase : List[str] = processor(text=self.input_string ) UpperCAmelCase : Union[str, Any] = tokenizer( self.input_string , padding='''max_length''' , max_length=256 , add_special_tokens=__snake_case , return_attention_mask=__snake_case , return_token_type_ids=__snake_case , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
23
"""simple docstring""" import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def lowercase_ ( _lowerCamelCase: str , _lowerCamelCase: str , _lowerCamelCase: str , _lowerCamelCase: PreTrainedTokenizer , _lowerCamelCase: int , _lowerCamelCase: Optional[int] = None , ) -> Tuple: '''simple docstring''' __lowerCamelCase : Optional[int] = {} if train_file is not None: __lowerCamelCase : List[Any] = [train_file] if eval_file is not None: __lowerCamelCase : List[Any] = [eval_file] if test_file is not None: __lowerCamelCase : Optional[int] = [test_file] __lowerCamelCase : Optional[int] = datasets.load_dataset("csv" , data_files=_lowerCamelCase ) __lowerCamelCase : Union[str, Any] = list(ds[list(files.keys() )[0]].features.keys() ) __lowerCamelCase : Optional[Any] = features_name.pop(_lowerCamelCase ) __lowerCamelCase : Dict = list(set(ds[list(files.keys() )[0]][label_name] ) ) __lowerCamelCase : List[str] = {label: i for i, label in enumerate(_lowerCamelCase )} __lowerCamelCase : Dict = tokenizer.model_input_names __lowerCamelCase : int = {} if len(_lowerCamelCase ) == 1: for k in files.keys(): __lowerCamelCase : Optional[int] = ds[k].map( lambda _lowerCamelCase : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=_lowerCamelCase , max_length=_lowerCamelCase , padding="max_length" ) , batched=_lowerCamelCase , ) elif len(_lowerCamelCase ) == 2: for k in files.keys(): __lowerCamelCase : Optional[Any] = ds[k].map( lambda _lowerCamelCase : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=_lowerCamelCase , max_length=_lowerCamelCase , padding="max_length" , ) , batched=_lowerCamelCase , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: __lowerCamelCase : Optional[Any] = {k: v for k, v in ex.items() if k in input_names} __lowerCamelCase : str = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: __lowerCamelCase : str = {k: v for k, v in ex.items() if k in input_names} __lowerCamelCase : Optional[int] = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: __lowerCamelCase : List[Any] = {k: v for k, v in ex.items() if k in input_names} __lowerCamelCase : Dict = labelaid[ex[label_name]] yield (d, label) __lowerCamelCase : Optional[Any] = ( tf.data.Dataset.from_generator( _lowerCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: __lowerCamelCase : int = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) __lowerCamelCase : Tuple = ( tf.data.Dataset.from_generator( _lowerCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: __lowerCamelCase : List[Any] = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) __lowerCamelCase : int = ( tf.data.Dataset.from_generator( _lowerCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: __lowerCamelCase : Optional[Any] = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid __A = logging.getLogger(__name__) @dataclass class _snake_case : snake_case__ = field(metadata={"help": "Which column contains the label"} ) snake_case__ = field(default=a__ , metadata={"help": "The path of the training file"} ) snake_case__ = field(default=a__ , metadata={"help": "The path of the development file"} ) snake_case__ = field(default=a__ , metadata={"help": "The path of the test file"} ) snake_case__ = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) snake_case__ = field( default=a__ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) @dataclass class _snake_case : snake_case__ = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) snake_case__ = field( default=a__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) snake_case__ = field( default=a__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) snake_case__ = field(default=a__ , metadata={"help": "Set this flag to use fast tokenization."} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. snake_case__ = field( default=a__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) def lowercase_ ( ) -> str: '''simple docstring''' __lowerCamelCase : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[Any] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.info( F"""n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, """ F"""16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCamelCase : Dict = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : str = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=_lowerCamelCase , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) __lowerCamelCase : Any = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(_lowerCamelCase ) , labelaid=_lowerCamelCase , idalabel={id: label for label, id in labelaid.items()} , finetuning_task="text-classification" , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): __lowerCamelCase : List[str] = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool(".bin" in model_args.model_name_or_path ) , config=_lowerCamelCase , cache_dir=model_args.cache_dir , ) def compute_metrics(_lowerCamelCase: EvalPrediction ) -> Dict: __lowerCamelCase : List[str] = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer __lowerCamelCase : Dict = TFTrainer( model=_lowerCamelCase , args=_lowerCamelCase , train_dataset=_lowerCamelCase , eval_dataset=_lowerCamelCase , compute_metrics=_lowerCamelCase , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __lowerCamelCase : int = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) __lowerCamelCase : Any = trainer.evaluate() __lowerCamelCase : List[str] = os.path.join(training_args.output_dir , "eval_results.txt" ) with open(_lowerCamelCase , "w" ) as writer: logger.info("***** Eval results *****" ) for key, value in result.items(): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) results.update(_lowerCamelCase ) return results if __name__ == "__main__": main()
135
0
def SCREAMING_SNAKE_CASE__ ( __a = 10_00 ): return sum(e for e in range(3 , __a ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(F'''{solution() = }''')
88
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class SCREAMING_SNAKE_CASE_ ( snake_case_ ): __magic_name__: Optional[Any] = ["image_processor", "tokenizer"] __magic_name__: Optional[Any] = "LayoutLMv3ImageProcessor" __magic_name__: str = ("LayoutLMv3Tokenizer", "LayoutLMv3TokenizerFast") def __init__( self : int , _A : List[str]=None , _A : Dict=None , **_A : int ) -> List[str]: """simple docstring""" snake_case_ : Any = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , _A , ) snake_case_ : Any = kwargs.pop('feature_extractor' ) snake_case_ : Optional[int] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(_A , _A ) def __call__( self : List[str] , _A : Optional[Any] , _A : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , _A : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , _A : Union[List[List[int]], List[List[List[int]]]] = None , _A : Optional[Union[List[int], List[List[int]]]] = None , _A : bool = True , _A : Union[bool, str, PaddingStrategy] = False , _A : Union[bool, str, TruncationStrategy] = None , _A : Optional[int] = None , _A : int = 0 , _A : Optional[int] = None , _A : Optional[bool] = None , _A : Optional[bool] = None , _A : bool = False , _A : bool = False , _A : bool = False , _A : bool = False , _A : bool = True , _A : Optional[Union[str, TensorType]] = None , **_A : str , ) -> BatchEncoding: """simple docstring""" if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( 'You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( 'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.' ) # first, apply the image processor snake_case_ : str = self.image_processor(images=_A , return_tensors=_A ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(_A , _A ): snake_case_ : List[Any] = [text] # add batch dimension (as the image processor always adds a batch dimension) snake_case_ : str = features['words'] snake_case_ : Optional[int] = self.tokenizer( text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=_A , add_special_tokens=_A , padding=_A , truncation=_A , max_length=_A , stride=_A , pad_to_multiple_of=_A , return_token_type_ids=_A , return_attention_mask=_A , return_overflowing_tokens=_A , return_special_tokens_mask=_A , return_offsets_mapping=_A , return_length=_A , verbose=_A , return_tensors=_A , **_A , ) # add pixel values snake_case_ : List[str] = features.pop('pixel_values' ) if return_overflowing_tokens is True: snake_case_ : Dict = self.get_overflowing_images(_A , encoded_inputs['overflow_to_sample_mapping'] ) snake_case_ : Optional[Any] = images return encoded_inputs def UpperCAmelCase_ ( self : Dict , _A : Tuple , _A : Dict ) -> Union[str, Any]: """simple docstring""" snake_case_ : List[str] = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(_A ) != len(_A ): raise ValueError( 'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got' F""" {len(_A )} and {len(_A )}""" ) return images_with_overflow def UpperCAmelCase_ ( self : Optional[Any] , *_A : Optional[Any] , **_A : List[Any] ) -> List[str]: """simple docstring""" return self.tokenizer.batch_decode(*_A , **_A ) def UpperCAmelCase_ ( self : Union[str, Any] , *_A : Dict , **_A : str ) -> Any: """simple docstring""" return self.tokenizer.decode(*_A , **_A ) @property def UpperCAmelCase_ ( self : Optional[int] ) -> int: """simple docstring""" return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def UpperCAmelCase_ ( self : Any ) -> Any: """simple docstring""" warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _A , ) return self.image_processor_class @property def UpperCAmelCase_ ( self : List[Any] ) -> int: """simple docstring""" warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _A , ) return self.image_processor
88
1
"""simple docstring""" def _a ( _SCREAMING_SNAKE_CASE ) -> float: if not nums: # Makes sure that the list is not empty raise ValueError("""List is empty""" ) snake_case_ = sum(__lowerCAmelCase ) / len(__lowerCAmelCase ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(__lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
347
"""simple docstring""" from typing import Dict, Optional import numpy as np import datasets UpperCAmelCase : Tuple = "\nIoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union\nbetween the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,\nthe mean IoU of the image is calculated by taking the IoU of each class and averaging them.\n" UpperCAmelCase : Optional[int] = "\nArgs:\n predictions (`List[ndarray]`):\n List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n references (`List[ndarray]`):\n List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n num_labels (`int`):\n Number of classes (categories).\n ignore_index (`int`):\n Index that will be ignored during evaluation.\n nan_to_num (`int`, *optional*):\n If specified, NaN values will be replaced by the number defined by the user.\n label_map (`dict`, *optional*):\n If specified, dictionary mapping old label indices to new label indices.\n reduce_labels (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,\n and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.\n\nReturns:\n `Dict[str, float | ndarray]` comprising various elements:\n - *mean_iou* (`float`):\n Mean Intersection-over-Union (IoU averaged over all categories).\n - *mean_accuracy* (`float`):\n Mean accuracy (averaged over all categories).\n - *overall_accuracy* (`float`):\n Overall accuracy on all images.\n - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):\n Per category accuracy.\n - *per_category_iou* (`ndarray` of shape `(num_labels,)`):\n Per category IoU.\n\nExamples:\n\n >>> import numpy as np\n\n >>> mean_iou = datasets.load_metric(\"mean_iou\")\n\n >>> # suppose one has 3 different segmentation maps predicted\n >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])\n >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])\n\n >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])\n >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])\n\n >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])\n >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])\n\n >>> predicted = [predicted_1, predicted_2, predicted_3]\n >>> ground_truth = [actual_1, actual_2, actual_3]\n\n >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}\n" UpperCAmelCase : List[str] = "\\n@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,\nauthor = {{MMSegmentation Contributors}},\nlicense = {Apache-2.0},\nmonth = {7},\ntitle = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},\nurl = {https://github.com/open-mmlab/mmsegmentation},\nyear = {2020}\n}" def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = False , ) -> Dict: '''simple docstring''' if label_map is not None: for old_id, new_id in label_map.items(): lowercase_ = new_id # turn into Numpy arrays lowercase_ = np.array(__lowerCAmelCase ) lowercase_ = np.array(__lowerCAmelCase ) if reduce_labels: lowercase_ = 2_55 lowercase_ = label - 1 lowercase_ = 2_55 lowercase_ = label != ignore_index lowercase_ = np.not_equal(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = pred_label[mask] lowercase_ = np.array(__lowerCAmelCase )[mask] lowercase_ = pred_label[pred_label == label] lowercase_ = np.histogram(__lowerCAmelCase , bins=__lowerCAmelCase , range=(0, num_labels - 1) )[0] lowercase_ = np.histogram(__lowerCAmelCase , bins=__lowerCAmelCase , range=(0, num_labels - 1) )[0] lowercase_ = np.histogram(__lowerCAmelCase , bins=__lowerCAmelCase , range=(0, num_labels - 1) )[0] lowercase_ = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = False , ) -> Optional[Any]: '''simple docstring''' lowercase_ = np.zeros((num_labels,) , dtype=np.floataa ) lowercase_ = np.zeros((num_labels,) , dtype=np.floataa ) lowercase_ = np.zeros((num_labels,) , dtype=np.floataa ) lowercase_ = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(__lowerCAmelCase , __lowerCAmelCase ): lowercase_ , lowercase_ , lowercase_ , lowercase_ = intersect_and_union( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = False , ) -> Any: '''simple docstring''' lowercase_ , lowercase_ , lowercase_ , lowercase_ = total_intersect_and_union( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # compute metrics lowercase_ = {} lowercase_ = total_area_intersect.sum() / total_area_label.sum() lowercase_ = total_area_intersect / total_area_union lowercase_ = total_area_intersect / total_area_label lowercase_ = np.nanmean(__lowerCAmelCase ) lowercase_ = np.nanmean(__lowerCAmelCase ) lowercase_ = all_acc lowercase_ = iou lowercase_ = acc if nan_to_num is not None: lowercase_ = {metric: np.nan_to_num(__lowerCAmelCase , nan=__lowerCAmelCase ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): def _UpperCAmelCase ( self : Union[str, Any]): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { """predictions""": datasets.Sequence(datasets.Sequence(datasets.Value("""uint16"""))), """references""": datasets.Sequence(datasets.Sequence(datasets.Value("""uint16"""))), }) , reference_urls=[ """https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py""" ] , ) def _UpperCAmelCase ( self : Tuple , lowerCAmelCase_ : Any , lowerCAmelCase_ : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : bool , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[Dict[int, int]] = None , lowerCAmelCase_ : bool = False , ): """simple docstring""" lowercase_ = mean_iou( results=lowerCAmelCase_ , gt_seg_maps=lowerCAmelCase_ , num_labels=lowerCAmelCase_ , ignore_index=lowerCAmelCase_ , nan_to_num=lowerCAmelCase_ , label_map=lowerCAmelCase_ , reduce_labels=lowerCAmelCase_ , ) return iou_result
136
0
"""simple docstring""" import unittest from knapsack import knapsack as k class UpperCamelCase_ (unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: UpperCAmelCase_ : Optional[Any] = 0 UpperCAmelCase_ : Union[str, Any] = [0] UpperCAmelCase_ : Optional[Any] = [0] UpperCAmelCase_ : Optional[Any] = len(lowerCAmelCase_ ) self.assertEqual(k.knapsack(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) , 0 ) UpperCAmelCase_ : List[Any] = [60] UpperCAmelCase_ : Optional[int] = [10] UpperCAmelCase_ : str = len(lowerCAmelCase_ ) self.assertEqual(k.knapsack(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) , 0 ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: UpperCAmelCase_ : Dict = 3 UpperCAmelCase_ : Any = [1, 2, 3] UpperCAmelCase_ : int = [3, 2, 1] UpperCAmelCase_ : Dict = len(lowerCAmelCase_ ) self.assertEqual(k.knapsack(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) , 5 ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: UpperCAmelCase_ : Union[str, Any] = 50 UpperCAmelCase_ : Union[str, Any] = [60, 100, 120] UpperCAmelCase_ : int = [10, 20, 30] UpperCAmelCase_ : Optional[Any] = len(lowerCAmelCase_ ) self.assertEqual(k.knapsack(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) , 220 ) if __name__ == "__main__": unittest.main()
253
"""simple docstring""" def snake_case ( A__ ): UpperCAmelCase_ : Optional[Any] = 0 for ch in input_str: UpperCAmelCase_ : Tuple = ord(A__ ) UpperCAmelCase_ : Dict = pow(2 ,A__ ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
253
1
'''simple docstring''' import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## a__ : Union[str, Any] = 1_6 a__ : Dict = 3_2 def _lowercase ( __A ,__A ,__A ,__A ,__A = 16 ): '''simple docstring''' __UpperCamelCase = AutoTokenizer.from_pretrained("""bert-base-cased""" ) __UpperCamelCase = DatasetDict( { """train""": dataset["""train"""].select(__A ), """validation""": dataset["""train"""].select(__A ), """test""": dataset["""validation"""], } ) def tokenize_function(__A ): # max_length=None => use the model max length (it's actually the default) __UpperCamelCase = tokenizer(examples["""sentence1"""] ,examples["""sentence2"""] ,truncation=__A ,max_length=__A ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __UpperCamelCase = datasets.map( __A ,batched=__A ,remove_columns=["""idx""", """sentence1""", """sentence2"""] ,) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __UpperCamelCase = tokenized_datasets.rename_column("""label""" ,"""labels""" ) def collate_fn(__A ): # On TPU it's best to pad everything to the same length or training will be very slow. __UpperCamelCase = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __UpperCamelCase = 16 elif accelerator.mixed_precision != "no": __UpperCamelCase = 8 else: __UpperCamelCase = None return tokenizer.pad( __A ,padding="""longest""" ,max_length=__A ,pad_to_multiple_of=__A ,return_tensors="""pt""" ,) # Instantiate dataloaders. __UpperCamelCase = DataLoader( tokenized_datasets["""train"""] ,shuffle=__A ,collate_fn=__A ,batch_size=__A ) __UpperCamelCase = DataLoader( tokenized_datasets["""validation"""] ,shuffle=__A ,collate_fn=__A ,batch_size=__A ) __UpperCamelCase = DataLoader( tokenized_datasets["""test"""] ,shuffle=__A ,collate_fn=__A ,batch_size=__A ) return train_dataloader, eval_dataloader, test_dataloader def _lowercase ( __A ,__A ): '''simple docstring''' __UpperCamelCase = [] # Download the dataset __UpperCamelCase = load_dataset("""glue""" ,"""mrpc""" ) # Create our splits __UpperCamelCase = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator __UpperCamelCase = Accelerator(cpu=args.cpu ,mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __UpperCamelCase = config["""lr"""] __UpperCamelCase = int(config["""num_epochs"""] ) __UpperCamelCase = int(config["""seed"""] ) __UpperCamelCase = int(config["""batch_size"""] ) __UpperCamelCase = evaluate.load("""glue""" ,"""mrpc""" ) # If the batch size is too big we use gradient accumulation __UpperCamelCase = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: __UpperCamelCase = batch_size // MAX_GPU_BATCH_SIZE __UpperCamelCase = MAX_GPU_BATCH_SIZE set_seed(__A ) # New Code # # Create our folds: __UpperCamelCase = kfold.split(np.zeros(datasets["""train"""].num_rows ) ,datasets["""train"""]["""label"""] ) __UpperCamelCase = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(__A ): __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = get_fold_dataloaders( __A ,__A ,__A ,__A ,) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __UpperCamelCase = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" ,return_dict=__A ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __UpperCamelCase = model.to(accelerator.device ) # Instantiate optimizer __UpperCamelCase = AdamW(params=model.parameters() ,lr=__A ) # Instantiate scheduler __UpperCamelCase = get_linear_schedule_with_warmup( optimizer=__A ,num_warmup_steps=100 ,num_training_steps=(len(__A ) * num_epochs) // gradient_accumulation_steps ,) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( __A ,__A ,__A ,__A ,__A ) # Now we train the model for epoch in range(__A ): model.train() for step, batch in enumerate(__A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __UpperCamelCase = model(**__A ) __UpperCamelCase = outputs.loss __UpperCamelCase = loss / gradient_accumulation_steps accelerator.backward(__A ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __UpperCamelCase = model(**__A ) __UpperCamelCase = outputs.logits.argmax(dim=-1 ) __UpperCamelCase , __UpperCamelCase = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=__A ,references=__A ,) __UpperCamelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:" ,__A ) # New Code # # We also run predictions on the test set at the very end __UpperCamelCase = [] for step, batch in enumerate(__A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __UpperCamelCase = model(**__A ) __UpperCamelCase = outputs.logits __UpperCamelCase , __UpperCamelCase = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(__A ,dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: __UpperCamelCase = torch.cat(__A ,dim=0 ) __UpperCamelCase = torch.stack(__A ,dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) __UpperCamelCase = metric.compute(predictions=__A ,references=__A ) accelerator.print("""Average test metrics from all folds:""" ,__A ) def _lowercase ( ): '''simple docstring''' __UpperCamelCase = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" ,type=__A ,default=__A ,choices=["""no""", """fp16""", """bf16""", """fp8"""] ,help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" ,) parser.add_argument("""--cpu""" ,action="""store_true""" ,help="""If passed, will train on the CPU.""" ) # New Code # parser.add_argument("""--num_folds""" ,type=__A ,default=3 ,help="""The number of splits to perform across the dataset""" ) __UpperCamelCase = parser.parse_args() __UpperCamelCase = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(__A ,__A ) if __name__ == "__main__": main()
349
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging a__ : Optional[Any] = logging.get_logger(__name__) a__ : Dict = { 'EleutherAI/gpt-j-6B': 'https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json', # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = '''gptj''' __SCREAMING_SNAKE_CASE = { '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , lowercase=5_0_4_0_0 , lowercase=2_0_4_8 , lowercase=4_0_9_6 , lowercase=2_8 , lowercase=1_6 , lowercase=6_4 , lowercase=None , lowercase="gelu_new" , lowercase=0.0 , lowercase=0.0 , lowercase=0.0 , lowercase=1E-5 , lowercase=0.02 , lowercase=True , lowercase=5_0_2_5_6 , lowercase=5_0_2_5_6 , lowercase=False , **lowercase , ) -> Tuple: __UpperCamelCase = vocab_size __UpperCamelCase = n_positions __UpperCamelCase = n_embd __UpperCamelCase = n_layer __UpperCamelCase = n_head __UpperCamelCase = n_inner __UpperCamelCase = rotary_dim __UpperCamelCase = activation_function __UpperCamelCase = resid_pdrop __UpperCamelCase = embd_pdrop __UpperCamelCase = attn_pdrop __UpperCamelCase = layer_norm_epsilon __UpperCamelCase = initializer_range __UpperCamelCase = use_cache __UpperCamelCase = bos_token_id __UpperCamelCase = eos_token_id super().__init__( bos_token_id=lowercase , eos_token_id=lowercase , tie_word_embeddings=lowercase , **lowercase ) class UpperCAmelCase__ ( UpperCAmelCase_): def __init__( self , lowercase , lowercase = "default" , lowercase = None , lowercase = False , ) -> List[str]: super().__init__(lowercase , task=lowercase , patching_specs=lowercase , use_past=lowercase ) if not getattr(self._config , """pad_token_id""" , lowercase ): # TODO: how to do that better? __UpperCamelCase = 0 @property def __lowerCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: __UpperCamelCase = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(lowercase , direction="""inputs""" ) __UpperCamelCase = {0: """batch""", 1: """past_sequence + sequence"""} else: __UpperCamelCase = {0: """batch""", 1: """sequence"""} return common_inputs @property def __lowerCamelCase ( self ) -> int: return self._config.n_layer @property def __lowerCamelCase ( self ) -> int: return self._config.n_head def __lowerCamelCase ( self , lowercase , lowercase = -1 , lowercase = -1 , lowercase = False , lowercase = None , ) -> Mapping[str, Any]: __UpperCamelCase = super(lowercase , self ).generate_dummy_inputs( lowercase , batch_size=lowercase , seq_length=lowercase , is_pair=lowercase , framework=lowercase ) # We need to order the input in the way they appears in the forward() __UpperCamelCase = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __UpperCamelCase , __UpperCamelCase = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values __UpperCamelCase = seqlen + 2 __UpperCamelCase = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __UpperCamelCase = [ (torch.zeros(lowercase ), torch.zeros(lowercase )) for _ in range(self.num_layers ) ] __UpperCamelCase = common_inputs["""attention_mask"""] if self.use_past: __UpperCamelCase = ordered_inputs["""attention_mask"""].dtype __UpperCamelCase = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(lowercase , lowercase , dtype=lowercase )] , dim=1 ) return ordered_inputs @property def __lowerCamelCase ( self ) -> int: return 1_3
349
1
"""simple docstring""" def lowercase ( _snake_case : Optional[Any] ) ->str: """simple docstring""" __snake_case : Optional[Any] = 1 __snake_case : Dict = 2 while i * i <= n: __snake_case : Any = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def lowercase ( ) ->int: """simple docstring""" __snake_case : Dict = 1 __snake_case : Optional[Any] = 1 while True: i += 1 t_num += i if count_divisors(_snake_case ) > 500: break return t_num if __name__ == "__main__": print(solution())
24
"""simple docstring""" from ..utils import DummyObject, requires_backends class _UpperCAmelCase ( metaclass=__snake_case ): '''simple docstring''' lowerCamelCase__ =['transformers', 'torch', 'note_seq'] def __init__(self , *a_ , **a_ ): '''simple docstring''' requires_backends(self , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def SCREAMING_SNAKE_CASE (cls , *a_ , **a_ ): '''simple docstring''' requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def SCREAMING_SNAKE_CASE (cls , *a_ , **a_ ): '''simple docstring''' requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] )
24
1
'''simple docstring''' import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class __A : def __init__(self : str , __a : Union[str, Any] , __a : Optional[Any]=13 , __a : Optional[Any]=7 , __a : Dict=False , __a : List[str]=True , __a : List[str]=False , __a : Any=True , __a : Optional[Any]=33 , __a : Union[str, Any]=32 , __a : str=5 , __a : List[Any]=4 , __a : str=37 , __a : Dict="gelu" , __a : Optional[Any]=0.1 , __a : List[Any]=0.1 , __a : Tuple=512 , __a : int=16 , __a : str=2 , __a : Any=0.02 , __a : Union[str, Any]=3 , __a : List[Any]=4 , __a : Optional[Any]=None , ): UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = seq_length UpperCAmelCase_ = is_training UpperCAmelCase_ = use_input_mask UpperCAmelCase_ = use_token_type_ids UpperCAmelCase_ = use_labels UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = type_sequence_label_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = num_labels UpperCAmelCase_ = num_choices UpperCAmelCase_ = scope def _lowercase (self : List[str] ): UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ = None if self.use_input_mask: UpperCAmelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ = None UpperCAmelCase_ = None UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase_ = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase (self : Any ): return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def _lowercase (self : Union[str, Any] , __a : Tuple , __a : List[str] , __a : Optional[int] , __a : List[Any] , __a : List[str] , __a : int ): UpperCAmelCase_ = EsmModel(config=__a ) model.to(__a ) model.eval() UpperCAmelCase_ = model(__a , attention_mask=__a ) UpperCAmelCase_ = model(__a ) UpperCAmelCase_ = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _lowercase (self : Union[str, Any] , __a : int , __a : Optional[Any] , __a : List[str] , __a : Dict , __a : Tuple , __a : str ): UpperCAmelCase_ = EsmForMaskedLM(config=__a ) model.to(__a ) model.eval() UpperCAmelCase_ = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase (self : Optional[Any] , __a : Dict , __a : Dict , __a : List[str] , __a : List[str] , __a : Any , __a : int ): UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = EsmForTokenClassification(config=__a ) model.to(__a ) model.eval() UpperCAmelCase_ = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowercase (self : str ): UpperCAmelCase_ = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) = config_and_inputs UpperCAmelCase_ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class __A ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): a__ : Union[str, Any] = False a__ : Tuple = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) a__ : Any = () a__ : Union[str, Any] = ( { """feature-extraction""": EsmModel, """fill-mask""": EsmForMaskedLM, """text-classification""": EsmForSequenceClassification, """token-classification""": EsmForTokenClassification, """zero-shot""": EsmForSequenceClassification, } if is_torch_available() else {} ) a__ : List[Any] = True def _lowercase (self : Optional[int] ): UpperCAmelCase_ = EsmModelTester(self ) UpperCAmelCase_ = ConfigTester(self , config_class=__a , hidden_size=37 ) def _lowercase (self : List[Any] ): self.config_tester.run_common_tests() def _lowercase (self : Optional[Any] ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def _lowercase (self : Any ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase_ = type self.model_tester.create_and_check_model(*__a ) def _lowercase (self : str ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__a ) def _lowercase (self : Union[str, Any] ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a ) @slow def _lowercase (self : Dict ): for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = EsmModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def _lowercase (self : Tuple ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs()[0] UpperCAmelCase_ = EsmEmbeddings(config=__a ) UpperCAmelCase_ = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) UpperCAmelCase_ = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) UpperCAmelCase_ = create_position_ids_from_input_ids(__a , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(__a , __a ) ) ) def _lowercase (self : Optional[Any] ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs()[0] UpperCAmelCase_ = EsmEmbeddings(config=__a ) UpperCAmelCase_ = torch.empty(2 , 4 , 30 ) UpperCAmelCase_ = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] UpperCAmelCase_ = torch.as_tensor([expected_single_positions, expected_single_positions] ) UpperCAmelCase_ = embeddings.create_position_ids_from_inputs_embeds(__a ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(__a , __a ) ) ) @unittest.skip("Esm does not support embedding resizing" ) def _lowercase (self : List[str] ): pass @unittest.skip("Esm does not support embedding resizing" ) def _lowercase (self : str ): pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _lowercase (self : Tuple ): pass @require_torch class __A ( UpperCamelCase__ ): @slow def _lowercase (self : Any ): with torch.no_grad(): UpperCAmelCase_ = EsmForMaskedLM.from_pretrained("facebook/esm2_t6_8M_UR50D" ) model.eval() UpperCAmelCase_ = torch.tensor([[0, 1, 2, 3, 4, 5]] ) UpperCAmelCase_ = model(__a )[0] UpperCAmelCase_ = 33 UpperCAmelCase_ = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , __a ) UpperCAmelCase_ = torch.tensor( [[[8.92_15, -10.58_98, -6.46_71], [-6.39_67, -13.91_14, -1.12_12], [-7.78_12, -13.95_16, -3.74_06]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __a , atol=1E-4 ) ) @slow def _lowercase (self : List[Any] ): with torch.no_grad(): UpperCAmelCase_ = EsmModel.from_pretrained("facebook/esm2_t6_8M_UR50D" ) model.eval() UpperCAmelCase_ = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) UpperCAmelCase_ = model(__a )[0] # compare the actual values for a slice. UpperCAmelCase_ = torch.tensor( [[[0.14_44, 0.54_13, 0.32_48], [0.30_34, 0.00_53, 0.31_08], [0.32_28, -0.24_99, 0.34_15]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __a , atol=1E-4 ) )
1
import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __lowerCAmelCase = get_tests_dir('''fixtures/test_sentencepiece_no_bos.model''') @require_sentencepiece @require_tokenizers class __a ( __UpperCamelCase , unittest.TestCase ): __lowercase : int = PegasusTokenizer __lowercase : Any = PegasusTokenizerFast __lowercase : Optional[int] = True __lowercase : Tuple = True def SCREAMING_SNAKE_CASE__ ( self ) -> Any: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowercase__: List[str] = PegasusTokenizer(lowerCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' return PegasusTokenizer.from_pretrained('google/pegasus-large' ) def SCREAMING_SNAKE_CASE__ ( self , **lowerCAmelCase__ ) -> PegasusTokenizer: '''simple docstring''' return PegasusTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> List[str]: '''simple docstring''' return ("This is a test", "This is a test") def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' lowercase__: Optional[Any] = '</s>' lowercase__: Union[str, Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__ ) , lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: '''simple docstring''' lowercase__: Tuple = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<pad>' ) self.assertEqual(vocab_keys[1] , '</s>' ) self.assertEqual(vocab_keys[-1] , 'v' ) self.assertEqual(len(lowerCAmelCase__ ) , 1_103 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Any: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_103 ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: '''simple docstring''' lowercase__: Dict = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowercase__: Optional[int] = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowercase__: Optional[Any] = ( 'Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important' ' </s> <pad> <pad> <pad>' ) lowercase__: Dict = rust_tokenizer([raw_input_str] , return_tensors=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ).input_ids[0] lowercase__: Tuple = py_tokenizer([raw_input_str] , return_tensors=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ).input_ids[0] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' lowercase__: int = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word lowercase__: Any = '<mask_1> To ensure a <mask_2> flow of bank resolutions.' lowercase__: Union[str, Any] = [2, 413, 615, 114, 3, 1_971, 113, 1_679, 10_710, 107, 1] lowercase__: int = tokenizer([raw_input_str] , return_tensors=lowerCAmelCase__ ).input_ids[0] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: '''simple docstring''' lowercase__: Optional[int] = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 96_103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1_024 lowercase__: int = 'To ensure a smooth flow of bank resolutions.' lowercase__: Any = [413, 615, 114, 2_291, 1_971, 113, 1_679, 10_710, 107, 1] lowercase__: str = tokenizer([raw_input_str] , return_tensors=lowerCAmelCase__ ).input_ids[0] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: '''simple docstring''' lowercase__: Any = ['This is going to be way too long.' * 150, 'short example'] lowercase__: Tuple = ['not super long but more than 5 tokens', 'tiny'] lowercase__: Dict = self._large_tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors='pt' ) lowercase__: Any = self._large_tokenizer( text_target=lowerCAmelCase__ , max_length=5 , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors='pt' ) assert batch.input_ids.shape == (2, 1_024) assert batch.attention_mask.shape == (2, 1_024) assert targets["input_ids"].shape == (2, 5) assert len(lowerCAmelCase__ ) == 2 # input_ids, attention_mask. @slow def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' # fmt: off lowercase__: List[str] = {'input_ids': [[38_979, 143, 18_485, 606, 130, 26_669, 87_686, 121, 54_189, 1_129, 111, 26_669, 87_686, 121, 9_114, 14_787, 121, 13_249, 158, 592, 956, 121, 14_621, 31_576, 143, 62_613, 108, 9_688, 930, 43_430, 11_562, 62_613, 304, 108, 11_443, 897, 108, 9_314, 17_415, 63_399, 108, 11_443, 7_614, 18_316, 118, 4_284, 7_148, 12_430, 143, 1_400, 25_703, 158, 111, 4_284, 7_148, 11_772, 143, 21_297, 1_064, 158, 122, 204, 3_506, 1_754, 1_133, 14_787, 1_581, 115, 33_224, 4_482, 111, 1_355, 110, 29_173, 317, 50_833, 108, 20_147, 94_665, 111, 77_198, 107, 1], [110, 62_613, 117, 638, 112, 1_133, 121, 20_098, 1_355, 79_050, 13_872, 135, 1_596, 53_541, 1_352, 141, 13_039, 5_542, 124, 302, 518, 111, 268, 2_956, 115, 149, 4_427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1_235, 2_799, 18_289, 17_780, 204, 109, 9_474, 1_296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__ , model_name='google/bigbird-pegasus-large-arxiv' , revision='ba85d0851d708441f91440d509690f1ab6353415' , ) @require_sentencepiece @require_tokenizers class __a ( __UpperCamelCase , unittest.TestCase ): __lowercase : int = PegasusTokenizer __lowercase : Any = PegasusTokenizerFast __lowercase : Any = True __lowercase : Dict = True def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowercase__: Union[str, Any] = PegasusTokenizer(lowerCAmelCase__ , offset=0 , mask_token_sent=lowerCAmelCase__ , mask_token='[MASK]' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def SCREAMING_SNAKE_CASE__ ( self ) -> str: '''simple docstring''' return PegasusTokenizer.from_pretrained('google/bigbird-pegasus-large-arxiv' ) def SCREAMING_SNAKE_CASE__ ( self , **lowerCAmelCase__ ) -> PegasusTokenizer: '''simple docstring''' return PegasusTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> Optional[int]: '''simple docstring''' return ("This is a test", "This is a test") def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: '''simple docstring''' lowercase__: str = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowercase__: str = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowercase__: Tuple = ( 'Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>' ' <pad> <pad> <pad>' ) lowercase__: List[Any] = rust_tokenizer([raw_input_str] , return_tensors=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ).input_ids[0] lowercase__: Any = py_tokenizer([raw_input_str] , return_tensors=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ).input_ids[0] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) @require_torch def SCREAMING_SNAKE_CASE__ ( self ) -> int: '''simple docstring''' lowercase__: List[Any] = ['This is going to be way too long.' * 1_000, 'short example'] lowercase__: str = ['not super long but more than 5 tokens', 'tiny'] lowercase__: Tuple = self._large_tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors='pt' ) lowercase__: Dict = self._large_tokenizer( text_target=lowerCAmelCase__ , max_length=5 , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors='pt' ) assert batch.input_ids.shape == (2, 4_096) assert batch.attention_mask.shape == (2, 4_096) assert targets["input_ids"].shape == (2, 5) assert len(lowerCAmelCase__ ) == 2 # input_ids, attention_mask. def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' lowercase__: str = ( 'This is an example string that is used to test the original TF implementation against the HF' ' implementation' ) lowercase__: Optional[int] = self._large_tokenizer(lowerCAmelCase__ ).input_ids self.assertListEqual( lowerCAmelCase__ , [182, 117, 142, 587, 4_211, 120, 117, 263, 112, 804, 109, 856, 25_016, 3_137, 464, 109, 26_955, 3_137, 1] , )
196
0
import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(_a ) , "Tatoeba directory does not exist." ) class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @cached_property def lowerCamelCase ( self : str ): snake_case__ : Tuple = tempfile.mkdtemp() return TatoebaConverter(save_dir=snake_case_ ) @slow def lowerCamelCase ( self : Dict ): self.resolver.convert_models(["""heb-eng"""] ) @slow def lowerCamelCase ( self : Any ): snake_case__ : str = self.resolver.write_model_card("""opus-mt-he-en""" , dry_run=snake_case_ ) assert mmeta["long_pair"] == "heb-eng"
362
'''simple docstring''' import math import os import re import sys import unittest from pathlib import Path from typing import Tuple from unittest.mock import patch from parameterized import parameterized from transformers.testing_utils import ( CaptureStderr, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, get_torch_dist_unique_port, require_apex, require_bitsandbytes, require_fairscale, require_torch, require_torch_gpu, require_torch_multi_gpu, require_torch_non_multi_gpu, slow, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import set_seed __a = os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(F"{bindir}/../../examples/pytorch/translation"): from run_translation import main # noqa set_seed(42) __a = "sshleifer/student_marian_en_ro_6_1" __a = "sshleifer/tiny-mbart" @require_torch class UpperCAmelCase_ ( _a ): """simple docstring""" def lowerCamelCase ( self : Any , snake_case_ : List[str]=False , snake_case_ : Tuple=None , snake_case_ : Dict=True , snake_case_ : Any=True , snake_case_ : Tuple=True , snake_case_ : List[str]=True , ): snake_case__ : List[Any] = self.run_trainer( eval_steps=1 , max_len=12 , model_name=snake_case_ , num_train_epochs=1 , distributed=snake_case_ , extra_args_str=snake_case_ , predict_with_generate=snake_case_ , do_train=snake_case_ , do_eval=snake_case_ , do_predict=snake_case_ , ) snake_case__ : int = TrainerState.load_from_json(os.path.join(snake_case_ , """trainer_state.json""" ) ).log_history if not do_eval: return snake_case__ : Tuple = [log for log in logs if """eval_loss""" in log.keys()] snake_case__ : List[Any] = eval_metrics[0] if predict_with_generate: assert "eval_bleu" in first_step_stats snake_case__ : Dict = eval_metrics[-1] assert isinstance(last_step_stats["""eval_bleu"""] , snake_case_ ) assert not math.isnan(float(last_step_stats["""eval_loss"""] ) ), "eval_loss must not be `nan`" @require_torch_non_multi_gpu def lowerCamelCase ( self : List[Any] ): self.run_seqaseq_quick() @require_torch_multi_gpu def lowerCamelCase ( self : int ): self.run_seqaseq_quick(distributed=snake_case_ ) @require_torch_multi_gpu def lowerCamelCase ( self : Tuple ): self.run_seqaseq_quick(distributed=snake_case_ ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def lowerCamelCase ( self : int ): self.run_seqaseq_quick(distributed=snake_case_ , extra_args_str="""--sharded_ddp simple""" ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def lowerCamelCase ( self : str ): self.run_seqaseq_quick(distributed=snake_case_ , extra_args_str="""--sharded_ddp simple --fp16""" ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def lowerCamelCase ( self : List[str] ): self.run_seqaseq_quick(distributed=snake_case_ , extra_args_str="""--sharded_ddp zero_dp_2""" , predict_with_generate=snake_case_ ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def lowerCamelCase ( self : str ): self.run_seqaseq_quick( distributed=snake_case_ , extra_args_str="""--sharded_ddp zero_dp_2 --fp16""" , predict_with_generate=snake_case_ ) @require_apex @require_torch_gpu def lowerCamelCase ( self : str ): # XXX: apex breaks the trainer if it's run twice e.g. run_seq2seq.main() from the same # program and it breaks other tests that run from the same pytest worker, therefore until this is # sorted out it must be run only in an external program, that is distributed=True in this # test and only under one or more gpus - if we want cpu will need to make a special test # # specifically to the problem traced it to self.optimizer.step() - if it's run 2nd time via # 2nd main() call it botches the future eval. # self.run_seqaseq_quick(distributed=snake_case_ , extra_args_str="""--fp16 --fp16_backend=apex""" ) # test 2nd time - was getting eval_loss': nan' # to reproduce the problem set distributed=False self.run_seqaseq_quick(distributed=snake_case_ , extra_args_str="""--fp16 --fp16_backend=apex""" ) @parameterized.expand(["""base""", """low""", """high""", """mixed"""] ) @require_torch_multi_gpu def lowerCamelCase ( self : Optional[int] , snake_case_ : Union[str, Any] ): # as each sub-test is slow-ish split into multiple sub-tests to avoid CI timeout snake_case__ : Any = { # test with the default log_level - should be info and thus log info once """base""": {"""extra_args_str""": """""", """n_matches""": 1}, # test with low log_level and log_level_replica - should be noisy on all processes # now the info string should appear twice on 2 processes """low""": {"""extra_args_str""": """--log_level debug --log_level_replica debug""", """n_matches""": 2}, # test with high log_level and low log_level_replica # now the info string should appear once only on the replica """high""": {"""extra_args_str""": """--log_level error --log_level_replica debug""", """n_matches""": 1}, # test with high log_level and log_level_replica - should be quiet on all processes """mixed""": {"""extra_args_str""": """--log_level error --log_level_replica error""", """n_matches""": 0}, } snake_case__ : Optional[int] = experiments[experiment_id] snake_case__ : Optional[int] = {"""distributed""": True, """predict_with_generate""": False, """do_eval""": False, """do_predict""": False} snake_case__ : Union[str, Any] = """Running training""" with CaptureStderr() as cl: self.run_seqaseq_quick(**snake_case_ , extra_args_str=data["""extra_args_str"""] ) snake_case__ : str = len(re.findall(snake_case_ , cl.err ) ) self.assertEqual(snake_case_ , data["""n_matches"""] ) @slow def lowerCamelCase ( self : Optional[int] ): snake_case__ : Tuple = self.run_trainer( eval_steps=2 , max_len=128 , model_name=snake_case_ , learning_rate=3E-4 , num_train_epochs=10 , distributed=snake_case_ , ) # Check metrics snake_case__ : Dict = TrainerState.load_from_json(os.path.join(snake_case_ , """trainer_state.json""" ) ).log_history snake_case__ : List[str] = [log for log in logs if """eval_loss""" in log.keys()] snake_case__ : List[str] = eval_metrics[0] snake_case__ : Any = eval_metrics[-1] assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing" assert isinstance(last_step_stats["""eval_bleu"""] , snake_case_ ) # test if do_predict saves generations and metrics snake_case__ : Optional[int] = os.listdir(snake_case_ ) snake_case__ : List[str] = {os.path.basename(snake_case_ ) for p in contents} assert "generated_predictions.txt" in contents assert "predict_results.json" in contents @slow @require_bitsandbytes def lowerCamelCase ( self : List[str] ): from transformers.training_args import OptimizerNames def train_and_return_metrics(snake_case_ : str ) -> Tuple[int, float]: snake_case__ : Dict = """--skip_memory_metrics 0""" snake_case__ : Optional[int] = self.run_trainer( max_len=128 , model_name=snake_case_ , learning_rate=3E-4 , num_train_epochs=1 , optim=snake_case_ , distributed=snake_case_ , extra_args_str=snake_case_ , do_eval=snake_case_ , do_predict=snake_case_ , n_gpus_to_use=1 , ) # Check metrics snake_case__ : Optional[Any] = TrainerState.load_from_json(Path(snake_case_ , """trainer_state.json""" ) ).log_history snake_case__ : Optional[int] = int(logs[0]["""train_mem_gpu_peaked_delta"""] / 2**20 ) snake_case__ : Tuple = int(logs[0]["""train_mem_gpu_alloc_delta"""] / 2**20 ) snake_case__ : Optional[int] = logs[0]["""train_loss"""] return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss snake_case__ , snake_case__ , snake_case__ : List[Any] = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value ) snake_case__ , snake_case__ , snake_case__ : List[Any] = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value ) snake_case__ : Dict = gpu_alloc_mem_orig - gpu_alloc_mem_bnb snake_case__ : Optional[Any] = gpu_peak_mem_orig + gpu_alloc_mem_orig snake_case__ : Dict = gpu_peak_mem_bnb + gpu_alloc_mem_bnb snake_case__ : Tuple = gpu_total_mem_orig - gpu_total_mem_bnb # sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which # doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized # in 2 bytes and the diff in optim memory usage is derived as so: # # - normal 25*8=~200MB (8 bytes per param) # - bnb 25*2= ~50MB (2 bytes per param) # # Thus we should expect ~150MB total memory saved. # # Peak memory should be the same - the total should be different by about that same margin # # After leaving a small margin to accommodate for differences between gpus let's check # that we have at least 120MB in savings snake_case__ : int = 120 # uncomment the following if this test starts failing - requires py38 for a new print feature # gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb # print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB") # print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB") # print(f"{gpu_alloc_mem_diff=}MB") # print(f"{gpu_peak_mem_diff=}MB") # print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB") # print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB") self.assertGreater( snake_case_ , snake_case_ , """should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got""" f" a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and" f" gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB" , ) self.assertGreater( snake_case_ , snake_case_ , """should use ~150MB less total gpu memory with BNB, compared to without it for this model but got""" f" a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and" f" gpu_total_mem_bnb={gpu_total_mem_bnb}MB" , ) self.assertEqual( snake_case_ , snake_case_ , f"loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}" ) def lowerCamelCase ( self : Dict , snake_case_ : int , snake_case_ : str , snake_case_ : int , snake_case_ : float = 3E-3 , snake_case_ : str = "adafactor" , snake_case_ : bool = False , snake_case_ : str = None , snake_case_ : int = 0 , snake_case_ : bool = True , snake_case_ : bool = True , snake_case_ : bool = True , snake_case_ : bool = True , snake_case_ : int = None , ): snake_case__ : Optional[Any] = self.test_file_dir / """../fixtures/tests_samples/wmt_en_ro""" snake_case__ : Union[str, Any] = self.get_auto_remove_tmp_dir() snake_case__ : List[Any] = f"\n --model_name_or_path {model_name}\n --train_file {data_dir}/train.json\n --validation_file {data_dir}/val.json\n --test_file {data_dir}/test.json\n --output_dir {output_dir}\n --overwrite_output_dir\n --max_train_samples 8\n --max_source_length {max_len}\n --max_target_length {max_len}\n --do_train\n --num_train_epochs {str(snake_case_ )}\n --per_device_train_batch_size 4\n --learning_rate {learning_rate}\n --warmup_steps 8\n --logging_steps 0\n --logging_strategy no\n --save_steps {str(snake_case_ )}\n --group_by_length\n --label_smoothing_factor 0.1\n --target_lang ro_RO\n --source_lang en_XX\n ".split() snake_case__ : List[Any] = f"\n --do_eval\n --per_device_eval_batch_size 4\n --max_eval_samples 8\n --val_max_target_length {max_len}\n --evaluation_strategy steps\n --eval_steps {str(snake_case_ )}\n ".split() snake_case__ : Dict = """ --do_predict """.split() snake_case__ : List[Any] = [] if do_train: args += args_train if do_eval: args += args_eval if do_predict: args += args_predict if predict_with_generate: args += "--predict_with_generate".split() if do_train: if optim == "adafactor": args += "--adafactor".split() else: args += f"--optim {optim}".split() if extra_args_str is not None: args += extra_args_str.split() if distributed: if n_gpus_to_use is None: snake_case__ : Any = get_gpu_count() snake_case__ : Optional[int] = get_torch_dist_unique_port() snake_case__ : List[str] = f"\n -m torch.distributed.run\n --nproc_per_node={n_gpus_to_use}\n --master_port={master_port}\n {self.examples_dir_str}/pytorch/translation/run_translation.py\n ".split() snake_case__ : int = [sys.executable] + distributed_args + args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(snake_case_ , env=self.get_env() ) else: snake_case__ : str = ["""run_translation.py"""] + args with patch.object(snake_case_ , """argv""" , snake_case_ ): main() return output_dir
43
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __lowercase : Union[str, Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Any = ['''MLukeTokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys __lowercase : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
318
'''simple docstring''' import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowercase ( _lowercase , unittest.TestCase ): lowerCamelCase : Any = LayoutLMTokenizer lowerCamelCase : Union[str, Any] = LayoutLMTokenizerFast lowerCamelCase : Optional[int] = True lowerCamelCase : int = True def UpperCAmelCase__ (self ): super().setUp() lowerCamelCase_ : Dict = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] lowerCamelCase_ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def UpperCAmelCase__ (self , **A ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **A ) def UpperCAmelCase__ (self , A ): lowerCamelCase_ : Any = '''UNwant\u00E9d,running''' lowerCamelCase_ : List[Any] = '''unwanted, running''' return input_text, output_text def UpperCAmelCase__ (self ): lowerCamelCase_ : List[str] = self.tokenizer_class(self.vocab_file ) lowerCamelCase_ : Optional[Any] = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(A , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , [7, 4, 5, 1_0, 8, 9] ) def UpperCAmelCase__ (self ): pass
318
1
"""simple docstring""" import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration A : Optional[int] = 5_0_0_0_0_0 A : int = os.path.split(__file__) A : str = os.path.join(RESULTS_BASEPATH, "results", RESULTS_FILENAME.replace(".py", ".json")) @get_duration def _lowerCamelCase ( _UpperCamelCase , **_UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = dataset.map(**_UpperCamelCase ) @get_duration def _lowerCamelCase ( _UpperCamelCase , **_UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = dataset.filter(**_UpperCamelCase ) def _lowerCamelCase ( ): '''simple docstring''' __lowerCAmelCase = {"num examples": SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: __lowerCAmelCase = datasets.Features({"text": datasets.Value("string" ), "numbers": datasets.Value("float32" )} ) __lowerCAmelCase = generate_example_dataset( os.path.join(_UpperCamelCase , "dataset.arrow" ) , _UpperCamelCase , num_examples=_UpperCamelCase ) __lowerCAmelCase = transformers.AutoTokenizer.from_pretrained("bert-base-cased" , use_fast=_UpperCamelCase ) def tokenize(_UpperCamelCase ): return tokenizer(examples["text"] ) __lowerCAmelCase = map(_UpperCamelCase ) __lowerCAmelCase = map(_UpperCamelCase , batched=_UpperCamelCase ) __lowerCAmelCase = map(_UpperCamelCase , function=lambda _UpperCamelCase : None , batched=_UpperCamelCase ) with dataset.formatted_as(type="numpy" ): __lowerCAmelCase = map(_UpperCamelCase , function=lambda _UpperCamelCase : None , batched=_UpperCamelCase ) with dataset.formatted_as(type="pandas" ): __lowerCAmelCase = map(_UpperCamelCase , function=lambda _UpperCamelCase : None , batched=_UpperCamelCase ) with dataset.formatted_as(type="torch" , columns="numbers" ): __lowerCAmelCase = map(_UpperCamelCase , function=lambda _UpperCamelCase : None , batched=_UpperCamelCase ) with dataset.formatted_as(type="tensorflow" , columns="numbers" ): __lowerCAmelCase = map(_UpperCamelCase , function=lambda _UpperCamelCase : None , batched=_UpperCamelCase ) __lowerCAmelCase = map(_UpperCamelCase , function=_UpperCamelCase , batched=_UpperCamelCase ) __lowerCAmelCase = filter(_UpperCamelCase ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(_UpperCamelCase , "wb" ) as f: f.write(json.dumps(_UpperCamelCase ).encode("utf-8" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
359
"""simple docstring""" from ..utils import DummyObject, requires_backends class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Optional[Any] =["""transformers""", """torch""", """note_seq"""] def __init__( self , *__a , **__a ): requires_backends(self , ["transformers", "torch", "note_seq"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["transformers", "torch", "note_seq"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["transformers", "torch", "note_seq"] )
259
0
_UpperCAmelCase : Dict = """ # Transformers 설치 방법 ! pip install transformers datasets # 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요. # ! pip install git+https://github.com/huggingface/transformers.git """ _UpperCAmelCase : Optional[int] = [{"""type""": """code""", """content""": INSTALL_CONTENT}] _UpperCAmelCase : List[Any] = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
50
def UpperCAmelCase ( a_ ) -> list: """simple docstring""" if len(a_ ) <= 1: return [tuple(a_ )] __A = [] def generate(a_ , a_ ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , a_ ) for i in range(k - 1 ): if k % 2 == 0: # k is even __A , __A = arr[k - 1], arr[i] else: # k is odd __A , __A = arr[k - 1], arr[0] generate(k - 1 , a_ ) generate(len(a_ ) , a_ ) return res if __name__ == "__main__": SCREAMING_SNAKE_CASE :int = input('Enter numbers separated by a comma:\n').strip() SCREAMING_SNAKE_CASE :Dict = [int(item) for item in user_input.split(',')] print(heaps(arr))
15
0
'''simple docstring''' __a = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(10_0000)] def __snake_case( _lowerCAmelCase ) -> int: snake_case__ : str = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 100_000] number //= 100_000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution __a = [None] * 1000_0000 __a = True __a = False def __snake_case( _lowerCAmelCase ) -> bool: if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore snake_case__ : Optional[Any] = chain(next_number(_lowerCAmelCase ) ) snake_case__ : Any = number_chain while number < 10_000_000: snake_case__ : Any = number_chain number *= 10 return number_chain def __snake_case( _lowerCAmelCase = 10_000_000 ) -> int: for i in range(1 , _lowerCAmelCase ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(_lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() print(F"{solution() = }")
43
'''simple docstring''' import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class UpperCAmelCase_ ( _a ): """simple docstring""" def __init__( self : Any ): snake_case__ : int = [] def lowerCamelCase ( self : Optional[int] , snake_case_ : List[str] , snake_case_ : Tuple , snake_case_ : Any , **snake_case_ : str ): self.events.append("""on_init_end""" ) def lowerCamelCase ( self : List[str] , snake_case_ : List[str] , snake_case_ : List[Any] , snake_case_ : List[Any] , **snake_case_ : List[str] ): self.events.append("""on_train_begin""" ) def lowerCamelCase ( self : Dict , snake_case_ : Dict , snake_case_ : str , snake_case_ : int , **snake_case_ : str ): self.events.append("""on_train_end""" ) def lowerCamelCase ( self : List[str] , snake_case_ : int , snake_case_ : List[Any] , snake_case_ : List[str] , **snake_case_ : int ): self.events.append("""on_epoch_begin""" ) def lowerCamelCase ( self : List[Any] , snake_case_ : str , snake_case_ : List[str] , snake_case_ : List[Any] , **snake_case_ : Union[str, Any] ): self.events.append("""on_epoch_end""" ) def lowerCamelCase ( self : Tuple , snake_case_ : Tuple , snake_case_ : Optional[Any] , snake_case_ : Optional[Any] , **snake_case_ : str ): self.events.append("""on_step_begin""" ) def lowerCamelCase ( self : Optional[Any] , snake_case_ : str , snake_case_ : List[Any] , snake_case_ : Any , **snake_case_ : Optional[Any] ): self.events.append("""on_step_end""" ) def lowerCamelCase ( self : List[str] , snake_case_ : Optional[Any] , snake_case_ : Optional[int] , snake_case_ : int , **snake_case_ : List[Any] ): self.events.append("""on_evaluate""" ) def lowerCamelCase ( self : int , snake_case_ : Any , snake_case_ : List[str] , snake_case_ : Optional[int] , **snake_case_ : Any ): self.events.append("""on_predict""" ) def lowerCamelCase ( self : int , snake_case_ : Optional[Any] , snake_case_ : List[str] , snake_case_ : Dict , **snake_case_ : str ): self.events.append("""on_save""" ) def lowerCamelCase ( self : Union[str, Any] , snake_case_ : Union[str, Any] , snake_case_ : Optional[int] , snake_case_ : int , **snake_case_ : Optional[int] ): self.events.append("""on_log""" ) def lowerCamelCase ( self : Any , snake_case_ : List[Any] , snake_case_ : Optional[Any] , snake_case_ : Optional[int] , **snake_case_ : Tuple ): self.events.append("""on_prediction_step""" ) @require_torch class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase ( self : Tuple ): snake_case__ : List[Any] = tempfile.mkdtemp() def lowerCamelCase ( self : List[Any] ): shutil.rmtree(self.output_dir ) def lowerCamelCase ( self : Union[str, Any] , snake_case_ : List[Any]=0 , snake_case_ : List[Any]=0 , snake_case_ : List[str]=64 , snake_case_ : Optional[Any]=64 , snake_case_ : List[Any]=None , snake_case_ : Optional[int]=False , **snake_case_ : int ): # disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure # its set to False since the tests later on depend on its value. snake_case__ : Optional[int] = RegressionDataset(length=snake_case_ ) snake_case__ : Dict = RegressionDataset(length=snake_case_ ) snake_case__ : Any = RegressionModelConfig(a=snake_case_ , b=snake_case_ ) snake_case__ : str = RegressionPreTrainedModel(snake_case_ ) snake_case__ : Any = TrainingArguments(self.output_dir , disable_tqdm=snake_case_ , report_to=[] , **snake_case_ ) return Trainer( snake_case_ , snake_case_ , train_dataset=snake_case_ , eval_dataset=snake_case_ , callbacks=snake_case_ , ) def lowerCamelCase ( self : Union[str, Any] , snake_case_ : str , snake_case_ : Optional[int] ): self.assertEqual(len(snake_case_ ) , len(snake_case_ ) ) # Order doesn't matter snake_case__ : int = sorted(snake_case_ , key=lambda snake_case_ : cb.__name__ if isinstance(snake_case_ , snake_case_ ) else cb.__class__.__name__ ) snake_case__ : Optional[int] = sorted(snake_case_ , key=lambda snake_case_ : cb.__name__ if isinstance(snake_case_ , snake_case_ ) else cb.__class__.__name__ ) for cba, cba in zip(snake_case_ , snake_case_ ): if isinstance(snake_case_ , snake_case_ ) and isinstance(snake_case_ , snake_case_ ): self.assertEqual(snake_case_ , snake_case_ ) elif isinstance(snake_case_ , snake_case_ ) and not isinstance(snake_case_ , snake_case_ ): self.assertEqual(snake_case_ , cba.__class__ ) elif not isinstance(snake_case_ , snake_case_ ) and isinstance(snake_case_ , snake_case_ ): self.assertEqual(cba.__class__ , snake_case_ ) else: self.assertEqual(snake_case_ , snake_case_ ) def lowerCamelCase ( self : str , snake_case_ : Optional[Any] ): snake_case__ : Optional[Any] = ["""on_init_end""", """on_train_begin"""] snake_case__ : Optional[int] = 0 snake_case__ : Any = len(trainer.get_eval_dataloader() ) snake_case__ : Optional[int] = ["""on_prediction_step"""] * len(trainer.get_eval_dataloader() ) + ["""on_log""", """on_evaluate"""] for _ in range(trainer.state.num_train_epochs ): expected_events.append("""on_epoch_begin""" ) for _ in range(snake_case_ ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append("""on_log""" ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append("""on_save""" ) expected_events.append("""on_epoch_end""" ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def lowerCamelCase ( self : Optional[int] ): snake_case__ : Tuple = self.get_trainer() snake_case__ : Any = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case_ ) # Callbacks passed at init are added to the default callbacks snake_case__ : List[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(snake_case_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case_ ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback snake_case__ : int = self.get_trainer(disable_tqdm=snake_case_ ) snake_case__ : Union[str, Any] = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case_ ) def lowerCamelCase ( self : Optional[int] ): snake_case__ : Optional[int] = DEFAULT_CALLBACKS.copy() + [ProgressCallback] snake_case__ : Any = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(snake_case_ ) expected_callbacks.remove(snake_case_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case_ ) snake_case__ : List[Any] = self.get_trainer() snake_case__ : List[Any] = trainer.pop_callback(snake_case_ ) self.assertEqual(cb.__class__ , snake_case_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case_ ) trainer.add_callback(snake_case_ ) expected_callbacks.insert(0 , snake_case_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case_ ) # We can also add, pop, or remove by instance snake_case__ : Optional[Any] = self.get_trainer() snake_case__ : Any = trainer.callback_handler.callbacks[0] trainer.remove_callback(snake_case_ ) expected_callbacks.remove(snake_case_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case_ ) snake_case__ : Any = self.get_trainer() snake_case__ : Dict = trainer.callback_handler.callbacks[0] snake_case__ : Optional[int] = trainer.pop_callback(snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case_ ) trainer.add_callback(snake_case_ ) expected_callbacks.insert(0 , snake_case_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case_ ) def lowerCamelCase ( self : str ): import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action="""ignore""" , category=snake_case_ ) snake_case__ : str = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() snake_case__ : Dict = trainer.callback_handler.callbacks[-2].events self.assertEqual(snake_case_ , self.get_expected_events(snake_case_ ) ) # Independent log/save/eval snake_case__ : Optional[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 ) trainer.train() snake_case__ : str = trainer.callback_handler.callbacks[-2].events self.assertEqual(snake_case_ , self.get_expected_events(snake_case_ ) ) snake_case__ : Tuple = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 ) trainer.train() snake_case__ : Dict = trainer.callback_handler.callbacks[-2].events self.assertEqual(snake_case_ , self.get_expected_events(snake_case_ ) ) snake_case__ : List[str] = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy="""steps""" ) trainer.train() snake_case__ : Optional[Any] = trainer.callback_handler.callbacks[-2].events self.assertEqual(snake_case_ , self.get_expected_events(snake_case_ ) ) snake_case__ : List[str] = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy="""epoch""" ) trainer.train() snake_case__ : int = trainer.callback_handler.callbacks[-2].events self.assertEqual(snake_case_ , self.get_expected_events(snake_case_ ) ) # A bit of everything snake_case__ : Optional[int] = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy="""steps""" , ) trainer.train() snake_case__ : int = trainer.callback_handler.callbacks[-2].events self.assertEqual(snake_case_ , self.get_expected_events(snake_case_ ) ) # warning should be emitted for duplicated callbacks with patch("""transformers.trainer_callback.logger.warning""" ) as warn_mock: snake_case__ : Optional[Any] = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(snake_case_ ) in warn_mock.call_args[0][0]
43
1
import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] ): __lowercase : Any = 1.5 __lowercase : Tuple = int(factor * num_class_images ) __lowercase : List[str] = ClipClient( url="""https://knn.laion.ai/knn-service""" , indice_name="""laion_400m""" , num_images=lowerCAmelCase_ , aesthetic_weight=0.1 ) os.makedirs(F"{class_data_dir}/images" , exist_ok=lowerCAmelCase_ ) if len(list(Path(F"{class_data_dir}/images" ).iterdir() ) ) >= num_class_images: return while True: __lowercase : Dict = client.query(text=lowerCAmelCase_ ) if len(lowerCAmelCase_ ) >= factor * num_class_images or num_images > 1e4: break else: __lowercase : Optional[Any] = int(factor * num_images ) __lowercase : Any = ClipClient( url="""https://knn.laion.ai/knn-service""" , indice_name="""laion_400m""" , num_images=lowerCAmelCase_ , aesthetic_weight=0.1 , ) __lowercase : Tuple = 0 __lowercase : Optional[int] = 0 __lowercase : Optional[int] = tqdm(desc="""downloading real regularization images""" , total=lowerCAmelCase_ ) with open(F"{class_data_dir}/caption.txt" , """w""" ) as fa, open(F"{class_data_dir}/urls.txt" , """w""" ) as fa, open( F"{class_data_dir}/images.txt" , """w""" ) as fa: while total < num_class_images: __lowercase : Any = class_images[count] count += 1 try: __lowercase : str = requests.get(images["""url"""] ) if img.status_code == 200: __lowercase : Optional[Any] = Image.open(BytesIO(img.content ) ) with open(F"{class_data_dir}/images/{total}.jpg" , """wb""" ) as f: f.write(img.content ) fa.write(images["""caption"""] + """\n""" ) fa.write(images["""url"""] + """\n""" ) fa.write(F"{class_data_dir}/images/{total}.jpg" + """\n""" ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def snake_case_ ( ): __lowercase : List[str] = argparse.ArgumentParser("""""" , add_help=lowerCAmelCase_ ) parser.add_argument("""--class_prompt""" , help="""text prompt to retrieve images""" , required=lowerCAmelCase_ , type=lowerCAmelCase_ ) parser.add_argument("""--class_data_dir""" , help="""path to save images""" , required=lowerCAmelCase_ , type=lowerCAmelCase_ ) parser.add_argument("""--num_class_images""" , help="""number of images to download""" , default=200 , type=lowerCAmelCase_ ) return parser.parse_args() if __name__ == "__main__": lowerCamelCase : Union[str, Any] = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
233
import math def snake_case_ ( lowerCAmelCase_ : int ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCAmelCase_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def snake_case_ ( lowerCAmelCase_ : int = 10001 ): try: __lowercase : Optional[int] = int(lowerCAmelCase_ ) except (TypeError, ValueError): raise TypeError("""Parameter nth must be int or castable to int.""" ) from None if nth <= 0: raise ValueError("""Parameter nth must be greater than or equal to one.""" ) __lowercase : list[int] = [] __lowercase : str = 2 while len(lowerCAmelCase_ ) < nth: if is_prime(lowerCAmelCase_ ): primes.append(lowerCAmelCase_ ) num += 1 else: num += 1 return primes[len(lowerCAmelCase_ ) - 1] if __name__ == "__main__": print(f'''{solution() = }''')
233
1
def a__ ( UpperCAmelCase : int , UpperCAmelCase : int ) -> int: return abs(_snake_case ) if a == 0 else greatest_common_divisor(b % a , _snake_case ) def a__ ( UpperCAmelCase : int , UpperCAmelCase : int ) -> int: while y: # --> when y=0 then loop will terminate and return x as final GCD. UpperCAmelCase : Union[str, Any] = y, x % y return abs(_snake_case ) def a__ ( ) -> Tuple: try: UpperCAmelCase : List[str] = input('''Enter two integers separated by comma (,): ''' ).split(''',''' ) UpperCAmelCase : Tuple = int(nums[0] ) UpperCAmelCase : str = int(nums[1] ) print( f'''greatest_common_divisor({num_a}, {num_a}) = ''' f'''{greatest_common_divisor(_snake_case , _snake_case )}''' ) print(f'''By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(_snake_case , _snake_case )}''' ) except (IndexError, UnboundLocalError, ValueError): print('''Wrong input''' ) if __name__ == "__main__": main()
369
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCamelCase : str = {"configuration_xlnet": ["XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[Any] = ["XLNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[Any] = ["XLNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Dict = [ "XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "XLNetForMultipleChoice", "XLNetForQuestionAnswering", "XLNetForQuestionAnsweringSimple", "XLNetForSequenceClassification", "XLNetForTokenClassification", "XLNetLMHeadModel", "XLNetModel", "XLNetPreTrainedModel", "load_tf_weights_in_xlnet", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Union[str, Any] = [ "TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLNetForMultipleChoice", "TFXLNetForQuestionAnsweringSimple", "TFXLNetForSequenceClassification", "TFXLNetForTokenClassification", "TFXLNetLMHeadModel", "TFXLNetMainLayer", "TFXLNetModel", "TFXLNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys _lowerCamelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
99
0
"""simple docstring""" import socket def UpperCAmelCase__ (): """simple docstring""" _snake_case : int = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) _snake_case : int = socket.gethostname() _snake_case : Any = 1_23_12 sock.connect((host, port) ) sock.send(B"""Hello server!""" ) with open("""Received_file""" , """wb""" ) as out_file: print("""File opened""" ) print("""Receiving data...""" ) while True: _snake_case : Dict = sock.recv(10_24 ) if not data: break out_file.write(snake_case__ ) print("""Successfully received the file""" ) sock.close() print("""Connection closed""" ) if __name__ == "__main__": main()
64
"""simple docstring""" import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor lowerCAmelCase_ = logging.get_logger(__name__) class __A ( A_ ): '''simple docstring''' def __init__( self : Dict ,*_snake_case : Any ,**_snake_case : str ) -> None: """simple docstring""" warnings.warn( '''The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use MobileViTImageProcessor instead.''' ,_snake_case ,) super().__init__(*_snake_case ,**_snake_case )
16
0
"""simple docstring""" import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow lowerCAmelCase : Optional[Any] = False class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : List[Any]=32): set_seed(0) SCREAMING_SNAKE_CASE_: Union[str, Any] = UNetaDModel(sample_size=lowerCAmelCase__ , in_channels=3 , out_channels=3) SCREAMING_SNAKE_CASE_: str = torch.optim.SGD(model.parameters() , lr=0.0001) return model, optimizer @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_: Optional[Any] = "cpu" # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable SCREAMING_SNAKE_CASE_: Union[str, Any] = DDPMScheduler( num_train_timesteps=1000 , beta_start=0.0001 , beta_end=0.02 , beta_schedule="linear" , clip_sample=lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE_: Any = DDIMScheduler( num_train_timesteps=1000 , beta_start=0.0001 , beta_end=0.02 , beta_schedule="linear" , clip_sample=lowerCAmelCase__ , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0) SCREAMING_SNAKE_CASE_: Any = [torch.randn((4, 3, 32, 32)).clip(-1 , 1).to(lowerCAmelCase__) for _ in range(4)] SCREAMING_SNAKE_CASE_: Dict = [torch.randn((4, 3, 32, 32)).to(lowerCAmelCase__) for _ in range(4)] SCREAMING_SNAKE_CASE_: Optional[Any] = [torch.randint(0 , 1000 , (4,)).long().to(lowerCAmelCase__) for _ in range(4)] # train with a DDPM scheduler SCREAMING_SNAKE_CASE_: str = self.get_model_optimizer(resolution=32) model.train().to(lowerCAmelCase__) for i in range(4): optimizer.zero_grad() SCREAMING_SNAKE_CASE_: str = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i]) SCREAMING_SNAKE_CASE_: List[str] = model(lowerCAmelCase__ , timesteps[i]).sample SCREAMING_SNAKE_CASE_: Tuple = torch.nn.functional.mse_loss(lowerCAmelCase__ , noise[i]) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM SCREAMING_SNAKE_CASE_: str = self.get_model_optimizer(resolution=32) model.train().to(lowerCAmelCase__) for i in range(4): optimizer.zero_grad() SCREAMING_SNAKE_CASE_: int = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i]) SCREAMING_SNAKE_CASE_: List[Any] = model(lowerCAmelCase__ , timesteps[i]).sample SCREAMING_SNAKE_CASE_: Optional[int] = torch.nn.functional.mse_loss(lowerCAmelCase__ , noise[i]) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-5)) self.assertTrue(torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-5))
358
import doctest from collections import deque import numpy as np class __lowercase : """simple docstring""" def __init__( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: int = [2, 1, 2, -1] SCREAMING_SNAKE_CASE_: Optional[Any] = [1, 2, 3, 4] def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Any = len(self.first_signal) SCREAMING_SNAKE_CASE_: Dict = len(self.second_signal) SCREAMING_SNAKE_CASE_: Union[str, Any] = max(lowerCAmelCase__ , lowerCAmelCase__) # create a zero matrix of max_length x max_length SCREAMING_SNAKE_CASE_: List[Any] = [[0] * max_length for i in range(lowerCAmelCase__)] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Tuple = deque(self.second_signal) rotated_signal.rotate(lowerCAmelCase__) for j, item in enumerate(lowerCAmelCase__): matrix[i][j] += item # multiply the matrix with the first signal SCREAMING_SNAKE_CASE_: Optional[Any] = np.matmul(np.transpose(lowerCAmelCase__) , np.transpose(self.first_signal)) # rounding-off to two decimal places return [round(lowerCAmelCase__ , 2) for i in final_signal] if __name__ == "__main__": doctest.testmod()
127
0
"""simple docstring""" from collections import defaultdict class __snake_case : def __init__( self : str , __lowerCAmelCase : Tuple , __lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : str = total # total no of tasks (N) # DP table will have a dimension of (2^M)*N # initially all values are set to -1 _lowerCamelCase : str = [ [-1 for i in range(total + 1 )] for j in range(2 ** len(__lowerCAmelCase ) ) ] _lowerCamelCase : Tuple = defaultdict(__lowerCAmelCase ) # stores the list of persons for each task # final_mask is used to check if all persons are included by setting all bits # to 1 _lowerCamelCase : str = (1 << len(__lowerCAmelCase )) - 1 def SCREAMING_SNAKE_CASE ( self : int , __lowerCAmelCase : Tuple , __lowerCAmelCase : Tuple ): """simple docstring""" if mask == self.final_mask: return 1 # if not everyone gets the task and no more tasks are available, return 0 if task_no > self.total_tasks: return 0 # if case already considered if self.dp[mask][task_no] != -1: return self.dp[mask][task_no] # Number of ways when we don't this task in the arrangement _lowerCamelCase : Tuple = self.count_ways_until(__lowerCAmelCase , task_no + 1 ) # now assign the tasks one by one to all possible persons and recursively # assign for the remaining tasks. if task_no in self.task: for p in self.task[task_no]: # if p is already given a task if mask & (1 << p): continue # assign this task to p and change the mask value. And recursively # assign tasks with the new mask value. total_ways_util += self.count_ways_until(mask | (1 << p) , task_no + 1 ) # save the value. _lowerCamelCase : Tuple = total_ways_util return self.dp[mask][task_no] def SCREAMING_SNAKE_CASE ( self : List[Any] , __lowerCAmelCase : Tuple ): """simple docstring""" for i in range(len(__lowerCAmelCase ) ): for j in task_performed[i]: self.task[j].append(__lowerCAmelCase ) # call the function to fill the DP table, final answer is stored in dp[0][1] return self.count_ways_until(0 , 1 ) if __name__ == "__main__": lowerCAmelCase__ = 5 # total no of tasks (the value of N) # the list of tasks that can be done by M persons. lowerCAmelCase__ = [[1, 3, 4], [1, 2, 5], [3, 4]] print( AssignmentUsingBitmask(task_performed, total_tasks).count_no_of_ways( task_performed ) )
72
"""simple docstring""" import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class __snake_case ( _lowercase): snake_case__ : List[Any] = "Speech2TextFeatureExtractor" snake_case__ : Union[str, Any] = "Speech2TextTokenizer" def __init__( self : int , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Union[str, Any] ): """simple docstring""" super().__init__(__lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : List[str] = self.feature_extractor _lowerCamelCase : str = False def __call__( self : List[Any] , *__lowerCAmelCase : int , **__lowerCAmelCase : List[str] ): """simple docstring""" if self._in_target_context_manager: return self.current_processor(*__lowerCAmelCase , **__lowerCAmelCase ) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' ) _lowerCamelCase : str = kwargs.pop('''raw_speech''' ) else: _lowerCamelCase : Tuple = kwargs.pop('''audio''' , __lowerCAmelCase ) _lowerCamelCase : Optional[Any] = kwargs.pop('''sampling_rate''' , __lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = kwargs.pop('''text''' , __lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: _lowerCamelCase : List[Any] = args[0] _lowerCamelCase : int = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: _lowerCamelCase : List[Any] = self.feature_extractor(__lowerCAmelCase , *__lowerCAmelCase , sampling_rate=__lowerCAmelCase , **__lowerCAmelCase ) if text is not None: _lowerCamelCase : List[Any] = self.tokenizer(__lowerCAmelCase , **__lowerCAmelCase ) if text is None: return inputs elif audio is None: return encodings else: _lowerCamelCase : List[str] = encodings['''input_ids'''] return inputs def SCREAMING_SNAKE_CASE ( self : Any , *__lowerCAmelCase : List[Any] , **__lowerCAmelCase : Tuple ): """simple docstring""" return self.tokenizer.batch_decode(*__lowerCAmelCase , **__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Any , *__lowerCAmelCase : List[str] , **__lowerCAmelCase : int ): """simple docstring""" return self.tokenizer.decode(*__lowerCAmelCase , **__lowerCAmelCase ) @contextmanager def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''' ) _lowerCamelCase : Union[str, Any] = True _lowerCamelCase : Any = self.tokenizer yield _lowerCamelCase : List[str] = self.feature_extractor _lowerCamelCase : Tuple = False
72
1
import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList SCREAMING_SNAKE_CASE_ = ["""\nclass""", """\ndef""", """\n#""", """\n@""", """\nprint""", """\nif"""] class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' def __init__( self : Tuple ,lowerCamelCase__ : Any ,lowerCamelCase__ : Tuple ,lowerCamelCase__ : Any=None ,lowerCamelCase__ : str=1 ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = tokenizer SCREAMING_SNAKE_CASE = dataset SCREAMING_SNAKE_CASE = len(lowerCamelCase__ ) if n_tasks is None else n_tasks SCREAMING_SNAKE_CASE = n_copies def __iter__( self : Any ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]["""prompt"""].strip() ) SCREAMING_SNAKE_CASE = self.tokenizer(lowerCamelCase__ ,padding=lowerCamelCase__ ,return_tensors="""pt""" ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' def __init__( self : Dict ,lowerCamelCase__ : Tuple ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : Optional[int] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = start_length SCREAMING_SNAKE_CASE = eof_strings SCREAMING_SNAKE_CASE = tokenizer def __call__( self : int ,lowerCamelCase__ : List[Any] ,lowerCamelCase__ : Any ,**lowerCamelCase__ : Optional[int] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) SCREAMING_SNAKE_CASE = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(lowerCamelCase__ ) def __lowercase ( _SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = re.split("""(%s)""" % """|""".join(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) # last string should be "" return "".join(string_list[:-2] ) def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=20 , **_SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = defaultdict(_SCREAMING_SNAKE_CASE ) # dict of list of generated tokens for step, batch in tqdm(enumerate(_SCREAMING_SNAKE_CASE ) ): with torch.no_grad(): SCREAMING_SNAKE_CASE = batch["""ids"""].shape[-1] SCREAMING_SNAKE_CASE = accelerator.unwrap_model(_SCREAMING_SNAKE_CASE ).generate( input_ids=batch["""ids"""][:, : batch["""input_len"""]] , num_return_sequences=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) # each task is generated batch_size times SCREAMING_SNAKE_CASE = batch["""task_id"""].repeat(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = accelerator.pad_across_processes( _SCREAMING_SNAKE_CASE , dim=1 , pad_index=tokenizer.pad_token_id ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = accelerator.gather((generated_tokens, generated_tasks) ) SCREAMING_SNAKE_CASE = generated_tokens.cpu().numpy() SCREAMING_SNAKE_CASE = generated_tasks.cpu().numpy() for task, generated_tokens in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): gen_token_dict[task].append(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = [[] for _ in range(_SCREAMING_SNAKE_CASE )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: SCREAMING_SNAKE_CASE = tokenizer.decode(_SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=_SCREAMING_SNAKE_CASE ) code_gens[task].append(remove_last_block(_SCREAMING_SNAKE_CASE ) ) return code_gens def __lowercase ( ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = HfArgumentParser(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric SCREAMING_SNAKE_CASE = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing SCREAMING_SNAKE_CASE = """false""" if args.num_workers is None: SCREAMING_SNAKE_CASE = multiprocessing.cpu_count() # Use dataset load to feed to accelerate SCREAMING_SNAKE_CASE = Accelerator() set_seed(args.seed , device_specific=_SCREAMING_SNAKE_CASE ) # Load model and tokenizer SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(args.model_ckpt ) SCREAMING_SNAKE_CASE = tokenizer.eos_token SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings SCREAMING_SNAKE_CASE = { """do_sample""": args.do_sample, """temperature""": args.temperature, """max_new_tokens""": args.max_new_tokens, """top_p""": args.top_p, """top_k""": args.top_k, """stopping_criteria""": StoppingCriteriaList([EndOfFunctionCriteria(0 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )] ), } # Load evaluation dataset and metric SCREAMING_SNAKE_CASE = load_dataset("""openai_humaneval""" ) SCREAMING_SNAKE_CASE = load_metric("""code_eval""" ) SCREAMING_SNAKE_CASE = args.num_tasks if args.num_tasks is not None else len(human_eval["""test"""] ) SCREAMING_SNAKE_CASE = args.n_samples // args.batch_size SCREAMING_SNAKE_CASE = TokenizedDataset(_SCREAMING_SNAKE_CASE , human_eval["""test"""] , n_copies=_SCREAMING_SNAKE_CASE , n_tasks=_SCREAMING_SNAKE_CASE ) # do not confuse args.batch_size, which is actually the num_return_sequences SCREAMING_SNAKE_CASE = DataLoader(_SCREAMING_SNAKE_CASE , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: SCREAMING_SNAKE_CASE = code_eval_metric.compute(references=[""""""] , predictions=[[""""""]] ) except ValueError as exception: print( """Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL=\"1\"`""" """ flag to enable code evaluation.""" ) raise exception SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = accelerator.prepare(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = complete_code( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , n_tasks=_SCREAMING_SNAKE_CASE , batch_size=args.batch_size , **_SCREAMING_SNAKE_CASE , ) if accelerator.is_main_process: SCREAMING_SNAKE_CASE = [] for task in tqdm(range(_SCREAMING_SNAKE_CASE ) ): SCREAMING_SNAKE_CASE = human_eval["""test"""][task]["""test"""] SCREAMING_SNAKE_CASE = F"""check({human_eval['test'][task]['entry_point']})""" references.append("""\n""" + test_func + """\n""" + entry_point ) # Evaluate completions with "code_eval" metric SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = code_eval_metric.compute( references=_SCREAMING_SNAKE_CASE , predictions=_SCREAMING_SNAKE_CASE , num_workers=args.num_workers ) print(F"""Results: {pass_at_k}""" ) # Save results to json file with open(args.output_file , """w""" ) as fp: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
354
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE_ = { """configuration_mvp""": ["""MVP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MvpConfig""", """MvpOnnxConfig"""], """tokenization_mvp""": ["""MvpTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = ["""MvpTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ """MVP_PRETRAINED_MODEL_ARCHIVE_LIST""", """MvpForCausalLM""", """MvpForConditionalGeneration""", """MvpForQuestionAnswering""", """MvpForSequenceClassification""", """MvpModel""", """MvpPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
193
0
import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process a_ = logging.getLogger(__name__) @dataclass class _UpperCamelCase : '''simple docstring''' lowerCamelCase__ =field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) lowerCamelCase__ =field( default=_a , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) lowerCamelCase__ =field( default='NER' , metadata={'help': 'Task type to fine tune in training (e.g. NER, POS, etc)'} ) lowerCamelCase__ =field( default=_a , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) lowerCamelCase__ =field(default=_a , metadata={'help': 'Set this flag to use fast tokenization.'} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. lowerCamelCase__ =field( default=_a , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) @dataclass class _UpperCamelCase : '''simple docstring''' lowerCamelCase__ =field( metadata={'help': 'The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task.'} ) lowerCamelCase__ =field( default=_a , metadata={'help': 'Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.'} , ) lowerCamelCase__ =field( default=128 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCamelCase__ =field( default=_a , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def lowerCamelCase__ ( ): SCREAMING_SNAKE_CASE : Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Optional[Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : int = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. Use" " --overwrite_output_dir to overcome.") SCREAMING_SNAKE_CASE : str = import_module("tasks") try: SCREAMING_SNAKE_CASE : str = getattr(snake_case__ , model_args.task_type) SCREAMING_SNAKE_CASE : Optional[Any] = token_classification_task_clazz() except AttributeError: raise ValueError( f"Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. " f"Available tasks classes are: {TokenClassificationTask.__subclasses__()}") # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s" , snake_case__) # Set seed set_seed(training_args.seed) # Prepare CONLL-2003 task SCREAMING_SNAKE_CASE : Union[str, Any] = token_classification_task.get_labels(data_args.labels) SCREAMING_SNAKE_CASE : List[Any] = dict(enumerate(snake_case__)) SCREAMING_SNAKE_CASE : Optional[int] = len(snake_case__) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. SCREAMING_SNAKE_CASE : str = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=snake_case__ , idalabel=snake_case__ , labelaid={label: i for i, label in enumerate(snake_case__)} , cache_dir=model_args.cache_dir , ) SCREAMING_SNAKE_CASE : Optional[Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) SCREAMING_SNAKE_CASE : Tuple = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path) , config=snake_case__ , cache_dir=model_args.cache_dir , ) # Get datasets SCREAMING_SNAKE_CASE : List[Any] = ( TokenClassificationDataset( token_classification_task=snake_case__ , data_dir=data_args.data_dir , tokenizer=snake_case__ , labels=snake_case__ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) SCREAMING_SNAKE_CASE : List[Any] = ( TokenClassificationDataset( token_classification_task=snake_case__ , data_dir=data_args.data_dir , tokenizer=snake_case__ , labels=snake_case__ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(_a , _a) -> Tuple[List[int], List[int]]: SCREAMING_SNAKE_CASE : Optional[int] = np.argmax(snake_case__ , axis=2) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Dict = preds.shape SCREAMING_SNAKE_CASE : Optional[int] = [[] for _ in range(snake_case__)] SCREAMING_SNAKE_CASE : Any = [[] for _ in range(snake_case__)] for i in range(snake_case__): for j in range(snake_case__): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]]) preds_list[i].append(label_map[preds[i][j]]) return preds_list, out_label_list def compute_metrics(_a) -> Dict: SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Optional[Any] = align_predictions(p.predictions , p.label_ids) return { "accuracy_score": accuracy_score(snake_case__ , snake_case__), "precision": precision_score(snake_case__ , snake_case__), "recall": recall_score(snake_case__ , snake_case__), "f1": fa_score(snake_case__ , snake_case__), } # Data collator SCREAMING_SNAKE_CASE : Optional[Any] = DataCollatorWithPadding(snake_case__ , pad_to_multiple_of=8) if training_args.fpaa else None # Initialize our Trainer SCREAMING_SNAKE_CASE : Optional[int] = Trainer( model=snake_case__ , args=snake_case__ , train_dataset=snake_case__ , eval_dataset=snake_case__ , compute_metrics=snake_case__ , data_collator=snake_case__ , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path) else None) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir) # Evaluation SCREAMING_SNAKE_CASE : Optional[int] = {} if training_args.do_eval: logger.info("*** Evaluate ***") SCREAMING_SNAKE_CASE : Tuple = trainer.evaluate() SCREAMING_SNAKE_CASE : Optional[Any] = os.path.join(training_args.output_dir , "eval_results.txt") if trainer.is_world_process_zero(): with open(snake_case__ , "w") as writer: logger.info("***** Eval results *****") for key, value in result.items(): logger.info(" %s = %s" , snake_case__ , snake_case__) writer.write("%s = %s\n" % (key, value)) results.update(snake_case__) # Predict if training_args.do_predict: SCREAMING_SNAKE_CASE : List[Any] = TokenClassificationDataset( token_classification_task=snake_case__ , data_dir=data_args.data_dir , tokenizer=snake_case__ , labels=snake_case__ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : List[str] = trainer.predict(snake_case__) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Optional[int] = align_predictions(snake_case__ , snake_case__) SCREAMING_SNAKE_CASE : Optional[int] = os.path.join(training_args.output_dir , "test_results.txt") if trainer.is_world_process_zero(): with open(snake_case__ , "w") as writer: for key, value in metrics.items(): logger.info(" %s = %s" , snake_case__ , snake_case__) writer.write("%s = %s\n" % (key, value)) # Save predictions SCREAMING_SNAKE_CASE : str = os.path.join(training_args.output_dir , "test_predictions.txt") if trainer.is_world_process_zero(): with open(snake_case__ , "w") as writer: with open(os.path.join(data_args.data_dir , "test.txt") , "r") as f: token_classification_task.write_predictions_to_file(snake_case__ , snake_case__ , snake_case__) return results def lowerCamelCase__ ( _a): main() if __name__ == "__main__": main()
76
"""simple docstring""" from itertools import permutations def lowercase (snake_case__ : tuple ) -> bool: '''simple docstring''' if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False lowerCAmelCase = [7, 11, 13, 17] for i, test in enumerate(snake_case__ ): if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def lowercase (snake_case__ : int = 10 ) -> int: '''simple docstring''' return sum( int("""""".join(map(snake_case__ , snake_case__ ) ) ) for num in permutations(range(snake_case__ ) ) if is_substring_divisible(snake_case__ ) ) if __name__ == "__main__": print(f"""{solution() = }""")
155
0
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging lowerCamelCase : str = logging.get_logger(__name__) logging.set_verbosity_info() def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : str ): '''simple docstring''' if "xprophetnet" in prophetnet_checkpoint_path: lowerCamelCase_ = XLMProphetNetForConditionalGenerationOld.from_pretrained(lowercase ) lowerCamelCase_ , lowerCamelCase_ = XLMProphetNetForConditionalGeneration.from_pretrained( lowercase , output_loading_info=lowercase ) else: lowerCamelCase_ = ProphetNetForConditionalGenerationOld.from_pretrained(lowercase ) lowerCamelCase_ , lowerCamelCase_ = ProphetNetForConditionalGeneration.from_pretrained( lowercase , output_loading_info=lowercase ) lowerCamelCase_ = ['key_proj', 'value_proj', 'query_proj'] lowerCamelCase_ = { 'self_attn': 'ngram_self_attn', 'cross_attn': 'encoder_attn', 'cross_attn_layer_norm': 'encoder_attn_layer_norm', 'feed_forward_layer_norm': 'final_layer_norm', 'feed_forward': '', 'intermediate': 'fc1', 'output': 'fc2', 'key_proj': 'k_proj', 'query_proj': 'q_proj', 'value_proj': 'v_proj', 'word_embeddings': 'embed_tokens', 'embeddings_layer_norm': 'emb_layer_norm', 'relative_pos_embeddings': 'relative_linear', 'ngram_embeddings': 'ngram_input_embed', 'position_embeddings': 'embed_positions', } for key in loading_info["missing_keys"]: lowerCamelCase_ = key.split('.' ) if attributes[0] == "lm_head": lowerCamelCase_ = prophet lowerCamelCase_ = prophet_old else: lowerCamelCase_ = prophet.prophetnet lowerCamelCase_ = prophet_old.model lowerCamelCase_ = False for attribute in attributes: if attribute in mapping: lowerCamelCase_ = mapping[attribute] if not hasattr(lowercase , lowercase ) and len(lowercase ) > 0: lowerCamelCase_ = attribute elif hasattr(lowercase , lowercase ): lowerCamelCase_ = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" lowerCamelCase_ = old_model.weight logger.info(f"""{attribute} is initialized.""" ) lowerCamelCase_ = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" lowerCamelCase_ = old_model.bias logger.info(f"""{attribute} is initialized""" ) lowerCamelCase_ = True break elif attribute in special_keys and hasattr(lowercase , 'in_proj_weight' ): lowerCamelCase_ = old_model.in_proj_weight.shape[0] // 3 lowerCamelCase_ = getattr(lowercase , lowercase ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": lowerCamelCase_ = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) lowerCamelCase_ = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": lowerCamelCase_ = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) lowerCamelCase_ = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": lowerCamelCase_ = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) lowerCamelCase_ = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) lowerCamelCase_ = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 5_12, "We want 512 position_embeddings." lowerCamelCase_ = nn.Parameter(old_model.embed_positions.weight[:5_12, :] ) lowerCamelCase_ = True break if attribute.isdigit(): lowerCamelCase_ = model[int(lowercase )] lowerCamelCase_ = old_model[int(lowercase )] else: lowerCamelCase_ = getattr(lowercase , lowercase ) if old_attribute == "": lowerCamelCase_ = old_model else: if not hasattr(lowercase , lowercase ): raise ValueError(f"""{old_model} does not have {old_attribute}""" ) lowerCamelCase_ = getattr(lowercase , lowercase ) if not is_key_init: raise ValueError(f"""{key} was not correctly initialized!""" ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) prophet.save_pretrained(lowercase ) if __name__ == "__main__": lowerCamelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--prophetnet_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowerCamelCase : int = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
208
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor class A( unittest.TestCase ): '''simple docstring''' def __init__( self : str , A_ : int , A_ : Any=7 , A_ : Tuple=3 , A_ : Union[str, Any]=18 , A_ : Tuple=30 , A_ : Union[str, Any]=400 , A_ : Optional[int]=True , A_ : List[Any]=None , A_ : Dict=True , A_ : Union[str, Any]=None , A_ : Optional[int]=True , A_ : str=[0.48145466, 0.4578275, 0.40821073] , A_ : Tuple=[0.26862954, 0.26130258, 0.27577711] , A_ : Any=True , ) -> str: """simple docstring""" lowerCamelCase_ = size if size is not None else {'height': 224, 'width': 224} lowerCamelCase_ = crop_size if crop_size is not None else {'height': 18, 'width': 18} lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = num_channels lowerCamelCase_ = image_size lowerCamelCase_ = min_resolution lowerCamelCase_ = max_resolution lowerCamelCase_ = do_resize lowerCamelCase_ = size lowerCamelCase_ = do_center_crop lowerCamelCase_ = crop_size lowerCamelCase_ = do_normalize lowerCamelCase_ = image_mean lowerCamelCase_ = image_std lowerCamelCase_ = do_convert_rgb def a__ ( self : Optional[int] ) -> Tuple: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def a__ ( self : Any , A_ : Any=False , A_ : Dict=False , A_ : str=False ) -> Union[str, Any]: """simple docstring""" assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" if equal_resolution: lowerCamelCase_ = [] for i in range(self.batch_size ): image_inputs.append( np.random.randint( 255 , size=(self.num_channels, self.max_resolution, self.max_resolution) , dtype=np.uinta ) ) else: lowerCamelCase_ = [] for i in range(self.batch_size ): lowerCamelCase_ , lowerCamelCase_ = np.random.choice(np.arange(self.min_resolution , self.max_resolution ) , 2 ) image_inputs.append(np.random.randint(255 , size=(self.num_channels, width, height) , dtype=np.uinta ) ) if not numpify and not torchify: # PIL expects the channel dimension as last dimension lowerCamelCase_ = [Image.fromarray(np.moveaxis(A_ , 0 , -1 ) ) for x in image_inputs] if torchify: lowerCamelCase_ = [torch.from_numpy(A_ ) for x in image_inputs] return image_inputs @require_torch @require_vision class A( UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ChineseCLIPImageProcessor if is_vision_available() else None def a__ ( self : int ) -> Any: """simple docstring""" lowerCamelCase_ = ChineseCLIPImageProcessingTester(self , do_center_crop=A_ ) @property def a__ ( self : str ) -> List[Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def a__ ( self : int ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ , 'do_resize' ) ) self.assertTrue(hasattr(A_ , 'size' ) ) self.assertTrue(hasattr(A_ , 'do_center_crop' ) ) self.assertTrue(hasattr(A_ , 'center_crop' ) ) self.assertTrue(hasattr(A_ , 'do_normalize' ) ) self.assertTrue(hasattr(A_ , 'image_mean' ) ) self.assertTrue(hasattr(A_ , 'image_std' ) ) self.assertTrue(hasattr(A_ , 'do_convert_rgb' ) ) def a__ ( self : Any ) -> Any: """simple docstring""" lowerCamelCase_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 224, 'width': 224} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) lowerCamelCase_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def a__ ( self : List[Any] ) -> List[Any]: """simple docstring""" pass def a__ ( self : str ) -> str: """simple docstring""" lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase_ = self.image_processor_tester.prepare_inputs(equal_resolution=A_ ) for image in image_inputs: self.assertIsInstance(A_ , Image.Image ) # Test not batched input lowerCamelCase_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCamelCase_ = image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def a__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase_ = self.image_processor_tester.prepare_inputs(equal_resolution=A_ , numpify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , np.ndarray ) # Test not batched input lowerCamelCase_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCamelCase_ = image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def a__ ( self : str ) -> Dict: """simple docstring""" lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase_ = self.image_processor_tester.prepare_inputs(equal_resolution=A_ , torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor ) # Test not batched input lowerCamelCase_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCamelCase_ = image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) @require_torch @require_vision class A( UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ChineseCLIPImageProcessor if is_vision_available() else None def a__ ( self : Dict ) -> int: """simple docstring""" lowerCamelCase_ = ChineseCLIPImageProcessingTester(self , num_channels=4 , do_center_crop=A_ ) lowerCamelCase_ = 3 @property def a__ ( self : Any ) -> int: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def a__ ( self : Dict ) -> Tuple: """simple docstring""" lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ , 'do_resize' ) ) self.assertTrue(hasattr(A_ , 'size' ) ) self.assertTrue(hasattr(A_ , 'do_center_crop' ) ) self.assertTrue(hasattr(A_ , 'center_crop' ) ) self.assertTrue(hasattr(A_ , 'do_normalize' ) ) self.assertTrue(hasattr(A_ , 'image_mean' ) ) self.assertTrue(hasattr(A_ , 'image_std' ) ) self.assertTrue(hasattr(A_ , 'do_convert_rgb' ) ) def a__ ( self : Tuple ) -> List[str]: """simple docstring""" pass def a__ ( self : Union[str, Any] ) -> int: """simple docstring""" lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase_ = self.image_processor_tester.prepare_inputs(equal_resolution=A_ ) for image in image_inputs: self.assertIsInstance(A_ , Image.Image ) # Test not batched input lowerCamelCase_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCamelCase_ = image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
208
1