code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: snake_case_ = None snake_case_ = logging.get_logger(__name__) snake_case_ = {'vocab_file': 'sentencepiece.model', 'tokenizer_file': 'tokenizer.json'} snake_case_ = { 'vocab_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model', }, 'tokenizer_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/tokenizer.json', }, } snake_case_ = { 'google/rembert': 256, } snake_case_ = '▁' class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): A_ : Optional[int] = VOCAB_FILES_NAMES A_ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP A_ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : Tuple = RemBertTokenizer def __init__(self : Union[str, Any] , a__ : List[str]=None , a__ : Dict=None , a__ : Union[str, Any]=True , a__ : Tuple=True , a__ : Dict=False , a__ : Tuple="[CLS]" , a__ : Tuple="[SEP]" , a__ : List[str]="<unk>" , a__ : str="[SEP]" , a__ : Any="<pad>" , a__ : List[Any]="[CLS]" , a__ : str="[MASK]" , **a__ : Tuple , ): """simple docstring""" __snake_case = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else mask_token super().__init__( a__ , tokenizer_file=a__ , do_lower_case=a__ , remove_space=a__ , keep_accents=a__ , bos_token=a__ , eos_token=a__ , unk_token=a__ , sep_token=a__ , pad_token=a__ , cls_token=a__ , mask_token=a__ , **a__ , ) __snake_case = do_lower_case __snake_case = remove_space __snake_case = keep_accents __snake_case = vocab_file __snake_case = False if not self.vocab_file else True def a (self : List[Any] , a__ : List[int] , a__ : Optional[List[int]] = None ): """simple docstring""" __snake_case = [self.sep_token_id] __snake_case = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def a (self : Tuple , a__ : List[int] , a__ : Optional[List[int]] = None , a__ : bool = False ): """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(a__ )) + [1] + ([0] * len(a__ )) + [1] return [1] + ([0] * len(a__ )) + [1] def a (self : str , a__ : List[int] , a__ : Optional[List[int]] = None ): """simple docstring""" __snake_case = [self.sep_token_id] __snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a (self : Any , a__ : str , a__ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(a__ ): logger.error('''Vocabulary path ({}) should be a directory'''.format(a__ ) ) return __snake_case = os.path.join( a__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a__ ): copyfile(self.vocab_file , a__ ) return (out_vocab_file,)
24
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class SCREAMING_SNAKE_CASE__ : def __init__(self : str , a__ : Dict , a__ : Tuple=None , a__ : List[Any]=None , a__ : Dict=None , a__ : Union[str, Any]="resnet50" , a__ : Dict=3 , a__ : str=32 , a__ : int=3 , a__ : Dict=True , a__ : Any=True , ): """simple docstring""" __snake_case = parent __snake_case = out_indices if out_indices is not None else [4] __snake_case = stage_names __snake_case = out_features __snake_case = backbone __snake_case = batch_size __snake_case = image_size __snake_case = num_channels __snake_case = use_pretrained_backbone __snake_case = is_training def a (self : Union[str, Any] ): """simple docstring""" __snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case = self.get_config() return config, pixel_values def a (self : Any ): """simple docstring""" return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def a (self : List[Any] , a__ : int , a__ : int ): """simple docstring""" __snake_case = TimmBackbone(config=a__ ) model.to(a__ ) model.eval() with torch.no_grad(): __snake_case = model(a__ ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def a (self : str ): """simple docstring""" __snake_case = self.prepare_config_and_inputs() __snake_case , __snake_case = config_and_inputs __snake_case = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch @require_timm class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): A_ : Union[str, Any] = (TimmBackbone,) if is_torch_available() else () A_ : Optional[Any] = {'feature-extraction': TimmBackbone} if is_torch_available() else {} A_ : List[Any] = False A_ : Dict = False A_ : Any = False A_ : List[Any] = False def a (self : Tuple ): """simple docstring""" __snake_case = TimmBackboneModelTester(self ) __snake_case = ConfigTester(self , config_class=a__ , has_text_modality=a__ ) def a (self : Any ): """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a (self : int ): """simple docstring""" __snake_case = '''resnet18''' __snake_case = '''microsoft/resnet-18''' __snake_case = AutoBackbone.from_pretrained(a__ , use_timm_backbone=a__ ) __snake_case = AutoBackbone.from_pretrained(a__ ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) __snake_case = AutoBackbone.from_pretrained(a__ , use_timm_backbone=a__ , out_indices=[1, 2, 3] ) __snake_case = AutoBackbone.from_pretrained(a__ , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip('''TimmBackbone doesn\'t support feed forward chunking''' ) def a (self : str ): """simple docstring""" pass @unittest.skip('''TimmBackbone doesn\'t have num_hidden_layers attribute''' ) def a (self : int ): """simple docstring""" pass @unittest.skip('''TimmBackbone initialization is managed on the timm side''' ) def a (self : Union[str, Any] ): """simple docstring""" pass @unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' ) def a (self : Optional[int] ): """simple docstring""" pass @unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' ) def a (self : int ): """simple docstring""" pass @unittest.skip('''TimmBackbone model cannot be created without specifying a backbone checkpoint''' ) def a (self : Tuple ): """simple docstring""" pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def a (self : int ): """simple docstring""" pass @unittest.skip('''model weights aren\'t tied in TimmBackbone.''' ) def a (self : Optional[Any] ): """simple docstring""" pass @unittest.skip('''model weights aren\'t tied in TimmBackbone.''' ) def a (self : Tuple ): """simple docstring""" pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def a (self : Dict ): """simple docstring""" pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def a (self : List[Any] ): """simple docstring""" pass @unittest.skip('''TimmBackbone doesn\'t have hidden size info in its configuration.''' ) def a (self : Optional[Any] ): """simple docstring""" pass @unittest.skip('''TimmBackbone doesn\'t support output_attentions.''' ) def a (self : List[Any] ): """simple docstring""" pass @unittest.skip('''Safetensors is not supported by timm.''' ) def a (self : Tuple ): """simple docstring""" pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def a (self : Tuple ): """simple docstring""" pass def a (self : Tuple ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(a__ ) __snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case = [*signature.parameters.keys()] __snake_case = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , a__ ) def a (self : Dict ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = True __snake_case = self.has_attentions # no need to test all models as different heads yield the same functionality __snake_case = self.all_model_classes[0] __snake_case = model_class(a__ ) model.to(a__ ) __snake_case = self._prepare_for_class(a__ , a__ ) __snake_case = model(**a__ ) __snake_case = outputs[0][-1] # Encoder-/Decoder-only models __snake_case = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: __snake_case = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=a__ ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def a (self : Optional[int] ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(a__ ) model.to(a__ ) model.eval() __snake_case = model(**a__ ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None __snake_case = copy.deepcopy(a__ ) __snake_case = None __snake_case = model_class(a__ ) model.to(a__ ) model.eval() __snake_case = model(**a__ ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights __snake_case = copy.deepcopy(a__ ) __snake_case = False __snake_case = model_class(a__ ) model.to(a__ ) model.eval() __snake_case = model(**a__ )
24
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase : Tuple = { '''configuration_x_clip''': [ '''XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XCLIPConfig''', '''XCLIPTextConfig''', '''XCLIPVisionConfig''', ], '''processing_x_clip''': ['''XCLIPProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Dict = [ '''XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XCLIPModel''', '''XCLIPPreTrainedModel''', '''XCLIPTextModel''', '''XCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys _lowerCamelCase : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
130
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Tuple = logging.get_logger(__name__) _lowerCamelCase : Union[str, Any] = { '''google/canine-s''': '''https://huggingface.co/google/canine-s/resolve/main/config.json''', # See all CANINE models at https://huggingface.co/models?filter=canine } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Any = "canine" def __init__( self : int , lowercase : Optional[int]=768 , lowercase : Tuple=12 , lowercase : Union[str, Any]=12 , lowercase : Optional[int]=3_072 , lowercase : Tuple="gelu" , lowercase : Optional[Any]=0.1 , lowercase : Tuple=0.1 , lowercase : int=16_384 , lowercase : Optional[int]=16 , lowercase : Optional[int]=0.02 , lowercase : Optional[Any]=1E-12 , lowercase : Optional[Any]=0 , lowercase : Dict=0xE000 , lowercase : Optional[Any]=0xE001 , lowercase : Union[str, Any]=4 , lowercase : str=4 , lowercase : Optional[int]=8 , lowercase : List[str]=16_384 , lowercase : Union[str, Any]=128 , **lowercase : Optional[Any] , ): '''simple docstring''' super().__init__(pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , **lowercase ) _snake_case = max_position_embeddings _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = initializer_range _snake_case = type_vocab_size _snake_case = layer_norm_eps # Character config: _snake_case = downsampling_rate _snake_case = upsampling_kernel_size _snake_case = num_hash_functions _snake_case = num_hash_buckets _snake_case = local_transformer_stride
130
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A = { "configuration_timesformer": ["TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimesformerConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TimesformerModel", "TimesformerForVideoClassification", "TimesformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
import random def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Optional[Any] = a[left_index] __UpperCamelCase :Any = left_index + 1 for j in range(left_index + 1 , SCREAMING_SNAKE_CASE ): if a[j] < pivot: __UpperCamelCase , __UpperCamelCase :str = a[i], a[j] i += 1 __UpperCamelCase , __UpperCamelCase :Optional[int] = a[i - 1], a[left_index] return i - 1 def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' if left < right: __UpperCamelCase :int = random.randint(SCREAMING_SNAKE_CASE , right - 1 ) __UpperCamelCase , __UpperCamelCase :List[str] = ( a[left], a[pivot], ) # switches the pivot with the left most bound __UpperCamelCase :Dict = partition(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) quick_sort_random( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # recursive quicksort to the left of the pivot point quick_sort_random( SCREAMING_SNAKE_CASE , pivot_index + 1 , SCREAMING_SNAKE_CASE ) # recursive quicksort to the right of the pivot point def lowerCamelCase ( ): '''simple docstring''' __UpperCamelCase :Tuple = input('''Enter numbers separated by a comma:\n''' ).strip() __UpperCamelCase :Union[str, Any] = [int(SCREAMING_SNAKE_CASE ) for item in user_input.split(''',''' )] quick_sort_random(SCREAMING_SNAKE_CASE , 0 , len(SCREAMING_SNAKE_CASE ) ) print(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
43
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _snake_case = { "configuration_roberta": ["ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "RobertaConfig", "RobertaOnnxConfig"], "tokenization_roberta": ["RobertaTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["RobertaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "RobertaForCausalLM", "RobertaForMaskedLM", "RobertaForMultipleChoice", "RobertaForQuestionAnswering", "RobertaForSequenceClassification", "RobertaForTokenClassification", "RobertaModel", "RobertaPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRobertaForCausalLM", "TFRobertaForMaskedLM", "TFRobertaForMultipleChoice", "TFRobertaForQuestionAnswering", "TFRobertaForSequenceClassification", "TFRobertaForTokenClassification", "TFRobertaMainLayer", "TFRobertaModel", "TFRobertaPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "FlaxRobertaForCausalLM", "FlaxRobertaForMaskedLM", "FlaxRobertaForMultipleChoice", "FlaxRobertaForQuestionAnswering", "FlaxRobertaForSequenceClassification", "FlaxRobertaForTokenClassification", "FlaxRobertaModel", "FlaxRobertaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
300
from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class UpperCAmelCase_ ( a , a , unittest.TestCase): lowerCamelCase__ = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) lowerCamelCase__ = ( { 'feature-extraction': TFMobileBertModel, 'fill-mask': TFMobileBertForMaskedLM, 'question-answering': TFMobileBertForQuestionAnswering, 'text-classification': TFMobileBertForSequenceClassification, 'token-classification': TFMobileBertForTokenClassification, 'zero-shot': TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False def snake_case__ ( self, __a, __a, __a=False): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = super()._prepare_for_class(__a, __a, return_labels=__a) if return_labels: if model_class in get_values(__a): _lowerCAmelCase : Tuple = tf.zeros(self.model_tester.batch_size, dtype=tf.intaa) return inputs_dict class UpperCAmelCase_ ( a): def __init__( self, __a, __a=13, __a=7, __a=True, __a=True, __a=True, __a=True, __a=99, __a=32, __a=32, __a=2, __a=4, __a=37, __a="gelu", __a=0.1, __a=0.1, __a=512, __a=16, __a=2, __a=0.02, __a=3, __a=4, __a=None, ): '''simple docstring''' _lowerCAmelCase : List[Any] = parent _lowerCAmelCase : Dict = batch_size _lowerCAmelCase : str = seq_length _lowerCAmelCase : int = is_training _lowerCAmelCase : List[Any] = use_input_mask _lowerCAmelCase : Optional[Any] = use_token_type_ids _lowerCAmelCase : Union[str, Any] = use_labels _lowerCAmelCase : int = vocab_size _lowerCAmelCase : int = hidden_size _lowerCAmelCase : Optional[int] = num_hidden_layers _lowerCAmelCase : Tuple = num_attention_heads _lowerCAmelCase : Dict = intermediate_size _lowerCAmelCase : Tuple = hidden_act _lowerCAmelCase : Any = hidden_dropout_prob _lowerCAmelCase : Any = attention_probs_dropout_prob _lowerCAmelCase : List[Any] = max_position_embeddings _lowerCAmelCase : Any = type_vocab_size _lowerCAmelCase : List[Any] = type_sequence_label_size _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : List[str] = num_labels _lowerCAmelCase : List[Any] = num_choices _lowerCAmelCase : str = scope _lowerCAmelCase : Union[str, Any] = embedding_size def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) _lowerCAmelCase : str = None if self.use_input_mask: _lowerCAmelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length]) _lowerCAmelCase : List[str] = None if self.use_token_type_ids: _lowerCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : Optional[int] = None if self.use_labels: _lowerCAmelCase : int = ids_tensor([self.batch_size], self.type_sequence_label_size) _lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length], self.num_labels) _lowerCAmelCase : str = ids_tensor([self.batch_size], self.num_choices) _lowerCAmelCase : Optional[Any] = MobileBertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, embedding_size=self.embedding_size, ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : str = TFMobileBertModel(config=__a) _lowerCAmelCase : List[str] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Any = model(__a) _lowerCAmelCase : Optional[Any] = [input_ids, input_mask] _lowerCAmelCase : List[Any] = model(__a) _lowerCAmelCase : Any = model(__a) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : int = TFMobileBertForMaskedLM(config=__a) _lowerCAmelCase : List[str] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : List[Any] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : str = TFMobileBertForNextSentencePrediction(config=__a) _lowerCAmelCase : Optional[int] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : List[str] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, 2)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = TFMobileBertForPreTraining(config=__a) _lowerCAmelCase : Any = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Optional[Any] = model(__a) self.parent.assertEqual( result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.seq_relationship_logits.shape, (self.batch_size, 2)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Dict = self.num_labels _lowerCAmelCase : Optional[Any] = TFMobileBertForSequenceClassification(config=__a) _lowerCAmelCase : List[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Optional[Any] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.num_choices _lowerCAmelCase : List[Any] = TFMobileBertForMultipleChoice(config=__a) _lowerCAmelCase : Dict = tf.tile(tf.expand_dims(__a, 1), (1, self.num_choices, 1)) _lowerCAmelCase : List[str] = tf.tile(tf.expand_dims(__a, 1), (1, self.num_choices, 1)) _lowerCAmelCase : Optional[int] = tf.tile(tf.expand_dims(__a, 1), (1, self.num_choices, 1)) _lowerCAmelCase : Optional[Any] = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } _lowerCAmelCase : List[str] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : List[str] = self.num_labels _lowerCAmelCase : Union[str, Any] = TFMobileBertForTokenClassification(config=__a) _lowerCAmelCase : Optional[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Union[str, Any] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : int = TFMobileBertForQuestionAnswering(config=__a) _lowerCAmelCase : Union[str, Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Union[str, Any] = model(__a) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : Union[str, Any] = config_and_inputs _lowerCAmelCase : List[str] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = TFMobileBertModelTest.TFMobileBertModelTester(self) _lowerCAmelCase : List[Any] = ConfigTester(self, config_class=__a, hidden_size=37) def snake_case__ ( self): '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*__a) @slow def snake_case__ ( self): '''simple docstring''' for model_name in ["google/mobilebert-uncased"]: _lowerCAmelCase : List[Any] = TFMobileBertModel.from_pretrained(__a) self.assertIsNotNone(__a) @require_tf class UpperCAmelCase_ ( unittest.TestCase): @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = TFMobileBertForPreTraining.from_pretrained("google/mobilebert-uncased") _lowerCAmelCase : Any = tf.constant([[0, 1, 2, 3, 4, 5]]) _lowerCAmelCase : Tuple = model(__a)[0] _lowerCAmelCase : Union[str, Any] = [1, 6, 3_0522] self.assertEqual(output.shape, __a) _lowerCAmelCase : Tuple = tf.constant( [ [ [-4.5_919_547, -9.248_295, -9.645_256], [-6.7_306_175, -6.440_284, -6.6_052_837], [-7.2_743_506, -6.7_847_915, -6.024_673], ] ]) tf.debugging.assert_near(output[:, :3, :3], __a, atol=1E-4)
300
1
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class A__ ( unittest.TestCase): @slow def UpperCamelCase__ ( self ): lowerCamelCase : Union[str, Any] = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" ) lowerCamelCase : Any = tf.convert_to_tensor( [[5, 1_2_1, 1_1, 6_6_0, 1_6, 7_3_0, 2_5_5_4_3, 1_1_0, 8_3, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" lowerCamelCase : str = model(__magic_name__ )["""last_hidden_state"""] lowerCamelCase : Union[str, Any] = tf.TensorShape((1, 1_0, 7_6_8) ) self.assertEqual(output.shape , __magic_name__ ) # compare the actual values for a slice. lowerCamelCase : Dict = tf.convert_to_tensor( [[[-0.0_254, 0.0_235, 0.1_027], [0.0_606, -0.1_811, -0.0_418], [-0.1_561, -0.1_127, 0.2_687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
287
import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration _lowerCamelCase =5_0_0_0_0_0 _lowerCamelCase , _lowerCamelCase =os.path.split(__file__) _lowerCamelCase =os.path.join(RESULTS_BASEPATH, """results""", RESULTS_FILENAME.replace(""".py""", """.json""")) @get_duration def _a ( lowerCamelCase, **lowerCamelCase ): lowerCamelCase : Optional[Any] = dataset.map(**lowerCamelCase ) @get_duration def _a ( lowerCamelCase, **lowerCamelCase ): lowerCamelCase : Optional[Any] = dataset.filter(**lowerCamelCase ) def _a ( ): lowerCamelCase : Optional[Any] = {"""num examples""": SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase : Any = datasets.Features({"""text""": datasets.Value("""string""" ), """numbers""": datasets.Value("""float32""" )} ) lowerCamelCase : Tuple = generate_example_dataset( os.path.join(lowerCamelCase, """dataset.arrow""" ), lowerCamelCase, num_examples=lowerCamelCase ) lowerCamelCase : Tuple = transformers.AutoTokenizer.from_pretrained("""bert-base-cased""", use_fast=lowerCamelCase ) def tokenize(lowerCamelCase ): return tokenizer(examples["""text"""] ) lowerCamelCase : List[str] = map(lowerCamelCase ) lowerCamelCase : int = map(lowerCamelCase, batched=lowerCamelCase ) lowerCamelCase : int = map(lowerCamelCase, function=lambda lowerCamelCase : None, batched=lowerCamelCase ) with dataset.formatted_as(type="""numpy""" ): lowerCamelCase : Optional[int] = map(lowerCamelCase, function=lambda lowerCamelCase : None, batched=lowerCamelCase ) with dataset.formatted_as(type="""pandas""" ): lowerCamelCase : List[str] = map(lowerCamelCase, function=lambda lowerCamelCase : None, batched=lowerCamelCase ) with dataset.formatted_as(type="""torch""", columns="""numbers""" ): lowerCamelCase : List[str] = map(lowerCamelCase, function=lambda lowerCamelCase : None, batched=lowerCamelCase ) with dataset.formatted_as(type="""tensorflow""", columns="""numbers""" ): lowerCamelCase : Optional[int] = map(lowerCamelCase, function=lambda lowerCamelCase : None, batched=lowerCamelCase ) lowerCamelCase : int = map(lowerCamelCase, function=lowerCamelCase, batched=lowerCamelCase ) lowerCamelCase : Union[str, Any] = filter(lowerCamelCase ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(lowerCamelCase, """wb""" ) as f: f.write(json.dumps(lowerCamelCase ).encode("""utf-8""" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
287
1
def _A ( SCREAMING_SNAKE_CASE : list ): """simple docstring""" if len(SCREAMING_SNAKE_CASE ) <= 1: return lst a__ : Any =1 while i < len(SCREAMING_SNAKE_CASE ): if lst[i - 1] <= lst[i]: i += 1 else: a__ , a__ : Union[str, Any] =lst[i], lst[i - 1] i -= 1 if i == 0: a__ : Any =1 return lst if __name__ == "__main__": UpperCAmelCase : str = input("""Enter numbers separated by a comma:\n""").strip() UpperCAmelCase : Optional[Any] = [int(item) for item in user_input.split(""",""")] print(gnome_sort(unsorted))
148
# Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def _A ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Tuple ): """simple docstring""" a__ : List[Any] ={ "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, oder?", } # BLUE scores as follows: # "pair": [fairseq, transformers] a__ : List[Any] ={ "ru-en": ["[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)", "39.20"], "en-ru": ["[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)", "33.47"], "en-de": ["[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)", "42.83"], "de-en": ["[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)", "41.35"], } a__ : Optional[int] =f'''{src_lang}-{tgt_lang}''' a__ : Any =f''' --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt19 - facebook license: apache-2.0 datasets: - wmt19 metrics: - bleu --- # FSMT ## Model description This is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}. For more details, please see, [Facebook FAIR\'s WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616). The abbreviation FSMT stands for FairSeqMachineTranslation All four models are available: * [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru) * [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en) * [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de) * [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = "facebook/wmt19-{src_lang}-{tgt_lang}" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = "{texts[src_lang]}" input_ids = tokenizer.encode(input, return_tensors="pt") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias - The original (and this ported model) doesn\'t seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981) ## Training data Pretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616). ## Eval results pair | fairseq | transformers -------|---------|---------- {pair} | {scores[pair][0]} | {scores[pair][1]} The score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn\'t support: - model ensemble, therefore the best performing checkpoint was ported (``model4.pt``). - re-ranking The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=15 mkdir -p $DATA_DIR sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` note: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`. ## Data Sources - [training, etc.](http://www.statmt.org/wmt19/) - [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561) ### BibTeX entry and citation info ```bibtex @inproceedings{{..., year={{2020}}, title={{Facebook FAIR\'s WMT19 News Translation Task Submission}}, author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}}, booktitle={{Proc. of WMT}}, }} ``` ## TODO - port model ensemble (fairseq uses 4 model checkpoints) ''' os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) a__ : Tuple =os.path.join(SCREAMING_SNAKE_CASE , "README.md" ) print(f'''Generating {path}''' ) with open(SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" ) as f: f.write(SCREAMING_SNAKE_CASE ) # make sure we are under the root of the project UpperCAmelCase : str = Path(__file__).resolve().parent.parent.parent UpperCAmelCase : Dict = repo_dir / """model_cards""" for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] = model_name.split("""-""") UpperCAmelCase : Tuple = model_cards_dir / """facebook""" / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
148
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowercase = {'''configuration_glpn''': ['''GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GLPNConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = ['''GLPNFeatureExtractor'''] __lowercase = ['''GLPNImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ '''GLPN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GLPNForDepthEstimation''', '''GLPNLayer''', '''GLPNModel''', '''GLPNPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_glpn import GLPNFeatureExtractor from .image_processing_glpn import GLPNImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_glpn import ( GLPN_PRETRAINED_MODEL_ARCHIVE_LIST, GLPNForDepthEstimation, GLPNLayer, GLPNModel, GLPNPreTrainedModel, ) else: import sys __lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
43
import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters __lowercase = (720, 1280) # Height, Width __lowercase = (0.4, 0.6) # if height or width lower than this scale, drop it. __lowercase = 1 / 100 __lowercase = '''''' __lowercase = '''''' __lowercase = '''''' __lowercase = 250 def lowerCamelCase ( ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase :List[Any] = get_dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for index in range(SCREAMING_SNAKE_CASE ): __UpperCamelCase :Optional[Any] = random.sample(range(len(SCREAMING_SNAKE_CASE ) ) , 4 ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase :str = update_image_and_anno( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , filter_scale=SCREAMING_SNAKE_CASE , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' __UpperCamelCase :List[Any] = random_chars(32 ) __UpperCamelCase :List[str] = path.split(os.sep )[-1].rsplit('''.''' , 1 )[0] __UpperCamelCase :Tuple = f"""{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}""" cva.imwrite(f"""{file_root}.jpg""" , SCREAMING_SNAKE_CASE , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f"""Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}""" ) __UpperCamelCase :Optional[Any] = [] for anno in new_annos: __UpperCamelCase :int = anno[3] - anno[1] __UpperCamelCase :Optional[int] = anno[4] - anno[2] __UpperCamelCase :int = anno[1] + width / 2 __UpperCamelCase :List[str] = anno[2] + height / 2 __UpperCamelCase :str = f"""{anno[0]} {x_center} {y_center} {width} {height}""" annos_list.append(SCREAMING_SNAKE_CASE ) with open(f"""{file_root}.txt""" , '''w''' ) as outfile: outfile.write('''\n'''.join(line for line in annos_list ) ) def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :str = [] __UpperCamelCase :str = [] for label_file in glob.glob(os.path.join(SCREAMING_SNAKE_CASE , '''*.txt''' ) ): __UpperCamelCase :Any = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0] with open(SCREAMING_SNAKE_CASE ) as in_file: __UpperCamelCase :str = in_file.readlines() __UpperCamelCase :Optional[int] = os.path.join(SCREAMING_SNAKE_CASE , f"""{label_name}.jpg""" ) __UpperCamelCase :int = [] for obj_list in obj_lists: __UpperCamelCase :Optional[int] = obj_list.rstrip('''\n''' ).split(''' ''' ) __UpperCamelCase :Any = float(obj[1] ) - float(obj[3] ) / 2 __UpperCamelCase :List[str] = float(obj[2] ) - float(obj[4] ) / 2 __UpperCamelCase :Dict = float(obj[1] ) + float(obj[3] ) / 2 __UpperCamelCase :List[str] = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(SCREAMING_SNAKE_CASE ) labels.append(SCREAMING_SNAKE_CASE ) return img_paths, labels def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 0.0 , ): '''simple docstring''' __UpperCamelCase :List[str] = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) __UpperCamelCase :List[Any] = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) __UpperCamelCase :int = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) __UpperCamelCase :Optional[int] = int(scale_x * output_size[1] ) __UpperCamelCase :Any = int(scale_y * output_size[0] ) __UpperCamelCase :List[str] = [] __UpperCamelCase :Dict = [] for i, index in enumerate(SCREAMING_SNAKE_CASE ): __UpperCamelCase :Any = all_img_list[index] path_list.append(SCREAMING_SNAKE_CASE ) __UpperCamelCase :Any = all_annos[index] __UpperCamelCase :Union[str, Any] = cva.imread(SCREAMING_SNAKE_CASE ) if i == 0: # top-left __UpperCamelCase :str = cva.resize(SCREAMING_SNAKE_CASE , (divid_point_x, divid_point_y) ) __UpperCamelCase :Union[str, Any] = img for bbox in img_annos: __UpperCamelCase :Union[str, Any] = bbox[1] * scale_x __UpperCamelCase :Optional[Any] = bbox[2] * scale_y __UpperCamelCase :int = bbox[3] * scale_x __UpperCamelCase :Union[str, Any] = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right __UpperCamelCase :str = cva.resize(SCREAMING_SNAKE_CASE , (output_size[1] - divid_point_x, divid_point_y) ) __UpperCamelCase :List[str] = img for bbox in img_annos: __UpperCamelCase :str = scale_x + bbox[1] * (1 - scale_x) __UpperCamelCase :Dict = bbox[2] * scale_y __UpperCamelCase :Optional[Any] = scale_x + bbox[3] * (1 - scale_x) __UpperCamelCase :List[Any] = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left __UpperCamelCase :str = cva.resize(SCREAMING_SNAKE_CASE , (divid_point_x, output_size[0] - divid_point_y) ) __UpperCamelCase :Optional[int] = img for bbox in img_annos: __UpperCamelCase :Tuple = bbox[1] * scale_x __UpperCamelCase :Optional[Any] = scale_y + bbox[2] * (1 - scale_y) __UpperCamelCase :Tuple = bbox[3] * scale_x __UpperCamelCase :Dict = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right __UpperCamelCase :Optional[int] = cva.resize( SCREAMING_SNAKE_CASE , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) __UpperCamelCase :Optional[int] = img for bbox in img_annos: __UpperCamelCase :Optional[Any] = scale_x + bbox[1] * (1 - scale_x) __UpperCamelCase :Optional[int] = scale_y + bbox[2] * (1 - scale_y) __UpperCamelCase :Optional[Any] = scale_x + bbox[3] * (1 - scale_x) __UpperCamelCase :int = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: __UpperCamelCase :List[Any] = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' assert number_char > 1, "The number of character should greater than 1" __UpperCamelCase :Optional[Any] = ascii_lowercase + digits return "".join(random.choice(SCREAMING_SNAKE_CASE ) for _ in range(SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": main() print('''DONE ✅''')
43
1
"""simple docstring""" import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __a ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE__ : int = ["image_processor", "tokenizer"] SCREAMING_SNAKE_CASE__ : Optional[Any] = "ViltImageProcessor" SCREAMING_SNAKE_CASE__ : int = ("BertTokenizer", "BertTokenizerFast") def __init__( self , a__=None , a__=None , **a__ ): _lowerCamelCase = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , a__ , ) _lowerCamelCase = kwargs.pop('feature_extractor' ) _lowerCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(a__ , a__ ) _lowerCamelCase = self.image_processor def __call__( self , a__ , a__ = None , a__ = True , a__ = False , a__ = None , a__ = None , a__ = 0 , a__ = None , a__ = None , a__ = None , a__ = False , a__ = False , a__ = False , a__ = False , a__ = True , a__ = None , **a__ , ): _lowerCamelCase = self.tokenizer( text=a__ , add_special_tokens=a__ , padding=a__ , truncation=a__ , max_length=a__ , stride=a__ , pad_to_multiple_of=a__ , return_token_type_ids=a__ , return_attention_mask=a__ , return_overflowing_tokens=a__ , return_special_tokens_mask=a__ , return_offsets_mapping=a__ , return_length=a__ , verbose=a__ , return_tensors=a__ , **a__ , ) # add pixel_values + pixel_mask _lowerCamelCase = self.image_processor(a__ , return_tensors=a__ ) encoding.update(a__ ) return encoding def snake_case_ ( self , *a__ , **a__ ): return self.tokenizer.batch_decode(*a__ , **a__ ) def snake_case_ ( self , *a__ , **a__ ): return self.tokenizer.decode(*a__ , **a__ ) @property def snake_case_ ( self ): _lowerCamelCase = self.tokenizer.model_input_names _lowerCamelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def snake_case_ ( self ): warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , a__ , ) return self.image_processor_class @property def snake_case_ ( self ): warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , a__ , ) return self.image_processor
353
"""simple docstring""" import mpmath # for roots of unity import numpy as np class __a : def __init__( self , a__=None , a__=None ): # Input as list _lowerCamelCase = list(poly_a or [0] )[:] _lowerCamelCase = list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() _lowerCamelCase = len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() _lowerCamelCase = len(self.polyB ) # Add 0 to make lengths equal a power of 2 _lowerCamelCase = int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform _lowerCamelCase = complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product _lowerCamelCase = self.__multiply() def snake_case_ ( self , a__ ): _lowerCamelCase = [[x] for x in self.polyA] if which == 'A' else [[x] for x in self.polyB] # Corner case if len(a__ ) <= 1: return dft[0] # _lowerCamelCase = self.c_max_length // 2 while next_ncol > 0: _lowerCamelCase = [[] for i in range(a__ )] _lowerCamelCase = self.root**next_ncol # First half of next step _lowerCamelCase = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(a__ ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step _lowerCamelCase = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(a__ ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update _lowerCamelCase = new_dft _lowerCamelCase = next_ncol // 2 return dft[0] def snake_case_ ( self ): _lowerCamelCase = self.__dft('A' ) _lowerCamelCase = self.__dft('B' ) _lowerCamelCase = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT _lowerCamelCase = 2 while next_ncol <= self.c_max_length: _lowerCamelCase = [[] for i in range(a__ )] _lowerCamelCase = self.root ** (next_ncol // 2) _lowerCamelCase = 1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update _lowerCamelCase = new_inverse_c next_ncol *= 2 # Unpack _lowerCamelCase = [round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1J for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self ): _lowerCamelCase = 'A = ' + ' + '.join( F'{coef}*x^{i}' for coef, i in enumerate(self.polyA[: self.len_A] ) ) _lowerCamelCase = 'B = ' + ' + '.join( F'{coef}*x^{i}' for coef, i in enumerate(self.polyB[: self.len_B] ) ) _lowerCamelCase = 'A*B = ' + ' + '.join( F'{coef}*x^{i}' for coef, i in enumerate(self.product ) ) return F'{a}\n{b}\n{c}' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
80
0
import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor lowercase = logging.get_logger(__name__) class UpperCamelCase_ ( snake_case_ ): '''simple docstring''' def __init__( self , *a , **a ) -> None: warnings.warn( 'The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use FlavaImageProcessor instead.' , a , ) super().__init__(*a , **a )
178
class UpperCamelCase_ : '''simple docstring''' def __init__( self , a ) -> None: snake_case_ = set_counts snake_case_ = max(a ) snake_case_ = len(a ) snake_case_ = [1] * num_sets snake_case_ = list(range(a ) ) def _UpperCamelCase ( self , a , a ) -> bool: snake_case_ = self.get_parent(a ) snake_case_ = self.get_parent(a ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] snake_case_ = 0 snake_case_ = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 snake_case_ = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] snake_case_ = 0 snake_case_ = src_parent snake_case_ = self.set_counts[src_parent] snake_case_ = max(self.max_set , a ) return True def _UpperCamelCase ( self , a ) -> int: if self.parents[disj_set] == disj_set: return disj_set snake_case_ = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
178
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class lowercase : """simple docstring""" _a = XGLMConfig _a = {} _a = """gelu""" def __init__( self , UpperCamelCase_ , UpperCamelCase_=14 , UpperCamelCase_=7 , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=99 , UpperCamelCase_=32 , UpperCamelCase_=2 , UpperCamelCase_=4 , UpperCamelCase_=37 , UpperCamelCase_="gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=512 , UpperCamelCase_=0.02 , ): '''simple docstring''' UpperCamelCase__ :Optional[int] = parent UpperCamelCase__ :Union[str, Any] = batch_size UpperCamelCase__ :Tuple = seq_length UpperCamelCase__ :Optional[Any] = is_training UpperCamelCase__ :str = use_input_mask UpperCamelCase__ :Any = use_labels UpperCamelCase__ :List[Any] = vocab_size UpperCamelCase__ :Optional[int] = d_model UpperCamelCase__ :Union[str, Any] = num_hidden_layers UpperCamelCase__ :str = num_attention_heads UpperCamelCase__ :int = ffn_dim UpperCamelCase__ :Optional[Any] = activation_function UpperCamelCase__ :Optional[int] = activation_dropout UpperCamelCase__ :Any = attention_dropout UpperCamelCase__ :Dict = max_position_embeddings UpperCamelCase__ :Union[str, Any] = initializer_range UpperCamelCase__ :List[Any] = None UpperCamelCase__ :Optional[int] = 0 UpperCamelCase__ :Optional[int] = 2 UpperCamelCase__ :Any = 1 def lowerCAmelCase__ ( self ): '''simple docstring''' return XGLMConfig.from_pretrained('''facebook/xglm-564M''' ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Optional[int] = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) UpperCamelCase__ :Any = None if self.use_input_mask: UpperCamelCase__ :Dict = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase__ :int = self.get_config() UpperCamelCase__ :str = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def lowerCAmelCase__ ( self ): '''simple docstring''' return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=__lowerCamelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=__lowerCamelCase , ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Any = self.prepare_config_and_inputs() ( UpperCamelCase__ ) :Optional[Any] = config_and_inputs UpperCamelCase__ :Union[str, Any] = { """input_ids""": input_ids, """head_mask""": head_mask, } return config, inputs_dict @require_tf class lowercase ( _a , _a , unittest.TestCase ): """simple docstring""" _a = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () _a = (TFXGLMForCausalLM,) if is_tf_available() else () _a = ( {"""feature-extraction""": TFXGLMModel, """text-generation""": TFXGLMForCausalLM} if is_tf_available() else {} ) _a = False _a = False _a = False def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Tuple = TFXGLMModelTester(self ) UpperCamelCase__ :Tuple = ConfigTester(self , config_class=__lowerCamelCase , n_embd=37 ) def lowerCAmelCase__ ( self ): '''simple docstring''' self.config_tester.run_common_tests() @slow def lowerCAmelCase__ ( self ): '''simple docstring''' for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ :Optional[int] = TFXGLMModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) @unittest.skip(reason='''Currently, model embeddings are going to undergo a major refactor.''' ) def lowerCAmelCase__ ( self ): '''simple docstring''' super().test_resize_token_embeddings() @require_tf class lowercase ( unittest.TestCase ): """simple docstring""" @slow def lowerCAmelCase__ ( self , UpperCamelCase_=True ): '''simple docstring''' UpperCamelCase__ :Dict = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) UpperCamelCase__ :str = tf.convert_to_tensor([[2, 268, 9865]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off UpperCamelCase__ :Optional[Any] = [2, 268, 9865, 67, 11, 1988, 57252, 9865, 5, 984, 67, 1988, 213838, 1658, 53, 70446, 33, 6657, 278, 1581] # fmt: on UpperCamelCase__ :str = model.generate(__lowerCamelCase , do_sample=__lowerCamelCase , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , __lowerCamelCase ) @slow def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Tuple = XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) UpperCamelCase__ :Optional[int] = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) tf.random.set_seed(0 ) UpperCamelCase__ :List[str] = tokenizer('''Today is a nice day and''' , return_tensors='''tf''' ) UpperCamelCase__ :Optional[Any] = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(''':/CPU:0''' ): UpperCamelCase__ :Any = model.generate(__lowerCamelCase , do_sample=__lowerCamelCase , seed=[7, 0] ) UpperCamelCase__ :Union[str, Any] = tokenizer.decode(output_ids[0] , skip_special_tokens=__lowerCamelCase ) UpperCamelCase__ :Optional[int] = ( """Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due""" ) self.assertEqual(__lowerCamelCase , __lowerCamelCase ) @slow def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Any = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) UpperCamelCase__ :List[str] = XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) UpperCamelCase__ :Tuple = """left""" # use different length sentences to test batching UpperCamelCase__ :List[str] = [ """This is an extremelly long sentence that only exists to test the ability of the model to cope with """ """left-padding, such as in batched generation. The output for the sequence below should be the same """ """regardless of whether left padding is applied or not. When""", """Hello, my dog is a little""", ] UpperCamelCase__ :str = tokenizer(__lowerCamelCase , return_tensors='''tf''' , padding=__lowerCamelCase ) UpperCamelCase__ :Optional[int] = inputs["""input_ids"""] UpperCamelCase__ :Union[str, Any] = model.generate(input_ids=__lowerCamelCase , attention_mask=inputs['''attention_mask'''] , max_new_tokens=12 ) UpperCamelCase__ :Optional[int] = tokenizer(sentences[0] , return_tensors='''tf''' ).input_ids UpperCamelCase__ :Dict = model.generate(input_ids=__lowerCamelCase , max_new_tokens=12 ) UpperCamelCase__ :List[str] = tokenizer(sentences[1] , return_tensors='''tf''' ).input_ids UpperCamelCase__ :int = model.generate(input_ids=__lowerCamelCase , max_new_tokens=12 ) UpperCamelCase__ :Any = tokenizer.batch_decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) UpperCamelCase__ :Any = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__lowerCamelCase ) UpperCamelCase__ :List[str] = tokenizer.decode(output_padded[0] , skip_special_tokens=__lowerCamelCase ) UpperCamelCase__ :str = [ """This is an extremelly long sentence that only exists to test the ability of the model to cope with """ """left-padding, such as in batched generation. The output for the sequence below should be the same """ """regardless of whether left padding is applied or not. When left padding is applied, the sequence will be """ """a single""", """Hello, my dog is a little bit of a shy one, but he is very friendly""", ] self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) self.assertListEqual(__lowerCamelCase , [non_padded_sentence, padded_sentence] )
368
'''simple docstring''' import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = {'''vocab_file''': '''vocab.txt'''} __snake_case = { '''vocab_file''': { '''openbmb/cpm-ant-10b''': '''https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt''', }, } __snake_case = { '''openbmb/cpm-ant-10b''': 1024, } def a ( __a ) -> Tuple: '''simple docstring''' UpperCamelCase__ :List[str] = collections.OrderedDict() with open(__a , '''r''' , encoding='''utf-8''' ) as reader: UpperCamelCase__ :Dict = reader.readlines() for index, token in enumerate(__a ): UpperCamelCase__ :str = token.rstrip('''\n''' ) UpperCamelCase__ :Optional[int] = index return vocab class lowercase ( A__ ): """simple docstring""" def __init__( self , UpperCamelCase_ , UpperCamelCase_="<unk>" , UpperCamelCase_=200 ): '''simple docstring''' UpperCamelCase__ :Tuple = vocab UpperCamelCase__ :List[str] = unk_token UpperCamelCase__ :Tuple = max_input_chars_per_word def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :Optional[int] = list(UpperCamelCase_ ) if len(UpperCamelCase_ ) > self.max_input_chars_per_word: return [self.unk_token] UpperCamelCase__ :List[Any] = 0 UpperCamelCase__ :str = [] while start < len(UpperCamelCase_ ): UpperCamelCase__ :int = len(UpperCamelCase_ ) UpperCamelCase__ :List[Any] = None while start < end: UpperCamelCase__ :int = ''''''.join(chars[start:end] ) if substr in self.vocab: UpperCamelCase__ :List[Any] = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(UpperCamelCase_ ) UpperCamelCase__ :Any = end return sub_tokens class lowercase ( A__ ): """simple docstring""" _a = VOCAB_FILES_NAMES _a = PRETRAINED_VOCAB_FILES_MAP _a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = ['input_ids', 'attention_mask'] _a = False def __init__( self , UpperCamelCase_ , UpperCamelCase_="<d>" , UpperCamelCase_="</d>" , UpperCamelCase_="<s>" , UpperCamelCase_="</s>" , UpperCamelCase_="<pad>" , UpperCamelCase_="<unk>" , UpperCamelCase_="</n>" , UpperCamelCase_="</_>" , UpperCamelCase_="left" , **UpperCamelCase_ , ): '''simple docstring''' requires_backends(self , ['''jieba'''] ) super().__init__( bod_token=UpperCamelCase_ , eod_token=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , line_token=UpperCamelCase_ , space_token=UpperCamelCase_ , padding_side=UpperCamelCase_ , **UpperCamelCase_ , ) UpperCamelCase__ :Tuple = bod_token UpperCamelCase__ :Dict = eod_token UpperCamelCase__ :Optional[int] = load_vocab(UpperCamelCase_ ) UpperCamelCase__ :Tuple = self.encoder[space_token] UpperCamelCase__ :List[Any] = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] UpperCamelCase__ :Union[str, Any] = collections.OrderedDict(sorted(self.encoder.items() , key=lambda UpperCamelCase_ : x[1] ) ) UpperCamelCase__ :Union[str, Any] = {v: k for k, v in self.encoder.items()} UpperCamelCase__ :List[Any] = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def lowerCAmelCase__ ( self ): '''simple docstring''' return self.encoder[self.bod_token] @property def lowerCAmelCase__ ( self ): '''simple docstring''' return self.encoder[self.eod_token] @property def lowerCAmelCase__ ( self ): '''simple docstring''' return self.encoder["\n"] @property def lowerCAmelCase__ ( self ): '''simple docstring''' return len(self.encoder ) def lowerCAmelCase__ ( self ): '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :List[Any] = [] for x in jieba.cut(UpperCamelCase_ , cut_all=UpperCamelCase_ ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(UpperCamelCase_ ) ) return output_tokens def lowerCAmelCase__ ( self , UpperCamelCase_ , **UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :List[Any] = [i for i in token_ids if i >= 0] UpperCamelCase__ :Optional[int] = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(UpperCamelCase_ , **UpperCamelCase_ ) def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' return token in self.encoder def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' return "".join(UpperCamelCase_ ) def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' return self.encoder.get(UpperCamelCase_ , self.encoder.get(self.unk_token ) ) def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' return self.decoder.get(UpperCamelCase_ , self.unk_token ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ = None ): '''simple docstring''' if os.path.isdir(UpperCamelCase_ ): UpperCamelCase__ :int = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) else: UpperCamelCase__ :str = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory UpperCamelCase__ :Any = 0 if " " in self.encoder: UpperCamelCase__ :Dict = self.encoder[''' '''] del self.encoder[" "] if "\n" in self.encoder: UpperCamelCase__ :List[str] = self.encoder['''\n'''] del self.encoder["\n"] UpperCamelCase__ :List[str] = collections.OrderedDict(sorted(self.encoder.items() , key=lambda UpperCamelCase_ : x[1] ) ) with open(UpperCamelCase_ , '''w''' , encoding='''utf-8''' ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( F'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' ''' Please check that the vocabulary is not corrupted!''' ) UpperCamelCase__ :Any = token_index writer.write(token + '''\n''' ) index += 1 return (vocab_file,) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ = None ): '''simple docstring''' if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) if token_ids_a is not None: return [1] + ([0] * len(UpperCamelCase_ )) + [1] + ([0] * len(UpperCamelCase_ )) return [1] + ([0] * len(UpperCamelCase_ ))
219
0
import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow lowerCAmelCase__ = False class a__ ( unittest.TestCase ): """simple docstring""" def UpperCamelCase ( self , lowercase=32 ) -> Union[str, Any]: '''simple docstring''' set_seed(0 ) A__ = UNetaDModel(sample_size=lowercase , in_channels=3 , out_channels=3 ) A__ = torch.optim.SGD(model.parameters() , lr=0.0001 ) return model, optimizer @slow def UpperCamelCase ( self ) -> str: '''simple docstring''' A__ = "cpu" # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable A__ = DDPMScheduler( num_train_timesteps=1000 , beta_start=0.0001 , beta_end=0.02 , beta_schedule="linear" , clip_sample=lowercase , ) A__ = DDIMScheduler( num_train_timesteps=1000 , beta_start=0.0001 , beta_end=0.02 , beta_schedule="linear" , clip_sample=lowercase , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0 ) A__ = [torch.randn((4, 3, 32, 32) ).clip(-1 , 1 ).to(lowercase ) for _ in range(4 )] A__ = [torch.randn((4, 3, 32, 32) ).to(lowercase ) for _ in range(4 )] A__ = [torch.randint(0 , 1000 , (4,) ).long().to(lowercase ) for _ in range(4 )] # train with a DDPM scheduler A__ , A__ = self.get_model_optimizer(resolution=32 ) model.train().to(lowercase ) for i in range(4 ): optimizer.zero_grad() A__ = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) A__ = model(lowercase , timesteps[i] ).sample A__ = torch.nn.functional.mse_loss(lowercase , noise[i] ) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM A__ , A__ = self.get_model_optimizer(resolution=32 ) model.train().to(lowercase ) for i in range(4 ): optimizer.zero_grad() A__ = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) A__ = model(lowercase , timesteps[i] ).sample A__ = torch.nn.functional.mse_loss(lowercase , noise[i] ) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(lowercase , lowercase , atol=1e-5 ) ) self.assertTrue(torch.allclose(lowercase , lowercase , atol=1e-5 ) )
68
"""simple docstring""" import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def lowercase ( _SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' _UpperCAmelCase = args.pruning_method _UpperCAmelCase = args.threshold _UpperCAmelCase = args.model_name_or_path.rstrip('''/''' ) _UpperCAmelCase = args.target_model_path print(f'Load fine-pruned model from {model_name_or_path}' ) _UpperCAmelCase = torch.load(os.path.join(_SCREAMING_SNAKE_CASE , '''pytorch_model.bin''' ) ) _UpperCAmelCase = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: _UpperCAmelCase = tensor print(f'Copied layer {name}' ) elif "classifier" in name or "qa_output" in name: _UpperCAmelCase = tensor print(f'Copied layer {name}' ) elif "bias" in name: _UpperCAmelCase = tensor print(f'Copied layer {name}' ) else: if pruning_method == "magnitude": _UpperCAmelCase = MagnitudeBinarizer.apply(inputs=_SCREAMING_SNAKE_CASE , threshold=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = tensor * mask print(f'Pruned layer {name}' ) elif pruning_method == "topK": if "mask_scores" in name: continue _UpperCAmelCase = name[:-6] _UpperCAmelCase = model[f'{prefix_}mask_scores'] _UpperCAmelCase = TopKBinarizer.apply(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = tensor * mask print(f'Pruned layer {name}' ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue _UpperCAmelCase = name[:-6] _UpperCAmelCase = model[f'{prefix_}mask_scores'] _UpperCAmelCase = ThresholdBinarizer.apply(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = tensor * mask print(f'Pruned layer {name}' ) elif pruning_method == "l0": if "mask_scores" in name: continue _UpperCAmelCase = name[:-6] _UpperCAmelCase = model[f'{prefix_}mask_scores'] _UpperCAmelCase , _UpperCAmelCase = -0.1, 1.1 _UpperCAmelCase = torch.sigmoid(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = s * (r - l) + l _UpperCAmelCase = s_bar.clamp(min=0.0 , max=1.0 ) _UpperCAmelCase = tensor * mask print(f'Pruned layer {name}' ) else: raise ValueError('''Unknown pruning method''' ) if target_model_path is None: _UpperCAmelCase = os.path.join( os.path.dirname(_SCREAMING_SNAKE_CASE ) , f'bertarized_{os.path.basename(_SCREAMING_SNAKE_CASE )}' ) if not os.path.isdir(_SCREAMING_SNAKE_CASE ): shutil.copytree(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) print(f'\nCreated folder {target_model_path}' ) torch.save(_SCREAMING_SNAKE_CASE , os.path.join(_SCREAMING_SNAKE_CASE , '''pytorch_model.bin''' ) ) print('''\nPruned model saved! See you later!''' ) if __name__ == "__main__": __A : Tuple = argparse.ArgumentParser() parser.add_argument( "--pruning_method", choices=["l0", "magnitude", "topK", "sigmoied_threshold"], type=str, required=True, help=( "Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning," " sigmoied_threshold = Soft movement pruning)" ), ) parser.add_argument( "--threshold", type=float, required=False, help=( "For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model." "For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared." "Not needed for `l0`" ), ) parser.add_argument( "--model_name_or_path", type=str, required=True, help="Folder containing the model that was previously fine-pruned", ) parser.add_argument( "--target_model_path", default=None, type=str, required=False, help="Folder containing the model that was previously fine-pruned", ) __A : Optional[int] = parser.parse_args() main(args)
260
0
import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py __lowerCamelCase : Optional[Any] = """src/transformers""" __lowerCamelCase : Optional[Any] = """docs/source/en/tasks""" def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: with open(_lowerCAmelCase , "r" , encoding="utf-8" , newline="\n" ) as f: UpperCamelCase : str = f.readlines() # Find the start prompt. UpperCamelCase : int = 0 while not lines[start_index].startswith(_lowerCAmelCase ): start_index += 1 start_index += 1 UpperCamelCase : int = start_index while not lines[end_index].startswith(_lowerCAmelCase ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. __lowerCamelCase : Optional[int] = direct_transformers_import(TRANSFORMERS_PATH) __lowerCamelCase : Tuple = { """asr.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, """audio_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, """language_modeling.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, """image_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, """masked_language_modeling.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, """multiple_choice.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, """object_detection.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, """question_answering.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, """semantic_segmentation.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, """sequence_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, """summarization.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, """token_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, """translation.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, """video_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, """document_question_answering.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, """monocular_depth_estimation.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). __lowerCamelCase : List[Any] = { """summarization.md""": ("""nllb""",), """translation.md""": ("""nllb""",), } def A_ ( _lowerCAmelCase ) -> Optional[int]: UpperCamelCase : Tuple = TASK_GUIDE_TO_MODELS[task_guide] UpperCamelCase : Dict = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(_lowerCAmelCase , set() ) UpperCamelCase : str = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([F"""[{name}](../model_doc/{code})""" for code, name in model_names.items()] ) + "\n" def A_ ( _lowerCAmelCase , _lowerCAmelCase=False ) -> List[Any]: UpperCamelCase : int = _find_text_in_file( filename=os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , start_prompt="<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->" , end_prompt="<!--End of the generated tip-->" , ) UpperCamelCase : str = get_model_list_for_task(_lowerCAmelCase ) if current_list != new_list: if overwrite: with open(os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( F"""The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`""" " to fix this." ) if __name__ == "__main__": __lowerCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") __lowerCamelCase : Union[str, Any] = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
366
__lowerCamelCase : Tuple = """ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/""" def A_ ( _lowerCAmelCase ) -> bytes: # Make sure the supplied data is a bytes-like object if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): UpperCamelCase : str = F"""a bytes-like object is required, not '{data.__class__.__name__}'""" raise TypeError(_lowerCAmelCase ) UpperCamelCase : Optional[int] = "".join(bin(_lowerCAmelCase )[2:].zfill(8 ) for byte in data ) UpperCamelCase : str = len(_lowerCAmelCase ) % 6 != 0 if padding_needed: # The padding that will be added later UpperCamelCase : Optional[Any] = b"=" * ((6 - len(_lowerCAmelCase ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(_lowerCAmelCase ) % 6) else: UpperCamelCase : List[Any] = b"" # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(_lowerCAmelCase ) , 6 ) ).encode() + padding ) def A_ ( _lowerCAmelCase ) -> bytes: # Make sure encoded_data is either a string or a bytes-like object if not isinstance(_lowerCAmelCase , _lowerCAmelCase ) and not isinstance(_lowerCAmelCase , _lowerCAmelCase ): UpperCamelCase : List[Any] = ( "argument should be a bytes-like object or ASCII string, " F"""not '{encoded_data.__class__.__name__}'""" ) raise TypeError(_lowerCAmelCase ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(_lowerCAmelCase , _lowerCAmelCase ): try: UpperCamelCase : Any = encoded_data.decode("utf-8" ) except UnicodeDecodeError: raise ValueError("base64 encoded data should only contain ASCII characters" ) UpperCamelCase : Union[str, Any] = encoded_data.count("=" ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(_lowerCAmelCase ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one UpperCamelCase : List[str] = encoded_data[:-padding] UpperCamelCase : List[Any] = "".join( bin(B64_CHARSET.index(_lowerCAmelCase ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: UpperCamelCase : List[Any] = "".join( bin(B64_CHARSET.index(_lowerCAmelCase ) )[2:].zfill(6 ) for char in encoded_data ) UpperCamelCase : Any = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(_lowerCAmelCase ) , 8 ) ] return bytes(_lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
140
0
'''simple docstring''' import unittest from transformers import MPNetConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) class A__ : def __init__( self : int , _a : Optional[int] , _a : Optional[Any]=13 , _a : List[Any]=7 , _a : List[Any]=True , _a : str=True , _a : Dict=False , _a : str=True , _a : List[str]=99 , _a : str=64 , _a : Union[str, Any]=5 , _a : List[Any]=4 , _a : Optional[Any]=64 , _a : Tuple="gelu" , _a : List[str]=0.1 , _a : str=0.1 , _a : int=512 , _a : Dict=16 , _a : List[str]=2 , _a : int=0.02 , _a : Union[str, Any]=3 , _a : str=4 , _a : Tuple=None , ) -> Optional[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =parent _SCREAMING_SNAKE_CASE =batch_size _SCREAMING_SNAKE_CASE =seq_length _SCREAMING_SNAKE_CASE =is_training _SCREAMING_SNAKE_CASE =use_input_mask _SCREAMING_SNAKE_CASE =use_token_type_ids _SCREAMING_SNAKE_CASE =use_labels _SCREAMING_SNAKE_CASE =vocab_size _SCREAMING_SNAKE_CASE =hidden_size _SCREAMING_SNAKE_CASE =num_hidden_layers _SCREAMING_SNAKE_CASE =num_attention_heads _SCREAMING_SNAKE_CASE =intermediate_size _SCREAMING_SNAKE_CASE =hidden_act _SCREAMING_SNAKE_CASE =hidden_dropout_prob _SCREAMING_SNAKE_CASE =attention_probs_dropout_prob _SCREAMING_SNAKE_CASE =max_position_embeddings _SCREAMING_SNAKE_CASE =type_vocab_size _SCREAMING_SNAKE_CASE =type_sequence_label_size _SCREAMING_SNAKE_CASE =initializer_range _SCREAMING_SNAKE_CASE =num_labels _SCREAMING_SNAKE_CASE =num_choices _SCREAMING_SNAKE_CASE =scope def A ( self : str ) -> Tuple: '''simple docstring''' return MPNetConfig.from_pretrained('microsoft/mpnet-base' ) def A ( self : int ) -> int: '''simple docstring''' _SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE =None if self.use_input_mask: _SCREAMING_SNAKE_CASE =random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE =None _SCREAMING_SNAKE_CASE =None _SCREAMING_SNAKE_CASE =None if self.use_labels: _SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] , self.num_choices ) _SCREAMING_SNAKE_CASE =self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def A ( self : Dict ) -> Dict: '''simple docstring''' return MPNetConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def A ( self : Tuple , _a : Dict , _a : Dict , _a : Dict , _a : int , _a : Optional[int] , _a : Any ) -> Tuple: '''simple docstring''' _SCREAMING_SNAKE_CASE =MPNetModel(config=_a ) model.to(_a ) model.eval() _SCREAMING_SNAKE_CASE =model(_a , _a ) _SCREAMING_SNAKE_CASE =model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def A ( self : Union[str, Any] , _a : List[Any] , _a : Dict , _a : List[Any] , _a : Any , _a : List[Any] , _a : Dict ) -> Optional[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =MPNetForQuestionAnswering(config=_a ) model.to(_a ) model.eval() _SCREAMING_SNAKE_CASE =model( _a , attention_mask=_a , start_positions=_a , end_positions=_a , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A ( self : Tuple , _a : Any , _a : List[Any] , _a : List[Any] , _a : Dict , _a : List[str] , _a : List[Any] ) -> List[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.num_labels _SCREAMING_SNAKE_CASE =MPNetForSequenceClassification(_a ) model.to(_a ) model.eval() _SCREAMING_SNAKE_CASE =model(_a , attention_mask=_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : Any , _a : int , _a : Optional[Any] , _a : List[Any] , _a : Tuple , _a : Tuple , _a : int ) -> Any: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.num_choices _SCREAMING_SNAKE_CASE =MPNetForMultipleChoice(config=_a ) model.to(_a ) model.eval() _SCREAMING_SNAKE_CASE =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _SCREAMING_SNAKE_CASE =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _SCREAMING_SNAKE_CASE =model( _a , attention_mask=_a , labels=_a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A ( self : Any , _a : int , _a : Optional[Any] , _a : Optional[Any] , _a : str , _a : List[Any] , _a : Any ) -> Any: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.num_labels _SCREAMING_SNAKE_CASE =MPNetForTokenClassification(config=_a ) model.to(_a ) model.eval() _SCREAMING_SNAKE_CASE =model(_a , attention_mask=_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A ( self : Any ) -> List[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.prepare_config_and_inputs() ((_SCREAMING_SNAKE_CASE) , (_SCREAMING_SNAKE_CASE) , (_SCREAMING_SNAKE_CASE) , (_SCREAMING_SNAKE_CASE) , (_SCREAMING_SNAKE_CASE) , (_SCREAMING_SNAKE_CASE)) =config_and_inputs _SCREAMING_SNAKE_CASE ={'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class A__ ( A__ , A__ , unittest.TestCase ): A__ = ( ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) if is_torch_available() else () ) A__ = ( { 'feature-extraction': MPNetModel, 'fill-mask': MPNetForMaskedLM, 'question-answering': MPNetForQuestionAnswering, 'text-classification': MPNetForSequenceClassification, 'token-classification': MPNetForTokenClassification, 'zero-shot': MPNetForSequenceClassification, } if is_torch_available() else {} ) A__ = False A__ = True def A ( self : int ) -> Optional[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =MPNetModelTester(self ) _SCREAMING_SNAKE_CASE =ConfigTester(self , config_class=_a , hidden_size=37 ) def A ( self : List[Any] ) -> int: '''simple docstring''' self.config_tester.run_common_tests() def A ( self : Any ) -> Any: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_model(*_a ) def A ( self : List[Any] ) -> List[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_sequence_classification(*_a ) def A ( self : Optional[int] ) -> str: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_multiple_choice(*_a ) def A ( self : Any ) -> Tuple: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_token_classification(*_a ) def A ( self : str ) -> str: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_question_answering(*_a ) @require_torch class A__ ( unittest.TestCase ): @slow def A ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =MPNetModel.from_pretrained('microsoft/mpnet-base' ) _SCREAMING_SNAKE_CASE =torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) _SCREAMING_SNAKE_CASE =model(_a )[0] _SCREAMING_SNAKE_CASE =torch.Size((1, 11, 768) ) self.assertEqual(output.shape , _a ) _SCREAMING_SNAKE_CASE =torch.tensor( [[[-0.05_50, 0.19_43, -0.07_40], [-0.05_62, 0.22_11, -0.05_79], [-0.04_37, 0.33_37, -0.06_41]]] ) # compare the actual values for a slice. self.assertTrue(torch.allclose(output[:, :3, :3] , _a , atol=1e-4 ) )
47
'''simple docstring''' import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device lowerCamelCase : Optional[int] = False class A__ ( unittest.TestCase ): pass @slow @require_torch_gpu class A__ ( unittest.TestCase ): def A ( self : Tuple ) -> Dict: '''simple docstring''' _SCREAMING_SNAKE_CASE =VersatileDiffusionImageVariationPipeline.from_pretrained('shi-labs/versatile-diffusion' ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) _SCREAMING_SNAKE_CASE =load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) _SCREAMING_SNAKE_CASE =torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE =pipe( image=_a , generator=_a , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' , ).images _SCREAMING_SNAKE_CASE =image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) _SCREAMING_SNAKE_CASE =np.array([0.04_41, 0.04_69, 0.05_07, 0.05_75, 0.06_32, 0.06_50, 0.08_65, 0.09_09, 0.09_45] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
47
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { """EleutherAI/gpt-neox-20b""": """https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json""", # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class SCREAMING_SNAKE_CASE_ ( snake_case_ ): __magic_name__: Optional[int] = "gpt_neox" def __init__( self : Dict , _A : List[str]=50432 , _A : Any=6144 , _A : Optional[Any]=44 , _A : Union[str, Any]=64 , _A : List[str]=24576 , _A : Optional[int]="gelu" , _A : Dict=0.2_5 , _A : Tuple=10000 , _A : List[str]=0.0 , _A : int=0.0 , _A : Dict=0.1 , _A : Any=2048 , _A : Any=0.0_2 , _A : List[str]=1E-5 , _A : Any=True , _A : List[Any]=0 , _A : int=2 , _A : str=False , _A : List[str]=True , _A : Optional[Any]=None , **_A : Dict , ) -> int: """simple docstring""" super().__init__(bos_token_id=_A , eos_token_id=_A , **_A ) snake_case_ : str = vocab_size snake_case_ : Union[str, Any] = max_position_embeddings snake_case_ : Tuple = hidden_size snake_case_ : Tuple = num_hidden_layers snake_case_ : str = num_attention_heads snake_case_ : Dict = intermediate_size snake_case_ : Optional[int] = hidden_act snake_case_ : int = rotary_pct snake_case_ : str = rotary_emb_base snake_case_ : List[Any] = attention_dropout snake_case_ : Union[str, Any] = hidden_dropout snake_case_ : Dict = classifier_dropout snake_case_ : Optional[Any] = initializer_range snake_case_ : Union[str, Any] = layer_norm_eps snake_case_ : Any = use_cache snake_case_ : List[Any] = tie_word_embeddings snake_case_ : Tuple = use_parallel_residual snake_case_ : str = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( 'The hidden size is not divisble by the number of attention heads! Make sure to update them!' ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" if self.rope_scaling is None: return if not isinstance(self.rope_scaling , _A ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' F"""got {self.rope_scaling}""" ) snake_case_ : str = self.rope_scaling.get('type' , _A ) snake_case_ : Optional[int] = self.rope_scaling.get('factor' , _A ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(_A , _A ) or rope_scaling_factor <= 1.0: raise ValueError(F"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
88
from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class SCREAMING_SNAKE_CASE_ : __magic_name__: int = MBartConfig __magic_name__: str = {} __magic_name__: Union[str, Any] = "gelu" def __init__( self : List[str] , _A : Optional[int] , _A : List[Any]=13 , _A : List[Any]=7 , _A : Dict=True , _A : Tuple=False , _A : Optional[Any]=99 , _A : Dict=32 , _A : str=2 , _A : str=4 , _A : Tuple=37 , _A : Tuple=0.1 , _A : Union[str, Any]=0.1 , _A : Optional[int]=20 , _A : Dict=2 , _A : List[str]=1 , _A : Union[str, Any]=0 , ) -> List[Any]: """simple docstring""" snake_case_ : str = parent snake_case_ : List[str] = batch_size snake_case_ : List[str] = seq_length snake_case_ : Union[str, Any] = is_training snake_case_ : Optional[int] = use_labels snake_case_ : Dict = vocab_size snake_case_ : Union[str, Any] = hidden_size snake_case_ : str = num_hidden_layers snake_case_ : Optional[Any] = num_attention_heads snake_case_ : Union[str, Any] = intermediate_size snake_case_ : Any = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : Optional[Any] = max_position_embeddings snake_case_ : Optional[Any] = eos_token_id snake_case_ : Tuple = pad_token_id snake_case_ : int = bos_token_id def UpperCAmelCase_ ( self : List[str] ) -> Tuple: """simple docstring""" snake_case_ : List[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) snake_case_ : int = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) snake_case_ : Dict = tf.concat([input_ids, eos_tensor] , axis=1 ) snake_case_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : Optional[Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) snake_case_ : Union[str, Any] = prepare_mbart_inputs_dict(_A , _A , _A ) return config, inputs_dict def UpperCAmelCase_ ( self : Optional[Any] , _A : Optional[Any] , _A : int ) -> str: """simple docstring""" snake_case_ : Dict = TFMBartModel(config=_A ).get_decoder() snake_case_ : Any = inputs_dict['input_ids'] snake_case_ : List[Any] = input_ids[:1, :] snake_case_ : Dict = inputs_dict['attention_mask'][:1, :] snake_case_ : Tuple = inputs_dict['head_mask'] snake_case_ : List[Any] = 1 # first forward pass snake_case_ : Any = model(_A , attention_mask=_A , head_mask=_A , use_cache=_A ) snake_case_ ,snake_case_ : str = outputs.to_tuple() snake_case_ : int = past_key_values[1] def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a=None , __a=None , __a=None , __a=None , __a=None , ): if attention_mask is None: snake_case_ : Optional[int] = tf.cast(tf.math.not_equal(__a , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: snake_case_ : str = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: snake_case_ : str = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: snake_case_ : int = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: snake_case_ : Dict = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class SCREAMING_SNAKE_CASE_ ( snake_case_ , snake_case_ , unittest.TestCase ): __magic_name__: Tuple = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () __magic_name__: int = (TFMBartForConditionalGeneration,) if is_tf_available() else () __magic_name__: Union[str, Any] = ( { "conversational": TFMBartForConditionalGeneration, "feature-extraction": TFMBartModel, "summarization": TFMBartForConditionalGeneration, "text2text-generation": TFMBartForConditionalGeneration, "translation": TFMBartForConditionalGeneration, } if is_tf_available() else {} ) __magic_name__: Tuple = True __magic_name__: Tuple = False __magic_name__: Any = False def UpperCAmelCase_ ( self : Any , _A : Union[str, Any] , _A : List[Any] , _A : str , _A : int , _A : Dict ) -> Union[str, Any]: """simple docstring""" if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def UpperCAmelCase_ ( self : Dict ) -> Tuple: """simple docstring""" snake_case_ : Optional[Any] = TFMBartModelTester(self ) snake_case_ : List[Any] = ConfigTester(self , config_class=_A ) def UpperCAmelCase_ ( self : Optional[Any] ) -> str: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase_ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" snake_case_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_A ) @require_sentencepiece @require_tokenizers @require_tf class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): __magic_name__: Optional[int] = [ " UN Chief Says There Is No Military Solution in Syria", ] __magic_name__: Union[str, Any] = [ "Şeful ONU declară că nu există o soluţie militară în Siria", ] __magic_name__: List[Any] = "facebook/mbart-large-en-ro" @cached_property def UpperCAmelCase_ ( self : str ) -> List[Any]: """simple docstring""" return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def UpperCAmelCase_ ( self : List[Any] ) -> Any: """simple docstring""" snake_case_ : List[str] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def UpperCAmelCase_ ( self : Optional[int] , **_A : str ) -> int: """simple docstring""" snake_case_ : List[str] = self.translate_src_text(**_A ) self.assertListEqual(self.expected_text , _A ) def UpperCAmelCase_ ( self : Union[str, Any] , **_A : Dict ) -> int: """simple docstring""" snake_case_ : Optional[Any] = self.tokenizer(self.src_text , **_A , return_tensors='tf' ) snake_case_ : int = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) snake_case_ : Any = self.tokenizer.batch_decode(_A , skip_special_tokens=_A ) return generated_words @slow def UpperCAmelCase_ ( self : str ) -> List[str]: """simple docstring""" self._assert_generated_batch_equal_expected()
88
1
"""simple docstring""" def _snake_case ( UpperCamelCase : dict ): UpperCAmelCase : set[int] = set() # To detect a back edge, keep track of vertices currently in the recursion stack UpperCAmelCase : set[int] = set() return any( node not in visited and depth_first_search(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) for node in graph ) def _snake_case ( UpperCamelCase : dict , UpperCamelCase : int , UpperCamelCase : set , UpperCamelCase : set ): visited.add(UpperCamelCase ) rec_stk.add(UpperCamelCase ) for node in graph[vertex]: if node not in visited: if depth_first_search(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(UpperCamelCase ) return False if __name__ == "__main__": from doctest import testmod testmod()
109
import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging a__ = ["""bart.large""", """bart.large.mnli""", """bart.large.cnn""", """bart_xsum/model.pt"""] a__ = {"""bart.large""": BartModel, """bart.large.mnli""": BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse("""0.9.0"""): raise Exception("""requires fairseq >= 0.9.0""") logging.set_verbosity_info() a__ = logging.get_logger(__name__) a__ = """ Hello world! cécé herlolip""" a__ = [ ("""model.classification_heads.mnli.dense.weight""", """classification_head.dense.weight"""), ("""model.classification_heads.mnli.dense.bias""", """classification_head.dense.bias"""), ("""model.classification_heads.mnli.out_proj.weight""", """classification_head.out_proj.weight"""), ("""model.classification_heads.mnli.out_proj.bias""", """classification_head.out_proj.bias"""), ] def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[Any]: _snake_case : Union[str, Any] = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """_float_tensor""", ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple: _snake_case : Optional[int] = dct.pop(SCREAMING_SNAKE_CASE__ ) _snake_case : int = val def lowercase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Optional[int]: _snake_case : List[Any] = torch.load(SCREAMING_SNAKE_CASE__ , map_location="""cpu""" ) _snake_case : int = torch.hub.load("""pytorch/fairseq""" , """bart.large.cnn""" ).eval() hub_interface.model.load_state_dict(sd["""model"""] ) return hub_interface def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Optional[Any]: _snake_case , _snake_case : List[str] = emb.weight.shape _snake_case : Any = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = emb.weight.data return lin_layer @torch.no_grad() def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str=None ) -> List[str]: if not os.path.exists(SCREAMING_SNAKE_CASE__ ): _snake_case : List[str] = torch.hub.load("""pytorch/fairseq""" , SCREAMING_SNAKE_CASE__ ).eval() else: _snake_case : Union[str, Any] = load_xsum_checkpoint(SCREAMING_SNAKE_CASE__ ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: _snake_case : Optional[Any] = checkpoint_path.replace(""".""" , """-""" ) _snake_case : Optional[Any] = BartConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) _snake_case : List[Any] = bart.encode(SCREAMING_SNAKE_CASE__ ).unsqueeze(0 ) _snake_case : str = BartTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ).encode(SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ).unsqueeze(0 ) if not torch.eq(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).all(): raise ValueError( F'''converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}''' ) if checkpoint_path == "bart.large.mnli": _snake_case : Dict = bart.state_dict() remove_ignore_keys_(SCREAMING_SNAKE_CASE__ ) _snake_case : str = state_dict["""model.decoder.embed_tokens.weight"""] for src, dest in mnli_rename_keys: rename_key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = BartForSequenceClassification(SCREAMING_SNAKE_CASE__ ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = bart.predict("""mnli""" , SCREAMING_SNAKE_CASE__ , return_logits=SCREAMING_SNAKE_CASE__ ) _snake_case : Optional[int] = model(SCREAMING_SNAKE_CASE__ )[0] # logits else: # no classification heads to worry about _snake_case : Dict = bart.model.state_dict() remove_ignore_keys_(SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = state_dict["""decoder.embed_tokens.weight"""] _snake_case : Optional[Any] = bart.extract_features(SCREAMING_SNAKE_CASE__ ) if hf_checkpoint_name == "facebook/bart-large": _snake_case : Optional[Any] = BartModel(SCREAMING_SNAKE_CASE__ ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE__ ) _snake_case : Union[str, Any] = model(SCREAMING_SNAKE_CASE__ ).model[0] else: _snake_case : str = BartForConditionalGeneration(SCREAMING_SNAKE_CASE__ ).eval() # an existing summarization ckpt model.model.load_state_dict(SCREAMING_SNAKE_CASE__ ) if hasattr(SCREAMING_SNAKE_CASE__ , """lm_head""" ): _snake_case : Any = make_linear_from_emb(model.model.shared ) _snake_case : Optional[Any] = model.model(SCREAMING_SNAKE_CASE__ )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( F'''`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}''' ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError("""Some values in `fairseq_output` are different from `new_model_outputs`""" ) Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """fairseq_path""", type=str, help="""bart.large, bart.large.cnn or a path to a model.pt on local filesystem.""" ) parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--hf_config""", default=None, type=str, help="""Which huggingface architecture to use: bart-large-xsum""" ) a__ = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
317
0
"""simple docstring""" from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def snake_case ( A__ = True ,*A__ ,**A__ ): if not is_tqdm_available(): raise ImportError("Accelerate's `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`." ) UpperCAmelCase_ : Optional[int] = False if main_process_only: UpperCAmelCase_ : str = PartialState().local_process_index == 0 return _tqdm(*A__ ,**A__ ,disable=A__ )
253
"""simple docstring""" from math import factorial def snake_case ( A__ = 1_00 ): return sum(int(A__ ) for x in str(factorial(A__ ) ) ) if __name__ == "__main__": print(solution(int(input('''Enter the Number: ''').strip())))
253
1
"""simple docstring""" from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase ( lowercase_ ): lowercase = 'new-model' if is_tf_available(): class UpperCamelCase ( lowercase_ ): lowercase = NewModelConfig @require_tf class UpperCamelCase ( unittest.TestCase ): @slow def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowercase_ : Optional[int] = 'bert-base-cased' lowercase_ : List[str] = AutoConfig.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase ,__UpperCamelCase ) lowercase_ : List[Any] = TFAutoModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase ,__UpperCamelCase ) @slow def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowercase_ : Dict = 'bert-base-cased' lowercase_ : Optional[Any] = AutoConfig.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase ,__UpperCamelCase ) lowercase_ : Optional[Any] = TFAutoModelForPreTraining.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase ,__UpperCamelCase ) @slow def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ : Dict = AutoConfig.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase ,__UpperCamelCase ) lowercase_ : Optional[int] = TFAutoModelForCausalLM.from_pretrained(__UpperCamelCase ) lowercase_ , lowercase_ : Dict = TFAutoModelForCausalLM.from_pretrained(__UpperCamelCase ,output_loading_info=__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase ,__UpperCamelCase ) @slow def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ : int = AutoConfig.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase ,__UpperCamelCase ) lowercase_ : Dict = TFAutoModelWithLMHead.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase ,__UpperCamelCase ) @slow def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ : Tuple = AutoConfig.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase ,__UpperCamelCase ) lowercase_ : Dict = TFAutoModelForMaskedLM.from_pretrained(__UpperCamelCase ) lowercase_ , lowercase_ : Any = TFAutoModelForMaskedLM.from_pretrained(__UpperCamelCase ,output_loading_info=__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase ,__UpperCamelCase ) @slow def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ : Optional[int] = AutoConfig.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase ,__UpperCamelCase ) lowercase_ : Union[str, Any] = TFAutoModelForSeqaSeqLM.from_pretrained(__UpperCamelCase ) lowercase_ , lowercase_ : int = TFAutoModelForSeqaSeqLM.from_pretrained(__UpperCamelCase ,output_loading_info=__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase ,__UpperCamelCase ) @slow def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' for model_name in ["bert-base-uncased"]: lowercase_ : Dict = AutoConfig.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase ,__UpperCamelCase ) lowercase_ : Optional[int] = TFAutoModelForSequenceClassification.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase ,__UpperCamelCase ) @slow def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' for model_name in ["bert-base-uncased"]: lowercase_ : str = AutoConfig.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase ,__UpperCamelCase ) lowercase_ : List[Any] = TFAutoModelForQuestionAnswering.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase ,__UpperCamelCase ) @slow @require_tensorflow_probability def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: lowercase_ : Any = AutoConfig.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase ,__UpperCamelCase ) lowercase_ : int = TFAutoModelForTableQuestionAnswering.from_pretrained(__UpperCamelCase ) lowercase_ , lowercase_ : Tuple = TFAutoModelForTableQuestionAnswering.from_pretrained( __UpperCamelCase ,output_loading_info=__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase ,__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : Optional[Any] = TFAutoModelWithLMHead.from_pretrained(__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase ,__UpperCamelCase ) self.assertEqual(model.num_parameters() ,1_4410 ) self.assertEqual(model.num_parameters(only_trainable=__UpperCamelCase ) ,1_4410 ) def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ : str = TFAutoModelWithLMHead.from_pretrained(__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase ,__UpperCamelCase ) self.assertEqual(model.num_parameters() ,1_4410 ) self.assertEqual(model.num_parameters(only_trainable=__UpperCamelCase ) ,1_4410 ) def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ : Optional[int] = TFAutoModel.from_pretrained('sgugger/funnel-random-tiny' ) self.assertIsInstance(__UpperCamelCase ,__UpperCamelCase ) lowercase_ : Union[str, Any] = copy.deepcopy(model.config ) lowercase_ : Tuple = ['FunnelBaseModel'] lowercase_ : Tuple = TFAutoModel.from_config(__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase ,__UpperCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(__UpperCamelCase ) lowercase_ : Optional[int] = TFAutoModel.from_pretrained(__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase ,__UpperCamelCase ) def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' try: AutoConfig.register('new-model' ,__UpperCamelCase ) lowercase_ : int = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(__UpperCamelCase ): auto_class.register(__UpperCamelCase ,__UpperCamelCase ) auto_class.register(__UpperCamelCase ,__UpperCamelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__UpperCamelCase ): auto_class.register(__UpperCamelCase ,__UpperCamelCase ) # Now that the config is registered, it can be used as any other config with the auto-API lowercase_ : Union[str, Any] = BertModelTester(self ).get_config() lowercase_ : List[Any] = NewModelConfig(**tiny_config.to_dict() ) lowercase_ : str = auto_class.from_config(__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase ,__UpperCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(__UpperCamelCase ) lowercase_ : Optional[int] = auto_class.from_pretrained(__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase ,__UpperCamelCase ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' with self.assertRaisesRegex( __UpperCamelCase ,'bert-base is not a local folder and is not a valid model identifier' ): lowercase_ : Union[str, Any] = TFAutoModel.from_pretrained('bert-base' ) def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' with self.assertRaisesRegex( __UpperCamelCase ,r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): lowercase_ : Dict = TFAutoModel.from_pretrained(__UpperCamelCase ,revision='aaaaaa' ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' with self.assertRaisesRegex( __UpperCamelCase ,'hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin' ,): lowercase_ : Union[str, Any] = TFAutoModel.from_pretrained('hf-internal-testing/config-no-model' ) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' with self.assertRaisesRegex(__UpperCamelCase ,'Use `from_pt=True` to load this model' ): lowercase_ : str = TFAutoModel.from_pretrained('hf-internal-testing/tiny-bert-pt-only' ) def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ : Any = TFAutoModel.from_pretrained('hf-internal-testing/tiny-random-bert' ) with RequestCounter() as counter: lowercase_ : str = TFAutoModel.from_pretrained('hf-internal-testing/tiny-random-bert' ) self.assertEqual(counter.get_request_count ,0 ) self.assertEqual(counter.head_request_count ,1 ) self.assertEqual(counter.other_request_count ,0 ) # With a sharded checkpoint lowercase_ : List[str] = TFAutoModel.from_pretrained('ArthurZ/tiny-random-bert-sharded' ) with RequestCounter() as counter: lowercase_ : Dict = TFAutoModel.from_pretrained('ArthurZ/tiny-random-bert-sharded' ) self.assertEqual(counter.get_request_count ,0 ) self.assertEqual(counter.head_request_count ,1 ) self.assertEqual(counter.other_request_count ,0 )
213
"""simple docstring""" from __future__ import annotations def lowercase__( __SCREAMING_SNAKE_CASE : list ): if not nums: raise ValueError('List is empty' ) return sum(__SCREAMING_SNAKE_CASE ) / len(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
213
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase : List[str] = logging.get_logger(__name__) def _lowerCAmelCase ( _UpperCamelCase : Any , _UpperCamelCase : List[str]=False ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =[] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"blocks.{i}.norm1.weight", f"deit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"blocks.{i}.norm1.bias", f"deit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((f"blocks.{i}.attn.proj.weight", f"deit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((f"blocks.{i}.attn.proj.bias", f"deit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"blocks.{i}.norm2.weight", f"deit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"blocks.{i}.norm2.bias", f"deit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"deit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"deit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"deit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"deit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ('cls_token', 'deit.embeddings.cls_token'), ('dist_token', 'deit.embeddings.distillation_token'), ('patch_embed.proj.weight', 'deit.embeddings.patch_embeddings.projection.weight'), ('patch_embed.proj.bias', 'deit.embeddings.patch_embeddings.projection.bias'), ('pos_embed', 'deit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ('pre_logits.fc.weight', 'pooler.dense.weight'), ('pre_logits.fc.bias', 'pooler.dense.bias'), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" _SCREAMING_SNAKE_CASE =[(pair[0], pair[1][4:]) if pair[1].startswith('deit' ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ('norm.weight', 'deit.layernorm.weight'), ('norm.bias', 'deit.layernorm.bias'), ('head.weight', 'cls_classifier.weight'), ('head.bias', 'cls_classifier.bias'), ('head_dist.weight', 'distillation_classifier.weight'), ('head_dist.bias', 'distillation_classifier.bias'), ] ) return rename_keys def _lowerCAmelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : Tuple , _UpperCamelCase : Optional[int]=False ) -> Tuple: """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: _SCREAMING_SNAKE_CASE ='' else: _SCREAMING_SNAKE_CASE ='deit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _SCREAMING_SNAKE_CASE =state_dict.pop(f"blocks.{i}.attn.qkv.weight" ) _SCREAMING_SNAKE_CASE =state_dict.pop(f"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict _SCREAMING_SNAKE_CASE =in_proj_weight[ : config.hidden_size, : ] _SCREAMING_SNAKE_CASE =in_proj_bias[: config.hidden_size] _SCREAMING_SNAKE_CASE =in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _SCREAMING_SNAKE_CASE =in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _SCREAMING_SNAKE_CASE =in_proj_weight[ -config.hidden_size :, : ] _SCREAMING_SNAKE_CASE =in_proj_bias[-config.hidden_size :] def _lowerCAmelCase ( _UpperCamelCase : str , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Union[str, Any] ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =dct.pop(A__ ) _SCREAMING_SNAKE_CASE =val def _lowerCAmelCase ( ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE ='http://images.cocodataset.org/val2017/000000039769.jpg' _SCREAMING_SNAKE_CASE =Image.open(requests.get(A__ , stream=A__ ).raw ) return im @torch.no_grad() def _lowerCAmelCase ( _UpperCamelCase : str , _UpperCamelCase : Dict ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =DeiTConfig() # all deit models have fine-tuned heads _SCREAMING_SNAKE_CASE =False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size _SCREAMING_SNAKE_CASE =10_00 _SCREAMING_SNAKE_CASE ='huggingface/label-files' _SCREAMING_SNAKE_CASE ='imagenet-1k-id2label.json' _SCREAMING_SNAKE_CASE =json.load(open(hf_hub_download(A__ , A__ , repo_type='dataset' ) , 'r' ) ) _SCREAMING_SNAKE_CASE ={int(A__ ): v for k, v in idalabel.items()} _SCREAMING_SNAKE_CASE =idalabel _SCREAMING_SNAKE_CASE ={v: k for k, v in idalabel.items()} _SCREAMING_SNAKE_CASE =int(deit_name[-6:-4] ) _SCREAMING_SNAKE_CASE =int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith('tiny' ): _SCREAMING_SNAKE_CASE =1_92 _SCREAMING_SNAKE_CASE =7_68 _SCREAMING_SNAKE_CASE =12 _SCREAMING_SNAKE_CASE =3 elif deit_name[9:].startswith('small' ): _SCREAMING_SNAKE_CASE =3_84 _SCREAMING_SNAKE_CASE =15_36 _SCREAMING_SNAKE_CASE =12 _SCREAMING_SNAKE_CASE =6 if deit_name[9:].startswith('base' ): pass elif deit_name[4:].startswith('large' ): _SCREAMING_SNAKE_CASE =10_24 _SCREAMING_SNAKE_CASE =40_96 _SCREAMING_SNAKE_CASE =24 _SCREAMING_SNAKE_CASE =16 # load original model from timm _SCREAMING_SNAKE_CASE =timm.create_model(A__ , pretrained=A__ ) timm_model.eval() # load state_dict of original model, remove and rename some keys _SCREAMING_SNAKE_CASE =timm_model.state_dict() _SCREAMING_SNAKE_CASE =create_rename_keys(A__ , A__ ) for src, dest in rename_keys: rename_key(A__ , A__ , A__ ) read_in_q_k_v(A__ , A__ , A__ ) # load HuggingFace model _SCREAMING_SNAKE_CASE =DeiTForImageClassificationWithTeacher(A__ ).eval() model.load_state_dict(A__ ) # Check outputs on an image, prepared by DeiTImageProcessor _SCREAMING_SNAKE_CASE =int( (2_56 / 2_24) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 _SCREAMING_SNAKE_CASE =DeiTImageProcessor(size=A__ , crop_size=config.image_size ) _SCREAMING_SNAKE_CASE =image_processor(images=prepare_img() , return_tensors='pt' ) _SCREAMING_SNAKE_CASE =encoding['pixel_values'] _SCREAMING_SNAKE_CASE =model(A__ ) _SCREAMING_SNAKE_CASE =timm_model(A__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(A__ , outputs.logits , atol=1E-3 ) Path(A__ ).mkdir(exist_ok=A__ ) print(f"Saving model {deit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(A__ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(A__ ) if __name__ == "__main__": lowerCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--deit_name", default="vit_deit_base_distilled_patch16_224", type=str, help="Name of the DeiT timm model you\'d like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) lowerCamelCase : Optional[Any] = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
358
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase : Optional[int] = { "configuration_efficientnet": [ "EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "EfficientNetConfig", "EfficientNetOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : str = ["EfficientNetImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Tuple = [ "EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST", "EfficientNetForImageClassification", "EfficientNetModel", "EfficientNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys lowerCamelCase : int = _LazyModule(__name__, globals()["__file__"], _import_structure)
114
0
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class __magic_name__ ( _UpperCamelCase ): lowerCAmelCase : Tuple = ( 'This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.' 'It takes two arguments named `image` which should be the original image, and `label` which should be a text ' 'describing the elements what should be identified in the segmentation mask. The tool returns the mask.' ) lowerCAmelCase : List[str] = 'CIDAS/clipseg-rd64-refined' lowerCAmelCase : Optional[int] = 'image_segmenter' lowerCAmelCase : Union[str, Any] = CLIPSegForImageSegmentation lowerCAmelCase : str = ['image', 'text'] lowerCAmelCase : int = ['image'] def __init__( self : Tuple ,*_UpperCAmelCase : Optional[int] ,**_UpperCAmelCase : Any ): requires_backends(self ,['vision'] ) super().__init__(*_UpperCAmelCase ,**_UpperCAmelCase ) def __lowercase ( self : Optional[Any] ,_UpperCAmelCase : "Image" ,_UpperCAmelCase : str ): return self.pre_processor(text=[label] ,images=[image] ,padding=_UpperCAmelCase ,return_tensors='pt' ) def __lowercase ( self : Optional[int] ,_UpperCAmelCase : Optional[Any] ): with torch.no_grad(): _a : int = self.model(**_UpperCAmelCase ).logits return logits def __lowercase ( self : List[Any] ,_UpperCAmelCase : Optional[int] ): _a : Dict = outputs.cpu().detach().numpy() _a : List[str] = 0 _a : int = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
89
'''simple docstring''' import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __magic_name__ ( _UpperCamelCase , unittest.TestCase ): lowerCAmelCase : str = LayoutLMTokenizer lowerCAmelCase : Tuple = LayoutLMTokenizerFast lowerCAmelCase : List[Any] = True lowerCAmelCase : int = True def __lowercase ( self : Dict ): super().setUp() _a : int = [ '[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] _a : List[str] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def __lowercase ( self : Dict ,**_UpperCAmelCase : List[str] ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname ,**_UpperCAmelCase ) def __lowercase ( self : Optional[Any] ,_UpperCAmelCase : Tuple ): _a : Optional[int] = 'UNwant\u00E9d,running' _a : List[Any] = 'unwanted, running' return input_text, output_text def __lowercase ( self : Optional[int] ): _a : Optional[Any] = self.tokenizer_class(self.vocab_file ) _a : Optional[Any] = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(_UpperCAmelCase ,['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) ,[7, 4, 5, 10, 8, 9] ) def __lowercase ( self : Optional[int] ): pass
89
1
"""simple docstring""" import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase_ ( a_ ): def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(snake_case__ , """embed_dim""" ) ) self.parent.assertTrue(hasattr(snake_case__ , """num_heads""" ) ) class UpperCamelCase_ : def __init__( self , snake_case__ , snake_case__=13 , snake_case__=64 , snake_case__=3 , snake_case__=[16, 48, 96] , snake_case__=[1, 3, 6] , snake_case__=[1, 2, 10] , snake_case__=[7, 3, 3] , snake_case__=[4, 2, 2] , snake_case__=[2, 1, 1] , snake_case__=[2, 2, 2] , snake_case__=[False, False, True] , snake_case__=[0.0, 0.0, 0.0] , snake_case__=0.02 , snake_case__=1e-12 , snake_case__=True , snake_case__=True , snake_case__=2 , ) -> Optional[int]: """simple docstring""" UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = image_size UpperCAmelCase = patch_sizes UpperCAmelCase = patch_stride UpperCAmelCase = patch_padding UpperCAmelCase = is_training UpperCAmelCase = use_labels UpperCAmelCase = num_labels UpperCAmelCase = num_channels UpperCAmelCase = embed_dim UpperCAmelCase = num_heads UpperCAmelCase = stride_kv UpperCAmelCase = depth UpperCAmelCase = cls_token UpperCAmelCase = attention_drop_rate UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def UpperCamelCase_ ( self , snake_case__ , snake_case__ , snake_case__ ) -> Any: """simple docstring""" UpperCAmelCase = CvtModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase = model(snake_case__ ) UpperCAmelCase = (self.image_size, self.image_size) UpperCAmelCase , UpperCAmelCase = image_size[0], image_size[1] for i in range(len(self.depth ) ): UpperCAmelCase = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) UpperCAmelCase = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def UpperCamelCase_ ( self , snake_case__ , snake_case__ , snake_case__ ) -> Any: """simple docstring""" UpperCAmelCase = self.num_labels UpperCAmelCase = CvtForImageClassification(snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" UpperCAmelCase = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = config_and_inputs UpperCAmelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class UpperCamelCase_ ( a_ , a_ , unittest.TestCase ): _A : Optional[int] = (CvtModel, CvtForImageClassification) if is_torch_available() else () _A : Dict = ( {'feature-extraction': CvtModel, 'image-classification': CvtForImageClassification} if is_torch_available() else {} ) _A : int = False _A : Dict = False _A : Optional[int] = False _A : List[str] = False _A : str = False def UpperCamelCase_ ( self ) -> int: """simple docstring""" UpperCAmelCase = CvtModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ , hidden_size=37 ) def UpperCamelCase_ ( self ) -> int: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase_ ( self ) -> int: """simple docstring""" return @unittest.skip(reason="""Cvt does not output attentions""" ) def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" pass @unittest.skip(reason="""Cvt does not use inputs_embeds""" ) def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip(reason="""Cvt does not support input and output embeddings""" ) def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" pass def UpperCamelCase_ ( self ) -> int: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(snake_case__ ) UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase = [*signature.parameters.keys()] UpperCAmelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , snake_case__ ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" def check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ): UpperCAmelCase = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() with torch.no_grad(): UpperCAmelCase = model(**self._prepare_for_class(snake_case__ , snake_case__ ) ) UpperCAmelCase = outputs.hidden_states UpperCAmelCase = len(self.model_tester.depth ) self.assertEqual(len(snake_case__ ) , snake_case__ ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case__ ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" pass @slow def UpperCamelCase_ ( self ) -> int: """simple docstring""" for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase = CvtModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def _lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class UpperCamelCase_ ( unittest.TestCase ): @cached_property def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def UpperCamelCase_ ( self ) -> str: """simple docstring""" UpperCAmelCase = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(snake_case__ ) UpperCAmelCase = self.default_image_processor UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(images=snake_case__ , return_tensors="""pt""" ).to(snake_case__ ) # forward pass with torch.no_grad(): UpperCAmelCase = model(**snake_case__ ) # verify the logits UpperCAmelCase = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , snake_case__ ) UpperCAmelCase = torch.tensor([0.9_285, 0.9_015, -0.3_150] ).to(snake_case__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case__ , atol=1e-4 ) )
248
"""simple docstring""" def _lowerCAmelCase ( ): '''simple docstring''' return [ a * b * (1000 - a - b) for a in range(1 , 999 ) for b in range(lowerCAmelCase , 999 ) if (a * a + b * b == (1000 - a - b) ** 2) ][0] if __name__ == "__main__": print(F'{solution() = }')
248
1
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case : Tuple = logging.get_logger(__name__) snake_case : Dict = { '''transfo-xl-wt103''': '''https://huggingface.co/transfo-xl-wt103/resolve/main/config.json''', } class _snake_case ( _snake_case ): SCREAMING_SNAKE_CASE__ = 'transfo-xl' SCREAMING_SNAKE_CASE__ = ['mems'] SCREAMING_SNAKE_CASE__ = { 'n_token': 'vocab_size', 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , _lowerCamelCase=26_7735 , _lowerCamelCase=[2_0000, 4_0000, 20_0000] , _lowerCamelCase=1024 , _lowerCamelCase=1024 , _lowerCamelCase=16 , _lowerCamelCase=64 , _lowerCamelCase=4096 , _lowerCamelCase=4 , _lowerCamelCase=False , _lowerCamelCase=18 , _lowerCamelCase=1600 , _lowerCamelCase=1000 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=0 , _lowerCamelCase=-1 , _lowerCamelCase=True , _lowerCamelCase=0.1 , _lowerCamelCase=0.0 , _lowerCamelCase=True , _lowerCamelCase="normal" , _lowerCamelCase=0.01 , _lowerCamelCase=0.01 , _lowerCamelCase=0.02 , _lowerCamelCase=1e-5 , _lowerCamelCase=0 , **_lowerCamelCase , ): a :List[str] = vocab_size a :Union[str, Any] = [] self.cutoffs.extend(_lowerCamelCase ) if proj_share_all_but_first: a :Optional[int] = [False] + [True] * len(self.cutoffs ) else: a :Any = [False] + [False] * len(self.cutoffs ) a :Optional[int] = d_model a :Union[str, Any] = d_embed a :str = d_head a :Optional[Any] = d_inner a :Optional[Any] = div_val a :int = pre_lnorm a :Dict = n_layer a :List[Any] = n_head a :Any = mem_len a :Any = same_length a :str = attn_type a :Optional[Any] = clamp_len a :Optional[int] = sample_softmax a :Optional[int] = adaptive a :Optional[int] = dropout a :Tuple = dropatt a :Dict = untie_r a :List[Any] = init a :int = init_range a :Optional[int] = proj_init_std a :Optional[Any] = init_std a :Optional[Any] = layer_norm_epsilon super().__init__(eos_token_id=_lowerCamelCase , **_lowerCamelCase ) @property def SCREAMING_SNAKE_CASE__ ( self ): # Message copied from Transformer-XL documentation logger.info(F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): # Message copied from Transformer-XL documentation raise NotImplementedError( F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
94
"""simple docstring""" import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn.grep_linear""": """encoder.layers.*.attention.gru_rel_pos_linear""", """self_attn.relative_attention_bias""": """encoder.layers.*.attention.rel_attn_embed""", """self_attn.grep_a""": """encoder.layers.*.attention.gru_rel_pos_const""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """ctc_proj""", """mask_emb""": """masked_spec_embed""", } lowerCamelCase__ = [ """ctc_proj""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): for attribute in key.split('.' ): __lowerCAmelCase : str = getattr(_UpperCamelCase , _UpperCamelCase ) if weight_type is not None: __lowerCAmelCase : Tuple = getattr(_UpperCamelCase , _UpperCamelCase ).shape else: __lowerCAmelCase : Dict = hf_pointer.shape assert hf_shape == value.shape, ( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": __lowerCAmelCase : Union[str, Any] = value elif weight_type == "weight_g": __lowerCAmelCase : List[Any] = value elif weight_type == "weight_v": __lowerCAmelCase : Any = value elif weight_type == "bias": __lowerCAmelCase : List[str] = value else: __lowerCAmelCase : List[Any] = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase : Any = [] __lowerCAmelCase : Optional[int] = fairseq_model.state_dict() __lowerCAmelCase : Union[str, Any] = hf_model.feature_extractor for name, value in fairseq_dict.items(): __lowerCAmelCase : Union[str, Any] = False if "conv_layers" in name: load_conv_layer( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , hf_model.config.feat_extract_norm == 'group' , ) __lowerCAmelCase : str = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: __lowerCAmelCase : int = True if "*" in mapped_key: __lowerCAmelCase : List[str] = name.split(_UpperCamelCase )[0].split('.' )[-2] __lowerCAmelCase : Optional[Any] = mapped_key.replace('*' , _UpperCamelCase ) if "weight_g" in name: __lowerCAmelCase : Union[str, Any] = 'weight_g' elif "weight_v" in name: __lowerCAmelCase : int = 'weight_v' elif "bias" in name and "relative_attention_bias" not in name: __lowerCAmelCase : Optional[Any] = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj __lowerCAmelCase : List[str] = 'weight' else: __lowerCAmelCase : Optional[Any] = None set_recursively(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) continue if not is_used: unused_weights.append(_UpperCamelCase ) logger.warning(F"Unused weights: {unused_weights}" ) def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase : List[Any] = full_name.split('conv_layers.' )[-1] __lowerCAmelCase : Any = name.split('.' ) __lowerCAmelCase : List[Any] = int(items[0] ) __lowerCAmelCase : Tuple = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) __lowerCAmelCase : Tuple = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) __lowerCAmelCase : int = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) __lowerCAmelCase : Optional[Any] = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) __lowerCAmelCase : Any = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(_UpperCamelCase ) @torch.no_grad() def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None ): # load the pre-trained checkpoints __lowerCAmelCase : Any = torch.load(_UpperCamelCase ) __lowerCAmelCase : List[str] = WavLMConfigOrig(checkpoint['cfg'] ) __lowerCAmelCase : Optional[Any] = WavLMOrig(_UpperCamelCase ) model.load_state_dict(checkpoint['model'] ) model.eval() if config_path is not None: __lowerCAmelCase : Dict = WavLMConfig.from_pretrained(_UpperCamelCase ) else: __lowerCAmelCase : List[str] = WavLMConfig() __lowerCAmelCase : List[str] = WavLMModel(_UpperCamelCase ) recursively_load_weights(_UpperCamelCase , _UpperCamelCase ) hf_wavlm.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") lowerCamelCase__ = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
86
0
__a :Optional[Any] = 'Input must be a string of 8 numbers plus letter' __a :int = 'TRWAGMYFPDXBNJZSQVHLCKE' def __snake_case ( __UpperCamelCase : str ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ): A_ = f'''Expected string as input, found {type(__UpperCamelCase ).__name__}''' raise TypeError(__UpperCamelCase ) A_ = spanish_id.replace("-" ,"" ).upper() if len(__UpperCamelCase ) != 9: raise ValueError(__UpperCamelCase ) try: A_ = int(spanish_id_clean[0:8] ) A_ = spanish_id_clean[8] except ValueError as ex: raise ValueError(__UpperCamelCase ) from ex if letter.isdigit(): raise ValueError(__UpperCamelCase ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
360
import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def __snake_case ( __UpperCamelCase : Optional[int] ): # picklable for multiprocessing """simple docstring""" return x.sum() def __snake_case ( __UpperCamelCase : List[str] ): # picklable for multiprocessing """simple docstring""" return i + 1 @dataclass class _a : """simple docstring""" _lowerCamelCase : int _lowerCamelCase : str class _a ( snake_case_ ): """simple docstring""" def __A ( self : Dict ): A_ = {} A_ = [] A_ = 1 A_ = [1, 2] A_ = {"a": 1, "b": 2} A_ = {"a": [1, 2], "b": [3, 4]} A_ = {"a": {"1": 1}, "b": 2} A_ = {"a": 1, "b": 2, "c": 3, "d": 4} A_ = {} A_ = [] A_ = 2 A_ = [2, 3] A_ = {"a": 2, "b": 3} A_ = {"a": [2, 3], "b": [4, 5]} A_ = {"a": {"1": 2}, "b": 3} A_ = {"a": 2, "b": 3, "c": 4, "d": 5} self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase ) A_ = 2 self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase ) A_ = {"a": np.eye(2 ), "b": np.zeros(3 ), "c": np.ones(2 )} A_ = {"a": 2, "b": 0, "c": 2} A_ = { "a": np.eye(2 ).astype(UpperCAmelCase ), "b": np.zeros(3 ).astype(UpperCAmelCase ), "c": np.ones(2 ).astype(UpperCAmelCase ), } self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , map_numpy=UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual( {k: v.tolist() for k, v in map_nested(UpperCAmelCase , UpperCAmelCase , map_numpy=UpperCAmelCase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , map_numpy=UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual( {k: v.tolist() for k, v in map_nested(UpperCAmelCase , UpperCAmelCase , map_numpy=UpperCAmelCase , num_proc=UpperCAmelCase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(UpperCAmelCase ): # can't pickle a local lambda map_nested(lambda UpperCAmelCase : x + 1 , UpperCAmelCase , num_proc=UpperCAmelCase ) def __A ( self : List[str] ): A_ = {"a": 1, "b": 2} A_ = {"a": 3, "b": 4} A_ = {"a": 5, "b": 6} A_ = sorted([("a", (1, 3, 5)), ("b", (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ) , UpperCAmelCase ) def __A ( self : Any ): class _a : """simple docstring""" _lowerCamelCase : int = 'bar' A_ = Foo() self.assertEqual(foo.my_attr , "bar" ) with temporary_assignment(UpperCAmelCase , "my_attr" , "BAR" ): self.assertEqual(foo.my_attr , "BAR" ) self.assertEqual(foo.my_attr , "bar" ) @pytest.mark.parametrize( "iterable_length, num_proc, expected_num_proc" ,[ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ] ,) def __snake_case ( __UpperCamelCase : Optional[int] ,__UpperCamelCase : Tuple ,__UpperCamelCase : List[Any] ): """simple docstring""" with patch("datasets.utils.py_utils._single_map_nested" ) as mock_single_map_nested, patch( "datasets.parallel.parallel.Pool" ) as mock_multiprocessing_pool: A_ = {f'''{i}''': i for i in range(__UpperCamelCase )} A_ = map_nested(lambda __UpperCamelCase : x + 10 ,__UpperCamelCase ,num_proc=__UpperCamelCase ,parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class _a ( snake_case_ ): """simple docstring""" @require_tf def __A ( self : Union[str, Any] ): import tensorflow as tf from tensorflow.keras import layers A_ = layers.Dense(2 ) def gen_random_output(): A_ = tf.random.uniform((1, 3) ) return model(UpperCAmelCase ).numpy() with temp_seed(42 , set_tensorflow=UpperCAmelCase ): A_ = gen_random_output() with temp_seed(42 , set_tensorflow=UpperCAmelCase ): A_ = gen_random_output() A_ = gen_random_output() np.testing.assert_equal(UpperCAmelCase , UpperCAmelCase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @require_torch def __A ( self : Optional[int] ): import torch def gen_random_output(): A_ = torch.nn.Linear(3 , 2 ) A_ = torch.rand(1 , 3 ) return model(UpperCAmelCase ).detach().numpy() with temp_seed(42 , set_pytorch=UpperCAmelCase ): A_ = gen_random_output() with temp_seed(42 , set_pytorch=UpperCAmelCase ): A_ = gen_random_output() A_ = gen_random_output() np.testing.assert_equal(UpperCAmelCase , UpperCAmelCase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) def __A ( self : Any ): def gen_random_output(): return np.random.rand(1 , 3 ) with temp_seed(42 ): A_ = gen_random_output() with temp_seed(42 ): A_ = gen_random_output() A_ = gen_random_output() np.testing.assert_equal(UpperCAmelCase , UpperCAmelCase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @pytest.mark.parametrize("input_data" ,[{}] ) def __snake_case ( __UpperCamelCase : str ): """simple docstring""" A_ = NestedDataStructure(__UpperCamelCase ).data assert output_data == input_data @pytest.mark.parametrize( "data, expected_output" ,[ ({}, []), ([], []), ("foo", ["foo"]), (["foo", "bar"], ["foo", "bar"]), ([["foo", "bar"]], ["foo", "bar"]), ([[["foo"], ["bar"]]], ["foo", "bar"]), ([[["foo"], "bar"]], ["foo", "bar"]), ({"a": 1, "b": 2}, [1, 2]), ({"a": [1, 2], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[[3], [4]]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, [4]]}, [1, 2, 3, 4]), ({"a": {"1": 1}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": [2]}, [1, 2]), ] ,) def __snake_case ( __UpperCamelCase : Dict ,__UpperCamelCase : Any ): """simple docstring""" A_ = NestedDataStructure(__UpperCamelCase ).flatten() assert output == expected_output def __snake_case ( ): """simple docstring""" A_ = A(x=1 ,y="foobar" ) A_ = {"x": 1, "y": "foobar"} assert asdict(__UpperCamelCase ) == expected_output A_ = {"a": {"b": A(x=10 ,y="foo" )}, "c": [A(x=20 ,y="bar" )]} A_ = {"a": {"b": {"x": 10, "y": "foo"}}, "c": [{"x": 20, "y": "bar"}]} assert asdict(__UpperCamelCase ) == expected_output with pytest.raises(__UpperCamelCase ): asdict([1, A(x=10 ,y="foo" )] ) def __snake_case ( __UpperCamelCase : str ): """simple docstring""" return text.split() def __snake_case ( __UpperCamelCase : List[Any] ): """simple docstring""" yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def __snake_case ( ): """simple docstring""" with Pool(2 ) as pool: A_ = list(iflatmap_unordered(__UpperCamelCase ,_split_text ,kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(__UpperCamelCase ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: A_ = list(iflatmap_unordered(__UpperCamelCase ,_split_text ,kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(__UpperCamelCase ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: A_ = [] for yield_time, content in iflatmap_unordered( __UpperCamelCase ,_aseconds_generator_of_aitems_with_timing ,kwargs_iterable=[{"content": "a"}, {"content": "b"}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(__UpperCamelCase ) assert out.count("a" ) == 2 assert out.count("b" ) == 2 assert len(__UpperCamelCase ) == 4
329
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class a__ : lowerCamelCase : Tuple =LEDConfig lowerCamelCase : Tuple ={} lowerCamelCase : int ="gelu" def __init__( self : Union[str, Any] , a : str , a : str=13 , a : Tuple=7 , a : Any=True , a : str=False , a : str=99 , a : str=32 , a : str=2 , a : int=4 , a : Dict=37 , a : Any=0.1 , a : int=0.1 , a : List[Any]=20 , a : Optional[Any]=2 , a : int=1 , a : Union[str, Any]=0 , a : List[Any]=4 , ): """simple docstring""" __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = seq_length __lowerCamelCase = is_training __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = eos_token_id __lowerCamelCase = pad_token_id __lowerCamelCase = bos_token_id __lowerCamelCase = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after __lowerCamelCase = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests __lowerCamelCase = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __lowerCamelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __lowerCamelCase = tf.concat([input_ids, eos_tensor] , axis=1 ) __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) __lowerCamelCase = prepare_led_inputs_dict(a , a , a ) __lowerCamelCase = tf.concat( [tf.zeros_like(a )[:, :-1], tf.ones_like(a )[:, -1:]] , axis=-1 , ) __lowerCamelCase = global_attention_mask return config, inputs_dict def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , a : Dict , a : Optional[Any] ): """simple docstring""" __lowerCamelCase = TFLEDModel(config=a ).get_decoder() __lowerCamelCase = inputs_dict["""input_ids"""] __lowerCamelCase = input_ids[:1, :] __lowerCamelCase = inputs_dict["""attention_mask"""][:1, :] __lowerCamelCase = 1 # first forward pass __lowerCamelCase = model(a , attention_mask=a , use_cache=a ) __lowerCamelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __lowerCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) __lowerCamelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and __lowerCamelCase = tf.concat([input_ids, next_tokens] , axis=-1 ) __lowerCamelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) __lowerCamelCase = model(a , attention_mask=a )[0] __lowerCamelCase = model(a , attention_mask=a , past_key_values=a )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice __lowerCamelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) __lowerCamelCase = output_from_no_past[:, -3:, random_slice_idx] __lowerCamelCase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(a , a , rtol=1e-3 ) def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , ) -> Any: if attention_mask is None: __lowerCamelCase = tf.cast(tf.math.not_equal(A__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: __lowerCamelCase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: __lowerCamelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __lowerCamelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): lowerCamelCase : Any =(TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () lowerCamelCase : List[Any] =(TFLEDForConditionalGeneration,) if is_tf_available() else () lowerCamelCase : str =( { "conversational": TFLEDForConditionalGeneration, "feature-extraction": TFLEDModel, "summarization": TFLEDForConditionalGeneration, "text2text-generation": TFLEDForConditionalGeneration, "translation": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) lowerCamelCase : Dict =True lowerCamelCase : Tuple =False lowerCamelCase : List[str] =False lowerCamelCase : Any =False def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" __lowerCamelCase = TFLEDModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=a ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*a ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase = tf.zeros_like(inputs_dict['''attention_mask'''] ) __lowerCamelCase = 2 __lowerCamelCase = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['''global_attention_mask'''] , ) __lowerCamelCase = True __lowerCamelCase = self.model_tester.seq_length __lowerCamelCase = self.model_tester.encoder_seq_length def check_decoder_attentions_output(a : Union[str, Any] ): __lowerCamelCase = outputs.decoder_attentions self.assertEqual(len(a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(a : int ): __lowerCamelCase = [t.numpy() for t in outputs.encoder_attentions] __lowerCamelCase = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(a ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: __lowerCamelCase = True __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = model_class(a ) __lowerCamelCase = model(self._prepare_for_class(a , a ) ) __lowerCamelCase = len(a ) self.assertEqual(config.output_hidden_states , a ) check_encoder_attentions_output(a ) if self.is_encoder_decoder: __lowerCamelCase = model_class(a ) __lowerCamelCase = model(self._prepare_for_class(a , a ) ) self.assertEqual(config.output_hidden_states , a ) check_decoder_attentions_output(a ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __lowerCamelCase = True __lowerCamelCase = model_class(a ) __lowerCamelCase = model(self._prepare_for_class(a , a ) ) self.assertEqual(config.output_hidden_states , a ) check_encoder_attentions_output(a ) # Check attention is always last and order is fine __lowerCamelCase = True __lowerCamelCase = True __lowerCamelCase = model_class(a ) __lowerCamelCase = model(self._prepare_for_class(a , a ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(a ) ) self.assertEqual(model.config.output_hidden_states , a ) check_encoder_attentions_output(a ) @unittest.skip('''LED keeps using potentially symbolic tensors in conditionals and breaks tracing.''' ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" pass def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" pass def __lowerCAmelCase ( UpperCamelCase__ ) -> Tuple: return tf.constant(A__ , dtype=tf.intaa ) __UpperCAmelCase =1e-4 @slow @require_tf class a__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" __lowerCamelCase = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ).led # change to intended input here __lowerCamelCase = _long_tensor([5_12 * [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69]] ) __lowerCamelCase = _long_tensor([1_28 * [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69]] ) __lowerCamelCase = prepare_led_inputs_dict(model.config , a , a ) __lowerCamelCase = model(**a )[0] __lowerCamelCase = (1, 10_24, 7_68) self.assertEqual(output.shape , a ) # change to expected output here __lowerCamelCase = tf.convert_to_tensor( [[2.30_50, 2.82_79, 0.65_31], [-1.84_57, -0.14_55, -3.56_61], [-1.01_86, 0.45_86, -2.20_43]] , ) tf.debugging.assert_near(output[:, :3, :3] , a , atol=1e-3 ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" __lowerCamelCase = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ) # change to intended input here __lowerCamelCase = _long_tensor([5_12 * [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69]] ) __lowerCamelCase = _long_tensor([1_28 * [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69]] ) __lowerCamelCase = prepare_led_inputs_dict(model.config , a , a ) __lowerCamelCase = model(**a )[0] __lowerCamelCase = (1, 10_24, model.config.vocab_size) self.assertEqual(output.shape , a ) # change to expected output here __lowerCamelCase = tf.convert_to_tensor( [[33.65_07, 6.45_72, 16.80_89], [5.87_39, -2.42_38, 11.29_02], [-3.21_39, -4.31_49, 4.27_83]] , ) tf.debugging.assert_near(output[:, :3, :3] , a , atol=1e-3 , rtol=1e-3 )
67
'''simple docstring''' import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 __A : str = get_tests_dir("fixtures") class __snake_case ( unittest.TestCase): """simple docstring""" def __lowercase ( self : int ) -> List[str]: # A mock response for an HTTP head request to emulate server down lowerCAmelCase_ : str = mock.Mock() lowerCAmelCase_ : Optional[Any] = 5_00 lowerCAmelCase_ : List[str] = {} lowerCAmelCase_ : str = HTTPError lowerCAmelCase_ : Any = {} # Download this model to make sure it's in the cache. lowerCAmelCase_ : Optional[Any] = WavaVecaFeatureExtractor.from_pretrained("""hf-internal-testing/tiny-random-wav2vec2""" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("""requests.Session.request""" , return_value=lowerCamelCase ) as mock_head: lowerCAmelCase_ : Union[str, Any] = WavaVecaFeatureExtractor.from_pretrained("""hf-internal-testing/tiny-random-wav2vec2""" ) # This check we did call the fake head request mock_head.assert_called() def __lowercase ( self : Dict ) -> Any: # This test is for deprecated behavior and can be removed in v5 lowerCAmelCase_ : List[str] = WavaVecaFeatureExtractor.from_pretrained( """https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json""" ) @is_staging_test class __snake_case ( unittest.TestCase): """simple docstring""" @classmethod def __lowercase ( cls : Tuple ) -> str: lowerCAmelCase_ : Dict = TOKEN HfFolder.save_token(lowerCamelCase ) @classmethod def __lowercase ( cls : Any ) -> Any: try: delete_repo(token=cls._token , repo_id="""test-feature-extractor""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-feature-extractor-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-feature-extractor""" ) except HTTPError: pass def __lowercase ( self : int ) -> str: lowerCAmelCase_ : Tuple = WavaVecaFeatureExtractor.from_pretrained(lowerCamelCase ) feature_extractor.push_to_hub("""test-feature-extractor""" , use_auth_token=self._token ) lowerCAmelCase_ : Optional[Any] = WavaVecaFeatureExtractor.from_pretrained(F'{USER}/test-feature-extractor' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowerCamelCase , getattr(lowerCamelCase , lowerCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-feature-extractor""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( lowerCamelCase , repo_id="""test-feature-extractor""" , push_to_hub=lowerCamelCase , use_auth_token=self._token ) lowerCAmelCase_ : Any = WavaVecaFeatureExtractor.from_pretrained(F'{USER}/test-feature-extractor' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowerCamelCase , getattr(lowerCamelCase , lowerCamelCase ) ) def __lowercase ( self : Optional[Any] ) -> int: lowerCAmelCase_ : Union[str, Any] = WavaVecaFeatureExtractor.from_pretrained(lowerCamelCase ) feature_extractor.push_to_hub("""valid_org/test-feature-extractor""" , use_auth_token=self._token ) lowerCAmelCase_ : Optional[int] = WavaVecaFeatureExtractor.from_pretrained("""valid_org/test-feature-extractor""" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowerCamelCase , getattr(lowerCamelCase , lowerCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-feature-extractor""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( lowerCamelCase , repo_id="""valid_org/test-feature-extractor-org""" , push_to_hub=lowerCamelCase , use_auth_token=self._token ) lowerCAmelCase_ : Optional[int] = WavaVecaFeatureExtractor.from_pretrained("""valid_org/test-feature-extractor-org""" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowerCamelCase , getattr(lowerCamelCase , lowerCamelCase ) ) def __lowercase ( self : Optional[Any] ) -> Any: CustomFeatureExtractor.register_for_auto_class() lowerCAmelCase_ : Dict = CustomFeatureExtractor.from_pretrained(lowerCamelCase ) feature_extractor.push_to_hub("""test-dynamic-feature-extractor""" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map , {"""AutoFeatureExtractor""": """custom_feature_extraction.CustomFeatureExtractor"""} , ) lowerCAmelCase_ : Union[str, Any] = AutoFeatureExtractor.from_pretrained( F'{USER}/test-dynamic-feature-extractor' , trust_remote_code=lowerCamelCase ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ , """CustomFeatureExtractor""" )
120
0
'''simple docstring''' import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = (DPMSolverSinglestepScheduler,) UpperCAmelCase = (("""num_inference_steps""", 25),) def _snake_case ( self ,**a_ ) -> Dict: _UpperCAmelCase : Union[str, Any] = { 'num_train_timesteps': 1_000, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'solver_order': 2, 'prediction_type': 'epsilon', 'thresholding': False, 'sample_max_value': 1.0, 'algorithm_type': 'dpmsolver++', 'solver_type': 'midpoint', 'lambda_min_clipped': -float('inf' ), 'variance_type': None, } config.update(**_lowercase ) return config def _snake_case ( self ,a_=0 ,**a_ ) -> List[Any]: _UpperCAmelCase : Dict = dict(self.forward_default_kwargs ) _UpperCAmelCase : Optional[Any] = kwargs.pop('num_inference_steps' ,_lowercase ) _UpperCAmelCase : int = self.dummy_sample _UpperCAmelCase : Optional[int] = 0.1 * sample _UpperCAmelCase : int = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _UpperCAmelCase : str = self.get_scheduler_config(**_lowercase ) _UpperCAmelCase : List[str] = scheduler_class(**_lowercase ) scheduler.set_timesteps(_lowercase ) # copy over dummy past residuals _UpperCAmelCase : Optional[Any] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowercase ) _UpperCAmelCase : Optional[int] = scheduler_class.from_pretrained(_lowercase ) new_scheduler.set_timesteps(_lowercase ) # copy over dummy past residuals _UpperCAmelCase : Optional[int] = dummy_past_residuals[: new_scheduler.config.solver_order] _UpperCAmelCase ,_UpperCAmelCase : int = sample, sample for t in range(_lowercase ,time_step + scheduler.config.solver_order + 1 ): _UpperCAmelCase : Union[str, Any] = scheduler.step(_lowercase ,_lowercase ,_lowercase ,**_lowercase ).prev_sample _UpperCAmelCase : List[str] = new_scheduler.step(_lowercase ,_lowercase ,_lowercase ,**_lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def _snake_case ( self ) -> Union[str, Any]: pass def _snake_case ( self ,a_=0 ,**a_ ) -> Tuple: _UpperCAmelCase : str = dict(self.forward_default_kwargs ) _UpperCAmelCase : str = kwargs.pop('num_inference_steps' ,_lowercase ) _UpperCAmelCase : Optional[Any] = self.dummy_sample _UpperCAmelCase : List[Any] = 0.1 * sample _UpperCAmelCase : Optional[Any] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _UpperCAmelCase : int = self.get_scheduler_config() _UpperCAmelCase : str = scheduler_class(**_lowercase ) scheduler.set_timesteps(_lowercase ) # copy over dummy past residuals (must be after setting timesteps) _UpperCAmelCase : Union[str, Any] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowercase ) _UpperCAmelCase : Dict = scheduler_class.from_pretrained(_lowercase ) # copy over dummy past residuals new_scheduler.set_timesteps(_lowercase ) # copy over dummy past residual (must be after setting timesteps) _UpperCAmelCase : Dict = dummy_past_residuals[: new_scheduler.config.solver_order] _UpperCAmelCase : Any = scheduler.step(_lowercase ,_lowercase ,_lowercase ,**_lowercase ).prev_sample _UpperCAmelCase : List[str] = new_scheduler.step(_lowercase ,_lowercase ,_lowercase ,**_lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def _snake_case ( self ,a_=None ,**a_ ) -> List[str]: if scheduler is None: _UpperCAmelCase : Optional[Any] = self.scheduler_classes[0] _UpperCAmelCase : Tuple = self.get_scheduler_config(**_lowercase ) _UpperCAmelCase : Optional[int] = scheduler_class(**_lowercase ) _UpperCAmelCase : Any = self.scheduler_classes[0] _UpperCAmelCase : List[Any] = self.get_scheduler_config(**_lowercase ) _UpperCAmelCase : Dict = scheduler_class(**_lowercase ) _UpperCAmelCase : List[str] = 10 _UpperCAmelCase : Optional[Any] = self.dummy_model() _UpperCAmelCase : Optional[Any] = self.dummy_sample_deter scheduler.set_timesteps(_lowercase ) for i, t in enumerate(scheduler.timesteps ): _UpperCAmelCase : Any = model(_lowercase ,_lowercase ) _UpperCAmelCase : List[str] = scheduler.step(_lowercase ,_lowercase ,_lowercase ).prev_sample return sample def _snake_case ( self ) -> Optional[Any]: _UpperCAmelCase : Optional[int] = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) _UpperCAmelCase : str = 50 _UpperCAmelCase : Dict = self.dummy_model() _UpperCAmelCase : str = self.dummy_sample_deter scheduler.set_timesteps(_lowercase ) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:] ): _UpperCAmelCase : Dict = model(_lowercase ,_lowercase ) _UpperCAmelCase : str = scheduler.step(_lowercase ,_lowercase ,_lowercase ).prev_sample _UpperCAmelCase : List[Any] = torch.mean(torch.abs(_lowercase ) ) assert abs(result_mean.item() - 0.2574 ) < 1E-3 def _snake_case ( self ) -> str: for timesteps in [25, 50, 100, 999, 1_000]: self.check_over_configs(num_train_timesteps=_lowercase ) def _snake_case ( self ) -> Optional[Any]: # make sure that iterating over schedulers with same config names gives same results # for defaults _UpperCAmelCase : Tuple = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) _UpperCAmelCase : str = self.full_loop(scheduler=_lowercase ) _UpperCAmelCase : Optional[Any] = torch.mean(torch.abs(_lowercase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 _UpperCAmelCase : List[str] = DEISMultistepScheduler.from_config(scheduler.config ) _UpperCAmelCase : Tuple = DPMSolverMultistepScheduler.from_config(scheduler.config ) _UpperCAmelCase : Union[str, Any] = UniPCMultistepScheduler.from_config(scheduler.config ) _UpperCAmelCase : Optional[Any] = DPMSolverSinglestepScheduler.from_config(scheduler.config ) _UpperCAmelCase : List[Any] = self.full_loop(scheduler=_lowercase ) _UpperCAmelCase : Dict = torch.mean(torch.abs(_lowercase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 def _snake_case ( self ) -> Optional[int]: self.check_over_configs(thresholding=_lowercase ) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_lowercase ,prediction_type=_lowercase ,sample_max_value=_lowercase ,algorithm_type='dpmsolver++' ,solver_order=_lowercase ,solver_type=_lowercase ,) def _snake_case ( self ) -> Any: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowercase ) def _snake_case ( self ) -> Optional[int]: for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_lowercase ,solver_type=_lowercase ,prediction_type=_lowercase ,algorithm_type=_lowercase ,) _UpperCAmelCase : Optional[Any] = self.full_loop( solver_order=_lowercase ,solver_type=_lowercase ,prediction_type=_lowercase ,algorithm_type=_lowercase ,) assert not torch.isnan(_lowercase ).any(), "Samples have nan numbers" def _snake_case ( self ) -> Tuple: self.check_over_configs(lower_order_final=_lowercase ) self.check_over_configs(lower_order_final=_lowercase ) def _snake_case ( self ) -> int: self.check_over_configs(lambda_min_clipped=-float('inf' ) ) self.check_over_configs(lambda_min_clipped=-5.1 ) def _snake_case ( self ) -> Union[str, Any]: self.check_over_configs(variance_type=_lowercase ) self.check_over_configs(variance_type='learned_range' ) def _snake_case ( self ) -> Union[str, Any]: for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1_000]: self.check_over_forward(num_inference_steps=_lowercase ,time_step=0 ) def _snake_case ( self ) -> Dict: _UpperCAmelCase : List[Any] = self.full_loop() _UpperCAmelCase : Tuple = torch.mean(torch.abs(_lowercase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 def _snake_case ( self ) -> Optional[Any]: _UpperCAmelCase : Dict = self.full_loop(use_karras_sigmas=_lowercase ) _UpperCAmelCase : Optional[Any] = torch.mean(torch.abs(_lowercase ) ) assert abs(result_mean.item() - 0.2248 ) < 1E-3 def _snake_case ( self ) -> str: _UpperCAmelCase : List[str] = self.full_loop(prediction_type='v_prediction' ) _UpperCAmelCase : int = torch.mean(torch.abs(_lowercase ) ) assert abs(result_mean.item() - 0.1453 ) < 1E-3 def _snake_case ( self ) -> List[str]: _UpperCAmelCase : int = self.full_loop(prediction_type='v_prediction' ,use_karras_sigmas=_lowercase ) _UpperCAmelCase : Union[str, Any] = torch.mean(torch.abs(_lowercase ) ) assert abs(result_mean.item() - 0.0649 ) < 1E-3 def _snake_case ( self ) -> List[str]: _UpperCAmelCase : int = self.scheduler_classes[0] _UpperCAmelCase : Dict = self.get_scheduler_config(thresholding=_lowercase ,dynamic_thresholding_ratio=0 ) _UpperCAmelCase : Optional[Any] = scheduler_class(**_lowercase ) _UpperCAmelCase : int = 10 _UpperCAmelCase : int = self.dummy_model() _UpperCAmelCase : Optional[int] = self.dummy_sample_deter.half() scheduler.set_timesteps(_lowercase ) for i, t in enumerate(scheduler.timesteps ): _UpperCAmelCase : Dict = model(_lowercase ,_lowercase ) _UpperCAmelCase : List[str] = scheduler.step(_lowercase ,_lowercase ,_lowercase ).prev_sample assert sample.dtype == torch.floataa
366
'''simple docstring''' import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## A_ : Any = 1_6 A_ : Union[str, Any] = 3_2 def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 16 )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained("""bert-base-cased""" ) _UpperCAmelCase : str = DatasetDict( { """train""": dataset["""train"""].select(lowerCAmelCase_ ), """validation""": dataset["""train"""].select(lowerCAmelCase_ ), """test""": dataset["""validation"""], } ) def tokenize_function(lowerCAmelCase_ ): # max_length=None => use the model max length (it's actually the default) _UpperCAmelCase : List[str] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _UpperCAmelCase : Optional[int] = datasets.map( lowerCAmelCase_ , batched=lowerCAmelCase_ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _UpperCAmelCase : List[Any] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowerCAmelCase_ ): # On TPU it's best to pad everything to the same length or training will be very slow. _UpperCAmelCase : Tuple = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _UpperCAmelCase : List[str] = 16 elif accelerator.mixed_precision != "no": _UpperCAmelCase : Any = 8 else: _UpperCAmelCase : Dict = None return tokenizer.pad( lowerCAmelCase_ , padding="""longest""" , max_length=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_tensors="""pt""" , ) # Instantiate dataloaders. _UpperCAmelCase : Union[str, Any] = DataLoader( tokenized_datasets["""train"""] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) _UpperCAmelCase : Dict = DataLoader( tokenized_datasets["""test"""] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) return train_dataloader, eval_dataloader, test_dataloader def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : Optional[int] = [] # Download the dataset _UpperCAmelCase : Dict = load_dataset("""glue""" , """mrpc""" ) # Create our splits _UpperCAmelCase : Optional[Any] = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator _UpperCAmelCase : Union[str, Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _UpperCAmelCase : Dict = config["""lr"""] _UpperCAmelCase : List[Any] = int(config["""num_epochs"""] ) _UpperCAmelCase : str = int(config["""seed"""] ) _UpperCAmelCase : List[Any] = int(config["""batch_size"""] ) _UpperCAmelCase : int = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation _UpperCAmelCase : List[Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _UpperCAmelCase : Dict = batch_size // MAX_GPU_BATCH_SIZE _UpperCAmelCase : Tuple = MAX_GPU_BATCH_SIZE set_seed(lowerCAmelCase_ ) # New Code # # Create our folds: _UpperCAmelCase : Any = kfold.split(np.zeros(datasets["""train"""].num_rows ) , datasets["""train"""]["""label"""] ) _UpperCAmelCase : Tuple = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(lowerCAmelCase_ ): _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Union[str, Any] = get_fold_dataloaders( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _UpperCAmelCase : Tuple = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=lowerCAmelCase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _UpperCAmelCase : List[Any] = model.to(accelerator.device ) # Instantiate optimizer _UpperCAmelCase : int = AdamW(params=model.parameters() , lr=lowerCAmelCase_ ) # Instantiate scheduler _UpperCAmelCase : Dict = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase_ , num_warmup_steps=100 , num_training_steps=(len(lowerCAmelCase_ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Any = accelerator.prepare( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Now we train the model for epoch in range(lowerCAmelCase_ ): model.train() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _UpperCAmelCase : Union[str, Any] = model(**lowerCAmelCase_ ) _UpperCAmelCase : Dict = outputs.loss _UpperCAmelCase : int = loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _UpperCAmelCase : List[str] = model(**lowerCAmelCase_ ) _UpperCAmelCase : List[Any] = outputs.logits.argmax(dim=-1 ) _UpperCAmelCase ,_UpperCAmelCase : Union[str, Any] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=lowerCAmelCase_ , references=lowerCAmelCase_ , ) _UpperCAmelCase : List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , lowerCAmelCase_ ) # New Code # # We also run predictions on the test set at the very end _UpperCAmelCase : Tuple = [] for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _UpperCAmelCase : List[Any] = model(**lowerCAmelCase_ ) _UpperCAmelCase : Any = outputs.logits _UpperCAmelCase ,_UpperCAmelCase : List[Any] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(lowerCAmelCase_ , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: _UpperCAmelCase : List[Any] = torch.cat(lowerCAmelCase_ , dim=0 ) _UpperCAmelCase : Union[str, Any] = torch.stack(lowerCAmelCase_ , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) _UpperCAmelCase : List[str] = metric.compute(predictions=lowerCAmelCase_ , references=lowerCAmelCase_ ) accelerator.print("""Average test metrics from all folds:""" , lowerCAmelCase_ ) def snake_case_ ( )-> Any: '''simple docstring''' _UpperCAmelCase : List[str] = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=lowerCAmelCase_ , default=lowerCAmelCase_ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) # New Code # parser.add_argument("""--num_folds""" , type=lowerCAmelCase_ , default=3 , help="""The number of splits to perform across the dataset""" ) _UpperCAmelCase : Optional[int] = parser.parse_args() _UpperCAmelCase : Tuple = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": main()
349
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : Optional[int] =logging.get_logger(__name__) _lowercase : Tuple ={ "microsoft/swinv2-tiny-patch4-window8-256": ( "https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json" ), } class snake_case__ (A__ ): """simple docstring""" __lowerCAmelCase :List[Any] = "swinv2" __lowerCAmelCase :List[str] = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , __lowercase=2_2_4 , __lowercase=4 , __lowercase=3 , __lowercase=9_6 , __lowercase=[2, 2, 6, 2] , __lowercase=[3, 6, 1_2, 2_4] , __lowercase=7 , __lowercase=4.0 , __lowercase=True , __lowercase=0.0 , __lowercase=0.0 , __lowercase=0.1 , __lowercase="gelu" , __lowercase=False , __lowercase=0.0_2 , __lowercase=1E-5 , __lowercase=3_2 , **__lowercase , ) -> Any: """simple docstring""" super().__init__(**__lowercase ) a__ : Optional[Any] = image_size a__ : Union[str, Any] = patch_size a__ : List[Any] = num_channels a__ : Union[str, Any] = embed_dim a__ : Any = depths a__ : List[str] = len(__lowercase ) a__ : Optional[Any] = num_heads a__ : Union[str, Any] = window_size a__ : Optional[int] = mlp_ratio a__ : List[str] = qkv_bias a__ : Dict = hidden_dropout_prob a__ : str = attention_probs_dropout_prob a__ : List[Any] = drop_path_rate a__ : Tuple = hidden_act a__ : Dict = use_absolute_embeddings a__ : Tuple = layer_norm_eps a__ : Tuple = initializer_range a__ : Union[str, Any] = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model a__ : int = int(embed_dim * 2 ** (len(__lowercase ) - 1) ) a__ : Dict = (0, 0, 0, 0)
170
# coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers _lowercase : Dict ="3" print("Python version:", sys.version) print("transformers version:", transformers.__version__) try: import torch print("Torch version:", torch.__version__) print("Cuda available:", torch.cuda.is_available()) print("Cuda version:", torch.version.cuda) print("CuDNN version:", torch.backends.cudnn.version()) print("Number of GPUs available:", torch.cuda.device_count()) print("NCCL version:", torch.cuda.nccl.version()) except ImportError: print("Torch version:", None) try: import deepspeed print("DeepSpeed version:", deepspeed.__version__) except ImportError: print("DeepSpeed version:", None) try: import tensorflow as tf print("TensorFlow version:", tf.__version__) print("TF GPUs available:", bool(tf.config.list_physical_devices("GPU"))) print("Number of TF GPUs available:", len(tf.config.list_physical_devices("GPU"))) except ImportError: print("TensorFlow version:", None)
170
1
import collections import os import re from pathlib import Path __lowerCAmelCase = 'src/transformers' # Matches is_xxx_available() __lowerCAmelCase = re.compile(r'''is\_([a-z_]*)_available()''') # Catches a one-line _import_struct = {xxx} __lowerCAmelCase = re.compile(r'''^_import_structure\s+=\s+\{([^\}]+)\}''') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] __lowerCAmelCase = re.compile(r'''\s+"\S*":\s+\[([^\]]*)\]''') # Catches a line if not is_foo_available __lowerCAmelCase = re.compile(r'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''') # Catches a line _import_struct["bla"].append("foo") __lowerCAmelCase = re.compile(r'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] __lowerCAmelCase = re.compile(r'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''') # Catches a line with an object between quotes and a comma: "MyModel", __lowerCAmelCase = re.compile(r'''^\s+"([^"]+)",''') # Catches a line with objects between brackets only: ["foo", "bar"], __lowerCAmelCase = re.compile(r'''^\s+\[([^\]]+)\]''') # Catches a line with from foo import bar, bla, boo __lowerCAmelCase = re.compile(r'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') # Catches a line with try: __lowerCAmelCase = re.compile(r'''^\s*try:''') # Catches a line with else: __lowerCAmelCase = re.compile(r'''^\s*else:''') def snake_case_ ( snake_case ) -> List[str]: if _re_test_backend.search(lowerCAmelCase__ ) is None: return None lowercase__: Any = [b[0] for b in _re_backend.findall(lowerCAmelCase__ )] backends.sort() return "_and_".join(lowerCAmelCase__ ) def snake_case_ ( snake_case ) -> List[str]: with open(lowerCAmelCase__ , 'r' , encoding='utf-8' , newline='\n' ) as f: lowercase__: Optional[int] = f.readlines() lowercase__: int = 0 while line_index < len(lowerCAmelCase__ ) and not lines[line_index].startswith('_import_structure = {' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(lowerCAmelCase__ ): return None # First grab the objects without a specific backend in _import_structure lowercase__: Optional[int] = [] while not lines[line_index].startswith('if TYPE_CHECKING' ) and find_backend(lines[line_index] ) is None: lowercase__: List[Any] = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(lowerCAmelCase__ ): lowercase__: Optional[int] = _re_one_line_import_struct.search(lowerCAmelCase__ ).groups()[0] lowercase__: Union[str, Any] = re.findall(R'\[([^\]]+)\]' , lowerCAmelCase__ ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(', ' )] ) line_index += 1 continue lowercase__: int = _re_import_struct_key_value.search(lowerCAmelCase__ ) if single_line_import_search is not None: lowercase__: str = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(', ' ) if len(lowerCAmelCase__ ) > 0] objects.extend(lowerCAmelCase__ ) elif line.startswith(' ' * 8 + '\"' ): objects.append(line[9:-3] ) line_index += 1 lowercase__: Any = {"""none""": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('if TYPE_CHECKING' ): # If the line is an if not is_backend_available, we grab all objects associated. lowercase__: Optional[int] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowercase__: Tuple = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowercase__: Dict = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 4 ): lowercase__: int = lines[line_index] if _re_import_struct_add_one.search(lowerCAmelCase__ ) is not None: objects.append(_re_import_struct_add_one.search(lowerCAmelCase__ ).groups()[0] ) elif _re_import_struct_add_many.search(lowerCAmelCase__ ) is not None: lowercase__: Optional[Any] = _re_import_struct_add_many.search(lowerCAmelCase__ ).groups()[0].split(', ' ) lowercase__: int = [obj[1:-1] for obj in imports if len(lowerCAmelCase__ ) > 0] objects.extend(lowerCAmelCase__ ) elif _re_between_brackets.search(lowerCAmelCase__ ) is not None: lowercase__: Optional[Any] = _re_between_brackets.search(lowerCAmelCase__ ).groups()[0].split(', ' ) lowercase__: List[Any] = [obj[1:-1] for obj in imports if len(lowerCAmelCase__ ) > 0] objects.extend(lowerCAmelCase__ ) elif _re_quote_object.search(lowerCAmelCase__ ) is not None: objects.append(_re_quote_object.search(lowerCAmelCase__ ).groups()[0] ) elif line.startswith(' ' * 8 + '\"' ): objects.append(line[9:-3] ) elif line.startswith(' ' * 12 + '\"' ): objects.append(line[13:-3] ) line_index += 1 lowercase__: List[Any] = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend lowercase__: Optional[Any] = [] while ( line_index < len(lowerCAmelCase__ ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('else' ) ): lowercase__: int = lines[line_index] lowercase__: Any = _re_import.search(lowerCAmelCase__ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 8 ): objects.append(line[8:-2] ) line_index += 1 lowercase__: str = {"""none""": objects} # Let's continue with backend-specific objects while line_index < len(lowerCAmelCase__ ): # If the line is an if is_backend_available, we grab all objects associated. lowercase__: Tuple = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowercase__: Dict = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowercase__: List[str] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 8 ): lowercase__: int = lines[line_index] lowercase__: Tuple = _re_import.search(lowerCAmelCase__ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 12 ): objects.append(line[12:-2] ) line_index += 1 lowercase__: Optional[Any] = objects else: line_index += 1 return import_dict_objects, type_hint_objects def snake_case_ ( snake_case , snake_case ) -> Tuple: def find_duplicates(snake_case ): return [k for k, v in collections.Counter(lowerCAmelCase__ ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] lowercase__: str = [] for key in import_dict_objects.keys(): lowercase__: Any = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(f'Duplicate _import_structure definitions for: {duplicate_imports}' ) lowercase__: Optional[Any] = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(f'Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): lowercase__: Union[str, Any] = """base imports""" if key == """none""" else f'{key} backend' errors.append(f'Differences for {name}:' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f' {a} in TYPE_HINT but not in _import_structure.' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f' {a} in _import_structure but not in TYPE_HINT.' ) return errors def snake_case_ ( ) -> Tuple: lowercase__: Tuple = [] for root, _, files in os.walk(lowerCAmelCase__ ): if "__init__.py" in files: lowercase__: List[Any] = os.path.join(lowerCAmelCase__ , '__init__.py' ) lowercase__: Any = parse_init(lowerCAmelCase__ ) if objects is not None: lowercase__: Union[str, Any] = analyze_results(*lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > 0: lowercase__: int = f'Problem in {fname}, both halves do not define the same objects.\n{errors[0]}' failures.append('\n'.join(lowerCAmelCase__ ) ) if len(lowerCAmelCase__ ) > 0: raise ValueError('\n\n'.join(lowerCAmelCase__ ) ) def snake_case_ ( ) -> Optional[int]: lowercase__: Union[str, Any] = [] for path, directories, files in os.walk(lowerCAmelCase__ ): for folder in directories: # Ignore private modules if folder.startswith('_' ): directories.remove(lowerCAmelCase__ ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(lowerCAmelCase__ ) / folder).glob('*.py' ) ) ) == 0: continue lowercase__: Any = str((Path(lowerCAmelCase__ ) / folder).relative_to(lowerCAmelCase__ ) ) lowercase__: Union[str, Any] = short_path.replace(os.path.sep , '.' ) submodules.append(lowerCAmelCase__ ) for fname in files: if fname == "__init__.py": continue lowercase__: Optional[Any] = str((Path(lowerCAmelCase__ ) / fname).relative_to(lowerCAmelCase__ ) ) lowercase__: Dict = short_path.replace('.py' , '' ).replace(os.path.sep , '.' ) if len(submodule.split('.' ) ) == 1: submodules.append(lowerCAmelCase__ ) return submodules __lowerCAmelCase = [ 'convert_pytorch_checkpoint_to_tf2', 'modeling_flax_pytorch_utils', 'models.esm.openfold_utils', ] def snake_case_ ( ) -> Optional[Any]: from transformers.utils import direct_transformers_import lowercase__: Union[str, Any] = direct_transformers_import(lowerCAmelCase__ ) lowercase__: List[str] = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(lowerCAmelCase__ , '__init__.py' ) , 'r' ) as f: lowercase__: Optional[Any] = f.read() import_structure_keys.update(set(re.findall(R'import_structure\[\"([^\"]*)\"\]' , lowerCAmelCase__ ) ) ) lowercase__: List[str] = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(lowerCAmelCase__ ) > 0: lowercase__: str = """\n""".join(f'- {module}' for module in module_not_registered ) raise ValueError( 'The following submodules are not properly registed in the main init of Transformers:\n' f'{list_of_modules}\n' 'Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.' ) if __name__ == "__main__": check_all_inits() check_submodules()
366
from collections import deque from math import floor from random import random from time import time class __a : def __init__( self ) -> Dict: '''simple docstring''' lowercase__: Dict = {} def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=1 ) -> Optional[int]: '''simple docstring''' if self.graph.get(lowerCAmelCase__ ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: lowercase__: int = [[w, v]] if not self.graph.get(lowerCAmelCase__ ): lowercase__: Union[str, Any] = [] def SCREAMING_SNAKE_CASE__ ( self ) -> Any: '''simple docstring''' return list(self.graph ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[int]: '''simple docstring''' if self.graph.get(lowerCAmelCase__ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__=-2 , lowerCAmelCase__=-1 ) -> Union[str, Any]: '''simple docstring''' if s == d: return [] lowercase__: Tuple = [] lowercase__: Tuple = [] if s == -2: lowercase__: Any = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) lowercase__: Dict = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowercase__: Dict = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(lowerCAmelCase__ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) lowercase__: Union[str, Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowerCAmelCase__ ) != 0: lowercase__: Optional[int] = stack[len(lowerCAmelCase__ ) - 1] else: lowercase__: Dict = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return visited def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__=-1 ) -> List[str]: '''simple docstring''' if c == -1: lowercase__: int = floor(random() * 10_000 ) + 10 for i in range(lowerCAmelCase__ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): lowercase__: str = floor(random() * c ) + 1 if n != i: self.add_pair(lowerCAmelCase__ , lowerCAmelCase__ , 1 ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__=-2 ) -> Dict: '''simple docstring''' lowercase__: int = deque() lowercase__: Dict = [] if s == -2: lowercase__: Optional[int] = list(self.graph )[0] d.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) while d: lowercase__: str = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> Dict: '''simple docstring''' lowercase__: Tuple = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> Union[str, Any]: '''simple docstring''' return len(self.graph[u] ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__=-2 ) -> Optional[Any]: '''simple docstring''' lowercase__: Tuple = [] lowercase__: str = [] if s == -2: lowercase__: Dict = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) lowercase__: List[Any] = s lowercase__: Any = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowercase__: List[str] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowercase__: Dict = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(lowerCAmelCase__ ) != 0: lowercase__: int = stack[len(lowerCAmelCase__ ) - 1] else: lowercase__: Optional[int] = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return sorted_nodes def SCREAMING_SNAKE_CASE__ ( self ) -> Any: '''simple docstring''' lowercase__: List[Any] = [] lowercase__: int = [] lowercase__: List[str] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) lowercase__: Dict = -2 lowercase__: Union[str, Any] = [] lowercase__: List[str] = s lowercase__: Dict = False lowercase__: Union[str, Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowercase__: Any = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowercase__: List[Any] = len(lowerCAmelCase__ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowercase__: Union[str, Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() lowercase__: Any = True if len(lowerCAmelCase__ ) != 0: lowercase__: Optional[Any] = stack[len(lowerCAmelCase__ ) - 1] else: lowercase__: Union[str, Any] = False indirect_parents.append(lowerCAmelCase__ ) lowercase__: int = s lowercase__: str = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return list(lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase__: Any = [] lowercase__: int = [] lowercase__: Dict = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) lowercase__: Optional[int] = -2 lowercase__: List[Any] = [] lowercase__: List[str] = s lowercase__: List[Any] = False lowercase__: str = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowercase__: Dict = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowercase__: Any = len(lowerCAmelCase__ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowercase__: List[Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() lowercase__: Optional[Any] = True if len(lowerCAmelCase__ ) != 0: lowercase__: Any = stack[len(lowerCAmelCase__ ) - 1] else: lowercase__: Optional[Any] = False indirect_parents.append(lowerCAmelCase__ ) lowercase__: Dict = s lowercase__: Dict = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return False def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__=-2 , lowerCAmelCase__=-1 ) -> Dict: '''simple docstring''' lowercase__: Union[str, Any] = time() self.dfs(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase__: Optional[Any] = time() return end - begin def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__=-2 ) -> List[str]: '''simple docstring''' lowercase__: str = time() self.bfs(lowerCAmelCase__ ) lowercase__: List[str] = time() return end - begin class __a : def __init__( self ) -> Tuple: '''simple docstring''' lowercase__: Dict = {} def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=1 ) -> List[Any]: '''simple docstring''' # check if the u exists if self.graph.get(lowerCAmelCase__ ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist lowercase__: str = [[w, v]] # add the other way if self.graph.get(lowerCAmelCase__ ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist lowercase__: Union[str, Any] = [[w, u]] def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: '''simple docstring''' if self.graph.get(lowerCAmelCase__ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowerCAmelCase__ ) # the other way round if self.graph.get(lowerCAmelCase__ ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__=-2 , lowerCAmelCase__=-1 ) -> List[str]: '''simple docstring''' if s == d: return [] lowercase__: str = [] lowercase__: int = [] if s == -2: lowercase__: Tuple = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) lowercase__: int = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowercase__: int = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(lowerCAmelCase__ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) lowercase__: List[Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowerCAmelCase__ ) != 0: lowercase__: Union[str, Any] = stack[len(lowerCAmelCase__ ) - 1] else: lowercase__: Optional[Any] = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return visited def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__=-1 ) -> Optional[Any]: '''simple docstring''' if c == -1: lowercase__: Any = floor(random() * 10_000 ) + 10 for i in range(lowerCAmelCase__ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): lowercase__: Optional[Any] = floor(random() * c ) + 1 if n != i: self.add_pair(lowerCAmelCase__ , lowerCAmelCase__ , 1 ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__=-2 ) -> List[Any]: '''simple docstring''' lowercase__: str = deque() lowercase__: List[Any] = [] if s == -2: lowercase__: str = list(self.graph )[0] d.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) while d: lowercase__: Union[str, Any] = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> List[Any]: '''simple docstring''' return len(self.graph[u] ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: '''simple docstring''' lowercase__: str = [] lowercase__: Dict = [] lowercase__: Optional[int] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) lowercase__: Dict = -2 lowercase__: Dict = [] lowercase__: List[Any] = s lowercase__: Union[str, Any] = False lowercase__: List[str] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowercase__: Optional[int] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowercase__: Any = len(lowerCAmelCase__ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowercase__: List[str] = node[1] break # check if all the children are visited if s == ss: stack.pop() lowercase__: str = True if len(lowerCAmelCase__ ) != 0: lowercase__: Dict = stack[len(lowerCAmelCase__ ) - 1] else: lowercase__: int = False indirect_parents.append(lowerCAmelCase__ ) lowercase__: Tuple = s lowercase__: List[Any] = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return list(lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Any: '''simple docstring''' lowercase__: Tuple = [] lowercase__: Optional[int] = [] lowercase__: Optional[Any] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) lowercase__: Tuple = -2 lowercase__: Any = [] lowercase__: int = s lowercase__: Optional[int] = False lowercase__: List[Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowercase__: Optional[int] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowercase__: Union[str, Any] = len(lowerCAmelCase__ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowercase__: Any = node[1] break # check if all the children are visited if s == ss: stack.pop() lowercase__: List[str] = True if len(lowerCAmelCase__ ) != 0: lowercase__: List[str] = stack[len(lowerCAmelCase__ ) - 1] else: lowercase__: Dict = False indirect_parents.append(lowerCAmelCase__ ) lowercase__: Optional[Any] = s lowercase__: Optional[int] = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return False def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' return list(self.graph ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__=-2 , lowerCAmelCase__=-1 ) -> Union[str, Any]: '''simple docstring''' lowercase__: Dict = time() self.dfs(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase__: List[Any] = time() return end - begin def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__=-2 ) -> List[Any]: '''simple docstring''' lowercase__: str = time() self.bfs(lowerCAmelCase__ ) lowercase__: List[str] = time() return end - begin
288
0
import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } lowerCamelCase_ = { '''vocab_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json''' }, '''merges_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt''' }, '''tokenizer_config_file''': { '''facebook/blenderbot_small-90M''': ( '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json''' ) }, } lowerCamelCase_ = {'''facebook/blenderbot_small-90M''': 5_12} def __magic_name__ ( __a : Optional[Any] ): '''simple docstring''' UpperCamelCase__ = set() UpperCamelCase__ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCamelCase__ = char UpperCamelCase__ = set(__a ) return pairs class __A( __lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ = ["""input_ids""", """attention_mask"""] def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_="__start__" , SCREAMING_SNAKE_CASE_="__end__" , SCREAMING_SNAKE_CASE_="__unk__" , SCREAMING_SNAKE_CASE_="__null__" , **SCREAMING_SNAKE_CASE_ , ): super().__init__(unk_token=SCREAMING_SNAKE_CASE_ , bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) with open(SCREAMING_SNAKE_CASE_ , encoding="""utf-8""" ) as vocab_handle: UpperCamelCase__ = json.load(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = {v: k for k, v in self.encoder.items()} with open(SCREAMING_SNAKE_CASE_ , encoding="""utf-8""" ) as merges_handle: UpperCamelCase__ = merges_handle.read().split("""\n""" )[1:-1] UpperCamelCase__ = [tuple(merge.split() ) for merge in merges] UpperCamelCase__ = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) UpperCamelCase__ = {} @property def UpperCAmelCase_ (self ): return len(self.encoder ) def UpperCAmelCase_ (self ): return dict(self.encoder , **self.added_tokens_encoder ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): if token in self.cache: return self.cache[token] UpperCamelCase__ = re.sub("""([.,!?()])""" , r""" \1""" , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = re.sub("""(')""" , r""" \1 """ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = re.sub(r"""\s{2,}""" , """ """ , SCREAMING_SNAKE_CASE_ ) if "\n" in token: UpperCamelCase__ = token.replace("""\n""" , """ __newln__""" ) UpperCamelCase__ = token.split(""" """ ) UpperCamelCase__ = [] for token in tokens: if not len(SCREAMING_SNAKE_CASE_ ): continue UpperCamelCase__ = token.lower() UpperCamelCase__ = tuple(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tuple(list(word[:-1] ) + [word[-1] + """</w>"""] ) UpperCamelCase__ = get_pairs(SCREAMING_SNAKE_CASE_ ) if not pairs: words.append(SCREAMING_SNAKE_CASE_ ) continue while True: UpperCamelCase__ = min(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_ : self.bpe_ranks.get(SCREAMING_SNAKE_CASE_ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break UpperCamelCase__ , UpperCamelCase__ = bigram UpperCamelCase__ = [] UpperCamelCase__ = 0 while i < len(SCREAMING_SNAKE_CASE_ ): try: UpperCamelCase__ = word.index(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) new_word.extend(word[i:j] ) UpperCamelCase__ = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(SCREAMING_SNAKE_CASE_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCamelCase__ = tuple(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = new_word if len(SCREAMING_SNAKE_CASE_ ) == 1: break else: UpperCamelCase__ = get_pairs(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = """@@ """.join(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = word[:-4] UpperCamelCase__ = word words.append(SCREAMING_SNAKE_CASE_ ) return " ".join(SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = [] UpperCamelCase__ = re.findall(r"""\S+\n?""" , SCREAMING_SNAKE_CASE_ ) for token in words: split_tokens.extend(list(self.bpe(SCREAMING_SNAKE_CASE_ ).split(""" """ ) ) ) return split_tokens def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = token.lower() return self.encoder.get(SCREAMING_SNAKE_CASE_ , self.encoder.get(self.unk_token ) ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): return self.decoder.get(SCREAMING_SNAKE_CASE_ , self.unk_token ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = """ """.join(SCREAMING_SNAKE_CASE_ ).replace("""@@ """ , """""" ).strip() return out_string def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ): if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return UpperCamelCase__ = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCamelCase__ = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(SCREAMING_SNAKE_CASE_ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_ ) + """\n""" ) UpperCamelCase__ = 0 with open(SCREAMING_SNAKE_CASE_ , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda SCREAMING_SNAKE_CASE_ : kv[1] ): if index != token_index: logger.warning( F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." """ Please check that the tokenizer is not corrupted!""" ) UpperCamelCase__ = token_index writer.write(""" """.join(SCREAMING_SNAKE_CASE_ ) + """\n""" ) index += 1 return vocab_file, merge_file
244
import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 lowerCamelCase_ = data_utils.TransfoXLTokenizer lowerCamelCase_ = data_utils.TransfoXLCorpus lowerCamelCase_ = data_utils lowerCamelCase_ = data_utils def __magic_name__ ( __a : List[Any] , __a : str , __a : Optional[Any] , __a : List[str] ): '''simple docstring''' if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(__a , """rb""" ) as fp: UpperCamelCase__ = pickle.load(__a , encoding="""latin1""" ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) UpperCamelCase__ = pytorch_dump_folder_path + """/""" + VOCAB_FILES_NAMES["""pretrained_vocab_file"""] print(f"Save vocabulary to {pytorch_vocab_dump_path}" ) UpperCamelCase__ = corpus.vocab.__dict__ torch.save(__a , __a ) UpperCamelCase__ = corpus.__dict__ corpus_dict_no_vocab.pop("""vocab""" , __a ) UpperCamelCase__ = pytorch_dump_folder_path + """/""" + CORPUS_NAME print(f"Save dataset to {pytorch_dataset_dump_path}" ) torch.save(__a , __a ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model UpperCamelCase__ = os.path.abspath(__a ) UpperCamelCase__ = os.path.abspath(__a ) print(f"Converting Transformer XL checkpoint from {tf_path} with config at {config_path}." ) # Initialise PyTorch model if transfo_xl_config_file == "": UpperCamelCase__ = TransfoXLConfig() else: UpperCamelCase__ = TransfoXLConfig.from_json_file(__a ) print(f"Building PyTorch model from configuration: {config}" ) UpperCamelCase__ = TransfoXLLMHeadModel(__a ) UpperCamelCase__ = load_tf_weights_in_transfo_xl(__a , __a , __a ) # Save pytorch-model UpperCamelCase__ = os.path.join(__a , __a ) UpperCamelCase__ = os.path.join(__a , __a ) print(f"Save PyTorch model to {os.path.abspath(__a )}" ) torch.save(model.state_dict() , __a ) print(f"Save configuration file to {os.path.abspath(__a )}" ) with open(__a , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the folder to store the PyTorch model or dataset/vocab.''', ) parser.add_argument( '''--tf_checkpoint_path''', default='''''', type=str, help='''An optional path to a TensorFlow checkpoint path to be converted.''', ) parser.add_argument( '''--transfo_xl_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--transfo_xl_dataset_file''', default='''''', type=str, help='''An optional dataset file to be converted in a vocabulary.''', ) lowerCamelCase_ = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
244
1
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Optional[Any]: _UpperCAmelCase : str = 0 def _snake_case ( self ) -> Union[str, Any]: _UpperCAmelCase : Optional[int] = AutoImageProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) self.assertIsInstance(a_ ,a_ ) def _snake_case ( self ) -> Dict: with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase : Optional[int] = Path(a_ ) / """preprocessor_config.json""" _UpperCAmelCase : int = Path(a_ ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} ,open(a_ ,"""w""" ) ,) json.dump({"""model_type""": """clip"""} ,open(a_ ,"""w""" ) ) _UpperCAmelCase : Dict = AutoImageProcessor.from_pretrained(a_ ) self.assertIsInstance(a_ ,a_ ) def _snake_case ( self ) -> Union[str, Any]: # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase : List[str] = Path(a_ ) / """preprocessor_config.json""" _UpperCAmelCase : List[Any] = Path(a_ ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} ,open(a_ ,"""w""" ) ,) json.dump({"""model_type""": """clip"""} ,open(a_ ,"""w""" ) ) _UpperCAmelCase : int = AutoImageProcessor.from_pretrained(a_ ) self.assertIsInstance(a_ ,a_ ) def _snake_case ( self ) -> Any: with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase : Any = CLIPConfig() # Create a dummy config file with image_proceesor_type _UpperCAmelCase : str = Path(a_ ) / """preprocessor_config.json""" _UpperCAmelCase : Optional[int] = Path(a_ ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} ,open(a_ ,"""w""" ) ,) json.dump({"""model_type""": """clip"""} ,open(a_ ,"""w""" ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally _UpperCAmelCase : List[str] = AutoImageProcessor.from_pretrained(a_ ).to_dict() config_dict.pop("""image_processor_type""" ) _UpperCAmelCase : List[str] = CLIPImageProcessor(**a_ ) # save in new folder model_config.save_pretrained(a_ ) config.save_pretrained(a_ ) _UpperCAmelCase : Dict = AutoImageProcessor.from_pretrained(a_ ) # make sure private variable is not incorrectly saved _UpperCAmelCase : Dict = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(a_ ,a_ ) def _snake_case ( self ) -> str: with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase : str = Path(a_ ) / """preprocessor_config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} ,open(a_ ,"""w""" ) ,) _UpperCAmelCase : Union[str, Any] = AutoImageProcessor.from_pretrained(a_ ) self.assertIsInstance(a_ ,a_ ) def _snake_case ( self ) -> List[Any]: with self.assertRaisesRegex( a_ ,"""clip-base is not a local folder and is not a valid model identifier""" ): _UpperCAmelCase : Optional[int] = AutoImageProcessor.from_pretrained("""clip-base""" ) def _snake_case ( self ) -> List[str]: with self.assertRaisesRegex( a_ ,r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): _UpperCAmelCase : Tuple = AutoImageProcessor.from_pretrained(a_ ,revision="""aaaaaa""" ) def _snake_case ( self ) -> Optional[Any]: with self.assertRaisesRegex( a_ ,"""hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" ,): _UpperCAmelCase : Union[str, Any] = AutoImageProcessor.from_pretrained("""hf-internal-testing/config-no-model""" ) def _snake_case ( self ) -> Optional[Any]: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(a_ ): _UpperCAmelCase : Dict = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(a_ ): _UpperCAmelCase : List[str] = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" ,trust_remote_code=a_ ) _UpperCAmelCase : Optional[int] = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" ,trust_remote_code=a_ ) self.assertEqual(image_processor.__class__.__name__ ,"""NewImageProcessor""" ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(a_ ) _UpperCAmelCase : Union[str, Any] = AutoImageProcessor.from_pretrained(a_ ,trust_remote_code=a_ ) self.assertEqual(reloaded_image_processor.__class__.__name__ ,"""NewImageProcessor""" ) def _snake_case ( self ) -> Any: try: AutoConfig.register("""custom""" ,a_ ) AutoImageProcessor.register(a_ ,a_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(a_ ): AutoImageProcessor.register(a_ ,a_ ) with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase : Optional[int] = Path(a_ ) / """preprocessor_config.json""" _UpperCAmelCase : Dict = Path(a_ ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} ,open(a_ ,"""w""" ) ,) json.dump({"""model_type""": """clip"""} ,open(a_ ,"""w""" ) ) _UpperCAmelCase : Union[str, Any] = CustomImageProcessor.from_pretrained(a_ ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(a_ ) _UpperCAmelCase : Union[str, Any] = AutoImageProcessor.from_pretrained(a_ ) self.assertIsInstance(a_ ,a_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def _snake_case ( self ) -> str: class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = True try: AutoConfig.register("""custom""" ,a_ ) AutoImageProcessor.register(a_ ,a_ ) # If remote code is not set, the default is to use local _UpperCAmelCase : Union[str, Any] = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) self.assertEqual(image_processor.__class__.__name__ ,"""NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. _UpperCAmelCase : Optional[int] = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" ,trust_remote_code=a_ ) self.assertEqual(image_processor.__class__.__name__ ,"""NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub _UpperCAmelCase : Tuple = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" ,trust_remote_code=a_ ) self.assertEqual(image_processor.__class__.__name__ ,"""NewImageProcessor""" ) self.assertTrue(not hasattr(a_ ,"""is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
355
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : List[str] = 1 _UpperCAmelCase : List[str] = 3 _UpperCAmelCase : Union[str, Any] = (32, 32) _UpperCAmelCase : str = floats_tensor((batch_size, num_channels) + sizes ,rng=random.Random(0 ) ).to(a_ ) return image @property def _snake_case ( self ) -> List[Any]: torch.manual_seed(0 ) _UpperCAmelCase : List[str] = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") ,up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") ,cross_attention_dim=32 ,) return model @property def _snake_case ( self ) -> Optional[int]: torch.manual_seed(0 ) _UpperCAmelCase : str = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] ,up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] ,latent_channels=4 ,) return model @property def _snake_case ( self ) -> Dict: torch.manual_seed(0 ) _UpperCAmelCase : Any = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_000 ,) return CLIPTextModel(a_ ) @property def _snake_case ( self ) -> Union[str, Any]: def extract(*a_ ,**a_ ): class lowercase : """simple docstring""" def __init__( self ) -> Any: _UpperCAmelCase : str = torch.ones([0] ) def _snake_case ( self ,a_ ) -> Any: self.pixel_values.to(a_ ) return self return Out() return extract def _snake_case ( self ) -> List[str]: _UpperCAmelCase : List[str] = """cpu""" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : Union[str, Any] = self.dummy_cond_unet _UpperCAmelCase : int = DDIMScheduler( beta_start=0.0_0085 ,beta_end=0.012 ,beta_schedule="""scaled_linear""" ,clip_sample=a_ ,set_alpha_to_one=a_ ,) _UpperCAmelCase : Optional[int] = self.dummy_vae _UpperCAmelCase : Optional[int] = self.dummy_text_encoder _UpperCAmelCase : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk _UpperCAmelCase : int = StableDiffusionPipeline( unet=a_ ,scheduler=a_ ,vae=a_ ,text_encoder=a_ ,tokenizer=a_ ,safety_checker=a_ ,feature_extractor=self.dummy_extractor ,) _UpperCAmelCase : Optional[Any] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : Union[str, Any] = """A painting of a squirrel eating a burger""" _UpperCAmelCase : Optional[int] = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : str = sd_pipe([prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ) _UpperCAmelCase : int = output.images _UpperCAmelCase : Union[str, Any] = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : str = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ,return_dict=a_ ,)[0] _UpperCAmelCase : str = image[0, -3:, -3:, -1] _UpperCAmelCase : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCAmelCase : Optional[int] = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> Any: _UpperCAmelCase : Any = """cpu""" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : Tuple = self.dummy_cond_unet _UpperCAmelCase : Optional[int] = PNDMScheduler(skip_prk_steps=a_ ) _UpperCAmelCase : int = self.dummy_vae _UpperCAmelCase : int = self.dummy_text_encoder _UpperCAmelCase : Union[str, Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk _UpperCAmelCase : str = StableDiffusionPipeline( unet=a_ ,scheduler=a_ ,vae=a_ ,text_encoder=a_ ,tokenizer=a_ ,safety_checker=a_ ,feature_extractor=self.dummy_extractor ,) _UpperCAmelCase : str = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : int = """A painting of a squirrel eating a burger""" _UpperCAmelCase : Any = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : List[Any] = sd_pipe([prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ) _UpperCAmelCase : Dict = output.images _UpperCAmelCase : List[Any] = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : Any = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ,return_dict=a_ ,)[0] _UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] _UpperCAmelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCAmelCase : Union[str, Any] = np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : Optional[int] = StableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-lms-pipe""" ,safety_checker=a_ ) assert isinstance(a_ ,a_ ) assert isinstance(pipe.scheduler ,a_ ) assert pipe.safety_checker is None _UpperCAmelCase : Dict = pipe("""example prompt""" ,num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(a_ ) _UpperCAmelCase : Any = StableDiffusionPipeline.from_pretrained(a_ ) # sanity check that the pipeline still works assert pipe.safety_checker is None _UpperCAmelCase : Union[str, Any] = pipe("""example prompt""" ,num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != """cuda""" ,"""This test requires a GPU""" ) def _snake_case ( self ) -> str: _UpperCAmelCase : Optional[int] = self.dummy_cond_unet _UpperCAmelCase : str = PNDMScheduler(skip_prk_steps=a_ ) _UpperCAmelCase : List[str] = self.dummy_vae _UpperCAmelCase : int = self.dummy_text_encoder _UpperCAmelCase : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # put models in fp16 _UpperCAmelCase : str = unet.half() _UpperCAmelCase : List[str] = vae.half() _UpperCAmelCase : Dict = bert.half() # make sure here that pndm scheduler skips prk _UpperCAmelCase : Dict = StableDiffusionPipeline( unet=a_ ,scheduler=a_ ,vae=a_ ,text_encoder=a_ ,tokenizer=a_ ,safety_checker=a_ ,feature_extractor=self.dummy_extractor ,) _UpperCAmelCase : List[str] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : str = """A painting of a squirrel eating a burger""" _UpperCAmelCase : int = sd_pipe([prompt] ,num_inference_steps=2 ,output_type="""np""" ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ) -> str: _UpperCAmelCase : List[str] = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ,safety_checker=a_ ) _UpperCAmelCase : Dict = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _UpperCAmelCase : int = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : List[Any] = ( """portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle""" """ coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with""" """ anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and""" """ children from bahnhof zoo, detailed """ ) _UpperCAmelCase : Any = 4_003_660_346 _UpperCAmelCase : List[Any] = 7 # without safety guidance (sld_guidance_scale = 0) _UpperCAmelCase : int = torch.manual_seed(a_ ) _UpperCAmelCase : str = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) _UpperCAmelCase : str = output.images _UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] _UpperCAmelCase : List[str] = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) _UpperCAmelCase : List[str] = torch.manual_seed(a_ ) _UpperCAmelCase : Optional[Any] = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2_000 ,sld_warmup_steps=7 ,sld_threshold=0.025 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) _UpperCAmelCase : List[str] = output.images _UpperCAmelCase : List[str] = image[0, -3:, -3:, -1] _UpperCAmelCase : List[str] = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> int: _UpperCAmelCase : Any = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ,safety_checker=a_ ) _UpperCAmelCase : Union[str, Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _UpperCAmelCase : Union[str, Any] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : Any = """padme amidala taking a bath artwork, safe for work, no nudity""" _UpperCAmelCase : Optional[Any] = 2_734_971_755 _UpperCAmelCase : Optional[int] = 7 _UpperCAmelCase : int = torch.manual_seed(a_ ) _UpperCAmelCase : int = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) _UpperCAmelCase : Optional[int] = output.images _UpperCAmelCase : List[Any] = image[0, -3:, -3:, -1] _UpperCAmelCase : Optional[int] = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 _UpperCAmelCase : Optional[int] = torch.manual_seed(a_ ) _UpperCAmelCase : int = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2_000 ,sld_warmup_steps=7 ,sld_threshold=0.025 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) _UpperCAmelCase : Union[str, Any] = output.images _UpperCAmelCase : Any = image[0, -3:, -3:, -1] _UpperCAmelCase : List[Any] = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> Any: _UpperCAmelCase : Any = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ) _UpperCAmelCase : List[str] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : Optional[int] = ( """the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.""" """ leyendecker""" ) _UpperCAmelCase : Dict = 1_044_355_234 _UpperCAmelCase : int = 12 _UpperCAmelCase : Optional[Any] = torch.manual_seed(a_ ) _UpperCAmelCase : List[str] = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) _UpperCAmelCase : List[str] = output.images _UpperCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] _UpperCAmelCase : Dict = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 _UpperCAmelCase : Tuple = torch.manual_seed(a_ ) _UpperCAmelCase : Dict = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2_000 ,sld_warmup_steps=7 ,sld_threshold=0.025 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) _UpperCAmelCase : Optional[Any] = output.images _UpperCAmelCase : Dict = image[0, -3:, -3:, -1] _UpperCAmelCase : int = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
349
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCamelCase = { """configuration_blenderbot_small""": [ """BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlenderbotSmallConfig""", """BlenderbotSmallOnnxConfig""", ], """tokenization_blenderbot_small""": ["""BlenderbotSmallTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ["""BlenderbotSmallTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ """BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlenderbotSmallForCausalLM""", """BlenderbotSmallForConditionalGeneration""", """BlenderbotSmallModel""", """BlenderbotSmallPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ """TFBlenderbotSmallForConditionalGeneration""", """TFBlenderbotSmallModel""", """TFBlenderbotSmallPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ """FlaxBlenderbotSmallForConditionalGeneration""", """FlaxBlenderbotSmallModel""", """FlaxBlenderbotSmallPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotSmallConfig, BlenderbotSmallOnnxConfig, ) from .tokenization_blenderbot_small import BlenderbotSmallTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotSmallForCausalLM, BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel, BlenderbotSmallPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot_small import ( TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel, TFBlenderbotSmallPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, FlaxBlenderbotSmallPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
59
from collections.abc import Callable class __SCREAMING_SNAKE_CASE : def __init__( self , SCREAMING_SNAKE_CASE__ = None ): # Stores actual heap items. lowercase : list = [] # Stores indexes of each item for supporting updates and deletion. lowercase : dict = {} # Stores current size of heap. lowercase : str = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. lowercase : Tuple = key or (lambda SCREAMING_SNAKE_CASE__ : x) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): return int((i - 1) / 2 ) if i > 0 else None def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): lowercase : Any = int(2 * i + 1 ) return left if 0 < left < self.size else None def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): lowercase : Any = int(2 * i + 2 ) return right if 0 < right < self.size else None def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase , lowercase : Dict = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. lowercase , lowercase : int = self.arr[j], self.arr[i] def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return self.arr[i][1] < self.arr[j][1] def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): lowercase : int = self._left(SCREAMING_SNAKE_CASE__ ) lowercase : Optional[int] = self._right(SCREAMING_SNAKE_CASE__ ) lowercase : List[Any] = i if left is not None and not self._cmp(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : Dict = left if right is not None and not self._cmp(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : List[str] = right return valid_parent def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): lowercase : Optional[int] = self._parent(SCREAMING_SNAKE_CASE__ ) while parent is not None and not self._cmp(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): self._swap(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase , lowercase : Optional[int] = parent, self._parent(SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): lowercase : Dict = self._get_valid_parent(SCREAMING_SNAKE_CASE__ ) while valid_parent != index: self._swap(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase , lowercase : str = valid_parent, self._get_valid_parent(SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if item not in self.pos_map: return lowercase : str = self.pos_map[item] lowercase : Optional[int] = [item, self.key(SCREAMING_SNAKE_CASE__ )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(SCREAMING_SNAKE_CASE__ ) self._heapify_down(SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): if item not in self.pos_map: return lowercase : List[str] = self.pos_map[item] del self.pos_map[item] lowercase : Optional[int] = self.arr[self.size - 1] lowercase : int = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(SCREAMING_SNAKE_CASE__ ) self._heapify_down(SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : str = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(SCREAMING_SNAKE_CASE__ )] ) else: lowercase : int = [item, self.key(SCREAMING_SNAKE_CASE__ )] lowercase : str = self.size self.size += 1 self._heapify_up(self.size - 1 ) def __lowerCamelCase ( self ): return self.arr[0] if self.size else None def __lowerCamelCase ( self ): lowercase : str = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def __lowercase ( ) ->None: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
337
0
"""simple docstring""" from math import factorial def a__ ( snake_case__ = 20 ) -> int: lowerCamelCase = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... lowerCamelCase = n // 2 return int(factorial(snake_case__ ) / (factorial(snake_case__ ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(20)) else: try: lowerCAmelCase : Optional[Any] = int(sys.argv[1]) print(solution(n)) except ValueError: print("""Invalid entry - please enter a number.""")
168
"""simple docstring""" import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : List[str] = False, False, False @dataclass class __magic_name__ : '''simple docstring''' __UpperCamelCase = None __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = None # Automatically constructed __UpperCamelCase = "dict" __UpperCamelCase = pa.struct({"bytes": pa.binary(), "path": pa.string()} ) __UpperCamelCase = field(default="Audio" , init=UpperCAmelCase__ , repr=UpperCAmelCase__ ) def __call__( self ): """simple docstring""" return self.pa_type def _lowerCAmelCase ( self , _a ): """simple docstring""" try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError("""To support encoding audio data, please install 'soundfile'.""" ) from err if isinstance(_a , _a ): return {"bytes": None, "path": value} elif isinstance(_a , _a ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes lowerCamelCase = BytesIO() sf.write(_a , value["""array"""] , value["""sampling_rate"""] , format="""wav""" ) return {"bytes": buffer.getvalue(), "path": None} elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith("""pcm""" ): # "PCM" only has raw audio bytes if value.get("""sampling_rate""" ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError("""To use PCM files, please specify a 'sampling_rate' in Audio object""" ) if value.get("""bytes""" ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) lowerCamelCase = np.frombuffer(value["""bytes"""] , dtype=np.intaa ).astype(np.floataa ) / 32_767 else: lowerCamelCase = np.memmap(value["""path"""] , dtype="""h""" , mode="""r""" ).astype(np.floataa ) / 32_767 lowerCamelCase = BytesIO(bytes() ) sf.write(_a , _a , value["""sampling_rate"""] , format="""wav""" ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get("""path""" )} elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )} else: raise ValueError( f'An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.' ) def _lowerCAmelCase ( self , _a , _a = None ): """simple docstring""" if not self.decode: raise RuntimeError("""Decoding is disabled for this feature. Please use Audio(decode=True) instead.""" ) lowerCamelCase , lowerCamelCase = (value["""path"""], BytesIO(value["""bytes"""] )) if value["""bytes"""] is not None else (value["""path"""], None) if path is None and file is None: raise ValueError(f'An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.' ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError("""To support decoding audio files, please install 'librosa' and 'soundfile'.""" ) from err lowerCamelCase = xsplitext(_a )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( """Decoding 'opus' files requires system library 'libsndfile'>=1.0.31, """ """You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. """ ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( """Decoding 'mp3' files requires system library 'libsndfile'>=1.1.0, """ """You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. """ ) if file is None: lowerCamelCase = token_per_repo_id or {} lowerCamelCase = path.split("""::""" )[-1] try: lowerCamelCase = string_to_dict(_a , config.HUB_DATASETS_URL )["""repo_id"""] lowerCamelCase = token_per_repo_id[repo_id] except (ValueError, KeyError): lowerCamelCase = None with xopen(_a , """rb""" , use_auth_token=_a ) as f: lowerCamelCase , lowerCamelCase = sf.read(_a ) else: lowerCamelCase , lowerCamelCase = sf.read(_a ) lowerCamelCase = array.T if self.mono: lowerCamelCase = librosa.to_mono(_a ) if self.sampling_rate and self.sampling_rate != sampling_rate: lowerCamelCase = librosa.resample(_a , orig_sr=_a , target_sr=self.sampling_rate ) lowerCamelCase = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def _lowerCAmelCase ( self ): """simple docstring""" from .features import Value if self.decode: raise ValueError("""Cannot flatten a decoded Audio feature.""" ) return { "bytes": Value("""binary""" ), "path": Value("""string""" ), } def _lowerCAmelCase ( self , _a ): """simple docstring""" if pa.types.is_string(storage.type ): lowerCamelCase = pa.array([None] * len(_a ) , type=pa.binary() ) lowerCamelCase = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): lowerCamelCase = pa.array([None] * len(_a ) , type=pa.string() ) lowerCamelCase = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices("""array""" ): lowerCamelCase = pa.array([Audio().encode_example(_a ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("""bytes""" ) >= 0: lowerCamelCase = storage.field("""bytes""" ) else: lowerCamelCase = pa.array([None] * len(_a ) , type=pa.binary() ) if storage.type.get_field_index("""path""" ) >= 0: lowerCamelCase = storage.field("""path""" ) else: lowerCamelCase = pa.array([None] * len(_a ) , type=pa.string() ) lowerCamelCase = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) return array_cast(_a , self.pa_type ) def _lowerCAmelCase ( self , _a ): """simple docstring""" @no_op_if_value_is_null def path_to_bytes(_a ): with xopen(_a , """rb""" ) as f: lowerCamelCase = f.read() return bytes_ lowerCamelCase = pa.array( [ (path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) lowerCamelCase = pa.array( [os.path.basename(_a ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] , type=pa.string() , ) lowerCamelCase = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(_a , self.pa_type )
168
1
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=30 , SCREAMING_SNAKE_CASE_=400 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE_=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=1 / 255 , SCREAMING_SNAKE_CASE_=True , ) -> List[str]: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p UpperCamelCase :List[str] = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1333} UpperCamelCase :List[str] = parent UpperCamelCase :Dict = batch_size UpperCamelCase :Optional[Any] = num_channels UpperCamelCase :str = min_resolution UpperCamelCase :Any = max_resolution UpperCamelCase :List[Any] = do_resize UpperCamelCase :Optional[int] = size UpperCamelCase :List[str] = do_normalize UpperCamelCase :Any = image_mean UpperCamelCase :Union[str, Any] = image_std UpperCamelCase :int = do_rescale UpperCamelCase :str = rescale_factor UpperCamelCase :str = do_pad def UpperCAmelCase ( self ) -> Dict: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False ) -> List[str]: if not batched: UpperCamelCase :List[Any] = image_inputs[0] if isinstance(SCREAMING_SNAKE_CASE_ , Image.Image ): UpperCamelCase :str = image.size else: UpperCamelCase :int = image.shape[1], image.shape[2] if w < h: UpperCamelCase :List[str] = int(self.size['''shortest_edge'''] * h / w ) UpperCamelCase :Optional[int] = self.size['''shortest_edge'''] elif w > h: UpperCamelCase :Dict = self.size['''shortest_edge'''] UpperCamelCase :List[Any] = int(self.size['''shortest_edge'''] * w / h ) else: UpperCamelCase :Union[str, Any] = self.size['''shortest_edge'''] UpperCamelCase :Optional[int] = self.size['''shortest_edge'''] else: UpperCamelCase :Any = [] for image in image_inputs: UpperCamelCase :List[Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCamelCase :List[str] = max(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_ : item[0] )[0] UpperCamelCase :Optional[int] = max(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class UpperCAmelCase_ ( lowercase, unittest.TestCase ): """simple docstring""" UpperCamelCase_ : List[Any] =YolosImageProcessor if is_vision_available() else None def UpperCAmelCase ( self ) -> Dict: UpperCamelCase :Optional[Any] = YolosImageProcessingTester(self ) @property def UpperCAmelCase ( self ) -> Dict: return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase :str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , '''image_mean''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , '''image_std''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , '''do_normalize''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , '''do_resize''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , '''size''' ) ) def UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase :Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1333} ) self.assertEqual(image_processor.do_pad , SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Any = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=SCREAMING_SNAKE_CASE_ ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self ) -> Any: pass def UpperCAmelCase ( self ) -> Tuple: # Initialize image_processing UpperCamelCase :Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase :Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE_ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , Image.Image ) # Test not batched input UpperCamelCase :str = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values UpperCamelCase :Union[str, Any] = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase :Tuple = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Tuple = image_processing(SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase ( self ) -> Any: # Initialize image_processing UpperCamelCase :Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase :Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , numpify=SCREAMING_SNAKE_CASE_ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , np.ndarray ) # Test not batched input UpperCamelCase :Tuple = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values UpperCamelCase :int = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase :Optional[int] = image_processing(SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ).pixel_values UpperCamelCase :Any = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase ( self ) -> List[Any]: # Initialize image_processing UpperCamelCase :Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase :int = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , torchify=SCREAMING_SNAKE_CASE_ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , torch.Tensor ) # Test not batched input UpperCamelCase :List[str] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values UpperCamelCase :Tuple = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase :Tuple = image_processing(SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ).pixel_values UpperCamelCase :Any = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase ( self ) -> List[str]: # Initialize image_processings UpperCamelCase :Dict = self.image_processing_class(**self.image_processor_dict ) UpperCamelCase :Dict = self.image_processing_class(do_resize=SCREAMING_SNAKE_CASE_ , do_normalize=SCREAMING_SNAKE_CASE_ , do_rescale=SCREAMING_SNAKE_CASE_ ) # create random PyTorch tensors UpperCamelCase :List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , torchify=SCREAMING_SNAKE_CASE_ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors UpperCamelCase :int = image_processing_a.pad(SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ) UpperCamelCase :Optional[int] = image_processing_a(SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ) self.assertTrue( torch.allclose(encoded_images_with_method['''pixel_values'''] , encoded_images['''pixel_values'''] , atol=1e-4 ) ) @slow def UpperCAmelCase ( self ) -> Tuple: # prepare image and target UpperCamelCase :Any = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: UpperCamelCase :Optional[int] = json.loads(f.read() ) UpperCamelCase :List[str] = {'''image_id''': 3_9769, '''annotations''': target} # encode them UpperCamelCase :Tuple = YolosImageProcessor.from_pretrained('''hustvl/yolos-small''' ) UpperCamelCase :Optional[Any] = image_processing(images=SCREAMING_SNAKE_CASE_ , annotations=SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ) # verify pixel values UpperCamelCase :Optional[Any] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , SCREAMING_SNAKE_CASE_ ) UpperCamelCase :List[str] = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) ) # verify area UpperCamelCase :Dict = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , SCREAMING_SNAKE_CASE_ ) ) # verify boxes UpperCamelCase :Tuple = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Dict = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) ) # verify image_id UpperCamelCase :str = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , SCREAMING_SNAKE_CASE_ ) ) # verify is_crowd UpperCamelCase :Optional[Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , SCREAMING_SNAKE_CASE_ ) ) # verify class_labels UpperCamelCase :Any = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , SCREAMING_SNAKE_CASE_ ) ) # verify orig_size UpperCamelCase :Tuple = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , SCREAMING_SNAKE_CASE_ ) ) # verify size UpperCamelCase :Optional[int] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , SCREAMING_SNAKE_CASE_ ) ) @slow def UpperCAmelCase ( self ) -> Optional[int]: # prepare image, target and masks_path UpperCamelCase :Tuple = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: UpperCamelCase :Any = json.loads(f.read() ) UpperCamelCase :Optional[Any] = {'''file_name''': '''000000039769.png''', '''image_id''': 3_9769, '''segments_info''': target} UpperCamelCase :Optional[Any] = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them UpperCamelCase :Dict = YolosImageProcessor(format='''coco_panoptic''' ) UpperCamelCase :Any = image_processing(images=SCREAMING_SNAKE_CASE_ , annotations=SCREAMING_SNAKE_CASE_ , masks_path=SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ) # verify pixel values UpperCamelCase :Tuple = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , SCREAMING_SNAKE_CASE_ ) UpperCamelCase :List[Any] = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) ) # verify area UpperCamelCase :List[Any] = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , SCREAMING_SNAKE_CASE_ ) ) # verify boxes UpperCamelCase :Optional[Any] = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Dict = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) ) # verify image_id UpperCamelCase :List[str] = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , SCREAMING_SNAKE_CASE_ ) ) # verify is_crowd UpperCamelCase :str = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , SCREAMING_SNAKE_CASE_ ) ) # verify class_labels UpperCamelCase :List[str] = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , SCREAMING_SNAKE_CASE_ ) ) # verify masks UpperCamelCase :Optional[Any] = 82_2873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , SCREAMING_SNAKE_CASE_ ) # verify orig_size UpperCamelCase :Dict = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , SCREAMING_SNAKE_CASE_ ) ) # verify size UpperCamelCase :Optional[Any] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , SCREAMING_SNAKE_CASE_ ) )
259
"""simple docstring""" import argparse import json import os import torch from transformers import LukeConfig, LukeModel, LukeTokenizer, RobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowerCamelCase_ (UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : int , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[Any] ): # Load configuration defined in the metadata file with open(UpperCamelCase__ ) as metadata_file: _UpperCAmelCase : Dict = json.load(UpperCamelCase__ ) _UpperCAmelCase : List[Any] = LukeConfig(use_entity_aware_attention=UpperCamelCase__ , **metadata['''model_config'''] ) # Load in the weights from the checkpoint_path _UpperCAmelCase : List[Any] = torch.load(UpperCamelCase__ , map_location='''cpu''' ) # Load the entity vocab file _UpperCAmelCase : Optional[int] = load_entity_vocab(UpperCamelCase__ ) _UpperCAmelCase : Optional[int] = RobertaTokenizer.from_pretrained(metadata['''model_config''']['''bert_model_name'''] ) # Add special tokens to the token vocabulary for downstream tasks _UpperCAmelCase : int = AddedToken('''<ent>''' , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) _UpperCAmelCase : Optional[Any] = AddedToken('''<ent2>''' , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) tokenizer.add_special_tokens({'''additional_special_tokens''': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'Saving tokenizer to {pytorch_dump_folder_path}' ) tokenizer.save_pretrained(UpperCamelCase__ ) with open(os.path.join(UpperCamelCase__ , LukeTokenizer.vocab_files_names['''entity_vocab_file'''] ) , '''w''' ) as f: json.dump(UpperCamelCase__ , UpperCamelCase__ ) _UpperCAmelCase : Any = LukeTokenizer.from_pretrained(UpperCamelCase__ ) # Initialize the embeddings of the special tokens _UpperCAmelCase : str = state_dict['''embeddings.word_embeddings.weight'''] _UpperCAmelCase : Dict = word_emb[tokenizer.convert_tokens_to_ids(['''@'''] )[0]].unsqueeze(0 ) _UpperCAmelCase : Union[str, Any] = word_emb[tokenizer.convert_tokens_to_ids(['''#'''] )[0]].unsqueeze(0 ) _UpperCAmelCase : Tuple = torch.cat([word_emb, ent_emb, enta_emb] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: _UpperCAmelCase : List[Any] = F'encoder.layer.{layer_index}.attention.self.' _UpperCAmelCase : Optional[Any] = state_dict[prefix + matrix_name] _UpperCAmelCase : Tuple = state_dict[prefix + matrix_name] _UpperCAmelCase : str = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks _UpperCAmelCase : Any = state_dict['''entity_embeddings.entity_embeddings.weight'''] _UpperCAmelCase : Dict = entity_emb[entity_vocab['''[MASK]''']] _UpperCAmelCase : Optional[int] = LukeModel(config=UpperCamelCase__ ).eval() _UpperCAmelCase , _UpperCAmelCase : int = model.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ ) if not (len(UpperCamelCase__ ) == 1 and missing_keys[0] == "embeddings.position_ids"): raise ValueError(F'Missing keys {", ".join(UpperCamelCase__ )}. Expected only missing embeddings.position_ids' ) if not (all(key.startswith('''entity_predictions''' ) or key.startswith('''lm_head''' ) for key in unexpected_keys )): raise ValueError( '''Unexpected keys''' F' {", ".join([key for key in unexpected_keys if not (key.startswith("entity_predictions" ) or key.startswith("lm_head" ))] )}' ) # Check outputs _UpperCAmelCase : Optional[int] = LukeTokenizer.from_pretrained(UpperCamelCase__ , task='''entity_classification''' ) _UpperCAmelCase : List[str] = ( '''Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped the''' ''' new world number one avoid a humiliating second- round exit at Wimbledon .''' ) _UpperCAmelCase : Dict = (39, 42) _UpperCAmelCase : Any = tokenizer(UpperCamelCase__ , entity_spans=[span] , add_prefix_space=UpperCamelCase__ , return_tensors='''pt''' ) _UpperCAmelCase : List[Any] = model(**UpperCamelCase__ ) # Verify word hidden states if model_size == "large": _UpperCAmelCase : str = torch.Size((1, 42, 1024) ) _UpperCAmelCase : Union[str, Any] = torch.tensor( [[0.0133, 0.0865, 0.0095], [0.3093, -0.2576, -0.7418], [-0.1720, -0.2117, -0.2869]] ) else: # base _UpperCAmelCase : Optional[Any] = torch.Size((1, 42, 768) ) _UpperCAmelCase : str = torch.tensor([[0.0037, 0.1368, -0.0091], [0.1099, 0.3329, -0.1095], [0.0765, 0.5335, 0.1179]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCamelCase__ , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": _UpperCAmelCase : int = torch.Size((1, 1, 1024) ) _UpperCAmelCase : str = torch.tensor([[0.0466, -0.0106, -0.0179]] ) else: # base _UpperCAmelCase : List[str] = torch.Size((1, 1, 768) ) _UpperCAmelCase : List[Any] = torch.tensor([[0.1457, 0.1044, 0.0174]] ) if not (outputs.entity_last_hidden_state.shape != expected_shape): raise ValueError( F'Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is' F' {expected_shape}' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , UpperCamelCase__ , atol=1E-4 ): raise ValueError # Finally, save our PyTorch model and tokenizer print('''Saving PyTorch model to {}'''.format(UpperCamelCase__ ) ) model.save_pretrained(UpperCamelCase__ ) def lowerCamelCase_ (UpperCamelCase__ : Union[str, Any] ): _UpperCAmelCase : Any = {} with open(UpperCamelCase__ , '''r''' , encoding='''utf-8''' ) as f: for index, line in enumerate(UpperCamelCase__ ): _UpperCAmelCase , _UpperCAmelCase : Any = line.rstrip().split('''\t''' ) _UpperCAmelCase : Tuple = index return entity_vocab if __name__ == "__main__": _lowerCAmelCase :List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('--checkpoint_path', type=str, help='Path to a pytorch_model.bin file.') parser.add_argument( '--metadata_path', default=None, type=str, help='Path to a metadata.json file, defining the configuration.' ) parser.add_argument( '--entity_vocab_path', default=None, type=str, help='Path to an entity_vocab.tsv file, containing the entity vocabulary.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to where to dump the output PyTorch model.' ) parser.add_argument( '--model_size', default='base', type=str, choices=['base', 'large'], help='Size of the model to be converted.' ) _lowerCAmelCase :Any = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
263
0
"""simple docstring""" import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures _UpperCamelCase: Any = logging.get_logger(__name__) @dataclass class a__ : _lowerCamelCase = field(metadata={'help': 'The name of the task to train on: ' + ', '.join(glue_processors.keys() )} ) _lowerCamelCase = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) _lowerCamelCase = field( default=128, metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) }, ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__, metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def lowercase ( self : Union[str, Any] ) -> Optional[int]: lowercase : Optional[Any] = self.task_name.lower() class a__ ( SCREAMING_SNAKE_CASE__ ): _lowerCamelCase = 'train' _lowerCamelCase = 'dev' _lowerCamelCase = 'test' class a__ ( SCREAMING_SNAKE_CASE__ ): _lowerCamelCase = 42 _lowerCamelCase = 42 _lowerCamelCase = 42 def __init__( self : List[str], lowerCAmelCase : GlueDataTrainingArguments, lowerCAmelCase : PreTrainedTokenizerBase, lowerCAmelCase : Optional[int] = None, lowerCAmelCase : Union[str, Split] = Split.train, lowerCAmelCase : Optional[str] = None, ) -> Any: warnings.warn( 'This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets ' 'library. You can have a look at this example script for pointers: ' 'https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py', lowerCAmelCase, ) lowercase : Union[str, Any] = args lowercase : List[Any] = glue_processors[args.task_name]() lowercase : List[str] = glue_output_modes[args.task_name] if isinstance(lowerCAmelCase, lowerCAmelCase ): try: lowercase : Optional[int] = Split[mode] except KeyError: raise KeyError('mode is not a valid split name' ) # Load data features from cache or dataset file lowercase : Optional[Any] = os.path.join( cache_dir if cache_dir is not None else args.data_dir, f'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}''', ) lowercase : List[Any] = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) lowercase , lowercase : Optional[int] = label_list[2], label_list[1] lowercase : Optional[Any] = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowercase : Optional[int] = cached_features_file + '.lock' with FileLock(lowerCAmelCase ): if os.path.exists(lowerCAmelCase ) and not args.overwrite_cache: lowercase : Any = time.time() lowercase : Dict = torch.load(lowerCAmelCase ) logger.info( f'''Loading features from cached file {cached_features_file} [took %.3f s]''', time.time() - start ) else: logger.info(f'''Creating features from dataset file at {args.data_dir}''' ) if mode == Split.dev: lowercase : int = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: lowercase : Any = self.processor.get_test_examples(args.data_dir ) else: lowercase : str = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: lowercase : str = examples[:limit_length] lowercase : List[Any] = glue_convert_examples_to_features( lowerCAmelCase, lowerCAmelCase, max_length=args.max_seq_length, label_list=lowerCAmelCase, output_mode=self.output_mode, ) lowercase : Any = time.time() torch.save(self.features, lowerCAmelCase ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__( self : Union[str, Any] ) -> Optional[int]: return len(self.features ) def __getitem__( self : Dict, lowerCAmelCase : Tuple ) -> InputFeatures: return self.features[i] def lowercase ( self : Dict ) -> List[Any]: return self.label_list
53
"""simple docstring""" from collections.abc import Sequence def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase = False ) -> float: '''simple docstring''' if not arr: return 0 lowercase : List[str] = 0 if allow_empty_subarrays else float('-inf' ) lowercase : Dict = 0.0 for num in arr: lowercase : List[str] = max(0 if allow_empty_subarrays else num , curr_sum + num ) lowercase : List[Any] = max(_UpperCAmelCase , _UpperCAmelCase ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() _UpperCamelCase: Any = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(f'''{max_subarray_sum(nums) = }''')
53
1
import itertools import math def lowerCAmelCase__ ( a__: int ) -> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(a__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCAmelCase__ ( ) -> int: '''simple docstring''' _UpperCAmelCase = 2 while True: if is_prime(a__ ): yield num num += 1 def lowerCAmelCase__ ( a__: int = 1_0_0_0_1 ) -> int: '''simple docstring''' return next(itertools.islice(prime_generator() , nth - 1 , a__ ) ) if __name__ == "__main__": print(f'''{solution() = }''')
329
import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class __a ( unittest.TestCase ): def UpperCAmelCase__ ( self ) -> int: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights _UpperCAmelCase = FlaxDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = [t[-1] for t in os.walk(os.path.join(_SCREAMING_SNAKE_CASE , os.listdir(_SCREAMING_SNAKE_CASE )[0] , 'snapshots' ) )] _UpperCAmelCase = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('.bin' ) for f in files ) @slow @require_flax class __a ( unittest.TestCase ): def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) _UpperCAmelCase = jax.random.PRNGKey(0 ) _UpperCAmelCase = 4 _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE ) # shard inputs and rng _UpperCAmelCase = replicate(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = jax.random.split(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = shard(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1514745 ) < 1e-3 assert np.abs(np.abs(_SCREAMING_SNAKE_CASE , dtype=np.floataa ).sum() - 49947.875 ) < 5e-1 _UpperCAmelCase = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(_SCREAMING_SNAKE_CASE ) == num_samples def UpperCAmelCase__ ( self ) -> Optional[int]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='flax' , safety_checker=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) _UpperCAmelCase = jax.random.PRNGKey(0 ) _UpperCAmelCase = 50 _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE ) # shard inputs and rng _UpperCAmelCase = replicate(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = jax.random.split(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = shard(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05652401) ) < 1e-3 assert np.abs((np.abs(_SCREAMING_SNAKE_CASE , dtype=np.floataa ).sum() - 2383808.2) ) < 5e-1 def UpperCAmelCase__ ( self ) -> Tuple: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) _UpperCAmelCase = jax.random.PRNGKey(0 ) _UpperCAmelCase = 50 _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE ) # shard inputs and rng _UpperCAmelCase = replicate(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = jax.random.split(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = shard(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04003906) ) < 1e-3 assert np.abs((np.abs(_SCREAMING_SNAKE_CASE , dtype=np.floataa ).sum() - 2373516.75) ) < 5e-1 def UpperCAmelCase__ ( self ) -> Dict: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa ) _UpperCAmelCase = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) _UpperCAmelCase = jax.random.PRNGKey(0 ) _UpperCAmelCase = 50 _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE ) # shard inputs and rng _UpperCAmelCase = replicate(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = jax.random.split(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = shard(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04003906) ) < 1e-3 assert np.abs((np.abs(_SCREAMING_SNAKE_CASE , dtype=np.floataa ).sum() - 2373516.75) ) < 5e-1 def UpperCAmelCase__ ( self ) -> Tuple: """simple docstring""" _UpperCAmelCase = FlaxDDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' , set_alpha_to_one=_SCREAMING_SNAKE_CASE , steps_offset=1 , ) _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , scheduler=_SCREAMING_SNAKE_CASE , safety_checker=_SCREAMING_SNAKE_CASE , ) _UpperCAmelCase = scheduler.create_state() _UpperCAmelCase = scheduler_state _UpperCAmelCase = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) _UpperCAmelCase = jax.random.PRNGKey(0 ) _UpperCAmelCase = 50 _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE ) # shard inputs and rng _UpperCAmelCase = replicate(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = jax.random.split(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = shard(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.045043945) ) < 1e-3 assert np.abs((np.abs(_SCREAMING_SNAKE_CASE , dtype=np.floataa ).sum() - 2347693.5) ) < 5e-1 def UpperCAmelCase__ ( self ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = jax.random.split(jax.random.PRNGKey(0 ) , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_SCREAMING_SNAKE_CASE , ) _UpperCAmelCase = replicate(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = shard(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images assert images.shape == (num_samples, 1, 512, 512, 3) _UpperCAmelCase = images[2, 0, 256, 10:17, 1] # With memory efficient attention _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_SCREAMING_SNAKE_CASE , use_memory_efficient_attention=_SCREAMING_SNAKE_CASE , ) _UpperCAmelCase = replicate(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = shard(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) _UpperCAmelCase = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1e-2
329
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor lowerCAmelCase: List[str] = logging.get_logger(__name__) class a__( lowerCamelCase__ ): def __init__( self : Optional[int] , *__snake_case : Optional[Any] , **__snake_case : Any ): warnings.warn( 'The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use LayoutLMv2ImageProcessor instead.' , __snake_case , ) super().__init__(*__snake_case , **__snake_case )
96
'''simple docstring''' # Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def lowerCamelCase__ ( _A , _A , _A=0 ): # Format the message. if name is None: a : Tuple = None else: a : Dict = '.' * max(0 , spaces - 2 ) + '# {:' + str(50 - spaces ) + 's}' a : Tuple = fmt.format(_A ) # Print and recurse (if needed). if isinstance(_A , _A ): if msg is not None: print(_A ) for k in val.keys(): recursive_print(_A , val[k] , spaces + 2 ) elif isinstance(_A , torch.Tensor ): print(_A , ':' , val.size() ) else: print(_A , ':' , _A ) def lowerCamelCase__ ( _A , _A , _A , _A , _A ): # Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :] # for compatibility with later versions of NVIDIA Megatron-LM. # The inverse operation is performed inside Megatron-LM to read checkpoints: # https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209 # If param is the weight tensor of the self-attention block, the returned tensor # will have to be transposed one more time to be read by HuggingFace GPT2. a : str = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] a : List[Any] = (num_heads, hidden_size, num_splits) + input_shape[1:] a : int = param.view(*_A ) a : List[str] = param.transpose(0 , 2 ) a : Union[str, Any] = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] a : Union[str, Any] = (num_heads, num_splits, hidden_size) + input_shape[1:] a : List[str] = param.view(*_A ) a : Union[str, Any] = param.transpose(0 , 1 ).contiguous() a : List[Any] = param.view(*_A ) return param def lowerCamelCase__ ( _A , _A , _A ): # The converted output model. a : Optional[Any] = {} # old versions did not store training args a : Dict = input_state_dict.get('args' , _A ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) a : Union[str, Any] = ds_args.padded_vocab_size a : str = ds_args.max_position_embeddings a : Dict = ds_args.hidden_size a : Union[str, Any] = ds_args.num_layers a : Dict = ds_args.num_attention_heads a : int = ds_args.ffn_hidden_size # pprint(config) # The number of heads. a : Any = config.n_head # The hidden_size per head. a : Tuple = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): a : Any = input_state_dict['checkpoint_version'] else: a : Any = 0.0 # The model. a : Optional[int] = input_state_dict['model'] # The language model. a : Optional[Any] = model['language_model'] # The embeddings. a : List[str] = lm['embedding'] # The word embeddings. a : List[Any] = embeddings['word_embeddings']['weight'] # Truncate the embedding table to vocab_size rows. a : Dict = word_embeddings[: config.vocab_size, :] a : int = word_embeddings # The position embeddings. a : Tuple = embeddings['position_embeddings']['weight'] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] a : List[str] = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( f"""pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don't match""" ) # Store the position embeddings. a : Optional[Any] = pos_embeddings # The transformer. a : Union[str, Any] = lm['transformer'] if 'transformer' in lm.keys() else lm['encoder'] # The regex to extract layer names. a : List[Any] = re.compile(r'layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)' ) # The simple map of names for "automated" rules. a : Optional[Any] = { 'attention.dense': '.attn.c_proj.', 'self_attention.dense': '.attn.c_proj.', 'mlp.dense_h_to_4h': '.mlp.c_fc.', 'mlp.dense_4h_to_h': '.mlp.c_proj.', } # Extract the layers. for key, val in transformer.items(): # Match the name. a : Tuple = layer_re.match(_A ) # Stop if that's not a layer if m is None: break # The index of the layer. a : Union[str, Any] = int(m.group(1 ) ) # The name of the operation. a : Optional[int] = m.group(2 ) # Is it a weight or a bias? a : Optional[int] = m.group(3 ) # The name of the layer. a : Any = f"""transformer.h.{layer_idx}""" # For layernorm(s), simply store the layer norm. if op_name.endswith('layernorm' ): a : str = 'ln_1' if op_name.startswith('input' ) else 'ln_2' a : Tuple = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. a : Dict = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , _A , _A ) a : Optional[Any] = causal_mask # Insert a "dummy" tensor for masked_bias. a : List[Any] = torch.tensor(-1E4 , dtype=torch.floataa ) a : List[str] = masked_bias a : Union[str, Any] = fix_query_key_value_ordering(_A , _A , 3 , _A , _A ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. a : int = out_val.transpose(0 , 1 ).contiguous() # Store. a : int = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": a : str = fix_query_key_value_ordering(_A , _A , 3 , _A , _A ) # Store. No change of shape. a : List[str] = out_val # Transpose the weights. elif weight_or_bias == "weight": a : Tuple = megatron_to_transformers[op_name] a : List[str] = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": a : Dict = megatron_to_transformers[op_name] a : Optional[Any] = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. a : str = transformer['final_layernorm.weight'] a : List[str] = transformer['final_layernorm.bias'] # For LM head, transformers' wants the matrix to weight embeddings. a : Optional[int] = word_embeddings # It should be done! return output_state_dict def lowerCamelCase__ ( ): # Create the argument parser. a : Dict = argparse.ArgumentParser() parser.add_argument('--print-checkpoint-structure' , action='store_true' ) parser.add_argument( 'path_to_checkpoint' , type=_A , help='Path to the checkpoint file (.zip archive or direct .pt file)' , ) parser.add_argument( '--config_file' , default='' , type=_A , help='An optional config json file describing the pre-trained model.' , ) a : Union[str, Any] = parser.parse_args() # Extract the basename. a : Optional[Any] = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(f"""Extracting PyTorch state dictionary from {args.path_to_checkpoint}""" ) if args.path_to_checkpoint.endswith('.zip' ): with zipfile.ZipFile(args.path_to_checkpoint , 'r' ) as checkpoint: with checkpoint.open('release/mp_rank_00/model_optim_rng.pt' ) as pytorch_dict: a : Union[str, Any] = torch.load(_A , map_location='cpu' ) else: a : Any = torch.load(args.path_to_checkpoint , map_location='cpu' ) a : List[Any] = input_state_dict.get('args' , _A ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: a : int = 'gelu_fast' elif ds_args.openai_gelu: a : Dict = 'gelu_new' else: a : Any = 'gelu' else: # in the very early days this used to be "gelu_new" a : Any = 'gelu_new' # Spell out all parameters in case the defaults change. a : Tuple = GPTaConfig( vocab_size=5_0257 , n_positions=1024 , n_embd=1024 , n_layer=24 , n_head=16 , n_inner=4096 , activation_function=_A , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1E-5 , initializer_range=0.02 , summary_type='cls_index' , summary_use_proj=_A , summary_activation=_A , summary_proj_to_labels=_A , summary_first_dropout=0.1 , scale_attn_weights=_A , use_cache=_A , bos_token_id=5_0256 , eos_token_id=5_0256 , ) else: a : str = GPTaConfig.from_json_file(args.config_file ) a : Any = ['GPT2LMHeadModel'] # Convert. print('Converting' ) a : Union[str, Any] = convert_megatron_checkpoint(_A , _A , _A ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(_A , _A ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: a : Union[str, Any] = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": a : Tuple = 'gpt2' elif tokenizer_type == "PretrainedFromHF": a : List[str] = ds_args.tokenizer_name_or_path else: raise ValueError(f"""Unrecognized tokenizer_type {tokenizer_type}""" ) else: a : Optional[Any] = 'gpt2' a : Tuple = AutoTokenizer.from_pretrained(_A ) a : str = type(_A ).__name__ a : List[str] = tokenizer_class # Store the config to file. print('Saving config' ) config.save_pretrained(_A ) # Save tokenizer based on args print(f"""Adding {tokenizer_class} tokenizer files""" ) tokenizer.save_pretrained(_A ) # Store the state_dict to file. a : Optional[int] = os.path.join(_A , 'pytorch_model.bin' ) print(f"""Saving checkpoint to \"{output_checkpoint_file}\"""" ) torch.save(_A , _A ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
96
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() _UpperCAmelCase : Any =logging.get_logger(__name__) def lowerCAmelCase ( lowerCAmelCase_ )-> List[str]: lowerCAmelCase_ : Union[str, Any] = DPTConfig(embedding_type='''hybrid''' ) if "large" in checkpoint_url: lowerCAmelCase_ : Optional[int] = 1_024 lowerCAmelCase_ : List[Any] = 4_096 lowerCAmelCase_ : List[Any] = 24 lowerCAmelCase_ : Optional[Any] = 16 lowerCAmelCase_ : Tuple = [5, 11, 17, 23] lowerCAmelCase_ : str = [256, 512, 1_024, 1_024] lowerCAmelCase_ : Union[str, Any] = (1, 384, 384) if "nyu" or "midas" in checkpoint_url: lowerCAmelCase_ : Any = 768 lowerCAmelCase_ : List[str] = [1, 1, 1, 0.5] lowerCAmelCase_ : Dict = [256, 512, 768, 768] lowerCAmelCase_ : List[str] = 150 lowerCAmelCase_ : Union[str, Any] = 16 lowerCAmelCase_ : Any = (1, 384, 384) lowerCAmelCase_ : Tuple = False lowerCAmelCase_ : Tuple = '''project''' if "ade" in checkpoint_url: lowerCAmelCase_ : str = True lowerCAmelCase_ : Tuple = 768 lowerCAmelCase_ : Optional[int] = [1, 1, 1, 0.5] lowerCAmelCase_ : str = 150 lowerCAmelCase_ : Tuple = 16 lowerCAmelCase_ : int = '''huggingface/label-files''' lowerCAmelCase_ : Dict = '''ade20k-id2label.json''' lowerCAmelCase_ : Optional[int] = json.load(open(cached_download(hf_hub_url(lowerCAmelCase_ , lowerCAmelCase_ , repo_type='''dataset''' ) ) , '''r''' ) ) lowerCAmelCase_ : str = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} lowerCAmelCase_ : Optional[Any] = idalabel lowerCAmelCase_ : Any = {v: k for k, v in idalabel.items()} lowerCAmelCase_ : Optional[int] = [1, 150, 480, 480] return config, expected_shape def lowerCAmelCase ( lowerCAmelCase_ )-> int: lowerCAmelCase_ : Union[str, Any] = ['''pretrained.model.head.weight''', '''pretrained.model.head.bias'''] for k in ignore_keys: state_dict.pop(lowerCAmelCase_ , lowerCAmelCase_ ) def lowerCAmelCase ( lowerCAmelCase_ )-> Union[str, Any]: if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): lowerCAmelCase_ : Tuple = name.replace('''pretrained.model''' , '''dpt.encoder''' ) if "pretrained.model" in name: lowerCAmelCase_ : List[str] = name.replace('''pretrained.model''' , '''dpt.embeddings''' ) if "patch_embed" in name: lowerCAmelCase_ : List[str] = name.replace('''patch_embed''' , '''''' ) if "pos_embed" in name: lowerCAmelCase_ : Tuple = name.replace('''pos_embed''' , '''position_embeddings''' ) if "attn.proj" in name: lowerCAmelCase_ : int = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "proj" in name and "project" not in name: lowerCAmelCase_ : Dict = name.replace('''proj''' , '''projection''' ) if "blocks" in name: lowerCAmelCase_ : str = name.replace('''blocks''' , '''layer''' ) if "mlp.fc1" in name: lowerCAmelCase_ : int = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: lowerCAmelCase_ : Tuple = name.replace('''mlp.fc2''' , '''output.dense''' ) if "norm1" in name and "backbone" not in name: lowerCAmelCase_ : Optional[int] = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name and "backbone" not in name: lowerCAmelCase_ : Union[str, Any] = name.replace('''norm2''' , '''layernorm_after''' ) if "scratch.output_conv" in name: lowerCAmelCase_ : Tuple = name.replace('''scratch.output_conv''' , '''head''' ) if "scratch" in name: lowerCAmelCase_ : Tuple = name.replace('''scratch''' , '''neck''' ) if "layer1_rn" in name: lowerCAmelCase_ : Tuple = name.replace('''layer1_rn''' , '''convs.0''' ) if "layer2_rn" in name: lowerCAmelCase_ : int = name.replace('''layer2_rn''' , '''convs.1''' ) if "layer3_rn" in name: lowerCAmelCase_ : int = name.replace('''layer3_rn''' , '''convs.2''' ) if "layer4_rn" in name: lowerCAmelCase_ : Any = name.replace('''layer4_rn''' , '''convs.3''' ) if "refinenet" in name: lowerCAmelCase_ : int = int(name[len('''neck.refinenet''' ) : len('''neck.refinenet''' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 lowerCAmelCase_ : int = name.replace(f"""refinenet{layer_idx}""" , f"""fusion_stage.layers.{abs(layer_idx-4 )}""" ) if "out_conv" in name: lowerCAmelCase_ : List[str] = name.replace('''out_conv''' , '''projection''' ) if "resConfUnit1" in name: lowerCAmelCase_ : Optional[Any] = name.replace('''resConfUnit1''' , '''residual_layer1''' ) if "resConfUnit2" in name: lowerCAmelCase_ : Dict = name.replace('''resConfUnit2''' , '''residual_layer2''' ) if "conv1" in name: lowerCAmelCase_ : Any = name.replace('''conv1''' , '''convolution1''' ) if "conv2" in name: lowerCAmelCase_ : int = name.replace('''conv2''' , '''convolution2''' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: lowerCAmelCase_ : str = name.replace('''pretrained.act_postprocess1.0.project.0''' , '''neck.reassemble_stage.readout_projects.0.0''' ) if "pretrained.act_postprocess2.0.project.0" in name: lowerCAmelCase_ : List[str] = name.replace('''pretrained.act_postprocess2.0.project.0''' , '''neck.reassemble_stage.readout_projects.1.0''' ) if "pretrained.act_postprocess3.0.project.0" in name: lowerCAmelCase_ : str = name.replace('''pretrained.act_postprocess3.0.project.0''' , '''neck.reassemble_stage.readout_projects.2.0''' ) if "pretrained.act_postprocess4.0.project.0" in name: lowerCAmelCase_ : List[str] = name.replace('''pretrained.act_postprocess4.0.project.0''' , '''neck.reassemble_stage.readout_projects.3.0''' ) # resize blocks if "pretrained.act_postprocess1.3" in name: lowerCAmelCase_ : Tuple = name.replace('''pretrained.act_postprocess1.3''' , '''neck.reassemble_stage.layers.0.projection''' ) if "pretrained.act_postprocess1.4" in name: lowerCAmelCase_ : List[str] = name.replace('''pretrained.act_postprocess1.4''' , '''neck.reassemble_stage.layers.0.resize''' ) if "pretrained.act_postprocess2.3" in name: lowerCAmelCase_ : List[str] = name.replace('''pretrained.act_postprocess2.3''' , '''neck.reassemble_stage.layers.1.projection''' ) if "pretrained.act_postprocess2.4" in name: lowerCAmelCase_ : List[str] = name.replace('''pretrained.act_postprocess2.4''' , '''neck.reassemble_stage.layers.1.resize''' ) if "pretrained.act_postprocess3.3" in name: lowerCAmelCase_ : Optional[Any] = name.replace('''pretrained.act_postprocess3.3''' , '''neck.reassemble_stage.layers.2.projection''' ) if "pretrained.act_postprocess4.3" in name: lowerCAmelCase_ : str = name.replace('''pretrained.act_postprocess4.3''' , '''neck.reassemble_stage.layers.3.projection''' ) if "pretrained.act_postprocess4.4" in name: lowerCAmelCase_ : List[str] = name.replace('''pretrained.act_postprocess4.4''' , '''neck.reassemble_stage.layers.3.resize''' ) if "pretrained" in name: lowerCAmelCase_ : Optional[Any] = name.replace('''pretrained''' , '''dpt''' ) if "bn" in name: lowerCAmelCase_ : Optional[Any] = name.replace('''bn''' , '''batch_norm''' ) if "head" in name: lowerCAmelCase_ : Tuple = name.replace('''head''' , '''head.head''' ) if "encoder.norm" in name: lowerCAmelCase_ : str = name.replace('''encoder.norm''' , '''layernorm''' ) if "auxlayer" in name: lowerCAmelCase_ : Tuple = name.replace('''auxlayer''' , '''auxiliary_head.head''' ) if "backbone" in name: lowerCAmelCase_ : List[str] = name.replace('''backbone''' , '''backbone.bit.encoder''' ) if ".." in name: lowerCAmelCase_ : Tuple = name.replace('''..''' , '''.''' ) if "stem.conv" in name: lowerCAmelCase_ : str = name.replace('''stem.conv''' , '''bit.embedder.convolution''' ) if "blocks" in name: lowerCAmelCase_ : Optional[Any] = name.replace('''blocks''' , '''layers''' ) if "convolution" in name and "backbone" in name: lowerCAmelCase_ : Any = name.replace('''convolution''' , '''conv''' ) if "layer" in name and "backbone" in name: lowerCAmelCase_ : str = name.replace('''layer''' , '''layers''' ) if "backbone.bit.encoder.bit" in name: lowerCAmelCase_ : int = name.replace('''backbone.bit.encoder.bit''' , '''backbone.bit''' ) if "embedder.conv" in name: lowerCAmelCase_ : List[str] = name.replace('''embedder.conv''' , '''embedder.convolution''' ) if "backbone.bit.encoder.stem.norm" in name: lowerCAmelCase_ : Union[str, Any] = name.replace('''backbone.bit.encoder.stem.norm''' , '''backbone.bit.embedder.norm''' ) return name def lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ )-> List[Any]: for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase_ : List[Any] = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.weight""" ) lowerCAmelCase_ : Dict = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase_ : Union[str, Any] = in_proj_weight[: config.hidden_size, :] lowerCAmelCase_ : Dict = in_proj_bias[: config.hidden_size] lowerCAmelCase_ : int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase_ : List[str] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase_ : str = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase_ : List[str] = in_proj_bias[-config.hidden_size :] def lowerCAmelCase ( )-> int: lowerCAmelCase_ : List[Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCAmelCase_ : str = Image.open(requests.get(lowerCAmelCase_ , stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> List[Any]: lowerCAmelCase_ , lowerCAmelCase_ : Tuple = get_dpt_config(lowerCAmelCase_ ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") lowerCAmelCase_ : List[str] = torch.load(lowerCAmelCase_ , map_location='''cpu''' ) # remove certain keys remove_ignore_keys_(lowerCAmelCase_ ) # rename keys for key in state_dict.copy().keys(): lowerCAmelCase_ : Dict = state_dict.pop(lowerCAmelCase_ ) lowerCAmelCase_ : Optional[int] = val # read in qkv matrices read_in_q_k_v(lowerCAmelCase_ , lowerCAmelCase_ ) # load HuggingFace model lowerCAmelCase_ : Union[str, Any] = DPTForSemanticSegmentation(lowerCAmelCase_ ) if '''ade''' in checkpoint_url else DPTForDepthEstimation(lowerCAmelCase_ ) model.load_state_dict(lowerCAmelCase_ ) model.eval() # Check outputs on an image lowerCAmelCase_ : Tuple = 480 if '''ade''' in checkpoint_url else 384 lowerCAmelCase_ : Any = DPTImageProcessor(size=lowerCAmelCase_ ) lowerCAmelCase_ : Tuple = prepare_img() lowerCAmelCase_ : List[str] = image_processor(lowerCAmelCase_ , return_tensors='''pt''' ) # forward pass lowerCAmelCase_ : str = model(**lowerCAmelCase_ ).logits if '''ade''' in checkpoint_url else model(**lowerCAmelCase_ ).predicted_depth if show_prediction: lowerCAmelCase_ : Any = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode='''bicubic''' , align_corners=lowerCAmelCase_ , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 255 ).show() if pytorch_dump_folder_path is not None: Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCAmelCase_ ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowerCAmelCase_ ) if push_to_hub: model.push_to_hub('''ybelkada/dpt-hybrid-midas''' ) image_processor.push_to_hub('''ybelkada/dpt-hybrid-midas''' ) if __name__ == "__main__": _UpperCAmelCase : List[str] =argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt""", type=str, help="""URL of the original DPT checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=False, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", ) parser.add_argument( """--model_name""", default="""dpt-large""", type=str, help="""Name of the model, in case you're pushing to the hub.""", ) parser.add_argument( """--show_prediction""", action="""store_true""", ) _UpperCAmelCase : List[Any] =parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
262
from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase : Optional[Any] =logging.get_logger(__name__) _UpperCAmelCase : str ={ """facebook/vit-mae-base""": """https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json""", # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class snake_case__( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = """vit_mae""" def __init__( self , __lowercase=7_6_8 , __lowercase=1_2 , __lowercase=1_2 , __lowercase=3_0_7_2 , __lowercase="gelu" , __lowercase=0.0 , __lowercase=0.0 , __lowercase=0.02 , __lowercase=1e-12 , __lowercase=2_2_4 , __lowercase=1_6 , __lowercase=3 , __lowercase=True , __lowercase=1_6 , __lowercase=5_1_2 , __lowercase=8 , __lowercase=2_0_4_8 , __lowercase=0.75 , __lowercase=False , **__lowercase , ) -> str: super().__init__(**__lowercase ) lowerCAmelCase_ : Dict = hidden_size lowerCAmelCase_ : Any = num_hidden_layers lowerCAmelCase_ : Any = num_attention_heads lowerCAmelCase_ : int = intermediate_size lowerCAmelCase_ : Dict = hidden_act lowerCAmelCase_ : int = hidden_dropout_prob lowerCAmelCase_ : str = attention_probs_dropout_prob lowerCAmelCase_ : List[str] = initializer_range lowerCAmelCase_ : Dict = layer_norm_eps lowerCAmelCase_ : Union[str, Any] = image_size lowerCAmelCase_ : Optional[int] = patch_size lowerCAmelCase_ : Tuple = num_channels lowerCAmelCase_ : List[str] = qkv_bias lowerCAmelCase_ : List[Any] = decoder_num_attention_heads lowerCAmelCase_ : int = decoder_hidden_size lowerCAmelCase_ : Optional[int] = decoder_num_hidden_layers lowerCAmelCase_ : Tuple = decoder_intermediate_size lowerCAmelCase_ : Tuple = mask_ratio lowerCAmelCase_ : Any = norm_pix_loss
262
1
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass _lowerCAmelCase : Any = (3, 9, -11, 0, 7, 5, 1, -1) _lowerCAmelCase : Any = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class __magic_name__ : """simple docstring""" __UpperCamelCase = 42 __UpperCamelCase = 42 class __magic_name__ : """simple docstring""" def __init__( self :str , snake_case :Iterable[int] ): '''simple docstring''' A_ : Node | None = None for i in sorted(snake_case , reverse=snake_case ): A_ : str = Node(snake_case , self.head ) def __iter__( self :Any ): '''simple docstring''' A_ : List[Any] = self.head while node: yield node.data A_ : Optional[int] = node.next_node def __len__( self :Tuple ): '''simple docstring''' return sum(1 for _ in self ) def __str__( self :Tuple ): '''simple docstring''' return " -> ".join([str(snake_case ) for node in self] ) def __snake_case ( _lowerCAmelCase : SortedLinkedList , _lowerCAmelCase : SortedLinkedList ) -> SortedLinkedList: return SortedLinkedList(list(_lowerCAmelCase ) + list(_lowerCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase : int = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
70
import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput _lowerCAmelCase : Dict = '''scheduler_config.json''' class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = 1 __UpperCamelCase = 2 __UpperCamelCase = 3 __UpperCamelCase = 4 __UpperCamelCase = 5 @dataclass class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = 42 class __magic_name__ : """simple docstring""" __UpperCamelCase = SCHEDULER_CONFIG_NAME __UpperCamelCase = ['''dtype'''] __UpperCamelCase = [] __UpperCamelCase = True @classmethod def SCREAMING_SNAKE_CASE ( cls :List[str] , snake_case :Dict[str, Any] = None , snake_case :Optional[str] = None , snake_case :Tuple=False , **snake_case :str , ): '''simple docstring''' A_ , A_ : Optional[int] = cls.load_config( pretrained_model_name_or_path=snake_case , subfolder=snake_case , return_unused_kwargs=snake_case , **snake_case , ) A_ , A_ : List[str] = cls.from_config(snake_case , return_unused_kwargs=snake_case , **snake_case ) if hasattr(snake_case , "create_state" ) and getattr(snake_case , "has_state" , snake_case ): A_ : List[str] = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def SCREAMING_SNAKE_CASE ( self :Tuple , snake_case :Union[str, os.PathLike] , snake_case :bool = False , **snake_case :Optional[Any] ): '''simple docstring''' self.save_config(save_directory=snake_case , push_to_hub=snake_case , **snake_case ) @property def SCREAMING_SNAKE_CASE ( self :int ): '''simple docstring''' return self._get_compatibles() @classmethod def SCREAMING_SNAKE_CASE ( cls :int ): '''simple docstring''' A_ : Optional[int] = list(set([cls.__name__] + cls._compatibles ) ) A_ : Optional[int] = importlib.import_module(__name__.split("." )[0] ) A_ : Dict = [ getattr(snake_case , snake_case ) for c in compatible_classes_str if hasattr(snake_case , snake_case ) ] return compatible_classes def __snake_case ( _lowerCAmelCase : jnp.ndarray , _lowerCAmelCase : Tuple[int] ) -> jnp.ndarray: assert len(_lowerCAmelCase ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(_lowerCAmelCase ) - x.ndim) ) , _lowerCAmelCase ) def __snake_case ( _lowerCAmelCase : int , _lowerCAmelCase : Dict=0.9_99 , _lowerCAmelCase : Optional[int]=jnp.floataa ) -> jnp.ndarray: def alpha_bar(_lowerCAmelCase : List[str] ): return math.cos((time_step + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2 A_ : str = [] for i in range(_lowerCAmelCase ): A_ : Any = i / num_diffusion_timesteps A_ : List[Any] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(_lowerCAmelCase ) / alpha_bar(_lowerCAmelCase ) , _lowerCAmelCase ) ) return jnp.array(_lowerCAmelCase , dtype=_lowerCAmelCase ) @flax.struct.dataclass class __magic_name__ : """simple docstring""" __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 @classmethod def SCREAMING_SNAKE_CASE ( cls :int , snake_case :Dict ): '''simple docstring''' A_ : List[str] = scheduler.config if config.trained_betas is not None: A_ : Dict = jnp.asarray(config.trained_betas , dtype=scheduler.dtype ) elif config.beta_schedule == "linear": A_ : Any = jnp.linspace(config.beta_start , config.beta_end , config.num_train_timesteps , dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. A_ : List[Any] = ( jnp.linspace( config.beta_start**0.5 , config.beta_end**0.5 , config.num_train_timesteps , dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule A_ : List[Any] = betas_for_alpha_bar(config.num_train_timesteps , dtype=scheduler.dtype ) else: raise NotImplementedError( f"beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}" ) A_ : str = 1.0 - betas A_ : int = jnp.cumprod(snake_case , axis=0 ) return cls( alphas=snake_case , betas=snake_case , alphas_cumprod=snake_case , ) def __snake_case ( _lowerCAmelCase : CommonSchedulerState , _lowerCAmelCase : jnp.ndarray , _lowerCAmelCase : jnp.ndarray , _lowerCAmelCase : jnp.ndarray ) -> str: A_ : str = state.alphas_cumprod A_ : Dict = alphas_cumprod[timesteps] ** 0.5 A_ : int = sqrt_alpha_prod.flatten() A_ : Optional[Any] = broadcast_to_shape_from_left(_lowerCAmelCase , original_samples.shape ) A_ : str = (1 - alphas_cumprod[timesteps]) ** 0.5 A_ : Optional[int] = sqrt_one_minus_alpha_prod.flatten() A_ : Union[str, Any] = broadcast_to_shape_from_left(_lowerCAmelCase , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def __snake_case ( _lowerCAmelCase : CommonSchedulerState , _lowerCAmelCase : jnp.ndarray , _lowerCAmelCase : jnp.ndarray , _lowerCAmelCase : jnp.ndarray ) -> Optional[Any]: A_ , A_ : int = get_sqrt_alpha_prod(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) A_ : Dict = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def __snake_case ( _lowerCAmelCase : CommonSchedulerState , _lowerCAmelCase : jnp.ndarray , _lowerCAmelCase : jnp.ndarray , _lowerCAmelCase : jnp.ndarray ) -> List[str]: A_ , A_ : Any = get_sqrt_alpha_prod(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) A_ : int = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
70
1
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class lowercase_ : '''simple docstring''' @staticmethod def __lowerCAmelCase ( *__UpperCAmelCase : int , **__UpperCAmelCase : Optional[Any] ) ->int: """simple docstring""" pass @is_pipeline_test @require_vision class lowercase_ ( unittest.TestCase ): '''simple docstring''' @require_torch def __lowerCAmelCase ( self : int ) ->str: """simple docstring""" a = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , ) a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) a = image_classifier(_SCREAMING_SNAKE_CASE , candidate_labels=['''a''', '''b''', '''c'''] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(_SCREAMING_SNAKE_CASE ) , [ [{'''score''': 0.333, '''label''': '''a'''}, {'''score''': 0.333, '''label''': '''b'''}, {'''score''': 0.333, '''label''': '''c'''}], [{'''score''': 0.333, '''label''': '''a'''}, {'''score''': 0.333, '''label''': '''c'''}, {'''score''': 0.333, '''label''': '''b'''}], ] , ) a = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE ) , [ [ {'''score''': 0.333, '''label''': ANY(_SCREAMING_SNAKE_CASE )}, {'''score''': 0.333, '''label''': ANY(_SCREAMING_SNAKE_CASE )}, {'''score''': 0.333, '''label''': ANY(_SCREAMING_SNAKE_CASE )}, ], [ {'''score''': 0.333, '''label''': ANY(_SCREAMING_SNAKE_CASE )}, {'''score''': 0.333, '''label''': ANY(_SCREAMING_SNAKE_CASE )}, {'''score''': 0.333, '''label''': ANY(_SCREAMING_SNAKE_CASE )}, ], [ {'''score''': 0.333, '''label''': ANY(_SCREAMING_SNAKE_CASE )}, {'''score''': 0.333, '''label''': ANY(_SCREAMING_SNAKE_CASE )}, {'''score''': 0.333, '''label''': ANY(_SCREAMING_SNAKE_CASE )}, ], [ {'''score''': 0.333, '''label''': ANY(_SCREAMING_SNAKE_CASE )}, {'''score''': 0.333, '''label''': ANY(_SCREAMING_SNAKE_CASE )}, {'''score''': 0.333, '''label''': ANY(_SCREAMING_SNAKE_CASE )}, ], [ {'''score''': 0.333, '''label''': ANY(_SCREAMING_SNAKE_CASE )}, {'''score''': 0.333, '''label''': ANY(_SCREAMING_SNAKE_CASE )}, {'''score''': 0.333, '''label''': ANY(_SCREAMING_SNAKE_CASE )}, ], ] , ) @require_tf def __lowerCAmelCase ( self : int ) ->Union[str, Any]: """simple docstring""" a = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , framework='''tf''' ) a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) a = image_classifier(_SCREAMING_SNAKE_CASE , candidate_labels=['''a''', '''b''', '''c'''] ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE ) , [{'''score''': 0.333, '''label''': '''a'''}, {'''score''': 0.333, '''label''': '''b'''}, {'''score''': 0.333, '''label''': '''c'''}] , ) a = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE ) , [ [ {'''score''': 0.333, '''label''': ANY(_SCREAMING_SNAKE_CASE )}, {'''score''': 0.333, '''label''': ANY(_SCREAMING_SNAKE_CASE )}, {'''score''': 0.333, '''label''': ANY(_SCREAMING_SNAKE_CASE )}, ], [ {'''score''': 0.333, '''label''': ANY(_SCREAMING_SNAKE_CASE )}, {'''score''': 0.333, '''label''': ANY(_SCREAMING_SNAKE_CASE )}, {'''score''': 0.333, '''label''': ANY(_SCREAMING_SNAKE_CASE )}, ], [ {'''score''': 0.333, '''label''': ANY(_SCREAMING_SNAKE_CASE )}, {'''score''': 0.333, '''label''': ANY(_SCREAMING_SNAKE_CASE )}, {'''score''': 0.333, '''label''': ANY(_SCREAMING_SNAKE_CASE )}, ], [ {'''score''': 0.333, '''label''': ANY(_SCREAMING_SNAKE_CASE )}, {'''score''': 0.333, '''label''': ANY(_SCREAMING_SNAKE_CASE )}, {'''score''': 0.333, '''label''': ANY(_SCREAMING_SNAKE_CASE )}, ], [ {'''score''': 0.333, '''label''': ANY(_SCREAMING_SNAKE_CASE )}, {'''score''': 0.333, '''label''': ANY(_SCREAMING_SNAKE_CASE )}, {'''score''': 0.333, '''label''': ANY(_SCREAMING_SNAKE_CASE )}, ], ] , ) @slow @require_torch def __lowerCAmelCase ( self : List[str] ) ->Optional[Any]: """simple docstring""" a = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , ) # This is an image of 2 cats with remotes and no planes a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) a = image_classifier(_SCREAMING_SNAKE_CASE , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE ) , [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ] , ) a = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE ) , [ [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ], ] * 5 , ) @slow @require_tf def __lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]: """simple docstring""" a = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , framework='''tf''' ) # This is an image of 2 cats with remotes and no planes a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) a = image_classifier(_SCREAMING_SNAKE_CASE , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE ) , [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ] , ) a = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE ) , [ [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ], ] * 5 , )
0
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class __a ( unittest.TestCase ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=30 , _SCREAMING_SNAKE_CASE=400 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=1 / 255 , _SCREAMING_SNAKE_CASE=True , ) -> Dict: """simple docstring""" _UpperCAmelCase = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1333} _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = num_channels _UpperCAmelCase = min_resolution _UpperCAmelCase = max_resolution _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean _UpperCAmelCase = image_std _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_factor _UpperCAmelCase = do_pad def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> Any: """simple docstring""" if not batched: _UpperCAmelCase = image_inputs[0] if isinstance(_SCREAMING_SNAKE_CASE , Image.Image ): _UpperCAmelCase , _UpperCAmelCase = image.size else: _UpperCAmelCase , _UpperCAmelCase = image.shape[1], image.shape[2] if w < h: _UpperCAmelCase = int(self.size['shortest_edge'] * h / w ) _UpperCAmelCase = self.size['shortest_edge'] elif w > h: _UpperCAmelCase = self.size['shortest_edge'] _UpperCAmelCase = int(self.size['shortest_edge'] * w / h ) else: _UpperCAmelCase = self.size['shortest_edge'] _UpperCAmelCase = self.size['shortest_edge'] else: _UpperCAmelCase = [] for image in image_inputs: _UpperCAmelCase , _UpperCAmelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _UpperCAmelCase = max(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : item[0] )[0] _UpperCAmelCase = max(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __a ( UpperCAmelCase , unittest.TestCase ): _a : str = DeformableDetrImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self ) -> str: """simple docstring""" _UpperCAmelCase = DeformableDetrImageProcessingTester(self ) @property def UpperCAmelCase__ ( self ) -> str: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self ) -> List[str]: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_mean' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_std' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_normalize' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_resize' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_rescale' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_pad' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'size' ) ) def UpperCAmelCase__ ( self ) -> Tuple: """simple docstring""" _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 1333} ) self.assertEqual(image_processor.do_pad , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=_SCREAMING_SNAKE_CASE ) self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} ) self.assertEqual(image_processor.do_pad , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> Optional[int]: """simple docstring""" pass def UpperCAmelCase__ ( self ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values _UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , numpify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values _UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values _UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , torchify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values _UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values _UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def UpperCAmelCase__ ( self ) -> List[str]: """simple docstring""" _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: _UpperCAmelCase = json.loads(f.read() ) _UpperCAmelCase = {'image_id': 39769, 'annotations': target} # encode them _UpperCAmelCase = DeformableDetrImageProcessor() _UpperCAmelCase = image_processing(images=_SCREAMING_SNAKE_CASE , annotations=_SCREAMING_SNAKE_CASE , return_tensors='pt' ) # verify pixel values _UpperCAmelCase = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) ) # verify area _UpperCAmelCase = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _SCREAMING_SNAKE_CASE ) ) # verify boxes _UpperCAmelCase = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _SCREAMING_SNAKE_CASE , atol=1e-3 ) ) # verify image_id _UpperCAmelCase = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _SCREAMING_SNAKE_CASE ) ) # verify is_crowd _UpperCAmelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _SCREAMING_SNAKE_CASE ) ) # verify class_labels _UpperCAmelCase = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _SCREAMING_SNAKE_CASE ) ) # verify orig_size _UpperCAmelCase = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _SCREAMING_SNAKE_CASE ) ) # verify size _UpperCAmelCase = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _SCREAMING_SNAKE_CASE ) ) @slow def UpperCAmelCase__ ( self ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: _UpperCAmelCase = json.loads(f.read() ) _UpperCAmelCase = {'file_name': '000000039769.png', 'image_id': 39769, 'segments_info': target} _UpperCAmelCase = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them _UpperCAmelCase = DeformableDetrImageProcessor(format='coco_panoptic' ) _UpperCAmelCase = image_processing(images=_SCREAMING_SNAKE_CASE , annotations=_SCREAMING_SNAKE_CASE , masks_path=_SCREAMING_SNAKE_CASE , return_tensors='pt' ) # verify pixel values _UpperCAmelCase = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) ) # verify area _UpperCAmelCase = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _SCREAMING_SNAKE_CASE ) ) # verify boxes _UpperCAmelCase = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _SCREAMING_SNAKE_CASE , atol=1e-3 ) ) # verify image_id _UpperCAmelCase = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _SCREAMING_SNAKE_CASE ) ) # verify is_crowd _UpperCAmelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _SCREAMING_SNAKE_CASE ) ) # verify class_labels _UpperCAmelCase = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _SCREAMING_SNAKE_CASE ) ) # verify masks _UpperCAmelCase = 822873 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , _SCREAMING_SNAKE_CASE ) # verify orig_size _UpperCAmelCase = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _SCREAMING_SNAKE_CASE ) ) # verify size _UpperCAmelCase = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _SCREAMING_SNAKE_CASE ) )
329
0
"""simple docstring""" from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 UpperCAmelCase = { # 1536-bit 5: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 2048-bit 14: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AACAA68FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 3072-bit 15: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64''' + '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7''' + '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B''' + '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31''' + '''43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 4096-bit 16: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64''' + '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7''' + '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B''' + '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31''' + '''43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7''' + '''88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA''' + '''2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6''' + '''287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED''' + '''1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9''' + '''93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199''' + '''FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 6144-bit 17: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08''' + '''8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B''' + '''302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9''' + '''A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6''' + '''49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8''' + '''FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C''' + '''180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718''' + '''3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D''' + '''04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D''' + '''B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226''' + '''1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC''' + '''E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26''' + '''99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB''' + '''04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2''' + '''233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127''' + '''D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492''' + '''36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406''' + '''AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918''' + '''DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151''' + '''2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03''' + '''F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F''' + '''BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA''' + '''CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B''' + '''B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632''' + '''387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E''' + '''6DCC4024FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 8192-bit 18: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64''' + '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7''' + '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B''' + '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31''' + '''43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7''' + '''88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA''' + '''2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6''' + '''287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED''' + '''1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9''' + '''93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492''' + '''36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD''' + '''F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831''' + '''179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B''' + '''DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF''' + '''5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6''' + '''D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3''' + '''23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA''' + '''CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328''' + '''06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C''' + '''DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE''' + '''12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4''' + '''38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300''' + '''741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568''' + '''3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9''' + '''22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B''' + '''4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A''' + '''062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36''' + '''4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1''' + '''B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92''' + '''4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47''' + '''9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71''' + '''60C980DD98EDD3DFFFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, } class __magic_name__ : def __init__( self : int , snake_case__ : int = 1_4 ): '''simple docstring''' if group not in primes: raise ValueError('''Unsupported Group''' ) lowercase :Dict = primes[group]["prime"] lowercase :Any = primes[group]["generator"] lowercase :Any = int(hexlify(urandom(3_2 ) ) , base=1_6 ) def __snake_case ( self : Optional[Any] ): '''simple docstring''' return hex(self.__private_key )[2:] def __snake_case ( self : Union[str, Any] ): '''simple docstring''' lowercase :Union[str, Any] = pow(self.generator , self.__private_key , self.prime ) return hex(snake_case__ )[2:] def __snake_case ( self : List[Any] , snake_case__ : int ): '''simple docstring''' return ( 2 <= key <= self.prime - 2 and pow(snake_case__ , (self.prime - 1) // 2 , self.prime ) == 1 ) def __snake_case ( self : Any , snake_case__ : str ): '''simple docstring''' lowercase :Dict = int(snake_case__ , base=1_6 ) if not self.is_valid_public_key(snake_case__ ): raise ValueError('''Invalid public key''' ) lowercase :List[str] = pow(snake_case__ , self.__private_key , self.prime ) return shaaaa(str(snake_case__ ).encode() ).hexdigest() @staticmethod def __snake_case ( snake_case__ : int , snake_case__ : int ): '''simple docstring''' return ( 2 <= remote_public_key_str <= prime - 2 and pow(snake_case__ , (prime - 1) // 2 , snake_case__ ) == 1 ) @staticmethod def __snake_case ( snake_case__ : str , snake_case__ : str , snake_case__ : int = 1_4 ): '''simple docstring''' lowercase :Dict = int(snake_case__ , base=1_6 ) lowercase :str = int(snake_case__ , base=1_6 ) lowercase :Union[str, Any] = primes[group]["prime"] if not DiffieHellman.is_valid_public_key_static(snake_case__ , snake_case__ ): raise ValueError('''Invalid public key''' ) lowercase :Dict = pow(snake_case__ , snake_case__ , snake_case__ ) return shaaaa(str(snake_case__ ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
360
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } UpperCAmelCase = { '''vocab_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'''}, '''merges_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'''}, '''tokenizer_config_file''': { '''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json''' }, } UpperCAmelCase = {'''facebook/blenderbot-3B''': 128} class __magic_name__ ( __UpperCAmelCase ): __A : Any = VOCAB_FILES_NAMES __A : List[str] = PRETRAINED_VOCAB_FILES_MAP __A : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A : Optional[int] = ["input_ids", "attention_mask"] __A : Optional[Any] = BlenderbotTokenizer def __init__( self : Optional[Any] , snake_case__ : List[str]=None , snake_case__ : List[str]=None , snake_case__ : List[Any]=None , snake_case__ : Dict="replace" , snake_case__ : Union[str, Any]="<s>" , snake_case__ : Tuple="</s>" , snake_case__ : Any="</s>" , snake_case__ : Any="<s>" , snake_case__ : Tuple="<unk>" , snake_case__ : str="<pad>" , snake_case__ : List[str]="<mask>" , snake_case__ : int=False , snake_case__ : List[Any]=True , **snake_case__ : Any , ): '''simple docstring''' super().__init__( snake_case__ , snake_case__ , tokenizer_file=snake_case__ , errors=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , add_prefix_space=snake_case__ , trim_offsets=snake_case__ , **snake_case__ , ) lowercase :Dict = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , snake_case__ ) != add_prefix_space: lowercase :int = getattr(snake_case__ , pre_tok_state.pop('''type''' ) ) lowercase :List[str] = add_prefix_space lowercase :Any = pre_tok_class(**snake_case__ ) lowercase :Tuple = add_prefix_space lowercase :List[Any] = '''post_processor''' lowercase :Optional[Any] = getattr(self.backend_tokenizer , snake_case__ , snake_case__ ) if tokenizer_component_instance: lowercase :int = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowercase :List[Any] = tuple(state['''sep'''] ) if "cls" in state: lowercase :List[str] = tuple(state['''cls'''] ) lowercase :Dict = False if state.get('''add_prefix_space''' , snake_case__ ) != add_prefix_space: lowercase :str = add_prefix_space lowercase :int = True if state.get('''trim_offsets''' , snake_case__ ) != trim_offsets: lowercase :List[str] = trim_offsets lowercase :Optional[Any] = True if changes_to_apply: lowercase :Optional[Any] = getattr(snake_case__ , state.pop('''type''' ) ) lowercase :List[Any] = component_class(**snake_case__ ) setattr(self.backend_tokenizer , snake_case__ , snake_case__ ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def __snake_case ( self : Dict ): '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def __snake_case ( self : Dict , snake_case__ : Union[str, Any] ): '''simple docstring''' lowercase :Tuple = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else value lowercase :List[str] = value def __snake_case ( self : int , *snake_case__ : Optional[int] , **snake_case__ : Tuple ): '''simple docstring''' lowercase :int = kwargs.get('''is_split_into_words''' , snake_case__ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*snake_case__ , **snake_case__ ) def __snake_case ( self : List[Any] , *snake_case__ : Optional[Any] , **snake_case__ : str ): '''simple docstring''' lowercase :int = kwargs.get('''is_split_into_words''' , snake_case__ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*snake_case__ , **snake_case__ ) def __snake_case ( self : Union[str, Any] , snake_case__ : str , snake_case__ : Optional[str] = None ): '''simple docstring''' lowercase :Union[str, Any] = self._tokenizer.model.save(snake_case__ , name=snake_case__ ) return tuple(snake_case__ ) def __snake_case ( self : str , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): '''simple docstring''' lowercase :Optional[Any] = [self.sep_token_id] lowercase :Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __snake_case ( self : Optional[Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): '''simple docstring''' return token_ids_a + [self.eos_token_id] def __snake_case ( self : List[str] , snake_case__ : "Conversation" ): '''simple docstring''' lowercase :str = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(''' ''' + text ) else: # Generated responses should contain them already. inputs.append(snake_case__ ) lowercase :Tuple = ''' '''.join(snake_case__ ) lowercase :Optional[int] = self.encode(snake_case__ ) if len(snake_case__ ) > self.model_max_length: lowercase :Optional[int] = input_ids[-self.model_max_length :] logger.warning(f"""Trimmed input from conversation as it was longer than {self.model_max_length} tokens.""" ) return input_ids
172
0
import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig a_ = logging.get_logger(__name__) class _lowercase : def __init__( self : List[str] , snake_case : Tuple , snake_case : Optional[Any] ) -> List[str]: """simple docstring""" UpperCamelCase_ : Any = question_encoder UpperCamelCase_ : Any = generator UpperCamelCase_ : Any = self.question_encoder def SCREAMING_SNAKE_CASE__ ( self : int , snake_case : List[str] ) -> Union[str, Any]: """simple docstring""" if os.path.isfile(snake_case ): raise ValueError(f"Provided path ({save_directory}) should be a directory, not a file" ) os.makedirs(snake_case , exist_ok=snake_case ) UpperCamelCase_ : Tuple = os.path.join(snake_case , 'question_encoder_tokenizer' ) UpperCamelCase_ : List[Any] = os.path.join(snake_case , 'generator_tokenizer' ) self.question_encoder.save_pretrained(snake_case ) self.generator.save_pretrained(snake_case ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Any , snake_case : List[str] , **snake_case : Any ) -> Optional[int]: """simple docstring""" from ..auto.tokenization_auto import AutoTokenizer UpperCamelCase_ : List[Any] = kwargs.pop('config' , snake_case ) if config is None: UpperCamelCase_ : List[Any] = RagConfig.from_pretrained(snake_case ) UpperCamelCase_ : List[str] = AutoTokenizer.from_pretrained( snake_case , config=config.question_encoder , subfolder='question_encoder_tokenizer' ) UpperCamelCase_ : List[str] = AutoTokenizer.from_pretrained( snake_case , config=config.generator , subfolder='generator_tokenizer' ) return cls(question_encoder=snake_case , generator=snake_case ) def __call__( self : int , *snake_case : List[Any] , **snake_case : int ) -> Any: """simple docstring""" return self.current_tokenizer(*snake_case , **snake_case ) def SCREAMING_SNAKE_CASE__ ( self : Any , *snake_case : Tuple , **snake_case : Optional[int] ) -> Tuple: """simple docstring""" return self.generator.batch_decode(*snake_case , **snake_case ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , *snake_case : List[Any] , **snake_case : str ) -> Any: """simple docstring""" return self.generator.decode(*snake_case , **snake_case ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> List[Any]: """simple docstring""" UpperCamelCase_ : List[Any] = self.question_encoder def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> List[Any]: """simple docstring""" UpperCamelCase_ : List[str] = self.generator def SCREAMING_SNAKE_CASE__ ( self : Tuple , snake_case : List[str] , snake_case : Optional[List[str]] = None , snake_case : Optional[int] = None , snake_case : Optional[int] = None , snake_case : str = "longest" , snake_case : str = None , snake_case : bool = True , **snake_case : List[str] , ) -> BatchEncoding: """simple docstring""" warnings.warn( '`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ' 'regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ' 'context manager to prepare your targets. See the documentation of your specific tokenizer for more ' 'details' , snake_case , ) if max_length is None: UpperCamelCase_ : Any = self.current_tokenizer.model_max_length UpperCamelCase_ : List[str] = self( snake_case , add_special_tokens=snake_case , return_tensors=snake_case , max_length=snake_case , padding=snake_case , truncation=snake_case , **snake_case , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: UpperCamelCase_ : Optional[int] = self.current_tokenizer.model_max_length UpperCamelCase_ : Optional[int] = self( text_target=snake_case , add_special_tokens=snake_case , return_tensors=snake_case , padding=snake_case , max_length=snake_case , truncation=snake_case , **snake_case , ) UpperCamelCase_ : Union[str, Any] = labels['input_ids'] return model_inputs
175
def __lowercase ( lowerCamelCase : str , lowerCamelCase : str ): def get_matched_characters(lowerCamelCase : str , lowerCamelCase : str ) -> str: UpperCamelCase_ : Tuple = [] UpperCamelCase_ : List[Any] = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): UpperCamelCase_ : int = int(max(0 , i - limit ) ) UpperCamelCase_ : Dict = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(lowerCamelCase ) UpperCamelCase_ : Dict = F"{_stra[0:_stra.index(lowerCamelCase )]} {_stra[_stra.index(lowerCamelCase ) + 1:]}" return "".join(lowerCamelCase ) # matching characters UpperCamelCase_ : str = get_matched_characters(lowerCamelCase , lowerCamelCase ) UpperCamelCase_ : str = get_matched_characters(lowerCamelCase , lowerCamelCase ) UpperCamelCase_ : Union[str, Any] = len(lowerCamelCase ) # transposition UpperCamelCase_ : int = ( len([(ca, ca) for ca, ca in zip(lowerCamelCase , lowerCamelCase ) if ca != ca] ) // 2 ) if not match_count: UpperCamelCase_ : Union[str, Any] = 0.0 else: UpperCamelCase_ : str = ( 1 / 3 * ( match_count / len(lowerCamelCase ) + match_count / len(lowerCamelCase ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters UpperCamelCase_ : Dict = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler('hello', 'world'))
175
1
import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def __UpperCamelCase ( _A , _A , _A=None ): # set parameter of one layer assert torch_layer.weight.shape == weight.shape, f"{torch_layer} layer.weight does not match" lowerCAmelCase_ = nn.Parameter(_A ) if bias is not None: assert torch_layer.bias.shape == bias.shape, f"{torch_layer} layer.bias does not match" lowerCAmelCase_ = nn.Parameter(_A ) def __UpperCamelCase ( _A , _A , _A ): # set torch weights for 1-to-1 comparison lowerCAmelCase_ = np.asarray(weights[0] ) lowerCAmelCase_ = np.asarray(weights[1] ) lowerCAmelCase_ = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(_A ).transpose(1 , 2 ).contiguous().view(-1 , _A ) , ) set_param( torch_layer.self_attention.value , torch.tensor(_A ).transpose(1 , 2 ).contiguous().view(-1 , _A ) , ) set_param( torch_layer.output.dense , torch.tensor(_A ).view(-1 , _A ).contiguous().transpose(0 , 1 ) , ) def __UpperCamelCase ( _A , _A , _A ): # set torch weights for 1-to-1 comparison lowerCAmelCase_ = np.asarray(weights[0] ) lowerCAmelCase_ = np.asarray(weights[1] ) lowerCAmelCase_ = np.asarray(weights[2] ) lowerCAmelCase_ = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(_A ).transpose(1 , 2 ).contiguous().view(-1 , _A ) , ) set_param( torch_layer.self_attention.key , torch.tensor(_A ).transpose(1 , 2 ).contiguous().view(-1 , _A ) , ) set_param( torch_layer.self_attention.value , torch.tensor(_A ).transpose(1 , 2 ).contiguous().view(-1 , _A ) , ) set_param( torch_layer.output.dense , torch.tensor(_A ).view(-1 , _A ).contiguous().transpose(0 , 1 ) , ) def __UpperCamelCase ( _A , _A , _A ): # layernorm 1 lowerCAmelCase_ = weights[0][0][0] lowerCAmelCase_ = np.asarray(layer_norm_a[0] ) lowerCAmelCase_ = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(_A ) , torch.tensor(_A ) , ) # lsh weights + output lowerCAmelCase_ = weights[0][1] if len(_A ) < 4: set_layer_weights_in_torch_lsh(_A , torch_block.attention , _A ) else: set_layer_weights_in_torch_local(_A , torch_block.attention , _A ) # intermediate weighs lowerCAmelCase_ = weights[2][0][1][2] # Chunked Feed Forward if len(_A ) == 4: lowerCAmelCase_ = intermediate_weights[2] # layernorm 2 lowerCAmelCase_ = np.asarray(intermediate_weights[0][0] ) lowerCAmelCase_ = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(_A ) , torch.tensor(_A ) , ) # intermediate dense lowerCAmelCase_ = np.asarray(intermediate_weights[1][0] ) lowerCAmelCase_ = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(_A ).transpose(0 , 1 ).contiguous() , torch.tensor(_A ) , ) # intermediate out lowerCAmelCase_ = np.asarray(intermediate_weights[4][0] ) lowerCAmelCase_ = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(_A ).transpose(0 , 1 ).contiguous() , torch.tensor(_A ) , ) def __UpperCamelCase ( _A , _A , _A ): # reformer model lowerCAmelCase_ = torch_model.reformer # word embeds lowerCAmelCase_ = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(_A ) , ) if isinstance(weights[3] , _A ): lowerCAmelCase_ = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): lowerCAmelCase_ = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), f"{position_embeddings[emb_idx]} emb does not match" lowerCAmelCase_ = nn.Parameter(torch.tensor(_A ) ) lowerCAmelCase_ = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( _A ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): lowerCAmelCase_ = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(_A , _A , _A ) # output layer norm lowerCAmelCase_ = np.asarray(weights[7][0] ) lowerCAmelCase_ = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(_A ) , torch.tensor(_A ) , ) # output embeddings lowerCAmelCase_ = np.asarray(weights[9][0] ) lowerCAmelCase_ = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(_A ).transpose(0 , 1 ).contiguous() , torch.tensor(_A ) , ) def __UpperCamelCase ( _A , _A , _A ): # Initialise PyTorch model lowerCAmelCase_ = ReformerConfig.from_json_file(_A ) print(f"Building PyTorch model from configuration: {config}" ) lowerCAmelCase_ = ReformerModelWithLMHead(_A ) with open(_A , '''rb''' ) as f: lowerCAmelCase_ = pickle.load(_A )['''weights'''] set_model_weights_in_torch(_A , _A , config.hidden_size ) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , _A ) if __name__ == "__main__": _A = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--trax_model_pkl_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained Reformer model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) _A = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
167
from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { '''EleutherAI/gpt-neox-20b''': '''https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json''', # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class A ( __UpperCAmelCase ): __snake_case = 'gpt_neox' def __init__( self, UpperCamelCase__=5_0432, UpperCamelCase__=6144, UpperCamelCase__=44, UpperCamelCase__=64, UpperCamelCase__=2_4576, UpperCamelCase__="gelu", UpperCamelCase__=0.25, UpperCamelCase__=1_0000, UpperCamelCase__=0.0, UpperCamelCase__=0.0, UpperCamelCase__=0.1, UpperCamelCase__=2048, UpperCamelCase__=0.02, UpperCamelCase__=1E-5, UpperCamelCase__=True, UpperCamelCase__=0, UpperCamelCase__=2, UpperCamelCase__=False, UpperCamelCase__=True, UpperCamelCase__=None, **UpperCamelCase__, ): """simple docstring""" super().__init__(bos_token_id=UpperCamelCase__, eos_token_id=UpperCamelCase__, **UpperCamelCase__ ) lowerCAmelCase_ = vocab_size lowerCAmelCase_ = max_position_embeddings lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_act lowerCAmelCase_ = rotary_pct lowerCAmelCase_ = rotary_emb_base lowerCAmelCase_ = attention_dropout lowerCAmelCase_ = hidden_dropout lowerCAmelCase_ = classifier_dropout lowerCAmelCase_ = initializer_range lowerCAmelCase_ = layer_norm_eps lowerCAmelCase_ = use_cache lowerCAmelCase_ = tie_word_embeddings lowerCAmelCase_ = use_parallel_residual lowerCAmelCase_ = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( '''The hidden size is not divisble by the number of attention heads! Make sure to update them!''' ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" if self.rope_scaling is None: return if not isinstance(self.rope_scaling, UpperCamelCase__ ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' f"got {self.rope_scaling}" ) lowerCAmelCase_ = self.rope_scaling.get('''type''', UpperCamelCase__ ) lowerCAmelCase_ = self.rope_scaling.get('''factor''', UpperCamelCase__ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(UpperCamelCase__, UpperCamelCase__ ) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}" )
167
1
"""simple docstring""" import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def lowerCAmelCase__ ( _UpperCamelCase : List[str] , _UpperCamelCase : Optional[int] , _UpperCamelCase : str , _UpperCamelCase : int , _UpperCamelCase : int=True , _UpperCamelCase : Optional[int]="pt" ) -> int: """simple docstring""" snake_case = {"add_prefix_space": True} if isinstance(_lowerCAmelCase , _lowerCAmelCase ) and not line.startswith(' ' ) else {} snake_case = padding_side return tokenizer( [line] , max_length=_lowerCAmelCase , padding='max_length' if pad_to_max_length else None , truncation=_lowerCAmelCase , return_tensors=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , **_lowerCAmelCase , ) def lowerCAmelCase__ ( _UpperCamelCase : List[str] , _UpperCamelCase : str , _UpperCamelCase : Any=None , ) -> str: """simple docstring""" snake_case = input_ids.ne(_lowerCAmelCase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class lowerCAmelCase_ ( __snake_case ): """simple docstring""" def __init__( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase="train" , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase="" , ): """simple docstring""" super().__init__() snake_case = Path(A_ ).joinpath(type_path + '.source' ) snake_case = Path(A_ ).joinpath(type_path + '.target' ) snake_case = self.get_char_lens(self.src_file ) snake_case = max_source_length snake_case = max_target_length assert min(self.src_lens ) > 0, F"""found empty line in {self.src_file}""" snake_case = tokenizer snake_case = prefix if n_obs is not None: snake_case = self.src_lens[:n_obs] snake_case = src_lang snake_case = tgt_lang def __len__( self ): """simple docstring""" return len(self.src_lens ) def __getitem__( self , lowerCAmelCase ): """simple docstring""" snake_case = index + 1 # linecache starts at 1 snake_case = self.prefix + linecache.getline(str(self.src_file ) , A_ ).rstrip('\n' ) snake_case = linecache.getline(str(self.tgt_file ) , A_ ).rstrip('\n' ) assert source_line, F"""empty source line for index {index}""" assert tgt_line, F"""empty tgt line for index {index}""" # Need to add eos token manually for T5 if isinstance(self.tokenizer , A_ ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right snake_case = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , A_ ) else self.tokenizer ) snake_case = self.tokenizer.generator if isinstance(self.tokenizer , A_ ) else self.tokenizer snake_case = encode_line(A_ , A_ , self.max_source_length , 'right' ) snake_case = encode_line(A_ , A_ , self.max_target_length , 'right' ) snake_case = source_inputs["input_ids"].squeeze() snake_case = target_inputs["input_ids"].squeeze() snake_case = source_inputs["attention_mask"].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def snake_case ( lowerCAmelCase ): """simple docstring""" return [len(A_ ) for x in Path(A_ ).open().readlines()] def snake_case ( self , lowerCAmelCase ): """simple docstring""" snake_case = torch.stack([x['input_ids'] for x in batch] ) snake_case = torch.stack([x['attention_mask'] for x in batch] ) snake_case = torch.stack([x['decoder_input_ids'] for x in batch] ) snake_case = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , A_ ) else self.tokenizer.pad_token_id ) snake_case = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , A_ ) else self.tokenizer.pad_token_id ) snake_case = trim_batch(A_ , A_ ) snake_case = trim_batch(A_ , A_ , attention_mask=A_ ) snake_case = { "input_ids": source_ids, "attention_mask": source_mask, "decoder_input_ids": y, } return batch SCREAMING_SNAKE_CASE__ = getLogger(__name__) def lowerCAmelCase__ ( _UpperCamelCase : List[Any] ) -> List[Any]: """simple docstring""" return list(itertools.chain.from_iterable(_lowerCAmelCase ) ) def lowerCAmelCase__ ( _UpperCamelCase : Any ) -> None: """simple docstring""" snake_case = get_git_info() save_json(_lowerCAmelCase , os.path.join(_lowerCAmelCase , 'git_log.json' ) ) def lowerCAmelCase__ ( _UpperCamelCase : List[Any] , _UpperCamelCase : Optional[int] , _UpperCamelCase : str=4 , **_UpperCamelCase : Any ) -> List[str]: """simple docstring""" with open(_lowerCAmelCase , 'w' ) as f: json.dump(_lowerCAmelCase , _lowerCAmelCase , indent=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( _UpperCamelCase : str ) -> Any: """simple docstring""" with open(_lowerCAmelCase ) as f: return json.load(_lowerCAmelCase ) def lowerCAmelCase__ ( ) -> Any: """simple docstring""" snake_case = git.Repo(search_parent_directories=_lowerCAmelCase ) snake_case = { "repo_id": str(_lowerCAmelCase ), "repo_sha": str(repo.head.object.hexsha ), "repo_branch": str(repo.active_branch ), "hostname": str(socket.gethostname() ), } return repo_infos def lowerCAmelCase__ ( _UpperCamelCase : Optional[int] , _UpperCamelCase : Optional[Any] ) -> List: """simple docstring""" return list(map(_lowerCAmelCase , _lowerCAmelCase ) ) def lowerCAmelCase__ ( _UpperCamelCase : List[str] , _UpperCamelCase : Any ) -> List[Any]: """simple docstring""" with open(_lowerCAmelCase , 'wb' ) as f: return pickle.dump(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase__ ( _UpperCamelCase : int ) -> Union[str, Any]: """simple docstring""" def remove_articles(_UpperCamelCase : Any ): return re.sub(r'\b(a|an|the)\b' , ' ' , _lowerCAmelCase ) def white_space_fix(_UpperCamelCase : List[str] ): return " ".join(text.split() ) def remove_punc(_UpperCamelCase : str ): snake_case = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_UpperCamelCase : int ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_lowerCAmelCase ) ) ) ) def lowerCAmelCase__ ( _UpperCamelCase : Any , _UpperCamelCase : Any ) -> List[Any]: """simple docstring""" snake_case = normalize_answer(_lowerCAmelCase ).split() snake_case = normalize_answer(_lowerCAmelCase ).split() snake_case = Counter(_lowerCAmelCase ) & Counter(_lowerCAmelCase ) snake_case = sum(common.values() ) if num_same == 0: return 0 snake_case = 1.0 * num_same / len(_lowerCAmelCase ) snake_case = 1.0 * num_same / len(_lowerCAmelCase ) snake_case = (2 * precision * recall) / (precision + recall) return fa def lowerCAmelCase__ ( _UpperCamelCase : int , _UpperCamelCase : List[Any] ) -> Union[str, Any]: """simple docstring""" return normalize_answer(_lowerCAmelCase ) == normalize_answer(_lowerCAmelCase ) def lowerCAmelCase__ ( _UpperCamelCase : Any , _UpperCamelCase : Union[str, Any] ) -> Dict: """simple docstring""" assert len(_lowerCAmelCase ) == len(_lowerCAmelCase ) snake_case = 0 for hypo, pred in zip(_lowerCAmelCase , _lowerCAmelCase ): em += exact_match_score(_lowerCAmelCase , _lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: em /= len(_lowerCAmelCase ) return {"em": em} def lowerCAmelCase__ ( _UpperCamelCase : str ) -> str: """simple docstring""" return model_prefix.startswith('rag' ) def lowerCAmelCase__ ( _UpperCamelCase : Tuple , _UpperCamelCase : int , _UpperCamelCase : Dict ) -> int: """simple docstring""" snake_case = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead snake_case = "dropout_rate" for p in extra_params: if getattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): if not hasattr(_lowerCAmelCase , _lowerCAmelCase ) and not hasattr(_lowerCAmelCase , equivalent_param[p] ): logger.info('config doesn\'t have a `{}` attribute'.format(_lowerCAmelCase ) ) delattr(_lowerCAmelCase , _lowerCAmelCase ) continue snake_case = p if hasattr(_lowerCAmelCase , _lowerCAmelCase ) else equivalent_param[p] setattr(_lowerCAmelCase , _lowerCAmelCase , getattr(_lowerCAmelCase , _lowerCAmelCase ) ) delattr(_lowerCAmelCase , _lowerCAmelCase ) return hparams, config
150
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCamelCase : Any = { """configuration_electra""": ["""ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ElectraConfig""", """ElectraOnnxConfig"""], """tokenization_electra""": ["""ElectraTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Dict = ["""ElectraTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Tuple = [ """ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """ElectraForCausalLM""", """ElectraForMaskedLM""", """ElectraForMultipleChoice""", """ElectraForPreTraining""", """ElectraForQuestionAnswering""", """ElectraForSequenceClassification""", """ElectraForTokenClassification""", """ElectraModel""", """ElectraPreTrainedModel""", """load_tf_weights_in_electra""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : List[Any] = [ """TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFElectraForMaskedLM""", """TFElectraForMultipleChoice""", """TFElectraForPreTraining""", """TFElectraForQuestionAnswering""", """TFElectraForSequenceClassification""", """TFElectraForTokenClassification""", """TFElectraModel""", """TFElectraPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : List[str] = [ """FlaxElectraForCausalLM""", """FlaxElectraForMaskedLM""", """FlaxElectraForMultipleChoice""", """FlaxElectraForPreTraining""", """FlaxElectraForQuestionAnswering""", """FlaxElectraForSequenceClassification""", """FlaxElectraForTokenClassification""", """FlaxElectraModel""", """FlaxElectraPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys __lowerCamelCase : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
52
0
"""simple docstring""" import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class lowerCamelCase__ ( unittest.TestCase ): SCREAMING_SNAKE_CASE = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def _UpperCamelCase ( self ,A ,A ,A ): UpperCAmelCase = hf_hub_download( repo_id="""nateraw/video-demo""" ,filename="""archery.mp4""" ,repo_type="""dataset""" ) UpperCAmelCase = VideoClassificationPipeline(model=UpperCamelCase__ ,image_processor=UpperCamelCase__ ,top_k=2 ) UpperCAmelCase = [ example_video_filepath, "https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4", ] return video_classifier, examples def _UpperCamelCase ( self ,A ,A ): for example in examples: UpperCAmelCase = video_classifier(UpperCamelCase__ ) self.assertEqual( UpperCamelCase__ ,[ {"""score""": ANY(UpperCamelCase__ ), """label""": ANY(UpperCamelCase__ )}, {"""score""": ANY(UpperCamelCase__ ), """label""": ANY(UpperCamelCase__ )}, ] ,) @require_torch def _UpperCamelCase ( self ): UpperCAmelCase = "hf-internal-testing/tiny-random-VideoMAEForVideoClassification" UpperCAmelCase = VideoMAEFeatureExtractor( size={"""shortest_edge""": 10} ,crop_size={"""height""": 10, """width""": 10} ) UpperCAmelCase = pipeline( """video-classification""" ,model=UpperCamelCase__ ,feature_extractor=UpperCamelCase__ ,frame_sampling_rate=4 ) UpperCAmelCase = hf_hub_download(repo_id="""nateraw/video-demo""" ,filename="""archery.mp4""" ,repo_type="""dataset""" ) UpperCAmelCase = video_classifier(UpperCamelCase__ ,top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase__ ,decimals=4 ) ,[{"""score""": 0.5199, """label""": """LABEL_0"""}, {"""score""": 0.4801, """label""": """LABEL_1"""}] ,) UpperCAmelCase = video_classifier( [ video_file_path, video_file_path, ] ,top_k=2 ,) self.assertEqual( nested_simplify(UpperCamelCase__ ,decimals=4 ) ,[ [{"""score""": 0.5199, """label""": """LABEL_0"""}, {"""score""": 0.4801, """label""": """LABEL_1"""}], [{"""score""": 0.5199, """label""": """LABEL_0"""}, {"""score""": 0.4801, """label""": """LABEL_1"""}], ] ,) @require_tf def _UpperCamelCase ( self ): pass
370
"""simple docstring""" import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset _UpperCamelCase = pd.read_csv( """https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/""" """position_salaries.csv""" ) _UpperCamelCase = dataset.iloc[:, 1:2].values _UpperCamelCase = dataset.iloc[:, 2].values _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = train_test_split(X, y, test_size=0.2, random_state=0) _UpperCamelCase = PolynomialFeatures(degree=4) _UpperCamelCase = poly_reg.fit_transform(X) _UpperCamelCase = LinearRegression() pol_reg.fit(X_poly, y) def _a ( ): """simple docstring""" plt.scatter(_snake_case , _snake_case , color="""red""" ) plt.plot(_snake_case , pol_reg.predict(poly_reg.fit_transform(_snake_case ) ) , color="""blue""" ) plt.title("""Truth or Bluff (Linear Regression)""" ) plt.xlabel("""Position level""" ) plt.ylabel("""Salary""" ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
234
0
"""simple docstring""" _a : Dict= "Tobias Carryer" from time import time class UpperCamelCase : def __init__(self : Dict , _A : Union[str, Any] , _A : str , _A : List[Any] , _A : int=int(time())) -> List[str]: # noqa: B008 __snake_case : List[Any] = multiplier __snake_case : Dict = increment __snake_case : Any = modulo __snake_case : Union[str, Any] = seed def _lowercase (self : Dict) -> Optional[Any]: __snake_case : int = (self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. _a : Dict= LinearCongruentialGenerator(1_664_525, 1_013_904_223, 2 << 31) while True: print(lcg.next_number())
172
import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version _UpperCAmelCase = version.parse(importlib_metadata.version("""nltk""")) if NLTK_VERSION >= version.Version("""3.6.4"""): from nltk import word_tokenize _UpperCAmelCase = """\ @inproceedings{banarjee2005, title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments}, author = {Banerjee, Satanjeev and Lavie, Alon}, booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization}, month = jun, year = {2005}, address = {Ann Arbor, Michigan}, publisher = {Association for Computational Linguistics}, url = {https://www.aclweb.org/anthology/W05-0909}, pages = {65--72}, } """ _UpperCAmelCase = """\ METEOR, an automatic metric for machine translation evaluation that is based on a generalized concept of unigram matching between the machine-produced translation and human-produced reference translations. Unigrams can be matched based on their surface forms, stemmed forms, and meanings; furthermore, METEOR can be easily extended to include more advanced matching strategies. Once all generalized unigram matches between the two strings have been found, METEOR computes a score for this matching using a combination of unigram-precision, unigram-recall, and a measure of fragmentation that is designed to directly capture how well-ordered the matched words in the machine translation are in relation to the reference. METEOR gets an R correlation value of 0.347 with human evaluation on the Arabic data and 0.331 on the Chinese data. This is shown to be an improvement on using simply unigram-precision, unigram-recall and their harmonic F1 combination. """ _UpperCAmelCase = """ Computes METEOR score of translated segments against one or more references. Args: predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. alpha: Parameter for controlling relative weights of precision and recall. default: 0.9 beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3 gamma: Relative weight assigned to fragmentation penalty. default: 0.5 Returns: 'meteor': meteor score. Examples: >>> meteor = datasets.load_metric('meteor') >>> predictions = [\"It is a guide to action which ensures that the military always obeys the commands of the party\"] >>> references = [\"It is a guide to action that ensures that the military will forever heed Party commands\"] >>> results = meteor.compute(predictions=predictions, references=references) >>> print(round(results[\"meteor\"], 4)) 0.6944 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase ( datasets.Metric ): '''simple docstring''' def lowerCAmelCase_ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py'] , reference_urls=[ 'https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score', 'https://en.wikipedia.org/wiki/METEOR', ] , ) def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" import nltk nltk.download('wordnet' ) if NLTK_VERSION >= version.Version('3.6.5' ): nltk.download('punkt' ) if NLTK_VERSION >= version.Version('3.6.6' ): nltk.download('omw-1.4' ) def lowerCAmelCase_ ( self , lowercase , lowercase , lowercase=0.9 , lowercase=3 , lowercase=0.5 ): """simple docstring""" if NLTK_VERSION >= version.Version('3.6.5' ): A_ : List[Any] = [ meteor_score.single_meteor_score( word_tokenize(lowercase ) , word_tokenize(lowercase ) , alpha=lowercase , beta=lowercase , gamma=lowercase ) for ref, pred in zip(lowercase , lowercase ) ] else: A_ : Optional[Any] = [ meteor_score.single_meteor_score(lowercase , lowercase , alpha=lowercase , beta=lowercase , gamma=lowercase ) for ref, pred in zip(lowercase , lowercase ) ] return {"meteor": np.mean(lowercase )}
140
0
def lowerCamelCase__ ( A__ : Optional[int] , A__ : List[Any] , A__ : Any , A__ : Optional[int] , A__ : Optional[Any] , A__ : str ): '''simple docstring''' if index == r: for j in range(A__ ): print(data[j] , end=""" """ ) print(""" """ ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location __lowerCamelCase = arr[i] combination_util(A__ , A__ , A__ , index + 1 , A__ , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(A__ , A__ , A__ , A__ , A__ , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def lowerCamelCase__ ( A__ : List[str] , A__ : Union[str, Any] , A__ : List[str] ): '''simple docstring''' __lowerCamelCase = [0] * r # Print all combination using temporary array 'data[]' combination_util(A__ , A__ , A__ , 0 , A__ , 0 ) if __name__ == "__main__": # Driver code to check the function above UpperCAmelCase_ = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
29
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : Union[str, Any] = IFImgaImgSuperResolutionPipeline UpperCAmelCase__ : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'width', 'height'} UpperCAmelCase__ : Dict = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'original_image'}) UpperCAmelCase__ : Tuple = PipelineTesterMixin.required_optional_params - {'latents'} def lowerCAmelCase__ ( self: Optional[int] ): return self._get_superresolution_dummy_components() def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: Any , UpperCamelCase_: Dict=0 ): if str(UpperCamelCase_ ).startswith("""mps""" ): __lowerCamelCase = torch.manual_seed(UpperCamelCase_ ) else: __lowerCamelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __lowerCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) __lowerCamelCase = floats_tensor((1, 3, 16, 16) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) __lowerCamelCase = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """original_image""": original_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowerCAmelCase__ ( self: Dict ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def lowerCAmelCase__ ( self: int ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def lowerCAmelCase__ ( self: Optional[Any] ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def lowerCAmelCase__ ( self: Optional[Any] ): self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def lowerCAmelCase__ ( self: List[str] ): self._test_save_load_local() def lowerCAmelCase__ ( self: List[Any] ): self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
29
1
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> str: if number < 0 or shift_amount < 0: raise ValueError('both inputs must be positive integers' ) __lowercase = str(bin(SCREAMING_SNAKE_CASE ) ) binary_number += "0" * shift_amount return binary_number def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> str: if number < 0 or shift_amount < 0: raise ValueError('both inputs must be positive integers' ) __lowercase = str(bin(SCREAMING_SNAKE_CASE ) )[2:] if shift_amount >= len(SCREAMING_SNAKE_CASE ): return "0b0" __lowercase = binary_number[: len(SCREAMING_SNAKE_CASE ) - shift_amount] return "0b" + shifted_binary_number def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> str: if number >= 0: # Get binary representation of positive number __lowercase = '0' + str(bin(SCREAMING_SNAKE_CASE ) ).strip('-' )[2:] else: # Get binary (2's complement) representation of negative number __lowercase = len(bin(SCREAMING_SNAKE_CASE )[3:] ) # Find 2's complement of number __lowercase = bin(abs(SCREAMING_SNAKE_CASE ) - (1 << binary_number_length) )[3:] __lowercase = ( '1' + '0' * (binary_number_length - len(SCREAMING_SNAKE_CASE )) + binary_number ) if shift_amount >= len(SCREAMING_SNAKE_CASE ): return "0b" + binary_number[0] * len(SCREAMING_SNAKE_CASE ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(SCREAMING_SNAKE_CASE ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
325
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings("""ignore""", category=UserWarning, module="""torch.optim.lr_scheduler""") class A__ : def __init__( self : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : bool = True , _UpperCAmelCase : bool = False ) -> Union[str, Any]: """simple docstring""" __lowercase = scheduler __lowercase = optimizers if isinstance(_UpperCAmelCase , (list, tuple) ) else [optimizers] __lowercase = split_batches __lowercase = step_with_optimizer __lowercase = GradientState() def a__ ( self : Optional[int] , *_UpperCAmelCase : int , **_UpperCAmelCase : str ) -> Union[str, Any]: """simple docstring""" if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step __lowercase = AcceleratorState().num_processes for _ in range(_UpperCAmelCase ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , 'total_steps' ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase ) else: self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" return self.scheduler.get_last_lr() def a__ ( self : List[str] ) -> Tuple: """simple docstring""" return self.scheduler.state_dict() def a__ ( self : Optional[int] , _UpperCAmelCase : Optional[int] ) -> Union[str, Any]: """simple docstring""" self.scheduler.load_state_dict(_UpperCAmelCase ) def a__ ( self : Dict ) -> int: """simple docstring""" return self.scheduler.get_lr() def a__ ( self : Union[str, Any] , *_UpperCAmelCase : Union[str, Any] , **_UpperCAmelCase : List[str] ) -> Any: """simple docstring""" return self.scheduler.print_lr(*_UpperCAmelCase , **_UpperCAmelCase )
325
1
from __future__ import annotations __lowerCamelCase : Tuple = list[list[int]] # assigning initial values to the grid __lowerCamelCase : Matrix = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution __lowerCamelCase : Matrix = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Matrix , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : int ) -> bool: """simple docstring""" for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Matrix ) -> tuple[int, int] | None: """simple docstring""" for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Matrix ) -> Matrix | None: """simple docstring""" if location := find_empty_location(__UpperCamelCase ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE__ = digit if sudoku(__UpperCamelCase ) is not None: return grid SCREAMING_SNAKE_CASE__ = 0 return None def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Matrix ) -> None: """simple docstring""" for row in grid: for cell in row: print(__UpperCamelCase , end=""" """ ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print('''\nExample grid:\n''' + '''=''' * 20) print_solution(example_grid) print('''\nExample grid solution:''') __lowerCamelCase : str = sudoku(example_grid) if solution is not None: print_solution(solution) else: print('''Cannot find a solution.''')
204
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
204
1
def lowerCamelCase__ ( a ) -> int: if not isinstance(a , a ): raise TypeError('''only integers accepted as input''' ) else: _A: int = str(abs(a ) ) _A: Optional[int] = [list(a ) for char in range(len(a ) )] for index in range(len(a ) ): num_transpositions[index].pop(a ) return max( int(''''''.join(list(a ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__('doctest').testmod()
121
from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) UpperCAmelCase__ : Optional[int] = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCAmelCase__ : Dict = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "A red cartoon frog, 4k"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16\n ... )\n >>> pipe.to("cuda")\n\n >>> init_image = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/frog.png"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save("red_frog.png")\n ```\n' def lowerCamelCase__ ( a , a , a=8 ) -> List[Any]: _A: int = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _A: str = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def lowerCamelCase__ ( a , a=5_12 , a=5_12 ) -> Dict: _A: Union[str, Any] = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) _A: Tuple = np.array(pil_image.convert('''RGB''' ) ) _A: List[str] = arr.astype(np.floataa ) / 127.5 - 1 _A: Tuple = np.transpose(a , [2, 0, 1] ) _A: Any = torch.from_numpy(a ).unsqueeze(0 ) return image class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __init__( self : int , lowerCAmelCase_ : UNetaDConditionModel , lowerCAmelCase_ : DDPMScheduler , lowerCAmelCase_ : VQModel , ): """simple docstring""" super().__init__() self.register_modules( unet=lowerCAmelCase_ , scheduler=lowerCAmelCase_ , movq=lowerCAmelCase_ , ) _A: List[Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def __magic_name__ ( self : List[str] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] ): """simple docstring""" # get the original timestep using init_timestep _A: Union[str, Any] = min(int(num_inference_steps * strength ) , lowerCAmelCase_ ) _A: str = max(num_inference_steps - init_timestep , 0 ) _A: str = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def __magic_name__ ( self : List[str] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int]=None ): """simple docstring""" if not isinstance(lowerCAmelCase_ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(lowerCAmelCase_ )}""" ) _A: Optional[int] = image.to(device=lowerCAmelCase_ , dtype=lowerCAmelCase_ ) _A: Union[str, Any] = batch_size * num_images_per_prompt if image.shape[1] == 4: _A: Optional[int] = image else: if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and len(lowerCAmelCase_ ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(lowerCAmelCase_ )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _A: List[Any] = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(lowerCAmelCase_ ) ] _A: Optional[Any] = torch.cat(lowerCAmelCase_ , dim=0 ) else: _A: Optional[int] = self.movq.encode(lowerCAmelCase_ ).latent_dist.sample(lowerCAmelCase_ ) _A: int = self.movq.config.scaling_factor * init_latents _A: Optional[Any] = torch.cat([init_latents] , dim=0 ) _A: Any = init_latents.shape _A: Optional[Any] = randn_tensor(lowerCAmelCase_ , generator=lowerCAmelCase_ , device=lowerCAmelCase_ , dtype=lowerCAmelCase_ ) # get latents _A: Union[str, Any] = self.scheduler.add_noise(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _A: List[str] = init_latents return latents def __magic_name__ ( self : Optional[int] , lowerCAmelCase_ : Optional[int]=0 ): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) _A: Any = torch.device(F"""cuda:{gpu_id}""" ) _A: int = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowerCAmelCase_ , lowerCAmelCase_ ) def __magic_name__ ( self : Any , lowerCAmelCase_ : Any=0 ): """simple docstring""" if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0''' ): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' ) _A: Any = torch.device(F"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=lowerCAmelCase_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _A: int = None for cpu_offloaded_model in [self.unet, self.movq]: _A , _A: List[Any] = cpu_offload_with_hook(lowerCAmelCase_ , lowerCAmelCase_ , prev_module_hook=lowerCAmelCase_ ) # We'll offload the last model manually. _A: Tuple = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __magic_name__ ( self : List[Any] ): """simple docstring""" if not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(lowerCAmelCase_ , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(lowerCAmelCase_ ) def __call__( self : Optional[Any] , lowerCAmelCase_ : Union[torch.FloatTensor, List[torch.FloatTensor]] , lowerCAmelCase_ : Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]] , lowerCAmelCase_ : Union[torch.FloatTensor, List[torch.FloatTensor]] , lowerCAmelCase_ : int = 5_1_2 , lowerCAmelCase_ : int = 5_1_2 , lowerCAmelCase_ : int = 1_0_0 , lowerCAmelCase_ : float = 4.0 , lowerCAmelCase_ : float = 0.3 , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCAmelCase_ : Optional[str] = "pil" , lowerCAmelCase_ : bool = True , ): """simple docstring""" _A: Any = self._execution_device _A: Any = guidance_scale > 1.0 if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _A: Any = torch.cat(lowerCAmelCase_ , dim=0 ) _A: int = image_embeds.shape[0] if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _A: Dict = torch.cat(lowerCAmelCase_ , dim=0 ) if do_classifier_free_guidance: _A: Any = image_embeds.repeat_interleave(lowerCAmelCase_ , dim=0 ) _A: str = negative_image_embeds.repeat_interleave(lowerCAmelCase_ , dim=0 ) _A: Dict = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=lowerCAmelCase_ ) if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _A: List[str] = [image] if not all(isinstance(lowerCAmelCase_ , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( F"""Input is in incorrect format: {[type(lowerCAmelCase_ ) for i in image]}. Currently, we only support PIL image and pytorch tensor""" ) _A: List[str] = torch.cat([prepare_image(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for i in image] , dim=0 ) _A: Tuple = image.to(dtype=image_embeds.dtype , device=lowerCAmelCase_ ) _A: Optional[Any] = self.movq.encode(lowerCAmelCase_ )['''latents'''] _A: Optional[int] = latents.repeat_interleave(lowerCAmelCase_ , dim=0 ) self.scheduler.set_timesteps(lowerCAmelCase_ , device=lowerCAmelCase_ ) _A , _A: List[Any] = self.get_timesteps(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _A: Dict = timesteps[:1].repeat(batch_size * num_images_per_prompt ) _A , _A: Optional[int] = downscale_height_and_width(lowerCAmelCase_ , lowerCAmelCase_ , self.movq_scale_factor ) _A: Any = self.prepare_latents( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , image_embeds.dtype , lowerCAmelCase_ , lowerCAmelCase_ ) for i, t in enumerate(self.progress_bar(lowerCAmelCase_ ) ): # expand the latents if we are doing classifier free guidance _A: Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _A: str = {'''image_embeds''': image_embeds} _A: Optional[int] = self.unet( sample=lowerCAmelCase_ , timestep=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , added_cond_kwargs=lowerCAmelCase_ , return_dict=lowerCAmelCase_ , )[0] if do_classifier_free_guidance: _A , _A: str = noise_pred.split(latents.shape[1] , dim=1 ) _A , _A: int = noise_pred.chunk(2 ) _A , _A: int = variance_pred.chunk(2 ) _A: Dict = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _A: List[str] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , '''variance_type''' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _A , _A: Optional[Any] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _A: Any = self.scheduler.step( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_ , )[0] # post-processing _A: Tuple = self.movq.decode(lowerCAmelCase_ , force_not_quantize=lowerCAmelCase_ )['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: _A: int = image * 0.5 + 0.5 _A: Any = image.clamp(0 , 1 ) _A: Any = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _A: Union[str, Any] = self.numpy_to_pil(lowerCAmelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCAmelCase_ )
121
1
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): lowerCamelCase_ : List[Any] = """pt""" elif is_tf_available(): lowerCamelCase_ : List[Any] = """tf""" else: lowerCamelCase_ : Tuple = """jax""" class a__ ( __snake_case , unittest.TestCase ): A__ : Dict = PerceiverTokenizer A__ : Optional[int] = False def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: super().setUp() __a = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __SCREAMING_SNAKE_CASE ( self ) -> int: return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver' ) def __SCREAMING_SNAKE_CASE ( self , **UpperCAmelCase ) -> PerceiverTokenizer: return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase=False , UpperCAmelCase=2_0 , UpperCAmelCase=5 ) -> Tuple[str, list]: # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for Perceiver because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. __a = [] for i in range(len(UpperCAmelCase ) ): try: __a = tokenizer.decode([i] , clean_up_tokenization_spaces=UpperCAmelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) __a = list(filter(lambda UpperCAmelCase : re.match(R'^[ a-zA-Z]+$' , t[1] ) , UpperCAmelCase ) ) __a = list(filter(lambda UpperCAmelCase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=UpperCAmelCase ) , UpperCAmelCase ) ) if max_length is not None and len(UpperCAmelCase ) > max_length: __a = toks[:max_length] if min_length is not None and len(UpperCAmelCase ) < min_length and len(UpperCAmelCase ) > 0: while len(UpperCAmelCase ) < min_length: __a = toks + toks # toks_str = [t[1] for t in toks] __a = [t[0] for t in toks] # Ensure consistency __a = tokenizer.decode(UpperCAmelCase , clean_up_tokenization_spaces=UpperCAmelCase ) if " " not in output_txt and len(UpperCAmelCase ) > 1: __a = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=UpperCAmelCase ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=UpperCAmelCase ) ) if with_prefix_space: __a = ' ' + output_txt __a = tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) return output_txt, output_ids def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: __a = self.perceiver_tokenizer __a = 'Unicode €.' __a = tokenizer(UpperCAmelCase ) __a = [4, 9_1, 1_1_6, 1_1_1, 1_0_5, 1_1_7, 1_0_6, 1_0_7, 3_8, 2_3_2, 1_3_6, 1_7_8, 5_2, 5] self.assertEqual(encoded['input_ids'] , UpperCAmelCase ) # decoding __a = tokenizer.decode(UpperCAmelCase ) self.assertEqual(UpperCAmelCase , '[CLS]Unicode €.[SEP]' ) __a = tokenizer('e è é ê ë' ) __a = [4, 1_0_7, 3_8, 2_0_1, 1_7_4, 3_8, 2_0_1, 1_7_5, 3_8, 2_0_1, 1_7_6, 3_8, 2_0_1, 1_7_7, 5] self.assertEqual(encoded['input_ids'] , UpperCAmelCase ) # decoding __a = tokenizer.decode(UpperCAmelCase ) self.assertEqual(UpperCAmelCase , '[CLS]e è é ê ë[SEP]' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , '[CLS]e è é ê ë[SEP]' ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: __a = self.perceiver_tokenizer __a = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off __a = [4, 7_1, 3_8, 1_1_4, 1_1_7, 1_1_6, 1_0_9, 3_8, 1_1_8, 1_0_3, 1_2_0, 1_0_3, 1_0_9, 1_2_0, 1_0_3, 1_1_8, 1_1_0, 3_8, 1_0_8, 1_1_7, 1_2_0, 3_8, 1_2_1, 1_2_3, 1_1_5, 1_1_5, 1_0_3, 1_2_0, 1_1_1, 1_2_8, 1_0_3, 1_2_2, 1_1_1, 1_1_7, 1_1_6, 5_2, 5, 0] # fmt: on __a = tokenizer(UpperCAmelCase , padding=UpperCAmelCase , return_tensors=UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) if FRAMEWORK != "jax": __a = list(batch.input_ids.numpy()[0] ) else: __a = list(batch.input_ids.tolist()[0] ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) self.assertEqual((2, 3_8) , batch.input_ids.shape ) self.assertEqual((2, 3_8) , batch.attention_mask.shape ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: __a = self.perceiver_tokenizer __a = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] __a = tokenizer(UpperCAmelCase , padding=UpperCAmelCase , return_tensors=UpperCAmelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , UpperCAmelCase ) self.assertIn('attention_mask' , UpperCAmelCase ) self.assertNotIn('decoder_input_ids' , UpperCAmelCase ) self.assertNotIn('decoder_attention_mask' , UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: __a = self.perceiver_tokenizer __a = [ 'Summary of the text.', 'Another summary.', ] __a = tokenizer( text_target=UpperCAmelCase , max_length=3_2 , padding='max_length' , truncation=UpperCAmelCase , return_tensors=UpperCAmelCase ) self.assertEqual(3_2 , targets['input_ids'].shape[1] ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: # safety check on max_len default value so we are sure the test works __a = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 4_2 ) # Now let's start the test __a = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __a = tempfile.mkdtemp() __a = ' He is very happy, UNwant\u00E9d,running' __a = tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) tokenizer.save_pretrained(UpperCAmelCase ) __a = tokenizer.__class__.from_pretrained(UpperCAmelCase ) __a = after_tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) shutil.rmtree(UpperCAmelCase ) __a = self.get_tokenizers(model_max_length=4_2 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __a = tempfile.mkdtemp() __a = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) __a = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) __a = tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) tokenizer.save_pretrained(UpperCAmelCase ) __a = tokenizer.__class__.from_pretrained(UpperCAmelCase ) __a = after_tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 4_2 ) __a = tokenizer.__class__.from_pretrained(UpperCAmelCase , model_max_length=4_3 ) self.assertEqual(tokenizer.model_max_length , 4_3 ) shutil.rmtree(UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: __a = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(UpperCAmelCase ) with open(os.path.join(UpperCAmelCase , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: __a = json.load(UpperCAmelCase ) with open(os.path.join(UpperCAmelCase , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: __a = json.load(UpperCAmelCase ) __a = [f'''<extra_id_{i}>''' for i in range(1_2_5 )] __a = added_tokens_extra_ids + [ 'an_additional_special_token' ] __a = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(UpperCAmelCase , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(UpperCAmelCase , UpperCAmelCase ) with open(os.path.join(UpperCAmelCase , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(UpperCAmelCase , UpperCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __a = tokenizer_class.from_pretrained( UpperCAmelCase , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __a = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=UpperCAmelCase )] __a = tokenizer_class.from_pretrained( UpperCAmelCase , additional_special_tokens=UpperCAmelCase , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: __a = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([1_7_8] ) , '�' ) def __SCREAMING_SNAKE_CASE ( self ) -> str: pass def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: pass def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: pass def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: pass def __SCREAMING_SNAKE_CASE ( self ) -> str: # The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character # strings and special added tokens as tokens __a = self.get_tokenizers(fast=UpperCAmelCase , do_lower_case=UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __a = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]'] __a = tokenizer.convert_tokens_to_string(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase )
364
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available lowerCamelCase_ : Dict = {"""configuration_speech_encoder_decoder""": ["""SpeechEncoderDecoderConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[Any] = ["""SpeechEncoderDecoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Dict = ["""FlaxSpeechEncoderDecoderModel"""] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys lowerCamelCase_ : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
197
0
"""simple docstring""" import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase__ ( lowercase, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = CodeGenTokenizer lowerCamelCase__ = CodeGenTokenizerFast lowerCamelCase__ = True lowerCamelCase__ = {"""add_prefix_space""": True} lowerCamelCase__ = False def A_ ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCamelCase : Optional[int] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', '<|endoftext|>', ] _lowerCamelCase : Optional[int] = dict(zip(lowercase , range(len(lowercase ) ) ) ) _lowerCamelCase : List[Any] = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] _lowerCamelCase : Union[str, Any] = {'unk_token': '<unk>'} _lowerCamelCase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _lowerCamelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(lowercase ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(lowercase ) ) def A_ ( self , **lowercase ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname , **lowercase ) def A_ ( self , **lowercase ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **lowercase ) def A_ ( self , lowercase ): _lowerCamelCase : List[Any] = 'lower newer' _lowerCamelCase : Union[str, Any] = 'lower newer' return input_text, output_text def A_ ( self ): _lowerCamelCase : Optional[int] = CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _lowerCamelCase : Optional[Any] = 'lower newer' _lowerCamelCase : Any = ['\u0120low', 'er', '\u0120', 'n', 'e', 'w', 'er'] _lowerCamelCase : Dict = tokenizer.tokenize(lowercase , add_prefix_space=lowercase ) self.assertListEqual(lowercase , lowercase ) _lowerCamelCase : str = tokens + [tokenizer.unk_token] _lowerCamelCase : str = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase ) , lowercase ) def A_ ( self ): if not self.test_rust_tokenizer: return _lowerCamelCase : int = self.get_tokenizer() _lowerCamelCase : int = self.get_rust_tokenizer(add_prefix_space=lowercase ) _lowerCamelCase : Any = 'lower newer' # Testing tokenization _lowerCamelCase : Any = tokenizer.tokenize(lowercase , add_prefix_space=lowercase ) _lowerCamelCase : str = rust_tokenizer.tokenize(lowercase ) self.assertListEqual(lowercase , lowercase ) # Testing conversion to ids without special tokens _lowerCamelCase : int = tokenizer.encode(lowercase , add_special_tokens=lowercase , add_prefix_space=lowercase ) _lowerCamelCase : Optional[Any] = rust_tokenizer.encode(lowercase , add_special_tokens=lowercase ) self.assertListEqual(lowercase , lowercase ) # Testing conversion to ids with special tokens _lowerCamelCase : Tuple = self.get_rust_tokenizer(add_prefix_space=lowercase ) _lowerCamelCase : List[Any] = tokenizer.encode(lowercase , add_prefix_space=lowercase ) _lowerCamelCase : Union[str, Any] = rust_tokenizer.encode(lowercase ) self.assertListEqual(lowercase , lowercase ) # Testing the unknown token _lowerCamelCase : Any = tokens + [rust_tokenizer.unk_token] _lowerCamelCase : Union[str, Any] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(lowercase ) , lowercase ) def A_ ( self , *lowercase , **lowercase ): # It's very difficult to mix/test pretokenization with byte-level # And get both CodeGen and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def A_ ( self , lowercase=15 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _lowerCamelCase : Dict = self.rust_tokenizer_class.from_pretrained(lowercase , **lowercase ) # Simple input _lowerCamelCase : Optional[Any] = 'This is a simple input' _lowerCamelCase : Tuple = ['This is a simple input 1', 'This is a simple input 2'] _lowerCamelCase : List[str] = ('This is a simple input', 'This is a pair') _lowerCamelCase : Optional[int] = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests self.assertRaises(lowercase , tokenizer_r.encode , lowercase , max_length=lowercase , padding='max_length' ) # Simple input self.assertRaises(lowercase , tokenizer_r.encode_plus , lowercase , max_length=lowercase , padding='max_length' ) # Simple input self.assertRaises( lowercase , tokenizer_r.batch_encode_plus , lowercase , max_length=lowercase , padding='max_length' , ) # Pair input self.assertRaises(lowercase , tokenizer_r.encode , lowercase , max_length=lowercase , padding='max_length' ) # Pair input self.assertRaises(lowercase , tokenizer_r.encode_plus , lowercase , max_length=lowercase , padding='max_length' ) # Pair input self.assertRaises( lowercase , tokenizer_r.batch_encode_plus , lowercase , max_length=lowercase , padding='max_length' , ) def A_ ( self ): _lowerCamelCase : List[str] = CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token='<pad>' ) # Simple input _lowerCamelCase : Union[str, Any] = 'This is a simple input' _lowerCamelCase : str = ['This is a simple input looooooooong', 'This is a simple input'] _lowerCamelCase : Optional[Any] = ('This is a simple input', 'This is a pair') _lowerCamelCase : Any = [ ('This is a simple input loooooong', 'This is a simple input'), ('This is a simple pair loooooong', 'This is a simple pair'), ] _lowerCamelCase : Tuple = tokenizer.pad_token_id _lowerCamelCase : Optional[Any] = tokenizer(lowercase , padding='max_length' , max_length=30 , return_tensors='np' ) _lowerCamelCase : List[Any] = tokenizer(lowercase , padding=lowercase , truncate=lowercase , return_tensors='np' ) _lowerCamelCase : str = tokenizer(*lowercase , padding='max_length' , max_length=60 , return_tensors='np' ) _lowerCamelCase : str = tokenizer(lowercase , padding=lowercase , truncate=lowercase , return_tensors='np' ) # s # test single string max_length padding self.assertEqual(out_s['input_ids'].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s['input_ids'] ) self.assertTrue(0 in out_s['attention_mask'] ) # s2 # test automatic padding self.assertEqual(out_sa['input_ids'].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa['input_ids'][0] ) self.assertFalse(0 in out_sa['attention_mask'][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa['input_ids'][1] ) self.assertTrue(0 in out_sa['attention_mask'][1] ) # p # test single pair max_length padding self.assertEqual(out_p['input_ids'].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p['input_ids'] ) self.assertTrue(0 in out_p['attention_mask'] ) # p2 # test automatic padding pair self.assertEqual(out_pa['input_ids'].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa['input_ids'][0] ) self.assertFalse(0 in out_pa['attention_mask'][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa['input_ids'][1] ) self.assertTrue(0 in out_pa['attention_mask'][1] ) def A_ ( self ): _lowerCamelCase : Optional[int] = '$$$' _lowerCamelCase : Union[str, Any] = CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=lowercase , add_bos_token=lowercase ) _lowerCamelCase : Union[str, Any] = 'This is a simple input' _lowerCamelCase : Dict = ['This is a simple input 1', 'This is a simple input 2'] _lowerCamelCase : List[str] = tokenizer.bos_token_id _lowerCamelCase : List[Any] = tokenizer(lowercase ) _lowerCamelCase : int = tokenizer(lowercase ) self.assertEqual(out_s.input_ids[0] , lowercase ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) _lowerCamelCase : Any = tokenizer.decode(out_s.input_ids ) _lowerCamelCase : str = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , lowercase ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def A_ ( self ): _lowerCamelCase : Optional[Any] = CodeGenTokenizer.from_pretrained('Salesforce/codegen-350M-mono' ) _lowerCamelCase : Optional[int] = '\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#' _lowerCamelCase : str = '\nif len_a > len_b: result = a\nelse: result = b' _lowerCamelCase : Optional[Any] = tokenizer.encode(lowercase ) _lowerCamelCase : str = ['^#', re.escape('<|endoftext|>' ), '^\'\'\'', '^"""', '\n\n\n'] _lowerCamelCase : str = tokenizer.decode(lowercase , truncate_before_pattern=lowercase ) self.assertEqual(lowercase , lowercase ) def A_ ( self ): pass
96
"""simple docstring""" import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging lowercase__ = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCAmelCase__ ( lowercase ): '''simple docstring''' def __init__( self , lowercase , lowercase=768 ): super().__init__(lowercase ) _lowerCamelCase : Any = proj_size _lowerCamelCase : Dict = CLIPVisionModel(lowercase ) _lowerCamelCase : List[str] = PaintByExampleMapper(lowercase ) _lowerCamelCase : Optional[Any] = nn.LayerNorm(config.hidden_size ) _lowerCamelCase : int = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling _lowerCamelCase : str = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def A_ ( self , lowercase , lowercase=False ): _lowerCamelCase : Union[str, Any] = self.model(pixel_values=lowercase ) _lowerCamelCase : int = clip_output.pooler_output _lowerCamelCase : str = self.mapper(latent_states[:, None] ) _lowerCamelCase : List[Any] = self.final_layer_norm(lowercase ) _lowerCamelCase : Dict = self.proj_out(lowercase ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class lowerCAmelCase__ ( nn.Module ): '''simple docstring''' def __init__( self , lowercase ): super().__init__() _lowerCamelCase : Tuple = (config.num_hidden_layers + 1) // 5 _lowerCamelCase : int = config.hidden_size _lowerCamelCase : Optional[Any] = 1 _lowerCamelCase : str = nn.ModuleList( [ BasicTransformerBlock(lowercase , lowercase , lowercase , activation_fn='gelu' , attention_bias=lowercase ) for _ in range(lowercase ) ] ) def A_ ( self , lowercase ): for block in self.blocks: _lowerCamelCase : Tuple = block(lowercase ) return hidden_states
96
1
'''simple docstring''' import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 lowerCAmelCase_ = get_tests_dir("fixtures") class lowerCamelCase ( unittest.TestCase ): def _lowerCamelCase ( self ) -> List[str]: # A mock response for an HTTP head request to emulate server down snake_case = mock.Mock() snake_case = 500 snake_case = {} snake_case = HTTPError snake_case = {} # Download this model to make sure it's in the cache. snake_case = WavaVecaFeatureExtractor.from_pretrained('hf-internal-testing/tiny-random-wav2vec2' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request', return_value=lowercase_ ) as mock_head: snake_case = WavaVecaFeatureExtractor.from_pretrained('hf-internal-testing/tiny-random-wav2vec2' ) # This check we did call the fake head request mock_head.assert_called() def _lowerCamelCase ( self ) -> int: # This test is for deprecated behavior and can be removed in v5 snake_case = WavaVecaFeatureExtractor.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json' ) @is_staging_test class lowerCamelCase ( unittest.TestCase ): @classmethod def _lowerCamelCase ( cls ) -> Union[str, Any]: snake_case = TOKEN HfFolder.save_token(lowercase_ ) @classmethod def _lowerCamelCase ( cls ) -> Optional[int]: try: delete_repo(token=cls._token, repo_id='test-feature-extractor' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='valid_org/test-feature-extractor-org' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='test-dynamic-feature-extractor' ) except HTTPError: pass def _lowerCamelCase ( self ) -> Dict: snake_case = WavaVecaFeatureExtractor.from_pretrained(lowercase_ ) feature_extractor.push_to_hub('test-feature-extractor', use_auth_token=self._token ) snake_case = WavaVecaFeatureExtractor.from_pretrained(F'''{USER}/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowercase_, getattr(lowercase_, lowercase_ ) ) # Reset repo delete_repo(token=self._token, repo_id='test-feature-extractor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( lowercase_, repo_id='test-feature-extractor', push_to_hub=lowercase_, use_auth_token=self._token ) snake_case = WavaVecaFeatureExtractor.from_pretrained(F'''{USER}/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowercase_, getattr(lowercase_, lowercase_ ) ) def _lowerCamelCase ( self ) -> Tuple: snake_case = WavaVecaFeatureExtractor.from_pretrained(lowercase_ ) feature_extractor.push_to_hub('valid_org/test-feature-extractor', use_auth_token=self._token ) snake_case = WavaVecaFeatureExtractor.from_pretrained('valid_org/test-feature-extractor' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowercase_, getattr(lowercase_, lowercase_ ) ) # Reset repo delete_repo(token=self._token, repo_id='valid_org/test-feature-extractor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( lowercase_, repo_id='valid_org/test-feature-extractor-org', push_to_hub=lowercase_, use_auth_token=self._token ) snake_case = WavaVecaFeatureExtractor.from_pretrained('valid_org/test-feature-extractor-org' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowercase_, getattr(lowercase_, lowercase_ ) ) def _lowerCamelCase ( self ) -> Any: CustomFeatureExtractor.register_for_auto_class() snake_case = CustomFeatureExtractor.from_pretrained(lowercase_ ) feature_extractor.push_to_hub('test-dynamic-feature-extractor', use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map, {'AutoFeatureExtractor': 'custom_feature_extraction.CustomFeatureExtractor'}, ) snake_case = AutoFeatureExtractor.from_pretrained( F'''{USER}/test-dynamic-feature-extractor''', trust_remote_code=lowercase_ ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__, 'CustomFeatureExtractor' )
332
'''simple docstring''' import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor lowerCAmelCase_ = logging.get_logger(__name__) class lowerCamelCase ( __lowerCAmelCase ): def __init__( self, *lowercase_, **lowercase_ ) -> None: warnings.warn( 'The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use DPTImageProcessor instead.', lowercase_, ) super().__init__(*lowercase_, **lowercase_ )
332
1
import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate _UpperCAmelCase : str = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("", "|", "|"), datarow=DataRow("", "|", "|"), padding=1, with_header_hide=None, ) _UpperCAmelCase : Dict = [] _UpperCAmelCase : Optional[int] = [] _UpperCAmelCase : Tuple = {"type": "section", "text": {"type": "plain_text", "text": "No failed tests! 🤗", "emoji": True}} _UpperCAmelCase : Optional[int] = [ { "type": "header", "text": { "type": "plain_text", "text": f'''🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results''', "emoji": True, }, } ] _UpperCAmelCase : List[str] = 0 for log in Path().glob("*.log"): _UpperCAmelCase : List[Any] = 0 with open(log, "r") as f: for line in f: _UpperCAmelCase : int = json.loads(line) if line.get("nodeid", "") != "": _UpperCAmelCase : Any = line["nodeid"] if line.get("duration", None) is not None: _UpperCAmelCase : Union[str, Any] = f'''{line["duration"]:.4f}''' if line.get("outcome", "") == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split("_")[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) _UpperCAmelCase : Optional[Any] = [] log.unlink() _UpperCAmelCase : Tuple = "" _UpperCAmelCase : List[Any] = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += f"*{name[1:]}: {num_failed} failed test*\n" else: message += f"*{name[1:]}: {num_failed} failed tests*\n" _UpperCAmelCase : Any = [] _UpperCAmelCase : str = {} for test in failed_tests: _UpperCAmelCase : str = test[0].split("::") _UpperCAmelCase : Optional[Any] = data[0].split("/")[-1] if data[0] not in filesafailed: _UpperCAmelCase : Tuple = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) _UpperCAmelCase : Optional[int] = [test[0] for test in failed_table] _UpperCAmelCase : str = list(set(files)) # Count number of instances in failed_tests _UpperCAmelCase : Optional[Any] = [] for file in individual_files: table.append([file, len(filesafailed[file])]) _UpperCAmelCase : Tuple = tabulate( table, headers=["Test Location", "Num Failed"], tablefmt=hf_table_format, stralign="right", ) message += f"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3000: _UpperCAmelCase : int = "Too many failed tests, please see the full report in the Action results." _UpperCAmelCase : str = len(err) + 10 _UpperCAmelCase : Union[str, Any] = message[: 3000 - offset] + f'''\n...\n```\n{err}''' print(f'''### {message}''') else: _UpperCAmelCase : Optional[int] = "No failed tests! 🤗" print(f'''## {message}''') payload.append(no_error_payload) if os.environ.get("TEST_TYPE", "") != "": from slack_sdk import WebClient _UpperCAmelCase : str = WebClient(token=os.environ["SLACK_API_TOKEN"]) if message != "No failed tests! 🤗": _UpperCAmelCase : Any = { "type": "section", "text": { "type": "mrkdwn", "text": message, }, } payload.append(md_report) _UpperCAmelCase : int = { "type": "section", "text": { "type": "mrkdwn", "text": "*For more details:*", }, "accessory": { "type": "button", "text": { "type": "plain_text", "text": "Check Action results", "emoji": True, }, "url": f'''https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } payload.append(action_button) _UpperCAmelCase : Any = { "type": "context", "elements": [ { "type": "plain_text", "text": f'''Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}''', } ], } payload.append(date_report) _UpperCAmelCase : List[str] = client.chat_postMessage(channel="#accelerate-ci-daily", text=message, blocks=payload) _UpperCAmelCase : Optional[Any] = response.data["ts"] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name _UpperCAmelCase : str = "" for i, row in enumerate(test_failures): if row[0] != test_class: _UpperCAmelCase : int = row[0] else: _UpperCAmelCase : Optional[Any] = "" _UpperCAmelCase : Any = { "type": "section", "text": { "type": "mrkdwn", "text": f'''Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```''', }, } client.chat_postMessage( channel="#accelerate-ci-daily", thread_ts=ts, blocks=[payload], )
236
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _UpperCAmelCase : List[str] = { "configuration_blenderbot": [ "BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotConfig", "BlenderbotOnnxConfig", ], "tokenization_blenderbot": ["BlenderbotTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Optional[int] = ["BlenderbotTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : int = [ "BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotForCausalLM", "BlenderbotForConditionalGeneration", "BlenderbotModel", "BlenderbotPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Any = [ "TFBlenderbotForConditionalGeneration", "TFBlenderbotModel", "TFBlenderbotPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Optional[int] = [ "FlaxBlenderbotForConditionalGeneration", "FlaxBlenderbotModel", "FlaxBlenderbotPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys _UpperCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
236
1
"""simple docstring""" from copy import deepcopy class UpperCamelCase : def __init__( self : int , UpperCAmelCase__ : list[int] | None = None , UpperCAmelCase__ : int | None = None ) -> None: if arr is None and size is not None: _a : Dict = size _a : Tuple = [0] * size elif arr is not None: self.init(UpperCAmelCase__ ) else: raise ValueError("""Either arr or size must be specified""" ) def _lowercase ( self : Tuple , UpperCAmelCase__ : list[int] ) -> None: _a : Optional[int] = len(UpperCAmelCase__ ) _a : int = deepcopy(UpperCAmelCase__ ) for i in range(1 , self.size ): _a : str = self.next_(UpperCAmelCase__ ) if j < self.size: self.tree[j] += self.tree[i] def _lowercase ( self : Optional[Any] ) -> list[int]: _a : int = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): _a : Optional[int] = self.next_(UpperCAmelCase__ ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def _lowercase ( UpperCAmelCase__ : int ) -> int: return index + (index & (-index)) @staticmethod def _lowercase ( UpperCAmelCase__ : int ) -> int: return index - (index & (-index)) def _lowercase ( self : Tuple , UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> None: if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value _a : List[str] = self.next_(UpperCAmelCase__ ) def _lowercase ( self : Any , UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> None: self.add(UpperCAmelCase__ , value - self.get(UpperCAmelCase__ ) ) def _lowercase ( self : List[Any] , UpperCAmelCase__ : int ) -> int: if right == 0: return 0 _a : int = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] _a : Union[str, Any] = self.prev(UpperCAmelCase__ ) return result def _lowercase ( self : Union[str, Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> int: return self.prefix(UpperCAmelCase__ ) - self.prefix(UpperCAmelCase__ ) def _lowercase ( self : int , UpperCAmelCase__ : int ) -> int: return self.query(UpperCAmelCase__ , index + 1 ) def _lowercase ( self : Tuple , UpperCAmelCase__ : int ) -> int: value -= self.tree[0] if value < 0: return -1 _a : Any = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 _a : str = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
362
"""simple docstring""" import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home _snake_case = HUGGINGFACE_HUB_CACHE _snake_case = 'config.json' _snake_case = 'diffusion_pytorch_model.bin' _snake_case = 'diffusion_flax_model.msgpack' _snake_case = 'model.onnx' _snake_case = 'diffusion_pytorch_model.safetensors' _snake_case = 'weights.pb' _snake_case = 'https://huggingface.co' _snake_case = default_cache_path _snake_case = 'diffusers_modules' _snake_case = os.getenv('HF_MODULES_CACHE', os.path.join(hf_cache_home, 'modules')) _snake_case = ['fp16', 'non-ema'] _snake_case = '.self_attn'
324
0
"""simple docstring""" from ...utils import logging from ..ta.modeling_tf_ta import TFTaEncoderModel, TFTaForConditionalGeneration, TFTaModel from .configuration_mta import MTaConfig lowercase__ : List[str] = logging.get_logger(__name__) lowercase__ : Union[str, Any] = '''T5Config''' class _UpperCAmelCase ( lowerCAmelCase__): _lowerCAmelCase : Tuple = """mt5""" _lowerCAmelCase : Tuple = MTaConfig class _UpperCAmelCase ( lowerCAmelCase__): _lowerCAmelCase : Optional[int] = """mt5""" _lowerCAmelCase : Any = MTaConfig class _UpperCAmelCase ( lowerCAmelCase__): _lowerCAmelCase : Union[str, Any] = """mt5""" _lowerCAmelCase : List[str] = MTaConfig
264
"""simple docstring""" import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() lowercase__ : Dict = [ '''word_embeddings_layernorm.weight''', '''word_embeddings_layernorm.bias''', '''input_layernorm.weight''', '''input_layernorm.bias''', '''post_attention_layernorm.weight''', '''post_attention_layernorm.bias''', '''self_attention.dense.bias''', '''mlp.dense_4h_to_h.bias''', '''ln_f.weight''', '''ln_f.bias''', ] lowercase__ : str = [ '''mlp.dense_4h_to_h.weight''', '''self_attention.dense.weight''', ] def __lowercase ( _a , _a ): snake_case_ : Optional[int] = { '''word_embeddings.weight''': '''word_embeddings.weight''', '''word_embeddings.norm.weight''': '''word_embeddings_layernorm.weight''', '''word_embeddings.norm.bias''': '''word_embeddings_layernorm.bias''', '''weight''': '''ln_f.weight''', '''bias''': '''ln_f.bias''', } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks snake_case_ : List[Any] = int(re.match(r'''.*layer_(\d*).*''' , _a )[1] ) layer_number -= 3 return f"h.{layer_number}." + key def __lowercase ( _a ): if dtype == torch.bool: return 1 / 8 snake_case_ : Dict = re.search(r'''[^\d](\d+)$''' , str(_a ) ) if bit_search is None: raise ValueError(f"`dtype` is not a valid dtype: {dtype}." ) snake_case_ : Optional[int] = int(bit_search.groups()[0] ) return bit_size // 8 def __lowercase ( _a , _a , _a , _a , _a ): # Construct model if bloom_config_file == "": snake_case_ : int = BloomConfig() else: snake_case_ : List[str] = BloomConfig.from_json_file(_a ) if shard_model: snake_case_ : List[str] = os.listdir(_a ) snake_case_ : int = sorted(filter(lambda _a : s.startswith('''layer''' ) and "model_00" in s , _a ) ) snake_case_ : List[str] = {'''weight_map''': {}, '''metadata''': {}} snake_case_ : Any = 0 snake_case_ : Union[str, Any] = None snake_case_ : List[str] = BloomConfig() for j, file in enumerate(_a ): print('''Processing file: {}'''.format(_a ) ) snake_case_ : Dict = None for i in range(_a ): # load all TP files snake_case_ : Union[str, Any] = file.replace('''model_00''' , f"model_0{i}" ) snake_case_ : List[str] = torch.load(os.path.join(_a , _a ) , map_location='''cpu''' ) # Rename keys in the transformers names snake_case_ : str = list(temp.keys() ) for key in keys: snake_case_ : Any = temp.pop(_a ) if tensors is None: snake_case_ : Any = temp else: for key in tensors.keys(): if any(key.endswith(_a ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel snake_case_ : Tuple = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks snake_case_ : List[str] = torch.cat([tensors[key], temp[key]] , dim=_a ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(_a ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): snake_case_ : Any = tensors[key] / pretraining_tp torch.save( _a , os.path.join( _a , '''pytorch_model_{}-of-{}.bin'''.format(str(j + 1 ).zfill(5 ) , str(len(_a ) ).zfill(5 ) ) , ) , ) for key in tensors.keys(): snake_case_ : List[str] = tensors[key] total_size += value.numel() * get_dtype_size(value.dtype ) if key not in index_dict["weight_map"]: snake_case_ : List[str] = '''pytorch_model_{}-of-{}.bin'''.format( str(j + 1 ).zfill(5 ) , str(len(_a ) ).zfill(5 ) ) snake_case_ : int = BloomConfig() snake_case_ : Any = pytorch_dump_folder_path + '''/''' + CONFIG_NAME snake_case_ : Dict = total_size with open(_a , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) with open(os.path.join(_a , WEIGHTS_NAME + '''.index.json''' ) , '''w''' , encoding='''utf-8''' ) as f: snake_case_ : Tuple = json.dumps(_a , indent=2 , sort_keys=_a ) + '''\n''' f.write(_a ) else: snake_case_ : Union[str, Any] = BloomModel(_a ) snake_case_ : List[str] = os.listdir(_a ) snake_case_ : Dict = sorted(filter(lambda _a : s.startswith('''layer''' ) and "model_00" in s , _a ) ) snake_case_ : List[Any] = None for i, file in enumerate(_a ): snake_case_ : Optional[Any] = None for i in range(_a ): # load all TP files snake_case_ : List[str] = file.replace('''model_00''' , f"model_0{i}" ) snake_case_ : Optional[Any] = torch.load(os.path.join(_a , _a ) , map_location='''cpu''' ) # Rename keys in the transformers names snake_case_ : str = list(temp.keys() ) for key in keys: snake_case_ : str = temp.pop(_a ) if tensors is None: snake_case_ : int = temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(_a ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel snake_case_ : Tuple = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks snake_case_ : Optional[Any] = torch.cat([tensors[key], temp[key]] , dim=_a ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(_a ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): snake_case_ : Union[str, Any] = tensors[key] / pretraining_tp snake_case_ : Any = model.load_state_dict(_a , strict=_a ) assert not other_keys.unexpected_keys, f"The keys {other_keys.unexpected_keys} are unexpected" if missing_keys is None: snake_case_ : Optional[int] = set(other_keys.missing_keys ) else: snake_case_ : Tuple = missing_keys.intersection(set(other_keys.missing_keys ) ) assert not missing_keys, f"The keys {missing_keys} are missing" # Save pytorch-model os.makedirs(_a , exist_ok=_a ) snake_case_ : List[str] = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME snake_case_ : Optional[Any] = pytorch_dump_folder_path + '''/''' + CONFIG_NAME print(f"Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}" ) if config.torch_dtype is not None: snake_case_ : Optional[Any] = model.to(config.torch_dtype ) torch.save(model.state_dict() , _a ) print(f"Save configuration file to {pytorch_config_dump_path}" ) with open(_a , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowercase__ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--bloom_checkpoint_path''', default=None, type=str, required=True, help='''Path to the Megatron-LM checkpoint path.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--bloom_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--shard_model''', action='''store_true''', help='''An optional setting to shard the output model \nThis enables sharding the converted checkpoint''', ) parser.add_argument( '''--pretraining_tp''', default=4, type=int, help='''Pretraining TP rank that has been used when training the model in Megatron-LM \n''', ) lowercase__ : List[Any] = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
264
1
'''simple docstring''' import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class snake_case__ ( unittest.TestCase ): def __init__( self : Union[str, Any] , __a : Any , __a : int=13 , __a : Dict=7 , __a : Union[str, Any]=True , __a : Optional[Any]=True , __a : List[Any]=True , __a : Tuple=True , __a : Union[str, Any]=99 , __a : Dict=32 , __a : Dict=5 , __a : str=4 , __a : Optional[int]=37 , __a : str="gelu" , __a : Any=0.1 , __a : Optional[int]=0.1 , __a : List[Any]=512 , __a : Any=16 , __a : Optional[int]=2 , __a : str=0.0_2 , __a : Union[str, Any]=4 , ) -> List[str]: '''simple docstring''' __snake_case : List[Any] = parent __snake_case : Optional[int] = batch_size __snake_case : List[Any] = seq_length __snake_case : int = is_training __snake_case : int = use_attention_mask __snake_case : List[Any] = use_token_type_ids __snake_case : Tuple = use_labels __snake_case : Dict = vocab_size __snake_case : Tuple = hidden_size __snake_case : List[str] = num_hidden_layers __snake_case : int = num_attention_heads __snake_case : Union[str, Any] = intermediate_size __snake_case : str = hidden_act __snake_case : Optional[int] = hidden_dropout_prob __snake_case : Optional[int] = attention_probs_dropout_prob __snake_case : List[Any] = max_position_embeddings __snake_case : Union[str, Any] = type_vocab_size __snake_case : str = type_sequence_label_size __snake_case : Tuple = initializer_range __snake_case : Optional[Any] = num_choices def A_ ( self : Dict ) -> Optional[Any]: '''simple docstring''' __snake_case : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : Optional[int] = None if self.use_attention_mask: __snake_case : Dict = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case : Optional[int] = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=__a , ) return config, input_ids, attention_mask def A_ ( self : Any ) -> Tuple: '''simple docstring''' __snake_case : Tuple = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case : Optional[int] = config_and_inputs __snake_case : List[str] = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class snake_case__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): A__ = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def A_ ( self : Dict ) -> List[Any]: '''simple docstring''' __snake_case : Optional[int] = FlaxDistilBertModelTester(self ) @slow def A_ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' for model_class_name in self.all_model_classes: __snake_case : Optional[int] = model_class_name.from_pretrained('distilbert-base-uncased' ) __snake_case : List[Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(__a ) @require_flax class snake_case__ ( unittest.TestCase ): @slow def A_ ( self : Any ) -> Dict: '''simple docstring''' __snake_case : Optional[int] = FlaxDistilBertModel.from_pretrained('distilbert-base-uncased' ) __snake_case : Tuple = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) __snake_case : Tuple = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) __snake_case : str = model(__a , attention_mask=__a )[0] __snake_case : List[str] = (1, 11, 768) self.assertEqual(output.shape , __a ) __snake_case : Dict = np.array([[[-0.1_6_3_9, 0.3_2_9_9, 0.1_6_4_8], [-0.1_7_4_6, 0.3_2_8_9, 0.1_7_1_0], [-0.1_8_8_4, 0.3_3_5_7, 0.1_8_1_0]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , __a , atol=1e-4 ) )
0
'''simple docstring''' def a_ ( _UpperCAmelCase : int ) -> list: # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError('The given input must be positive' ) # get the generated string sequence __snake_case : Optional[Any] = gray_code_sequence_string(_UpperCAmelCase ) # # convert them to integers for i in range(len(_UpperCAmelCase ) ): __snake_case : Optional[Any] = int(sequence[i] ,2 ) return sequence def a_ ( _UpperCAmelCase : int ) -> list: # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] __snake_case : Dict = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits __snake_case : Dict = gray_code_sequence_string(bit_count - 1 ) __snake_case : Any = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): __snake_case : str = '0' + smaller_sequence[i] sequence.append(_UpperCAmelCase ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): __snake_case : Any = '1' + smaller_sequence[i] sequence.append(_UpperCAmelCase ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
0
1
"""simple docstring""" from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) def _A (__a , __a ) -> Any: """simple docstring""" try: with open(SCREAMING_SNAKE_CASE__ , '''rb''' ) as flax_state_f: SCREAMING_SNAKE_CASE_ : str = from_bytes(SCREAMING_SNAKE_CASE__ , flax_state_f.read() ) except UnpicklingError as e: try: with open(SCREAMING_SNAKE_CASE__ ) as f: if f.read().startswith('''version''' ): raise OSError( '''You seem to have cloned a repository without having git-lfs installed. Please''' ''' install git-lfs and run `git lfs install` followed by `git lfs pull` in the''' ''' folder you cloned.''' ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(f'Unable to convert {model_file} to Flax deserializable object. ' ) return load_flax_weights_in_pytorch_model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _A (__a , __a ) -> Optional[int]: """simple docstring""" try: import torch # noqa: F401 except ImportError: logger.error( '''Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise # check if we have bf16 weights SCREAMING_SNAKE_CASE_ : Union[str, Any] = flatten_dict(jax.tree_util.tree_map(lambda __a : x.dtype == jnp.bfloataa , SCREAMING_SNAKE_CASE__ ) ).values() if any(SCREAMING_SNAKE_CASE__ ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( '''Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ''' '''before loading those in PyTorch model.''' ) SCREAMING_SNAKE_CASE_ : Tuple = jax.tree_util.tree_map( lambda __a : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE_ : int = '''''' SCREAMING_SNAKE_CASE_ : List[str] = flatten_dict(SCREAMING_SNAKE_CASE__ , sep='''.''' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = pt_model.state_dict() # keep track of unexpected & missing keys SCREAMING_SNAKE_CASE_ : Any = [] SCREAMING_SNAKE_CASE_ : int = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): SCREAMING_SNAKE_CASE_ : List[Any] = flax_key_tuple.split('''.''' ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: SCREAMING_SNAKE_CASE_ : Optional[Any] = flax_key_tuple_array[:-1] + ['''weight'''] SCREAMING_SNAKE_CASE_ : Any = jnp.transpose(SCREAMING_SNAKE_CASE__ , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": SCREAMING_SNAKE_CASE_ : Dict = flax_key_tuple_array[:-1] + ['''weight'''] SCREAMING_SNAKE_CASE_ : str = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": SCREAMING_SNAKE_CASE_ : Optional[Any] = flax_key_tuple_array[:-1] + ['''weight'''] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE_ : List[Any] = ( flax_key_tuple_string.replace('''_0''' , '''.0''' ) .replace('''_1''' , '''.1''' ) .replace('''_2''' , '''.2''' ) .replace('''_3''' , '''.3''' ) .replace('''_4''' , '''.4''' ) .replace('''_5''' , '''.5''' ) .replace('''_6''' , '''.6''' ) .replace('''_7''' , '''.7''' ) .replace('''_8''' , '''.8''' ) .replace('''_9''' , '''.9''' ) ) SCREAMING_SNAKE_CASE_ : Any = '''.'''.join(SCREAMING_SNAKE_CASE__ ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f'Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ' f'to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) else: # add weight to pytorch dict SCREAMING_SNAKE_CASE_ : Dict = np.asarray(SCREAMING_SNAKE_CASE__ ) if not isinstance(SCREAMING_SNAKE_CASE__ , np.ndarray ) else flax_tensor SCREAMING_SNAKE_CASE_ : Dict = torch.from_numpy(SCREAMING_SNAKE_CASE__ ) # remove from missing keys missing_keys.remove(SCREAMING_SNAKE_CASE__ ) else: # weight is not expected by PyTorch model unexpected_keys.append(SCREAMING_SNAKE_CASE__ ) pt_model.load_state_dict(SCREAMING_SNAKE_CASE__ ) # re-transform missing_keys to list SCREAMING_SNAKE_CASE_ : List[Any] = list(SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) > 0: logger.warning( '''Some weights of the Flax model were not used when initializing the PyTorch model''' f' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing' f' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture' ''' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This''' f' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect' ''' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a''' ''' FlaxBertForSequenceClassification model).''' ) if len(SCREAMING_SNAKE_CASE__ ) > 0: logger.warning( f'Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly' f' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to' ''' use it for predictions and inference.''' ) return pt_model
91
def _A ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ): UpperCamelCase :Any = len(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :str = len(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :int = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] UpperCamelCase :List[str] = True for i in range(SCREAMING_SNAKE_CASE__ ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: UpperCamelCase :List[Any] = True if a[i].islower(): UpperCamelCase :List[Any] = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
259
0
def UpperCAmelCase ( a_ , a_ ) -> List[Any]: """simple docstring""" print("\nThe shortest path matrix using Floyd Warshall algorithm\n" ) for i in range(a_ ): for j in range(a_ ): if dist[i][j] != float("inf" ): print(int(dist[i][j] ) , end="\t" ) else: print("INF" , end="\t" ) print() def UpperCAmelCase ( a_ , a_ ) -> int: """simple docstring""" __A = [[float("inf" ) for _ in range(a_ )] for _ in range(a_ )] for i in range(a_ ): for j in range(a_ ): __A = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(a_ ): # looping through rows of graph array for i in range(a_ ): # looping through columns of graph array for j in range(a_ ): if ( dist[i][k] != float("inf" ) and dist[k][j] != float("inf" ) and dist[i][k] + dist[k][j] < dist[i][j] ): __A = dist[i][k] + dist[k][j] _print_dist(a_ , a_ ) return dist, v if __name__ == "__main__": SCREAMING_SNAKE_CASE :Any = int(input('Enter number of vertices: ')) SCREAMING_SNAKE_CASE :str = int(input('Enter number of edges: ')) SCREAMING_SNAKE_CASE :Tuple = [[float('inf') for i in range(v)] for j in range(v)] for i in range(v): SCREAMING_SNAKE_CASE :str = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print('\nEdge ', i + 1) SCREAMING_SNAKE_CASE :Any = int(input('Enter source:')) SCREAMING_SNAKE_CASE :str = int(input('Enter destination:')) SCREAMING_SNAKE_CASE :int = float(input('Enter weight:')) SCREAMING_SNAKE_CASE :int = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
124
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = "facebook/bart-large-mnli" snake_case_ = ( "This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which " "should be the text to classify, and `labels`, which should be the list of labels to use for classification. " "It returns the most likely label in the list of provided `labels` for the input text." ) snake_case_ = "text_classifier" snake_case_ = AutoTokenizer snake_case_ = AutoModelForSequenceClassification snake_case_ = ["text", ["text"]] snake_case_ = ["text"] def UpperCamelCase_ ( self : str ): super().setup() __A = self.model.config __A = -1 for idx, label in config.idalabel.items(): if label.lower().startswith("entail" ): __A = int(A ) if self.entailment_id == -1: raise ValueError("Could not determine the entailment ID from the model config, please pass it at init." ) def UpperCamelCase_ ( self : int ,A : Optional[Any] ,A : Dict ): __A = labels return self.pre_processor( [text] * len(A ) ,[f'''This example is {label}''' for label in labels] ,return_tensors="pt" ,padding="max_length" ,) def UpperCamelCase_ ( self : Union[str, Any] ,A : Tuple ): __A = outputs.logits __A = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
124
1
import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch SCREAMING_SNAKE_CASE__ = """sshleifer/bart-tiny-random""" SCREAMING_SNAKE_CASE__ = """patrickvonplaten/t5-tiny-random""" @require_torch class A__ ( unittest.TestCase ): @cached_property def a__ ( self : Any ) -> Optional[int]: """simple docstring""" return AutoConfig.from_pretrained(lowerCamelCase__ ) def a__ ( self : Dict ) -> Dict: """simple docstring""" __lowercase = create_student_by_copying_alternating_layers(lowerCamelCase__ , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.num_hidden_layers , 1 ) def a__ ( self : Any ) -> Dict: """simple docstring""" __lowercase = create_student_by_copying_alternating_layers(lowerCamelCase__ , tempfile.mkdtemp() , e=1 , d=lowerCamelCase__ ) def a__ ( self : str ) -> Union[str, Any]: """simple docstring""" __lowercase = create_student_by_copying_alternating_layers(lowerCamelCase__ , tempfile.mkdtemp() , e=1 , d=lowerCamelCase__ ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers ) def a__ ( self : str ) -> Optional[int]: """simple docstring""" __lowercase = create_student_by_copying_alternating_layers(lowerCamelCase__ , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , 1 ) def a__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" with self.assertRaises(lowerCamelCase__ ): create_student_by_copying_alternating_layers(lowerCamelCase__ , tempfile.mkdtemp() , e=lowerCamelCase__ , d=lowerCamelCase__ )
325
'''simple docstring''' import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( 'The `image_to_image.py` script is outdated. Please use directly `from diffusers import' ' StableDiffusionImg2ImgPipeline` instead.' )
234
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() __lowercase = logging.get_logger(__name__) def lowerCAmelCase (__UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any]=False ): """simple docstring""" __UpperCamelCase =[] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''vit.embeddings.cls_token'''), ('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" __UpperCamelCase =[(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def lowerCAmelCase (__UpperCamelCase : int , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any]=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: __UpperCamelCase ='''''' else: __UpperCamelCase ='''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __UpperCamelCase =state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) __UpperCamelCase =state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict __UpperCamelCase =in_proj_weight[ : config.hidden_size, : ] __UpperCamelCase =in_proj_bias[: config.hidden_size] __UpperCamelCase =in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __UpperCamelCase =in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __UpperCamelCase =in_proj_weight[ -config.hidden_size :, : ] __UpperCamelCase =in_proj_bias[-config.hidden_size :] def lowerCAmelCase (__UpperCamelCase : Tuple ): """simple docstring""" __UpperCamelCase =['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__UpperCamelCase , __UpperCamelCase ) def lowerCAmelCase (__UpperCamelCase : Dict , __UpperCamelCase : str , __UpperCamelCase : str ): """simple docstring""" __UpperCamelCase =dct.pop(__UpperCamelCase ) __UpperCamelCase =val def lowerCAmelCase (): """simple docstring""" __UpperCamelCase ='''http://images.cocodataset.org/val2017/000000039769.jpg''' __UpperCamelCase =Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ) return im @torch.no_grad() def lowerCAmelCase (__UpperCamelCase : Dict , __UpperCamelCase : int , __UpperCamelCase : Dict=True ): """simple docstring""" __UpperCamelCase =ViTConfig() # patch_size if model_name[-1] == "8": __UpperCamelCase =8 # set labels if required if not base_model: __UpperCamelCase =1_0_0_0 __UpperCamelCase ='''huggingface/label-files''' __UpperCamelCase ='''imagenet-1k-id2label.json''' __UpperCamelCase =json.load(open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type='''dataset''' ) , '''r''' ) ) __UpperCamelCase ={int(__UpperCamelCase ): v for k, v in idalabel.items()} __UpperCamelCase =idalabel __UpperCamelCase ={v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: __UpperCamelCase =3_8_4 __UpperCamelCase =1_5_3_6 __UpperCamelCase =1_2 __UpperCamelCase =6 # load original model from torch hub __UpperCamelCase =torch.hub.load('''facebookresearch/dino:main''' , __UpperCamelCase ) original_model.eval() # load state_dict of original model, remove and rename some keys __UpperCamelCase =original_model.state_dict() if base_model: remove_classification_head_(__UpperCamelCase ) __UpperCamelCase =create_rename_keys(__UpperCamelCase , base_model=__UpperCamelCase ) for src, dest in rename_keys: rename_key(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) read_in_q_k_v(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # load HuggingFace model if base_model: __UpperCamelCase =ViTModel(__UpperCamelCase , add_pooling_layer=__UpperCamelCase ).eval() else: __UpperCamelCase =ViTForImageClassification(__UpperCamelCase ).eval() model.load_state_dict(__UpperCamelCase ) # Check outputs on an image, prepared by ViTImageProcessor __UpperCamelCase =ViTImageProcessor() __UpperCamelCase =image_processor(images=prepare_img() , return_tensors='''pt''' ) __UpperCamelCase =encoding['''pixel_values'''] __UpperCamelCase =model(__UpperCamelCase ) if base_model: __UpperCamelCase =original_model(__UpperCamelCase ) assert torch.allclose(__UpperCamelCase , outputs.last_hidden_state[:, 0, :] , atol=1E-1 ) else: __UpperCamelCase =original_model(__UpperCamelCase ) assert logits.shape == outputs.logits.shape assert torch.allclose(__UpperCamelCase , outputs.logits , atol=1E-3 ) Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__UpperCamelCase ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": __lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''dino_vitb16''', type=str, help='''Name of the model trained with DINO you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--base_model''', action='''store_true''', help='''Whether to only convert the base model (no projection head weights).''', ) parser.set_defaults(base_model=True) __lowercase = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
85
"""simple docstring""" def lowerCAmelCase (__UpperCamelCase : int = 1_0_0_0 ): """simple docstring""" __UpperCamelCase =-1 __UpperCamelCase =0 for a in range(1 , n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c __UpperCamelCase =(n * n - 2 * a * n) // (2 * n - 2 * a) __UpperCamelCase =n - a - b if c * c == (a * a + b * b): __UpperCamelCase =a * b * c if candidate >= product: __UpperCamelCase =candidate return product if __name__ == "__main__": print(f'''{solution() = }''')
85
1
import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) __UpperCAmelCase = logging.getLogger(__name__) @dataclass(frozen=_snake_case ) class lowerCamelCase : '''simple docstring''' _snake_case : str _snake_case : str _snake_case : Optional[str] = None _snake_case : Optional[str] = None _snake_case : Optional[str] = None @dataclass(frozen=_snake_case ) class lowerCamelCase : '''simple docstring''' _snake_case : List[int] _snake_case : Optional[List[int]] = None _snake_case : Optional[List[int]] = None _snake_case : Optional[Union[int, float]] = None _snake_case : Optional[int] = None if is_torch_available(): import torch from torch.utils.data import Dataset class lowerCamelCase (_snake_case ): '''simple docstring''' _snake_case : List[InputFeatures] def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase=False , _UpperCamelCase = False , ) -> Tuple: UpperCAmelCase_ : List[Any] = hans_processors[task]() UpperCAmelCase_ : Tuple = os.path.join( _UpperCamelCase , 'cached_{}_{}_{}_{}'.format( 'dev' if evaluate else 'train' , tokenizer.__class__.__name__ , str(_UpperCamelCase ) , _UpperCamelCase , ) , ) UpperCAmelCase_ : Optional[Any] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = label_list[2], label_list[1] UpperCAmelCase_ : str = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. UpperCAmelCase_ : Any = cached_features_file + '.lock' with FileLock(_UpperCamelCase ): if os.path.exists(_UpperCamelCase ) and not overwrite_cache: logger.info(f"Loading features from cached file {cached_features_file}" ) UpperCAmelCase_ : Union[str, Any] = torch.load(_UpperCamelCase ) else: logger.info(f"Creating features from dataset file at {data_dir}" ) UpperCAmelCase_ : List[Any] = ( processor.get_dev_examples(_UpperCamelCase ) if evaluate else processor.get_train_examples(_UpperCamelCase ) ) logger.info('Training examples: %s' , len(_UpperCamelCase ) ) UpperCAmelCase_ : Any = hans_convert_examples_to_features(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) logger.info('Saving features into cached file %s' , _UpperCamelCase ) torch.save(self.features , _UpperCamelCase ) def __len__( self ) -> int: return len(self.features ) def __getitem__( self , _UpperCamelCase ) -> InputFeatures: return self.features[i] def __UpperCAmelCase ( self ) -> Optional[Any]: return self.label_list if is_tf_available(): import tensorflow as tf class lowerCamelCase : '''simple docstring''' _snake_case : List[InputFeatures] def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 1_2_8 , _UpperCamelCase=False , _UpperCamelCase = False , ) -> Optional[int]: UpperCAmelCase_ : Dict = hans_processors[task]() UpperCAmelCase_ : Dict = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = label_list[2], label_list[1] UpperCAmelCase_ : str = label_list UpperCAmelCase_ : List[str] = processor.get_dev_examples(_UpperCamelCase ) if evaluate else processor.get_train_examples(_UpperCamelCase ) UpperCAmelCase_ : Union[str, Any] = hans_convert_examples_to_features(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='convert examples to features' ): if ex_index % 1_0_0_0_0 == 0: logger.info('Writing example %d of %d' % (ex_index, len(_UpperCamelCase )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) UpperCAmelCase_ : Tuple = tf.data.Dataset.from_generator( _UpperCamelCase , ( { 'example_id': tf.intaa, 'input_ids': tf.intaa, 'attention_mask': tf.intaa, 'token_type_ids': tf.intaa, }, tf.intaa, ) , ( { 'example_id': tf.TensorShape([] ), 'input_ids': tf.TensorShape([None, None] ), 'attention_mask': tf.TensorShape([None, None] ), 'token_type_ids': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def __UpperCAmelCase ( self ) -> Optional[int]: return self.dataset def __len__( self ) -> int: return len(self.features ) def __getitem__( self , _UpperCamelCase ) -> InputFeatures: return self.features[i] def __UpperCAmelCase ( self ) -> List[str]: return self.label_list class lowerCamelCase (_snake_case ): '''simple docstring''' def __UpperCAmelCase ( self , _UpperCamelCase ) -> Optional[int]: return self._create_examples(self._read_tsv(os.path.join(_UpperCamelCase , 'heuristics_train_set.txt' ) ) , 'train' ) def __UpperCAmelCase ( self , _UpperCamelCase ) -> Any: return self._create_examples(self._read_tsv(os.path.join(_UpperCamelCase , 'heuristics_evaluation_set.txt' ) ) , 'dev' ) def __UpperCAmelCase ( self ) -> Tuple: return ["contradiction", "entailment", "neutral"] def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase ) -> Dict: UpperCAmelCase_ : List[str] = [] for i, line in enumerate(_UpperCamelCase ): if i == 0: continue UpperCAmelCase_ : Dict = '%s-%s' % (set_type, line[0]) UpperCAmelCase_ : Tuple = line[5] UpperCAmelCase_ : Tuple = line[6] UpperCAmelCase_ : Dict = line[7][2:] if line[7].startswith('ex' ) else line[7] UpperCAmelCase_ : Tuple = line[0] examples.append(InputExample(guid=_UpperCamelCase , text_a=_UpperCamelCase , text_b=_UpperCamelCase , label=_UpperCamelCase , pairID=_UpperCamelCase ) ) return examples def lowercase__ ( __snake_case : List[InputExample] , __snake_case : List[str] , __snake_case : int , __snake_case : PreTrainedTokenizer , ): '''simple docstring''' UpperCAmelCase_ : List[str] = {label: i for i, label in enumerate(__snake_case )} UpperCAmelCase_ : Optional[int] = [] for ex_index, example in tqdm.tqdm(enumerate(__snake_case ) , desc='convert examples to features' ): if ex_index % 10_000 == 0: logger.info('Writing example %d' % (ex_index) ) UpperCAmelCase_ : List[Any] = tokenizer( example.text_a , example.text_b , add_special_tokens=__snake_case , max_length=__snake_case , padding='max_length' , truncation=__snake_case , return_overflowing_tokens=__snake_case , ) UpperCAmelCase_ : str = label_map[example.label] if example.label in label_map else 0 UpperCAmelCase_ : List[str] = int(example.pairID ) features.append(InputFeatures(**__snake_case , label=__snake_case , pairID=__snake_case ) ) for i, example in enumerate(examples[:5] ): logger.info('*** Example ***' ) logger.info(F"guid: {example}" ) logger.info(F"features: {features[i]}" ) return features __UpperCAmelCase = { 'hans': 3, } __UpperCAmelCase = { 'hans': HansProcessor, }
29
from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class lowerCamelCase (_snake_case ): '''simple docstring''' _snake_case : "DiagonalGaussianDistribution" class lowerCamelCase (_snake_case , _snake_case ): '''simple docstring''' _snake_case : Optional[int] = True @register_to_config def __init__( self , _UpperCamelCase = 3 , _UpperCamelCase = 3 , _UpperCamelCase = ("DownEncoderBlock2D",) , _UpperCamelCase = ("UpDecoderBlock2D",) , _UpperCamelCase = (6_4,) , _UpperCamelCase = 1 , _UpperCamelCase = "silu" , _UpperCamelCase = 4 , _UpperCamelCase = 3_2 , _UpperCamelCase = 3_2 , _UpperCamelCase = 0.1_82_15 , ) -> List[Any]: super().__init__() # pass init params to Encoder UpperCAmelCase_ : List[str] = Encoder( in_channels=_UpperCamelCase , out_channels=_UpperCamelCase , down_block_types=_UpperCamelCase , block_out_channels=_UpperCamelCase , layers_per_block=_UpperCamelCase , act_fn=_UpperCamelCase , norm_num_groups=_UpperCamelCase , double_z=_UpperCamelCase , ) # pass init params to Decoder UpperCAmelCase_ : Dict = Decoder( in_channels=_UpperCamelCase , out_channels=_UpperCamelCase , up_block_types=_UpperCamelCase , block_out_channels=_UpperCamelCase , layers_per_block=_UpperCamelCase , norm_num_groups=_UpperCamelCase , act_fn=_UpperCamelCase , ) UpperCAmelCase_ : Any = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 ) UpperCAmelCase_ : List[Any] = nn.Convad(_UpperCamelCase , _UpperCamelCase , 1 ) UpperCAmelCase_ : Any = False UpperCAmelCase_ : int = False # only relevant if vae tiling is enabled UpperCAmelCase_ : Optional[int] = self.config.sample_size UpperCAmelCase_ : int = ( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple) ) else self.config.sample_size ) UpperCAmelCase_ : Union[str, Any] = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) UpperCAmelCase_ : Optional[Any] = 0.25 def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase=False ) -> List[str]: if isinstance(_UpperCamelCase , (Encoder, Decoder) ): UpperCAmelCase_ : Union[str, Any] = value def __UpperCAmelCase ( self , _UpperCamelCase = True ) -> int: UpperCAmelCase_ : Tuple = use_tiling def __UpperCAmelCase ( self ) -> Dict: self.enable_tiling(_UpperCamelCase ) def __UpperCAmelCase ( self ) -> Optional[Any]: UpperCAmelCase_ : str = True def __UpperCAmelCase ( self ) -> List[Any]: UpperCAmelCase_ : Optional[int] = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def __UpperCAmelCase ( self ) -> Dict[str, AttentionProcessor]: UpperCAmelCase_ : Optional[int] = {} def fn_recursive_add_processors(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): if hasattr(_UpperCamelCase , 'set_processor' ): UpperCAmelCase_ : Optional[int] = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f"{name}.{sub_name}" , _UpperCamelCase , _UpperCamelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) return processors def __UpperCAmelCase ( self , _UpperCamelCase ) -> List[Any]: UpperCAmelCase_ : Union[str, Any] = len(self.attn_processors.keys() ) if isinstance(_UpperCamelCase , _UpperCamelCase ) and len(_UpperCamelCase ) != count: raise ValueError( f"A dict of processors was passed, but the number of processors {len(_UpperCamelCase )} does not match the" f" number of attention layers: {count}. Please make sure to pass {count} processor classes." ) def fn_recursive_attn_processor(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): if hasattr(_UpperCamelCase , 'set_processor' ): if not isinstance(_UpperCamelCase , _UpperCamelCase ): module.set_processor(_UpperCamelCase ) else: module.set_processor(processor.pop(f"{name}.processor" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"{name}.{sub_name}" , _UpperCamelCase , _UpperCamelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def __UpperCAmelCase ( self ) -> Union[str, Any]: self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = True ) -> AutoencoderKLOutput: if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(_UpperCamelCase , return_dict=_UpperCamelCase ) if self.use_slicing and x.shape[0] > 1: UpperCAmelCase_ : Union[str, Any] = [self.encoder(_UpperCamelCase ) for x_slice in x.split(1 )] UpperCAmelCase_ : Tuple = torch.cat(_UpperCamelCase ) else: UpperCAmelCase_ : List[Any] = self.encoder(_UpperCamelCase ) UpperCAmelCase_ : Optional[Any] = self.quant_conv(_UpperCamelCase ) UpperCAmelCase_ : Tuple = DiagonalGaussianDistribution(_UpperCamelCase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=_UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = True ) -> Union[DecoderOutput, torch.FloatTensor]: if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(_UpperCamelCase , return_dict=_UpperCamelCase ) UpperCAmelCase_ : str = self.post_quant_conv(_UpperCamelCase ) UpperCAmelCase_ : List[str] = self.decoder(_UpperCamelCase ) if not return_dict: return (dec,) return DecoderOutput(sample=_UpperCamelCase ) @apply_forward_hook def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = True ) -> Union[DecoderOutput, torch.FloatTensor]: if self.use_slicing and z.shape[0] > 1: UpperCAmelCase_ : List[str] = [self._decode(_UpperCamelCase ).sample for z_slice in z.split(1 )] UpperCAmelCase_ : Dict = torch.cat(_UpperCamelCase ) else: UpperCAmelCase_ : Any = self._decode(_UpperCamelCase ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=_UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Any: UpperCAmelCase_ : Tuple = min(a.shape[2] , b.shape[2] , _UpperCamelCase ) for y in range(_UpperCamelCase ): UpperCAmelCase_ : str = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Dict: UpperCAmelCase_ : Tuple = min(a.shape[3] , b.shape[3] , _UpperCamelCase ) for x in range(_UpperCamelCase ): UpperCAmelCase_ : int = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = True ) -> AutoencoderKLOutput: UpperCAmelCase_ : Any = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) UpperCAmelCase_ : Tuple = int(self.tile_latent_min_size * self.tile_overlap_factor ) UpperCAmelCase_ : Optional[int] = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. UpperCAmelCase_ : List[str] = [] for i in range(0 , x.shape[2] , _UpperCamelCase ): UpperCAmelCase_ : Any = [] for j in range(0 , x.shape[3] , _UpperCamelCase ): UpperCAmelCase_ : Any = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] UpperCAmelCase_ : Dict = self.encoder(_UpperCamelCase ) UpperCAmelCase_ : List[str] = self.quant_conv(_UpperCamelCase ) row.append(_UpperCamelCase ) rows.append(_UpperCamelCase ) UpperCAmelCase_ : str = [] for i, row in enumerate(_UpperCamelCase ): UpperCAmelCase_ : List[Any] = [] for j, tile in enumerate(_UpperCamelCase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: UpperCAmelCase_ : Dict = self.blend_v(rows[i - 1][j] , _UpperCamelCase , _UpperCamelCase ) if j > 0: UpperCAmelCase_ : List[str] = self.blend_h(row[j - 1] , _UpperCamelCase , _UpperCamelCase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(_UpperCamelCase , dim=3 ) ) UpperCAmelCase_ : Union[str, Any] = torch.cat(_UpperCamelCase , dim=2 ) UpperCAmelCase_ : List[Any] = DiagonalGaussianDistribution(_UpperCamelCase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=_UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = True ) -> Union[DecoderOutput, torch.FloatTensor]: UpperCAmelCase_ : str = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) UpperCAmelCase_ : Dict = int(self.tile_sample_min_size * self.tile_overlap_factor ) UpperCAmelCase_ : Dict = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. UpperCAmelCase_ : Union[str, Any] = [] for i in range(0 , z.shape[2] , _UpperCamelCase ): UpperCAmelCase_ : List[str] = [] for j in range(0 , z.shape[3] , _UpperCamelCase ): UpperCAmelCase_ : List[str] = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] UpperCAmelCase_ : Optional[Any] = self.post_quant_conv(_UpperCamelCase ) UpperCAmelCase_ : Tuple = self.decoder(_UpperCamelCase ) row.append(_UpperCamelCase ) rows.append(_UpperCamelCase ) UpperCAmelCase_ : Optional[Any] = [] for i, row in enumerate(_UpperCamelCase ): UpperCAmelCase_ : List[Any] = [] for j, tile in enumerate(_UpperCamelCase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: UpperCAmelCase_ : Union[str, Any] = self.blend_v(rows[i - 1][j] , _UpperCamelCase , _UpperCamelCase ) if j > 0: UpperCAmelCase_ : Optional[Any] = self.blend_h(row[j - 1] , _UpperCamelCase , _UpperCamelCase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(_UpperCamelCase , dim=3 ) ) UpperCAmelCase_ : Dict = torch.cat(_UpperCamelCase , dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=_UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = False , _UpperCamelCase = True , _UpperCamelCase = None , ) -> Union[DecoderOutput, torch.FloatTensor]: UpperCAmelCase_ : Optional[Any] = sample UpperCAmelCase_ : Union[str, Any] = self.encode(_UpperCamelCase ).latent_dist if sample_posterior: UpperCAmelCase_ : str = posterior.sample(generator=_UpperCamelCase ) else: UpperCAmelCase_ : int = posterior.mode() UpperCAmelCase_ : Dict = self.decode(_UpperCamelCase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=_UpperCamelCase )
29
1
"""simple docstring""" import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device _lowercase : Tuple = False class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' pass @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def snake_case ( self : List[Any] )-> Dict: lowerCamelCase__ : str =VersatileDiffusionImageVariationPipeline.from_pretrained('''shi-labs/versatile-diffusion''' ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) lowerCamelCase__ : int =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) lowerCamelCase__ : Dict =torch.manual_seed(0 ) lowerCamelCase__ : str =pipe( image=lowerCamelCase, generator=lowerCamelCase, guidance_scale=7.5, num_inference_steps=50, output_type='''numpy''', ).images lowerCamelCase__ : Dict =image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowerCamelCase__ : List[Any] =np.array([0.0_441, 0.0_469, 0.0_507, 0.0_575, 0.0_632, 0.0_650, 0.0_865, 0.0_909, 0.0_945] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
272
"""simple docstring""" import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy _lowercase : Tuple = logging.getLogger(__name__) def snake_case__ ( __lowerCamelCase : torch.nn.Module , __lowerCamelCase : BnbQuantizationConfig , __lowerCamelCase : Union[str, os.PathLike] = None , __lowerCamelCase : Optional[Dict[str, Union[int, str, torch.device]]] = None , __lowerCamelCase : Optional[List[str]] = None , __lowerCamelCase : Optional[Dict[Union[int, str], Union[int, str]]] = None , __lowerCamelCase : Optional[Union[str, os.PathLike]] = None , __lowerCamelCase : bool = False , ): """simple docstring""" lowerCamelCase__ : str =bnb_quantization_config.load_in_abit lowerCamelCase__ : str =bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( '''You have a version of `bitsandbytes` that is not compatible with 8bit quantization,''' ''' make sure you have the latest version of `bitsandbytes` installed.''' ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( '''You have a version of `bitsandbytes` that is not compatible with 4bit quantization,''' '''make sure you have the latest version of `bitsandbytes` installed.''' ) lowerCamelCase__ : str =[] # custom device map if isinstance(__lowerCamelCase , __lowerCamelCase ) and len(device_map.keys() ) > 1: lowerCamelCase__ : Union[str, Any] =[key for key, value in device_map.items() if value in ['''disk''', '''cpu''']] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: lowerCamelCase__ : Any =get_keys_to_not_convert(__lowerCamelCase ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(__lowerCamelCase ) lowerCamelCase__ : Tuple =bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: lowerCamelCase__ : Optional[Any] =[] lowerCamelCase__ : List[Any] =bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(__lowerCamelCase ) # compatibility with peft lowerCamelCase__ : List[str] =load_in_abit lowerCamelCase__ : List[str] =load_in_abit lowerCamelCase__ : Union[str, Any] =get_parameter_device(__lowerCamelCase ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( '''It is not recommended to quantize a loaded model. ''' '''The model should be instantiated under the `init_empty_weights` context manager.''' ) lowerCamelCase__ : str =replace_with_bnb_layers(__lowerCamelCase , __lowerCamelCase , modules_to_not_convert=__lowerCamelCase ) # convert param to the right dtype lowerCamelCase__ : Union[str, Any] =bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: lowerCamelCase__ : Optional[int] =name.replace('''.weight''' , '''''' ).replace('''.bias''' , '''''' ) lowerCamelCase__ : Dict =getattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(__lowerCamelCase ): param.to(__lowerCamelCase ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError('''No GPU found. A GPU is needed for quantization.''' ) logger.info( f'''The model device type is {model_device.type}. However, cuda is needed for quantization.''' '''We move the model to cuda.''' ) return model elif weights_location is None: raise RuntimeError( f'''`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} ''' ) else: with init_empty_weights(): lowerCamelCase__ : Dict =replace_with_bnb_layers( __lowerCamelCase , __lowerCamelCase , modules_to_not_convert=__lowerCamelCase ) lowerCamelCase__ : Optional[int] =get_quantized_model_device_map( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , max_memory=__lowerCamelCase , no_split_module_classes=__lowerCamelCase , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): lowerCamelCase__ : List[str] =True lowerCamelCase__ : Dict =any(x in list(device_map.values() ) for x in ['''cpu''', '''disk'''] ) load_checkpoint_in_model( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , dtype=bnb_quantization_config.torch_dtype , offload_folder=__lowerCamelCase , offload_state_dict=__lowerCamelCase , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(__lowerCamelCase , device_map=__lowerCamelCase , offload_dir=__lowerCamelCase ) def snake_case__ ( __lowerCamelCase : Dict , __lowerCamelCase : Any , __lowerCamelCase : Optional[Any]=None , __lowerCamelCase : Tuple=None , __lowerCamelCase : Optional[int]=None ): """simple docstring""" if device_map is None: if torch.cuda.is_available(): lowerCamelCase__ : List[Any] ={'''''': torch.cuda.current_device()} else: raise RuntimeError('''No GPU found. A GPU is needed for quantization.''' ) logger.info('''The device_map was not initialized.''' '''Setting device_map to `{\'\':torch.cuda.current_device()}`.''' ) if isinstance(__lowerCamelCase , __lowerCamelCase ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( '''If passing a string for `device_map`, please choose \'auto\', \'balanced\', \'balanced_low_0\' or ''' '''\'sequential\'.''' ) lowerCamelCase__ : List[Any] ={} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) lowerCamelCase__ : int ={} lowerCamelCase__ : Optional[int] =special_dtypes lowerCamelCase__ : List[str] =no_split_module_classes lowerCamelCase__ : Tuple =bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": lowerCamelCase__ : List[str] =get_balanced_memory( __lowerCamelCase , low_zero=(device_map == '''balanced_low_0''') , max_memory=__lowerCamelCase , **__lowerCamelCase , ) lowerCamelCase__ : str =max_memory lowerCamelCase__ : Any =infer_auto_device_map(__lowerCamelCase , **__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ): # check if don't have any quantized module on the cpu lowerCamelCase__ : List[str] =bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules lowerCamelCase__ : List[str] ={ key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( ''' Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules in `torch_dtype`, you need to pass a custom `device_map` to `load_and_quantize_model`. Check https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk for more details. ''' ) else: logger.info( '''Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit''' ) del device_map_without_some_modules return device_map def snake_case__ ( __lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : str=None ): """simple docstring""" if modules_to_not_convert is None: lowerCamelCase__ : Dict =[] lowerCamelCase__ , lowerCamelCase__ : List[Any] =_replace_with_bnb_layers( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if not has_been_replaced: logger.warning( '''You are loading your model in 8bit or 4bit but no linear modules were found in your model.''' ''' this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.''' ''' Please double check your model architecture, or submit an issue on github if you think this is''' ''' a bug.''' ) return model def snake_case__ ( __lowerCamelCase : List[Any] , __lowerCamelCase : int , __lowerCamelCase : int=None , __lowerCamelCase : Optional[Any]=None , ): """simple docstring""" lowerCamelCase__ : Tuple =False for name, module in model.named_children(): if current_key_name is None: lowerCamelCase__ : Optional[Any] =[] current_key_name.append(__lowerCamelCase ) if isinstance(__lowerCamelCase , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` lowerCamelCase__ : Optional[Any] ='''.'''.join(__lowerCamelCase ) lowerCamelCase__ : Tuple =True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: lowerCamelCase__ : Any =False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: lowerCamelCase__ : List[str] =bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=__lowerCamelCase , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: lowerCamelCase__ : str =bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError('''load_in_8bit and load_in_4bit can\'t be both False''' ) lowerCamelCase__ : Any =module.weight.data if module.bias is not None: lowerCamelCase__ : Any =module.bias.data bnb_module.requires_grad_(__lowerCamelCase ) setattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : str =True if len(list(module.children() ) ) > 0: lowerCamelCase__ , lowerCamelCase__ : Optional[int] =_replace_with_bnb_layers( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : Any =has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def snake_case__ ( __lowerCamelCase : Union[str, Any] ): """simple docstring""" # Create a copy of the model with init_empty_weights(): lowerCamelCase__ : Optional[Any] =deepcopy(__lowerCamelCase ) # this has 0 cost since it is done inside `init_empty_weights` context manager` lowerCamelCase__ : Union[str, Any] =find_tied_parameters(__lowerCamelCase ) # For compatibility with Accelerate < 0.18 if isinstance(__lowerCamelCase , __lowerCamelCase ): lowerCamelCase__ : List[str] =sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: lowerCamelCase__ : Any =sum(__lowerCamelCase , [] ) lowerCamelCase__ : Any =len(__lowerCamelCase ) > 0 # Check if it is a base model lowerCamelCase__ : Optional[Any] =False if hasattr(__lowerCamelCase , '''base_model_prefix''' ): lowerCamelCase__ : Dict =not hasattr(__lowerCamelCase , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head lowerCamelCase__ : List[str] =list(model.named_children() ) lowerCamelCase__ : Any =[list_modules[-1][0]] # add last module together with tied weights lowerCamelCase__ : Optional[Any] =set(__lowerCamelCase ) - set(__lowerCamelCase ) lowerCamelCase__ : List[str] =list(set(__lowerCamelCase ) ) + list(__lowerCamelCase ) # remove ".weight" from the keys lowerCamelCase__ : Optional[Any] =['''.weight''', '''.bias'''] lowerCamelCase__ : List[Any] =[] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: lowerCamelCase__ : Union[str, Any] =name.replace(__lowerCamelCase , '''''' ) filtered_module_names.append(__lowerCamelCase ) return filtered_module_names def snake_case__ ( __lowerCamelCase : Tuple ): """simple docstring""" for m in model.modules(): if isinstance(__lowerCamelCase , bnb.nn.Linearabit ): return True return False def snake_case__ ( __lowerCamelCase : nn.Module ): """simple docstring""" return next(parameter.parameters() ).device def snake_case__ ( __lowerCamelCase : List[str] , __lowerCamelCase : Tuple , __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : Optional[int] , __lowerCamelCase : int , __lowerCamelCase : Optional[int] ): """simple docstring""" # if it is not quantized, we quantize and offload the quantized weights and the SCB stats if fpaa_statistics is None: set_module_tensor_to_device(__lowerCamelCase , __lowerCamelCase , 0 , dtype=__lowerCamelCase , value=__lowerCamelCase ) lowerCamelCase__ : Union[str, Any] =param_name lowerCamelCase__ : Dict =model if "." in tensor_name: lowerCamelCase__ : Optional[int] =tensor_name.split('''.''' ) for split in splits[:-1]: lowerCamelCase__ : Union[str, Any] =getattr(__lowerCamelCase , __lowerCamelCase ) if new_module is None: raise ValueError(f'''{module} has no attribute {split}.''' ) lowerCamelCase__ : Union[str, Any] =new_module lowerCamelCase__ : List[Any] =splits[-1] # offload weights lowerCamelCase__ : Optional[Any] =False offload_weight(module._parameters[tensor_name] , __lowerCamelCase , __lowerCamelCase , index=__lowerCamelCase ) if hasattr(module._parameters[tensor_name] , '''SCB''' ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace('''weight''' , '''SCB''' ) , __lowerCamelCase , index=__lowerCamelCase , ) else: offload_weight(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , index=__lowerCamelCase ) offload_weight(__lowerCamelCase , param_name.replace('''weight''' , '''SCB''' ) , __lowerCamelCase , index=__lowerCamelCase ) set_module_tensor_to_device(__lowerCamelCase , __lowerCamelCase , '''meta''' , dtype=__lowerCamelCase , value=torch.empty(*param.size() ) )
272
1
from __future__ import annotations import string from itertools import cycle, product from pathlib import Path __lowerCAmelCase : str = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) __lowerCAmelCase : list[int] = [ord(letter) for letter in string.ascii_lowercase] __lowerCAmelCase : set[int] = {ord(char) for char in VALID_CHARS} __lowerCAmelCase : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"] def a__ ( A_, A_ ): '''simple docstring''' __magic_name__ = "" __magic_name__ = 42 __magic_name__ = 42 __magic_name__ = 42 for keychar, cipherchar in zip(cycle(A_ ), A_ ): __magic_name__ = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(A_ ) return decoded def a__ ( A_ ): '''simple docstring''' __magic_name__ = [] for key in product(A_, repeat=3 ): __magic_name__ = try_key(A_, A_ ) if encoded is not None: possibles.append(A_ ) return possibles def a__ ( A_, A_ ): '''simple docstring''' return [possible for possible in possibles if common_word in possible.lower()] def a__ ( A_ = "p059_cipher.txt" ): '''simple docstring''' __magic_name__ = 42 __magic_name__ = 42 __magic_name__ = 42 __magic_name__ = 42 __magic_name__ = Path(A_ ).parent.joinpath(A_ ).read_text(encoding="""utf-8""" ) __magic_name__ = [int(A_ ) for number in data.strip().split(""",""" )] __magic_name__ = filter_valid_chars(A_ ) for common_word in COMMON_WORDS: __magic_name__ = filter_common_word(A_, A_ ) if len(A_ ) == 1: break __magic_name__ = possibles[0] return sum(ord(A_ ) for char in decoded_text ) if __name__ == "__main__": print(F'''{solution() = }''')
88
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self : List[str] , UpperCamelCase__ : int ) -> str: """simple docstring""" for model_result in results.values(): for batch_size, sequence_length in zip(model_result["""bs"""] , model_result["""ss"""] ): __magic_name__ = model_result["""result"""][batch_size][sequence_length] self.assertIsNotNone(UpperCamelCase__ ) def _lowercase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" __magic_name__ = """sshleifer/tiny-gpt2""" __magic_name__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCamelCase__ , inference=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=UpperCamelCase__ , multi_process=UpperCamelCase__ , ) __magic_name__ = TensorFlowBenchmark(UpperCamelCase__ ) __magic_name__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _lowercase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __magic_name__ = """sgugger/tiny-distilbert-classification""" __magic_name__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCamelCase__ , inference=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCamelCase__ , only_pretrain_model=UpperCamelCase__ , ) __magic_name__ = TensorFlowBenchmark(UpperCamelCase__ ) __magic_name__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _lowercase ( self : Any ) -> List[Any]: """simple docstring""" __magic_name__ = """sshleifer/tiny-gpt2""" __magic_name__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCamelCase__ , inference=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCamelCase__ , ) __magic_name__ = TensorFlowBenchmark(UpperCamelCase__ ) __magic_name__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _lowercase ( self : Tuple ) -> List[Any]: """simple docstring""" __magic_name__ = """sshleifer/tiny-gpt2""" __magic_name__ = AutoConfig.from_pretrained(UpperCamelCase__ ) __magic_name__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCamelCase__ , inference=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=UpperCamelCase__ , multi_process=UpperCamelCase__ , ) __magic_name__ = TensorFlowBenchmark(UpperCamelCase__ , [config] ) __magic_name__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _lowercase ( self : Any ) -> Union[str, Any]: """simple docstring""" __magic_name__ = """sshleifer/tiny-gpt2""" __magic_name__ = AutoConfig.from_pretrained(UpperCamelCase__ ) __magic_name__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCamelCase__ , inference=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCamelCase__ , ) __magic_name__ = TensorFlowBenchmark(UpperCamelCase__ , [config] ) __magic_name__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _lowercase ( self : List[Any] ) -> Dict: """simple docstring""" __magic_name__ = """sshleifer/tiny-gpt2""" __magic_name__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCamelCase__ , inference=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCamelCase__ , ) __magic_name__ = TensorFlowBenchmark(UpperCamelCase__ ) __magic_name__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _lowercase ( self : Optional[Any] ) -> List[str]: """simple docstring""" __magic_name__ = """sshleifer/tiny-gpt2""" __magic_name__ = AutoConfig.from_pretrained(UpperCamelCase__ ) __magic_name__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCamelCase__ , inference=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCamelCase__ , ) __magic_name__ = TensorFlowBenchmark(UpperCamelCase__ , [config] ) __magic_name__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _lowercase ( self : Union[str, Any] ) -> Any: """simple docstring""" __magic_name__ = """patrickvonplaten/t5-tiny-random""" __magic_name__ = AutoConfig.from_pretrained(UpperCamelCase__ ) __magic_name__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCamelCase__ , inference=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCamelCase__ , ) __magic_name__ = TensorFlowBenchmark(UpperCamelCase__ , configs=[config] ) __magic_name__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , """Cannot do xla on CPU.""" ) def _lowercase ( self : Tuple ) -> int: """simple docstring""" __magic_name__ = """sshleifer/tiny-gpt2""" __magic_name__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCamelCase__ , inference=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , use_xla=UpperCamelCase__ , multi_process=UpperCamelCase__ , ) __magic_name__ = TensorFlowBenchmark(UpperCamelCase__ ) __magic_name__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _lowercase ( self : Union[str, Any] ) -> Dict: """simple docstring""" __magic_name__ = """sshleifer/tiny-gpt2""" with tempfile.TemporaryDirectory() as tmp_dir: __magic_name__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=UpperCamelCase__ , save_to_csv=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(UpperCamelCase__ , """inf_time.csv""" ) , inference_memory_csv_file=os.path.join(UpperCamelCase__ , """inf_mem.csv""" ) , env_info_csv_file=os.path.join(UpperCamelCase__ , """env.csv""" ) , multi_process=UpperCamelCase__ , ) __magic_name__ = TensorFlowBenchmark(UpperCamelCase__ ) benchmark.run() self.assertTrue(Path(os.path.join(UpperCamelCase__ , """inf_time.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(UpperCamelCase__ , """inf_mem.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(UpperCamelCase__ , """env.csv""" ) ).exists() ) def _lowercase ( self : int ) -> Optional[Any]: """simple docstring""" __magic_name__ = """sshleifer/tiny-gpt2""" def _check_summary_is_not_empty(UpperCamelCase__ : Dict ): self.assertTrue(hasattr(UpperCamelCase__ , """sequential""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """cumulative""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """current""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """total""" ) ) with tempfile.TemporaryDirectory() as tmp_dir: __magic_name__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(UpperCamelCase__ , """log.txt""" ) , log_print=UpperCamelCase__ , trace_memory_line_by_line=UpperCamelCase__ , eager_mode=UpperCamelCase__ , multi_process=UpperCamelCase__ , ) __magic_name__ = TensorFlowBenchmark(UpperCamelCase__ ) __magic_name__ = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(UpperCamelCase__ , """log.txt""" ) ).exists() )
88
1
from ..utils import DummyObject, requires_backends class A__ ( metaclass=SCREAMING_SNAKE_CASE__ ): """simple docstring""" __magic_name__ = ['''torch''', '''scipy'''] def __init__( self , *__snake_case , **__snake_case ): requires_backends(self , ['''torch''', '''scipy'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch''', '''scipy'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch''', '''scipy'''] )
359
import math class A__ : """simple docstring""" def a_ ( self , __snake_case , __snake_case ): snake_case = 0.0 snake_case = 0.0 for i in range(len(__snake_case ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def a_ ( self , __snake_case , __snake_case , __snake_case , __snake_case ): for i in range(len(__snake_case ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def UpperCAmelCase__ (): """simple docstring""" snake_case = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) snake_case = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training snake_case = SelfOrganizingMap() snake_case = 3 snake_case = 0.5 for _ in range(UpperCamelCase_ ): for j in range(len(UpperCamelCase_ ) ): # training sample snake_case = training_samples[j] # Compute the winning vector snake_case = self_organizing_map.get_winner(UpperCamelCase_ ,UpperCamelCase_ ) # Update the winning vector snake_case = self_organizing_map.update(UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ) # classify test sample snake_case = [0, 0, 0, 1] snake_case = self_organizing_map.get_winner(UpperCamelCase_ ,UpperCamelCase_ ) # results print(F'''Clusters that the test sample belongs to : {winner}''' ) print(F'''Weights that have been trained : {weights}''' ) # running the main() function if __name__ == "__main__": main()
213
0
from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline __snake_case = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCAmelCase_ ( lowercase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: super().__init__() self.register_modules(unet=__lowerCAmelCase , scheduler=__lowerCAmelCase ) @torch.no_grad() def __call__( self , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = 100 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = True , ) -> Optional[Any]: if audio_length_in_s is None: UpperCamelCase :List[Any] = self.unet.config.sample_size / self.unet.config.sample_rate UpperCamelCase :List[str] = audio_length_in_s * self.unet.config.sample_rate UpperCamelCase :str = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( F'''{audio_length_in_s} is too small. Make sure it\'s bigger or equal to''' F''' {3 * down_scale_factor / self.unet.config.sample_rate}.''' ) UpperCamelCase :Optional[Any] = int(__lowerCAmelCase ) if sample_size % down_scale_factor != 0: UpperCamelCase :Any = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( F'''{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled''' F''' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising''' ''' process.''' ) UpperCamelCase :Tuple = int(__lowerCAmelCase ) UpperCamelCase :Optional[Any] = next(iter(self.unet.parameters() ) ).dtype UpperCamelCase :Any = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) and len(__lowerCAmelCase ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(__lowerCAmelCase )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) UpperCamelCase :int = randn_tensor(__lowerCAmelCase , generator=__lowerCAmelCase , device=self.device , dtype=__lowerCAmelCase ) # set step values self.scheduler.set_timesteps(__lowerCAmelCase , device=audio.device ) UpperCamelCase :List[str] = self.scheduler.timesteps.to(__lowerCAmelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output UpperCamelCase :Dict = self.unet(__lowerCAmelCase , __lowerCAmelCase ).sample # 2. compute previous image: x_t -> t_t-1 UpperCamelCase :Dict = self.scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ).prev_sample UpperCamelCase :str = audio.clamp(-1 , 1 ).float().cpu().numpy() UpperCamelCase :Dict = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=__lowerCAmelCase )
259
"""simple docstring""" import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL __lowerCAmelCase : Dict =version.parse(version.parse(torch.__version__).base_version) < version.parse("""1.11""") def UpperCAmelCase__ ( lowerCAmelCase__ :int , lowerCAmelCase__ :tuple , lowerCAmelCase__ :Path , lowerCAmelCase__ :str , lowerCAmelCase__ :int , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Any , lowerCAmelCase__ :List[str]=False , ) -> Union[str, Any]: '''simple docstring''' output_path.parent.mkdir(parents=lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( lowerCAmelCase__ , lowerCAmelCase__ , f=output_path.as_posix() , input_names=lowerCAmelCase__ , output_names=lowerCAmelCase__ , dynamic_axes=lowerCAmelCase__ , do_constant_folding=lowerCAmelCase__ , use_external_data_format=lowerCAmelCase__ , enable_onnx_checker=lowerCAmelCase__ , opset_version=lowerCAmelCase__ , ) else: export( lowerCAmelCase__ , lowerCAmelCase__ , f=output_path.as_posix() , input_names=lowerCAmelCase__ , output_names=lowerCAmelCase__ , dynamic_axes=lowerCAmelCase__ , do_constant_folding=lowerCAmelCase__ , opset_version=lowerCAmelCase__ , ) @torch.no_grad() def UpperCAmelCase__ ( lowerCAmelCase__ :str , lowerCAmelCase__ :str , lowerCAmelCase__ :int , lowerCAmelCase__ :bool = False ) -> str: '''simple docstring''' lowercase = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): lowercase = """cuda""" elif fpaa and not torch.cuda.is_available(): raise ValueError("""`float16` model export is only supported on GPUs with CUDA""" ) else: lowercase = """cpu""" lowercase = Path(lowerCAmelCase__ ) # VAE DECODER lowercase = AutoencoderKL.from_pretrained(model_path + """/vae""" ) lowercase = vae_decoder.config.latent_channels # forward only through the decoder part lowercase = vae_decoder.decode onnx_export( lowerCAmelCase__ , model_args=( torch.randn(1 , lowerCAmelCase__ , 2_5 , 2_5 ).to(device=lowerCAmelCase__ , dtype=lowerCAmelCase__ ), False, ) , output_path=output_path / """vae_decoder""" / """model.onnx""" , ordered_input_names=["""latent_sample""", """return_dict"""] , output_names=["""sample"""] , dynamic_axes={ """latent_sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, } , opset=lowerCAmelCase__ , ) del vae_decoder if __name__ == "__main__": __lowerCAmelCase : Tuple =argparse.ArgumentParser() parser.add_argument( """--model_path""", type=str, required=True, help="""Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).""", ) parser.add_argument("""--output_path""", type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--opset""", default=1_4, type=int, help="""The version of the ONNX operator set to use.""", ) parser.add_argument("""--fp16""", action="""store_true""", default=False, help="""Export the models in `float16` mode""") __lowerCAmelCase : Dict =parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print("""SD: Done: ONNX""")
197
0
"""simple docstring""" # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys __UpperCAmelCase = '3' print('Python version:', sys.version) print('OS platform:', platform.platform()) print('OS architecture:', platform.machine()) try: import torch print('Torch version:', torch.__version__) print('Cuda available:', torch.cuda.is_available()) print('Cuda version:', torch.version.cuda) print('CuDNN version:', torch.backends.cudnn.version()) print('Number of GPUs available:', torch.cuda.device_count()) except ImportError: print('Torch version:', None) try: import transformers print('transformers version:', transformers.__version__) except ImportError: print('transformers version:', None)
365
def __UpperCamelCase ( lowercase__ : str ) -> bool: '''simple docstring''' lowerCAmelCase_ : Any = 0 for ch in input_str: lowerCAmelCase_ : Any = ord(lowercase__ ) lowerCAmelCase_ : Dict = pow(2 , lowercase__ ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
28
0
'''simple docstring''' import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : int , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : bool = True , _lowerCAmelCase : Dict[str, int] = None , _lowerCAmelCase : int = 3_2 , _lowerCAmelCase : bool = True , _lowerCAmelCase : Union[int, float] = 1 / 2_5_5 , _lowerCAmelCase : bool = True , _lowerCAmelCase : bool = True , _lowerCAmelCase : Optional[Union[float, List[float]]] = [0.4814_5466, 0.457_8275, 0.4082_1073] , _lowerCAmelCase : Optional[Union[float, List[float]]] = [0.2686_2954, 0.2613_0258, 0.2757_7711] , _lowerCAmelCase : bool = True , _lowerCAmelCase : Any=7 , _lowerCAmelCase : Any=3_0 , _lowerCAmelCase : Dict=4_0_0 , _lowerCAmelCase : List[Any]=3 , ): '''simple docstring''' __lowercase =parent __lowercase =do_resize __lowercase =size if size is not None else {'shortest_edge': 2_8_8} __lowercase =size_divisor __lowercase =do_rescale __lowercase =rescale_factor __lowercase =do_normalize __lowercase =do_center_crop __lowercase =image_mean __lowercase =image_std __lowercase =do_pad __lowercase =batch_size __lowercase =num_channels __lowercase =min_resolution __lowercase =max_resolution def __lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def __lowerCamelCase ( self : Tuple , _lowerCAmelCase : List[str] , _lowerCAmelCase : int=False): '''simple docstring''' if not batched: __lowercase =self.size['shortest_edge'] __lowercase =image_inputs[0] if isinstance(_lowerCAmelCase , Image.Image): __lowercase , __lowercase =image.size else: __lowercase , __lowercase =image.shape[1], image.shape[2] __lowercase =size / min(_lowerCAmelCase , _lowerCAmelCase) if h < w: __lowercase , __lowercase =size, scale * w else: __lowercase , __lowercase =scale * h, size __lowercase =int((1_3_3_3 / 8_0_0) * size) if max(_lowerCAmelCase , _lowerCAmelCase) > max_size: __lowercase =max_size / max(_lowerCAmelCase , _lowerCAmelCase) __lowercase =newh * scale __lowercase =neww * scale __lowercase , __lowercase =int(newh + 0.5), int(neww + 0.5) __lowercase , __lowercase =( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: __lowercase =[] for image in image_inputs: __lowercase , __lowercase =self.get_expected_values([image]) expected_values.append((expected_height, expected_width)) __lowercase =max(_lowerCAmelCase , key=lambda _lowerCAmelCase: item[0])[0] __lowercase =max(_lowerCAmelCase , key=lambda _lowerCAmelCase: item[1])[1] return expected_height, expected_width @require_torch @require_vision class _UpperCamelCase ( A , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = BridgeTowerImageProcessor if is_vision_available() else None def __lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' __lowercase =BridgeTowerImageProcessingTester(self) @property def __lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __lowerCamelCase ( self : List[Any]): '''simple docstring''' __lowercase =self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(_lowerCAmelCase , 'image_mean')) self.assertTrue(hasattr(_lowerCAmelCase , 'image_std')) self.assertTrue(hasattr(_lowerCAmelCase , 'do_normalize')) self.assertTrue(hasattr(_lowerCAmelCase , 'do_resize')) self.assertTrue(hasattr(_lowerCAmelCase , 'size')) self.assertTrue(hasattr(_lowerCAmelCase , 'size_divisor')) def __lowerCamelCase ( self : str): '''simple docstring''' pass def __lowerCamelCase ( self : List[Any]): '''simple docstring''' __lowercase =self.image_processing_class(**self.image_processor_dict) # create random PIL images __lowercase =prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , Image.Image) # Test not batched input __lowercase =image_processing(image_inputs[0] , return_tensors='pt').pixel_values __lowercase , __lowercase =self.image_processor_tester.get_expected_values(_lowerCAmelCase) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowercase =image_processing(_lowerCAmelCase , return_tensors='pt').pixel_values __lowercase , __lowercase =self.image_processor_tester.get_expected_values(_lowerCAmelCase , batched=_lowerCAmelCase) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __lowerCamelCase ( self : List[Any]): '''simple docstring''' __lowercase =self.image_processing_class(**self.image_processor_dict) # create random numpy tensors __lowercase =prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , numpify=_lowerCAmelCase) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , np.ndarray) # Test not batched input __lowercase =image_processing(image_inputs[0] , return_tensors='pt').pixel_values __lowercase , __lowercase =self.image_processor_tester.get_expected_values(_lowerCAmelCase) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowercase =image_processing(_lowerCAmelCase , return_tensors='pt').pixel_values __lowercase , __lowercase =self.image_processor_tester.get_expected_values(_lowerCAmelCase , batched=_lowerCAmelCase) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __lowerCamelCase ( self : Dict): '''simple docstring''' __lowercase =self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors __lowercase =prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , torchify=_lowerCAmelCase) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , torch.Tensor) # Test not batched input __lowercase =image_processing(image_inputs[0] , return_tensors='pt').pixel_values __lowercase , __lowercase =self.image_processor_tester.get_expected_values(_lowerCAmelCase) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowercase =image_processing(_lowerCAmelCase , return_tensors='pt').pixel_values __lowercase , __lowercase =self.image_processor_tester.get_expected_values(_lowerCAmelCase , batched=_lowerCAmelCase) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
166
'''simple docstring''' import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class _UpperCamelCase ( A ): '''simple docstring''' def __lowerCamelCase ( self : int): '''simple docstring''' __lowercase =tempfile.mkdtemp() __lowercase =5 # Realm tok __lowercase =[ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'test', 'question', 'this', 'is', 'the', 'first', 'second', 'third', 'fourth', 'fifth', 'record', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] __lowercase =os.path.join(self.tmpdirname , 'realm_tokenizer') os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase) __lowercase =os.path.join(_lowerCAmelCase , VOCAB_FILES_NAMES['vocab_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens])) __lowercase =os.path.join(self.tmpdirname , 'realm_block_records') os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase) def __lowerCamelCase ( self : Dict): '''simple docstring''' return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'realm_tokenizer')) def __lowerCamelCase ( self : List[Any]): '''simple docstring''' shutil.rmtree(self.tmpdirname) def __lowerCamelCase ( self : List[str]): '''simple docstring''' __lowercase =RealmConfig(num_block_records=self.num_block_records) return config def __lowerCamelCase ( self : Dict): '''simple docstring''' __lowercase =Dataset.from_dict( { 'id': ['0', '1'], 'question': ['foo', 'bar'], 'answers': [['Foo', 'Bar'], ['Bar']], }) return dataset def __lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' __lowercase =np.array( [ B'This is the first record', B'This is the second record', B'This is the third record', B'This is the fourth record', B'This is the fifth record', B'This is a longer longer longer record', ] , dtype=_lowerCAmelCase , ) return block_records def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' __lowercase =RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def __lowerCamelCase ( self : int): '''simple docstring''' __lowercase =self.get_config() __lowercase =self.get_dummy_retriever() __lowercase =retriever.tokenizer __lowercase =np.array([0, 3] , dtype='long') __lowercase =tokenizer(['Test question']).input_ids __lowercase =tokenizer( ['the fourth'] , add_special_tokens=_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , ).input_ids __lowercase =config.reader_seq_len __lowercase , __lowercase , __lowercase , __lowercase =retriever( _lowerCAmelCase , _lowerCAmelCase , answer_ids=_lowerCAmelCase , max_length=_lowerCAmelCase , return_tensors='np') self.assertEqual(len(_lowerCAmelCase) , 2) self.assertEqual(len(_lowerCAmelCase) , 2) self.assertEqual(len(_lowerCAmelCase) , 2) self.assertEqual(concat_inputs.input_ids.shape , (2, 1_0)) self.assertEqual(concat_inputs.attention_mask.shape , (2, 1_0)) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 1_0)) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 1_0)) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0]) , ['[CLS]', 'test', 'question', '[SEP]', 'this', 'is', 'the', 'first', 'record', '[SEP]'] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1]) , ['[CLS]', 'test', 'question', '[SEP]', 'this', 'is', 'the', 'fourth', 'record', '[SEP]'] , ) def __lowerCamelCase ( self : Dict): '''simple docstring''' __lowercase =self.get_config() __lowercase =self.get_dummy_retriever() __lowercase =retriever.tokenizer __lowercase =np.array([0, 3, 5] , dtype='long') __lowercase =tokenizer(['Test question']).input_ids __lowercase =tokenizer( ['the fourth', 'longer longer'] , add_special_tokens=_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , ).input_ids __lowercase =config.reader_seq_len __lowercase , __lowercase , __lowercase , __lowercase =retriever( _lowerCAmelCase , _lowerCAmelCase , answer_ids=_lowerCAmelCase , max_length=_lowerCAmelCase , return_tensors='np') self.assertEqual([False, True, True] , _lowerCAmelCase) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , _lowerCAmelCase) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , _lowerCAmelCase) def __lowerCamelCase ( self : Tuple): '''simple docstring''' __lowercase =self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , 'realm_block_records')) # Test local path __lowercase =retriever.from_pretrained(os.path.join(self.tmpdirname , 'realm_block_records')) self.assertEqual(retriever.block_records[0] , B'This is the first record') # Test mocked remote path with patch('transformers.models.realm.retrieval_realm.hf_hub_download') as mock_hf_hub_download: __lowercase =os.path.join( os.path.join(self.tmpdirname , 'realm_block_records') , _REALM_BLOCK_RECORDS_FILENAME) __lowercase =RealmRetriever.from_pretrained('google/realm-cc-news-pretrained-openqa') self.assertEqual(retriever.block_records[0] , B'This is the first record')
166
1
import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def _a ( ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('''--model_ckpt''' , type=_lowercase , default='''microsoft/unixcoder-base-nine''' ) parser.add_argument('''--num_epochs''' , type=_lowercase , default=5 ) parser.add_argument('''--batch_size''' , type=_lowercase , default=6 ) parser.add_argument('''--gradient_accumulation_steps''' , type=_lowercase , default=1 ) parser.add_argument('''--freeze''' , type=_lowercase , default=_lowercase ) parser.add_argument('''--learning_rate''' , type=_lowercase , default=5E-4 ) parser.add_argument('''--seed''' , type=_lowercase , default=0 ) parser.add_argument('''--lr_scheduler_type''' , type=_lowercase , default='''cosine''' ) parser.add_argument('''--num_warmup_steps''' , type=_lowercase , default=10 ) parser.add_argument('''--weight_decay''' , type=_lowercase , default=0.01 ) parser.add_argument('''--output_dir''' , type=_lowercase , default='''./results''' ) return parser.parse_args() __UpperCAmelCase :str = load("accuracy") def _a ( _lowercase : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : Dict = eval_pred __UpperCAmelCase : Any = np.argmax(_lowercase , axis=1 ) return metric.compute(predictions=_lowercase , references=_lowercase ) class a ( _a ): """simple docstring""" def __init__( self : Union[str, Any] , snake_case : str ) -> None: super().__init__() __UpperCAmelCase : Optional[Any] = trainer def lowerCamelCase__ ( self : Dict , snake_case : Tuple , snake_case : List[str] , snake_case : Optional[int] , **snake_case : Optional[int] ) -> int: if control.should_evaluate: __UpperCAmelCase : Union[str, Any] = deepcopy(snake_case ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix='''train''' ) return control_copy def _a ( ): '''simple docstring''' __UpperCAmelCase : Optional[int] = get_args() set_seed(args.seed ) __UpperCAmelCase : Dict = load_dataset('''codeparrot/codecomplex''' , split='''train''' ) __UpperCAmelCase : List[Any] = dataset.train_test_split(test_size=0.2 ) __UpperCAmelCase : List[str] = train_test['''test'''].train_test_split(test_size=0.5 ) __UpperCAmelCase : Tuple = DatasetDict( { '''train''': train_test['''train'''], '''test''': test_validation['''train'''], '''valid''': test_validation['''test'''], } ) print('''Loading tokenizer and model''' ) __UpperCAmelCase : List[str] = AutoTokenizer.from_pretrained(args.model_ckpt ) __UpperCAmelCase : str = tokenizer.eos_token __UpperCAmelCase : Dict = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) __UpperCAmelCase : List[Any] = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): __UpperCAmelCase : List[str] = False __UpperCAmelCase : str = ClassLabel(num_classes=7 , names=list(set(train_test_validation['''train''']['''complexity'''] ) ) ) def tokenize(_lowercase : Union[str, Any] ): __UpperCAmelCase : Optional[int] = tokenizer(example['''src'''] , truncation=_lowercase , max_length=1024 ) __UpperCAmelCase : Union[str, Any] = labels.straint(example['''complexity'''] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } __UpperCAmelCase : Tuple = train_test_validation.map( _lowercase , batched=_lowercase , remove_columns=train_test_validation['''train'''].column_names , ) __UpperCAmelCase : Optional[Any] = DataCollatorWithPadding(tokenizer=_lowercase ) __UpperCAmelCase : Optional[Any] = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy='''epoch''' , save_strategy='''epoch''' , logging_strategy='''epoch''' , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.01 , metric_for_best_model='''accuracy''' , run_name='''complexity-java''' , report_to='''wandb''' , ) __UpperCAmelCase : Tuple = Trainer( model=_lowercase , args=_lowercase , train_dataset=tokenized_datasets['''train'''] , eval_dataset=tokenized_datasets['''valid'''] , tokenizer=_lowercase , data_collator=_lowercase , compute_metrics=_lowercase , ) print('''Training...''' ) trainer.add_callback(CustomCallback(_lowercase ) ) trainer.train() if __name__ == "__main__": main()
371
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter __UpperCAmelCase :Tuple = "Create a default config file for Accelerate with only a few flags set." def _a ( _lowercase : List[Any]="no" , _lowercase : str = default_json_config_file , _lowercase : bool = False ): '''simple docstring''' __UpperCAmelCase : Dict = Path(_lowercase ) path.parent.mkdir(parents=_lowercase , exist_ok=_lowercase ) if path.exists(): print( F'Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.' ) return False __UpperCAmelCase : List[str] = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F'`mixed_precision` should be one of \'no\', \'fp16\', \'bf16\', or \'fp8\'. Received {mixed_precision}' ) __UpperCAmelCase : int = { '''compute_environment''': '''LOCAL_MACHINE''', '''mixed_precision''': mixed_precision, } if torch.cuda.is_available(): __UpperCAmelCase : Optional[Any] = torch.cuda.device_count() __UpperCAmelCase : List[str] = num_gpus __UpperCAmelCase : int = False if num_gpus > 1: __UpperCAmelCase : Any = '''MULTI_GPU''' else: __UpperCAmelCase : int = '''NO''' elif is_xpu_available() and use_xpu: __UpperCAmelCase : List[Any] = torch.xpu.device_count() __UpperCAmelCase : List[Any] = num_xpus __UpperCAmelCase : Optional[int] = False if num_xpus > 1: __UpperCAmelCase : Any = '''MULTI_XPU''' else: __UpperCAmelCase : Optional[Any] = '''NO''' elif is_npu_available(): __UpperCAmelCase : Dict = torch.npu.device_count() __UpperCAmelCase : Any = num_npus __UpperCAmelCase : Any = False if num_npus > 1: __UpperCAmelCase : Dict = '''MULTI_NPU''' else: __UpperCAmelCase : Optional[int] = '''NO''' else: __UpperCAmelCase : List[str] = 0 __UpperCAmelCase : Dict = True __UpperCAmelCase : Dict = 1 __UpperCAmelCase : Tuple = '''NO''' __UpperCAmelCase : List[Any] = ClusterConfig(**_lowercase ) config.to_json_file(_lowercase ) return path def _a ( _lowercase : Union[str, Any] , _lowercase : str ): '''simple docstring''' __UpperCAmelCase : Optional[int] = parser.add_parser('''default''' , parents=_lowercase , help=_lowercase , formatter_class=_lowercase ) parser.add_argument( '''--config_file''' , default=_lowercase , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , dest='''save_location''' , ) parser.add_argument( '''--mixed_precision''' , choices=['''no''', '''fp16''', '''bf16'''] , type=_lowercase , help='''Whether or not to use mixed precision training. ''' '''Choose between FP16 and BF16 (bfloat16) training. ''' '''BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.''' , default='''no''' , ) parser.set_defaults(func=_lowercase ) return parser def _a ( _lowercase : List[Any] ): '''simple docstring''' __UpperCAmelCase : str = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(F'accelerate configuration saved at {config_file}' )
240
0
from dataclasses import dataclass, field from typing import Optional from transformers import AutoConfig, AutoImageProcessor, AutoTokenizer, FlaxVisionEncoderDecoderModel, HfArgumentParser @dataclass class snake_case__ : """simple docstring""" SCREAMING_SNAKE_CASE_ : str = field( metadata={"""help""": """The output directory where the model will be written."""} , ) SCREAMING_SNAKE_CASE_ : str = field( metadata={ """help""": ( """The encoder model checkpoint for weights initialization.""" """Don't set if you want to train an encoder model from scratch.""" ) } , ) SCREAMING_SNAKE_CASE_ : str = field( metadata={ """help""": ( """The decoder model checkpoint for weights initialization.""" """Don't set if you want to train a decoder model from scratch.""" ) } , ) SCREAMING_SNAKE_CASE_ : Optional[str] = field( default=_UpperCamelCase , metadata={"""help""": """Pretrained encoder config name or path if not the same as encoder_model_name"""} ) SCREAMING_SNAKE_CASE_ : Optional[str] = field( default=_UpperCamelCase , metadata={"""help""": """Pretrained decoder config name or path if not the same as decoder_model_name"""} ) def __magic_name__ ( ): '''simple docstring''' a = HfArgumentParser((ModelArguments,) ) ((a) , ) = parser.parse_args_into_dataclasses() # Load pretrained model and tokenizer # Use explicit specified encoder config if model_args.encoder_config_name: a = AutoConfig.from_pretrained(model_args.encoder_config_name ) # Use pretrained encoder model's config else: a = AutoConfig.from_pretrained(model_args.encoder_model_name_or_path ) # Use explicit specified decoder config if model_args.decoder_config_name: a = AutoConfig.from_pretrained(model_args.decoder_config_name ) # Use pretrained decoder model's config else: a = AutoConfig.from_pretrained(model_args.decoder_model_name_or_path ) # necessary for `from_encoder_decoder_pretrained` when `decoder_config` is passed a = True a = True a = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained( encoder_pretrained_model_name_or_path=model_args.encoder_model_name_or_path, decoder_pretrained_model_name_or_path=model_args.decoder_model_name_or_path, encoder_config=A, decoder_config=A, ) # GPT2 only has bos/eos tokens but not decoder_start/pad tokens a = decoder_config.decoder_start_token_id a = decoder_config.pad_token_id if decoder_start_token_id is None: a = decoder_config.bos_token_id if pad_token_id is None: a = decoder_config.eos_token_id # This is necessary to make Flax's generate() work a = decoder_config.eos_token_id a = decoder_start_token_id a = pad_token_id a = AutoImageProcessor.from_pretrained(model_args.encoder_model_name_or_path ) a = AutoTokenizer.from_pretrained(model_args.decoder_model_name_or_path ) a = tokenizer.convert_ids_to_tokens(model.config.pad_token_id ) model.save_pretrained(model_args.output_dir ) image_processor.save_pretrained(model_args.output_dir ) tokenizer.save_pretrained(model_args.output_dir ) if __name__ == "__main__": main()
107
import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class snake_case__ : """simple docstring""" def __init__( self : Tuple , __lowerCamelCase : Optional[int] , __lowerCamelCase : Dict=2 , __lowerCamelCase : Dict=32 , __lowerCamelCase : Tuple=16 , __lowerCamelCase : Tuple=3 , __lowerCamelCase : int=True , __lowerCamelCase : int=True , __lowerCamelCase : Any=32 , __lowerCamelCase : List[Any]=4 , __lowerCamelCase : Tuple=[0, 1, 2, 3] , __lowerCamelCase : Union[str, Any]=4 , __lowerCamelCase : Union[str, Any]=37 , __lowerCamelCase : Optional[int]="gelu" , __lowerCamelCase : str=0.1 , __lowerCamelCase : List[str]=0.1 , __lowerCamelCase : Optional[Any]=0.02 , __lowerCamelCase : Optional[int]=3 , __lowerCamelCase : List[Any]=[1, 3_84, 24, 24] , __lowerCamelCase : List[Any]=True , __lowerCamelCase : Optional[int]=None , ) -> Optional[int]: a = parent a = batch_size a = image_size a = patch_size a = num_channels a = is_training a = use_labels a = hidden_size a = num_hidden_layers a = backbone_out_indices a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = initializer_range a = num_labels a = backbone_featmap_shape a = scope a = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) a = (image_size // patch_size) ** 2 a = num_patches + 1 def __UpperCAmelCase ( self : Union[str, Any] ) -> str: a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a = None if self.use_labels: a = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) a = self.get_config() return config, pixel_values, labels def __UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: a = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, "hidden_sizes": [96, 1_92, 3_84, 7_68], "num_groups": 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=__lowerCamelCase , backbone_featmap_shape=self.backbone_featmap_shape , ) def __UpperCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Any , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] ) -> Optional[Any]: a = DPTModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() a = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCAmelCase ( self : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : Any ) -> str: a = self.num_labels a = DPTForDepthEstimation(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() a = model(__lowerCamelCase ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def __UpperCAmelCase ( self : str , __lowerCamelCase : List[Any] , __lowerCamelCase : str , __lowerCamelCase : Tuple ) -> Any: a = self.num_labels a = DPTForSemanticSegmentation(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() a = model(__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def __UpperCAmelCase ( self : str ) -> str: a = self.prepare_config_and_inputs() a , a , a = config_and_inputs a = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class snake_case__ (_UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () SCREAMING_SNAKE_CASE_ : Union[str, Any] = ( { """depth-estimation""": DPTForDepthEstimation, """feature-extraction""": DPTModel, """image-segmentation""": DPTForSemanticSegmentation, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ : Optional[int] = False SCREAMING_SNAKE_CASE_ : str = False SCREAMING_SNAKE_CASE_ : str = False def __UpperCAmelCase ( self : int ) -> List[str]: a = DPTModelTester(self ) a = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 ) def __UpperCAmelCase ( self : int ) -> List[str]: self.config_tester.run_common_tests() @unittest.skip(reason="DPT does not use inputs_embeds" ) def __UpperCAmelCase ( self : Optional[Any] ) -> List[str]: pass def __UpperCAmelCase ( self : List[str] ) -> Optional[Any]: a , a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a = model_class(__lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) a = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCamelCase , nn.Linear ) ) def __UpperCAmelCase ( self : Tuple ) -> List[str]: a , a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a = model_class(__lowerCamelCase ) a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a = [*signature.parameters.keys()] a = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def __UpperCAmelCase ( self : Any ) -> Union[str, Any]: a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def __UpperCAmelCase ( self : Any ) -> Dict: a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*__lowerCamelCase ) def __UpperCAmelCase ( self : List[str] ) -> Optional[int]: a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__lowerCamelCase ) def __UpperCAmelCase ( self : List[str] ) -> Optional[Any]: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue a , a = self.model_tester.prepare_config_and_inputs_for_common() a = True if model_class in get_values(__lowerCamelCase ): continue a = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.train() a = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) a = model(**__lowerCamelCase ).loss loss.backward() def __UpperCAmelCase ( self : Dict ) -> List[str]: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue a , a = self.model_tester.prepare_config_and_inputs_for_common() a = False a = True if model_class in get_values(__lowerCamelCase ) or not model_class.supports_gradient_checkpointing: continue a = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.gradient_checkpointing_enable() model.train() a = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) a = model(**__lowerCamelCase ).loss loss.backward() def __UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: a , a = self.model_tester.prepare_config_and_inputs_for_common() a = _config_zero_init(__lowerCamelCase ) for model_class in self.all_model_classes: a = model_class(config=__lowerCamelCase ) # Skip the check for the backbone a = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": a = [f"""{name}.{key}""" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def __UpperCAmelCase ( self : int ) -> Any: pass @slow def __UpperCAmelCase ( self : str ) -> Optional[int]: for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: a = DPTModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def __UpperCAmelCase ( self : Tuple ) -> Dict: # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type a , a = self.model_tester.prepare_config_and_inputs_for_common() a = "add" with self.assertRaises(__lowerCamelCase ): a = DPTForDepthEstimation(__lowerCamelCase ) def __magic_name__ ( ): '''simple docstring''' a = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision @slow class snake_case__ (unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : List[str] ) -> Optional[Any]: a = DPTImageProcessor.from_pretrained("Intel/dpt-hybrid-midas" ) a = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas" ).to(__lowerCamelCase ) a = prepare_img() a = image_processor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase ) # forward pass with torch.no_grad(): a = model(**__lowerCamelCase ) a = outputs.predicted_depth # verify the predicted depth a = torch.Size((1, 3_84, 3_84) ) self.assertEqual(predicted_depth.shape , __lowerCamelCase ) a = torch.tensor( [[[5.6_437, 5.6_146, 5.6_511], [5.4_371, 5.5_649, 5.5_958], [5.5_215, 5.5_184, 5.5_293]]] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 1_00 , __lowerCamelCase , atol=1e-4 ) )
107
1
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax.numpy as jnp from jax import random from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .scheduling_utils_flax import FlaxSchedulerMixin @flax.struct.dataclass class UpperCamelCase : """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = None SCREAMING_SNAKE_CASE_ : Optional[jnp.ndarray] = None SCREAMING_SNAKE_CASE_ : Optional[jnp.ndarray] = None # sigma(t_i) @classmethod def lowerCamelCase__ ( cls ): return cls() @dataclass class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : jnp.ndarray SCREAMING_SNAKE_CASE_ : jnp.ndarray SCREAMING_SNAKE_CASE_ : KarrasVeSchedulerState class UpperCamelCase ( snake_case , snake_case ): """simple docstring""" @property def lowerCamelCase__ ( self ): return True @register_to_config def __init__( self ,UpperCAmelCase_ = 0.02 ,UpperCAmelCase_ = 1_00 ,UpperCAmelCase_ = 1.007 ,UpperCAmelCase_ = 80 ,UpperCAmelCase_ = 0.05 ,UpperCAmelCase_ = 50 ,): pass def lowerCamelCase__ ( self ): return KarrasVeSchedulerState.create() def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ = () ): _lowercase : Dict = jnp.arange(0 ,UpperCAmelCase_ )[::-1].copy() _lowercase : str = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in timesteps ] return state.replace( num_inference_steps=UpperCAmelCase_ ,schedule=jnp.array(UpperCAmelCase_ ,dtype=jnp.floataa ) ,timesteps=UpperCAmelCase_ ,) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,): if self.config.s_min <= sigma <= self.config.s_max: _lowercase : Any = min(self.config.s_churn / state.num_inference_steps ,2**0.5 - 1 ) else: _lowercase : str = 0 # sample eps ~ N(0, S_noise^2 * I) _lowercase : Union[str, Any] = random.split(UpperCAmelCase_ ,num=1 ) _lowercase : str = self.config.s_noise * random.normal(key=UpperCAmelCase_ ,shape=sample.shape ) _lowercase : Optional[Any] = sigma + gamma * sigma _lowercase : int = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ = True ,): _lowercase : Any = sample_hat + sigma_hat * model_output _lowercase : List[str] = (sample_hat - pred_original_sample) / sigma_hat _lowercase : Tuple = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=UpperCAmelCase_ ,derivative=UpperCAmelCase_ ,state=UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ = True ,): _lowercase : Any = sample_prev + sigma_prev * model_output _lowercase : Optional[Any] = (sample_prev - pred_original_sample) / sigma_prev _lowercase : Tuple = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=UpperCAmelCase_ ,derivative=UpperCAmelCase_ ,state=UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ): raise NotImplementedError()
351
"""simple docstring""" import re from filelock import FileLock try: import nltk UpperCAmelCase: List[str] = True except (ImportError, ModuleNotFoundError): UpperCAmelCase: int = False if NLTK_AVAILABLE: with FileLock(""".lock""") as lock: nltk.download("""punkt""", quiet=True) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): re.sub("""<n>""" , """""" , __UpperCAmelCase ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(__UpperCAmelCase ) )
336
0
import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class lowercase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : Union[str, Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : Tuple=13 , __UpperCAmelCase : Optional[int]=7 , __UpperCAmelCase : Tuple=True , __UpperCAmelCase : Optional[int]=True , __UpperCAmelCase : Optional[Any]=True , __UpperCAmelCase : Dict=True , __UpperCAmelCase : str=99 , __UpperCAmelCase : Optional[int]=32 , __UpperCAmelCase : Any=5 , __UpperCAmelCase : List[str]=4 , __UpperCAmelCase : List[Any]=37 , __UpperCAmelCase : str="gelu" , __UpperCAmelCase : Optional[Any]=0.1 , __UpperCAmelCase : List[Any]=0.1 , __UpperCAmelCase : Dict=512 , __UpperCAmelCase : List[Any]=16 , __UpperCAmelCase : Tuple=2 , __UpperCAmelCase : List[Any]=0.02 , __UpperCAmelCase : Union[str, Any]=4 , ) ->str: """simple docstring""" a = parent a = batch_size a = seq_length a = is_training a = use_attention_mask a = use_token_type_ids a = use_labels a = vocab_size a = hidden_size a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = max_position_embeddings a = type_vocab_size a = type_sequence_label_size a = initializer_range a = num_choices def __lowerCAmelCase ( self : Dict ) ->Optional[int]: """simple docstring""" a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a = None if self.use_attention_mask: a = random_attention_mask([self.batch_size, self.seq_length] ) a = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=__UpperCAmelCase , ) return config, input_ids, attention_mask def __lowerCAmelCase ( self : List[str] ) ->Union[str, Any]: """simple docstring""" a = self.prepare_config_and_inputs() a , a , a = config_and_inputs a = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class lowercase_ ( lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def __lowerCAmelCase ( self : Optional[int] ) ->Tuple: """simple docstring""" a = FlaxDistilBertModelTester(self ) @slow def __lowerCAmelCase ( self : Dict ) ->Any: """simple docstring""" for model_class_name in self.all_model_classes: a = model_class_name.from_pretrained('''distilbert-base-uncased''' ) a = model(np.ones((1, 1) ) ) self.assertIsNotNone(__UpperCAmelCase ) @require_flax class lowercase_ ( unittest.TestCase ): '''simple docstring''' @slow def __lowerCAmelCase ( self : Optional[int] ) ->List[Any]: """simple docstring""" a = FlaxDistilBertModel.from_pretrained('''distilbert-base-uncased''' ) a = np.array([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) a = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) a = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase )[0] a = (1, 11, 768) self.assertEqual(output.shape , __UpperCAmelCase ) a = np.array([[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , __UpperCAmelCase , atol=1e-4 ) )
0
def _a ( a :int ) -> list: # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError('''The given input must be positive''' ) # get the generated string sequence a = gray_code_sequence_string(a ) # # convert them to integers for i in range(len(a ) ): a = int(sequence[i] , 2 ) return sequence def _a ( a :int ) -> list: # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] a = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits a = gray_code_sequence_string(bit_count - 1 ) a = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): a = '''0''' + smaller_sequence[i] sequence.append(a ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): a = '''1''' + smaller_sequence[i] sequence.append(a ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
0
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case : Union[str, Any] = logging.get_logger(__name__) snake_case : Optional[Any] = { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/config.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/config.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json" ), "distilbert-base-uncased-finetuned-sst-2-english": ( "https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json" ), } class _snake_case ( snake_case ): UpperCamelCase__ = 'distilbert' UpperCamelCase__ = { 'hidden_size': 'dim', 'num_attention_heads': 'n_heads', 'num_hidden_layers': 'n_layers', } def __init__( self , _a=30_522 , _a=512 , _a=False , _a=6 , _a=12 , _a=768 , _a=4 * 768 , _a=0.1 , _a=0.1 , _a="gelu" , _a=0.02 , _a=0.1 , _a=0.2 , _a=0 , **_a , ): __magic_name__ : int = vocab_size __magic_name__ : str = max_position_embeddings __magic_name__ : Union[str, Any] = sinusoidal_pos_embds __magic_name__ : str = n_layers __magic_name__ : Optional[int] = n_heads __magic_name__ : str = dim __magic_name__ : List[str] = hidden_dim __magic_name__ : Dict = dropout __magic_name__ : Optional[Any] = attention_dropout __magic_name__ : int = activation __magic_name__ : Optional[int] = initializer_range __magic_name__ : List[str] = qa_dropout __magic_name__ : Tuple = seq_classif_dropout super().__init__(**_a , pad_token_id=_a ) class _snake_case ( snake_case ): @property def SCREAMING_SNAKE_CASE ( self ): if self.task == "multiple-choice": __magic_name__ : List[str] = {0: "batch", 1: "choice", 2: "sequence"} else: __magic_name__ : Dict = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
41
def lowerCAmelCase_ ( _snake_case : int ) -> bool: '''simple docstring''' if not isinstance(_snake_case , _snake_case ): __magic_name__ : Union[str, Any] = F'''Input value of [number={number}] must be an integer''' raise TypeError(_snake_case ) if number < 0: return False __magic_name__ : List[str] = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
41
1
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType A_ :Any = logging.get_logger(__name__) A_ :List[str] = { '''openai/imagegpt-small''': '''''', '''openai/imagegpt-medium''': '''''', '''openai/imagegpt-large''': '''''', } class __A ( a ): """simple docstring""" UpperCamelCase__ : List[str] ="""imagegpt""" UpperCamelCase__ : int =["""past_key_values"""] UpperCamelCase__ : Optional[int] ={ """hidden_size""": """n_embd""", """max_position_embeddings""": """n_positions""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , lowerCamelCase__=512 + 1 , lowerCamelCase__=32 * 32 , lowerCamelCase__=512 , lowerCamelCase__=24 , lowerCamelCase__=8 , lowerCamelCase__=None , lowerCamelCase__="quick_gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=1E-5 , lowerCamelCase__=0.02 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__=False , lowerCamelCase__=False , **lowerCamelCase__ , ): """simple docstring""" __UpperCamelCase : Any =vocab_size __UpperCamelCase : Optional[Any] =n_positions __UpperCamelCase : List[Any] =n_embd __UpperCamelCase : Optional[Any] =n_layer __UpperCamelCase : Dict =n_head __UpperCamelCase : Union[str, Any] =n_inner __UpperCamelCase : Union[str, Any] =activation_function __UpperCamelCase : List[Any] =resid_pdrop __UpperCamelCase : int =embd_pdrop __UpperCamelCase : Tuple =attn_pdrop __UpperCamelCase : Optional[Any] =layer_norm_epsilon __UpperCamelCase : Tuple =initializer_range __UpperCamelCase : Any =scale_attn_weights __UpperCamelCase : int =use_cache __UpperCamelCase : Union[str, Any] =scale_attn_by_inverse_layer_idx __UpperCamelCase : int =reorder_and_upcast_attn __UpperCamelCase : List[str] =tie_word_embeddings super().__init__(tie_word_embeddings=lowerCamelCase__ , **lowerCamelCase__ ) class __A ( a ): """simple docstring""" @property def __lowercase ( self ): """simple docstring""" return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ] ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ = 1 , lowerCamelCase__ = -1 , lowerCamelCase__ = False , lowerCamelCase__ = None , lowerCamelCase__ = 3 , lowerCamelCase__ = 32 , lowerCamelCase__ = 32 , ): """simple docstring""" __UpperCamelCase : Optional[Any] =self._generate_dummy_images(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : Any =dict(preprocessor(images=lowerCamelCase__ , return_tensors=lowerCamelCase__ ) ) return inputs
71
'''simple docstring''' from collections.abc import Generator from math import sin def lowerCAmelCase (__A): """simple docstring""" if len(__A) != 32: raise ValueError('''Input must be of length 32''') _a = b'''''' for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def lowerCAmelCase (__A): """simple docstring""" if i < 0: raise ValueError('''Input must be non-negative''') _a = format(__A , '''08x''')[-8:] _a = b'''''' for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('''utf-8''') return little_endian_hex def lowerCAmelCase (__A): """simple docstring""" _a = b'''''' for char in message: bit_string += format(__A , '''08b''').encode('''utf-8''') _a = format(len(__A) , '''064b''').encode('''utf-8''') # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(__A) % 512 != 448: bit_string += b"0" bit_string += to_little_endian(start_len[32:]) + to_little_endian(start_len[:32]) return bit_string def lowerCAmelCase (__A): """simple docstring""" if len(__A) % 512 != 0: raise ValueError('''Input must have length that\'s a multiple of 512''') for pos in range(0 , len(__A) , 512): _a = bit_string[pos : pos + 512] _a = [] for i in range(0 , 512 , 32): block_words.append(int(to_little_endian(block[i : i + 32]) , 2)) yield block_words def lowerCAmelCase (__A): """simple docstring""" if i < 0: raise ValueError('''Input must be non-negative''') _a = format(__A , '''032b''') _a = '''''' for c in i_str: new_str += "1" if c == "0" else "0" return int(__A , 2) def lowerCAmelCase (__A , __A): """simple docstring""" return (a + b) % 2**32 def lowerCAmelCase (__A , __A): """simple docstring""" if i < 0: raise ValueError('''Input must be non-negative''') if shift < 0: raise ValueError('''Shift must be non-negative''') return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def lowerCAmelCase (__A): """simple docstring""" _a = preprocess(__A) _a = [int(2**32 * abs(sin(i + 1))) for i in range(64)] # Starting states _a = 0x67_452_301 _a = 0xEF_CDA_B89 _a = 0x98_BAD_CFE _a = 0x10_325_476 _a = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(__A): _a = aa _a = ba _a = ca _a = da # Hash current chunk for i in range(64): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f _a = d ^ (b & (c ^ d)) _a = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f _a = c ^ (d & (b ^ c)) _a = (5 * i + 1) % 16 elif i <= 47: _a = b ^ c ^ d _a = (3 * i + 5) % 16 else: _a = c ^ (b | not_aa(__A)) _a = (7 * i) % 16 _a = (f + a + added_consts[i] + block_words[g]) % 2**32 _a = d _a = c _a = b _a = sum_aa(__A , left_rotate_aa(__A , shift_amounts[i])) # Add hashed chunk to running total _a = sum_aa(__A , __A) _a = sum_aa(__A , __A) _a = sum_aa(__A , __A) _a = sum_aa(__A , __A) _a = reformat_hex(__A) + reformat_hex(__A) + reformat_hex(__A) + reformat_hex(__A) return digest if __name__ == "__main__": import doctest doctest.testmod()
211
0
'''simple docstring''' import datasets from .evaluate import evaluate UpperCamelCase__ = '''\ @article{hendrycks2021cuad, title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review}, author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball}, journal={arXiv preprint arXiv:2103.06268}, year={2021} } ''' UpperCamelCase__ = ''' This metric wrap the official scoring script for version 1 of the Contract Understanding Atticus Dataset (CUAD). Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510 commercial legal contracts that have been manually labeled to identify 41 categories of important clauses that lawyers look for when reviewing contracts in connection with corporate transactions. ''' UpperCamelCase__ = ''' Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall). Args: predictions: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair as given in the references (see below) - \'prediction_text\': list of possible texts for the answer, as a list of strings depending on a threshold on the confidence probability of each prediction. references: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair (see above), - \'answers\': a Dict in the CUAD dataset format { \'text\': list of possible texts for the answer, as a list of strings \'answer_start\': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: \'exact_match\': Exact match (the normalized answer exactly match the gold answer) \'f1\': The F-score of predicted tokens versus the gold answer \'aupr\': Area Under the Precision-Recall curve \'prec_at_80_recall\': Precision at 80% recall \'prec_at_90_recall\': Precision at 90% recall Examples: >>> predictions = [{\'prediction_text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\'], \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}] >>> references = [{\'answers\': {\'answer_start\': [143, 49], \'text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\']}, \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}] >>> cuad_metric = datasets.load_metric(\"cuad\") >>> results = cuad_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 100.0, \'f1\': 100.0, \'aupr\': 0.0, \'prec_at_80_recall\': 1.0, \'prec_at_90_recall\': 1.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase_ ( datasets.Metric ): def lowercase_ ( self : str ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': { '''id''': datasets.Value('''string''' ), '''prediction_text''': datasets.features.Sequence(datasets.Value('''string''' ) ), }, '''references''': { '''id''': datasets.Value('''string''' ), '''answers''': datasets.features.Sequence( { '''text''': datasets.Value('''string''' ), '''answer_start''': datasets.Value('''int32''' ), } ), }, } ) , codebase_urls=['''https://www.atticusprojectai.org/cuad'''] , reference_urls=['''https://www.atticusprojectai.org/cuad'''] , ) def lowercase_ ( self : int , _A : int , _A : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = {prediction['''id''']: prediction['''prediction_text'''] for prediction in predictions} UpperCAmelCase__ : Union[str, Any] = [ { '''paragraphs''': [ { '''qas''': [ { '''answers''': [{'''text''': answer_text} for answer_text in ref['''answers''']['''text''']], '''id''': ref['''id'''], } for ref in references ] } ] } ] UpperCAmelCase__ : Optional[int] = evaluate(dataset=__UpperCamelCase , predictions=__UpperCamelCase ) return score
360
'''simple docstring''' import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin UpperCamelCase__ = logging.get_logger(__name__) enable_full_determinism() class lowerCamelCase_ ( __a , __a , unittest.TestCase ): lowerCAmelCase__ = UNetaDModel lowerCAmelCase__ = 'sample' @property def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = 4 UpperCAmelCase__ : str = 3 UpperCAmelCase__ : str = (32, 32) UpperCAmelCase__ : List[Any] = floats_tensor((batch_size, num_channels) + sizes ).to(_A ) UpperCAmelCase__ : Tuple = torch.tensor([10] ).to(_A ) return {"sample": noise, "timestep": time_step} @property def lowercase_ ( self : int ): '''simple docstring''' return (3, 32, 32) @property def lowercase_ ( self : Dict ): '''simple docstring''' return (3, 32, 32) def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Tuple = { '''block_out_channels''': (32, 64), '''down_block_types''': ('''DownBlock2D''', '''AttnDownBlock2D'''), '''up_block_types''': ('''AttnUpBlock2D''', '''UpBlock2D'''), '''attention_head_dim''': 3, '''out_channels''': 3, '''in_channels''': 3, '''layers_per_block''': 2, '''sample_size''': 32, } UpperCAmelCase__ : Tuple = self.dummy_input return init_dict, inputs_dict class lowerCamelCase_ ( __a , __a , unittest.TestCase ): lowerCAmelCase__ = UNetaDModel lowerCAmelCase__ = 'sample' @property def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : List[str] = 4 UpperCAmelCase__ : Dict = 4 UpperCAmelCase__ : List[str] = (32, 32) UpperCAmelCase__ : List[str] = floats_tensor((batch_size, num_channels) + sizes ).to(_A ) UpperCAmelCase__ : List[Any] = torch.tensor([10] ).to(_A ) return {"sample": noise, "timestep": time_step} @property def lowercase_ ( self : Tuple ): '''simple docstring''' return (4, 32, 32) @property def lowercase_ ( self : List[str] ): '''simple docstring''' return (4, 32, 32) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : List[str] = { '''sample_size''': 32, '''in_channels''': 4, '''out_channels''': 4, '''layers_per_block''': 2, '''block_out_channels''': (32, 64), '''attention_head_dim''': 32, '''down_block_types''': ('''DownBlock2D''', '''DownBlock2D'''), '''up_block_types''': ('''UpBlock2D''', '''UpBlock2D'''), } UpperCAmelCase__ : Optional[Any] = self.dummy_input return init_dict, inputs_dict def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : int = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(_A ) UpperCAmelCase__ : Dict = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Any = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=_A ) model.to(_A ) UpperCAmelCase__ : Dict = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=_A ) model_accelerate.to(_A ) model_accelerate.eval() UpperCAmelCase__ : Tuple = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) UpperCAmelCase__ : Union[str, Any] = noise.to(_A ) UpperCAmelCase__ : Optional[Any] = torch.tensor([10] * noise.shape[0] ).to(_A ) UpperCAmelCase__ : Any = model_accelerate(_A , _A )['''sample'''] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() UpperCAmelCase__ , UpperCAmelCase__ : Dict = UNetaDModel.from_pretrained( '''fusing/unet-ldm-dummy-update''' , output_loading_info=_A , low_cpu_mem_usage=_A ) model_normal_load.to(_A ) model_normal_load.eval() UpperCAmelCase__ : Optional[int] = model_normal_load(_A , _A )['''sample'''] assert torch_all_close(_A , _A , rtol=1e-3 ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' ) model.eval() model.to(_A ) UpperCAmelCase__ : Union[str, Any] = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) UpperCAmelCase__ : str = noise.to(_A ) UpperCAmelCase__ : str = torch.tensor([10] * noise.shape[0] ).to(_A ) with torch.no_grad(): UpperCAmelCase__ : Optional[int] = model(_A , _A ).sample UpperCAmelCase__ : List[Any] = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off UpperCAmelCase__ : Tuple = torch.tensor([-1_3.3_2_5_8, -2_0.1_1_0_0, -1_5.9_8_7_3, -1_7.6_6_1_7, -2_3.0_5_9_6, -1_7.9_4_1_9, -1_3.3_6_7_5, -1_6.1_8_8_9, -1_2.3_8_0_0] ) # fmt: on self.assertTrue(torch_all_close(_A , _A , rtol=1e-3 ) ) class lowerCamelCase_ ( __a , __a , unittest.TestCase ): lowerCAmelCase__ = UNetaDModel lowerCAmelCase__ = 'sample' @property def lowercase_ ( self : Any , _A : str=(32, 32) ): '''simple docstring''' UpperCAmelCase__ : Tuple = 4 UpperCAmelCase__ : List[str] = 3 UpperCAmelCase__ : str = floats_tensor((batch_size, num_channels) + sizes ).to(_A ) UpperCAmelCase__ : Dict = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa , device=_A ) return {"sample": noise, "timestep": time_step} @property def lowercase_ ( self : List[str] ): '''simple docstring''' return (3, 32, 32) @property def lowercase_ ( self : List[Any] ): '''simple docstring''' return (3, 32, 32) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : List[str] = { '''block_out_channels''': [32, 64, 64, 64], '''in_channels''': 3, '''layers_per_block''': 1, '''out_channels''': 3, '''time_embedding_type''': '''fourier''', '''norm_eps''': 1e-6, '''mid_block_scale_factor''': math.sqrt(2.0 ), '''norm_num_groups''': None, '''down_block_types''': [ '''SkipDownBlock2D''', '''AttnSkipDownBlock2D''', '''SkipDownBlock2D''', '''SkipDownBlock2D''', ], '''up_block_types''': [ '''SkipUpBlock2D''', '''SkipUpBlock2D''', '''AttnSkipUpBlock2D''', '''SkipUpBlock2D''', ], } UpperCAmelCase__ : Tuple = self.dummy_input return init_dict, inputs_dict @slow def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : str = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(_A ) UpperCAmelCase__ : List[str] = self.dummy_input UpperCAmelCase__ : Dict = floats_tensor((4, 3) + (256, 256) ).to(_A ) UpperCAmelCase__ : Optional[Any] = noise UpperCAmelCase__ : Any = model(**_A ) assert image is not None, "Make sure output is not None" @slow def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : int = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' ) model.to(_A ) UpperCAmelCase__ : Optional[Any] = 4 UpperCAmelCase__ : List[str] = 3 UpperCAmelCase__ : Dict = (256, 256) UpperCAmelCase__ : Optional[int] = torch.ones((batch_size, num_channels) + sizes ).to(_A ) UpperCAmelCase__ : Union[str, Any] = torch.tensor(batch_size * [1e-4] ).to(_A ) with torch.no_grad(): UpperCAmelCase__ : Optional[int] = model(_A , _A ).sample UpperCAmelCase__ : Any = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off UpperCAmelCase__ : Tuple = torch.tensor([-4_8_4_2.8_6_9_1, -6_4_9_9.6_6_3_1, -3_8_0_0.1_9_5_3, -7_9_7_8.2_6_8_6, -1_0_9_8_0.7_1_2_9, -2_0_0_2_8.8_5_3_5, 8_1_4_8.2_8_2_2, 2_3_4_2.2_9_0_5, 5_6_7.7_6_0_8] ) # fmt: on self.assertTrue(torch_all_close(_A , _A , rtol=1e-2 ) ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Dict = UNetaDModel.from_pretrained('''fusing/ncsnpp-ffhq-ve-dummy-update''' ) model.to(_A ) UpperCAmelCase__ : str = 4 UpperCAmelCase__ : Any = 3 UpperCAmelCase__ : int = (32, 32) UpperCAmelCase__ : Optional[Any] = torch.ones((batch_size, num_channels) + sizes ).to(_A ) UpperCAmelCase__ : Optional[Any] = torch.tensor(batch_size * [1e-4] ).to(_A ) with torch.no_grad(): UpperCAmelCase__ : int = model(_A , _A ).sample UpperCAmelCase__ : Dict = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off UpperCAmelCase__ : Any = torch.tensor([-0.0_3_2_5, -0.0_9_0_0, -0.0_8_6_9, -0.0_3_3_2, -0.0_7_2_5, -0.0_2_7_0, -0.0_1_0_1, 0.0_2_2_7, 0.0_2_5_6] ) # fmt: on self.assertTrue(torch_all_close(_A , _A , rtol=1e-2 ) ) def lowercase_ ( self : Tuple ): '''simple docstring''' pass
299
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Union[str, Any] = {"ctrl": "https://huggingface.co/ctrl/resolve/main/config.json"} class _snake_case ( lowercase_ ): lowerCAmelCase_ : Tuple = "ctrl" lowerCAmelCase_ : List[str] = ["past_key_values"] lowerCAmelCase_ : int = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , a__=246_534 , a__=256 , a__=1_280 , a__=8_192 , a__=48 , a__=16 , a__=0.1 , a__=0.1 , a__=1e-6 , a__=0.0_2 , a__=True , **a__ , ) -> Any: '''simple docstring''' snake_case_ = vocab_size snake_case_ = n_positions snake_case_ = n_embd snake_case_ = n_layer snake_case_ = n_head snake_case_ = dff snake_case_ = resid_pdrop snake_case_ = embd_pdrop snake_case_ = layer_norm_epsilon snake_case_ = initializer_range snake_case_ = use_cache super().__init__(**a__ )
85
'''simple docstring''' import os _SCREAMING_SNAKE_CASE : int = {"I": 1, "V": 5, "X": 10, "L": 50, "C": 100, "D": 500, "M": 1000} def UpperCamelCase_( snake_case : str ): '''simple docstring''' snake_case_ = 0 snake_case_ = 0 while index < len(snake_case ) - 1: snake_case_ = SYMBOLS[numerals[index]] snake_case_ = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def UpperCamelCase_( snake_case : int ): '''simple docstring''' snake_case_ = "" snake_case_ = num // 1_0_0_0 numerals += m_count * "M" num %= 1_0_0_0 snake_case_ = num // 1_0_0 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 1_0_0 snake_case_ = num // 1_0 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 1_0 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def UpperCamelCase_( snake_case : str = "/p089_roman.txt" ): '''simple docstring''' snake_case_ = 0 with open(os.path.dirname(snake_case ) + roman_numerals_filename ) as filea: snake_case_ = filea.readlines() for line in lines: snake_case_ = line.strip() snake_case_ = parse_roman_numerals(snake_case ) snake_case_ = generate_roman_numerals(snake_case ) savings += len(snake_case ) - len(snake_case ) return savings if __name__ == "__main__": print(F"{solution() = }")
85
1
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=a_ ) class _lowerCamelCase ( a_ ): _lowerCamelCase :str = field(default="audio-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) _lowerCamelCase :ClassVar[Features] = Features({"audio": Audio()} ) _lowerCamelCase :ClassVar[Features] = Features({"labels": ClassLabel} ) _lowerCamelCase :str = "audio" _lowerCamelCase :str = "labels" def _lowerCAmelCase ( self : str , UpperCamelCase : Optional[int] ) -> Union[str, Any]: """simple docstring""" if self.label_column not in features: raise ValueError(f"""Column {self.label_column} is not present in features.""" ) if not isinstance(features[self.label_column] , UpperCamelCase ): raise ValueError(f"""Column {self.label_column} is not a ClassLabel.""" ) lowerCAmelCase__ : str = copy.deepcopy(self ) lowerCAmelCase__ : Optional[int] = self.label_schema.copy() lowerCAmelCase__ : List[Any] = features[self.label_column] lowerCAmelCase__ : Optional[int] = label_schema return task_template @property def _lowerCAmelCase ( self : List[Any] ) -> Dict[str, str]: """simple docstring""" return { self.audio_column: "audio", self.label_column: "labels", }
212
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=a_ ) class _lowerCamelCase ( a_ ): _lowerCamelCase :str = field(default="audio-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) _lowerCamelCase :ClassVar[Features] = Features({"audio": Audio()} ) _lowerCamelCase :ClassVar[Features] = Features({"labels": ClassLabel} ) _lowerCamelCase :str = "audio" _lowerCamelCase :str = "labels" def _lowerCAmelCase ( self : str , UpperCamelCase : Optional[int] ) -> Union[str, Any]: """simple docstring""" if self.label_column not in features: raise ValueError(f"""Column {self.label_column} is not present in features.""" ) if not isinstance(features[self.label_column] , UpperCamelCase ): raise ValueError(f"""Column {self.label_column} is not a ClassLabel.""" ) lowerCAmelCase__ : str = copy.deepcopy(self ) lowerCAmelCase__ : Optional[int] = self.label_schema.copy() lowerCAmelCase__ : List[Any] = features[self.label_column] lowerCAmelCase__ : Optional[int] = label_schema return task_template @property def _lowerCAmelCase ( self : List[Any] ) -> Dict[str, str]: """simple docstring""" return { self.audio_column: "audio", self.label_column: "labels", }
212
1
'''simple docstring''' import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py lowercase__ : List[Any] = '''src/transformers''' lowercase__ : List[Any] = '''docs/source/en''' lowercase__ : Tuple = '''.''' def _lowerCAmelCase ( __snake_case : int , __snake_case : Optional[Any] , __snake_case : int ) -> Union[str, Any]: with open(__snake_case , 'r' , encoding='utf-8' , newline='\n' ) as f: __A : Optional[int] = f.readlines() # Find the start prompt. __A : str = 0 while not lines[start_index].startswith(__snake_case ): start_index += 1 start_index += 1 __A : Tuple = start_index while not lines[end_index].startswith(__snake_case ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | lowercase__ : str = '''Model|Encoder|Decoder|ForConditionalGeneration''' # Regexes that match TF/Flax/PT model names. lowercase__ : List[str] = re.compile(r'''TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') lowercase__ : List[str] = re.compile(r'''Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. lowercase__ : List[Any] = re.compile(r'''(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') # This is to make sure the transformers module imported is the one in the repo. lowercase__ : Optional[int] = direct_transformers_import(TRANSFORMERS_PATH) def _lowerCAmelCase ( __snake_case : List[Any] ) -> int: __A : List[Any] = re.finditer('.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)' , __snake_case ) return [m.group(0 ) for m in matches] def _lowerCAmelCase ( __snake_case : int , __snake_case : str ) -> List[str]: __A : Optional[Any] = 2 if text == '✅' or text == '❌' else len(__snake_case ) __A : List[str] = (width - text_length) // 2 __A : Tuple = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def _lowerCAmelCase ( ) -> int: __A : Any = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES __A : Dict = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } __A : Tuple = {name: config.replace('Config' , '' ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. __A : Optional[int] = collections.defaultdict(__snake_case ) __A : Dict = collections.defaultdict(__snake_case ) __A : Optional[Any] = collections.defaultdict(__snake_case ) __A : Any = collections.defaultdict(__snake_case ) __A : Tuple = collections.defaultdict(__snake_case ) # Let's lookup through all transformers object (once). for attr_name in dir(__snake_case ): __A : Tuple = None if attr_name.endswith('Tokenizer' ): __A : str = slow_tokenizers __A : List[Any] = attr_name[:-9] elif attr_name.endswith('TokenizerFast' ): __A : Tuple = fast_tokenizers __A : int = attr_name[:-13] elif _re_tf_models.match(__snake_case ) is not None: __A : Optional[int] = tf_models __A : Optional[Any] = _re_tf_models.match(__snake_case ).groups()[0] elif _re_flax_models.match(__snake_case ) is not None: __A : List[Any] = flax_models __A : Optional[Any] = _re_flax_models.match(__snake_case ).groups()[0] elif _re_pt_models.match(__snake_case ) is not None: __A : List[Any] = pt_models __A : Any = _re_pt_models.match(__snake_case ).groups()[0] if lookup_dict is not None: while len(__snake_case ) > 0: if attr_name in model_name_to_prefix.values(): __A : Dict = True break # Try again after removing the last word in the name __A : Optional[int] = ''.join(camel_case_split(__snake_case )[:-1] ) # Let's build that table! __A : List[str] = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) __A : List[str] = ['Model', 'Tokenizer slow', 'Tokenizer fast', 'PyTorch support', 'TensorFlow support', 'Flax Support'] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). __A : str = [len(__snake_case ) + 2 for c in columns] __A : Tuple = max([len(__snake_case ) for name in model_names] ) + 2 # Build the table per se __A : Any = '|' + '|'.join([_center_text(__snake_case , __snake_case ) for c, w in zip(__snake_case , __snake_case )] ) + '|\n' # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([':' + '-' * (w - 2) + ':' for w in widths] ) + "|\n" __A : Union[str, Any] = {True: '✅', False: '❌'} for name in model_names: __A : List[str] = model_name_to_prefix[name] __A : Optional[int] = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(__snake_case , __snake_case ) for l, w in zip(__snake_case , __snake_case )] ) + "|\n" return table def _lowerCAmelCase ( __snake_case : Dict=False ) -> str: __A ,__A ,__A ,__A : List[str] = _find_text_in_file( filename=os.path.join(__snake_case , 'index.md' ) , start_prompt='<!--This table is updated automatically from the auto modules' , end_prompt='<!-- End table-->' , ) __A : Optional[Any] = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(__snake_case , 'index.md' ) , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( 'The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.' ) if __name__ == "__main__": lowercase__ : str = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') lowercase__ : Union[str, Any] = parser.parse_args() check_model_table(args.fix_and_overwrite)
190
'''simple docstring''' from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = ['''image_processor''', '''tokenizer'''] lowerCAmelCase = '''BlipImageProcessor''' lowerCAmelCase = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : int = False super().__init__(_UpperCAmelCase , _UpperCAmelCase) __A : Optional[int] = self.image_processor def __call__( self , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = True , _UpperCAmelCase = False , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = 0 , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = True , _UpperCAmelCase = None , **_UpperCAmelCase , ): '''simple docstring''' if images is None and text is None: raise ValueError('You have to specify either images or text.') # Get only text if images is None: __A : int = self.tokenizer __A : Optional[Any] = self.tokenizer( text=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , stride=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_overflowing_tokens=_UpperCAmelCase , return_special_tokens_mask=_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , return_length=_UpperCAmelCase , verbose=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase , ) return text_encoding # add pixel_values __A : List[Any] = self.image_processor(_UpperCAmelCase , return_tensors=_UpperCAmelCase) if text is not None: __A : Optional[Any] = self.tokenizer( text=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , stride=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_overflowing_tokens=_UpperCAmelCase , return_special_tokens_mask=_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , return_length=_UpperCAmelCase , verbose=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase , ) else: __A : int = None if text_encoding is not None: encoding_image_processor.update(_UpperCAmelCase) return encoding_image_processor def SCREAMING_SNAKE_CASE ( self , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase) @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[str] = self.tokenizer.model_input_names __A : Tuple = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
190
1
"""simple docstring""" def _lowercase ( __lowerCAmelCase ) -> Any: if n_term == "": return [] SCREAMING_SNAKE_CASE__ : Union[str, Any] = [] for temp in range(int(SCREAMING_SNAKE_CASE_ ) ): series.append(F'''1/{temp + 1}''' if series else """1""" ) return series if __name__ == "__main__": a :Any = input("Enter the last number (nth term) of the Harmonic Series") print("Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n") print(harmonic_series(nth_term))
363
"""simple docstring""" def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> int: return number | (1 << position) def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> int: return number & ~(1 << position) def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> int: return number ^ (1 << position) def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> bool: return ((number >> position) & 1) == 1 def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> int: return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
56
0
"""simple docstring""" import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() __A = logging.get_logger(__name__) __A = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''encoder.layer_norm_for_extract''': '''layer_norm_for_extract''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''label_embs_concat''': '''label_embeddings_concat''', '''mask_emb''': '''masked_spec_embed''', '''spk_proj''': '''speaker_proj''', } __A = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', '''label_embeddings_concat''', '''speaker_proj''', '''layer_norm_for_extract''', ] def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> int: for attribute in key.split("." ): __lowerCAmelCase: Optional[int] = getattr(__lowerCAmelCase , __lowerCAmelCase ) if weight_type is not None: __lowerCAmelCase: Optional[int] = getattr(__lowerCAmelCase , __lowerCAmelCase ).shape else: __lowerCAmelCase: Any = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": __lowerCAmelCase: Dict = value elif weight_type == "weight_g": __lowerCAmelCase: List[str] = value elif weight_type == "weight_v": __lowerCAmelCase: Any = value elif weight_type == "bias": __lowerCAmelCase: List[str] = value else: __lowerCAmelCase: int = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Optional[Any]: __lowerCAmelCase: int = [] __lowerCAmelCase: List[Any] = fairseq_model.state_dict() __lowerCAmelCase: Union[str, Any] = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): __lowerCAmelCase: Union[str, Any] = False if "conv_layers" in name: load_conv_layer( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , hf_model.config.feat_extract_norm == "group" , ) __lowerCAmelCase: List[str] = True else: for key, mapped_key in MAPPING.items(): __lowerCAmelCase: Dict = "unispeech_sat." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: if "layer_norm_for_extract" in name and (".".join(name.split("." )[:-1] ) != key): # special case since naming is very similar continue __lowerCAmelCase: List[str] = True if "*" in mapped_key: __lowerCAmelCase: Dict = name.split(__lowerCAmelCase )[0].split("." )[-2] __lowerCAmelCase: Optional[int] = mapped_key.replace("*" , __lowerCAmelCase ) if "weight_g" in name: __lowerCAmelCase: Optional[Any] = "weight_g" elif "weight_v" in name: __lowerCAmelCase: Any = "weight_v" elif "bias" in name: __lowerCAmelCase: int = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj __lowerCAmelCase: Tuple = "weight" else: __lowerCAmelCase: List[Any] = None set_recursively(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) continue if not is_used: unused_weights.append(__lowerCAmelCase ) logger.warning(F"Unused weights: {unused_weights}" ) def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> str: __lowerCAmelCase: Dict = full_name.split("conv_layers." )[-1] __lowerCAmelCase: List[str] = name.split("." ) __lowerCAmelCase: List[Any] = int(items[0] ) __lowerCAmelCase: Optional[Any] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) __lowerCAmelCase: Any = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) __lowerCAmelCase: Dict = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found." ) __lowerCAmelCase: str = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) __lowerCAmelCase: List[Any] = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(__lowerCAmelCase ) @torch.no_grad() def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=True ) -> Optional[Any]: if config_path is not None: __lowerCAmelCase: str = UniSpeechSatConfig.from_pretrained(__lowerCAmelCase ) else: __lowerCAmelCase: List[str] = UniSpeechSatConfig() __lowerCAmelCase: Optional[Any] = "" if is_finetuned: __lowerCAmelCase: str = UniSpeechSatForCTC(__lowerCAmelCase ) else: __lowerCAmelCase: Optional[Any] = UniSpeechSatForPreTraining(__lowerCAmelCase ) __lowerCAmelCase: List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) __lowerCAmelCase: Union[str, Any] = model[0].eval() recursively_load_weights(__lowerCAmelCase , __lowerCAmelCase ) hf_wavavec.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) __A = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
217
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase : Optional[int] =logging.get_logger() @dataclass class __a : _lowerCAmelCase : nn.Module _lowerCAmelCase : List[nn.Module] = field(default_factory=A__ ) _lowerCAmelCase : list = field(default_factory=A__ ) def __lowercase ( self : Dict , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Tensor , SCREAMING_SNAKE_CASE : Tensor ): '''simple docstring''' UpperCamelCase__ : Dict = len(list(m.modules() ) ) == 1 or isinstance(SCREAMING_SNAKE_CASE , nn.Convad ) or isinstance(SCREAMING_SNAKE_CASE , nn.BatchNormad ) if has_not_submodules: self.traced.append(SCREAMING_SNAKE_CASE ) def __call__( self : Union[str, Any] , SCREAMING_SNAKE_CASE : Tensor ): '''simple docstring''' for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(SCREAMING_SNAKE_CASE ) [x.remove() for x in self.handles] return self @property def __lowercase ( self : Optional[Any] ): '''simple docstring''' return list(filter(lambda SCREAMING_SNAKE_CASE : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class __a : _lowerCAmelCase : nn.Module _lowerCAmelCase : nn.Module _lowerCAmelCase : int = 0 _lowerCAmelCase : List = field(default_factory=A__ ) _lowerCAmelCase : List = field(default_factory=A__ ) def __call__( self : Any , SCREAMING_SNAKE_CASE : Tensor ): '''simple docstring''' UpperCamelCase__ : Union[str, Any] = Tracker(self.dest )(SCREAMING_SNAKE_CASE ).parametrized UpperCamelCase__ : Any = Tracker(self.src )(SCREAMING_SNAKE_CASE ).parametrized UpperCamelCase__ : str = list(filter(lambda SCREAMING_SNAKE_CASE : type(SCREAMING_SNAKE_CASE ) not in self.src_skip , SCREAMING_SNAKE_CASE ) ) UpperCamelCase__ : List[Any] = list(filter(lambda SCREAMING_SNAKE_CASE : type(SCREAMING_SNAKE_CASE ) not in self.dest_skip , SCREAMING_SNAKE_CASE ) ) if len(SCREAMING_SNAKE_CASE ) != len(SCREAMING_SNAKE_CASE ): raise Exception( F'Numbers of operations are different. Source module has {len(SCREAMING_SNAKE_CASE )} operations while' F' destination module has {len(SCREAMING_SNAKE_CASE )}.' ) for dest_m, src_m in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F'Transfered from={src_m} to={dest_m}' ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = True ) -> Optional[int]: print(f'Converting {name}...' ) with torch.no_grad(): UpperCamelCase__ : Union[str, Any] = timm.create_model(__lowerCAmelCase , pretrained=__lowerCAmelCase ).eval() UpperCamelCase__ : List[Any] = ResNetForImageClassification(__lowerCAmelCase ).eval() UpperCamelCase__ : Optional[Any] = ModuleTransfer(src=__lowerCAmelCase , dest=__lowerCAmelCase ) UpperCamelCase__ : int = torch.randn((1, 3, 224, 224) ) module_transfer(__lowerCAmelCase ) assert torch.allclose(from_model(__lowerCAmelCase ) , our_model(__lowerCAmelCase ).logits ), "The model logits don't match the original one." UpperCamelCase__ : List[Any] = f'resnet{"-".join(name.split("resnet" ) )}' print(__lowerCAmelCase ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="Add model" , use_temp_dir=__lowerCAmelCase , ) # we can use the convnext one UpperCamelCase__ : List[Any] = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k" ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="Add image processor" , use_temp_dir=__lowerCAmelCase , ) print(f'Pushed {checkpoint_name}' ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = True ) -> Dict: UpperCamelCase__ : Dict = "imagenet-1k-id2label.json" UpperCamelCase__ : Optional[int] = 1000 UpperCamelCase__ : Any = (1, num_labels) UpperCamelCase__ : Union[str, Any] = "huggingface/label-files" UpperCamelCase__ : Optional[int] = num_labels UpperCamelCase__ : str = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type="dataset" ) , "r" ) ) UpperCamelCase__ : Optional[int] = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} UpperCamelCase__ : Tuple = idalabel UpperCamelCase__ : Union[str, Any] = {v: k for k, v in idalabel.items()} UpperCamelCase__ : Union[str, Any] = partial(__lowerCAmelCase , num_labels=__lowerCAmelCase , idalabel=__lowerCAmelCase , labelaid=__lowerCAmelCase ) UpperCamelCase__ : Union[str, Any] = { "resnet18": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 128, 256, 512] , layer_type="basic" ), "resnet26": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[256, 512, 1024, 2048] , layer_type="bottleneck" ), "resnet34": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 128, 256, 512] , layer_type="basic" ), "resnet50": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type="bottleneck" ), "resnet101": ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type="bottleneck" ), "resnet152": ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type="bottleneck" ), } if model_name: convert_weight_and_push(__lowerCAmelCase , names_to_config[model_name] , __lowerCAmelCase , __lowerCAmelCase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return config, expected_shape if __name__ == "__main__": lowerCamelCase : Union[str, Any] =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help=( '''The name of the model you wish to convert, it must be one of the supported resnet* architecture,''' ''' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=Path, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=True, type=bool, required=False, help='''If True, push model and image processor to the hub.''', ) lowerCamelCase : int =parser.parse_args() lowerCamelCase : Path =args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
189
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { """facebook/data2vec-text-base""": """https://huggingface.co/data2vec/resolve/main/config.json""", } class __lowerCamelCase ( __UpperCamelCase ): '''simple docstring''' a_ : int = """data2vec-text""" def __init__( self : Dict , a_ : Dict=3_05_22 , a_ : Any=7_68 , a_ : Dict=12 , a_ : int=12 , a_ : int=30_72 , a_ : Optional[int]="gelu" , a_ : int=0.1 , a_ : int=0.1 , a_ : List[Any]=5_12 , a_ : Any=2 , a_ : str=0.02 , a_ : Any=1e-1_2 , a_ : Optional[int]=1 , a_ : List[Any]=0 , a_ : Union[str, Any]=2 , a_ : Optional[int]="absolute" , a_ : List[str]=True , a_ : str=None , **a_ : Dict , ): super().__init__(pad_token_id=a_ , bos_token_id=a_ , eos_token_id=a_ , **a_ ) lowerCAmelCase_ : int = vocab_size lowerCAmelCase_ : str = hidden_size lowerCAmelCase_ : str = num_hidden_layers lowerCAmelCase_ : Optional[int] = num_attention_heads lowerCAmelCase_ : int = hidden_act lowerCAmelCase_ : Optional[Any] = intermediate_size lowerCAmelCase_ : str = hidden_dropout_prob lowerCAmelCase_ : List[str] = attention_probs_dropout_prob lowerCAmelCase_ : Tuple = max_position_embeddings lowerCAmelCase_ : int = type_vocab_size lowerCAmelCase_ : Optional[Any] = initializer_range lowerCAmelCase_ : Tuple = layer_norm_eps lowerCAmelCase_ : Optional[int] = position_embedding_type lowerCAmelCase_ : Any = use_cache lowerCAmelCase_ : List[str] = classifier_dropout class __lowerCamelCase ( __UpperCamelCase ): '''simple docstring''' @property def lowerCamelCase ( self : Tuple ): if self.task == "multiple-choice": lowerCAmelCase_ : Any = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase_ : List[str] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
351
"""simple docstring""" import argparse import os import re lowercase__ = """src/transformers""" # Pattern that looks at the indentation in a line. lowercase__ = re.compile(r"""^(\s*)\S""") # Pattern that matches `"key":" and puts `key` in group 0. lowercase__ = re.compile(r"""^\s*\"([^\"]+)\":""") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowercase__ = re.compile(r"""^\s*_import_structure\[\"([^\"]+)\"\]""") # Pattern that matches `"key",` and puts `key` in group 0. lowercase__ = re.compile(r"""^\s*\"([^\"]+)\",\s*$""") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowercase__ = re.compile(r"""\[([^\]]+)\]""") def __lowerCamelCase ( __UpperCamelCase ) -> int: """simple docstring""" lowerCAmelCase_ : Union[str, Any] = _re_indent.search(__UpperCamelCase ) return "" if search is None else search.groups()[0] def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase="" , __UpperCamelCase=None , __UpperCamelCase=None ) -> str: """simple docstring""" lowerCAmelCase_ : List[Any] = 0 lowerCAmelCase_ : Dict = code.split("\n" ) if start_prompt is not None: while not lines[index].startswith(__UpperCamelCase ): index += 1 lowerCAmelCase_ : Dict = ["\n".join(lines[:index] )] else: lowerCAmelCase_ : List[Any] = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). lowerCAmelCase_ : Optional[Any] = [lines[index]] index += 1 while index < len(__UpperCamelCase ) and (end_prompt is None or not lines[index].startswith(__UpperCamelCase )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(__UpperCamelCase ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + " " ): current_block.append(lines[index] ) blocks.append("\n".join(__UpperCamelCase ) ) if index < len(__UpperCamelCase ) - 1: lowerCAmelCase_ : List[Any] = [lines[index + 1]] index += 1 else: lowerCAmelCase_ : Any = [] else: blocks.append("\n".join(__UpperCamelCase ) ) lowerCAmelCase_ : Any = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(__UpperCamelCase ) > 0: blocks.append("\n".join(__UpperCamelCase ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(__UpperCamelCase ): blocks.append("\n".join(lines[index:] ) ) return blocks def __lowerCamelCase ( __UpperCamelCase ) -> Any: """simple docstring""" def _inner(__UpperCamelCase ): return key(__UpperCamelCase ).lower().replace("_" , "" ) return _inner def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase=None ) -> List[str]: """simple docstring""" def noop(__UpperCamelCase ): return x if key is None: lowerCAmelCase_ : Optional[int] = noop # Constants are all uppercase, they go first. lowerCAmelCase_ : str = [obj for obj in objects if key(__UpperCamelCase ).isupper()] # Classes are not all uppercase but start with a capital, they go second. lowerCAmelCase_ : str = [obj for obj in objects if key(__UpperCamelCase )[0].isupper() and not key(__UpperCamelCase ).isupper()] # Functions begin with a lowercase, they go last. lowerCAmelCase_ : int = [obj for obj in objects if not key(__UpperCamelCase )[0].isupper()] lowerCAmelCase_ : Dict = ignore_underscore(__UpperCamelCase ) return sorted(__UpperCamelCase , key=__UpperCamelCase ) + sorted(__UpperCamelCase , key=__UpperCamelCase ) + sorted(__UpperCamelCase , key=__UpperCamelCase ) def __lowerCamelCase ( __UpperCamelCase ) -> List[str]: """simple docstring""" def _replace(__UpperCamelCase ): lowerCAmelCase_ : Tuple = match.groups()[0] if "," not in imports: return f'''[{imports}]''' lowerCAmelCase_ : Optional[int] = [part.strip().replace("\"" , "" ) for part in imports.split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase_ : Optional[int] = keys[:-1] return "[" + ", ".join([f'''"{k}"''' for k in sort_objects(__UpperCamelCase )] ) + "]" lowerCAmelCase_ : Union[str, Any] = import_statement.split("\n" ) if len(__UpperCamelCase ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. lowerCAmelCase_ : Optional[int] = 2 if lines[1].strip() == "[" else 1 lowerCAmelCase_ : Optional[Any] = [(i, _re_strip_line.search(__UpperCamelCase ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] lowerCAmelCase_ : List[Any] = sort_objects(__UpperCamelCase , key=lambda __UpperCamelCase : x[1] ) lowerCAmelCase_ : List[str] = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(__UpperCamelCase ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: lowerCAmelCase_ : Dict = _re_bracket_content.sub(_replace , lines[1] ) else: lowerCAmelCase_ : Optional[Any] = [part.strip().replace("\"" , "" ) for part in lines[1].split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase_ : Any = keys[:-1] lowerCAmelCase_ : Dict = get_indent(lines[1] ) + ", ".join([f'''"{k}"''' for k in sort_objects(__UpperCamelCase )] ) return "\n".join(__UpperCamelCase ) else: # Finally we have to deal with imports fitting on one line lowerCAmelCase_ : List[str] = _re_bracket_content.sub(_replace , __UpperCamelCase ) return import_statement def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase=True ) -> Optional[int]: """simple docstring""" with open(__UpperCamelCase , encoding="utf-8" ) as f: lowerCAmelCase_ : List[Any] = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 lowerCAmelCase_ : int = split_code_in_indented_blocks( __UpperCamelCase , start_prompt="_import_structure = {" , end_prompt="if TYPE_CHECKING:" ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(__UpperCamelCase ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. lowerCAmelCase_ : Optional[int] = main_blocks[block_idx] lowerCAmelCase_ : Union[str, Any] = block.split("\n" ) # Get to the start of the imports. lowerCAmelCase_ : str = 0 while line_idx < len(__UpperCamelCase ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: lowerCAmelCase_ : Optional[int] = len(__UpperCamelCase ) else: line_idx += 1 if line_idx >= len(__UpperCamelCase ): continue # Ignore beginning and last line: they don't contain anything. lowerCAmelCase_ : Optional[Any] = "\n".join(block_lines[line_idx:-1] ) lowerCAmelCase_ : Union[str, Any] = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. lowerCAmelCase_ : Tuple = split_code_in_indented_blocks(__UpperCamelCase , indent_level=__UpperCamelCase ) # We have two categories of import key: list or _import_structure[key].append/extend lowerCAmelCase_ : List[Any] = _re_direct_key if "_import_structure = {" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. lowerCAmelCase_ : Dict = [(pattern.search(__UpperCamelCase ).groups()[0] if pattern.search(__UpperCamelCase ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. lowerCAmelCase_ : Any = [(i, key) for i, key in enumerate(__UpperCamelCase ) if key is not None] lowerCAmelCase_ : Union[str, Any] = [x[0] for x in sorted(__UpperCamelCase , key=lambda __UpperCamelCase : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. lowerCAmelCase_ : Optional[Any] = 0 lowerCAmelCase_ : str = [] for i in range(len(__UpperCamelCase ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: lowerCAmelCase_ : Optional[Any] = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(__UpperCamelCase ) count += 1 # And we put our main block back together with its first and last line. lowerCAmelCase_ : Any = "\n".join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(__UpperCamelCase ): if check_only: return True else: print(f'''Overwriting {file}.''' ) with open(__UpperCamelCase , "w" , encoding="utf-8" ) as f: f.write("\n".join(__UpperCamelCase ) ) def __lowerCamelCase ( __UpperCamelCase=True ) -> List[Any]: """simple docstring""" lowerCAmelCase_ : Any = [] for root, _, files in os.walk(__UpperCamelCase ): if "__init__.py" in files: lowerCAmelCase_ : Dict = sort_imports(os.path.join(__UpperCamelCase , "__init__.py" ) , check_only=__UpperCamelCase ) if result: lowerCAmelCase_ : Union[str, Any] = [os.path.join(__UpperCamelCase , "__init__.py" )] if len(__UpperCamelCase ) > 0: raise ValueError(f'''Would overwrite {len(__UpperCamelCase )} files, run `make style`.''' ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""") lowercase__ = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
161
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _snake_case = { "configuration_groupvit": [ "GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GroupViTConfig", "GroupViTOnnxConfig", "GroupViTTextConfig", "GroupViTVisionConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "GroupViTModel", "GroupViTPreTrainedModel", "GroupViTTextModel", "GroupViTVisionModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFGroupViTModel", "TFGroupViTPreTrainedModel", "TFGroupViTTextModel", "TFGroupViTVisionModel", ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
26
'''simple docstring''' import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor _lowerCamelCase : str = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" def __init__( self : Dict , *UpperCamelCase__ : List[Any] , **UpperCamelCase__ : List[Any] ): """simple docstring""" warnings.warn( 'The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use ChineseCLIPImageProcessor instead.' , UpperCamelCase__ , ) super().__init__(*UpperCamelCase__ , **UpperCamelCase__ )
28
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: UpperCAmelCase : Tuple = None UpperCAmelCase : List[Any] = logging.get_logger(__name__) UpperCAmelCase : str = {'vocab_file': 'sentencepiece.model', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase : int = { 'vocab_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model', }, 'tokenizer_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/tokenizer.json', }, } UpperCAmelCase : List[str] = { 'google/rembert': 256, } UpperCAmelCase : List[Any] = '▁' class lowerCamelCase__ ( A ): """simple docstring""" __a = VOCAB_FILES_NAMES __a = PRETRAINED_VOCAB_FILES_MAP __a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a = RemBertTokenizer def __init__( self : Optional[int] , UpperCamelCase : str=None , UpperCamelCase : Tuple=None , UpperCamelCase : Dict=True , UpperCamelCase : List[Any]=True , UpperCamelCase : Optional[Any]=False , UpperCamelCase : Any="[CLS]" , UpperCamelCase : Optional[Any]="[SEP]" , UpperCamelCase : Optional[int]="<unk>" , UpperCamelCase : Any="[SEP]" , UpperCamelCase : Union[str, Any]="<pad>" , UpperCamelCase : Dict="[CLS]" , UpperCamelCase : Union[str, Any]="[MASK]" , **UpperCamelCase : Tuple , ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = AddedToken(UpperCamelCase , lstrip=UpperCamelCase , rstrip=UpperCamelCase ) if isinstance(UpperCamelCase , UpperCamelCase ) else mask_token super().__init__( UpperCamelCase , tokenizer_file=UpperCamelCase , do_lower_case=UpperCamelCase , remove_space=UpperCamelCase , keep_accents=UpperCamelCase , bos_token=UpperCamelCase , eos_token=UpperCamelCase , unk_token=UpperCamelCase , sep_token=UpperCamelCase , pad_token=UpperCamelCase , cls_token=UpperCamelCase , mask_token=UpperCamelCase , **UpperCamelCase , ) __UpperCAmelCase : Tuple = do_lower_case __UpperCAmelCase : List[str] = remove_space __UpperCAmelCase : Dict = keep_accents __UpperCAmelCase : List[Any] = vocab_file __UpperCAmelCase : Optional[int] = False if not self.vocab_file else True def lowerCamelCase__ ( self : Dict , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' __UpperCAmelCase : Tuple = [self.sep_token_id] __UpperCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCamelCase__ ( self : Any , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None , UpperCamelCase : bool = False ): '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(UpperCamelCase )) + [1] + ([0] * len(UpperCamelCase )) + [1] return [1] + ([0] * len(UpperCamelCase )) + [1] def lowerCamelCase__ ( self : List[str] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = [self.sep_token_id] __UpperCAmelCase : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase__ ( self : List[str] , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(UpperCamelCase ): logger.error("""Vocabulary path ({}) should be a directory""".format(UpperCamelCase ) ) return __UpperCAmelCase : int = os.path.join( UpperCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase ): copyfile(self.vocab_file , UpperCamelCase ) return (out_vocab_file,)
320
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available UpperCAmelCase : Dict = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : str = ['BartphoTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys UpperCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
320
1
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler A__ = 16 A__ = 32 def _UpperCAmelCase ( snake_case , snake_case = 16 , snake_case = "bert-base-cased" ): """simple docstring""" _lowerCAmelCase = AutoTokenizer.from_pretrained(snake_case ) _lowerCAmelCase = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(snake_case ): # max_length=None => use the model max length (it's actually the default) _lowerCAmelCase = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=snake_case , max_length=snake_case ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset _lowerCAmelCase = datasets.map( snake_case , batched=snake_case , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=snake_case ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _lowerCAmelCase = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(snake_case ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(snake_case , padding="""max_length""" , max_length=1_28 , return_tensors="""pt""" ) return tokenizer.pad(snake_case , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. _lowerCAmelCase = DataLoader( tokenized_datasets["""train"""] , shuffle=snake_case , collate_fn=snake_case , batch_size=snake_case ) _lowerCAmelCase = DataLoader( tokenized_datasets["""validation"""] , shuffle=snake_case , collate_fn=snake_case , batch_size=snake_case ) return train_dataloader, eval_dataloader def _UpperCAmelCase ( snake_case , snake_case , snake_case , snake_case ): """simple docstring""" model.eval() _lowerCAmelCase = 0 for step, batch in enumerate(snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _lowerCAmelCase = model(**snake_case ) _lowerCAmelCase = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times _lowerCAmelCase , _lowerCAmelCase = accelerator.gather( (predictions, batch["""labels"""]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(snake_case ) - 1: _lowerCAmelCase = predictions[: len(eval_dataloader.dataset ) - samples_seen] _lowerCAmelCase = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=snake_case , references=snake_case , ) _lowerCAmelCase = metric.compute() return eval_metric["accuracy"] def _UpperCAmelCase ( snake_case , snake_case ): """simple docstring""" _lowerCAmelCase = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _lowerCAmelCase = config["""lr"""] _lowerCAmelCase = int(config["""num_epochs"""] ) _lowerCAmelCase = int(config["""seed"""] ) _lowerCAmelCase = int(config["""batch_size"""] ) _lowerCAmelCase = args.model_name_or_path set_seed(snake_case ) _lowerCAmelCase , _lowerCAmelCase = get_dataloaders(snake_case , snake_case , snake_case ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _lowerCAmelCase = AutoModelForSequenceClassification.from_pretrained(snake_case , return_dict=snake_case ) # Instantiate optimizer _lowerCAmelCase = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) _lowerCAmelCase = optimizer_cls(params=model.parameters() , lr=snake_case ) if accelerator.state.deepspeed_plugin is not None: _lowerCAmelCase = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: _lowerCAmelCase = 1 _lowerCAmelCase = (len(snake_case ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): _lowerCAmelCase = get_linear_schedule_with_warmup( optimizer=snake_case , num_warmup_steps=0 , num_training_steps=snake_case , ) else: _lowerCAmelCase = DummyScheduler(snake_case , total_num_steps=snake_case , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = accelerator.prepare( snake_case , snake_case , snake_case , snake_case , snake_case ) # We need to keep track of how many total steps we have iterated over _lowerCAmelCase = 0 # We also need to keep track of the stating epoch so files are named properly _lowerCAmelCase = 0 _lowerCAmelCase = evaluate.load("""glue""" , """mrpc""" ) _lowerCAmelCase = num_epochs if args.partial_train_epoch is not None: _lowerCAmelCase = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) _lowerCAmelCase = args.resume_from_checkpoint.split("""epoch_""" )[1] _lowerCAmelCase = """""" for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break _lowerCAmelCase = int(snake_case ) + 1 _lowerCAmelCase = evaluation_loop(snake_case , snake_case , snake_case , snake_case ) accelerator.print("""resumed checkpoint performance:""" , snake_case ) accelerator.print("""resumed checkpoint's scheduler's lr:""" , lr_scheduler.get_lr()[0] ) accelerator.print("""resumed optimizers's lr:""" , optimizer.param_groups[0]["""lr"""] ) with open(os.path.join(args.output_dir , F'state_{starting_epoch-1}.json' ) , """r""" ) as f: _lowerCAmelCase = json.load(snake_case ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model _lowerCAmelCase = {} for epoch in range(snake_case , snake_case ): model.train() for step, batch in enumerate(snake_case ): _lowerCAmelCase = model(**snake_case ) _lowerCAmelCase = outputs.loss _lowerCAmelCase = loss / gradient_accumulation_steps accelerator.backward(snake_case ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 _lowerCAmelCase = F'epoch_{epoch}' _lowerCAmelCase = os.path.join(args.output_dir , snake_case ) accelerator.save_state(snake_case ) _lowerCAmelCase = evaluation_loop(snake_case , snake_case , snake_case , snake_case ) _lowerCAmelCase = accuracy _lowerCAmelCase = lr_scheduler.get_lr()[0] _lowerCAmelCase = optimizer.param_groups[0]["""lr"""] _lowerCAmelCase = epoch _lowerCAmelCase = overall_step accelerator.print(F'epoch {epoch}:' , snake_case ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , F'state_{epoch}.json' ) , """w""" ) as f: json.dump(snake_case , snake_case ) def _UpperCAmelCase ( ): """simple docstring""" _lowerCAmelCase = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" , type=snake_case , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=snake_case , ) parser.add_argument( """--output_dir""" , type=snake_case , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--resume_from_checkpoint""" , type=snake_case , default=snake_case , help="""If the training should continue from a checkpoint folder.""" , ) parser.add_argument( """--partial_train_epoch""" , type=snake_case , default=snake_case , help="""If passed, the training will stop after this number of epochs.""" , ) parser.add_argument( """--num_epochs""" , type=snake_case , default=2 , help="""Number of train epochs.""" , ) _lowerCAmelCase = parser.parse_args() _lowerCAmelCase = {"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(snake_case , snake_case ) if __name__ == "__main__": main()
82
from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar A__ = TypeVar("""T""") A__ = TypeVar("""U""") class __lowerCAmelCase ( Generic[T, U] ): def __init__( self , _snake_case , _snake_case ): """simple docstring""" _lowerCAmelCase = key _lowerCAmelCase = val _lowerCAmelCase = None _lowerCAmelCase = None def __repr__( self ): """simple docstring""" return ( F'Node: key: {self.key}, val: {self.val}, ' F'has next: {bool(self.next )}, has prev: {bool(self.prev )}' ) class __lowerCAmelCase ( Generic[T, U] ): def __init__( self ): """simple docstring""" _lowerCAmelCase = DoubleLinkedListNode(_snake_case , _snake_case ) _lowerCAmelCase = DoubleLinkedListNode(_snake_case , _snake_case ) _lowerCAmelCase , _lowerCAmelCase = self.rear, self.head def __repr__( self ): """simple docstring""" _lowerCAmelCase = ["""DoubleLinkedList"""] _lowerCAmelCase = self.head while node.next is not None: rep.append(str(_snake_case ) ) _lowerCAmelCase = node.next rep.append(str(self.rear ) ) return ",\n ".join(_snake_case ) def snake_case ( self , _snake_case ): """simple docstring""" _lowerCAmelCase = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None _lowerCAmelCase = node _lowerCAmelCase = previous _lowerCAmelCase = node _lowerCAmelCase = self.rear def snake_case ( self , _snake_case ): """simple docstring""" if node.prev is None or node.next is None: return None _lowerCAmelCase = node.next _lowerCAmelCase = node.prev _lowerCAmelCase = None _lowerCAmelCase = None return node class __lowerCAmelCase ( Generic[T, U] ): __lowerCamelCase = {} def __init__( self , _snake_case ): """simple docstring""" _lowerCAmelCase = DoubleLinkedList() _lowerCAmelCase = capacity _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = {} def __repr__( self ): """simple docstring""" return ( F'CacheInfo(hits={self.hits}, misses={self.miss}, ' F'capacity={self.capacity}, current size={self.num_keys})' ) def __contains__( self , _snake_case ): """simple docstring""" return key in self.cache def snake_case ( self , _snake_case ): """simple docstring""" if key in self.cache: self.hits += 1 _lowerCAmelCase = self.cache[key] _lowerCAmelCase = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(_snake_case ) return node.val self.miss += 1 return None def snake_case ( self , _snake_case , _snake_case ): """simple docstring""" if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity _lowerCAmelCase = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(_snake_case ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 _lowerCAmelCase = DoubleLinkedListNode(_snake_case , _snake_case ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value _lowerCAmelCase = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list _lowerCAmelCase = value self.list.add(_snake_case ) @classmethod def snake_case ( cls , _snake_case = 128 ): """simple docstring""" def cache_decorator_inner(_snake_case ) -> Callable[..., U]: def cache_decorator_wrapper(*_snake_case ) -> U: if func not in cls.decorator_function_to_instance_map: _lowerCAmelCase = LRUCache(_snake_case ) _lowerCAmelCase = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: _lowerCAmelCase = func(*_snake_case ) cls.decorator_function_to_instance_map[func].put(args[0] , _snake_case ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(_snake_case , """cache_info""" , _snake_case ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
82
1
'''simple docstring''' from collections import defaultdict from math import ceil, sqrt def lowerCAmelCase__ ( lowerCamelCase : int = 1000000 ,lowerCamelCase : int = 10 ): _A : defaultdict = defaultdict(lowerCamelCase ) for outer_width in range(3 ,(t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: _A : Optional[int] = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) ,1 ) else: _A : Any = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(lowerCamelCase ,outer_width - 1 ,2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(f"""{solution() = }""")
350
'''simple docstring''' from dataclasses import dataclass, field from typing import Optional @dataclass class __lowerCamelCase : """simple docstring""" a = field( default="codeparrot/codeparrot" , metadata={"help": "Model name or path of model to be trained."} ) a = field( default="./" , metadata={"help": "Save dir where model repo is cloned and models updates are saved to."} ) a = field( default="codeparrot/codeparrot-clean-train" , metadata={"help": "Name or path of training dataset."} ) a = field( default="codeparrot/codeparrot-clean-valid" , metadata={"help": "Name or path of validation dataset."} ) a = field(default=2 , metadata={"help": "Batch size for training."} ) a = field(default=2 , metadata={"help": "Batch size for evaluation."} ) a = field(default=0.1 , metadata={"help": "Value of weight decay."} ) a = field( default=1_0000 , metadata={"help": "Size of buffer used to shuffle streaming dataset."} ) a = field(default=2E-4 , metadata={"help": "Learning rate fo training."} ) a = field(default="cosine" , metadata={"help": "Learning rate."} ) a = field( default=750 , metadata={"help": "Number of warmup steps in the learning rate schedule."} ) a = field( default=16 , metadata={"help": "Number of gradient accumulation steps."} ) a = field( default=a_ , metadata={"help": "Use gradient checkpointing to reduce memory footprint."} ) a = field(default=5_0000 , metadata={"help": "Maximum number of training steps."} ) a = field( default=-1 , metadata={"help": "Maximum number of evaluation steps. If -1 the full dataset is evaluated."} ) a = field(default=1024 , metadata={"help": "Sequence lengths used for training."} ) a = field(default=1 , metadata={"help": "Training seed."} ) a = field( default=1024 , metadata={"help": "Interval to save checkpoints. Measured as number of forward passes not training steps."} , ) a = field( default=a_ , metadata={"help": "States path if the training should continue from a checkpoint folder."} ) a = field(default=a_ , metadata={"help": "If True the data is pretokenized."} ) @dataclass class __lowerCamelCase : """simple docstring""" a = field( default="codeparrot/codeparrot" , metadata={"help": "Model name or path of model to be evaluated."} ) a = field( default="codeparrot/codeparrot-clean-valid" , metadata={"help": "Name or path of validation dataset."} ) a = field(default=2 , metadata={"help": "Batch size used for evaluation."} ) a = field( default=-1 , metadata={"help": "Maximum number of evaluation steps. If -1 the full dataset is evaluated."} ) a = field(default=1024 , metadata={"help": "Length of sequences to be evaluated."} ) a = field(default=1 , metadata={"help": "Random seed used for evaluation."} ) @dataclass class __lowerCamelCase : """simple docstring""" a = field( default="codeparrot/codeparrot" , metadata={"help": "Model name or path of model to be evaluated."} ) a = field(default=a_ , metadata={"help": "Number of workers used for code evaluation."} ) a = field( default=a_ , metadata={"help": "The number of human-eval tasks to run. If not included all tasks are evaluated."} , ) a = field( default=a_ , metadata={"help": "Sample from the language model's output distribution."} ) a = field(default=0.2 , metadata={"help": "Sampling temperature used for generation."} ) a = field(default=256 , metadata={"help": "Maximum number of newly generated tokens."} ) a = field(default=0 , metadata={"help": "Top-k parameter used for generation."} ) a = field(default=0.95 , metadata={"help": "Top-p parameter used for nucleus sampling."} ) a = field(default=10 , metadata={"help": "Number of generations to run in parallel."} ) a = field( default=200 , metadata={"help": "Number of completions to generate for each sample."} ) a = field(default=1 , metadata={"help": "Random seed used for evaluation."} ) a = field( default="eval_results.json" , metadata={"help": "Random seed used for evaluation."} ) a = field( default="0" , metadata={"help": "Allow `code_eval` to execute Python code on machine"} ) a = field( default=-1 , metadata={ "help": ( "Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive" " number corresponds to which GPU device id to run on." ) } , ) @dataclass class __lowerCamelCase : """simple docstring""" a = field( default=a_ , metadata={ "help": "The number of CPU cores to use for parallel preprocessing. Default uses the maximum available." } , ) a = field( default="transformersbook/codeparrot" , metadata={"help": "Folder or name of dataset to process."} ) a = field( default="codeparrot-clean" , metadata={"help": "Folder to save processed processed dataset."} ) a = field( default=10_0000 , metadata={"help": "Number of files to save per JSON output file."} ) a = field(default="content" , metadata={"help": "Column containing text data to process."} ) a = field( default=1000 , metadata={"help": "Maximum line length in file, otherwise file is filtered."} ) a = field( default=100 , metadata={"help": "Maximum mean line length in file, otherwise file is filtered."} ) a = field( default=0.25 , metadata={"help": "Maximum fraction of non-alphanumeric characters, otherwise file is filtered."} ) a = field( default=1.5 , metadata={"help": "Minimum character token ratio for the file, otherwise file is filtered."} ) a = field( default=0.7 , metadata={"help": "Probability for filtering config, test and uncommon files."} ) a = field( default="codeparrot/codeparrot" , metadata={"help": "Name or path to the tokenizer."} , ) a = field( default=a_ , metadata={"help": "If True, near-duplicate samples are removed."} ) a = field( default=0.85 , metadata={"help": "Jaccard threshold for near-duplicate samples."} ) @dataclass class __lowerCamelCase : """simple docstring""" a = field( default="gpt2" , metadata={"help": "Base tokenizer to build new tokenizer from."} ) a = field( default="transformersbook/codeparrot-train" , metadata={"help": "Dataset to train tokenizer on."} ) a = field(default="content" , metadata={"help": "Column containing text data to process."} ) a = field(default=20_0000 , metadata={"help": "Number of examples to train tokenizer on."} ) a = field( default=3_2768 , metadata={"help": "Number of examples to train the tokenizer on."} ) a = field(default="codeparrot" , metadata={"help": "Name of new tokenizer."} ) a = field(default=a_ , metadata={"help": "Push saved tokenizer to the hub."} ) @dataclass class __lowerCamelCase : """simple docstring""" a = field( default="codeparrot/codeparrot" , metadata={"help": "Name or path to the tokenizer."} ) a = field( default="codeparrot/codeparrot-clean-train" , metadata={"help": "Name or path to the dataset to pretokenize."} ) a = field( default="tokenized-codeparrot-train" , metadata={"help": "Repo name of the pretokenized data."} ) a = field(default=a_ , metadata={"help": "Number of workers used for code evaluation."} ) @dataclass class __lowerCamelCase : """simple docstring""" a = field( default="gpt2-large" , metadata={"help": "Configuration to use for model initialization."} ) a = field( default="codeparrot/codeparrot" , metadata={"help": "Tokenizer attached to model."} ) a = field(default="codeparrot" , metadata={"help": "Name of the created model."} ) a = field(default=a_ , metadata={"help": "Push saved tokenizer to the hub."} )
227
0
"""simple docstring""" from __future__ import annotations import math from collections.abc import Callable def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ = 100 , ): _lowerCamelCase : Any = x_start _lowerCamelCase : Optional[int] = fnc(lowercase__ ) _lowerCamelCase : str = 0.0 for _ in range(lowercase__ ): # Approximates curve as a sequence of linear lines and sums their length _lowerCamelCase : str = (x_end - x_start) / steps + xa _lowerCamelCase : Any = fnc(lowercase__ ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step _lowerCamelCase : List[Any] = xa _lowerCamelCase : Dict = fxa return length if __name__ == "__main__": def _snake_case ( lowercase__ ): return math.sin(10 * x ) print("""f(x) = sin(10 * x)""") print("""The length of the curve from x = -10 to x = 10 is:""") lowercase__ = 10 while i <= 10_0000: print(F"With {i} steps: {line_length(f, -10, 10, i)}") i *= 10
96
"""simple docstring""" import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging lowercase__ = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCAmelCase__ ( lowercase ): '''simple docstring''' def __init__( self , lowercase , lowercase=768 ): super().__init__(lowercase ) _lowerCamelCase : Any = proj_size _lowerCamelCase : Dict = CLIPVisionModel(lowercase ) _lowerCamelCase : List[str] = PaintByExampleMapper(lowercase ) _lowerCamelCase : Optional[Any] = nn.LayerNorm(config.hidden_size ) _lowerCamelCase : int = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling _lowerCamelCase : str = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def A_ ( self , lowercase , lowercase=False ): _lowerCamelCase : Union[str, Any] = self.model(pixel_values=lowercase ) _lowerCamelCase : int = clip_output.pooler_output _lowerCamelCase : str = self.mapper(latent_states[:, None] ) _lowerCamelCase : List[Any] = self.final_layer_norm(lowercase ) _lowerCamelCase : Dict = self.proj_out(lowercase ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class lowerCAmelCase__ ( nn.Module ): '''simple docstring''' def __init__( self , lowercase ): super().__init__() _lowerCamelCase : Tuple = (config.num_hidden_layers + 1) // 5 _lowerCamelCase : int = config.hidden_size _lowerCamelCase : Optional[Any] = 1 _lowerCamelCase : str = nn.ModuleList( [ BasicTransformerBlock(lowercase , lowercase , lowercase , activation_fn='gelu' , attention_bias=lowercase ) for _ in range(lowercase ) ] ) def A_ ( self , lowercase ): for block in self.blocks: _lowerCamelCase : Tuple = block(lowercase ) return hidden_states
96
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) _UpperCAmelCase : int = { 'uw-madison/mra-base-512-4': 'https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json', } class a__ ( _A ): """simple docstring""" __UpperCamelCase : Union[str, Any] = 'mra' def __init__(self , __lowercase=5_02_65 , __lowercase=7_68 , __lowercase=12 , __lowercase=12 , __lowercase=30_72 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=5_12 , __lowercase=1 , __lowercase=0.0_2 , __lowercase=1e-5 , __lowercase="absolute" , __lowercase=4 , __lowercase="full" , __lowercase=0 , __lowercase=0 , __lowercase=1 , __lowercase=0 , __lowercase=2 , **__lowercase , ): super().__init__(pad_token_id=__SCREAMING_SNAKE_CASE , bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = vocab_size __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = initializer_range __lowerCAmelCase = type_vocab_size __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = position_embedding_type __lowerCAmelCase = block_per_row __lowerCAmelCase = approx_mode __lowerCAmelCase = initial_prior_first_n_blocks __lowerCAmelCase = initial_prior_diagonal_n_blocks
362
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): __lowerCAmelCase = tempfile.mkdtemp() # fmt: off __lowerCAmelCase = ['''''', '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on __lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) __lowerCAmelCase = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] __lowerCAmelCase = {'''unk_token''': '''<unk>'''} __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowercase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowercase ) ) __lowerCAmelCase = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], '''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } __lowerCAmelCase = os.path.join(self.tmpdirname , __lowercase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__lowercase , __lowercase ) def _snake_case (self , **__lowercase ): return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token='''!''' , **__lowercase ) def _snake_case (self , **__lowercase ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token='''!''' , **__lowercase ) def _snake_case (self , **__lowercase ): return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self ): shutil.rmtree(self.tmpdirname ) def _snake_case (self ): __lowerCAmelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowerCAmelCase = [Image.fromarray(np.moveaxis(__lowercase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor_slow.save_pretrained(self.tmpdirname ) __lowerCAmelCase = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=__lowercase ) __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor_fast.save_pretrained(self.tmpdirname ) __lowerCAmelCase = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __lowercase ) self.assertIsInstance(processor_fast.tokenizer , __lowercase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __lowercase ) self.assertIsInstance(processor_fast.image_processor , __lowercase ) def _snake_case (self ): __lowerCAmelCase = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowerCAmelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __lowerCAmelCase = self.get_image_processor(do_normalize=__lowercase ) __lowerCAmelCase = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowercase ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowercase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = image_processor(__lowercase , return_tensors='''np''' ) __lowerCAmelCase = processor(images=__lowercase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = processor(text=__lowercase , return_tensors='''np''' ) __lowerCAmelCase = tokenizer(__lowercase , return_tensors='''np''' ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(text=__lowercase , images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = '''google/owlvit-base-patch32''' __lowerCAmelCase = OwlViTProcessor.from_pretrained(__lowercase ) __lowerCAmelCase = ['''cat''', '''nasa badge'''] __lowerCAmelCase = processor(text=__lowercase ) __lowerCAmelCase = 16 self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = '''google/owlvit-base-patch32''' __lowerCAmelCase = OwlViTProcessor.from_pretrained(__lowercase ) __lowerCAmelCase = [['''cat''', '''nasa badge'''], ['''person''']] __lowerCAmelCase = processor(text=__lowercase ) __lowerCAmelCase = 16 __lowerCAmelCase = len(__lowercase ) __lowerCAmelCase = max([len(__lowercase ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = '''google/owlvit-base-patch32''' __lowerCAmelCase = OwlViTProcessor.from_pretrained(__lowercase ) __lowerCAmelCase = ['''cat''', '''nasa badge'''] __lowerCAmelCase = processor(text=__lowercase ) __lowerCAmelCase = 16 __lowerCAmelCase = inputs['''input_ids'''] __lowerCAmelCase = [ [4_94_06, 23_68, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_94_06, 68_41, 1_13_01, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(images=__lowercase , query_images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , ['''query_pixel_values''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowerCAmelCase = processor.batch_decode(__lowercase ) __lowerCAmelCase = tokenizer.batch_decode(__lowercase ) self.assertListEqual(__lowercase , __lowercase )
9
0
'''simple docstring''' class _lowercase : def __init__( self: str , UpperCamelCase__: str = "" , UpperCamelCase__: bool = False ): # Mapping from the first character of the prefix of the node lowerCamelCase__ : dict[str, RadixNode] = {} # A node will be a leaf if the tree contains its word lowerCamelCase__ : str = is_leaf lowerCamelCase__ : Optional[Any] = prefix def lowerCamelCase_ ( self: int , UpperCamelCase__: str ): lowerCamelCase__ : Tuple = 0 for q, w in zip(self.prefix , UpperCamelCase__ ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase__: list[str] ): for word in words: self.insert(UpperCamelCase__ ) def lowerCamelCase_ ( self: str , UpperCamelCase__: str ): # Case 1: If the word is the prefix of the node # Solution: We set the current node as leaf if self.prefix == word: lowerCamelCase__ : List[str] = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: lowerCamelCase__ : Dict = RadixNode(prefix=UpperCamelCase__ , is_leaf=UpperCamelCase__ ) else: lowerCamelCase__ : List[Any] = self.nodes[word[0]] lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[Any] = incoming_node.match( UpperCamelCase__ ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(UpperCamelCase__ ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: lowerCamelCase__ : Optional[int] = remaining_prefix lowerCamelCase__ : Union[str, Any] = self.nodes[matching_string[0]] lowerCamelCase__ : List[str] = RadixNode(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase__ : Any = aux_node if remaining_word == "": lowerCamelCase__ : List[str] = True else: self.nodes[matching_string[0]].insert(UpperCamelCase__ ) def lowerCamelCase_ ( self: List[Any] , UpperCamelCase__: str ): lowerCamelCase__ : Optional[Any] = self.nodes.get(word[0] , UpperCamelCase__ ) if not incoming_node: return False else: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Tuple = incoming_node.match( UpperCamelCase__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(UpperCamelCase__ ) def lowerCamelCase_ ( self: Any , UpperCamelCase__: str ): lowerCamelCase__ : List[str] = self.nodes.get(word[0] , UpperCamelCase__ ) if not incoming_node: return False else: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[str] = incoming_node.match( UpperCamelCase__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(UpperCamelCase__ ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: lowerCamelCase__ : Dict = list(self.nodes.values() )[0] lowerCamelCase__ : List[Any] = merging_node.is_leaf self.prefix += merging_node.prefix lowerCamelCase__ : List[Any] = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: lowerCamelCase__ : Any = False # If there is 1 edge, we merge it with its child else: lowerCamelCase__ : Dict = list(incoming_node.nodes.values() )[0] lowerCamelCase__ : List[Any] = merging_node.is_leaf incoming_node.prefix += merging_node.prefix lowerCamelCase__ : Optional[int] = merging_node.nodes return True def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase__: int = 0 ): if self.prefix != "": print("""-""" * height , self.prefix , """ (leaf)""" if self.is_leaf else """""" ) for value in self.nodes.values(): value.print_tree(height + 1 ) def SCREAMING_SNAKE_CASE_ () -> bool: lowerCamelCase__ : Optional[Any] = """banana bananas bandana band apple all beast""".split() lowerCamelCase__ : Any = RadixNode() root.insert_many(UpperCamelCase ) assert all(root.find(UpperCamelCase ) for word in words ) assert not root.find("""bandanas""" ) assert not root.find("""apps""" ) root.delete("""all""" ) assert not root.find("""all""" ) root.delete("""banana""" ) assert not root.find("""banana""" ) assert root.find("""bananas""" ) return True def SCREAMING_SNAKE_CASE_ () -> None: assert test_trie() def SCREAMING_SNAKE_CASE_ () -> None: lowerCamelCase__ : int = RadixNode() lowerCamelCase__ : Optional[int] = """banana bananas bandanas bandana band apple all beast""".split() root.insert_many(UpperCamelCase ) print("""Words:""" , UpperCamelCase ) print("""Tree:""" ) root.print_tree() if __name__ == "__main__": main()
41
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class _lowercase ( unittest.TestCase ): def lowerCamelCase_ ( self: Dict ): lowerCamelCase__ : int = tempfile.mkdtemp() # fmt: off lowerCamelCase__ : int = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest"""] # fmt: on lowerCamelCase__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) lowerCamelCase__ : Tuple = { """do_resize""": True, """size""": {"""height""": 18, """width""": 18}, """do_normalize""": True, """image_mean""": [0.5, 0.5, 0.5], """image_std""": [0.5, 0.5, 0.5], } lowerCamelCase__ : Tuple = os.path.join(self.tmpdirname , UpperCamelCase__ ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase_ ( self: str , **UpperCamelCase__: List[str] ): return BertTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def lowerCamelCase_ ( self: int , **UpperCamelCase__: Tuple ): return ViTImageProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def lowerCamelCase_ ( self: Optional[Any] ): shutil.rmtree(self.tmpdirname ) def lowerCamelCase_ ( self: Any ): lowerCamelCase__ : List[Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCamelCase__ : Tuple = [Image.fromarray(np.moveaxis(UpperCamelCase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCamelCase_ ( self: int ): lowerCamelCase__ : Optional[Any] = self.get_tokenizer() lowerCamelCase__ : Dict = self.get_image_processor() lowerCamelCase__ : Optional[Any] = VisionTextDualEncoderProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase__ : int = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCamelCase__ ) def lowerCamelCase_ ( self: Tuple ): lowerCamelCase__ : Dict = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase__ : int = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowerCamelCase__ : List[Any] = self.get_image_processor(do_normalize=UpperCamelCase__ , padding_value=1.0 ) lowerCamelCase__ : Tuple = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=UpperCamelCase__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCamelCase__ ) def lowerCamelCase_ ( self: Union[str, Any] ): lowerCamelCase__ : Optional[Any] = self.get_image_processor() lowerCamelCase__ : Union[str, Any] = self.get_tokenizer() lowerCamelCase__ : Any = VisionTextDualEncoderProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) lowerCamelCase__ : List[Any] = self.prepare_image_inputs() lowerCamelCase__ : List[str] = image_processor(UpperCamelCase__ , return_tensors="""np""" ) lowerCamelCase__ : Optional[Any] = processor(images=UpperCamelCase__ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowerCamelCase_ ( self: Optional[int] ): lowerCamelCase__ : Any = self.get_image_processor() lowerCamelCase__ : List[str] = self.get_tokenizer() lowerCamelCase__ : List[Any] = VisionTextDualEncoderProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) lowerCamelCase__ : List[Any] = """lower newer""" lowerCamelCase__ : Union[str, Any] = processor(text=UpperCamelCase__ ) lowerCamelCase__ : Any = tokenizer(UpperCamelCase__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCamelCase_ ( self: Dict ): lowerCamelCase__ : Optional[Any] = self.get_image_processor() lowerCamelCase__ : List[Any] = self.get_tokenizer() lowerCamelCase__ : List[Any] = VisionTextDualEncoderProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) lowerCamelCase__ : Any = """lower newer""" lowerCamelCase__ : Dict = self.prepare_image_inputs() lowerCamelCase__ : Tuple = processor(text=UpperCamelCase__ , images=UpperCamelCase__ ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with self.assertRaises(UpperCamelCase__ ): processor() def lowerCamelCase_ ( self: int ): lowerCamelCase__ : List[str] = self.get_image_processor() lowerCamelCase__ : List[str] = self.get_tokenizer() lowerCamelCase__ : int = VisionTextDualEncoderProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) lowerCamelCase__ : Dict = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase__ : Union[str, Any] = processor.batch_decode(UpperCamelCase__ ) lowerCamelCase__ : Dict = tokenizer.batch_decode(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase_ ( self: List[str] ): lowerCamelCase__ : Any = self.get_image_processor() lowerCamelCase__ : Union[str, Any] = self.get_tokenizer() lowerCamelCase__ : int = VisionTextDualEncoderProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) lowerCamelCase__ : Optional[Any] = """lower newer""" lowerCamelCase__ : str = self.prepare_image_inputs() lowerCamelCase__ : int = processor(text=UpperCamelCase__ , images=UpperCamelCase__ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
41
1
from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class lowerCAmelCase ( yaml.SafeLoader ): def A_ ( self : List[str] , UpperCAmelCase : Dict ) -> Optional[Any]: lowerCamelCase__ : List[Any] = [self.constructed_objects[key_node] for key_node, _ in node.value] lowerCamelCase__ : str = [tuple(UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else key for key in keys] lowerCamelCase__ : Optional[Any] = Counter(UpperCAmelCase ) lowerCamelCase__ : Tuple = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(F"""Got duplicate yaml keys: {duplicate_keys}""" ) def A_ ( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Dict=False ) -> int: lowerCamelCase__ : int = super().construct_mapping(UpperCAmelCase , deep=UpperCAmelCase ) self._check_no_duplicates_on_constructed_node(UpperCAmelCase ) return mapping def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Tuple[Optional[str], str]: lowerCamelCase__ : Tuple = list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: lowerCamelCase__ : List[str] = full_content[1:].index('---' ) + 1 lowerCamelCase__ : Tuple = '\n'.join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(_UpperCAmelCase ) class lowerCAmelCase ( __UpperCamelCase ): # class attributes UpperCAmelCase__ = {"""train_eval_index"""} # train-eval-index in the YAML metadata @classmethod def A_ ( cls : str , UpperCAmelCase : Path ) -> "DatasetMetadata": with open(UpperCAmelCase , encoding='utf-8' ) as readme_file: lowerCamelCase__ , lowerCamelCase__ : List[Any] = _split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(UpperCAmelCase ) else: return cls() def A_ ( self : List[str] , UpperCAmelCase : Path ) -> Any: if path.exists(): with open(UpperCAmelCase , encoding='utf-8' ) as readme_file: lowerCamelCase__ : Any = readme_file.read() else: lowerCamelCase__ : Any = None lowerCamelCase__ : List[str] = self._to_readme(UpperCAmelCase ) with open(UpperCAmelCase , 'w' , encoding='utf-8' ) as readme_file: readme_file.write(UpperCAmelCase ) def A_ ( self : Union[str, Any] , UpperCAmelCase : Optional[str] = None ) -> str: if readme_content is not None: lowerCamelCase__ , lowerCamelCase__ : int = _split_yaml_from_readme(UpperCAmelCase ) lowerCamelCase__ : Dict = '---\n' + self.to_yaml_string() + '---\n' + content else: lowerCamelCase__ : Optional[Any] = '---\n' + self.to_yaml_string() + '---\n' return full_content @classmethod def A_ ( cls : Union[str, Any] , UpperCAmelCase : str ) -> "DatasetMetadata": lowerCamelCase__ : Any = yaml.load(UpperCAmelCase , Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields lowerCamelCase__ : Tuple = { (key.replace('-' , '_' ) if key.replace('-' , '_' ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**UpperCAmelCase ) def A_ ( self : Optional[Any] ) -> str: return yaml.safe_dump( { (key.replace('_' , '-' ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() } , sort_keys=UpperCAmelCase , allow_unicode=UpperCAmelCase , encoding='utf-8' , ).decode('utf-8' ) _UpperCAmelCase : Tuple = { """image-classification""": [], """translation""": [], """image-segmentation""": [], """fill-mask""": [], """automatic-speech-recognition""": [], """token-classification""": [], """sentence-similarity""": [], """audio-classification""": [], """question-answering""": [], """summarization""": [], """zero-shot-classification""": [], """table-to-text""": [], """feature-extraction""": [], """other""": [], """multiple-choice""": [], """text-classification""": [], """text-to-image""": [], """text2text-generation""": [], """zero-shot-image-classification""": [], """tabular-classification""": [], """tabular-regression""": [], """image-to-image""": [], """tabular-to-text""": [], """unconditional-image-generation""": [], """text-retrieval""": [], """text-to-speech""": [], """object-detection""": [], """audio-to-audio""": [], """text-generation""": [], """conversational""": [], """table-question-answering""": [], """visual-question-answering""": [], """image-to-text""": [], """reinforcement-learning""": [], """voice-activity-detection""": [], """time-series-forecasting""": [], """document-question-answering""": [], } if __name__ == "__main__": from argparse import ArgumentParser _UpperCAmelCase : Tuple = ArgumentParser(usage="""Validate the yaml metadata block of a README.md file.""") ap.add_argument("""readme_filepath""") _UpperCAmelCase : str = ap.parse_args() _UpperCAmelCase : Optional[int] = Path(args.readme_filepath) _UpperCAmelCase : Union[str, Any] = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
45
from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder _UpperCAmelCase : Any = datasets.utils.logging.get_logger(__name__) class lowerCAmelCase ( folder_based_builder.FolderBasedBuilderConfig ): UpperCAmelCase__ = None UpperCAmelCase__ = None class lowerCAmelCase ( folder_based_builder.FolderBasedBuilder ): UpperCAmelCase__ = datasets.Audio() UpperCAmelCase__ = """audio""" UpperCAmelCase__ = AudioFolderConfig UpperCAmelCase__ = 42 # definition at the bottom of the script UpperCAmelCase__ = AudioClassification(audio_column="""audio""", label_column="""label""" ) _UpperCAmelCase : Union[str, Any] = [ """.aiff""", """.au""", """.avr""", """.caf""", """.flac""", """.htk""", """.svx""", """.mat4""", """.mat5""", """.mpc2k""", """.ogg""", """.paf""", """.pvf""", """.raw""", """.rf64""", """.sd2""", """.sds""", """.ircam""", """.voc""", """.w64""", """.wav""", """.nist""", """.wavex""", """.wve""", """.xi""", """.mp3""", """.opus""", ] _UpperCAmelCase : Union[str, Any] = AUDIO_EXTENSIONS
45
1
'''simple docstring''' from manim import * class __snake_case ( _SCREAMING_SNAKE_CASE): """simple docstring""" def __lowercase ( self : int ) -> Tuple: lowerCAmelCase_ : Optional[int] = Rectangle(height=0.5 , width=0.5 ) lowerCAmelCase_ : int = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) lowerCAmelCase_ : List[str] = [mem.copy() for i in range(6 )] lowerCAmelCase_ : Tuple = [mem.copy() for i in range(6 )] lowerCAmelCase_ : str = VGroup(*lowerCamelCase ).arrange(lowerCamelCase , buff=0 ) lowerCAmelCase_ : Union[str, Any] = VGroup(*lowerCamelCase ).arrange(lowerCamelCase , buff=0 ) lowerCAmelCase_ : Tuple = VGroup(lowerCamelCase , lowerCamelCase ).arrange(lowerCamelCase , buff=0 ) lowerCAmelCase_ : int = Text("""CPU""" , font_size=24 ) lowerCAmelCase_ : int = Group(lowerCamelCase , lowerCamelCase ).arrange(lowerCamelCase , buff=0.5 , aligned_edge=lowerCamelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowerCamelCase ) lowerCAmelCase_ : List[str] = [mem.copy() for i in range(4 )] lowerCAmelCase_ : Tuple = VGroup(*lowerCamelCase ).arrange(lowerCamelCase , buff=0 ) lowerCAmelCase_ : List[Any] = Text("""GPU""" , font_size=24 ) lowerCAmelCase_ : Optional[Any] = Group(lowerCamelCase , lowerCamelCase ).arrange(lowerCamelCase , buff=0.5 , aligned_edge=lowerCamelCase ) gpu.move_to([-1, -1, 0] ) self.add(lowerCamelCase ) lowerCAmelCase_ : Any = [mem.copy() for i in range(6 )] lowerCAmelCase_ : Any = VGroup(*lowerCamelCase ).arrange(lowerCamelCase , buff=0 ) lowerCAmelCase_ : Optional[Any] = Text("""Model""" , font_size=24 ) lowerCAmelCase_ : Optional[int] = Group(lowerCamelCase , lowerCamelCase ).arrange(lowerCamelCase , buff=0.5 , aligned_edge=lowerCamelCase ) model.move_to([3, -1.0, 0] ) self.add(lowerCamelCase ) lowerCAmelCase_ : Tuple = [] for i, rect in enumerate(lowerCamelCase ): rect.set_stroke(lowerCamelCase ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) lowerCAmelCase_ : int = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(lowerCamelCase , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=lowerCamelCase ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=lowerCamelCase , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=lowerCamelCase , buff=0.0 ) self.add(lowerCamelCase ) cpu_targs.append(lowerCamelCase ) lowerCAmelCase_ : Tuple = [mem.copy() for i in range(6 )] lowerCAmelCase_ : Dict = VGroup(*lowerCamelCase ).arrange(lowerCamelCase , buff=0 ) lowerCAmelCase_ : Union[str, Any] = Text("""Loaded Checkpoint""" , font_size=24 ) lowerCAmelCase_ : Union[str, Any] = Group(lowerCamelCase , lowerCamelCase ).arrange(lowerCamelCase , aligned_edge=lowerCamelCase , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) lowerCAmelCase_ : Optional[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowerCAmelCase_ : int = MarkupText( F'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(lowerCamelCase , lowerCamelCase ) lowerCAmelCase_ : int = MarkupText( F'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' , font_size=18 , ) blue_text.next_to(lowerCamelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) lowerCAmelCase_ : str = MarkupText( F'Next, a <i><span fgcolor="{BLUE}">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor="{BLUE}">single shard</span>.' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCamelCase ) , Write(lowerCamelCase ) ) self.play(Write(lowerCamelCase , run_time=1 ) , Create(lowerCamelCase , run_time=1 ) ) lowerCAmelCase_ : Any = [] lowerCAmelCase_ : Tuple = [] for i, rect in enumerate(lowerCamelCase ): lowerCAmelCase_ : Union[str, Any] = fill.copy().set_fill(lowerCamelCase , opacity=0.7 ) target.move_to(lowerCamelCase ) first_animations.append(GrowFromCenter(lowerCamelCase , run_time=1 ) ) lowerCAmelCase_ : List[str] = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(lowerCamelCase , run_time=1.5 ) ) self.play(*lowerCamelCase ) self.play(*lowerCamelCase ) self.wait()
120
'''simple docstring''' def UpperCamelCase_ ( A__ : int = 10_00 ): '''simple docstring''' lowerCAmelCase_ : Optional[Any] = 3 lowerCAmelCase_ : Dict = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(F'''{solution() = }''')
120
1
"""simple docstring""" import gc import threading import time import psutil import torch class lowerCamelCase__ : '''simple docstring''' def __init__( self ) -> List[Any]: A = psutil.Process() A = False def UpperCamelCase__ ( self ) -> Optional[int]: A = -1 while True: A = max(self.process.memory_info().rss ,self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def UpperCamelCase__ ( self ) -> Any: A = True A = threading.Thread(target=self.peak_monitor ) A = True self.thread.start() def UpperCamelCase__ ( self ) -> List[str]: A = False self.thread.join() return self.cpu_memory_peak UpperCAmelCase =PeakCPUMemory() def _A ( ): """simple docstring""" A = {"""time""": time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem A = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): A = torch.cuda.memory_allocated(_a ) torch.cuda.reset_peak_memory_stats() return measures def _A ( _a : int ): """simple docstring""" A = {"""time""": time.time() - start_measures["""time"""]} gc.collect() torch.cuda.empty_cache() # CPU mem A = (psutil.Process().memory_info().rss - start_measures["""cpu"""]) / 2**2_0 A = (cpu_peak_tracker.stop() - start_measures["""cpu"""]) / 2**2_0 # GPU mem for i in range(torch.cuda.device_count() ): A = (torch.cuda.memory_allocated(_a ) - start_measures[str(_a )]) / 2**2_0 A = (torch.cuda.max_memory_allocated(_a ) - start_measures[str(_a )]) / 2**2_0 return measures def _A ( _a : int , _a : Dict ): """simple docstring""" print(f'{description}:' ) print(f'- Time: {measures["time"]:.2f}s' ) for i in range(torch.cuda.device_count() ): print(f'- GPU {i} allocated: {measures[str(_a )]:.2f}MiB' ) A = measures[f'{i}-peak'] print(f'- GPU {i} peak: {peak:.2f}MiB' ) print(f'- CPU RAM allocated: {measures["cpu"]:.2f}MiB' ) print(f'- CPU RAM peak: {measures["cpu-peak"]:.2f}MiB' )
351
"""simple docstring""" import pytest UpperCAmelCase ="__dummy_dataset1__" UpperCAmelCase ="\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n" @pytest.fixture def _A ( ): """simple docstring""" return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def _A ( ): """simple docstring""" return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def _A ( _a : str , _a : List[Any] , _a : List[Any] ): """simple docstring""" A = dataset_loading_script_name A = tmp_path / """datasets""" / script_name script_dir.mkdir(parents=_a ) A = script_dir / f'{script_name}.py' with open(_a , """w""" ) as f: f.write(_a ) return str(_a )
77
0
'''simple docstring''' from __future__ import annotations def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): if (voltage, current, resistance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if resistance < 0: raise ValueError("Resistance cannot be negative" ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
234
import qiskit def UpperCAmelCase ( lowercase , lowercase ): """simple docstring""" __lowercase = qiskit.Aer.get_backend('''aer_simulator''' ) # Create a Quantum Circuit acting on the q register __lowercase = qiskit.QuantumCircuit(lowercase , lowercase ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator __lowercase = qiskit.execute(lowercase , lowercase , shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(lowercase ) if __name__ == "__main__": print(F'''Total count for various states are: {single_qubit_measure(1, 1)}''')
210
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase = { '''configuration_x_clip''': [ '''XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XCLIPConfig''', '''XCLIPTextConfig''', '''XCLIPVisionConfig''', ], '''processing_x_clip''': ['''XCLIPProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ '''XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XCLIPModel''', '''XCLIPPreTrainedModel''', '''XCLIPTextModel''', '''XCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
304
import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger lowerCAmelCase = '''<<<<<<< This should probably be modified because it mentions: ''' lowerCAmelCase = '''======= >>>>>>> ''' lowerCAmelCase = [ '''TextEncoderConfig''', '''ByteTextEncoder''', '''SubwordTextEncoder''', '''encoder_config''', '''maybe_build_from_corpus''', '''manual_dir''', ] lowerCAmelCase = [ # (pattern, replacement) # Order is important here for some replacements (R'''tfds\.core''', R'''datasets'''), (R'''tf\.io\.gfile\.GFile''', R'''open'''), (R'''tf\.([\w\d]+)''', R'''datasets.Value(\'\1\')'''), (R'''tfds\.features\.Text\(\)''', R'''datasets.Value(\'string\')'''), (R'''tfds\.features\.Text\(''', R'''datasets.Value(\'string\'),'''), (R'''features\s*=\s*tfds.features.FeaturesDict\(''', R'''features=datasets.Features('''), (R'''tfds\.features\.FeaturesDict\(''', R'''dict('''), (R'''The TensorFlow Datasets Authors''', R'''The TensorFlow Datasets Authors and the HuggingFace Datasets Authors'''), (R'''tfds\.''', R'''datasets.'''), (R'''dl_manager\.manual_dir''', R'''self.config.data_dir'''), (R'''self\.builder_config''', R'''self.config'''), ] def _lowerCamelCase( lowercase__ ) -> Optional[int]: '''simple docstring''' return ConvertCommand(args.tfds_path , args.datasets_directory ) class A ( A_ ): @staticmethod def _A (lowerCAmelCase ): __lowercase= parser.add_parser( 'convert' , help='Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.' , ) train_parser.add_argument( '--tfds_path' , type=lowerCAmelCase , required=lowerCAmelCase , help='Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.' , ) train_parser.add_argument( '--datasets_directory' , type=lowerCAmelCase , required=lowerCAmelCase , help='Path to the HuggingFace Datasets folder.' ) train_parser.set_defaults(func=lowerCAmelCase ) def __init__(self , lowerCAmelCase , lowerCAmelCase , *lowerCAmelCase ): __lowercase= get_logger('datasets-cli/converting' ) __lowercase= tfds_path __lowercase= datasets_directory def _A (self ): if os.path.isdir(self._tfds_path ): __lowercase= os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): __lowercase= os.path.dirname(self._tfds_path ) else: raise ValueError('--tfds_path is neither a directory nor a file. Please check path.' ) __lowercase= os.path.abspath(self._datasets_directory ) self._logger.info(f'Converting datasets from {abs_tfds_path} to {abs_datasets_path}' ) __lowercase= [] __lowercase= [] __lowercase= {} if os.path.isdir(self._tfds_path ): __lowercase= os.listdir(lowerCAmelCase ) else: __lowercase= [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(f'Looking at file {f_name}' ) __lowercase= os.path.join(lowerCAmelCase , lowerCAmelCase ) __lowercase= os.path.join(lowerCAmelCase , lowerCAmelCase ) if not os.path.isfile(lowerCAmelCase ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info('Skipping file' ) continue with open(lowerCAmelCase , encoding='utf-8' ) as f: __lowercase= f.readlines() __lowercase= [] __lowercase= False __lowercase= False __lowercase= [] for line in lines: __lowercase= line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: __lowercase= 'import datasets\n' elif "import tensorflow" in out_line: # order is important here __lowercase= '' continue elif "from absl import logging" in out_line: __lowercase= 'from datasets import logging\n' elif "getLogger" in out_line: __lowercase= out_line.replace('getLogger' , 'get_logger' ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): __lowercase= True __lowercase= list(filter(lambda lowerCAmelCase : e in out_line , lowerCAmelCase ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(lowerCAmelCase ) + '\n' ) out_lines.append(lowerCAmelCase ) out_lines.append(lowerCAmelCase ) continue else: for pattern, replacement in TO_CONVERT: __lowercase= re.sub(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: __lowercase= re.match(r'from\stensorflow_datasets.*import\s([^\.\r\n]+)' , lowerCAmelCase ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(',' ) ) __lowercase= 'from . import ' + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(f'Error converting {out_line.strip()}' ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: __lowercase= True out_lines.append(lowerCAmelCase ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset __lowercase= f_name.replace('.py' , '' ) __lowercase= os.path.join(lowerCAmelCase , lowerCAmelCase ) __lowercase= os.path.join(lowerCAmelCase , lowerCAmelCase ) os.makedirs(lowerCAmelCase , exist_ok=lowerCAmelCase ) self._logger.info(f'Adding directory {output_dir}' ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(lowerCAmelCase ) if needs_manual_update: with_manual_update.append(lowerCAmelCase ) with open(lowerCAmelCase , 'w' , encoding='utf-8' ) as f: f.writelines(lowerCAmelCase ) self._logger.info(f'Converted in {output_file}' ) for utils_file in utils_files: try: __lowercase= os.path.basename(lowerCAmelCase ) __lowercase= imports_to_builder_map[f_name.replace('.py' , '' )] self._logger.info(f'Moving {dest_folder} to {utils_file}' ) shutil.copy(lowerCAmelCase , lowerCAmelCase ) except KeyError: self._logger.error(f'Cannot find destination folder for {utils_file}. Please copy manually.' ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( f'You need to manually update file {file_path} to remove configurations using \'TextEncoderConfig\'.' )
304
1
"""simple docstring""" import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def lowerCamelCase_ (UpperCamelCase__ : List[str] ): # picklable for multiprocessing return x.sum() def lowerCamelCase_ (UpperCamelCase__ : str ): # picklable for multiprocessing return i + 1 @dataclass class _UpperCAmelCase : '''simple docstring''' a__ =42 a__ =42 class _UpperCAmelCase ( a ): '''simple docstring''' def __lowerCAmelCase ( self ) -> Optional[int]: _UpperCAmelCase : str = {} _UpperCAmelCase : int = [] _UpperCAmelCase : Dict = 1 _UpperCAmelCase : Tuple = [1, 2] _UpperCAmelCase : Dict = {'''a''': 1, '''b''': 2} _UpperCAmelCase : Optional[int] = {'''a''': [1, 2], '''b''': [3, 4]} _UpperCAmelCase : str = {'''a''': {'''1''': 1}, '''b''': 2} _UpperCAmelCase : Optional[int] = {'''a''': 1, '''b''': 2, '''c''': 3, '''d''': 4} _UpperCAmelCase : List[Any] = {} _UpperCAmelCase : Union[str, Any] = [] _UpperCAmelCase : Union[str, Any] = 2 _UpperCAmelCase : int = [2, 3] _UpperCAmelCase : str = {'''a''': 2, '''b''': 3} _UpperCAmelCase : Optional[Any] = {'''a''': [2, 3], '''b''': [4, 5]} _UpperCAmelCase : Union[str, Any] = {'''a''': {'''1''': 2}, '''b''': 3} _UpperCAmelCase : Dict = {'''a''': 2, '''b''': 3, '''c''': 4, '''d''': 5} self.assertEqual(map_nested(A , A ) , A ) self.assertEqual(map_nested(A , A ) , A ) self.assertEqual(map_nested(A , A ) , A ) self.assertEqual(map_nested(A , A ) , A ) self.assertEqual(map_nested(A , A ) , A ) self.assertEqual(map_nested(A , A ) , A ) self.assertEqual(map_nested(A , A ) , A ) self.assertEqual(map_nested(A , A ) , A ) _UpperCAmelCase : List[Any] = 2 self.assertEqual(map_nested(A , A , num_proc=A ) , A ) self.assertEqual(map_nested(A , A , num_proc=A ) , A ) self.assertEqual(map_nested(A , A , num_proc=A ) , A ) self.assertEqual(map_nested(A , A , num_proc=A ) , A ) self.assertEqual(map_nested(A , A , num_proc=A ) , A ) self.assertEqual(map_nested(A , A , num_proc=A ) , A ) self.assertEqual(map_nested(A , A , num_proc=A ) , A ) self.assertEqual(map_nested(A , A , num_proc=A ) , A ) _UpperCAmelCase : Tuple = {'''a''': np.eye(2 ), '''b''': np.zeros(3 ), '''c''': np.ones(2 )} _UpperCAmelCase : Dict = {'''a''': 2, '''b''': 0, '''c''': 2} _UpperCAmelCase : str = { '''a''': np.eye(2 ).astype(A ), '''b''': np.zeros(3 ).astype(A ), '''c''': np.ones(2 ).astype(A ), } self.assertEqual(map_nested(A , A , map_numpy=A ) , A ) self.assertEqual( {k: v.tolist() for k, v in map_nested(A , A , map_numpy=A ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(A , A , map_numpy=A , num_proc=A ) , A ) self.assertEqual( {k: v.tolist() for k, v in map_nested(A , A , map_numpy=A , num_proc=A ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(A ): # can't pickle a local lambda map_nested(lambda A : x + 1 , A , num_proc=A ) def __lowerCAmelCase ( self ) -> int: _UpperCAmelCase : Optional[Any] = {'''a''': 1, '''b''': 2} _UpperCAmelCase : Optional[Any] = {'''a''': 3, '''b''': 4} _UpperCAmelCase : Any = {'''a''': 5, '''b''': 6} _UpperCAmelCase : Dict = sorted([('''a''', (1, 3, 5)), ('''b''', (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(A , A , A ) ) , A ) def __lowerCAmelCase ( self ) -> Union[str, Any]: class _UpperCAmelCase : '''simple docstring''' a__ ='''bar''' _UpperCAmelCase : Tuple = Foo() self.assertEqual(foo.my_attr , '''bar''' ) with temporary_assignment(A , '''my_attr''' , '''BAR''' ): self.assertEqual(foo.my_attr , '''BAR''' ) self.assertEqual(foo.my_attr , '''bar''' ) @pytest.mark.parametrize( '''iterable_length, num_proc, expected_num_proc''' , [ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ] , ) def lowerCamelCase_ (UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : Optional[int] ): with patch('''datasets.utils.py_utils._single_map_nested''' ) as mock_single_map_nested, patch( '''datasets.parallel.parallel.Pool''' ) as mock_multiprocessing_pool: _UpperCAmelCase : List[Any] = {F'{i}': i for i in range(UpperCamelCase__ )} _UpperCAmelCase : Optional[Any] = map_nested(lambda UpperCamelCase__ : x + 10 , UpperCamelCase__ , num_proc=UpperCamelCase__ , parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class _UpperCAmelCase ( a ): '''simple docstring''' @require_tf def __lowerCAmelCase ( self ) -> Union[str, Any]: import tensorflow as tf from tensorflow.keras import layers _UpperCAmelCase : Optional[int] = layers.Dense(2 ) def gen_random_output(): _UpperCAmelCase : Tuple = tf.random.uniform((1, 3) ) return model(A ).numpy() with temp_seed(4_2 , set_tensorflow=A ): _UpperCAmelCase : List[str] = gen_random_output() with temp_seed(4_2 , set_tensorflow=A ): _UpperCAmelCase : Optional[Any] = gen_random_output() _UpperCAmelCase : str = gen_random_output() np.testing.assert_equal(A , A ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @require_torch def __lowerCAmelCase ( self ) -> List[str]: import torch def gen_random_output(): _UpperCAmelCase : Tuple = torch.nn.Linear(3 , 2 ) _UpperCAmelCase : Tuple = torch.rand(1 , 3 ) return model(A ).detach().numpy() with temp_seed(4_2 , set_pytorch=A ): _UpperCAmelCase : Optional[Any] = gen_random_output() with temp_seed(4_2 , set_pytorch=A ): _UpperCAmelCase : Optional[Any] = gen_random_output() _UpperCAmelCase : str = gen_random_output() np.testing.assert_equal(A , A ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) def __lowerCAmelCase ( self ) -> Any: def gen_random_output(): return np.random.rand(1 , 3 ) with temp_seed(4_2 ): _UpperCAmelCase : List[str] = gen_random_output() with temp_seed(4_2 ): _UpperCAmelCase : int = gen_random_output() _UpperCAmelCase : Dict = gen_random_output() np.testing.assert_equal(A , A ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @pytest.mark.parametrize('''input_data''' , [{}] ) def lowerCamelCase_ (UpperCamelCase__ : str ): _UpperCAmelCase : Optional[int] = NestedDataStructure(UpperCamelCase__ ).data assert output_data == input_data @pytest.mark.parametrize( '''data, expected_output''' , [ ({}, []), ([], []), ('''foo''', ['''foo''']), (['''foo''', '''bar'''], ['''foo''', '''bar''']), ([['''foo''', '''bar''']], ['''foo''', '''bar''']), ([[['''foo'''], ['''bar''']]], ['''foo''', '''bar''']), ([[['''foo'''], '''bar''']], ['''foo''', '''bar''']), ({'''a''': 1, '''b''': 2}, [1, 2]), ({'''a''': [1, 2], '''b''': [3, 4]}, [1, 2, 3, 4]), ({'''a''': [[1, 2]], '''b''': [[3, 4]]}, [1, 2, 3, 4]), ({'''a''': [[1, 2]], '''b''': [3, 4]}, [1, 2, 3, 4]), ({'''a''': [[[1], [2]]], '''b''': [[[3], [4]]]}, [1, 2, 3, 4]), ({'''a''': [[[1], [2]]], '''b''': [[3, 4]]}, [1, 2, 3, 4]), ({'''a''': [[[1], [2]]], '''b''': [3, 4]}, [1, 2, 3, 4]), ({'''a''': [[[1], [2]]], '''b''': [3, [4]]}, [1, 2, 3, 4]), ({'''a''': {'''1''': 1}, '''b''': 2}, [1, 2]), ({'''a''': {'''1''': [1]}, '''b''': 2}, [1, 2]), ({'''a''': {'''1''': [1]}, '''b''': [2]}, [1, 2]), ] , ) def lowerCamelCase_ (UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Tuple ): _UpperCAmelCase : str = NestedDataStructure(UpperCamelCase__ ).flatten() assert output == expected_output def lowerCamelCase_ (): _UpperCAmelCase : Dict = A(x=1 , y='''foobar''' ) _UpperCAmelCase : str = {'''x''': 1, '''y''': '''foobar'''} assert asdict(UpperCamelCase__ ) == expected_output _UpperCAmelCase : int = {'''a''': {'''b''': A(x=10 , y='''foo''' )}, '''c''': [A(x=20 , y='''bar''' )]} _UpperCAmelCase : Tuple = {'''a''': {'''b''': {'''x''': 10, '''y''': '''foo'''}}, '''c''': [{'''x''': 20, '''y''': '''bar'''}]} assert asdict(UpperCamelCase__ ) == expected_output with pytest.raises(UpperCamelCase__ ): asdict([1, A(x=10 , y='''foo''' )] ) def lowerCamelCase_ (UpperCamelCase__ : str ): return text.split() def lowerCamelCase_ (UpperCamelCase__ : Tuple ): yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def lowerCamelCase_ (): with Pool(2 ) as pool: _UpperCAmelCase : Tuple = list(iflatmap_unordered(UpperCamelCase__ , _split_text , kwargs_iterable=[{'''text''': '''hello there'''}] * 10 ) ) assert out.count('''hello''' ) == 10 assert out.count('''there''' ) == 10 assert len(UpperCamelCase__ ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: _UpperCAmelCase : str = list(iflatmap_unordered(UpperCamelCase__ , _split_text , kwargs_iterable=[{'''text''': '''hello there'''}] * 10 ) ) assert out.count('''hello''' ) == 10 assert out.count('''there''' ) == 10 assert len(UpperCamelCase__ ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: _UpperCAmelCase : Dict = [] for yield_time, content in iflatmap_unordered( UpperCamelCase__ , _aseconds_generator_of_aitems_with_timing , kwargs_iterable=[{'''content''': '''a'''}, {'''content''': '''b'''}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(UpperCamelCase__ ) assert out.count('''a''' ) == 2 assert out.count('''b''' ) == 2 assert len(UpperCamelCase__ ) == 4
263
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionAttendAndExcitePipeline, UNetaDConditionModel, ) from diffusers.utils import load_numpy, skip_mps, slow from diffusers.utils.testing_utils import require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin _lowerCAmelCase :Any = False @skip_mps class _UpperCAmelCase ( a ,a ,a ,unittest.TestCase ): '''simple docstring''' a__ =StableDiffusionAttendAndExcitePipeline a__ =False a__ =TEXT_TO_IMAGE_PARAMS a__ =TEXT_TO_IMAGE_BATCH_PARAMS.union({'''token_indices'''} ) a__ =TEXT_TO_IMAGE_IMAGE_PARAMS a__ =TEXT_TO_IMAGE_IMAGE_PARAMS @classmethod def __lowerCAmelCase ( cls ) -> List[str]: super().setUpClass() torch.use_deterministic_algorithms(A ) @classmethod def __lowerCAmelCase ( cls ) -> Union[str, Any]: super().tearDownClass() torch.use_deterministic_algorithms(A ) def __lowerCAmelCase ( self ) -> Tuple: torch.manual_seed(0 ) _UpperCAmelCase : Optional[int] = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=1 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , attention_head_dim=(2, 4) , use_linear_projection=A , ) _UpperCAmelCase : List[Any] = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=A , set_alpha_to_one=A , ) torch.manual_seed(0 ) _UpperCAmelCase : int = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0 ) _UpperCAmelCase : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='''gelu''' , projection_dim=5_1_2 , ) _UpperCAmelCase : List[str] = CLIPTextModel(A ) _UpperCAmelCase : str = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) _UpperCAmelCase : Union[str, Any] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __lowerCAmelCase ( self , A , A=0 ) -> List[Any]: if str(A ).startswith('''mps''' ): _UpperCAmelCase : Optional[int] = torch.manual_seed(A ) else: _UpperCAmelCase : Union[str, Any] = torch.Generator(device=A ).manual_seed(A ) _UpperCAmelCase : List[str] = { '''prompt''': '''a cat and a frog''', '''token_indices''': [2, 5], '''generator''': generator, '''num_inference_steps''': 1, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', '''max_iter_to_alter''': 2, '''thresholds''': {0: 0.7}, } return inputs def __lowerCAmelCase ( self ) -> int: _UpperCAmelCase : List[str] = '''cpu''' _UpperCAmelCase : Tuple = self.get_dummy_components() _UpperCAmelCase : int = self.pipeline_class(**A ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) _UpperCAmelCase : Dict = self.get_dummy_inputs(A ) _UpperCAmelCase : Union[str, Any] = pipe(**A ).images _UpperCAmelCase : Tuple = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 6_4, 6_4, 3) ) _UpperCAmelCase : int = np.array( [0.63_905_364, 0.62_897_307, 0.48_599_017, 0.5_133_624, 0.5_550_048, 0.45_769_516, 0.50_326_973, 0.5_023_139, 0.45_384_496] ) _UpperCAmelCase : Tuple = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(A , 1E-3 ) def __lowerCAmelCase ( self ) -> Dict: super().test_cpu_offload_forward_pass(expected_max_diff=5E-4 ) def __lowerCAmelCase ( self ) -> List[str]: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def __lowerCAmelCase ( self ) -> Union[str, Any]: self._test_inference_batch_single_identical(batch_size=2 , expected_max_diff=7E-4 ) def __lowerCAmelCase ( self ) -> List[str]: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def __lowerCAmelCase ( self ) -> List[str]: super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5E-4 ) def __lowerCAmelCase ( self ) -> str: super().test_save_load_local(expected_max_difference=5E-4 ) def __lowerCAmelCase ( self ) -> Optional[int]: super().test_save_load_optional_components(expected_max_difference=4E-4 ) @require_torch_gpu @slow class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def __lowerCAmelCase ( cls ) -> Union[str, Any]: super().setUpClass() torch.use_deterministic_algorithms(A ) @classmethod def __lowerCAmelCase ( cls ) -> Optional[int]: super().tearDownClass() torch.use_deterministic_algorithms(A ) def __lowerCAmelCase ( self ) -> List[str]: super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) -> str: _UpperCAmelCase : Any = torch.manual_seed(5_1 ) _UpperCAmelCase : Optional[Any] = StableDiffusionAttendAndExcitePipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , safety_checker=A , torch_dtype=torch.floataa ) pipe.to('''cuda''' ) _UpperCAmelCase : Optional[int] = '''a painting of an elephant with glasses''' _UpperCAmelCase : int = [5, 7] _UpperCAmelCase : Dict = pipe( prompt=A , token_indices=A , guidance_scale=7.5 , generator=A , num_inference_steps=5 , max_iter_to_alter=5 , output_type='''numpy''' , ).images[0] _UpperCAmelCase : List[Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy''' ) assert np.abs((expected_image - image).max() ) < 5E-1
263
1
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class _UpperCamelCase ( A , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = TextToVideoSDPipeline lowerCAmelCase__ = TEXT_TO_IMAGE_PARAMS lowerCAmelCase__ = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. lowerCAmelCase__ = frozenset( [ """num_inference_steps""", """generator""", """latents""", """return_dict""", """callback""", """callback_steps""", ] ) def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' torch.manual_seed(0) __lowercase =UNetaDConditionModel( block_out_channels=(3_2, 6_4, 6_4, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'DownBlock3D') , up_block_types=('UpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D') , cross_attention_dim=3_2 , attention_head_dim=4 , ) __lowercase =DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=_lowerCAmelCase , set_alpha_to_one=_lowerCAmelCase , ) torch.manual_seed(0) __lowercase =AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0) __lowercase =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='gelu' , projection_dim=5_1_2 , ) __lowercase =CLIPTextModel(_lowerCAmelCase) __lowercase =CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') __lowercase ={ 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, } return components def __lowerCamelCase ( self : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any]=0): '''simple docstring''' if str(_lowerCAmelCase).startswith('mps'): __lowercase =torch.manual_seed(_lowerCAmelCase) else: __lowercase =torch.Generator(device=_lowerCAmelCase).manual_seed(_lowerCAmelCase) __lowercase ={ 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'pt', } return inputs def __lowerCamelCase ( self : Dict): '''simple docstring''' __lowercase ='cpu' # ensure determinism for the device-dependent torch.Generator __lowercase =self.get_dummy_components() __lowercase =TextToVideoSDPipeline(**_lowerCAmelCase) __lowercase =sd_pipe.to(_lowerCAmelCase) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase) __lowercase =self.get_dummy_inputs(_lowerCAmelCase) __lowercase ='np' __lowercase =sd_pipe(**_lowerCAmelCase).frames __lowercase =frames[0][-3:, -3:, -1] assert frames[0].shape == (6_4, 6_4, 3) __lowercase =np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def __lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' self._test_attention_slicing_forward_pass(test_mean_pixel_difference=_lowerCAmelCase , expected_max_diff=3e-3) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=_lowerCAmelCase , expected_max_diff=1e-2) @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.') def __lowerCamelCase ( self : int): '''simple docstring''' pass @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.') def __lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' pass @unittest.skip(reason='`num_images_per_prompt` argument is not supported for this pipeline.') def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' pass def __lowerCamelCase ( self : Tuple): '''simple docstring''' return super().test_progress_bar() @slow @skip_mps class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' __lowercase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy') __lowercase =TextToVideoSDPipeline.from_pretrained('damo-vilab/text-to-video-ms-1.7b') __lowercase =DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) __lowercase =pipe.to('cuda') __lowercase ='Spiderman is surfing' __lowercase =torch.Generator(device='cpu').manual_seed(0) __lowercase =pipe(_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=2_5 , output_type='pt').frames __lowercase =video_frames.cpu().numpy() assert np.abs(expected_video - video).mean() < 5e-2 def __lowerCamelCase ( self : Tuple): '''simple docstring''' __lowercase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy') __lowercase =TextToVideoSDPipeline.from_pretrained('damo-vilab/text-to-video-ms-1.7b') __lowercase =pipe.to('cuda') __lowercase ='Spiderman is surfing' __lowercase =torch.Generator(device='cpu').manual_seed(0) __lowercase =pipe(_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=2 , output_type='pt').frames __lowercase =video_frames.cpu().numpy() assert np.abs(expected_video - video).mean() < 5e-2
361
'''simple docstring''' from __future__ import annotations from math import pi, sqrt def _A ( _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" if inductance <= 0: raise ValueError('Inductance cannot be 0 or negative' ) elif capacitance <= 0: raise ValueError('Capacitance cannot be 0 or negative' ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
48
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Union[str, Any] = CycleDiffusionPipeline _UpperCAmelCase :Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { "negative_prompt", "height", "width", "negative_prompt_embeds", } _UpperCAmelCase :Any = PipelineTesterMixin.required_optional_params - {"latents"} _UpperCAmelCase :Any = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"source_prompt"} ) _UpperCAmelCase :List[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS _UpperCAmelCase :Dict = IMAGE_TO_IMAGE_IMAGE_PARAMS def _snake_case ( self ): torch.manual_seed(0 ) lowercase__: Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) lowercase__: Tuple = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , num_train_timesteps=1000 , clip_sample=_UpperCAmelCase , set_alpha_to_one=_UpperCAmelCase , ) torch.manual_seed(0 ) lowercase__: Union[str, Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) lowercase__: Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowercase__: int = CLIPTextModel(_UpperCAmelCase ) lowercase__: Optional[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) lowercase__: int = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase=0 ): lowercase__: Tuple = floats_tensor((1, 3, 32, 32) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) lowercase__: str = image / 2 + 0.5 if str(_UpperCAmelCase ).startswith('''mps''' ): lowercase__: int = torch.manual_seed(_UpperCAmelCase ) else: lowercase__: Any = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowercase__: str = { '''prompt''': '''An astronaut riding an elephant''', '''source_prompt''': '''An astronaut riding a horse''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''eta''': 0.1, '''strength''': 0.8, '''guidance_scale''': 3, '''source_guidance_scale''': 1, '''output_type''': '''numpy''', } return inputs def _snake_case ( self ): lowercase__: Tuple = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__: Union[str, Any] = self.get_dummy_components() lowercase__: str = CycleDiffusionPipeline(**_UpperCAmelCase ) lowercase__: Tuple = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__: Optional[int] = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__: Tuple = pipe(**_UpperCAmelCase ) lowercase__: Any = output.images lowercase__: int = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) lowercase__: Any = np.array([0.4_459, 0.4_943, 0.4_544, 0.6_643, 0.5_474, 0.4_327, 0.5_701, 0.5_959, 0.5_179] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def _snake_case ( self ): lowercase__: Optional[Any] = self.get_dummy_components() for name, module in components.items(): if hasattr(_UpperCAmelCase , '''half''' ): lowercase__: str = module.half() lowercase__: List[Any] = CycleDiffusionPipeline(**_UpperCAmelCase ) lowercase__: List[str] = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__: Dict = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__: Union[str, Any] = pipe(**_UpperCAmelCase ) lowercase__: List[Any] = output.images lowercase__: int = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) lowercase__: int = np.array([0.3_506, 0.4_543, 0.446, 0.4_575, 0.5_195, 0.4_155, 0.5_273, 0.518, 0.4_116] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def _snake_case ( self ): return super().test_save_load_local() @unittest.skip('''non-deterministic pipeline''' ) def _snake_case ( self ): return super().test_inference_batch_single_identical() @skip_mps def _snake_case ( self ): return super().test_dict_tuple_outputs_equivalent() @skip_mps def _snake_case ( self ): return super().test_save_load_optional_components() @skip_mps def _snake_case ( self ): return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class UpperCAmelCase (unittest.TestCase ): """simple docstring""" def _snake_case ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ): lowercase__: List[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/cycle-diffusion/black_colored_car.png''' ) lowercase__: Optional[int] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy''' ) lowercase__: List[str] = init_image.resize((512, 512) ) lowercase__: Dict = '''CompVis/stable-diffusion-v1-4''' lowercase__: Any = DDIMScheduler.from_pretrained(_UpperCAmelCase , subfolder='''scheduler''' ) lowercase__: Optional[int] = CycleDiffusionPipeline.from_pretrained( _UpperCAmelCase , scheduler=_UpperCAmelCase , safety_checker=_UpperCAmelCase , torch_dtype=torch.floataa , revision='''fp16''' ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() lowercase__: int = '''A black colored car''' lowercase__: List[str] = '''A blue colored car''' lowercase__: Optional[int] = torch.manual_seed(0 ) lowercase__: Dict = pipe( prompt=_UpperCAmelCase , source_prompt=_UpperCAmelCase , image=_UpperCAmelCase , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=_UpperCAmelCase , output_type='''np''' , ) lowercase__: Optional[int] = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5e-1 def _snake_case ( self ): lowercase__: Any = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/cycle-diffusion/black_colored_car.png''' ) lowercase__: List[str] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy''' ) lowercase__: Tuple = init_image.resize((512, 512) ) lowercase__: Any = '''CompVis/stable-diffusion-v1-4''' lowercase__: Tuple = DDIMScheduler.from_pretrained(_UpperCAmelCase , subfolder='''scheduler''' ) lowercase__: Optional[int] = CycleDiffusionPipeline.from_pretrained(_UpperCAmelCase , scheduler=_UpperCAmelCase , safety_checker=_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() lowercase__: List[str] = '''A black colored car''' lowercase__: str = '''A blue colored car''' lowercase__: Optional[Any] = torch.manual_seed(0 ) lowercase__: Tuple = pipe( prompt=_UpperCAmelCase , source_prompt=_UpperCAmelCase , image=_UpperCAmelCase , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=_UpperCAmelCase , output_type='''np''' , ) lowercase__: List[Any] = output.images assert np.abs(image - expected_image ).max() < 2e-2
177
"""simple docstring""" from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING __A = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase ) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" def __init__( self , **_UpperCAmelCase ): super().__init__(**_UpperCAmelCase ) requires_backends(self , '''vision''' ) requires_backends(self , '''torch''' ) if self.framework != "pt": raise ValueError(F"""The {self.__class__} is only available in PyTorch.""" ) self.check_model_type(_UpperCAmelCase ) def _snake_case ( self , **_UpperCAmelCase ): lowercase__: List[Any] = {} lowercase__: List[Any] = {} lowercase__: Dict = {} # preprocess args if "points_per_batch" in kwargs: lowercase__: Dict = kwargs['''points_per_batch'''] if "points_per_crop" in kwargs: lowercase__: Any = kwargs['''points_per_crop'''] if "crops_n_layers" in kwargs: lowercase__: Union[str, Any] = kwargs['''crops_n_layers'''] if "crop_overlap_ratio" in kwargs: lowercase__: Optional[Any] = kwargs['''crop_overlap_ratio'''] if "crop_n_points_downscale_factor" in kwargs: lowercase__: Union[str, Any] = kwargs['''crop_n_points_downscale_factor'''] # postprocess args if "pred_iou_thresh" in kwargs: lowercase__: Any = kwargs['''pred_iou_thresh'''] if "stability_score_offset" in kwargs: lowercase__: Tuple = kwargs['''stability_score_offset'''] if "mask_threshold" in kwargs: lowercase__: List[str] = kwargs['''mask_threshold'''] if "stability_score_thresh" in kwargs: lowercase__: str = kwargs['''stability_score_thresh'''] if "crops_nms_thresh" in kwargs: lowercase__: List[str] = kwargs['''crops_nms_thresh'''] if "output_rle_mask" in kwargs: lowercase__: Dict = kwargs['''output_rle_mask'''] if "output_bboxes_mask" in kwargs: lowercase__: int = kwargs['''output_bboxes_mask'''] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self , _UpperCAmelCase , *_UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase ): return super().__call__(_UpperCAmelCase , *_UpperCAmelCase , num_workers=_UpperCAmelCase , batch_size=_UpperCAmelCase , **_UpperCAmelCase ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase=64 , _UpperCAmelCase = 0 , _UpperCAmelCase = 512 / 1500 , _UpperCAmelCase = 32 , _UpperCAmelCase = 1 , ): lowercase__: Union[str, Any] = load_image(_UpperCAmelCase ) lowercase__: Dict = self.image_processor.size['''longest_edge'''] lowercase__, lowercase__, lowercase__, lowercase__: Optional[Any] = self.image_processor.generate_crop_boxes( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) lowercase__: List[Any] = self.image_processor(images=_UpperCAmelCase , return_tensors='''pt''' ) with self.device_placement(): if self.framework == "pt": lowercase__: Tuple = self.get_inference_context() with inference_context(): lowercase__: Optional[Any] = self._ensure_tensor_on_device(_UpperCAmelCase , device=self.device ) lowercase__: Any = self.model.get_image_embeddings(model_inputs.pop('''pixel_values''' ) ) lowercase__: Tuple = image_embeddings lowercase__: Optional[Any] = grid_points.shape[1] lowercase__: Tuple = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( '''Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. ''' '''To return all points at once, set points_per_batch to None''' ) for i in range(0 , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Dict = grid_points[:, i : i + points_per_batch, :, :] lowercase__: int = input_labels[:, i : i + points_per_batch] lowercase__: Any = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase=0.88 , _UpperCAmelCase=0.95 , _UpperCAmelCase=0 , _UpperCAmelCase=1 , ): lowercase__: List[Any] = model_inputs.pop('''input_boxes''' ) lowercase__: List[Any] = model_inputs.pop('''is_last''' ) lowercase__: Any = model_inputs.pop('''original_sizes''' ).tolist() lowercase__: Union[str, Any] = model_inputs.pop('''reshaped_input_sizes''' ).tolist() lowercase__: List[Any] = self.model(**_UpperCAmelCase ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks lowercase__: int = model_outputs['''pred_masks'''] lowercase__: str = self.image_processor.post_process_masks( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , binarize=_UpperCAmelCase ) lowercase__: str = model_outputs['''iou_scores'''] lowercase__, lowercase__, lowercase__: Optional[int] = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=0.7 , ): lowercase__: int = [] lowercase__: str = [] lowercase__: List[Any] = [] for model_output in model_outputs: all_scores.append(model_output.pop('''iou_scores''' ) ) all_masks.extend(model_output.pop('''masks''' ) ) all_boxes.append(model_output.pop('''boxes''' ) ) lowercase__: Any = torch.cat(_UpperCAmelCase ) lowercase__: Dict = torch.cat(_UpperCAmelCase ) lowercase__, lowercase__, lowercase__, lowercase__: Any = self.image_processor.post_process_for_mask_generation( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) lowercase__: Union[str, Any] = defaultdict(_UpperCAmelCase ) for output in model_outputs: for k, v in output.items(): extra[k].append(_UpperCAmelCase ) lowercase__: Any = {} if output_rle_mask: lowercase__: Optional[Any] = rle_mask if output_bboxes_mask: lowercase__: Optional[int] = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
177
1
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TextClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. lowercase_ = {'LayoutLMv2Config', 'LayoutLMv3Config'} @is_pipeline_test class A_ ( unittest.TestCase ): '''simple docstring''' __snake_case = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING __snake_case = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: __snake_case = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: __snake_case = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } @require_torch def _snake_case ( self: Any ): __lowerCamelCase : Any = pipeline( task='text-classification' , model='hf-internal-testing/tiny-random-distilbert' , framework='pt' ) __lowerCamelCase : List[str] = text_classifier('This is great !' ) self.assertEqual(nested_simplify(a ) , [{'label': 'LABEL_0', 'score': 0.5_0_4}] ) __lowerCamelCase : Optional[int] = text_classifier('This is great !' , top_k=2 ) self.assertEqual( nested_simplify(a ) , [{'label': 'LABEL_0', 'score': 0.5_0_4}, {'label': 'LABEL_1', 'score': 0.4_9_6}] ) __lowerCamelCase : Dict = text_classifier(['This is great !', 'This is bad'] , top_k=2 ) self.assertEqual( nested_simplify(a ) , [ [{'label': 'LABEL_0', 'score': 0.5_0_4}, {'label': 'LABEL_1', 'score': 0.4_9_6}], [{'label': 'LABEL_0', 'score': 0.5_0_4}, {'label': 'LABEL_1', 'score': 0.4_9_6}], ] , ) __lowerCamelCase : Optional[int] = text_classifier('This is great !' , top_k=1 ) self.assertEqual(nested_simplify(a ) , [{'label': 'LABEL_0', 'score': 0.5_0_4}] ) # Legacy behavior __lowerCamelCase : List[Any] = text_classifier('This is great !' , return_all_scores=a ) self.assertEqual(nested_simplify(a ) , [{'label': 'LABEL_0', 'score': 0.5_0_4}] ) __lowerCamelCase : Optional[Any] = text_classifier('This is great !' , return_all_scores=a ) self.assertEqual( nested_simplify(a ) , [[{'label': 'LABEL_0', 'score': 0.5_0_4}, {'label': 'LABEL_1', 'score': 0.4_9_6}]] ) __lowerCamelCase : Any = text_classifier(['This is great !', 'Something else'] , return_all_scores=a ) self.assertEqual( nested_simplify(a ) , [ [{'label': 'LABEL_0', 'score': 0.5_0_4}, {'label': 'LABEL_1', 'score': 0.4_9_6}], [{'label': 'LABEL_0', 'score': 0.5_0_4}, {'label': 'LABEL_1', 'score': 0.4_9_6}], ] , ) __lowerCamelCase : Tuple = text_classifier(['This is great !', 'Something else'] , return_all_scores=a ) self.assertEqual( nested_simplify(a ) , [ {'label': 'LABEL_0', 'score': 0.5_0_4}, {'label': 'LABEL_0', 'score': 0.5_0_4}, ] , ) @require_torch def _snake_case ( self: Dict ): import torch __lowerCamelCase : Any = pipeline( task='text-classification' , model='hf-internal-testing/tiny-random-distilbert' , framework='pt' , device=torch.device('cpu' ) , ) __lowerCamelCase : str = text_classifier('This is great !' ) self.assertEqual(nested_simplify(a ) , [{'label': 'LABEL_0', 'score': 0.5_0_4}] ) @require_tf def _snake_case ( self: Optional[Any] ): __lowerCamelCase : str = pipeline( task='text-classification' , model='hf-internal-testing/tiny-random-distilbert' , framework='tf' ) __lowerCamelCase : List[str] = text_classifier('This is great !' ) self.assertEqual(nested_simplify(a ) , [{'label': 'LABEL_0', 'score': 0.5_0_4}] ) @slow @require_torch def _snake_case ( self: int ): __lowerCamelCase : List[str] = pipeline('text-classification' ) __lowerCamelCase : List[Any] = text_classifier('This is great !' ) self.assertEqual(nested_simplify(a ) , [{'label': 'POSITIVE', 'score': 1.0}] ) __lowerCamelCase : int = text_classifier('This is bad !' ) self.assertEqual(nested_simplify(a ) , [{'label': 'NEGATIVE', 'score': 1.0}] ) __lowerCamelCase : int = text_classifier('Birds are a type of animal' ) self.assertEqual(nested_simplify(a ) , [{'label': 'POSITIVE', 'score': 0.9_8_8}] ) @slow @require_tf def _snake_case ( self: Any ): __lowerCamelCase : Dict = pipeline('text-classification' , framework='tf' ) __lowerCamelCase : Optional[Any] = text_classifier('This is great !' ) self.assertEqual(nested_simplify(a ) , [{'label': 'POSITIVE', 'score': 1.0}] ) __lowerCamelCase : str = text_classifier('This is bad !' ) self.assertEqual(nested_simplify(a ) , [{'label': 'NEGATIVE', 'score': 1.0}] ) __lowerCamelCase : int = text_classifier('Birds are a type of animal' ) self.assertEqual(nested_simplify(a ) , [{'label': 'POSITIVE', 'score': 0.9_8_8}] ) def _snake_case ( self: Optional[Any] , a: str , a: List[Any] , a: List[str] ): __lowerCamelCase : str = TextClassificationPipeline(model=a , tokenizer=a ) return text_classifier, ["HuggingFace is in", "This is another test"] def _snake_case ( self: List[str] , a: str , a: Optional[int] ): __lowerCamelCase : Any = text_classifier.model # Small inputs because BartTokenizer tiny has maximum position embeddings = 22 __lowerCamelCase : int = 'HuggingFace is in' __lowerCamelCase : int = text_classifier(a ) self.assertEqual(nested_simplify(a ) , [{'label': ANY(a ), 'score': ANY(a )}] ) self.assertTrue(outputs[0]['label'] in model.config.idalabel.values() ) __lowerCamelCase : Optional[Any] = ['HuggingFace is in ', 'Paris is in France'] __lowerCamelCase : Optional[Any] = text_classifier(a ) self.assertEqual( nested_simplify(a ) , [{'label': ANY(a ), 'score': ANY(a )}, {'label': ANY(a ), 'score': ANY(a )}] , ) self.assertTrue(outputs[0]['label'] in model.config.idalabel.values() ) self.assertTrue(outputs[1]['label'] in model.config.idalabel.values() ) # Forcing to get all results with `top_k=None` # This is NOT the legacy format __lowerCamelCase : Union[str, Any] = text_classifier(a , top_k=a ) __lowerCamelCase : Optional[int] = len(model.config.idalabel.values() ) self.assertEqual( nested_simplify(a ) , [[{'label': ANY(a ), 'score': ANY(a )}] * N, [{'label': ANY(a ), 'score': ANY(a )}] * N] , ) __lowerCamelCase : int = {'text': 'HuggingFace is in ', 'text_pair': 'Paris is in France'} __lowerCamelCase : Optional[Any] = text_classifier(a ) self.assertEqual( nested_simplify(a ) , {'label': ANY(a ), 'score': ANY(a )} , ) self.assertTrue(outputs['label'] in model.config.idalabel.values() ) # This might be used a text pair, but tokenizer + pipe interaction # makes it hard to understand that it's not using the pair properly # https://github.com/huggingface/transformers/issues/17305 # We disabled this usage instead as it was outputting wrong outputs. __lowerCamelCase : Optional[int] = [['HuggingFace is in ', 'Paris is in France']] with self.assertRaises(a ): text_classifier(a ) # This used to be valid for doing text pairs # We're keeping it working because of backward compatibility __lowerCamelCase : List[Any] = text_classifier([[['HuggingFace is in ', 'Paris is in France']]] ) self.assertEqual( nested_simplify(a ) , [{'label': ANY(a ), 'score': ANY(a )}] , ) self.assertTrue(outputs[0]['label'] in model.config.idalabel.values() )
194
from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : Dict = prime_factors(SCREAMING_SNAKE_CASE__ ) if is_square_free(SCREAMING_SNAKE_CASE__ ): return -1 if len(SCREAMING_SNAKE_CASE__ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
194
1
"""simple docstring""" from jiwer import compute_measures import datasets __a = "\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n" __a = "\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n" __a = "\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = [\"this is the prediction\", \"there is an other sample\"]\n >>> references = [\"this is the reference\", \"there is another one\"]\n >>> wer = datasets.load_metric(\"wer\")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase ( datasets.Metric ): '''simple docstring''' def lowerCAmelCase_ ( self: Optional[Any] ) -> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/jitsi/jiwer/"""] , reference_urls=[ """https://en.wikipedia.org/wiki/Word_error_rate""", ] , ) def lowerCAmelCase_ ( self: int , snake_case: Optional[Any]=None , snake_case: Dict=None , snake_case: Any=False ) -> Optional[int]: if concatenate_texts: return compute_measures(snake_case , snake_case )["wer"] else: snake_case_ :List[str] = 0 snake_case_ :Dict = 0 for prediction, reference in zip(snake_case , snake_case ): snake_case_ :List[str] = compute_measures(snake_case , snake_case ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
66
"""simple docstring""" import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def A_ ( _lowercase, _lowercase ): '''simple docstring''' snake_case_ :int = XCLIPTextConfig() # derive patch size from model name snake_case_ :Union[str, Any] = model_name.find("""patch""" ) snake_case_ :List[str] = int(model_name[start_idx + len("""patch""" ) : start_idx + len("""patch""" ) + 2] ) snake_case_ :Any = XCLIPVisionConfig(patch_size=_lowercase, num_frames=_lowercase ) if "large" in model_name: snake_case_ :Optional[Any] = 768 snake_case_ :Union[str, Any] = 3072 snake_case_ :Any = 12 snake_case_ :Any = 1024 snake_case_ :str = 4096 snake_case_ :Union[str, Any] = 16 snake_case_ :Union[str, Any] = 24 snake_case_ :Tuple = 768 snake_case_ :Any = 3072 if model_name == "xclip-large-patch14-16-frames": snake_case_ :Any = 336 snake_case_ :Any = XCLIPConfig.from_text_vision_configs(_lowercase, _lowercase ) if "large" in model_name: snake_case_ :List[Any] = 768 return config def A_ ( _lowercase ): '''simple docstring''' if name == "token_embedding.weight": snake_case_ :Optional[Any] = name.replace("""token_embedding.weight""", """text_model.embeddings.token_embedding.weight""" ) if name == "positional_embedding": snake_case_ :Tuple = name.replace("""positional_embedding""", """text_model.embeddings.position_embedding.weight""" ) if "ln_1" in name: snake_case_ :Dict = name.replace("""ln_1""", """layer_norm1""" ) if "ln_2" in name: snake_case_ :str = name.replace("""ln_2""", """layer_norm2""" ) if "c_fc" in name: snake_case_ :str = name.replace("""c_fc""", """fc1""" ) if "c_proj" in name: snake_case_ :int = name.replace("""c_proj""", """fc2""" ) if name.startswith("""transformer.resblocks""" ): snake_case_ :Union[str, Any] = name.replace("""transformer.resblocks""", """text_model.encoder.layers""" ) if "attn.out_proj" in name and "message" not in name: snake_case_ :Union[str, Any] = name.replace("""attn.out_proj""", """self_attn.out_proj""" ) if "ln_final" in name: snake_case_ :Union[str, Any] = name.replace("""ln_final""", """text_model.final_layer_norm""" ) # visual encoder if name == "visual.class_embedding": snake_case_ :Any = name.replace("""visual.class_embedding""", """vision_model.embeddings.class_embedding""" ) if name == "visual.positional_embedding": snake_case_ :Optional[int] = name.replace("""visual.positional_embedding""", """vision_model.embeddings.position_embedding.weight""" ) if name.startswith("""visual.transformer.resblocks""" ): snake_case_ :Union[str, Any] = name.replace("""visual.transformer.resblocks""", """vision_model.encoder.layers""" ) if "visual.conv1" in name: snake_case_ :int = name.replace("""visual.conv1""", """vision_model.embeddings.patch_embedding""" ) if "visual.ln_pre" in name: snake_case_ :Any = name.replace("""visual.ln_pre""", """vision_model.pre_layernorm""" ) if "visual.ln_post" in name: snake_case_ :str = name.replace("""visual.ln_post""", """vision_model.post_layernorm""" ) if "visual.proj" in name: snake_case_ :Union[str, Any] = name.replace("""visual.proj""", """visual_projection.weight""" ) if "text_projection" in name: snake_case_ :Dict = name.replace("""text_projection""", """text_projection.weight""" ) # things on top if "prompts_visual_proj" in name: snake_case_ :List[str] = name.replace("""prompts_visual_proj""", """prompts_visual_projection""" ) if "prompts_visual_ln" in name: snake_case_ :Dict = name.replace("""prompts_visual_ln""", """prompts_visual_layernorm""" ) # mit if name == "mit.positional_embedding": snake_case_ :str = name.replace("""positional""", """position""" ) if name.startswith("""mit.resblocks""" ): snake_case_ :Dict = name.replace("""mit.resblocks""", """mit.encoder.layers""" ) # prompts generator if name.startswith("""prompts_generator.norm""" ): snake_case_ :Union[str, Any] = name.replace("""prompts_generator.norm""", """prompts_generator.layernorm""" ) return name def A_ ( _lowercase, _lowercase ): '''simple docstring''' for key in orig_state_dict.copy().keys(): snake_case_ :Dict = orig_state_dict.pop(_lowercase ) if "attn.in_proj" in key: snake_case_ :Optional[Any] = key.split(""".""" ) if key.startswith("""visual""" ): snake_case_ :Any = key_split[3] snake_case_ :Optional[Any] = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: snake_case_ :str = val[ :dim, : ] snake_case_ :Optional[int] = val[ dim : dim * 2, : ] snake_case_ :Union[str, Any] = val[ -dim:, : ] else: snake_case_ :Dict = val[ :dim ] snake_case_ :Optional[int] = val[ dim : dim * 2 ] snake_case_ :Optional[int] = val[ -dim: ] else: if "weight" in key: snake_case_ :Optional[Any] = val[ :dim, : ] snake_case_ :List[str] = val[ dim : dim * 2, : ] snake_case_ :Dict = val[ -dim:, : ] else: snake_case_ :Union[str, Any] = val[:dim] snake_case_ :Union[str, Any] = val[ dim : dim * 2 ] snake_case_ :Union[str, Any] = val[-dim:] elif key.startswith("""mit""" ): snake_case_ :Tuple = key_split[2] snake_case_ :Union[str, Any] = config.vision_config.mit_hidden_size if "weight" in key: snake_case_ :Optional[int] = val[:dim, :] snake_case_ :Optional[int] = val[dim : dim * 2, :] snake_case_ :str = val[-dim:, :] else: snake_case_ :str = val[:dim] snake_case_ :Any = val[dim : dim * 2] snake_case_ :int = val[-dim:] else: snake_case_ :Tuple = key_split[2] snake_case_ :Any = config.text_config.hidden_size if "weight" in key: snake_case_ :Dict = val[:dim, :] snake_case_ :Dict = val[ dim : dim * 2, : ] snake_case_ :List[str] = val[-dim:, :] else: snake_case_ :Any = val[:dim] snake_case_ :Tuple = val[ dim : dim * 2 ] snake_case_ :List[str] = val[-dim:] else: snake_case_ :Optional[int] = rename_key(_lowercase ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: snake_case_ :Optional[Any] = val.T snake_case_ :Tuple = val return orig_state_dict def A_ ( _lowercase ): '''simple docstring''' if num_frames == 8: snake_case_ :str = """eating_spaghetti_8_frames.npy""" elif num_frames == 16: snake_case_ :int = """eating_spaghetti.npy""" elif num_frames == 32: snake_case_ :List[str] = """eating_spaghetti_32_frames.npy""" snake_case_ :int = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""", filename=_lowercase, repo_type="""dataset""", ) snake_case_ :Union[str, Any] = np.load(_lowercase ) return list(_lowercase ) def A_ ( _lowercase, _lowercase=None, _lowercase=False ): '''simple docstring''' snake_case_ :List[Any] = { # fully supervised kinetics-400 checkpoints """xclip-base-patch32""": """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth""", """xclip-base-patch32-16-frames""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth""" ), """xclip-base-patch16""": """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth""", """xclip-base-patch16-16-frames""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth""" ), """xclip-large-patch14""": """https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb""", """xclip-large-patch14-16-frames""": """https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f""", # fully supervised kinetics-600 checkpoints """xclip-base-patch16-kinetics-600""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth""" ), """xclip-base-patch16-kinetics-600-16-frames""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth""" ), """xclip-large-patch14-kinetics-600""": """https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be""", # few shot """xclip-base-patch16-hmdb-2-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth""" ), """xclip-base-patch16-hmdb-4-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth""" ), """xclip-base-patch16-hmdb-8-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth""" ), """xclip-base-patch16-hmdb-16-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth""" ), """xclip-base-patch16-ucf-2-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth""" ), """xclip-base-patch16-ucf-4-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth""" ), """xclip-base-patch16-ucf-8-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth""" ), """xclip-base-patch16-ucf-16-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth""" ), # zero shot """xclip-base-patch16-zero-shot""": """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth""", } snake_case_ :Optional[int] = model_to_url[model_name] snake_case_ :int = 8 if "16-frames" in model_name: snake_case_ :List[Any] = 16 elif "shot" in model_name: snake_case_ :Dict = 32 snake_case_ :Optional[int] = get_xclip_config(_lowercase, _lowercase ) snake_case_ :Optional[Any] = XCLIPModel(_lowercase ) model.eval() if "drive" in checkpoint_url: snake_case_ :List[str] = """pytorch_model.bin""" gdown.cached_download(_lowercase, _lowercase, quiet=_lowercase ) snake_case_ :List[Any] = torch.load(_lowercase, map_location="""cpu""" )["""model"""] else: snake_case_ :Tuple = torch.hub.load_state_dict_from_url(_lowercase )["""model"""] snake_case_ :Union[str, Any] = convert_state_dict(_lowercase, _lowercase ) snake_case_ :str = XCLIPModel(_lowercase ) snake_case_, snake_case_ :Optional[int] = model.load_state_dict(_lowercase, strict=_lowercase ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() snake_case_ :List[str] = 336 if model_name == """xclip-large-patch14-16-frames""" else 224 snake_case_ :List[Any] = VideoMAEImageProcessor(size=_lowercase ) snake_case_ :Any = CLIPTokenizer.from_pretrained("""openai/clip-vit-base-patch32""" ) snake_case_ :str = CLIPTokenizerFast.from_pretrained("""openai/clip-vit-base-patch32""" ) snake_case_ :Optional[Any] = XCLIPProcessor(image_processor=_lowercase, tokenizer=_lowercase ) snake_case_ :Optional[int] = prepare_video(_lowercase ) snake_case_ :Optional[Any] = processor( text=["""playing sports""", """eating spaghetti""", """go shopping"""], videos=_lowercase, return_tensors="""pt""", padding=_lowercase ) print("""Shape of pixel values:""", inputs.pixel_values.shape ) with torch.no_grad(): snake_case_ :List[Any] = model(**_lowercase ) # Verify outputs snake_case_ :List[Any] = outputs.logits_per_video snake_case_ :Any = logits_per_video.softmax(dim=1 ) print("""Probs:""", _lowercase ) # kinetics-400 if model_name == "xclip-base-patch32": snake_case_ :Union[str, Any] = torch.tensor([[0.0019, 0.9951, 0.0030]] ) elif model_name == "xclip-base-patch32-16-frames": snake_case_ :str = torch.tensor([[7.09_99e-04, 9.98_83e-01, 4.55_80e-04]] ) elif model_name == "xclip-base-patch16": snake_case_ :Tuple = torch.tensor([[0.0083, 0.9681, 0.0236]] ) elif model_name == "xclip-base-patch16-16-frames": snake_case_ :Any = torch.tensor([[7.69_37e-04, 9.97_28e-01, 1.94_73e-03]] ) elif model_name == "xclip-large-patch14": snake_case_ :str = torch.tensor([[0.0062, 0.9864, 0.0075]] ) elif model_name == "xclip-large-patch14-16-frames": snake_case_ :Tuple = torch.tensor([[3.38_77e-04, 9.99_37e-01, 2.88_88e-04]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": snake_case_ :List[Any] = torch.tensor([[0.0555, 0.8914, 0.0531]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": snake_case_ :Union[str, Any] = torch.tensor([[3.85_54e-04, 9.99_29e-01, 3.27_54e-04]] ) elif model_name == "xclip-large-patch14-kinetics-600": snake_case_ :List[Any] = torch.tensor([[0.0036, 0.9920, 0.0045]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": snake_case_ :Dict = torch.tensor([[7.18_90e-06, 9.99_94e-01, 5.65_59e-05]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": snake_case_ :Union[str, Any] = torch.tensor([[1.03_20e-05, 9.99_93e-01, 6.24_35e-05]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": snake_case_ :str = torch.tensor([[4.13_77e-06, 9.99_90e-01, 9.83_86e-05]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": snake_case_ :str = torch.tensor([[4.13_47e-05, 9.99_62e-01, 3.34_11e-04]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": snake_case_ :int = torch.tensor([[8.58_57e-05, 9.99_28e-01, 6.32_91e-04]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": snake_case_ :Optional[int] = torch.tensor([[8.58_57e-05, 9.99_28e-01, 6.32_91e-04]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": snake_case_ :Any = torch.tensor([[0.0027, 0.9904, 0.0070]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": snake_case_ :Tuple = torch.tensor([[9.82_19e-04, 9.95_93e-01, 3.08_63e-03]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": snake_case_ :Union[str, Any] = torch.tensor([[3.50_82e-04, 9.97_85e-01, 1.79_66e-03]] ) else: raise ValueError(f"""Model name {model_name} not supported""" ) assert torch.allclose(_lowercase, _lowercase, atol=1e-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowercase ) if push_to_hub: print("""Pushing model, processor and slow tokenizer files to the hub...""" ) model.push_to_hub(_lowercase, organization="""nielsr""" ) processor.push_to_hub(_lowercase, organization="""nielsr""" ) slow_tokenizer.push_to_hub(_lowercase, organization="""nielsr""" ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="xclip-base-patch32", type=str, help="Name of the model.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) __a = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
66
1
'''simple docstring''' import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase :Optional[int] = logging.get_logger(__name__) set_seed(7_7_0) lowerCAmelCase :str = { '''c_attn''': '''att_proj''', '''c_proj''': '''out_proj''', '''c_fc''': '''in_proj''', '''transformer.''': '''''', '''h.''': '''layers.''', '''ln_1''': '''layernorm_1''', '''ln_2''': '''layernorm_2''', '''ln_f''': '''layernorm_final''', '''wpe''': '''position_embeds_layer''', '''wte''': '''input_embeds_layer''', } lowerCAmelCase :Any = { '''text_small''': { '''repo_id''': '''suno/bark''', '''file_name''': '''text.pt''', }, '''coarse_small''': { '''repo_id''': '''suno/bark''', '''file_name''': '''coarse.pt''', }, '''fine_small''': { '''repo_id''': '''suno/bark''', '''file_name''': '''fine.pt''', }, '''text''': { '''repo_id''': '''suno/bark''', '''file_name''': '''text_2.pt''', }, '''coarse''': { '''repo_id''': '''suno/bark''', '''file_name''': '''coarse_2.pt''', }, '''fine''': { '''repo_id''': '''suno/bark''', '''file_name''': '''fine_2.pt''', }, } lowerCAmelCase :List[Any] = os.path.dirname(os.path.abspath(__file__)) lowerCAmelCase :List[Any] = os.path.join(os.path.expanduser('''~'''), '''.cache''') lowerCAmelCase :List[str] = os.path.join(os.getenv('''XDG_CACHE_HOME''', default_cache_dir), '''suno''', '''bark_v0''') def lowerCamelCase ( lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[Any]=False ): """simple docstring""" __magic_name__ : str = model_type if use_small: key += "_small" return os.path.join(lowerCAmelCase , REMOTE_MODEL_PATHS[key]['file_name'] ) def lowerCamelCase ( lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[Any] ): """simple docstring""" os.makedirs(lowerCAmelCase , exist_ok=lowerCAmelCase ) hf_hub_download(repo_id=lowerCAmelCase , filename=lowerCAmelCase , local_dir=lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : List[Any] , lowerCAmelCase : Any , lowerCAmelCase : Optional[Any]=False , lowerCAmelCase : str="text" ): """simple docstring""" if model_type == "text": __magic_name__ : Tuple = BarkSemanticModel __magic_name__ : Optional[int] = BarkSemanticConfig __magic_name__ : List[Any] = BarkSemanticGenerationConfig elif model_type == "coarse": __magic_name__ : List[str] = BarkCoarseModel __magic_name__ : Dict = BarkCoarseConfig __magic_name__ : Tuple = BarkCoarseGenerationConfig elif model_type == "fine": __magic_name__ : Optional[Any] = BarkFineModel __magic_name__ : Dict = BarkFineConfig __magic_name__ : Tuple = BarkFineGenerationConfig else: raise NotImplementedError() __magic_name__ : int = f'{model_type}_small' if use_small else model_type __magic_name__ : List[str] = REMOTE_MODEL_PATHS[model_key] if not os.path.exists(lowerCAmelCase ): logger.info(f'{model_type} model not found, downloading into `{CACHE_DIR}`.' ) _download(model_info['repo_id'] , model_info['file_name'] ) __magic_name__ : Optional[Any] = torch.load(lowerCAmelCase , map_location=lowerCAmelCase ) # this is a hack __magic_name__ : Optional[Any] = checkpoint['model_args'] if "input_vocab_size" not in model_args: __magic_name__ : Dict = model_args['vocab_size'] __magic_name__ : Optional[int] = model_args['vocab_size'] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments __magic_name__ : Optional[Any] = model_args.pop('n_head' ) __magic_name__ : List[str] = model_args.pop('n_embd' ) __magic_name__ : List[Any] = model_args.pop('n_layer' ) __magic_name__ : Optional[Any] = ConfigClass(**checkpoint['model_args'] ) __magic_name__ : Any = ModelClass(config=lowerCAmelCase ) __magic_name__ : List[str] = GenerationConfigClass() __magic_name__ : List[Any] = model_generation_config __magic_name__ : str = checkpoint['model'] # fixup checkpoint __magic_name__ : str = '_orig_mod.' for k, v in list(state_dict.items() ): if k.startswith(lowerCAmelCase ): # replace part of the key with corresponding layer name in HF implementation __magic_name__ : Tuple = k[len(lowerCAmelCase ) :] for old_layer_name in new_layer_name_dict: __magic_name__ : int = new_k.replace(lowerCAmelCase , new_layer_name_dict[old_layer_name] ) __magic_name__ : Union[str, Any] = state_dict.pop(lowerCAmelCase ) __magic_name__ : Optional[Any] = set(state_dict.keys() ) - set(model.state_dict().keys() ) __magic_name__ : Any = {k for k in extra_keys if not k.endswith('.attn.bias' )} __magic_name__ : Any = set(model.state_dict().keys() ) - set(state_dict.keys() ) __magic_name__ : Dict = {k for k in missing_keys if not k.endswith('.attn.bias' )} if len(lowerCAmelCase ) != 0: raise ValueError(f'extra keys found: {extra_keys}' ) if len(lowerCAmelCase ) != 0: raise ValueError(f'missing keys: {missing_keys}' ) model.load_state_dict(lowerCAmelCase , strict=lowerCAmelCase ) __magic_name__ : Union[str, Any] = model.num_parameters(exclude_embeddings=lowerCAmelCase ) __magic_name__ : Optional[Any] = checkpoint['best_val_loss'].item() logger.info(f'model loaded: {round(n_params/1e6 , 1 )}M params, {round(lowerCAmelCase , 3 )} loss' ) model.eval() model.to(lowerCAmelCase ) del checkpoint, state_dict return model def lowerCamelCase ( lowerCAmelCase : Any , lowerCAmelCase : Optional[Any]=False , lowerCAmelCase : Tuple="text" ): """simple docstring""" if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() __magic_name__ : List[str] = 'cpu' # do conversion on cpu __magic_name__ : int = _get_ckpt_path(lowerCAmelCase , use_small=lowerCAmelCase ) __magic_name__ : Any = _load_model(lowerCAmelCase , lowerCAmelCase , model_type=lowerCAmelCase , use_small=lowerCAmelCase ) # load bark initial model __magic_name__ : List[str] = _bark_load_model(lowerCAmelCase , 'cpu' , model_type=lowerCAmelCase , use_small=lowerCAmelCase ) if model_type == "text": __magic_name__ : int = bark_model['model'] if model.num_parameters(exclude_embeddings=lowerCAmelCase ) != bark_model.get_num_params(): raise ValueError('initial and new models don\'t have the same number of parameters' ) # check if same output as the bark model __magic_name__ : Union[str, Any] = 5 __magic_name__ : Optional[int] = 10 if model_type in ["text", "coarse"]: __magic_name__ : Optional[Any] = torch.randint(256 , (batch_size, sequence_length) , dtype=torch.int ) __magic_name__ : List[str] = bark_model(lowerCAmelCase )[0] __magic_name__ : Optional[int] = model(lowerCAmelCase ) # take last logits __magic_name__ : int = output_new_model_total.logits[:, [-1], :] else: __magic_name__ : Tuple = 3 __magic_name__ : List[str] = 8 __magic_name__ : List[str] = torch.randint(256 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int ) __magic_name__ : str = model(lowerCAmelCase , lowerCAmelCase ) __magic_name__ : Tuple = bark_model(lowerCAmelCase , lowerCAmelCase ) __magic_name__ : Tuple = output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError('initial and new outputs don\'t have the same shape' ) if (output_new_model - output_old_model).abs().max().item() > 1e-3: raise ValueError('initial and new outputs are not equal' ) Path(lowerCAmelCase ).mkdir(exist_ok=lowerCAmelCase ) model.save_pretrained(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : List[str] , lowerCAmelCase : Tuple , lowerCAmelCase : Tuple , lowerCAmelCase : str , lowerCAmelCase : str , ): """simple docstring""" __magic_name__ : Union[str, Any] = os.path.join(lowerCAmelCase , lowerCAmelCase ) __magic_name__ : Dict = BarkSemanticConfig.from_pretrained(os.path.join(lowerCAmelCase , 'config.json' ) ) __magic_name__ : str = BarkCoarseConfig.from_pretrained(os.path.join(lowerCAmelCase , 'config.json' ) ) __magic_name__ : int = BarkFineConfig.from_pretrained(os.path.join(lowerCAmelCase , 'config.json' ) ) __magic_name__ : List[Any] = EncodecConfig.from_pretrained('facebook/encodec_24khz' ) __magic_name__ : Optional[int] = BarkSemanticModel.from_pretrained(lowerCAmelCase ) __magic_name__ : Dict = BarkCoarseModel.from_pretrained(lowerCAmelCase ) __magic_name__ : List[str] = BarkFineModel.from_pretrained(lowerCAmelCase ) __magic_name__ : Optional[Any] = EncodecModel.from_pretrained('facebook/encodec_24khz' ) __magic_name__ : Dict = BarkConfig.from_sub_model_configs( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) __magic_name__ : List[Any] = BarkGenerationConfig.from_sub_model_configs( semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config ) __magic_name__ : int = BarkModel(lowerCAmelCase ) __magic_name__ : List[str] = semantic __magic_name__ : Optional[int] = coarseAcoustic __magic_name__ : List[str] = fineAcoustic __magic_name__ : int = codec __magic_name__ : Union[str, Any] = bark_generation_config Path(lowerCAmelCase ).mkdir(exist_ok=lowerCAmelCase ) bark.save_pretrained(lowerCAmelCase , repo_id=lowerCAmelCase , push_to_hub=lowerCAmelCase ) if __name__ == "__main__": lowerCAmelCase :Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('''model_type''', type=str, help='''text, coarse or fine.''') parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--is_small''', action='''store_true''', help='''convert the small version instead of the large.''') lowerCAmelCase :Union[str, Any] = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
364
'''simple docstring''' import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCamelCase ( lowercase__ , unittest.TestCase ): '''simple docstring''' A_ : Optional[Any] = LxmertTokenizer A_ : List[Any] = LxmertTokenizerFast A_ : int = True A_ : Any = True def __lowerCAmelCase ( self : List[str] ) -> Tuple: super().setUp() __magic_name__ : str = [ '[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] __magic_name__ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def __lowerCAmelCase ( self : Any , _A : str ) -> List[Any]: __magic_name__ : Dict = 'UNwant\u00E9d,running' __magic_name__ : Dict = 'unwanted, running' return input_text, output_text def __lowerCAmelCase ( self : Tuple ) -> Optional[int]: __magic_name__ : Optional[Any] = self.tokenizer_class(self.vocab_file ) __magic_name__ : List[str] = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(_A , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_A ) , [7, 4, 5, 10, 8, 9] ) def __lowerCAmelCase ( self : int ) -> List[Any]: if not self.test_rust_tokenizer: return __magic_name__ : Any = self.get_tokenizer() __magic_name__ : Optional[Any] = self.get_rust_tokenizer() __magic_name__ : Union[str, Any] = 'I was born in 92000, and this is falsé.' __magic_name__ : List[Any] = tokenizer.tokenize(_A ) __magic_name__ : Dict = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) __magic_name__ : int = tokenizer.encode(_A , add_special_tokens=_A ) __magic_name__ : Union[str, Any] = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) __magic_name__ : List[Any] = self.get_rust_tokenizer() __magic_name__ : str = tokenizer.encode(_A ) __magic_name__ : Optional[int] = rust_tokenizer.encode(_A ) self.assertListEqual(_A , _A )
275
0
import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging UpperCAmelCase : Any = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE ( a , a , a ) -> None: __A : int = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(a ) == len(a ), F"""{len(a )} != {len(a )}""" dest_layers.load_state_dict(layers_to_copy.state_dict() ) UpperCAmelCase : List[Any] = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 12: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 11], 4: [0, 4, 8, 11], 6: [0, 2, 4, 7, 9, 11], 9: [0, 1, 2, 4, 5, 7, 9, 10, 11], 12: list(range(12)), }, 16: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 15], 3: [0, 8, 15], 4: [0, 5, 10, 15], 6: [0, 3, 6, 9, 12, 15], 8: [0, 2, 4, 6, 8, 10, 12, 15], 9: [0, 1, 3, 5, 7, 9, 11, 13, 15], 12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15], 16: list(range(16)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } UpperCAmelCase : Optional[int] = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]}, 16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]}, } def _SCREAMING_SNAKE_CASE ( a , a ) -> Dict: try: __A : int = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( F"""no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first""" F""" {n_student}""" ) return list(range(a ) ) def _SCREAMING_SNAKE_CASE ( a , a ) -> List[int]: if n_student > n_teacher: raise ValueError(F"""Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}""" ) elif n_teacher == n_student: return list(range(a ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def _SCREAMING_SNAKE_CASE ( a , a = "student" , a = None , a = None , a=False , a=None , a=None , **a , ) -> Tuple[PreTrainedModel, List[int], List[int]]: __A : List[str] = 'encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.' assert (e is not None) or (d is not None), _msg if isinstance(a , a ): AutoTokenizer.from_pretrained(a ).save_pretrained(a ) # purely for convenience __A : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained(a ).eval() else: assert isinstance(a , a ), F"""teacher must be a model or string got type {type(a )}""" __A : int = teacher.config.to_diff_dict() try: __A , __A : List[Any] = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: __A : str = teacher_e if d is None: __A : List[Any] = teacher_d init_kwargs.update({'encoder_layers': e, 'decoder_layers': d} ) except AttributeError: # T5 if hasattr(teacher.config , 'num_encoder_layers' ): __A , __A : List[Any] = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: __A , __A : Optional[int] = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: __A : int = teacher_e if d is None: __A : Optional[Any] = teacher_d if hasattr(teacher.config , 'num_encoder_layers' ): init_kwargs.update({'num_encoder_layers': e, 'num_decoder_layers': d} ) else: init_kwargs.update({'num_layers': e, 'num_decoder_layers': d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(a ) # Copy weights __A : Dict = teacher.config_class(**a ) __A : int = AutoModelForSeqaSeqLM.from_config(a ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. __A : Any = student.load_state_dict(teacher.state_dict() , strict=a ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save __A , __A : Optional[int] = list(range(a ) ), list(range(a ) ) logger.info( F"""Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to""" F""" {save_path}""" ) student.save_pretrained(a ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: __A : List[int] = pick_layers_to_copy(a , a ) if d_layers_to_copy is None: __A : List[int] = pick_layers_to_copy(a , a ) try: if hasattr( a , 'prophetnet' ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , a ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , a ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , a ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , a ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , a ) copy_layers(teacher.decoder.block , student.decoder.block , a ) logger.info( F"""Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}""" ) __A : Optional[int] = { 'teacher_type': teacher.config.model_type, 'copied_encoder_layers': e_layers_to_copy, 'copied_decoder_layers': d_layers_to_copy, } student.save_pretrained(a ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
280
def _SCREAMING_SNAKE_CASE ( a , a = 0 ) -> list: __A : int = length or len(a ) __A : str = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: __A , __A : Optional[int] = list_data[i + 1], list_data[i] __A : Union[str, Any] = True return list_data if not swapped else bubble_sort(a , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
280
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _a = {"""configuration_fnet""": ["""FNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FNetConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = ["""FNetTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = ["""FNetTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ """FNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """FNetForMaskedLM""", """FNetForMultipleChoice""", """FNetForNextSentencePrediction""", """FNetForPreTraining""", """FNetForQuestionAnswering""", """FNetForSequenceClassification""", """FNetForTokenClassification""", """FNetLayer""", """FNetModel""", """FNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys _a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
100
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class _UpperCAmelCase( lowerCamelCase ): lowercase__ = ( 'This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.' 'It takes two arguments named `image` which should be the original image, and `label` which should be a text ' 'describing the elements what should be identified in the segmentation mask. The tool returns the mask.' ) lowercase__ = 'CIDAS/clipseg-rd64-refined' lowercase__ = 'image_segmenter' lowercase__ = CLIPSegForImageSegmentation lowercase__ = ['image', 'text'] lowercase__ = ['image'] def __init__( self , *__a , **__a) -> Any: '''simple docstring''' requires_backends(self , ['''vision''']) super().__init__(*__a , **__a) def UpperCAmelCase ( self , __a , __a) -> Dict: '''simple docstring''' return self.pre_processor(text=[label] , images=[image] , padding=__a , return_tensors='''pt''') def UpperCAmelCase ( self , __a) -> Tuple: '''simple docstring''' with torch.no_grad(): _UpperCamelCase = self.model(**__a).logits return logits def UpperCAmelCase ( self , __a) -> Any: '''simple docstring''' _UpperCamelCase = outputs.cpu().detach().numpy() _UpperCamelCase = 0 _UpperCamelCase = 1 return Image.fromarray((array * 2_55).astype(np.uinta))
100
1
"""simple docstring""" import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 A : int = { "return_dict": False, "output_hidden_states": True, "output_attentions": True, "torchscript": True, "torch_dtype": "float16", "use_bfloat16": True, "tf_legacy_loss": True, "pruned_heads": {"a": 1}, "tie_word_embeddings": False, "is_decoder": True, "cross_attention_hidden_size": 1_2_8, "add_cross_attention": True, "tie_encoder_decoder": True, "max_length": 5_0, "min_length": 3, "do_sample": True, "early_stopping": True, "num_beams": 3, "num_beam_groups": 3, "diversity_penalty": 0.5, "temperature": 2.0, "top_k": 1_0, "top_p": 0.7, "typical_p": 0.2, "repetition_penalty": 0.8, "length_penalty": 0.8, "no_repeat_ngram_size": 5, "encoder_no_repeat_ngram_size": 5, "bad_words_ids": [1, 2, 3], "num_return_sequences": 3, "chunk_size_feed_forward": 5, "output_scores": True, "return_dict_in_generate": True, "forced_bos_token_id": 2, "forced_eos_token_id": 3, "remove_invalid_values": True, "architectures": ["BertModel"], "finetuning_task": "translation", "id2label": {0: "label"}, "label2id": {"label": "0"}, "tokenizer_class": "BertTokenizerFast", "prefix": "prefix", "bos_token_id": 6, "pad_token_id": 7, "eos_token_id": 8, "sep_token_id": 9, "decoder_start_token_id": 1_0, "exponential_decay_length_penalty": (5, 1.01), "suppress_tokens": [0, 1], "begin_suppress_tokens": 2, "task_specific_params": {"translation": "some_params"}, "problem_type": "regression", } @is_staging_test class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def snake_case ( cls ): __lowerCAmelCase = TOKEN HfFolder.save_token(__a ) @classmethod def snake_case ( cls ): try: delete_repo(token=cls._token , repo_id="test-config" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-config-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-config" ) except HTTPError: pass def snake_case ( self ): __lowerCAmelCase = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("test-config" , use_auth_token=self._token ) __lowerCAmelCase = BertConfig.from_pretrained(f"{USER}/test-config" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__a , getattr(__a , __a ) ) # Reset repo delete_repo(token=self._token , repo_id="test-config" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__a , repo_id="test-config" , push_to_hub=__a , use_auth_token=self._token ) __lowerCAmelCase = BertConfig.from_pretrained(f"{USER}/test-config" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__a , getattr(__a , __a ) ) def snake_case ( self ): __lowerCAmelCase = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("valid_org/test-config-org" , use_auth_token=self._token ) __lowerCAmelCase = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__a , getattr(__a , __a ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-config-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __a , repo_id="valid_org/test-config-org" , push_to_hub=__a , use_auth_token=self._token ) __lowerCAmelCase = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__a , getattr(__a , __a ) ) def snake_case ( self ): CustomConfig.register_for_auto_class() __lowerCAmelCase = CustomConfig(attribute=42 ) config.push_to_hub("test-dynamic-config" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {"AutoConfig": "custom_configuration.CustomConfig"} ) __lowerCAmelCase = AutoConfig.from_pretrained(f"{USER}/test-dynamic-config" , trust_remote_code=__a ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , "CustomConfig" ) self.assertEqual(new_config.attribute , 42 ) class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def snake_case ( self ): __lowerCAmelCase = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated __lowerCAmelCase = c.n_embd + 1 # int __lowerCAmelCase = c.resid_pdrop + 1.0 # float __lowerCAmelCase = not c.scale_attn_weights # bool __lowerCAmelCase = c.summary_type + "foo" # str c.update_from_string( f"n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}" ) self.assertEqual(__a , c.n_embd , "mismatch for key: n_embd" ) self.assertEqual(__a , c.resid_pdrop , "mismatch for key: resid_pdrop" ) self.assertEqual(__a , c.scale_attn_weights , "mismatch for key: scale_attn_weights" ) self.assertEqual(__a , c.summary_type , "mismatch for key: summary_type" ) def snake_case ( self ): __lowerCAmelCase = PretrainedConfig() __lowerCAmelCase = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( __a , ["is_encoder_decoder", "_name_or_path", "_commit_hash", "transformers_version"] ) __lowerCAmelCase = [key for key, value in config_common_kwargs.items() if value == getattr(__a , __a )] if len(__a ) > 0: raise ValueError( "The following keys are set with the default values in" " `test_configuration_common.config_common_kwargs` pick another value for them:" f" {', '.join(__a )}." ) def snake_case ( self ): with self.assertRaises(__a ): # config is in subfolder, the following should not work without specifying the subfolder __lowerCAmelCase = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" ) __lowerCAmelCase = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" , subfolder="bert" ) self.assertIsNotNone(__a ) def snake_case ( self ): # A mock response for an HTTP head request to emulate server down __lowerCAmelCase = mock.Mock() __lowerCAmelCase = 5_00 __lowerCAmelCase = {} __lowerCAmelCase = HTTPError __lowerCAmelCase = {} # Download this model to make sure it's in the cache. __lowerCAmelCase = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=__a ) as mock_head: __lowerCAmelCase = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() def snake_case ( self ): # This test is for deprecated behavior and can be removed in v5 __lowerCAmelCase = BertConfig.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json" ) def snake_case ( self ): __lowerCAmelCase = AutoConfig.from_pretrained("bert-base-cased" ) __lowerCAmelCase = ["config.4.0.0.json"] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(__a ) __lowerCAmelCase = 2 json.dump(configuration.to_dict() , open(os.path.join(__a , "config.4.0.0.json" ) , "w" ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 __lowerCAmelCase = AutoConfig.from_pretrained(__a ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 __lowerCAmelCase = ["config.42.0.0.json"] __lowerCAmelCase = 7_68 configuration.save_pretrained(__a ) shutil.move(os.path.join(__a , "config.4.0.0.json" ) , os.path.join(__a , "config.42.0.0.json" ) ) __lowerCAmelCase = AutoConfig.from_pretrained(__a ) self.assertEqual(new_configuration.hidden_size , 7_68 ) def snake_case ( self ): # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. __lowerCAmelCase = "hf-internal-testing/test-two-configs" import transformers as new_transformers __lowerCAmelCase = "v4.0.0" __lowerCAmelCase , __lowerCAmelCase = new_transformers.models.auto.AutoConfig.from_pretrained( __a , return_unused_kwargs=__a ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(__a , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers __lowerCAmelCase = "v3.0.0" __lowerCAmelCase = old_transformers.models.auto.AutoConfig.from_pretrained(__a ) self.assertEqual(old_configuration.hidden_size , 7_68 )
57
import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets __lowerCAmelCase : Optional[Any] ='\\n@article{hendrycksmath2021,\n title={Measuring Mathematical Problem Solving With the MATH Dataset},\n author={Dan Hendrycks\n and Collin Burns\n and Saurav Kadavath\n and Akul Arora\n and Steven Basart\n and Eric Tang\n and Dawn Song\n and Jacob Steinhardt},\n journal={arXiv preprint arXiv:2103.03874},\n year={2021}\n}\n' __lowerCAmelCase : Any ='\\nThis metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset.\nIt first canonicalizes the inputs (e.g., converting "1/2" to "\\frac{1}{2}") and then computes accuracy.\n' __lowerCAmelCase : Optional[Any] =r'\nCalculates accuracy after canonicalizing inputs.\n\nArgs:\n predictions: list of predictions to score. Each prediction\n is a string that contains natural language and LaTex.\n references: list of reference for each prediction. Each\n reference is a string that contains natural language\n and LaTex.\nReturns:\n accuracy: accuracy after canonicalizing inputs\n (e.g., converting "1/2" to "\\frac{1}{2}")\n\nExamples:\n >>> metric = datasets.load_metric("competition_math")\n >>> results = metric.compute(references=["\\frac{1}{2}"], predictions=["1/2"])\n >>> print(results)\n {\'accuracy\': 1.0}\n' @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowercase ( datasets.Metric ): '''simple docstring''' def __magic_name__( self :Optional[Any] ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' ), '''references''': datasets.Value('''string''' ), } ) , homepage='''https://github.com/hendrycks/math''' , codebase_urls=['''https://github.com/hendrycks/math'''] , ) def __magic_name__( self :Any , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Any ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Tuple = 0.0 for i, j in zip(lowerCAmelCase__ , lowerCAmelCase__ ): n_correct += 1.0 if math_equivalence.is_equiv(lowerCAmelCase__ , lowerCAmelCase__ ) else 0.0 __SCREAMING_SNAKE_CASE : str = n_correct / len(lowerCAmelCase__ ) return { "accuracy": accuracy, }
9
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase_ : Any = { "microsoft/unispeech-sat-base-100h-libri-ft": ( "https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json" ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class UpperCamelCase ( _UpperCAmelCase ): lowerCAmelCase : Optional[Any] = """unispeech-sat""" def __init__( self , UpperCAmelCase__=32 , UpperCAmelCase__=768 , UpperCAmelCase__=12 , UpperCAmelCase__=12 , UpperCAmelCase__=3_072 , UpperCAmelCase__="gelu" , UpperCAmelCase__=0.1 , UpperCAmelCase__=0.1 , UpperCAmelCase__=0.1 , UpperCAmelCase__=0.0 , UpperCAmelCase__=0.0 , UpperCAmelCase__=0.1 , UpperCAmelCase__=0.1 , UpperCAmelCase__=0.02 , UpperCAmelCase__=1e-5 , UpperCAmelCase__="group" , UpperCAmelCase__="gelu" , UpperCAmelCase__=(512, 512, 512, 512, 512, 512, 512) , UpperCAmelCase__=(5, 2, 2, 2, 2, 2, 2) , UpperCAmelCase__=(10, 3, 3, 3, 3, 2, 2) , UpperCAmelCase__=False , UpperCAmelCase__=128 , UpperCAmelCase__=16 , UpperCAmelCase__=False , UpperCAmelCase__=True , UpperCAmelCase__=0.05 , UpperCAmelCase__=10 , UpperCAmelCase__=2 , UpperCAmelCase__=0.0 , UpperCAmelCase__=10 , UpperCAmelCase__=0 , UpperCAmelCase__=320 , UpperCAmelCase__=2 , UpperCAmelCase__=0.1 , UpperCAmelCase__=100 , UpperCAmelCase__=256 , UpperCAmelCase__=256 , UpperCAmelCase__=0.1 , UpperCAmelCase__="mean" , UpperCAmelCase__=False , UpperCAmelCase__=False , UpperCAmelCase__=256 , UpperCAmelCase__=(512, 512, 512, 512, 1_500) , UpperCAmelCase__=(5, 3, 3, 1, 1) , UpperCAmelCase__=(1, 2, 3, 1, 1) , UpperCAmelCase__=512 , UpperCAmelCase__=0 , UpperCAmelCase__=1 , UpperCAmelCase__=2 , UpperCAmelCase__=504 , **UpperCAmelCase__ , ): super().__init__(**UpperCAmelCase__ , pad_token_id=UpperCAmelCase__ , bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ ) A__ = hidden_size A__ = feat_extract_norm A__ = feat_extract_activation A__ = list(UpperCAmelCase__ ) A__ = list(UpperCAmelCase__ ) A__ = list(UpperCAmelCase__ ) A__ = conv_bias A__ = num_conv_pos_embeddings A__ = num_conv_pos_embedding_groups A__ = len(self.conv_dim ) A__ = num_hidden_layers A__ = intermediate_size A__ = hidden_act A__ = num_attention_heads A__ = hidden_dropout A__ = attention_dropout A__ = activation_dropout A__ = feat_proj_dropout A__ = final_dropout A__ = layerdrop A__ = layer_norm_eps A__ = initializer_range A__ = vocab_size A__ = num_clusters A__ = do_stable_layer_norm A__ = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 A__ = apply_spec_augment A__ = mask_time_prob A__ = mask_time_length A__ = mask_time_min_masks A__ = mask_feature_prob A__ = mask_feature_length A__ = mask_feature_min_masks # parameters for pretraining with codevector quantized representations A__ = num_codevectors_per_group A__ = num_codevector_groups A__ = contrastive_logits_temperature A__ = feat_quantizer_dropout A__ = num_negatives A__ = codevector_dim A__ = proj_codevector_dim A__ = diversity_loss_weight # ctc loss A__ = ctc_loss_reduction A__ = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. A__ = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. A__ = list(UpperCAmelCase__ ) A__ = list(UpperCAmelCase__ ) A__ = list(UpperCAmelCase__ ) A__ = xvector_output_dim @property def __A ( self ): return functools.reduce(operator.mul , self.conv_stride , 1 )
361
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : Dict = logging.get_logger(__name__) UpperCAmelCase_ : List[Any] = { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json", # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class UpperCamelCase ( _UpperCAmelCase ): lowerCAmelCase : int = """gpt_neox""" def __init__( self , UpperCAmelCase__=50_432 , UpperCAmelCase__=6_144 , UpperCAmelCase__=44 , UpperCAmelCase__=64 , UpperCAmelCase__=24_576 , UpperCAmelCase__="gelu" , UpperCAmelCase__=0.25 , UpperCAmelCase__=10_000 , UpperCAmelCase__=0.0 , UpperCAmelCase__=0.0 , UpperCAmelCase__=0.1 , UpperCAmelCase__=2_048 , UpperCAmelCase__=0.02 , UpperCAmelCase__=1e-5 , UpperCAmelCase__=True , UpperCAmelCase__=0 , UpperCAmelCase__=2 , UpperCAmelCase__=False , UpperCAmelCase__=True , UpperCAmelCase__=None , **UpperCAmelCase__ , ): super().__init__(bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , **UpperCAmelCase__ ) A__ = vocab_size A__ = max_position_embeddings A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = rotary_pct A__ = rotary_emb_base A__ = attention_dropout A__ = hidden_dropout A__ = classifier_dropout A__ = initializer_range A__ = layer_norm_eps A__ = use_cache A__ = tie_word_embeddings A__ = use_parallel_residual A__ = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( "The hidden size is not divisble by the number of attention heads! Make sure to update them!" ) def __A ( self ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , UpperCAmelCase__ ) or len(self.rope_scaling ) != 2: raise ValueError( "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, " F"""got {self.rope_scaling}""" ) A__ = self.rope_scaling.get("type" , UpperCAmelCase__ ) A__ = self.rope_scaling.get("factor" , UpperCAmelCase__ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) or rope_scaling_factor <= 1.0: raise ValueError(F"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
198
0