code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import operator as op a = '''scaler.pt''' a = '''pytorch_model''' a = '''random_states''' a = '''optimizer''' a = '''scheduler''' a = '''pytorch_model.bin''' a = '''pytorch_model.bin.index.json''' a = '''model.safetensors''' a = '''model.safetensors.index.json''' a = '''1.10.2''' a = '''py38''' a = '''4.17.0''' a = ['''ml.p3.16xlarge''', '''ml.p3dn.24xlarge''', '''ml.p4dn.24xlarge'''] a = ['''FULL_SHARD''', '''SHARD_GRAD_OP''', '''NO_SHARD''', '''HYBRID_SHARD''', '''HYBRID_SHARD_ZERO2'''] a = ['''TRANSFORMER_BASED_WRAP''', '''SIZE_BASED_WRAP''', '''NO_WRAP'''] a = ['''BACKWARD_PRE''', '''BACKWARD_POST''', '''NO_PREFETCH'''] a = ['''FULL_STATE_DICT''', '''LOCAL_STATE_DICT''', '''SHARDED_STATE_DICT'''] a = '''2.0.1''' a = ['''pdsh''', '''standard''', '''openmpi''', '''mvapich'''] a = ['''default''', '''reduce-overhead''', '''max-autotune'''] a = {'''>''': op.gt, '''>=''': op.ge, '''==''': op.eq, '''!=''': op.ne, '''<=''': op.le, '''<''': op.lt} # These are the args for `torch.distributed.launch` for pytorch < 1.9 a = [ '''nnodes''', '''nproc_per_node''', '''rdzv_backend''', '''rdzv_endpoint''', '''rdzv_id''', '''rdzv_conf''', '''standalone''', '''max_restarts''', '''monitor_interval''', '''start_method''', '''role''', '''module''', '''m''', '''no_python''', '''run_path''', '''log_dir''', '''r''', '''redirects''', '''t''', '''tee''', '''node_rank''', '''master_addr''', '''master_port''', ] a = ['''DEEPSPEED''', '''MULTI_GPU''', '''FSDP''', '''MEGATRON_LM'''] a = ['''DEEPSPEED''', '''MULTI_XPU''', '''FSDP''']
315
"""simple docstring""" from collections.abc import Callable def _snake_case ( _snake_case : Callable[[float], float] , _snake_case : float , _snake_case : float ) -> float: '''simple docstring''' _A = a _A = b if function(_snake_case ) == 0: # one of the a or b is a root for the function return a elif function(_snake_case ) == 0: return b elif ( function(_snake_case ) * function(_snake_case ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('could not find root in given interval.' ) else: _A = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(_snake_case ) == 0: return mid elif function(_snake_case ) * function(_snake_case ) < 0: _A = mid else: _A = mid _A = start + (end - start) / 2.0 return mid def _snake_case ( _snake_case : float ) -> float: '''simple docstring''' return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1_000)) import doctest doctest.testmod()
315
1
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase : Any = get_tests_dir("fixtures/test_sentencepiece_no_bos.model") @require_sentencepiece @require_tokenizers class A__ ( A__ , unittest.TestCase ): A__ = PegasusTokenizer A__ = PegasusTokenizerFast A__ = True A__ = True def A ( self : str ) -> Optional[Any]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _SCREAMING_SNAKE_CASE =PegasusTokenizer(_a ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def A ( self : Union[str, Any] ) -> int: '''simple docstring''' return PegasusTokenizer.from_pretrained('google/pegasus-large' ) def A ( self : Tuple , **_a : Optional[Any] ) -> PegasusTokenizer: '''simple docstring''' return PegasusTokenizer.from_pretrained(self.tmpdirname , **_a ) def A ( self : List[str] , _a : Optional[Any] ) -> Any: '''simple docstring''' return ("This is a test", "This is a test") def A ( self : Dict ) -> Tuple: '''simple docstring''' _SCREAMING_SNAKE_CASE ='</s>' _SCREAMING_SNAKE_CASE =1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_a ) , _a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_a ) , _a ) def A ( self : str ) -> str: '''simple docstring''' _SCREAMING_SNAKE_CASE =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<pad>' ) self.assertEqual(vocab_keys[1] , '</s>' ) self.assertEqual(vocab_keys[-1] , 'v' ) self.assertEqual(len(_a ) , 1103 ) def A ( self : int ) -> List[str]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def A ( self : Optional[int] ) -> int: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) _SCREAMING_SNAKE_CASE =self.tokenizer_class.from_pretrained(self.tmpdirname ) _SCREAMING_SNAKE_CASE =( 'Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important' ' </s> <pad> <pad> <pad>' ) _SCREAMING_SNAKE_CASE =rust_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0] _SCREAMING_SNAKE_CASE =py_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0] self.assertListEqual(_a , _a ) def A ( self : Any ) -> int: '''simple docstring''' _SCREAMING_SNAKE_CASE =self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word _SCREAMING_SNAKE_CASE ='<mask_1> To ensure a <mask_2> flow of bank resolutions.' _SCREAMING_SNAKE_CASE =[2, 413, 615, 114, 3, 1971, 113, 1679, 1_0710, 107, 1] _SCREAMING_SNAKE_CASE =tokenizer([raw_input_str] , return_tensors=_a ).input_ids[0] self.assertListEqual(_a , _a ) def A ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 _SCREAMING_SNAKE_CASE ='To ensure a smooth flow of bank resolutions.' _SCREAMING_SNAKE_CASE =[413, 615, 114, 2291, 1971, 113, 1679, 1_0710, 107, 1] _SCREAMING_SNAKE_CASE =tokenizer([raw_input_str] , return_tensors=_a ).input_ids[0] self.assertListEqual(_a , _a ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def A ( self : Tuple ) -> Any: '''simple docstring''' _SCREAMING_SNAKE_CASE =['This is going to be way too long.' * 150, 'short example'] _SCREAMING_SNAKE_CASE =['not super long but more than 5 tokens', 'tiny'] _SCREAMING_SNAKE_CASE =self._large_tokenizer(_a , padding=_a , truncation=_a , return_tensors='pt' ) _SCREAMING_SNAKE_CASE =self._large_tokenizer( text_target=_a , max_length=5 , padding=_a , truncation=_a , return_tensors='pt' ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(_a ) == 2 # input_ids, attention_mask. @slow def A ( self : Any ) -> List[str]: '''simple docstring''' _SCREAMING_SNAKE_CASE ={'input_ids': [[3_8979, 143, 1_8485, 606, 130, 2_6669, 8_7686, 121, 5_4189, 1129, 111, 2_6669, 8_7686, 121, 9114, 1_4787, 121, 1_3249, 158, 592, 956, 121, 1_4621, 3_1576, 143, 6_2613, 108, 9688, 930, 4_3430, 1_1562, 6_2613, 304, 108, 1_1443, 897, 108, 9314, 1_7415, 6_3399, 108, 1_1443, 7614, 1_8316, 118, 4284, 7148, 1_2430, 143, 1400, 2_5703, 158, 111, 4284, 7148, 1_1772, 143, 2_1297, 1064, 158, 122, 204, 3506, 1754, 1133, 1_4787, 1581, 115, 3_3224, 4482, 111, 1355, 110, 2_9173, 317, 5_0833, 108, 2_0147, 9_4665, 111, 7_7198, 107, 1], [110, 6_2613, 117, 638, 112, 1133, 121, 2_0098, 1355, 7_9050, 1_3872, 135, 1596, 5_3541, 1352, 141, 1_3039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 1_8289, 1_7780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_a , model_name='google/bigbird-pegasus-large-arxiv' , revision='ba85d0851d708441f91440d509690f1ab6353415' , ) @require_sentencepiece @require_tokenizers class A__ ( A__ , unittest.TestCase ): A__ = PegasusTokenizer A__ = PegasusTokenizerFast A__ = True A__ = True def A ( self : str ) -> List[str]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _SCREAMING_SNAKE_CASE =PegasusTokenizer(_a , offset=0 , mask_token_sent=_a , mask_token='[MASK]' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def A ( self : List[Any] ) -> Any: '''simple docstring''' return PegasusTokenizer.from_pretrained('google/bigbird-pegasus-large-arxiv' ) def A ( self : Tuple , **_a : Union[str, Any] ) -> PegasusTokenizer: '''simple docstring''' return PegasusTokenizer.from_pretrained(self.tmpdirname , **_a ) def A ( self : Any , _a : Optional[int] ) -> str: '''simple docstring''' return ("This is a test", "This is a test") def A ( self : Optional[Any] ) -> int: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) _SCREAMING_SNAKE_CASE =self.tokenizer_class.from_pretrained(self.tmpdirname ) _SCREAMING_SNAKE_CASE =( 'Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>' ' <pad> <pad> <pad>' ) _SCREAMING_SNAKE_CASE =rust_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0] _SCREAMING_SNAKE_CASE =py_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0] self.assertListEqual(_a , _a ) @require_torch def A ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =['This is going to be way too long.' * 1000, 'short example'] _SCREAMING_SNAKE_CASE =['not super long but more than 5 tokens', 'tiny'] _SCREAMING_SNAKE_CASE =self._large_tokenizer(_a , padding=_a , truncation=_a , return_tensors='pt' ) _SCREAMING_SNAKE_CASE =self._large_tokenizer( text_target=_a , max_length=5 , padding=_a , truncation=_a , return_tensors='pt' ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(_a ) == 2 # input_ids, attention_mask. def A ( self : Dict ) -> int: '''simple docstring''' _SCREAMING_SNAKE_CASE =( 'This is an example string that is used to test the original TF implementation against the HF' ' implementation' ) _SCREAMING_SNAKE_CASE =self._large_tokenizer(_a ).input_ids self.assertListEqual( _a , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 2_5016, 3137, 464, 109, 2_6955, 3137, 1] , )
114
'''simple docstring''' import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch lowerCamelCase : List[str] = random.Random() def _lowerCAmelCase ( _UpperCamelCase : Optional[Any] , _UpperCamelCase : List[str]=1.0 , _UpperCamelCase : Optional[int]=None , _UpperCamelCase : Dict=None ) -> Any: """simple docstring""" if rng is None: _SCREAMING_SNAKE_CASE =global_rng _SCREAMING_SNAKE_CASE =[] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class A__ ( unittest.TestCase ): def __init__( self : List[Any] , _a : Tuple , _a : Dict=7 , _a : List[Any]=400 , _a : List[str]=2000 , _a : Optional[Any]=10 , _a : Dict=160 , _a : Tuple=8 , _a : Any=0.0 , _a : Optional[Any]=4000 , _a : List[Any]=False , _a : Dict=True , ) -> Union[str, Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =parent _SCREAMING_SNAKE_CASE =batch_size _SCREAMING_SNAKE_CASE =min_seq_length _SCREAMING_SNAKE_CASE =max_seq_length _SCREAMING_SNAKE_CASE =(self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _SCREAMING_SNAKE_CASE =padding_value _SCREAMING_SNAKE_CASE =sampling_rate _SCREAMING_SNAKE_CASE =return_attention_mask _SCREAMING_SNAKE_CASE =do_normalize _SCREAMING_SNAKE_CASE =feature_size _SCREAMING_SNAKE_CASE =chunk_length _SCREAMING_SNAKE_CASE =hop_length def A ( self : Any ) -> Optional[Any]: '''simple docstring''' return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def A ( self : Optional[Any] , _a : Any=False , _a : Union[str, Any]=False ) -> Optional[Any]: '''simple docstring''' def _flatten(_a : Union[str, Any] ): return list(itertools.chain(*_a ) ) if equal_length: _SCREAMING_SNAKE_CASE =[floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _SCREAMING_SNAKE_CASE =[ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _SCREAMING_SNAKE_CASE =[np.asarray(_a ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class A__ ( A__ , unittest.TestCase ): A__ = WhisperFeatureExtractor if is_speech_available() else None def A ( self : Union[str, Any] ) -> Any: '''simple docstring''' _SCREAMING_SNAKE_CASE =WhisperFeatureExtractionTester(self ) def A ( self : str ) -> Tuple: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _SCREAMING_SNAKE_CASE =feat_extract_first.save_pretrained(_a )[0] check_json_file_has_correct_format(_a ) _SCREAMING_SNAKE_CASE =self.feature_extraction_class.from_pretrained(_a ) _SCREAMING_SNAKE_CASE =feat_extract_first.to_dict() _SCREAMING_SNAKE_CASE =feat_extract_second.to_dict() _SCREAMING_SNAKE_CASE =feat_extract_first.mel_filters _SCREAMING_SNAKE_CASE =feat_extract_second.mel_filters self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def A ( self : Tuple ) -> Any: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _SCREAMING_SNAKE_CASE =os.path.join(_a , 'feat_extract.json' ) feat_extract_first.to_json_file(_a ) _SCREAMING_SNAKE_CASE =self.feature_extraction_class.from_json_file(_a ) _SCREAMING_SNAKE_CASE =feat_extract_first.to_dict() _SCREAMING_SNAKE_CASE =feat_extract_second.to_dict() _SCREAMING_SNAKE_CASE =feat_extract_first.mel_filters _SCREAMING_SNAKE_CASE =feat_extract_second.mel_filters self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def A ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _SCREAMING_SNAKE_CASE =[floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _SCREAMING_SNAKE_CASE =[np.asarray(_a ) for speech_input in speech_inputs] # Test feature size _SCREAMING_SNAKE_CASE =feature_extractor(_a , padding='max_length' , return_tensors='np' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input _SCREAMING_SNAKE_CASE =feature_extractor(speech_inputs[0] , return_tensors='np' ).input_features _SCREAMING_SNAKE_CASE =feature_extractor(np_speech_inputs[0] , return_tensors='np' ).input_features self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) # Test batched _SCREAMING_SNAKE_CASE =feature_extractor(_a , return_tensors='np' ).input_features _SCREAMING_SNAKE_CASE =feature_extractor(_a , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(_a , _a ): self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. _SCREAMING_SNAKE_CASE =[floats_list((1, x) )[0] for x in (800, 800, 800)] _SCREAMING_SNAKE_CASE =np.asarray(_a ) _SCREAMING_SNAKE_CASE =feature_extractor(_a , return_tensors='np' ).input_features _SCREAMING_SNAKE_CASE =feature_extractor(_a , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(_a , _a ): self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) # Test truncation required _SCREAMING_SNAKE_CASE =[floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] _SCREAMING_SNAKE_CASE =[np.asarray(_a ) for speech_input in speech_inputs] _SCREAMING_SNAKE_CASE =[x[: feature_extractor.n_samples] for x in speech_inputs] _SCREAMING_SNAKE_CASE =[np.asarray(_a ) for speech_input in speech_inputs_truncated] _SCREAMING_SNAKE_CASE =feature_extractor(_a , return_tensors='np' ).input_features _SCREAMING_SNAKE_CASE =feature_extractor(_a , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(_a , _a ): self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) def A ( self : Any ) -> List[Any]: '''simple docstring''' import torch _SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _SCREAMING_SNAKE_CASE =np.random.rand(100 , 32 ).astype(np.floataa ) _SCREAMING_SNAKE_CASE =np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _SCREAMING_SNAKE_CASE =feature_extractor.pad([{'input_features': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) _SCREAMING_SNAKE_CASE =feature_extractor.pad([{'input_features': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def A ( self : Tuple , _a : str ) -> Optional[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech _SCREAMING_SNAKE_CASE =ds.sort('id' ).select(range(_a ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def A ( self : List[Any] ) -> Optional[int]: '''simple docstring''' _SCREAMING_SNAKE_CASE =torch.tensor( [ 0.11_93, -0.09_46, -0.10_98, -0.01_96, 0.02_25, -0.06_90, -0.17_36, 0.09_51, 0.09_71, -0.08_17, -0.07_02, 0.01_62, 0.02_60, 0.00_17, -0.01_92, -0.16_78, 0.07_09, -0.18_67, -0.06_55, -0.02_74, -0.02_34, -0.18_84, -0.05_16, -0.05_54, -0.02_74, -0.14_25, -0.14_23, 0.08_37, 0.03_77, -0.08_54 ] ) # fmt: on _SCREAMING_SNAKE_CASE =self._load_datasamples(1 ) _SCREAMING_SNAKE_CASE =WhisperFeatureExtractor() _SCREAMING_SNAKE_CASE =feature_extractor(_a , return_tensors='pt' ).input_features self.assertEqual(input_features.shape , (1, 80, 3000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , _a , atol=1e-4 ) ) def A ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _SCREAMING_SNAKE_CASE =self._load_datasamples(1 )[0] _SCREAMING_SNAKE_CASE =((audio - audio.min()) / (audio.max() - audio.min())) * 6_5535 # Rescale to [0, 65535] to show issue _SCREAMING_SNAKE_CASE =feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=_a )[0] self.assertTrue(np.all(np.mean(_a ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(_a ) - 1 ) < 1e-3 ) )
114
1
'''simple docstring''' import logging from transformers.configuration_utils import PretrainedConfig a__ : Union[str, Any] = logging.getLogger(__name__) class lowercase_ ( a__ ): __UpperCAmelCase = 'masked_bert' def __init__( self , a=3_05_22 , a=7_68 , a=12 , a=12 , a=30_72 , a="gelu" , a=0.1 , a=0.1 , a=5_12 , a=2 , a=0.02 , a=1e-12 , a=0 , a="topK" , a="constant" , a=0.0 , **a , ): super().__init__(pad_token_id=a , **a ) UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = hidden_act UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = type_vocab_size UpperCamelCase__ = initializer_range UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = pruning_method UpperCamelCase__ = mask_init UpperCamelCase__ = mask_scale
80
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer UpperCAmelCase_ : Optional[Any] = ['''bert-base-uncased''', '''bert-base-cased'''] UpperCAmelCase_ : List[str] = '''hf-internal-testing/tiny-bert-tf-only''' if is_tf_available(): class _SCREAMING_SNAKE_CASE ( tf.keras.Model ): def __init__( self : List[str] , __lowerCamelCase : Union[str, Any] ): super().__init__() UpperCamelCase :Any = tokenizer UpperCamelCase :List[str] = AutoConfig.from_pretrained(__lowerCamelCase ) UpperCamelCase :List[str] = TFAutoModel.from_config(__lowerCamelCase ) def _A ( self : Tuple , __lowerCamelCase : str ): UpperCamelCase :str = self.tokenizer(__lowerCamelCase ) UpperCamelCase :Any = self.bert(**__lowerCamelCase ) return out["pooler_output"] @require_tf @require_tensorflow_text class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def _A ( self : Dict ): super().setUp() UpperCamelCase :int = [ BertTokenizer.from_pretrained(__lowerCamelCase ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false UpperCamelCase :Any = [TFBertTokenizer.from_pretrained(__lowerCamelCase ) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(__lowerCamelCase , use_fast_bert_tokenizer=__lowerCamelCase ) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers ) == len(self.tf_tokenizers ) UpperCamelCase :Any = [ """This is a straightforward English test sentence.""", """This one has some weird characters\rto\nsee\r\nif those\u00E9break things.""", """Now we're going to add some Chinese: 一 二 三 一二三""", """And some much more rare Chinese: 齉 堃 齉堃""", """Je vais aussi écrire en français pour tester les accents""", """Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ""", ] UpperCamelCase :Union[str, Any] = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def _A ( self : Optional[int] ): for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in (self.test_sentences, self.paired_sentences): UpperCamelCase :Any = tokenizer(__lowerCamelCase , return_tensors="""tf""" , padding="""longest""" ) UpperCamelCase :str = tf_tokenizer(__lowerCamelCase ) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) ) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa ) == tf_outputs[key] ) ) @slow def _A ( self : Dict ): for tf_tokenizer in self.tf_tokenizers: UpperCamelCase :str = tf_tokenizer(self.paired_sentences ) UpperCamelCase :Any = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa ) == separated_outputs[key] ) ) @slow def _A ( self : List[str] ): for tf_tokenizer in self.tf_tokenizers: UpperCamelCase :List[Any] = tf.function(__lowerCamelCase ) for test_inputs in (self.test_sentences, self.paired_sentences): UpperCamelCase :Any = tf.constant(__lowerCamelCase ) UpperCamelCase :List[str] = compiled_tokenizer(__lowerCamelCase ) UpperCamelCase :Optional[Any] = tf_tokenizer(__lowerCamelCase ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def _A ( self : Tuple ): for tf_tokenizer in self.tf_tokenizers: UpperCamelCase :List[str] = ModelToSave(tokenizer=__lowerCamelCase ) UpperCamelCase :Union[str, Any] = tf.convert_to_tensor(self.test_sentences ) UpperCamelCase :Union[str, Any] = model(__lowerCamelCase ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: UpperCamelCase :List[str] = Path(__lowerCamelCase ) / """saved.model""" model.save(__lowerCamelCase ) UpperCamelCase :List[Any] = tf.keras.models.load_model(__lowerCamelCase ) UpperCamelCase :Dict = loaded_model(__lowerCamelCase ) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ) , 1E-5 )
38
0
from datetime import datetime as dt import os from github import Github UpperCamelCase = [ """good first issue""", """good second issue""", """good difficult issue""", """feature request""", """new model""", """wip""", ] def _SCREAMING_SNAKE_CASE ( ): A_ : str = Github(os.environ['''GITHUB_TOKEN'''] ) A_ : List[str] = g.get_repo('''huggingface/transformers''' ) A_ : int = repo.get_issues(state='''open''' ) for issue in open_issues: A_ : str = sorted([comment for comment in issue.get_comments()] , key=lambda SCREAMING_SNAKE_CASE : i.created_at , reverse=__a ) A_ : Optional[int] = comments[0] if len(__a ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state='''closed''' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) if __name__ == "__main__": main()
365
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _lowerCamelCase ( UpperCamelCase ): """simple docstring""" snake_case = ["image_processor", "tokenizer"] snake_case = "CLIPImageProcessor" snake_case = ("XLMRobertaTokenizer", "XLMRobertaTokenizerFast") def __init__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE )->Tuple: '''simple docstring''' A_ : Any = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _SCREAMING_SNAKE_CASE , ) A_ : Tuple = kwargs.pop('''feature_extractor''' ) A_ : Any = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __call__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE )->int: '''simple docstring''' if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: A_ : List[str] = self.tokenizer(_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if images is not None: A_ : List[Any] = self.image_processor(_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if text is not None and images is not None: A_ : Union[str, Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_SCREAMING_SNAKE_CASE ) , tensor_type=_SCREAMING_SNAKE_CASE ) def _snake_case ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )->List[Any]: '''simple docstring''' return self.tokenizer.batch_decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _snake_case ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )->str: '''simple docstring''' return self.tokenizer.decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @property def _snake_case ( self )->Dict: '''simple docstring''' A_ : List[Any] = self.tokenizer.model_input_names A_ : Optional[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
65
0
def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any]=2_81_23 ): '''simple docstring''' lowerCamelCase_ = [1] * (limit + 1) for i in range(2 , int(limit**0.5 ) + 1 ): sum_divs[i * i] += i for k in range(i + 1 , limit // i + 1 ): sum_divs[k * i] += k + i lowerCamelCase_ = set() lowerCamelCase_ = 0 for n in range(1 , limit + 1 ): if sum_divs[n] > n: abundants.add(lowercase ) if not any((n - a in abundants) for a in abundants ): res += n return res if __name__ == "__main__": print(solution())
204
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCamelCase : str = { "configuration_nezha": ["NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP", "NezhaConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[str] = [ "NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST", "NezhaForNextSentencePrediction", "NezhaForMaskedLM", "NezhaForPreTraining", "NezhaForMultipleChoice", "NezhaForQuestionAnswering", "NezhaForSequenceClassification", "NezhaForTokenClassification", "NezhaModel", "NezhaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys lowerCamelCase : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
204
1
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def UpperCamelCase ( self ): A__ = tempfile.mkdtemp() A__ = BlipImageProcessor() A__ = BertTokenizer.from_pretrained('''hf-internal-testing/tiny-random-BertModel''' ) A__ = BlipProcessor(__lowerCamelCase,__lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) def UpperCamelCase ( self,**__lowerCamelCase ): return AutoProcessor.from_pretrained(self.tmpdirname,**__lowerCamelCase ).tokenizer def UpperCamelCase ( self,**__lowerCamelCase ): return AutoProcessor.from_pretrained(self.tmpdirname,**__lowerCamelCase ).image_processor def UpperCamelCase ( self ): shutil.rmtree(self.tmpdirname ) def UpperCamelCase ( self ): A__ = [np.random.randint(255,size=(3, 30, 400),dtype=np.uinta )] A__ = [Image.fromarray(np.moveaxis(__lowerCamelCase,0,-1 ) ) for x in image_inputs] return image_inputs def UpperCamelCase ( self ): A__ = BlipProcessor(tokenizer=self.get_tokenizer(),image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A__ = self.get_tokenizer(bos_token='''(BOS)''',eos_token='''(EOS)''' ) A__ = self.get_image_processor(do_normalize=__lowerCamelCase,padding_value=1.0 ) A__ = BlipProcessor.from_pretrained( self.tmpdirname,bos_token='''(BOS)''',eos_token='''(EOS)''',do_normalize=__lowerCamelCase,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab(),tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer,__lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string(),image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor,__lowerCamelCase ) def UpperCamelCase ( self ): A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = BlipProcessor(tokenizer=__lowerCamelCase,image_processor=__lowerCamelCase ) A__ = self.prepare_image_inputs() A__ = image_processor(__lowerCamelCase,return_tensors='''np''' ) A__ = processor(images=__lowerCamelCase,return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(),input_processor[key].sum(),delta=1E-2 ) def UpperCamelCase ( self ): A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = BlipProcessor(tokenizer=__lowerCamelCase,image_processor=__lowerCamelCase ) A__ = '''lower newer''' A__ = processor(text=__lowerCamelCase ) A__ = tokenizer(__lowerCamelCase,return_token_type_ids=__lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key],encoded_processor[key] ) def UpperCamelCase ( self ): A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = BlipProcessor(tokenizer=__lowerCamelCase,image_processor=__lowerCamelCase ) A__ = '''lower newer''' A__ = self.prepare_image_inputs() A__ = processor(text=__lowerCamelCase,images=__lowerCamelCase ) self.assertListEqual(list(inputs.keys() ),['''pixel_values''', '''input_ids''', '''attention_mask'''] ) # test if it raises when no input is passed with pytest.raises(__lowerCamelCase ): processor() def UpperCamelCase ( self ): A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = BlipProcessor(tokenizer=__lowerCamelCase,image_processor=__lowerCamelCase ) A__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A__ = processor.batch_decode(__lowerCamelCase ) A__ = tokenizer.batch_decode(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase,__lowerCamelCase ) def UpperCamelCase ( self ): A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = BlipProcessor(tokenizer=__lowerCamelCase,image_processor=__lowerCamelCase ) A__ = '''lower newer''' A__ = self.prepare_image_inputs() A__ = processor(text=__lowerCamelCase,images=__lowerCamelCase ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ),['''pixel_values''', '''input_ids''', '''attention_mask'''] )
39
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): __SCREAMING_SNAKE_CASE = ['''image_processor''', '''tokenizer'''] __SCREAMING_SNAKE_CASE = '''Pix2StructImageProcessor''' __SCREAMING_SNAKE_CASE = ('''T5Tokenizer''', '''T5TokenizerFast''') def __init__( self,__lowerCamelCase,__lowerCamelCase ): A__ = False super().__init__(__lowerCamelCase,__lowerCamelCase ) def __call__( self,__lowerCamelCase=None,__lowerCamelCase = None,__lowerCamelCase = True,__lowerCamelCase = False,__lowerCamelCase = None,__lowerCamelCase = None,__lowerCamelCase = 2048,__lowerCamelCase = 0,__lowerCamelCase = None,__lowerCamelCase = None,__lowerCamelCase = False,__lowerCamelCase = False,__lowerCamelCase = False,__lowerCamelCase = False,__lowerCamelCase = False,__lowerCamelCase = True,__lowerCamelCase = None,**__lowerCamelCase,): if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None and not self.image_processor.is_vqa: A__ = self.tokenizer A__ = self.tokenizer( text=__lowerCamelCase,add_special_tokens=__lowerCamelCase,padding=__lowerCamelCase,truncation=__lowerCamelCase,max_length=__lowerCamelCase,stride=__lowerCamelCase,pad_to_multiple_of=__lowerCamelCase,return_attention_mask=__lowerCamelCase,return_overflowing_tokens=__lowerCamelCase,return_special_tokens_mask=__lowerCamelCase,return_offsets_mapping=__lowerCamelCase,return_token_type_ids=__lowerCamelCase,return_length=__lowerCamelCase,verbose=__lowerCamelCase,return_tensors=__lowerCamelCase,**__lowerCamelCase,) return text_encoding if not self.image_processor.is_vqa: # add pixel_values A__ = self.image_processor( __lowerCamelCase,return_tensors=__lowerCamelCase,max_patches=__lowerCamelCase,**__lowerCamelCase ) else: # add pixel_values and bbox A__ = self.image_processor( __lowerCamelCase,return_tensors=__lowerCamelCase,max_patches=__lowerCamelCase,header_text=__lowerCamelCase,**__lowerCamelCase ) if text is not None and not self.image_processor.is_vqa: A__ = self.tokenizer( text=__lowerCamelCase,add_special_tokens=__lowerCamelCase,padding=__lowerCamelCase,truncation=__lowerCamelCase,max_length=__lowerCamelCase,stride=__lowerCamelCase,pad_to_multiple_of=__lowerCamelCase,return_attention_mask=__lowerCamelCase,return_overflowing_tokens=__lowerCamelCase,return_special_tokens_mask=__lowerCamelCase,return_offsets_mapping=__lowerCamelCase,return_token_type_ids=__lowerCamelCase,return_length=__lowerCamelCase,verbose=__lowerCamelCase,return_tensors=__lowerCamelCase,**__lowerCamelCase,) if "attention_mask" in text_encoding: A__ = text_encoding.pop('''attention_mask''' ) if "input_ids" in text_encoding: A__ = text_encoding.pop('''input_ids''' ) else: A__ = None if text_encoding is not None: encoding_image_processor.update(__lowerCamelCase ) return encoding_image_processor def UpperCamelCase ( self,*__lowerCamelCase,**__lowerCamelCase ): return self.tokenizer.batch_decode(*__lowerCamelCase,**__lowerCamelCase ) def UpperCamelCase ( self,*__lowerCamelCase,**__lowerCamelCase ): return self.tokenizer.decode(*__lowerCamelCase,**__lowerCamelCase ) @property def UpperCamelCase ( self ): A__ = self.tokenizer.model_input_names A__ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
39
1
'''simple docstring''' import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase : def __init__( self : Tuple , __snake_case : Optional[Any] , __snake_case : str=13 , __snake_case : Any=7 , __snake_case : str=True , __snake_case : List[Any]=True , __snake_case : str=False , __snake_case : Optional[int]=True , __snake_case : str=99 , __snake_case : Optional[int]=32 , __snake_case : List[Any]=5 , __snake_case : str=4 , __snake_case : Any=37 , __snake_case : Tuple="gelu" , __snake_case : Union[str, Any]=0.1 , __snake_case : Tuple=0.1 , __snake_case : Tuple=5_12 , __snake_case : Union[str, Any]=16 , __snake_case : Union[str, Any]=2 , __snake_case : str=0.02 , __snake_case : List[str]=3 , __snake_case : List[Any]=4 , __snake_case : Optional[int]=None , ) -> int: _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = seq_length _lowerCAmelCase = is_training _lowerCAmelCase = use_input_mask _lowerCAmelCase = use_token_type_ids _lowerCAmelCase = use_labels _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = type_sequence_label_size _lowerCAmelCase = initializer_range _lowerCAmelCase = num_labels _lowerCAmelCase = num_choices _lowerCAmelCase = scope def lowercase__ ( self : Tuple ) -> Union[str, Any]: _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase = None if self.use_input_mask: _lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase = None if self.use_token_type_ids: _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _lowerCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : Optional[Any] ) -> List[str]: return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_a , initializer_range=self.initializer_range , ) def lowercase__ ( self : Dict , __snake_case : Any , __snake_case : int , __snake_case : int , __snake_case : Union[str, Any] , __snake_case : Any , __snake_case : Optional[Any] , __snake_case : Any ) -> List[str]: _lowerCAmelCase = BioGptModel(config=_a ) model.to(_a ) model.eval() _lowerCAmelCase = model(_a , attention_mask=_a ) _lowerCAmelCase = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : str , __snake_case : Union[str, Any] , __snake_case : Optional[Any] , __snake_case : Optional[Any] , __snake_case : Tuple , __snake_case : Union[str, Any] , __snake_case : int , __snake_case : Any , __snake_case : List[str] , __snake_case : Tuple , ) -> List[str]: _lowerCAmelCase = BioGptForCausalLM(config=_a ) model.to(_a ) model.eval() _lowerCAmelCase = model(_a , attention_mask=_a , token_type_ids=_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : int , __snake_case : int , __snake_case : Tuple , __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Optional[Any] , *__snake_case : List[Any] ) -> str: _lowerCAmelCase = BioGptModel(config=_a ) model.to(_a ) model.eval() # create attention mask _lowerCAmelCase = torch.ones(input_ids.shape , dtype=torch.long , device=_a ) _lowerCAmelCase = self.seq_length // 2 _lowerCAmelCase = 0 # first forward pass _lowerCAmelCase = model(_a , attention_mask=_a ).to_tuple() # create hypothetical next token and extent to next_input_ids _lowerCAmelCase = ids_tensor((self.batch_size, 1) , config.vocab_size ) # change a random masked slice from input_ids _lowerCAmelCase = ids_tensor((1,) , _a ).item() + 1 _lowerCAmelCase = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 ) _lowerCAmelCase = random_other_next_tokens # append to next input_ids and attn_mask _lowerCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) _lowerCAmelCase = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=_a )] , dim=1 , ) # get two different outputs _lowerCAmelCase = model(_a , attention_mask=_a )['last_hidden_state'] _lowerCAmelCase = model(_a , past_key_values=_a , attention_mask=_a )['last_hidden_state'] # select random slice _lowerCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() _lowerCAmelCase = output_from_no_past[:, -1, random_slice_idx].detach() _lowerCAmelCase = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_a , _a , atol=1E-3 ) ) def lowercase__ ( self : Union[str, Any] , __snake_case : Optional[Any] , __snake_case : Optional[int] , __snake_case : str , __snake_case : List[str] , __snake_case : Any , *__snake_case : Dict ) -> Optional[Any]: _lowerCAmelCase = BioGptModel(config=_a ).to(_a ).eval() _lowerCAmelCase = torch.ones(input_ids.shape , dtype=torch.long , device=_a ) # first forward pass _lowerCAmelCase = model(_a , attention_mask=_a , use_cache=_a ) _lowerCAmelCase = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids _lowerCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) _lowerCAmelCase = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and _lowerCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) _lowerCAmelCase = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) _lowerCAmelCase = model(_a , attention_mask=_a )['last_hidden_state'] _lowerCAmelCase = model(_a , attention_mask=_a , past_key_values=_a )[ 'last_hidden_state' ] # select random slice _lowerCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() _lowerCAmelCase = output_from_no_past[:, -3:, random_slice_idx].detach() _lowerCAmelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_a , _a , atol=1E-3 ) ) def lowercase__ ( self : List[str] , __snake_case : List[Any] , __snake_case : Any , __snake_case : Dict , __snake_case : int , __snake_case : List[Any] , *__snake_case : List[Any] , __snake_case : Optional[Any]=False ) -> Optional[Any]: _lowerCAmelCase = BioGptForCausalLM(_a ) model.to(_a ) if gradient_checkpointing: model.gradient_checkpointing_enable() _lowerCAmelCase = model(_a , labels=_a ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def lowercase__ ( self : Any , __snake_case : str , *__snake_case : List[Any] ) -> str: _lowerCAmelCase = BioGptModel(_a ) _lowerCAmelCase = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.0_01 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 ) def lowercase__ ( self : Any , __snake_case : List[Any] , __snake_case : List[Any] , __snake_case : List[str] , __snake_case : List[str] , __snake_case : str , *__snake_case : Optional[Any] ) -> Dict: _lowerCAmelCase = self.num_labels _lowerCAmelCase = BioGptForTokenClassification(_a ) model.to(_a ) model.eval() _lowerCAmelCase = model(_a , attention_mask=_a , token_type_ids=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : Optional[Any] ) -> int: _lowerCAmelCase = self.prepare_config_and_inputs() ( _lowerCAmelCase ) = config_and_inputs _lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _lowercase: Tuple = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) _lowercase: Optional[Any] = (BioGptForCausalLM,) if is_torch_available() else () _lowercase: Any = ( { '''feature-extraction''': BioGptModel, '''text-classification''': BioGptForSequenceClassification, '''text-generation''': BioGptForCausalLM, '''token-classification''': BioGptForTokenClassification, '''zero-shot''': BioGptForSequenceClassification, } if is_torch_available() else {} ) _lowercase: str = False def lowercase__ ( self : Dict ) -> List[Any]: _lowerCAmelCase = BioGptModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=_a , hidden_size=37 ) def lowercase__ ( self : Optional[int] ) -> str: self.config_tester.run_common_tests() def lowercase__ ( self : Optional[Any] ) -> List[str]: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def lowercase__ ( self : Tuple ) -> Dict: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowerCAmelCase = type self.model_tester.create_and_check_model(*_a ) def lowercase__ ( self : Optional[Any] ) -> int: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*_a ) def lowercase__ ( self : str ) -> Optional[int]: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*_a , gradient_checkpointing=_a ) def lowercase__ ( self : Tuple ) -> Dict: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*_a ) def lowercase__ ( self : str ) -> int: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*_a ) def lowercase__ ( self : Optional[int] ) -> int: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*_a ) @slow def lowercase__ ( self : Optional[int] ) -> int: _lowerCAmelCase = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" ) model.to(_a ) _lowerCAmelCase = BioGptTokenizer.from_pretrained("""microsoft/biogpt""" ) _lowerCAmelCase = 'left' # Define PAD Token = EOS Token = 50256 _lowerCAmelCase = tokenizer.eos_token _lowerCAmelCase = model.config.eos_token_id # use different length sentences to test batching _lowerCAmelCase = [ 'Hello, my dog is a little', 'Today, I', ] _lowerCAmelCase = tokenizer(_a , return_tensors="""pt""" , padding=_a ) _lowerCAmelCase = inputs['input_ids'].to(_a ) _lowerCAmelCase = model.generate( input_ids=_a , attention_mask=inputs["""attention_mask"""].to(_a ) , ) _lowerCAmelCase = tokenizer(sentences[0] , return_tensors="""pt""" ).input_ids.to(_a ) _lowerCAmelCase = model.generate(input_ids=_a ) _lowerCAmelCase = inputs_non_padded.shape[-1] - inputs['attention_mask'][-1].long().sum().cpu().item() _lowerCAmelCase = tokenizer(sentences[1] , return_tensors="""pt""" ).input_ids.to(_a ) _lowerCAmelCase = model.generate(input_ids=_a , max_length=model.config.max_length - num_paddings ) _lowerCAmelCase = tokenizer.batch_decode(_a , skip_special_tokens=_a ) _lowerCAmelCase = tokenizer.decode(output_non_padded[0] , skip_special_tokens=_a ) _lowerCAmelCase = tokenizer.decode(output_padded[0] , skip_special_tokens=_a ) _lowerCAmelCase = [ 'Hello, my dog is a little bit bigger than a little bit.', 'Today, I have a good idea of how to use the information', ] self.assertListEqual(_a , _a ) self.assertListEqual(_a , [non_padded_sentence, padded_sentence] ) @slow def lowercase__ ( self : Tuple ) -> int: for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = BioGptModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def lowercase__ ( self : Union[str, Any] ) -> List[str]: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase = 3 _lowerCAmelCase = input_dict['input_ids'] _lowerCAmelCase = input_ids.ne(1 ).to(_a ) _lowerCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _lowerCAmelCase = BioGptForSequenceClassification(_a ) model.to(_a ) model.eval() _lowerCAmelCase = model(_a , attention_mask=_a , labels=_a ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowercase__ ( self : List[Any] ) -> Optional[Any]: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase = 3 _lowerCAmelCase = 'multi_label_classification' _lowerCAmelCase = input_dict['input_ids'] _lowerCAmelCase = input_ids.ne(1 ).to(_a ) _lowerCAmelCase = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) _lowerCAmelCase = BioGptForSequenceClassification(_a ) model.to(_a ) model.eval() _lowerCAmelCase = model(_a , attention_mask=_a , labels=_a ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class UpperCAmelCase ( unittest.TestCase ): @slow def lowercase__ ( self : int ) -> Dict: _lowerCAmelCase = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" ) _lowerCAmelCase = torch.tensor([[2, 48_05, 9, 6_56, 21]] ) _lowerCAmelCase = model(_a )[0] _lowerCAmelCase = 4_23_84 _lowerCAmelCase = torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape , _a ) _lowerCAmelCase = torch.tensor( [[[-9.52_36, -9.89_18, 10.45_57], [-11.04_69, -9.64_23, 8.10_22], [-8.86_64, -7.88_26, 5.53_25]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _a , atol=1E-4 ) ) @slow def lowercase__ ( self : Dict ) -> Dict: _lowerCAmelCase = BioGptTokenizer.from_pretrained("""microsoft/biogpt""" ) _lowerCAmelCase = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" ) model.to(_a ) torch.manual_seed(0 ) _lowerCAmelCase = tokenizer("""COVID-19 is""" , return_tensors="""pt""" ).to(_a ) _lowerCAmelCase = model.generate( **_a , min_length=1_00 , max_length=10_24 , num_beams=5 , early_stopping=_a , ) _lowerCAmelCase = tokenizer.decode(output_ids[0] , skip_special_tokens=_a ) _lowerCAmelCase = ( 'COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the' ' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and' ' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),' ' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and' ' more than 800,000 deaths.' ) self.assertEqual(_a , _a )
70
'''simple docstring''' import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging _UpperCamelCase = logging.get_logger(__name__) logging.set_verbosity_info() def a_ ( _lowerCAmelCase ,_lowerCAmelCase ) -> Optional[int]: if "xprophetnet" in prophetnet_checkpoint_path: __lowerCamelCase : Union[str, Any] = XLMProphetNetForConditionalGenerationOld.from_pretrained(_lowerCAmelCase ) __lowerCamelCase ,__lowerCamelCase : List[str] = XLMProphetNetForConditionalGeneration.from_pretrained( _lowerCAmelCase ,output_loading_info=_lowerCAmelCase ) else: __lowerCamelCase : Optional[int] = ProphetNetForConditionalGenerationOld.from_pretrained(_lowerCAmelCase ) __lowerCamelCase ,__lowerCamelCase : List[str] = ProphetNetForConditionalGeneration.from_pretrained( _lowerCAmelCase ,output_loading_info=_lowerCAmelCase ) __lowerCamelCase : Union[str, Any] = ['key_proj', 'value_proj', 'query_proj'] __lowerCamelCase : Optional[Any] = { 'self_attn': 'ngram_self_attn', 'cross_attn': 'encoder_attn', 'cross_attn_layer_norm': 'encoder_attn_layer_norm', 'feed_forward_layer_norm': 'final_layer_norm', 'feed_forward': '', 'intermediate': 'fc1', 'output': 'fc2', 'key_proj': 'k_proj', 'query_proj': 'q_proj', 'value_proj': 'v_proj', 'word_embeddings': 'embed_tokens', 'embeddings_layer_norm': 'emb_layer_norm', 'relative_pos_embeddings': 'relative_linear', 'ngram_embeddings': 'ngram_input_embed', 'position_embeddings': 'embed_positions', } for key in loading_info["missing_keys"]: __lowerCamelCase : Optional[int] = key.split('.' ) if attributes[0] == "lm_head": __lowerCamelCase : Dict = prophet __lowerCamelCase : List[Any] = prophet_old else: __lowerCamelCase : Any = prophet.prophetnet __lowerCamelCase : Any = prophet_old.model __lowerCamelCase : Optional[Any] = False for attribute in attributes: if attribute in mapping: __lowerCamelCase : Any = mapping[attribute] if not hasattr(_lowerCAmelCase ,_lowerCAmelCase ) and len(_lowerCAmelCase ) > 0: __lowerCamelCase : int = attribute elif hasattr(_lowerCAmelCase ,_lowerCAmelCase ): __lowerCamelCase : Optional[int] = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" __lowerCamelCase : List[Any] = old_model.weight logger.info(F'{attribute} is initialized.' ) __lowerCamelCase : List[Any] = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" __lowerCamelCase : List[Any] = old_model.bias logger.info(F'{attribute} is initialized' ) __lowerCamelCase : Dict = True break elif attribute in special_keys and hasattr(_lowerCAmelCase ,'in_proj_weight' ): __lowerCamelCase : Optional[Any] = old_model.in_proj_weight.shape[0] // 3 __lowerCamelCase : Optional[Any] = getattr(_lowerCAmelCase ,_lowerCAmelCase ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": __lowerCamelCase : Optional[int] = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) __lowerCamelCase : Dict = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": __lowerCamelCase : List[str] = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) __lowerCamelCase : Dict = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": __lowerCamelCase : str = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) __lowerCamelCase : Optional[int] = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) __lowerCamelCase : Optional[int] = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." __lowerCamelCase : Optional[int] = nn.Parameter(old_model.embed_positions.weight[:512, :] ) __lowerCamelCase : Dict = True break if attribute.isdigit(): __lowerCamelCase : List[str] = model[int(_lowerCAmelCase )] __lowerCamelCase : Union[str, Any] = old_model[int(_lowerCAmelCase )] else: __lowerCamelCase : Union[str, Any] = getattr(_lowerCAmelCase ,_lowerCAmelCase ) if old_attribute == "": __lowerCamelCase : str = old_model else: if not hasattr(_lowerCAmelCase ,_lowerCAmelCase ): raise ValueError(F'{old_model} does not have {old_attribute}' ) __lowerCamelCase : str = getattr(_lowerCAmelCase ,_lowerCAmelCase ) if not is_key_init: raise ValueError(F'{key} was not correctly initialized!' ) print(F'Saving model to {pytorch_dump_folder_path}' ) prophet.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--prophetnet_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _UpperCamelCase = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
208
0
"""simple docstring""" import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = XCLIPTextConfig() # derive patch size from model name UpperCAmelCase_ = model_name.find("patch" ) UpperCAmelCase_ = int(model_name[start_idx + len("patch" ) : start_idx + len("patch" ) + 2] ) UpperCAmelCase_ = XCLIPVisionConfig(patch_size=lowerCAmelCase__ , num_frames=lowerCAmelCase__ ) if "large" in model_name: UpperCAmelCase_ = 768 UpperCAmelCase_ = 3072 UpperCAmelCase_ = 12 UpperCAmelCase_ = 1024 UpperCAmelCase_ = 4096 UpperCAmelCase_ = 16 UpperCAmelCase_ = 24 UpperCAmelCase_ = 768 UpperCAmelCase_ = 3072 if model_name == "xclip-large-patch14-16-frames": UpperCAmelCase_ = 336 UpperCAmelCase_ = XCLIPConfig.from_text_vision_configs(lowerCAmelCase__ , lowerCAmelCase__ ) if "large" in model_name: UpperCAmelCase_ = 768 return config def a__ ( lowerCAmelCase__ ): # text encoder if name == "token_embedding.weight": UpperCAmelCase_ = name.replace("token_embedding.weight" , "text_model.embeddings.token_embedding.weight" ) if name == "positional_embedding": UpperCAmelCase_ = name.replace("positional_embedding" , "text_model.embeddings.position_embedding.weight" ) if "ln_1" in name: UpperCAmelCase_ = name.replace("ln_1" , "layer_norm1" ) if "ln_2" in name: UpperCAmelCase_ = name.replace("ln_2" , "layer_norm2" ) if "c_fc" in name: UpperCAmelCase_ = name.replace("c_fc" , "fc1" ) if "c_proj" in name: UpperCAmelCase_ = name.replace("c_proj" , "fc2" ) if name.startswith("transformer.resblocks" ): UpperCAmelCase_ = name.replace("transformer.resblocks" , "text_model.encoder.layers" ) if "attn.out_proj" in name and "message" not in name: UpperCAmelCase_ = name.replace("attn.out_proj" , "self_attn.out_proj" ) if "ln_final" in name: UpperCAmelCase_ = name.replace("ln_final" , "text_model.final_layer_norm" ) # visual encoder if name == "visual.class_embedding": UpperCAmelCase_ = name.replace("visual.class_embedding" , "vision_model.embeddings.class_embedding" ) if name == "visual.positional_embedding": UpperCAmelCase_ = name.replace("visual.positional_embedding" , "vision_model.embeddings.position_embedding.weight" ) if name.startswith("visual.transformer.resblocks" ): UpperCAmelCase_ = name.replace("visual.transformer.resblocks" , "vision_model.encoder.layers" ) if "visual.conv1" in name: UpperCAmelCase_ = name.replace("visual.conv1" , "vision_model.embeddings.patch_embedding" ) if "visual.ln_pre" in name: UpperCAmelCase_ = name.replace("visual.ln_pre" , "vision_model.pre_layernorm" ) if "visual.ln_post" in name: UpperCAmelCase_ = name.replace("visual.ln_post" , "vision_model.post_layernorm" ) if "visual.proj" in name: UpperCAmelCase_ = name.replace("visual.proj" , "visual_projection.weight" ) if "text_projection" in name: UpperCAmelCase_ = name.replace("text_projection" , "text_projection.weight" ) # things on top if "prompts_visual_proj" in name: UpperCAmelCase_ = name.replace("prompts_visual_proj" , "prompts_visual_projection" ) if "prompts_visual_ln" in name: UpperCAmelCase_ = name.replace("prompts_visual_ln" , "prompts_visual_layernorm" ) # mit if name == "mit.positional_embedding": UpperCAmelCase_ = name.replace("positional" , "position" ) if name.startswith("mit.resblocks" ): UpperCAmelCase_ = name.replace("mit.resblocks" , "mit.encoder.layers" ) # prompts generator if name.startswith("prompts_generator.norm" ): UpperCAmelCase_ = name.replace("prompts_generator.norm" , "prompts_generator.layernorm" ) return name def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): for key in orig_state_dict.copy().keys(): UpperCAmelCase_ = orig_state_dict.pop(lowerCAmelCase__ ) if "attn.in_proj" in key: UpperCAmelCase_ = key.split("." ) if key.startswith("visual" ): UpperCAmelCase_ = key_split[3] UpperCAmelCase_ = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: UpperCAmelCase_ = val[ :dim, : ] UpperCAmelCase_ = val[ dim : dim * 2, : ] UpperCAmelCase_ = val[ -dim:, : ] else: UpperCAmelCase_ = val[ :dim ] UpperCAmelCase_ = val[ dim : dim * 2 ] UpperCAmelCase_ = val[ -dim: ] else: if "weight" in key: UpperCAmelCase_ = val[ :dim, : ] UpperCAmelCase_ = val[ dim : dim * 2, : ] UpperCAmelCase_ = val[ -dim:, : ] else: UpperCAmelCase_ = val[:dim] UpperCAmelCase_ = val[ dim : dim * 2 ] UpperCAmelCase_ = val[-dim:] elif key.startswith("mit" ): UpperCAmelCase_ = key_split[2] UpperCAmelCase_ = config.vision_config.mit_hidden_size if "weight" in key: UpperCAmelCase_ = val[:dim, :] UpperCAmelCase_ = val[dim : dim * 2, :] UpperCAmelCase_ = val[-dim:, :] else: UpperCAmelCase_ = val[:dim] UpperCAmelCase_ = val[dim : dim * 2] UpperCAmelCase_ = val[-dim:] else: UpperCAmelCase_ = key_split[2] UpperCAmelCase_ = config.text_config.hidden_size if "weight" in key: UpperCAmelCase_ = val[:dim, :] UpperCAmelCase_ = val[ dim : dim * 2, : ] UpperCAmelCase_ = val[-dim:, :] else: UpperCAmelCase_ = val[:dim] UpperCAmelCase_ = val[ dim : dim * 2 ] UpperCAmelCase_ = val[-dim:] else: UpperCAmelCase_ = rename_key(lowerCAmelCase__ ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: UpperCAmelCase_ = val.T UpperCAmelCase_ = val return orig_state_dict def a__ ( lowerCAmelCase__ ): if num_frames == 8: UpperCAmelCase_ = "eating_spaghetti_8_frames.npy" elif num_frames == 16: UpperCAmelCase_ = "eating_spaghetti.npy" elif num_frames == 32: UpperCAmelCase_ = "eating_spaghetti_32_frames.npy" UpperCAmelCase_ = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video" , filename=lowerCAmelCase__ , repo_type="dataset" , ) UpperCAmelCase_ = np.load(lowerCAmelCase__ ) return list(lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=False ): UpperCAmelCase_ = { # fully supervised kinetics-400 checkpoints "xclip-base-patch32": "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth", "xclip-base-patch32-16-frames": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth" ), "xclip-base-patch16": "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth", "xclip-base-patch16-16-frames": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth" ), "xclip-large-patch14": "https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb", "xclip-large-patch14-16-frames": "https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f", # fully supervised kinetics-600 checkpoints "xclip-base-patch16-kinetics-600": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth" ), "xclip-base-patch16-kinetics-600-16-frames": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth" ), "xclip-large-patch14-kinetics-600": "https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be", # few shot "xclip-base-patch16-hmdb-2-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth" ), "xclip-base-patch16-hmdb-4-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth" ), "xclip-base-patch16-hmdb-8-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth" ), "xclip-base-patch16-hmdb-16-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth" ), "xclip-base-patch16-ucf-2-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth" ), "xclip-base-patch16-ucf-4-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth" ), "xclip-base-patch16-ucf-8-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth" ), "xclip-base-patch16-ucf-16-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth" ), # zero shot "xclip-base-patch16-zero-shot": "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth", } UpperCAmelCase_ = model_to_url[model_name] UpperCAmelCase_ = 8 if "16-frames" in model_name: UpperCAmelCase_ = 16 elif "shot" in model_name: UpperCAmelCase_ = 32 UpperCAmelCase_ = get_xclip_config(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_ = XCLIPModel(lowerCAmelCase__ ) model.eval() if "drive" in checkpoint_url: UpperCAmelCase_ = "pytorch_model.bin" gdown.cached_download(lowerCAmelCase__ , lowerCAmelCase__ , quiet=lowerCAmelCase__ ) UpperCAmelCase_ = torch.load(lowerCAmelCase__ , map_location="cpu" )["model"] else: UpperCAmelCase_ = torch.hub.load_state_dict_from_url(lowerCAmelCase__ )["model"] UpperCAmelCase_ = convert_state_dict(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_ = XCLIPModel(lowerCAmelCase__ ) UpperCAmelCase_ , UpperCAmelCase_ = model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() UpperCAmelCase_ = 336 if model_name == "xclip-large-patch14-16-frames" else 224 UpperCAmelCase_ = VideoMAEImageProcessor(size=lowerCAmelCase__ ) UpperCAmelCase_ = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32" ) UpperCAmelCase_ = CLIPTokenizerFast.from_pretrained("openai/clip-vit-base-patch32" ) UpperCAmelCase_ = XCLIPProcessor(image_processor=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ ) UpperCAmelCase_ = prepare_video(lowerCAmelCase__ ) UpperCAmelCase_ = processor( text=["playing sports", "eating spaghetti", "go shopping"] , videos=lowerCAmelCase__ , return_tensors="pt" , padding=lowerCAmelCase__ ) print("Shape of pixel values:" , inputs.pixel_values.shape ) with torch.no_grad(): UpperCAmelCase_ = model(**lowerCAmelCase__ ) # Verify outputs UpperCAmelCase_ = outputs.logits_per_video UpperCAmelCase_ = logits_per_video.softmax(dim=1 ) print("Probs:" , lowerCAmelCase__ ) # kinetics-400 if model_name == "xclip-base-patch32": UpperCAmelCase_ = torch.tensor([[0.0019, 0.9951, 0.0030]] ) elif model_name == "xclip-base-patch32-16-frames": UpperCAmelCase_ = torch.tensor([[7.0999e-04, 9.9883e-01, 4.5580e-04]] ) elif model_name == "xclip-base-patch16": UpperCAmelCase_ = torch.tensor([[0.0083, 0.9681, 0.0236]] ) elif model_name == "xclip-base-patch16-16-frames": UpperCAmelCase_ = torch.tensor([[7.6937e-04, 9.9728e-01, 1.9473e-03]] ) elif model_name == "xclip-large-patch14": UpperCAmelCase_ = torch.tensor([[0.0062, 0.9864, 0.0075]] ) elif model_name == "xclip-large-patch14-16-frames": UpperCAmelCase_ = torch.tensor([[3.3877e-04, 9.9937e-01, 2.8888e-04]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": UpperCAmelCase_ = torch.tensor([[0.0555, 0.8914, 0.0531]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": UpperCAmelCase_ = torch.tensor([[3.8554e-04, 9.9929e-01, 3.2754e-04]] ) elif model_name == "xclip-large-patch14-kinetics-600": UpperCAmelCase_ = torch.tensor([[0.0036, 0.9920, 0.0045]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": UpperCAmelCase_ = torch.tensor([[7.1890e-06, 9.9994e-01, 5.6559e-05]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": UpperCAmelCase_ = torch.tensor([[1.0320e-05, 9.9993e-01, 6.2435e-05]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": UpperCAmelCase_ = torch.tensor([[4.1377e-06, 9.9990e-01, 9.8386e-05]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": UpperCAmelCase_ = torch.tensor([[4.1347e-05, 9.9962e-01, 3.3411e-04]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": UpperCAmelCase_ = torch.tensor([[8.5857e-05, 9.9928e-01, 6.3291e-04]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": UpperCAmelCase_ = torch.tensor([[8.5857e-05, 9.9928e-01, 6.3291e-04]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": UpperCAmelCase_ = torch.tensor([[0.0027, 0.9904, 0.0070]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": UpperCAmelCase_ = torch.tensor([[9.8219e-04, 9.9593e-01, 3.0863e-03]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": UpperCAmelCase_ = torch.tensor([[3.5082e-04, 9.9785e-01, 1.7966e-03]] ) else: raise ValueError(f"""Model name {model_name} not supported""" ) assert torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCAmelCase__ ) if push_to_hub: print("Pushing model, processor and slow tokenizer files to the hub..." ) model.push_to_hub(lowerCAmelCase__ , organization="nielsr" ) processor.push_to_hub(lowerCAmelCase__ , organization="nielsr" ) slow_tokenizer.push_to_hub(lowerCAmelCase__ , organization="nielsr" ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""xclip-base-patch32""", type=str, help="""Name of the model.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowerCamelCase = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
366
"""simple docstring""" import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = checkpoint UpperCAmelCase_ = {} UpperCAmelCase_ = vae_state_dict["encoder.conv_in.weight"] UpperCAmelCase_ = vae_state_dict["encoder.conv_in.bias"] UpperCAmelCase_ = vae_state_dict["encoder.conv_out.weight"] UpperCAmelCase_ = vae_state_dict["encoder.conv_out.bias"] UpperCAmelCase_ = vae_state_dict["encoder.norm_out.weight"] UpperCAmelCase_ = vae_state_dict["encoder.norm_out.bias"] UpperCAmelCase_ = vae_state_dict["decoder.conv_in.weight"] UpperCAmelCase_ = vae_state_dict["decoder.conv_in.bias"] UpperCAmelCase_ = vae_state_dict["decoder.conv_out.weight"] UpperCAmelCase_ = vae_state_dict["decoder.conv_out.bias"] UpperCAmelCase_ = vae_state_dict["decoder.norm_out.weight"] UpperCAmelCase_ = vae_state_dict["decoder.norm_out.bias"] UpperCAmelCase_ = vae_state_dict["quant_conv.weight"] UpperCAmelCase_ = vae_state_dict["quant_conv.bias"] UpperCAmelCase_ = vae_state_dict["post_quant_conv.weight"] UpperCAmelCase_ = vae_state_dict["post_quant_conv.bias"] # Retrieves the keys for the encoder down blocks only UpperCAmelCase_ = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "encoder.down" in layer} ) UpperCAmelCase_ = { layer_id: [key for key in vae_state_dict if f"""down.{layer_id}""" in key] for layer_id in range(lowerCAmelCase__ ) } # Retrieves the keys for the decoder up blocks only UpperCAmelCase_ = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "decoder.up" in layer} ) UpperCAmelCase_ = { layer_id: [key for key in vae_state_dict if f"""up.{layer_id}""" in key] for layer_id in range(lowerCAmelCase__ ) } for i in range(lowerCAmelCase__ ): UpperCAmelCase_ = [key for key in down_blocks[i] if f"""down.{i}""" in key and f"""down.{i}.downsample""" not in key] if f"""encoder.down.{i}.downsample.conv.weight""" in vae_state_dict: UpperCAmelCase_ = vae_state_dict.pop( f"""encoder.down.{i}.downsample.conv.weight""" ) UpperCAmelCase_ = vae_state_dict.pop( f"""encoder.down.{i}.downsample.conv.bias""" ) UpperCAmelCase_ = renew_vae_resnet_paths(lowerCAmelCase__ ) UpperCAmelCase_ = {"old": f"""down.{i}.block""", "new": f"""down_blocks.{i}.resnets"""} assign_to_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , additional_replacements=[meta_path] , config=lowerCAmelCase__ ) UpperCAmelCase_ = [key for key in vae_state_dict if "encoder.mid.block" in key] UpperCAmelCase_ = 2 for i in range(1 , num_mid_res_blocks + 1 ): UpperCAmelCase_ = [key for key in mid_resnets if f"""encoder.mid.block_{i}""" in key] UpperCAmelCase_ = renew_vae_resnet_paths(lowerCAmelCase__ ) UpperCAmelCase_ = {"old": f"""mid.block_{i}""", "new": f"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , additional_replacements=[meta_path] , config=lowerCAmelCase__ ) UpperCAmelCase_ = [key for key in vae_state_dict if "encoder.mid.attn" in key] UpperCAmelCase_ = renew_vae_attention_paths(lowerCAmelCase__ ) UpperCAmelCase_ = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , additional_replacements=[meta_path] , config=lowerCAmelCase__ ) conv_attn_to_linear(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ ): UpperCAmelCase_ = num_up_blocks - 1 - i UpperCAmelCase_ = [ key for key in up_blocks[block_id] if f"""up.{block_id}""" in key and f"""up.{block_id}.upsample""" not in key ] if f"""decoder.up.{block_id}.upsample.conv.weight""" in vae_state_dict: UpperCAmelCase_ = vae_state_dict[ f"""decoder.up.{block_id}.upsample.conv.weight""" ] UpperCAmelCase_ = vae_state_dict[ f"""decoder.up.{block_id}.upsample.conv.bias""" ] UpperCAmelCase_ = renew_vae_resnet_paths(lowerCAmelCase__ ) UpperCAmelCase_ = {"old": f"""up.{block_id}.block""", "new": f"""up_blocks.{i}.resnets"""} assign_to_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , additional_replacements=[meta_path] , config=lowerCAmelCase__ ) UpperCAmelCase_ = [key for key in vae_state_dict if "decoder.mid.block" in key] UpperCAmelCase_ = 2 for i in range(1 , num_mid_res_blocks + 1 ): UpperCAmelCase_ = [key for key in mid_resnets if f"""decoder.mid.block_{i}""" in key] UpperCAmelCase_ = renew_vae_resnet_paths(lowerCAmelCase__ ) UpperCAmelCase_ = {"old": f"""mid.block_{i}""", "new": f"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , additional_replacements=[meta_path] , config=lowerCAmelCase__ ) UpperCAmelCase_ = [key for key in vae_state_dict if "decoder.mid.attn" in key] UpperCAmelCase_ = renew_vae_attention_paths(lowerCAmelCase__ ) UpperCAmelCase_ = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , additional_replacements=[meta_path] , config=lowerCAmelCase__ ) conv_attn_to_linear(lowerCAmelCase__ ) return new_checkpoint def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , ): # Only support V1 UpperCAmelCase_ = requests.get( " https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml" ) UpperCAmelCase_ = io.BytesIO(r.content ) UpperCAmelCase_ = OmegaConf.load(lowerCAmelCase__ ) UpperCAmelCase_ = 512 UpperCAmelCase_ = "cuda" if torch.cuda.is_available() else "cpu" if checkpoint_path.endswith("safetensors" ): from safetensors import safe_open UpperCAmelCase_ = {} with safe_open(lowerCAmelCase__ , framework="pt" , device="cpu" ) as f: for key in f.keys(): UpperCAmelCase_ = f.get_tensor(lowerCAmelCase__ ) else: UpperCAmelCase_ = torch.load(lowerCAmelCase__ , map_location=lowerCAmelCase__ )["state_dict"] # Convert the VAE model. UpperCAmelCase_ = create_vae_diffusers_config(lowerCAmelCase__ , image_size=lowerCAmelCase__ ) UpperCAmelCase_ = custom_convert_ldm_vae_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_ = AutoencoderKL(**lowerCAmelCase__ ) vae.load_state_dict(lowerCAmelCase__ ) vae.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() parser.add_argument("""--vae_pt_path""", default=None, type=str, required=True, help="""Path to the VAE.pt to convert.""") parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the VAE.pt to convert.""") lowerCamelCase = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
241
0
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def _A ( SCREAMING_SNAKE_CASE : int ): """simple docstring""" a__ : int =int(number**0.5 ) return number == sq * sq def _A ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ): """simple docstring""" a__ : int =x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den a__ : int =x_den * y_den * z_den a__ : int =gcd(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) top //= hcf bottom //= hcf return top, bottom def _A ( SCREAMING_SNAKE_CASE : int = 35 ): """simple docstring""" a__ : set =set() a__ : int a__ : Fraction =Fraction(0 ) a__ : tuple[int, int] for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 a__ : Dict =x_num * y_den + x_den * y_num a__ : Optional[Any] =x_den * y_den a__ : int =gcd(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: a__ : List[Any] =add_three( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) unique_s.add(SCREAMING_SNAKE_CASE ) # n=2 a__ : List[str] =( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) a__ : int =x_den * x_den * y_den * y_den if is_sq(SCREAMING_SNAKE_CASE ) and is_sq(SCREAMING_SNAKE_CASE ): a__ : Optional[int] =int(sqrt(SCREAMING_SNAKE_CASE ) ) a__ : List[str] =int(sqrt(SCREAMING_SNAKE_CASE ) ) a__ : int =gcd(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: a__ : List[Any] =add_three( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) unique_s.add(SCREAMING_SNAKE_CASE ) # n=-1 a__ : List[str] =x_num * y_num a__ : Dict =x_den * y_num + x_num * y_den a__ : Tuple =gcd(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: a__ : Dict =add_three( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) unique_s.add(SCREAMING_SNAKE_CASE ) # n=2 a__ : List[str] =x_num * x_num * y_num * y_num a__ : Optional[int] =( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(SCREAMING_SNAKE_CASE ) and is_sq(SCREAMING_SNAKE_CASE ): a__ : List[Any] =int(sqrt(SCREAMING_SNAKE_CASE ) ) a__ : Optional[Any] =int(sqrt(SCREAMING_SNAKE_CASE ) ) a__ : List[Any] =gcd(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: a__ : Tuple =add_three( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) unique_s.add(SCREAMING_SNAKE_CASE ) for num, den in unique_s: total += Fraction(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return total.denominator + total.numerator if __name__ == "__main__": print(F"""{solution() = }""")
95
def _A ( SCREAMING_SNAKE_CASE : list ): """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise ValueError("Input series is not valid, valid series - [2, 4, 6]" ) if len(SCREAMING_SNAKE_CASE ) == 0: raise ValueError("Input list must be a non empty list" ) if len(SCREAMING_SNAKE_CASE ) == 1: return True a__ : Union[str, Any] =series[1] - series[0] for index in range(len(SCREAMING_SNAKE_CASE ) - 1 ): if series[index + 1] - series[index] != common_diff: return False return True def _A ( SCREAMING_SNAKE_CASE : list ): """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise ValueError("Input series is not valid, valid series - [2, 4, 6]" ) if len(SCREAMING_SNAKE_CASE ) == 0: raise ValueError("Input list must be a non empty list" ) a__ : Any =0 for val in series: answer += val return answer / len(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
95
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE = {"configuration_vit_msn": ["VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTMSNConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ "VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTMSNModel", "ViTMSNForImageClassification", "ViTMSNPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
3
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = "Salesforce/blip-image-captioning-base" snake_case_ = ( "This is a tool that generates a description of an image. It takes an input named `image` which should be the " "image to caption, and returns a text that contains the description in English." ) snake_case_ = "image_captioner" snake_case_ = AutoModelForVisionaSeq snake_case_ = ["image"] snake_case_ = ["text"] def __init__( self : Tuple , *__snake_case : Optional[int] , **__snake_case : Any )-> Optional[Any]: requires_backends(self , ["""vision"""] ) super().__init__(*__snake_case , **__snake_case ) def lowerCAmelCase ( self : str , __snake_case : "Image" )-> int: return self.pre_processor(images=__snake_case , return_tensors="""pt""" ) def lowerCAmelCase ( self : Any , __snake_case : List[str] )-> Union[str, Any]: return self.model.generate(**__snake_case ) def lowerCAmelCase ( self : Union[str, Any] , __snake_case : Any )-> Dict: return self.pre_processor.batch_decode(__snake_case , skip_special_tokens=__snake_case )[0].strip()
3
1
"""simple docstring""" from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging UpperCAmelCase__ : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase__ : Union[str, Any] = { 'EleutherAI/gpt-j-6B': 'https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json', # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class lowerCAmelCase_ (a__ ): """simple docstring""" __UpperCamelCase : str = '''gptj''' __UpperCamelCase : Optional[int] = { '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__(self , SCREAMING_SNAKE_CASE__=5_04_00 , SCREAMING_SNAKE_CASE__=20_48 , SCREAMING_SNAKE_CASE__=40_96 , SCREAMING_SNAKE_CASE__=28 , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__=64 , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__="gelu_new" , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=1E-5 , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=5_02_56 , SCREAMING_SNAKE_CASE__=5_02_56 , SCREAMING_SNAKE_CASE__=False , **SCREAMING_SNAKE_CASE__ , ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = vocab_size SCREAMING_SNAKE_CASE__ : Optional[int] = n_positions SCREAMING_SNAKE_CASE__ : Optional[Any] = n_embd SCREAMING_SNAKE_CASE__ : Union[str, Any] = n_layer SCREAMING_SNAKE_CASE__ : Optional[Any] = n_head SCREAMING_SNAKE_CASE__ : Any = n_inner SCREAMING_SNAKE_CASE__ : str = rotary_dim SCREAMING_SNAKE_CASE__ : Optional[int] = activation_function SCREAMING_SNAKE_CASE__ : Tuple = resid_pdrop SCREAMING_SNAKE_CASE__ : Optional[Any] = embd_pdrop SCREAMING_SNAKE_CASE__ : Optional[Any] = attn_pdrop SCREAMING_SNAKE_CASE__ : Optional[Any] = layer_norm_epsilon SCREAMING_SNAKE_CASE__ : Any = initializer_range SCREAMING_SNAKE_CASE__ : Tuple = use_cache SCREAMING_SNAKE_CASE__ : Dict = bos_token_id SCREAMING_SNAKE_CASE__ : str = eos_token_id super().__init__( bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , tie_word_embeddings=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) class lowerCAmelCase_ (a__ ): """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = "default" , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = False , ) -> str: """simple docstring""" super().__init__(SCREAMING_SNAKE_CASE__ , task=SCREAMING_SNAKE_CASE__ , patching_specs=SCREAMING_SNAKE_CASE__ , use_past=SCREAMING_SNAKE_CASE__ ) if not getattr(self._config , """pad_token_id""" , SCREAMING_SNAKE_CASE__ ): # TODO: how to do that better? SCREAMING_SNAKE_CASE__ : List[str] = 0 @property def __magic_name__ (self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(SCREAMING_SNAKE_CASE__ , direction="""inputs""" ) SCREAMING_SNAKE_CASE__ : Optional[int] = {0: """batch""", 1: """past_sequence + sequence"""} else: SCREAMING_SNAKE_CASE__ : Union[str, Any] = {0: """batch""", 1: """sequence"""} return common_inputs @property def __magic_name__ (self ) -> int: """simple docstring""" return self._config.n_layer @property def __magic_name__ (self ) -> int: """simple docstring""" return self._config.n_head def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = -1 , SCREAMING_SNAKE_CASE__ = -1 , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = None , ) -> Mapping[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = super(SCREAMING_SNAKE_CASE__ , self ).generate_dummy_inputs( SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ , seq_length=SCREAMING_SNAKE_CASE__ , is_pair=SCREAMING_SNAKE_CASE__ , framework=SCREAMING_SNAKE_CASE__ ) # We need to order the input in the way they appears in the forward() SCREAMING_SNAKE_CASE__ : Optional[Any] = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values SCREAMING_SNAKE_CASE__ : Optional[Any] = seqlen + 2 SCREAMING_SNAKE_CASE__ : int = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) SCREAMING_SNAKE_CASE__ : str = [ (torch.zeros(SCREAMING_SNAKE_CASE__ ), torch.zeros(SCREAMING_SNAKE_CASE__ )) for _ in range(self.num_layers ) ] SCREAMING_SNAKE_CASE__ : List[Any] = common_inputs["""attention_mask"""] if self.use_past: SCREAMING_SNAKE_CASE__ : Union[str, Any] = ordered_inputs["""attention_mask"""].dtype SCREAMING_SNAKE_CASE__ : List[Any] = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , dtype=SCREAMING_SNAKE_CASE__ )] , dim=1 ) return ordered_inputs @property def __magic_name__ (self ) -> int: """simple docstring""" return 13
25
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase_ = {"""configuration_mbart""": ["""MBART_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MBartConfig""", """MBartOnnxConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["""MBartTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["""MBartTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """MBART_PRETRAINED_MODEL_ARCHIVE_LIST""", """MBartForCausalLM""", """MBartForConditionalGeneration""", """MBartForQuestionAnswering""", """MBartForSequenceClassification""", """MBartModel""", """MBartPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """TFMBartForConditionalGeneration""", """TFMBartModel""", """TFMBartPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """FlaxMBartForConditionalGeneration""", """FlaxMBartForQuestionAnswering""", """FlaxMBartForSequenceClassification""", """FlaxMBartModel""", """FlaxMBartPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
58
0
import enum import shutil import sys UpperCamelCase__ , UpperCamelCase__ = shutil.get_terminal_size() UpperCamelCase__ = {"""UP""": """A""", """DOWN""": """B""", """RIGHT""": """C""", """LEFT""": """D"""} class a__ ( enum.Enum ): _a : Any = 0 _a : Dict = 1 def _a ( SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Dict="" ): sys.stdout.write(str(SCREAMING_SNAKE_CASE_ ) + end ) sys.stdout.flush() def _a ( SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : str="" ): forceWrite(F"""\u001b[{color}m{content}\u001b[0m""" , SCREAMING_SNAKE_CASE_ ) def _a ( ): forceWrite("\r" ) def _a ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : str ): forceWrite(F"""\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}""" ) def _a ( ): forceWrite(" " * TERMINAL_WIDTH ) reset_cursor() def _a ( ): reset_cursor() forceWrite("-" * TERMINAL_WIDTH )
102
import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex UpperCamelCase__ = logging.getLogger(__name__) class a__ : def __init__( self ): """simple docstring""" __lowerCAmelCase = False def __SCREAMING_SNAKE_CASE( self , _A , _A , _A , _A ): """simple docstring""" if not self.initialized: __lowerCAmelCase = RagRetriever( _A , question_encoder_tokenizer=_A , generator_tokenizer=_A , index=_A , init_retrieval=_A , ) __lowerCAmelCase = True def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" self.retriever.index.init_index() def __SCREAMING_SNAKE_CASE( self , _A , _A ): """simple docstring""" __lowerCAmelCase , __lowerCAmelCase = self.retriever._main_retrieve(_A , _A ) return doc_ids, retrieved_doc_embeds class a__ ( snake_case__ ): def __init__( self , _A , _A , _A , _A , _A=None ): """simple docstring""" if index is not None and index.is_initialized() and len(_A ) > 0: raise ValueError( "When using Ray for distributed fine-tuning, " "you'll need to provide the paths instead, " "as the dataset and the index are loaded " "separately. More info in examples/rag/use_own_knowledge_dataset.py " ) super().__init__( _A , question_encoder_tokenizer=_A , generator_tokenizer=_A , index=_A , init_retrieval=_A , ) __lowerCAmelCase = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(_A , _A , _A , _A ) for worker in self.retrieval_workers ] ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" logger.info("initializing retrieval" ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def __SCREAMING_SNAKE_CASE( self , _A , _A ): """simple docstring""" if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. __lowerCAmelCase = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] __lowerCAmelCase , __lowerCAmelCase = ray.get(random_worker.retrieve.remote(_A , _A ) ) else: __lowerCAmelCase , __lowerCAmelCase = self._main_retrieve(_A , _A ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(_A ) @classmethod def __SCREAMING_SNAKE_CASE( cls , _A , _A=None , **_A ): """simple docstring""" return super(_A , cls ).get_tokenizers(_A , _A , **_A ) @classmethod def __SCREAMING_SNAKE_CASE( cls , _A , _A , _A=None , **_A ): """simple docstring""" __lowerCAmelCase = kwargs.pop("config" , _A ) or RagConfig.from_pretrained(_A , **_A ) __lowerCAmelCase = RagTokenizer.from_pretrained(_A , config=_A ) __lowerCAmelCase = rag_tokenizer.question_encoder __lowerCAmelCase = rag_tokenizer.generator if indexed_dataset is not None: __lowerCAmelCase = "custom" __lowerCAmelCase = CustomHFIndex(config.retrieval_vector_size , _A ) else: __lowerCAmelCase = cls._build_index(_A ) return cls( _A , question_encoder_tokenizer=_A , generator_tokenizer=_A , retrieval_workers=_A , index=_A , )
102
1
"""simple docstring""" def lowercase_ ( _snake_case ,_snake_case ,_snake_case ): def update_area_of_max_square(_snake_case ,_snake_case ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 SCREAMING_SNAKE_CASE__ : Optional[int] = update_area_of_max_square(_snake_case ,col + 1 ) SCREAMING_SNAKE_CASE__ : List[Any] = update_area_of_max_square(row + 1 ,col + 1 ) SCREAMING_SNAKE_CASE__ : int = update_area_of_max_square(row + 1 ,_snake_case ) if mat[row][col]: SCREAMING_SNAKE_CASE__ : Dict = 1 + min([right, diagonal, down] ) SCREAMING_SNAKE_CASE__ : List[Any] = max(largest_square_area[0] ,_snake_case ) return sub_problem_sol else: return 0 SCREAMING_SNAKE_CASE__ : int = [0] update_area_of_max_square(0 ,0 ) return largest_square_area[0] def lowercase_ ( _snake_case ,_snake_case ,_snake_case ): def update_area_of_max_square_using_dp_array( _snake_case ,_snake_case ,_snake_case ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] SCREAMING_SNAKE_CASE__ : List[str] = update_area_of_max_square_using_dp_array(_snake_case ,col + 1 ,_snake_case ) SCREAMING_SNAKE_CASE__ : Tuple = update_area_of_max_square_using_dp_array(row + 1 ,col + 1 ,_snake_case ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = update_area_of_max_square_using_dp_array(row + 1 ,_snake_case ,_snake_case ) if mat[row][col]: SCREAMING_SNAKE_CASE__ : Union[str, Any] = 1 + min([right, diagonal, down] ) SCREAMING_SNAKE_CASE__ : Any = max(largest_square_area[0] ,_snake_case ) SCREAMING_SNAKE_CASE__ : int = sub_problem_sol return sub_problem_sol else: return 0 SCREAMING_SNAKE_CASE__ : int = [0] SCREAMING_SNAKE_CASE__ : Any = [[-1] * cols for _ in range(_snake_case )] update_area_of_max_square_using_dp_array(0 ,0 ,_snake_case ) return largest_square_area[0] def lowercase_ ( _snake_case ,_snake_case ,_snake_case ): SCREAMING_SNAKE_CASE__ : Optional[Any] = [[0] * (cols + 1) for _ in range(rows + 1 )] SCREAMING_SNAKE_CASE__ : str = 0 for row in range(rows - 1 ,-1 ,-1 ): for col in range(cols - 1 ,-1 ,-1 ): SCREAMING_SNAKE_CASE__ : Tuple = dp_array[row][col + 1] SCREAMING_SNAKE_CASE__ : Tuple = dp_array[row + 1][col + 1] SCREAMING_SNAKE_CASE__ : Union[str, Any] = dp_array[row + 1][col] if mat[row][col] == 1: SCREAMING_SNAKE_CASE__ : str = 1 + min(_snake_case ,_snake_case ,_snake_case ) SCREAMING_SNAKE_CASE__ : List[Any] = max(dp_array[row][col] ,_snake_case ) else: SCREAMING_SNAKE_CASE__ : Optional[Any] = 0 return largest_square_area def lowercase_ ( _snake_case ,_snake_case ,_snake_case ): SCREAMING_SNAKE_CASE__ : List[str] = [0] * (cols + 1) SCREAMING_SNAKE_CASE__ : List[str] = [0] * (cols + 1) SCREAMING_SNAKE_CASE__ : Union[str, Any] = 0 for row in range(rows - 1 ,-1 ,-1 ): for col in range(cols - 1 ,-1 ,-1 ): SCREAMING_SNAKE_CASE__ : Dict = current_row[col + 1] SCREAMING_SNAKE_CASE__ : str = next_row[col + 1] SCREAMING_SNAKE_CASE__ : Any = next_row[col] if mat[row][col] == 1: SCREAMING_SNAKE_CASE__ : Union[str, Any] = 1 + min(_snake_case ,_snake_case ,_snake_case ) SCREAMING_SNAKE_CASE__ : int = max(current_row[col] ,_snake_case ) else: SCREAMING_SNAKE_CASE__ : Dict = 0 SCREAMING_SNAKE_CASE__ : Tuple = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
25
"""simple docstring""" def lowercase_ ( _snake_case ): if a < 0: raise ValueError("""Input value must be a positive integer""" ) elif isinstance(_snake_case ,_snake_case ): raise TypeError("""Input value must be a 'int' type""" ) return bin(_snake_case ).count("""1""" ) if __name__ == "__main__": import doctest doctest.testmod()
25
1
import numpy as np import qiskit def __UpperCamelCase ( _A : int = 8 , _A : int | None = None ) ->str: """simple docstring""" lowerCamelCase_ =np.random.default_rng(seed=_A ) # Roughly 25% of the qubits will contribute to the key. # So we take more than we need. lowerCamelCase_ =6 * key_len # Measurement basis for Alice's qubits. lowerCamelCase_ =rng.integers(2 , size=_A ) # The set of states Alice will prepare. lowerCamelCase_ =rng.integers(2 , size=_A ) # Measurement basis for Bob's qubits. lowerCamelCase_ =rng.integers(2 , size=_A ) # Quantum Circuit to simulate BB84 lowerCamelCase_ =qiskit.QuantumCircuit(_A , name="""BB84""" ) # Alice prepares her qubits according to rules above. for index, _ in enumerate(_A ): if alice_state[index] == 1: bbaa_circ.x(_A ) if alice_basis[index] == 1: bbaa_circ.h(_A ) bbaa_circ.barrier() # Bob measures the received qubits according to rules above. for index, _ in enumerate(_A ): if bob_basis[index] == 1: bbaa_circ.h(_A ) bbaa_circ.barrier() bbaa_circ.measure_all() # Simulate the quantum circuit. lowerCamelCase_ =qiskit.Aer.get_backend("""aer_simulator""" ) # We only need to run one shot because the key is unique. # Multiple shots will produce the same key. lowerCamelCase_ =qiskit.execute(_A , _A , shots=1 , seed_simulator=_A ) # Returns the result of measurement. lowerCamelCase_ =job.result().get_counts(_A ).most_frequent() # Extracting the generated key from the simulation results. # Only keep measurement results where Alice and Bob chose the same basis. lowerCamelCase_ ="""""".join( [ result_bit for alice_basis_bit, bob_basis_bit, result_bit in zip( _A , _A , _A ) if alice_basis_bit == bob_basis_bit ] ) # Get final key. Pad with 0 if too short, otherwise truncate. lowerCamelCase_ =gen_key[:key_len] if len(_A ) >= key_len else gen_key.ljust(_A , """0""" ) return key if __name__ == "__main__": print(F"""The generated key is : {bbaa(8, seed=0)}""") from doctest import testmod testmod()
49
import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() __A : List[Any] = logging.get_logger(__name__) __A : List[Any] = [ ['attention', 'attn'], ['encoder_attention', 'encoder_attn'], ['q_lin', 'q_proj'], ['k_lin', 'k_proj'], ['v_lin', 'v_proj'], ['out_lin', 'out_proj'], ['norm_embeddings', 'layernorm_embedding'], ['position_embeddings', 'embed_positions'], ['embeddings', 'embed_tokens'], ['ffn.lin', 'fc'], ] def __UpperCamelCase ( _A : Optional[int] ) ->List[str]: """simple docstring""" if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: lowerCamelCase_ =k.replace(_A , _A ) if k.startswith("""encoder""" ): lowerCamelCase_ =k.replace(""".attn""" , """.self_attn""" ) lowerCamelCase_ =k.replace("""norm1""" , """self_attn_layer_norm""" ) lowerCamelCase_ =k.replace("""norm2""" , """final_layer_norm""" ) elif k.startswith("""decoder""" ): lowerCamelCase_ =k.replace("""norm1""" , """self_attn_layer_norm""" ) lowerCamelCase_ =k.replace("""norm2""" , """encoder_attn_layer_norm""" ) lowerCamelCase_ =k.replace("""norm3""" , """final_layer_norm""" ) return k def __UpperCamelCase ( _A : Union[str, Any] ) ->Optional[int]: """simple docstring""" lowerCamelCase_ =[ """model.encoder.layernorm_embedding.weight""", """model.encoder.layernorm_embedding.bias""", """model.decoder.layernorm_embedding.weight""", """model.decoder.layernorm_embedding.bias""", ] for k in keys: lowerCamelCase_ =sd.pop(_A ) lowerCamelCase_ =k.replace("""layernorm_embedding""" , """layer_norm""" ) assert new_k not in sd lowerCamelCase_ =v __A : Any = ['START'] @torch.no_grad() def __UpperCamelCase ( _A : List[Any] , _A : Union[str, Any] , _A : List[str] ) ->List[str]: """simple docstring""" lowerCamelCase_ =torch.load(_A , map_location="""cpu""" ) lowerCamelCase_ =model["""model"""] lowerCamelCase_ =BlenderbotConfig.from_json_file(_A ) lowerCamelCase_ =BlenderbotForConditionalGeneration(_A ) lowerCamelCase_ =m.model.state_dict().keys() lowerCamelCase_ =[] lowerCamelCase_ ={} for k, v in sd.items(): if k in IGNORE_KEYS: continue lowerCamelCase_ =rename_state_dict_key(_A ) if new_k not in valid_keys: failures.append([k, new_k] ) else: lowerCamelCase_ =v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(_A ) m.model.load_state_dict(_A , strict=_A ) m.half() m.save_pretrained(_A ) if __name__ == "__main__": __A : Any = argparse.ArgumentParser() # Required parameters parser.add_argument('--src_path', type=str, help='like blenderbot-model.bin') parser.add_argument('--save_dir', default='hf_blenderbot', type=str, help='Where to save converted model.') parser.add_argument( '--hf_config_json', default='blenderbot-3b-config.json', type=str, help='Path to config to use' ) __A : str = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
49
1
import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Tuple = 1 SCREAMING_SNAKE_CASE : Any = 3 SCREAMING_SNAKE_CASE : Union[str, Any] = (32, 32) SCREAMING_SNAKE_CASE : Optional[Any] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_lowerCamelCase ) return image @property def __lowerCAmelCase ( self ) ->Any: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) return model @property def __lowerCAmelCase ( self ) ->List[Any]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[int] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def __lowerCAmelCase ( self ) ->List[Any]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : int = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5006 , ) return RobertaSeriesModelWithTransformation(_lowerCamelCase ) @property def __lowerCAmelCase ( self ) ->Optional[Any]: def extract(*_lowerCamelCase , **_lowerCamelCase ): class a_ : """simple docstring""" def __init__( self ) ->Any: SCREAMING_SNAKE_CASE : List[Any] = torch.ones([0] ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[Any]: self.pixel_values.to(_lowerCamelCase ) return self return Out() return extract def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Optional[int] = '''cpu''' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_cond_unet SCREAMING_SNAKE_CASE : Optional[Any] = PNDMScheduler(skip_prk_steps=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_vae SCREAMING_SNAKE_CASE : Optional[Any] = self.dummy_text_encoder SCREAMING_SNAKE_CASE : Any = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) SCREAMING_SNAKE_CASE : int = 77 SCREAMING_SNAKE_CASE : int = self.dummy_image.to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE : Union[str, Any] = AltDiffusionImgaImgPipeline( unet=_lowerCamelCase , scheduler=_lowerCamelCase , vae=_lowerCamelCase , text_encoder=_lowerCamelCase , tokenizer=_lowerCamelCase , safety_checker=_lowerCamelCase , feature_extractor=self.dummy_extractor , ) SCREAMING_SNAKE_CASE : Dict = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = alt_pipe.to(_lowerCamelCase ) alt_pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = '''A painting of a squirrel eating a burger''' SCREAMING_SNAKE_CASE : List[str] = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) SCREAMING_SNAKE_CASE : int = alt_pipe( [prompt] , generator=_lowerCamelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=_lowerCamelCase , ) SCREAMING_SNAKE_CASE : Tuple = output.images SCREAMING_SNAKE_CASE : Tuple = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) SCREAMING_SNAKE_CASE : List[Any] = alt_pipe( [prompt] , generator=_lowerCamelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=_lowerCamelCase , return_dict=_lowerCamelCase , )[0] SCREAMING_SNAKE_CASE : List[Any] = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE : Union[str, Any] = np.array([0.4_4_2_7, 0.3_7_3_1, 0.4_2_4_9, 0.4_9_4_1, 0.4_5_4_6, 0.4_1_4_8, 0.4_1_9_3, 0.4_6_6_6, 0.4_4_9_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5e-3 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_cond_unet SCREAMING_SNAKE_CASE : Union[str, Any] = PNDMScheduler(skip_prk_steps=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_vae SCREAMING_SNAKE_CASE : int = self.dummy_text_encoder SCREAMING_SNAKE_CASE : Dict = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) SCREAMING_SNAKE_CASE : Optional[int] = 77 SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_image.to(_lowerCamelCase ) # put models in fp16 SCREAMING_SNAKE_CASE : List[Any] = unet.half() SCREAMING_SNAKE_CASE : List[Any] = vae.half() SCREAMING_SNAKE_CASE : str = bert.half() # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE : Tuple = AltDiffusionImgaImgPipeline( unet=_lowerCamelCase , scheduler=_lowerCamelCase , vae=_lowerCamelCase , text_encoder=_lowerCamelCase , tokenizer=_lowerCamelCase , safety_checker=_lowerCamelCase , feature_extractor=self.dummy_extractor , ) SCREAMING_SNAKE_CASE : List[Any] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = alt_pipe.to(_lowerCamelCase ) alt_pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = '''A painting of a squirrel eating a burger''' SCREAMING_SNAKE_CASE : str = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = alt_pipe( [prompt] , generator=_lowerCamelCase , num_inference_steps=2 , output_type='''np''' , image=_lowerCamelCase , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : str = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) # resize to resolution that is divisible by 8 but not 16 or 32 SCREAMING_SNAKE_CASE : Union[str, Any] = init_image.resize((760, 504) ) SCREAMING_SNAKE_CASE : str = '''BAAI/AltDiffusion''' SCREAMING_SNAKE_CASE : List[Any] = AltDiffusionImgaImgPipeline.from_pretrained( _lowerCamelCase , safety_checker=_lowerCamelCase , ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE : Optional[int] = '''A fantasy landscape, trending on artstation''' SCREAMING_SNAKE_CASE : Optional[int] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Dict = pipe( prompt=_lowerCamelCase , image=_lowerCamelCase , strength=0.7_5 , guidance_scale=7.5 , generator=_lowerCamelCase , output_type='''np''' , ) SCREAMING_SNAKE_CASE : int = output.images[0] SCREAMING_SNAKE_CASE : str = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) SCREAMING_SNAKE_CASE : Optional[Any] = np.array([0.9_3_5_8, 0.9_3_9_7, 0.9_5_9_9, 0.9_9_0_1, 1.0_0_0_0, 1.0_0_0_0, 0.9_8_8_2, 1.0_0_0_0, 1.0_0_0_0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : Optional[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = init_image.resize((768, 512) ) SCREAMING_SNAKE_CASE : Any = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy''' ) SCREAMING_SNAKE_CASE : List[str] = '''BAAI/AltDiffusion''' SCREAMING_SNAKE_CASE : Tuple = AltDiffusionImgaImgPipeline.from_pretrained( _lowerCamelCase , safety_checker=_lowerCamelCase , ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE : str = '''A fantasy landscape, trending on artstation''' SCREAMING_SNAKE_CASE : Dict = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = pipe( prompt=_lowerCamelCase , image=_lowerCamelCase , strength=0.7_5 , guidance_scale=7.5 , generator=_lowerCamelCase , output_type='''np''' , ) SCREAMING_SNAKE_CASE : Optional[Any] = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1e-2
313
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params a__ : Optional[Any] = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['''memory_attention''', '''encoder_attn'''], ['''attention''', '''attn'''], ['''/''', '''.'''], ['''.LayerNorm.gamma''', '''_layer_norm.weight'''], ['''.LayerNorm.beta''', '''_layer_norm.bias'''], ['''r.layer_''', '''r.layers.'''], ['''output_proj''', '''out_proj'''], ['''ffn.dense_1.''', '''fc2.'''], ['''ffn.dense.''', '''fc1.'''], ['''ffn_layer_norm''', '''final_layer_norm'''], ['''kernel''', '''weight'''], ['''encoder_layer_norm.''', '''encoder.layer_norm.'''], ['''decoder_layer_norm.''', '''decoder.layer_norm.'''], ['''embeddings.weights''', '''shared.weight'''], ] def UpperCAmelCase_( a__ ): """simple docstring""" for pegasus_name, hf_name in PATTERNS: SCREAMING_SNAKE_CASE : Union[str, Any] = k.replace(a__ , a__ ) return k def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = DEFAULTS.copy() cfg_kwargs.update(a__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = PegasusConfig(**a__ ) SCREAMING_SNAKE_CASE : Optional[int] = PegasusForConditionalGeneration(a__ ) SCREAMING_SNAKE_CASE : Dict = torch_model.model.state_dict() SCREAMING_SNAKE_CASE : List[str] = {} for k, v in tf_weights.items(): SCREAMING_SNAKE_CASE : int = rename_state_dict_key(a__ ) if new_k not in sd: raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if "dense" in k or "proj" in new_k: SCREAMING_SNAKE_CASE : Dict = v.T SCREAMING_SNAKE_CASE : Tuple = torch.tensor(a__ , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F"""{new_k}, {k}, {v.shape}, {sd[new_k].shape}""" # make sure embedding.padding_idx is respected SCREAMING_SNAKE_CASE : Tuple = torch.zeros_like(mapping['''shared.weight'''][cfg.pad_token_id + 1] ) SCREAMING_SNAKE_CASE : int = mapping['''shared.weight'''] SCREAMING_SNAKE_CASE : Union[str, Any] = mapping['''shared.weight'''] SCREAMING_SNAKE_CASE : Optional[Any] = {k: torch.zeros_like(a__ ) for k, v in sd.items() if k.endswith('''bias''' ) and k not in mapping} mapping.update(**a__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = torch_model.model.load_state_dict(a__ , strict=a__ ) SCREAMING_SNAKE_CASE : Optional[Any] = [ k for k in missing if k not in ['''encoder.embed_positions.weight''', '''decoder.embed_positions.weight'''] ] assert unexpected_missing == [], F"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], F"""no matches found for the following tf keys {extra}""" return torch_model def UpperCAmelCase_( a__="./ckpt/aeslc/model.ckpt-32000" ): """simple docstring""" SCREAMING_SNAKE_CASE : str = tf.train.list_variables(a__ ) SCREAMING_SNAKE_CASE : str = {} SCREAMING_SNAKE_CASE : List[Any] = ['''Adafactor''', '''global_step'''] for name, shape in tqdm(a__ , desc='''converting tf checkpoint to dict''' ): SCREAMING_SNAKE_CASE : Union[str, Any] = any(pat in name for pat in ignore_name ) if skip_key: continue SCREAMING_SNAKE_CASE : Dict = tf.train.load_variable(a__ , a__ ) SCREAMING_SNAKE_CASE : Any = array return tf_weights def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = Path(a__ ).parent.name SCREAMING_SNAKE_CASE : Union[str, Any] = task_specific_params[F"""summarization_{dataset}"""]['''max_position_embeddings'''] SCREAMING_SNAKE_CASE : Dict = PegasusTokenizer.from_pretrained('''sshleifer/pegasus''' , model_max_length=a__ ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(a__ ) # convert model SCREAMING_SNAKE_CASE : Any = get_tf_weights_as_numpy(a__ ) SCREAMING_SNAKE_CASE : List[str] = task_specific_params[F"""summarization_{dataset}"""] if dataset == "large": SCREAMING_SNAKE_CASE : int = task_specific_params SCREAMING_SNAKE_CASE : List[str] = convert_pegasus(a__ , a__ ) torch_model.save_pretrained(a__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch_model.state_dict() sd.pop('''model.decoder.embed_positions.weight''' ) sd.pop('''model.encoder.embed_positions.weight''' ) torch.save(a__ , Path(a__ ) / '''pytorch_model.bin''' ) if __name__ == "__main__": a__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('''tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''') parser.add_argument('''save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''') a__ : List[str] = parser.parse_args() if args.save_dir is None: a__ : Any = Path(args.tf_ckpt_path).parent.name a__ : int = os.path.join('''pegasus''', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
313
1
"""simple docstring""" from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) # General docstring SCREAMING_SNAKE_CASE : Union[str, Any] = """RegNetConfig""" # Base docstring SCREAMING_SNAKE_CASE : Tuple = """facebook/regnet-y-040""" SCREAMING_SNAKE_CASE : List[Any] = [1, 1088, 7, 7] # Image classification docstring SCREAMING_SNAKE_CASE : str = """facebook/regnet-y-040""" SCREAMING_SNAKE_CASE : Union[str, Any] = """tabby, tabby cat""" SCREAMING_SNAKE_CASE : List[str] = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class _UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__(self , a_ , a_ = 3 , a_ = 1 , a_ = 1 , a_ = "relu" , **a_ , ): '''simple docstring''' super().__init__(**a_ ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb __snake_case : Any = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) __snake_case : str = tf.keras.layers.ConvaD( filters=a_ , kernel_size=a_ , strides=a_ , padding='''VALID''' , groups=a_ , use_bias=a_ , name='''convolution''' , ) __snake_case : Dict = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name='''normalization''' ) __snake_case : int = ACTaFN[activation] if activation is not None else tf.identity def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : Dict = self.convolution(self.padding(a_ ) ) __snake_case : int = self.normalization(a_ ) __snake_case : Optional[int] = self.activation(a_ ) return hidden_state class _UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__(self , a_ , **a_ ): '''simple docstring''' super().__init__(**a_ ) __snake_case : Tuple = config.num_channels __snake_case : Any = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name='''embedder''' , ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : Optional[Any] = shape_list(a_ )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) __snake_case : Dict = tf.transpose(a_ , perm=(0, 2, 3, 1) ) __snake_case : List[Any] = self.embedder(a_ ) return hidden_state class _UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__(self , a_ , a_ = 2 , **a_ ): '''simple docstring''' super().__init__(**a_ ) __snake_case : Dict = tf.keras.layers.ConvaD( filters=a_ , kernel_size=1 , strides=a_ , use_bias=a_ , name='''convolution''' ) __snake_case : Tuple = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name='''normalization''' ) def SCREAMING_SNAKE_CASE (self , a_ , a_ = False ): '''simple docstring''' return self.normalization(self.convolution(a_ ) , training=a_ ) class _UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__(self , a_ , a_ , **a_ ): '''simple docstring''' super().__init__(**a_ ) __snake_case : List[str] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=a_ , name='''pooler''' ) __snake_case : Union[str, Any] = [ tf.keras.layers.ConvaD(filters=a_ , kernel_size=1 , activation='''relu''' , name='''attention.0''' ), tf.keras.layers.ConvaD(filters=a_ , kernel_size=1 , activation='''sigmoid''' , name='''attention.2''' ), ] def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : List[Any] = self.pooler(a_ ) for layer_module in self.attention: __snake_case : List[str] = layer_module(a_ ) __snake_case : List[str] = hidden_state * pooled return hidden_state class _UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__(self , a_ , a_ , a_ , a_ = 1 , **a_ ): '''simple docstring''' super().__init__(**a_ ) __snake_case : Union[str, Any] = in_channels != out_channels or stride != 1 __snake_case : List[str] = max(1 , out_channels // config.groups_width ) __snake_case : Union[str, Any] = ( TFRegNetShortCut(a_ , stride=a_ , name='''shortcut''' ) if should_apply_shortcut else tf.keras.layers.Activation('''linear''' , name='''shortcut''' ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. __snake_case : List[Any] = [ TFRegNetConvLayer(a_ , kernel_size=1 , activation=config.hidden_act , name='''layer.0''' ), TFRegNetConvLayer( a_ , stride=a_ , groups=a_ , activation=config.hidden_act , name='''layer.1''' ), TFRegNetConvLayer(a_ , kernel_size=1 , activation=a_ , name='''layer.2''' ), ] __snake_case : Optional[int] = ACTaFN[config.hidden_act] def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : Optional[Any] = hidden_state for layer_module in self.layers: __snake_case : Dict = layer_module(a_ ) __snake_case : Any = self.shortcut(a_ ) hidden_state += residual __snake_case : Dict = self.activation(a_ ) return hidden_state class _UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__(self , a_ , a_ , a_ , a_ = 1 , **a_ ): '''simple docstring''' super().__init__(**a_ ) __snake_case : Optional[int] = in_channels != out_channels or stride != 1 __snake_case : List[Any] = max(1 , out_channels // config.groups_width ) __snake_case : List[str] = ( TFRegNetShortCut(a_ , stride=a_ , name='''shortcut''' ) if should_apply_shortcut else tf.keras.layers.Activation('''linear''' , name='''shortcut''' ) ) __snake_case : List[Any] = [ TFRegNetConvLayer(a_ , kernel_size=1 , activation=config.hidden_act , name='''layer.0''' ), TFRegNetConvLayer( a_ , stride=a_ , groups=a_ , activation=config.hidden_act , name='''layer.1''' ), TFRegNetSELayer(a_ , reduced_channels=int(round(in_channels / 4 ) ) , name='''layer.2''' ), TFRegNetConvLayer(a_ , kernel_size=1 , activation=a_ , name='''layer.3''' ), ] __snake_case : List[str] = ACTaFN[config.hidden_act] def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : Union[str, Any] = hidden_state for layer_module in self.layers: __snake_case : Optional[int] = layer_module(a_ ) __snake_case : List[str] = self.shortcut(a_ ) hidden_state += residual __snake_case : Tuple = self.activation(a_ ) return hidden_state class _UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__(self , a_ , a_ , a_ , a_ = 2 , a_ = 2 , **a_ ): '''simple docstring''' super().__init__(**a_ ) __snake_case : Union[str, Any] = TFRegNetXLayer if config.layer_type == '''x''' else TFRegNetYLayer __snake_case : Dict = [ # downsampling is done in the first layer with stride of 2 layer(a_ , a_ , a_ , stride=a_ , name='''layers.0''' ), *[layer(a_ , a_ , a_ , name=f"""layers.{i+1}""" ) for i in range(depth - 1 )], ] def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' for layer_module in self.layers: __snake_case : Tuple = layer_module(a_ ) return hidden_state class _UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__(self , a_ , **a_ ): '''simple docstring''' super().__init__(**a_ ) __snake_case : Dict = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( a_ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name='''stages.0''' , ) ) __snake_case : Dict = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(a_ , config.depths[1:] ) ): self.stages.append(TFRegNetStage(a_ , a_ , a_ , depth=a_ , name=f"""stages.{i+1}""" ) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ = False , a_ = True ): '''simple docstring''' __snake_case : List[Any] = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: __snake_case : Optional[Any] = hidden_states + (hidden_state,) __snake_case : Tuple = stage_module(a_ ) if output_hidden_states: __snake_case : Union[str, Any] = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=a_ , hidden_states=a_ ) @keras_serializable class _UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' lowerCamelCase__ =RegNetConfig def __init__(self , a_ , **a_ ): '''simple docstring''' super().__init__(**a_ ) __snake_case : Optional[Any] = config __snake_case : Any = TFRegNetEmbeddings(a_ , name='''embedder''' ) __snake_case : Dict = TFRegNetEncoder(a_ , name='''encoder''' ) __snake_case : Optional[Any] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=a_ , name='''pooler''' ) @unpack_inputs def SCREAMING_SNAKE_CASE (self , a_ , a_ = None , a_ = None , a_ = False , ): '''simple docstring''' __snake_case : Optional[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __snake_case : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict __snake_case : Any = self.embedder(a_ , training=a_ ) __snake_case : str = self.encoder( a_ , output_hidden_states=a_ , return_dict=a_ , training=a_ ) __snake_case : Tuple = encoder_outputs[0] __snake_case : Union[str, Any] = self.pooler(a_ ) # Change to NCHW output format have uniformity in the modules __snake_case : str = tf.transpose(a_ , perm=(0, 3, 1, 2) ) __snake_case : List[Any] = tf.transpose(a_ , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: __snake_case : List[Any] = tuple([tf.transpose(a_ , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=a_ , pooler_output=a_ , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ =RegNetConfig lowerCamelCase__ ='regnet' lowerCamelCase__ ='pixel_values' @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_24, 2_24) , dtype=tf.floataa )} SCREAMING_SNAKE_CASE : Optional[int] = r""" Parameters: This model is a Tensorflow [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and behavior. config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ SCREAMING_SNAKE_CASE : Union[str, Any] = r""" Args: pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConveNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( 'The bare RegNet model outputting raw features without any specific head on top.', __snake_case, ) class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , a_ , *a_ , **a_ ): '''simple docstring''' super().__init__(a_ , *a_ , **a_ ) __snake_case : List[str] = TFRegNetMainLayer(a_ , name='''regnet''' ) @unpack_inputs @add_start_docstrings_to_model_forward(a_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=a_ , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def SCREAMING_SNAKE_CASE (self , a_ , a_ = None , a_ = None , a_=False , ): '''simple docstring''' __snake_case : Tuple = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __snake_case : Tuple = return_dict if return_dict is not None else self.config.use_return_dict __snake_case : Any = self.regnet( pixel_values=a_ , output_hidden_states=a_ , return_dict=a_ , training=a_ , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( '\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ', __snake_case, ) class _UpperCAmelCase ( __snake_case, __snake_case ): '''simple docstring''' def __init__(self , a_ , *a_ , **a_ ): '''simple docstring''' super().__init__(a_ , *a_ , **a_ ) __snake_case : Tuple = config.num_labels __snake_case : List[Any] = TFRegNetMainLayer(a_ , name='''regnet''' ) # classification head __snake_case : str = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name='''classifier.1''' ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(a_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=a_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def SCREAMING_SNAKE_CASE (self , a_ = None , a_ = None , a_ = None , a_ = None , a_=False , ): '''simple docstring''' __snake_case : List[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __snake_case : str = return_dict if return_dict is not None else self.config.use_return_dict __snake_case : Dict = self.regnet( a_ , output_hidden_states=a_ , return_dict=a_ , training=a_ ) __snake_case : Optional[int] = outputs.pooler_output if return_dict else outputs[1] __snake_case : Dict = self.classifier[0](a_ ) __snake_case : str = self.classifier[1](a_ ) __snake_case : List[str] = None if labels is None else self.hf_compute_loss(labels=a_ , logits=a_ ) if not return_dict: __snake_case : int = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=a_ , logits=a_ , hidden_states=outputs.hidden_states )
24
"""simple docstring""" import logging import os import threading import time try: import warnings except ImportError: SCREAMING_SNAKE_CASE : Tuple = None try: import msvcrt except ImportError: SCREAMING_SNAKE_CASE : List[str] = None try: import fcntl except ImportError: SCREAMING_SNAKE_CASE : Tuple = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: SCREAMING_SNAKE_CASE : List[str] = OSError # Data # ------------------------------------------------ SCREAMING_SNAKE_CASE : List[Any] = [ """Timeout""", """BaseFileLock""", """WindowsFileLock""", """UnixFileLock""", """SoftFileLock""", """FileLock""", ] SCREAMING_SNAKE_CASE : List[Any] = """3.0.12""" SCREAMING_SNAKE_CASE : int = None def lowercase ( ) ->str: """simple docstring""" global _logger __snake_case : Union[str, Any] = _logger or logging.getLogger(__name__ ) return _logger class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , a_ ): '''simple docstring''' __snake_case : Optional[int] = lock_file return None def __str__(self ): '''simple docstring''' __snake_case : Tuple = f"""The file lock '{self.lock_file}' could not be acquired.""" return temp class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ ): '''simple docstring''' __snake_case : Optional[Any] = lock return None def __enter__(self ): '''simple docstring''' return self.lock def __exit__(self , a_ , a_ , a_ ): '''simple docstring''' self.lock.release() return None class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ , a_=-1 , a_=None ): '''simple docstring''' __snake_case : List[Any] = max_filename_length if max_filename_length is not None else 2_55 # Hash the filename if it's too long __snake_case : Dict = self.hash_filename_if_too_long(a_ , a_ ) # The path to the lock file. __snake_case : str = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. __snake_case : Dict = None # The default timeout value. __snake_case : List[Any] = timeout # We use this lock primarily for the lock counter. __snake_case : Tuple = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. __snake_case : Optional[Any] = 0 return None @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self._lock_file @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self._timeout @timeout.setter def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : Dict = float(a_ ) return None def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' raise NotImplementedError() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' raise NotImplementedError() @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self._lock_file_fd is not None def SCREAMING_SNAKE_CASE (self , a_=None , a_=0.05 ): '''simple docstring''' if timeout is None: __snake_case : List[str] = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 __snake_case : Optional[int] = id(self ) __snake_case : str = self._lock_file __snake_case : Optional[int] = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(f"""Attempting to acquire lock {lock_id} on {lock_filename}""" ) self._acquire() if self.is_locked: logger().debug(f"""Lock {lock_id} acquired on {lock_filename}""" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(f"""Timeout on acquiring lock {lock_id} on {lock_filename}""" ) raise Timeout(self._lock_file ) else: logger().debug( f"""Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...""" ) time.sleep(a_ ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: __snake_case : Optional[int] = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def SCREAMING_SNAKE_CASE (self , a_=False ): '''simple docstring''' with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: __snake_case : Tuple = id(self ) __snake_case : str = self._lock_file logger().debug(f"""Attempting to release lock {lock_id} on {lock_filename}""" ) self._release() __snake_case : Dict = 0 logger().debug(f"""Lock {lock_id} released on {lock_filename}""" ) return None def __enter__(self ): '''simple docstring''' self.acquire() return self def __exit__(self , a_ , a_ , a_ ): '''simple docstring''' self.release() return None def __del__(self ): '''simple docstring''' self.release(force=a_ ) return None def SCREAMING_SNAKE_CASE (self , a_ , a_ ): '''simple docstring''' __snake_case : Any = os.path.basename(a_ ) if len(a_ ) > max_length and max_length > 0: __snake_case : List[Any] = os.path.dirname(a_ ) __snake_case : Any = str(hash(a_ ) ) __snake_case : List[Any] = filename[: max_length - len(a_ ) - 8] + '''...''' + hashed_filename + '''.lock''' return os.path.join(a_ , a_ ) else: return path class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , a_ , a_=-1 , a_=None ): '''simple docstring''' from .file_utils import relative_to_absolute_path super().__init__(a_ , timeout=a_ , max_filename_length=a_ ) __snake_case : List[str] = '''\\\\?\\''' + relative_to_absolute_path(self.lock_file ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: __snake_case : Any = os.open(self._lock_file , a_ ) except OSError: pass else: try: msvcrt.locking(a_ , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(a_ ) else: __snake_case : Dict = fd return None def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = self._lock_file_fd __snake_case : Dict = None msvcrt.locking(a_ , msvcrt.LK_UNLCK , 1 ) os.close(a_ ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , a_ , a_=-1 , a_=None ): '''simple docstring''' __snake_case : Optional[Any] = os.statvfs(os.path.dirname(a_ ) ).f_namemax super().__init__(a_ , timeout=a_ , max_filename_length=a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC __snake_case : List[str] = os.open(self._lock_file , a_ ) try: fcntl.flock(a_ , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(a_ ) else: __snake_case : Optional[int] = fd return None def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = self._lock_file_fd __snake_case : Tuple = None fcntl.flock(a_ , fcntl.LOCK_UN ) os.close(a_ ) return None class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: __snake_case : Tuple = os.open(self._lock_file , a_ ) except OSError: pass else: __snake_case : List[Any] = fd return None def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' os.close(self._lock_file_fd ) __snake_case : int = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None SCREAMING_SNAKE_CASE : Dict = None if msvcrt: SCREAMING_SNAKE_CASE : List[Any] = WindowsFileLock elif fcntl: SCREAMING_SNAKE_CASE : List[str] = UnixFileLock else: SCREAMING_SNAKE_CASE : str = SoftFileLock if warnings is not None: warnings.warn("""only soft file lock is available""")
24
1
from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : str = logging.get_logger(__name__) A__ : Any = { 'weiweishi/roc-bert-base-zh': 'https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json', } class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = """roc_bert""" def __init__( self : str, lowerCamelCase : Tuple=30_522, lowerCamelCase : int=768, lowerCamelCase : int=12, lowerCamelCase : str=12, lowerCamelCase : str=3_072, lowerCamelCase : List[Any]="gelu", lowerCamelCase : Union[str, Any]=0.1, lowerCamelCase : Tuple=0.1, lowerCamelCase : Dict=512, lowerCamelCase : Union[str, Any]=2, lowerCamelCase : Dict=0.02, lowerCamelCase : Optional[Any]=1E-12, lowerCamelCase : str=True, lowerCamelCase : List[str]=0, lowerCamelCase : Optional[Any]="absolute", lowerCamelCase : List[Any]=None, lowerCamelCase : Tuple=True, lowerCamelCase : str=True, lowerCamelCase : Union[str, Any]=768, lowerCamelCase : str=910, lowerCamelCase : Optional[int]=512, lowerCamelCase : Dict=24_858, lowerCamelCase : str=True, **lowerCamelCase : Dict, ): '''simple docstring''' lowercase__ = vocab_size lowercase__ = max_position_embeddings lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = initializer_range lowercase__ = type_vocab_size lowercase__ = layer_norm_eps lowercase__ = use_cache lowercase__ = enable_pronunciation lowercase__ = enable_shape lowercase__ = pronunciation_embed_dim lowercase__ = pronunciation_vocab_size lowercase__ = shape_embed_dim lowercase__ = shape_vocab_size lowercase__ = concat_input lowercase__ = position_embedding_type lowercase__ = classifier_dropout super().__init__(pad_token_id=lowerCamelCase, **lowerCamelCase )
207
from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = [] lowercase__ = [] lowercase__ = [] for rt in rc.restypes: lowercase__ = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) lowercase__ = {name: i for i, name in enumerate(lowerCamelCase_ )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) lowercase__ = torch.tensor( lowerCamelCase_ , dtype=torch.intaa , device=protein['''aatype'''].device , ) lowercase__ = torch.tensor( lowerCamelCase_ , dtype=torch.intaa , device=protein['''aatype'''].device , ) lowercase__ = torch.tensor( lowerCamelCase_ , dtype=torch.floataa , device=protein['''aatype'''].device , ) lowercase__ = protein['''aatype'''].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein lowercase__ = restype_atomaa_to_atomaa[protein_aatype] lowercase__ = restype_atomaa_mask[protein_aatype] lowercase__ = residx_atomaa_mask lowercase__ = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back lowercase__ = restype_atomaa_to_atomaa[protein_aatype] lowercase__ = residx_atomaa_to_atomaa.long() # create the corresponding mask lowercase__ = torch.zeros([21, 37] , dtype=torch.floataa , device=protein['''aatype'''].device ) for restype, restype_letter in enumerate(rc.restypes ): lowercase__ = rc.restype_atoa[restype_letter] lowercase__ = rc.residue_atoms[restype_name] for atom_name in atom_names: lowercase__ = rc.atom_order[atom_name] lowercase__ = 1 lowercase__ = restype_atomaa_mask[protein_aatype] lowercase__ = residx_atomaa_mask return protein def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = tree_map(lambda lowerCamelCase_ : torch.tensor(lowerCamelCase_ , device=batch['''aatype'''].device ) , lowerCamelCase_ , np.ndarray ) lowercase__ = tensor_tree_map(lambda lowerCamelCase_ : np.array(lowerCamelCase_ ) , make_atomaa_masks(lowerCamelCase_ ) ) return out
207
1
import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 __lowerCamelCase : Dict = sys.version_info >= (3, 10) def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Union[str, Any]=None , __UpperCamelCase : List[Any]=None ): """simple docstring""" return field(default_factory=lambda: default , metadata=UpperCAmelCase__ ) @dataclass class __snake_case : lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 @dataclass class __snake_case : lowerCAmelCase_ = 42 lowerCAmelCase_ = field(default="toto" , metadata={"help": "help message"} ) @dataclass class __snake_case : lowerCAmelCase_ = False lowerCAmelCase_ = True lowerCAmelCase_ = None class __snake_case ( _UpperCAmelCase ): lowerCAmelCase_ = "titi" lowerCAmelCase_ = "toto" class __snake_case ( _UpperCAmelCase ): lowerCAmelCase_ = "titi" lowerCAmelCase_ = "toto" lowerCAmelCase_ = 42 @dataclass class __snake_case : lowerCAmelCase_ = "toto" def __a ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = BasicEnum(self.foo ) @dataclass class __snake_case : lowerCAmelCase_ = "toto" def __a ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE__ = MixedTypeEnum(self.foo ) @dataclass class __snake_case : lowerCAmelCase_ = None lowerCAmelCase_ = field(default=_UpperCAmelCase , metadata={"help": "help message"} ) lowerCAmelCase_ = None lowerCAmelCase_ = list_field(default=[] ) lowerCAmelCase_ = list_field(default=[] ) @dataclass class __snake_case : lowerCAmelCase_ = list_field(default=[] ) lowerCAmelCase_ = list_field(default=[1, 2, 3] ) lowerCAmelCase_ = list_field(default=["Hallo", "Bonjour", "Hello"] ) lowerCAmelCase_ = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class __snake_case : lowerCAmelCase_ = field() lowerCAmelCase_ = field() lowerCAmelCase_ = field() def __a ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE__ = BasicEnum(self.required_enum ) @dataclass class __snake_case : lowerCAmelCase_ = 42 lowerCAmelCase_ = field() lowerCAmelCase_ = None lowerCAmelCase_ = field(default="toto" , metadata={"help": "help message"} ) lowerCAmelCase_ = list_field(default=["Hallo", "Bonjour", "Hello"] ) if is_python_no_less_than_3_10: @dataclass class __snake_case : lowerCAmelCase_ = False lowerCAmelCase_ = True lowerCAmelCase_ = None @dataclass class __snake_case : lowerCAmelCase_ = None lowerCAmelCase_ = field(default=_UpperCAmelCase , metadata={"help": "help message"} ) lowerCAmelCase_ = None lowerCAmelCase_ = list_field(default=[] ) lowerCAmelCase_ = list_field(default=[] ) class __snake_case ( unittest.TestCase ): def __a ( self : str , _lowercase : argparse.ArgumentParser , _lowercase : argparse.ArgumentParser ): """simple docstring""" self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): SCREAMING_SNAKE_CASE__ = {k: v for k, v in vars(lowercase_ ).items() if k != """container"""} SCREAMING_SNAKE_CASE__ = {k: v for k, v in vars(lowercase_ ).items() if k != """container"""} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get("""choices""" , lowercase_ ) and yy.get("""choices""" , lowercase_ ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx["""type"""](lowercase_ ) , yy["""type"""](lowercase_ ) ) del xx["type"], yy["type"] self.assertEqual(lowercase_ , lowercase_ ) def __a ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = HfArgumentParser(lowercase_ ) SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=lowercase_ , required=lowercase_ ) expected.add_argument("""--bar""" , type=lowercase_ , required=lowercase_ ) expected.add_argument("""--baz""" , type=lowercase_ , required=lowercase_ ) expected.add_argument("""--flag""" , type=lowercase_ , default=lowercase_ , const=lowercase_ , nargs="""?""" ) self.argparsersEqual(lowercase_ , lowercase_ ) SCREAMING_SNAKE_CASE__ = ["""--foo""", """1""", """--baz""", """quux""", """--bar""", """0.5"""] (SCREAMING_SNAKE_CASE__ ) = parser.parse_args_into_dataclasses(lowercase_ , look_for_args_file=lowercase_ ) self.assertFalse(example.flag ) def __a ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = HfArgumentParser(lowercase_ ) SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() expected.add_argument("""--foo""" , default=42 , type=lowercase_ ) expected.add_argument("""--baz""" , default="""toto""" , type=lowercase_ , help="""help message""" ) self.argparsersEqual(lowercase_ , lowercase_ ) def __a ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=lowercase_ , default=lowercase_ , const=lowercase_ , nargs="""?""" ) expected.add_argument("""--baz""" , type=lowercase_ , default=lowercase_ , const=lowercase_ , nargs="""?""" ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument("""--no_baz""" , action="""store_false""" , default=lowercase_ , dest="""baz""" ) expected.add_argument("""--opt""" , type=lowercase_ , default=lowercase_ ) SCREAMING_SNAKE_CASE__ = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(lowercase_ ) for dataclass_type in dataclass_types: SCREAMING_SNAKE_CASE__ = HfArgumentParser(lowercase_ ) self.argparsersEqual(lowercase_ , lowercase_ ) SCREAMING_SNAKE_CASE__ = parser.parse_args([] ) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_ ) ) SCREAMING_SNAKE_CASE__ = parser.parse_args(["""--foo""", """--no_baz"""] ) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_ ) ) SCREAMING_SNAKE_CASE__ = parser.parse_args(["""--foo""", """--baz"""] ) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_ ) ) SCREAMING_SNAKE_CASE__ = parser.parse_args(["""--foo""", """True""", """--baz""", """True""", """--opt""", """True"""] ) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_ ) ) SCREAMING_SNAKE_CASE__ = parser.parse_args(["""--foo""", """False""", """--baz""", """False""", """--opt""", """False"""] ) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_ ) ) def __a ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = HfArgumentParser(lowercase_ ) SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() expected.add_argument( """--foo""" , default="""toto""" , choices=["""titi""", """toto""", 42] , type=make_choice_type_function(["""titi""", """toto""", 42] ) , ) self.argparsersEqual(lowercase_ , lowercase_ ) SCREAMING_SNAKE_CASE__ = parser.parse_args([] ) self.assertEqual(args.foo , """toto""" ) SCREAMING_SNAKE_CASE__ = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) SCREAMING_SNAKE_CASE__ = parser.parse_args(["""--foo""", """titi"""] ) self.assertEqual(args.foo , """titi""" ) SCREAMING_SNAKE_CASE__ = parser.parse_args_into_dataclasses(["""--foo""", """titi"""] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) SCREAMING_SNAKE_CASE__ = parser.parse_args(["""--foo""", """42"""] ) self.assertEqual(args.foo , 42 ) SCREAMING_SNAKE_CASE__ = parser.parse_args_into_dataclasses(["""--foo""", """42"""] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def __a ( self : Optional[int] ): """simple docstring""" @dataclass class __snake_case : lowerCAmelCase_ = "toto" SCREAMING_SNAKE_CASE__ = HfArgumentParser(lowercase_ ) SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() expected.add_argument( """--foo""" , default="""toto""" , choices=("""titi""", """toto""", 42) , type=make_choice_type_function(["""titi""", """toto""", 42] ) , ) self.argparsersEqual(lowercase_ , lowercase_ ) SCREAMING_SNAKE_CASE__ = parser.parse_args([] ) self.assertEqual(args.foo , """toto""" ) SCREAMING_SNAKE_CASE__ = parser.parse_args(["""--foo""", """titi"""] ) self.assertEqual(args.foo , """titi""" ) SCREAMING_SNAKE_CASE__ = parser.parse_args(["""--foo""", """42"""] ) self.assertEqual(args.foo , 42 ) def __a ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE__ = HfArgumentParser(lowercase_ ) SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() expected.add_argument("""--foo_int""" , nargs="""+""" , default=[] , type=lowercase_ ) expected.add_argument("""--bar_int""" , nargs="""+""" , default=[1, 2, 3] , type=lowercase_ ) expected.add_argument("""--foo_str""" , nargs="""+""" , default=["""Hallo""", """Bonjour""", """Hello"""] , type=lowercase_ ) expected.add_argument("""--foo_float""" , nargs="""+""" , default=[0.1, 0.2, 0.3] , type=lowercase_ ) self.argparsersEqual(lowercase_ , lowercase_ ) SCREAMING_SNAKE_CASE__ = parser.parse_args([] ) self.assertEqual( lowercase_ , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=["""Hallo""", """Bonjour""", """Hello"""] , foo_float=[0.1, 0.2, 0.3] ) , ) SCREAMING_SNAKE_CASE__ = parser.parse_args("""--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7""".split() ) self.assertEqual(lowercase_ , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=["""a""", """b""", """c"""] , foo_float=[0.1, 0.7] ) ) def __a ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() expected.add_argument("""--foo""" , default=lowercase_ , type=lowercase_ ) expected.add_argument("""--bar""" , default=lowercase_ , type=lowercase_ , help="""help message""" ) expected.add_argument("""--baz""" , default=lowercase_ , type=lowercase_ ) expected.add_argument("""--ces""" , nargs="""+""" , default=[] , type=lowercase_ ) expected.add_argument("""--des""" , nargs="""+""" , default=[] , type=lowercase_ ) SCREAMING_SNAKE_CASE__ = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(lowercase_ ) for dataclass_type in dataclass_types: SCREAMING_SNAKE_CASE__ = HfArgumentParser(lowercase_ ) self.argparsersEqual(lowercase_ , lowercase_ ) SCREAMING_SNAKE_CASE__ = parser.parse_args([] ) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , bar=lowercase_ , baz=lowercase_ , ces=[] , des=[] ) ) SCREAMING_SNAKE_CASE__ = parser.parse_args("""--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3""".split() ) self.assertEqual(lowercase_ , Namespace(foo=12 , bar=3.14 , baz="""42""" , ces=["""a""", """b""", """c"""] , des=[1, 2, 3] ) ) def __a ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE__ = HfArgumentParser(lowercase_ ) SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() expected.add_argument("""--required_list""" , nargs="""+""" , type=lowercase_ , required=lowercase_ ) expected.add_argument("""--required_str""" , type=lowercase_ , required=lowercase_ ) expected.add_argument( """--required_enum""" , type=make_choice_type_function(["""titi""", """toto"""] ) , choices=["""titi""", """toto"""] , required=lowercase_ , ) self.argparsersEqual(lowercase_ , lowercase_ ) def __a ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = HfArgumentParser(lowercase_ ) SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=lowercase_ , required=lowercase_ ) expected.add_argument( """--required_enum""" , type=make_choice_type_function(["""titi""", """toto"""] ) , choices=["""titi""", """toto"""] , required=lowercase_ , ) expected.add_argument("""--opt""" , type=lowercase_ , default=lowercase_ ) expected.add_argument("""--baz""" , default="""toto""" , type=lowercase_ , help="""help message""" ) expected.add_argument("""--foo_str""" , nargs="""+""" , default=["""Hallo""", """Bonjour""", """Hello"""] , type=lowercase_ ) self.argparsersEqual(lowercase_ , lowercase_ ) def __a ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = HfArgumentParser(lowercase_ ) SCREAMING_SNAKE_CASE__ = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, } SCREAMING_SNAKE_CASE__ = parser.parse_dict(lowercase_ )[0] SCREAMING_SNAKE_CASE__ = BasicExample(**lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) def __a ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = HfArgumentParser(lowercase_ ) SCREAMING_SNAKE_CASE__ = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, """extra""": 42, } self.assertRaises(lowercase_ , parser.parse_dict , lowercase_ , allow_extra_keys=lowercase_ ) def __a ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE__ = HfArgumentParser(lowercase_ ) SCREAMING_SNAKE_CASE__ = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, } with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE__ = os.path.join(lowercase_ , """temp_json""" ) os.mkdir(lowercase_ ) with open(temp_local_path + """.json""" , """w+""" ) as f: json.dump(lowercase_ , lowercase_ ) SCREAMING_SNAKE_CASE__ = parser.parse_yaml_file(Path(temp_local_path + """.json""" ) )[0] SCREAMING_SNAKE_CASE__ = BasicExample(**lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) def __a ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE__ = HfArgumentParser(lowercase_ ) SCREAMING_SNAKE_CASE__ = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, } with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE__ = os.path.join(lowercase_ , """temp_yaml""" ) os.mkdir(lowercase_ ) with open(temp_local_path + """.yaml""" , """w+""" ) as f: yaml.dump(lowercase_ , lowercase_ ) SCREAMING_SNAKE_CASE__ = parser.parse_yaml_file(Path(temp_local_path + """.yaml""" ) )[0] SCREAMING_SNAKE_CASE__ = BasicExample(**lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) def __a ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE__ = HfArgumentParser(lowercase_ ) self.assertIsNotNone(lowercase_ )
371
from __future__ import annotations __lowerCamelCase : Tuple = list[list[int]] # assigning initial values to the grid __lowerCamelCase : Matrix = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution __lowerCamelCase : Matrix = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Matrix , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : int ) -> bool: """simple docstring""" for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Matrix ) -> tuple[int, int] | None: """simple docstring""" for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Matrix ) -> Matrix | None: """simple docstring""" if location := find_empty_location(__UpperCamelCase ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE__ = digit if sudoku(__UpperCamelCase ) is not None: return grid SCREAMING_SNAKE_CASE__ = 0 return None def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Matrix ) -> None: """simple docstring""" for row in grid: for cell in row: print(__UpperCamelCase , end=""" """ ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print('''\nExample grid:\n''' + '''=''' * 20) print_solution(example_grid) print('''\nExample grid solution:''') __lowerCamelCase : str = sudoku(example_grid) if solution is not None: print_solution(solution) else: print('''Cannot find a solution.''')
204
0
import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class __A ( a__ ): """simple docstring""" def __get__( self , lowerCamelCase__ , lowerCamelCase__=None ): """simple docstring""" if obj is None: return self if self.fget is None: raise AttributeError('unreadable attribute' ) __UpperCamelCase : Optional[Any] ='__cached_' + self.fget.__name__ __UpperCamelCase : Tuple =getattr(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) if cached is None: __UpperCamelCase : List[Any] =self.fget(lowerCamelCase__ ) setattr(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) return cached def A ( a_ ) -> List[str]: __UpperCamelCase : Tuple =val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(F'invalid truth value {val!r}' ) def A ( a_ ) -> List[Any]: if is_torch_fx_proxy(__A ): return True if is_torch_available(): import torch if isinstance(__A ,torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(__A ,tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(__A ,(jnp.ndarray, Tracer) ): return True return isinstance(__A ,np.ndarray ) def A ( a_ ) -> Tuple: return isinstance(__A ,np.ndarray ) def A ( a_ ) -> Tuple: return _is_numpy(__A ) def A ( a_ ) -> str: import torch return isinstance(__A ,torch.Tensor ) def A ( a_ ) -> Dict: return False if not is_torch_available() else _is_torch(__A ) def A ( a_ ) -> List[str]: import torch return isinstance(__A ,torch.device ) def A ( a_ ) -> Any: return False if not is_torch_available() else _is_torch_device(__A ) def A ( a_ ) -> str: import torch if isinstance(__A ,__A ): if hasattr(__A ,__A ): __UpperCamelCase : Tuple =getattr(__A ,__A ) else: return False return isinstance(__A ,torch.dtype ) def A ( a_ ) -> Optional[Any]: return False if not is_torch_available() else _is_torch_dtype(__A ) def A ( a_ ) -> List[str]: import tensorflow as tf return isinstance(__A ,tf.Tensor ) def A ( a_ ) -> int: return False if not is_tf_available() else _is_tensorflow(__A ) def A ( a_ ) -> Optional[Any]: import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(__A ,'is_symbolic_tensor' ): return tf.is_symbolic_tensor(__A ) return type(__A ) == tf.Tensor def A ( a_ ) -> Union[str, Any]: return False if not is_tf_available() else _is_tf_symbolic_tensor(__A ) def A ( a_ ) -> Union[str, Any]: import jax.numpy as jnp # noqa: F811 return isinstance(__A ,jnp.ndarray ) def A ( a_ ) -> int: return False if not is_flax_available() else _is_jax(__A ) def A ( a_ ) -> Any: if isinstance(__A ,(dict, UserDict) ): return {k: to_py_obj(__A ) for k, v in obj.items()} elif isinstance(__A ,(list, tuple) ): return [to_py_obj(__A ) for o in obj] elif is_tf_tensor(__A ): return obj.numpy().tolist() elif is_torch_tensor(__A ): return obj.detach().cpu().tolist() elif is_jax_tensor(__A ): return np.asarray(__A ).tolist() elif isinstance(__A ,(np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def A ( a_ ) -> str: if isinstance(__A ,(dict, UserDict) ): return {k: to_numpy(__A ) for k, v in obj.items()} elif isinstance(__A ,(list, tuple) ): return np.array(__A ) elif is_tf_tensor(__A ): return obj.numpy() elif is_torch_tensor(__A ): return obj.detach().cpu().numpy() elif is_jax_tensor(__A ): return np.asarray(__A ) else: return obj class __A ( a__ ): """simple docstring""" def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Any =fields(self ) # Safety and consistency checks if not len(lowerCamelCase__ ): raise ValueError(f'{self.__class__.__name__} has no fields.' ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(f'{self.__class__.__name__} should not have more than one required field.' ) __UpperCamelCase : int =getattr(self , class_fields[0].name ) __UpperCamelCase : Optional[int] =all(getattr(self , field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(lowerCamelCase__ ): if isinstance(lowerCamelCase__ , lowerCamelCase__ ): __UpperCamelCase : List[str] =first_field.items() __UpperCamelCase : Optional[int] =True else: try: __UpperCamelCase : List[str] =iter(lowerCamelCase__ ) __UpperCamelCase : Optional[int] =True except TypeError: __UpperCamelCase : Optional[int] =False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(lowerCamelCase__ ): if ( not isinstance(lowerCamelCase__ , (list, tuple) ) or not len(lowerCamelCase__ ) == 2 or not isinstance(element[0] , lowerCamelCase__ ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute __UpperCamelCase : Optional[int] =first_field else: # If we have a mixed iterator, raise an error raise ValueError( f'Cannot set key/value for {element}. It needs to be a tuple (key, value).' ) break setattr(self , element[0] , element[1] ) if element[1] is not None: __UpperCamelCase : int =element[1] elif first_field is not None: __UpperCamelCase : Union[str, Any] =first_field else: for field in class_fields: __UpperCamelCase : str =getattr(self , field.name ) if v is not None: __UpperCamelCase : Dict =v def __delitem__( self , *lowerCamelCase__ , **lowerCamelCase__ ): """simple docstring""" raise Exception(f'You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.' ) def __lowercase ( self , *lowerCamelCase__ , **lowerCamelCase__ ): """simple docstring""" raise Exception(f'You cannot use ``setdefault`` on a {self.__class__.__name__} instance.' ) def __lowercase ( self , *lowerCamelCase__ , **lowerCamelCase__ ): """simple docstring""" raise Exception(f'You cannot use ``pop`` on a {self.__class__.__name__} instance.' ) def __lowercase ( self , *lowerCamelCase__ , **lowerCamelCase__ ): """simple docstring""" raise Exception(f'You cannot use ``update`` on a {self.__class__.__name__} instance.' ) def __getitem__( self , lowerCamelCase__ ): """simple docstring""" if isinstance(lowerCamelCase__ , lowerCamelCase__ ): __UpperCamelCase : str =dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(lowerCamelCase__ , lowerCamelCase__ ) super().__setattr__(lowerCamelCase__ , lowerCamelCase__ ) def __setitem__( self , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" super().__setitem__(lowerCamelCase__ , lowerCamelCase__ ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(lowerCamelCase__ , lowerCamelCase__ ) def __lowercase ( self ): """simple docstring""" return tuple(self[k] for k in self.keys() ) class __A ( a__ , a__ ): """simple docstring""" @classmethod def __lowercase ( cls , lowerCamelCase__ ): """simple docstring""" raise ValueError( f'{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}' ) class __A ( a__ ): """simple docstring""" UpperCamelCase__ : List[Any] ="""longest""" UpperCamelCase__ : str ="""max_length""" UpperCamelCase__ : List[str] ="""do_not_pad""" class __A ( a__ ): """simple docstring""" UpperCamelCase__ : Optional[Any] ="""pt""" UpperCamelCase__ : Optional[Any] ="""tf""" UpperCamelCase__ : Optional[Any] ="""np""" UpperCamelCase__ : Any ="""jax""" class __A : """simple docstring""" def __init__( self , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : int =context_managers __UpperCamelCase : str =ExitStack() def __enter__( self ): """simple docstring""" for context_manager in self.context_managers: self.stack.enter_context(lowerCamelCase__ ) def __exit__( self , *lowerCamelCase__ , **lowerCamelCase__ ): """simple docstring""" self.stack.__exit__(*lowerCamelCase__ , **lowerCamelCase__ ) def A ( a_ ) -> Tuple: __UpperCamelCase : Optional[int] =infer_framework(__A ) if framework == "tf": __UpperCamelCase : Tuple =inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": __UpperCamelCase : str =inspect.signature(model_class.forward ) # PyTorch models else: __UpperCamelCase : str =inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def A ( a_ ) -> Tuple: __UpperCamelCase : Union[str, Any] =model_class.__name__ __UpperCamelCase : List[str] =infer_framework(__A ) if framework == "tf": __UpperCamelCase : Optional[int] =inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": __UpperCamelCase : str =inspect.signature(model_class.forward ) # PyTorch models else: __UpperCamelCase : Optional[int] =inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def A ( a_ ,a_ = "" ,a_ = "." ) -> Any: def _flatten_dict(a_ ,a_="" ,a_="." ): for k, v in d.items(): __UpperCamelCase : List[Any] =str(__A ) + delimiter + str(__A ) if parent_key else k if v and isinstance(__A ,__A ): yield from flatten_dict(__A ,__A ,delimiter=__A ).items() else: yield key, v return dict(_flatten_dict(__A ,__A ,__A ) ) @contextmanager def A ( a_ ,a_ = False ) -> Any: if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def A ( a_ ,a_=None ) -> Optional[Any]: if is_numpy_array(__A ): return np.transpose(__A ,axes=__A ) elif is_torch_tensor(__A ): return array.T if axes is None else array.permute(*__A ) elif is_tf_tensor(__A ): import tensorflow as tf return tf.transpose(__A ,perm=__A ) elif is_jax_tensor(__A ): return jnp.transpose(__A ,axes=__A ) else: raise ValueError(F'Type not supported for transpose: {type(__A )}.' ) def A ( a_ ,a_ ) -> str: if is_numpy_array(__A ): return np.reshape(__A ,__A ) elif is_torch_tensor(__A ): return array.reshape(*__A ) elif is_tf_tensor(__A ): import tensorflow as tf return tf.reshape(__A ,__A ) elif is_jax_tensor(__A ): return jnp.reshape(__A ,__A ) else: raise ValueError(F'Type not supported for reshape: {type(__A )}.' ) def A ( a_ ,a_=None ) -> Optional[Any]: if is_numpy_array(__A ): return np.squeeze(__A ,axis=__A ) elif is_torch_tensor(__A ): return array.squeeze() if axis is None else array.squeeze(dim=__A ) elif is_tf_tensor(__A ): import tensorflow as tf return tf.squeeze(__A ,axis=__A ) elif is_jax_tensor(__A ): return jnp.squeeze(__A ,axis=__A ) else: raise ValueError(F'Type not supported for squeeze: {type(__A )}.' ) def A ( a_ ,a_ ) -> List[str]: if is_numpy_array(__A ): return np.expand_dims(__A ,__A ) elif is_torch_tensor(__A ): return array.unsqueeze(dim=__A ) elif is_tf_tensor(__A ): import tensorflow as tf return tf.expand_dims(__A ,axis=__A ) elif is_jax_tensor(__A ): return jnp.expand_dims(__A ,axis=__A ) else: raise ValueError(F'Type not supported for expand_dims: {type(__A )}.' ) def A ( a_ ) -> str: if is_numpy_array(__A ): return np.size(__A ) elif is_torch_tensor(__A ): return array.numel() elif is_tf_tensor(__A ): import tensorflow as tf return tf.size(__A ) elif is_jax_tensor(__A ): return array.size else: raise ValueError(F'Type not supported for expand_dims: {type(__A )}.' ) def A ( a_ ,a_ ) -> Dict: for key, value in auto_map.items(): if isinstance(__A ,(tuple, list) ): __UpperCamelCase : List[str] =[F'{repo_id}--{v}' if (v is not None and '--' not in v) else v for v in value] elif value is not None and "--" not in value: __UpperCamelCase : List[str] =F'{repo_id}--{value}' return auto_map def A ( a_ ) -> List[str]: for base_class in inspect.getmro(__A ): __UpperCamelCase : Any =base_class.__module__ __UpperCamelCase : Any =base_class.__name__ if module.startswith('tensorflow' ) or module.startswith('keras' ) or name == "TFPreTrainedModel": return "tf" elif module.startswith('torch' ) or name == "PreTrainedModel": return "pt" elif module.startswith('flax' ) or module.startswith('jax' ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(F'Could not infer framework from class {model_class}.' )
71
'''simple docstring''' from math import factorial, pi def _UpperCamelCase ( __A , __A = 30 ) -> float: '''simple docstring''' if not isinstance(__A , (int, float) ): raise ValueError("maclaurin_sin() requires either an int or float for theta" ) if not isinstance(__A , __A ) or accuracy <= 0: raise ValueError("maclaurin_sin() requires a positive int for accuracy" ) UpperCamelCase__ = float(__A ) UpperCamelCase__ = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(__A ) ) def _UpperCamelCase ( __A , __A = 30 ) -> float: '''simple docstring''' if not isinstance(__A , (int, float) ): raise ValueError("maclaurin_cos() requires either an int or float for theta" ) if not isinstance(__A , __A ) or accuracy <= 0: raise ValueError("maclaurin_cos() requires a positive int for accuracy" ) UpperCamelCase__ = float(__A ) UpperCamelCase__ = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(__A ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(1_0)) print(maclaurin_sin(-1_0)) print(maclaurin_sin(1_0, 1_5)) print(maclaurin_sin(-1_0, 1_5)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(1_0, 1_5)) print(maclaurin_cos(-1_0, 1_5))
80
0
'''simple docstring''' def __magic_name__( ): return [ a * b * (1_0_0_0 - a - b) for a in range(1, 9_9_9) for b in range(lowerCamelCase, 9_9_9) if (a * a + b * b == (1_0_0_0 - a - b) ** 2) ][0] if __name__ == "__main__": print(f"""{solution() = }""")
9
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class a__ ( __A ): """simple docstring""" __UpperCamelCase : Tuple = 'naver-clova-ix/donut-base-finetuned-docvqa' __UpperCamelCase : List[str] = ( 'This is a tool that answers a question about an document (pdf). It takes an input named `document` which ' 'should be the document containing the information, as well as a `question` that is the question about the ' 'document. It returns a text that contains the answer to the question.' ) __UpperCamelCase : Optional[int] = 'document_qa' __UpperCamelCase : Optional[int] = AutoProcessor __UpperCamelCase : Tuple = VisionEncoderDecoderModel __UpperCamelCase : Any = ['image', 'text'] __UpperCamelCase : Optional[Any] = ['text'] def __init__(self , *__lowercase , **__lowercase ): if not is_vision_available(): raise ValueError('''Pillow must be installed to use the DocumentQuestionAnsweringTool.''' ) super().__init__(*__lowercase , **__lowercase ) def _snake_case (self , __lowercase , __lowercase ): __lowerCAmelCase = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' __lowerCAmelCase = task_prompt.replace('''{user_input}''' , __lowercase ) __lowerCAmelCase = self.pre_processor.tokenizer( __lowercase , add_special_tokens=__lowercase , return_tensors='''pt''' ).input_ids __lowerCAmelCase = self.pre_processor(__lowercase , return_tensors='''pt''' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def _snake_case (self , __lowercase ): return self.model.generate( inputs['''pixel_values'''].to(self.device ) , decoder_input_ids=inputs['''decoder_input_ids'''].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=__lowercase , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=__lowercase , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=__lowercase , ).sequences def _snake_case (self , __lowercase ): __lowerCAmelCase = self.pre_processor.batch_decode(__lowercase )[0] __lowerCAmelCase = sequence.replace(self.pre_processor.tokenizer.eos_token , '''''' ) __lowerCAmelCase = sequence.replace(self.pre_processor.tokenizer.pad_token , '''''' ) __lowerCAmelCase = re.sub(R'''<.*?>''' , '''''' , __lowercase , count=1 ).strip() # remove first task start token __lowerCAmelCase = self.pre_processor.tokenajson(__lowercase ) return sequence["answer"]
9
1
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging a__: str = logging.get_logger(__name__) def UpperCamelCase__( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : str )->Optional[Any]: A__ = nn.functional.normalize(UpperCamelCase__ ) A__ = nn.functional.normalize(UpperCamelCase__ ) return torch.mm(UpperCamelCase__ , normalized_text_embeds.t() ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): __SCREAMING_SNAKE_CASE = CLIPConfig __SCREAMING_SNAKE_CASE = ['''CLIPEncoderLayer'''] def __init__( self,__lowerCamelCase ): super().__init__(__lowerCamelCase ) A__ = CLIPVisionModel(config.vision_config ) A__ = nn.Linear(config.vision_config.hidden_size,config.projection_dim,bias=__lowerCamelCase ) A__ = nn.Parameter(torch.ones(17,config.projection_dim ),requires_grad=__lowerCamelCase ) A__ = nn.Parameter(torch.ones(3,config.projection_dim ),requires_grad=__lowerCamelCase ) A__ = nn.Parameter(torch.ones(17 ),requires_grad=__lowerCamelCase ) A__ = nn.Parameter(torch.ones(3 ),requires_grad=__lowerCamelCase ) @torch.no_grad() def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase ): A__ = self.vision_model(__lowerCamelCase )[1] # pooled_output A__ = self.visual_projection(__lowerCamelCase ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 A__ = cosine_distance(__lowerCamelCase,self.special_care_embeds ).cpu().float().numpy() A__ = cosine_distance(__lowerCamelCase,self.concept_embeds ).cpu().float().numpy() A__ = [] A__ = image_embeds.shape[0] for i in range(__lowerCamelCase ): A__ = {'''special_scores''': {}, '''special_care''': [], '''concept_scores''': {}, '''bad_concepts''': []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images A__ = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): A__ = special_cos_dist[i][concept_idx] A__ = self.special_care_embeds_weights[concept_idx].item() A__ = round(concept_cos - concept_threshold + adjustment,3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img['''special_scores'''][concept_idx]} ) A__ = 0.01 for concept_idx in range(len(cos_dist[0] ) ): A__ = cos_dist[i][concept_idx] A__ = self.concept_embeds_weights[concept_idx].item() A__ = round(concept_cos - concept_threshold + adjustment,3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(__lowerCamelCase ) result.append(__lowerCamelCase ) A__ = [len(res['''bad_concepts'''] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase ): A__ = self.vision_model(__lowerCamelCase )[1] # pooled_output A__ = self.visual_projection(__lowerCamelCase ) A__ = cosine_distance(__lowerCamelCase,self.special_care_embeds ) A__ = cosine_distance(__lowerCamelCase,self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images A__ = 0.0 A__ = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) A__ = torch.any(special_scores > 0,dim=1 ) A__ = special_care * 0.01 A__ = special_adjustment.unsqueeze(1 ).expand(-1,cos_dist.shape[1] ) A__ = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) A__ = torch.any(concept_scores > 0,dim=1 ) return images, has_nsfw_concepts
193
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): __SCREAMING_SNAKE_CASE = (DDIMParallelScheduler,) __SCREAMING_SNAKE_CASE = (('''eta''', 0.0), ('''num_inference_steps''', 50)) def UpperCamelCase ( self,**__lowerCamelCase ): A__ = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''clip_sample''': True, } config.update(**__lowerCamelCase ) return config def UpperCamelCase ( self,**__lowerCamelCase ): A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config(**__lowerCamelCase ) A__ = scheduler_class(**__lowerCamelCase ) A__ , A__ = 10, 0.0 A__ = self.dummy_model() A__ = self.dummy_sample_deter scheduler.set_timesteps(__lowerCamelCase ) for t in scheduler.timesteps: A__ = model(__lowerCamelCase,__lowerCamelCase ) A__ = scheduler.step(__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase ).prev_sample return sample def UpperCamelCase ( self ): for timesteps in [100, 500, 1000]: self.check_over_configs(num_train_timesteps=__lowerCamelCase ) def UpperCamelCase ( self ): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=__lowerCamelCase ) A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config(steps_offset=1 ) A__ = scheduler_class(**__lowerCamelCase ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps,torch.LongTensor([801, 601, 401, 201, 1] ) ) def UpperCamelCase ( self ): for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1],[0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=__lowerCamelCase,beta_end=__lowerCamelCase ) def UpperCamelCase ( self ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__lowerCamelCase ) def UpperCamelCase ( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__lowerCamelCase ) def UpperCamelCase ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=__lowerCamelCase ) def UpperCamelCase ( self ): for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=__lowerCamelCase ) def UpperCamelCase ( self ): for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=__lowerCamelCase ) def UpperCamelCase ( self ): self.check_over_configs(thresholding=__lowerCamelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=__lowerCamelCase,prediction_type=__lowerCamelCase,sample_max_value=__lowerCamelCase,) def UpperCamelCase ( self ): for t in [1, 10, 49]: self.check_over_forward(time_step=__lowerCamelCase ) def UpperCamelCase ( self ): for t, num_inference_steps in zip([1, 10, 50],[10, 50, 500] ): self.check_over_forward(time_step=__lowerCamelCase,num_inference_steps=__lowerCamelCase ) def UpperCamelCase ( self ): for t, eta in zip([1, 10, 49],[0.0, 0.5, 1.0] ): self.check_over_forward(time_step=__lowerCamelCase,eta=__lowerCamelCase ) def UpperCamelCase ( self ): A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config() A__ = scheduler_class(**__lowerCamelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0,0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(420,400 ) - 0.14771 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(980,960 ) - 0.32460 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(0,0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487,486 ) - 0.00979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999,998 ) - 0.02 ) ) < 1E-5 def UpperCamelCase ( self ): A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config() A__ = scheduler_class(**__lowerCamelCase ) A__ , A__ = 10, 0.0 scheduler.set_timesteps(__lowerCamelCase ) A__ = self.dummy_model() A__ = self.dummy_sample_deter A__ = self.dummy_sample_deter + 0.1 A__ = self.dummy_sample_deter - 0.1 A__ = samplea.shape[0] A__ = torch.stack([samplea, samplea, samplea],dim=0 ) A__ = torch.arange(__lowerCamelCase )[0:3, None].repeat(1,__lowerCamelCase ) A__ = model(samples.flatten(0,1 ),timesteps.flatten(0,1 ) ) A__ = scheduler.batch_step_no_noise(__lowerCamelCase,timesteps.flatten(0,1 ),samples.flatten(0,1 ),__lowerCamelCase ) A__ = torch.sum(torch.abs(__lowerCamelCase ) ) A__ = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 1147.7904 ) < 1E-2 assert abs(result_mean.item() - 0.4982 ) < 1E-3 def UpperCamelCase ( self ): A__ = self.full_loop() A__ = torch.sum(torch.abs(__lowerCamelCase ) ) A__ = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 172.0067 ) < 1E-2 assert abs(result_mean.item() - 0.223967 ) < 1E-3 def UpperCamelCase ( self ): A__ = self.full_loop(prediction_type='''v_prediction''' ) A__ = torch.sum(torch.abs(__lowerCamelCase ) ) A__ = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 52.5302 ) < 1E-2 assert abs(result_mean.item() - 0.0684 ) < 1E-3 def UpperCamelCase ( self ): # We specify different beta, so that the first alpha is 0.99 A__ = self.full_loop(set_alpha_to_one=__lowerCamelCase,beta_start=0.01 ) A__ = torch.sum(torch.abs(__lowerCamelCase ) ) A__ = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 149.8295 ) < 1E-2 assert abs(result_mean.item() - 0.1951 ) < 1E-3 def UpperCamelCase ( self ): # We specify different beta, so that the first alpha is 0.99 A__ = self.full_loop(set_alpha_to_one=__lowerCamelCase,beta_start=0.01 ) A__ = torch.sum(torch.abs(__lowerCamelCase ) ) A__ = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 149.0784 ) < 1E-2 assert abs(result_mean.item() - 0.1941 ) < 1E-3
193
1
from __future__ import annotations def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> list[int]: # This function is recursive a = len(__UpperCamelCase) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else a = array[0] a = False a = 1 a = [] while not is_found and i < array_length: if array[i] < pivot: a = True a = [element for element in array[i:] if element >= array[i]] a = longest_subsequence(__UpperCamelCase) if len(__UpperCamelCase) > len(__UpperCamelCase): a = temp_array else: i += 1 a = [element for element in array[1:] if element >= pivot] a = [pivot, *longest_subsequence(__UpperCamelCase)] if len(__UpperCamelCase) > len(__UpperCamelCase): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
180
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowercase__ : Tuple = logging.get_logger(__name__) lowercase__ : int = { "microsoft/resnet-50": "https://huggingface.co/microsoft/resnet-50/blob/main/config.json", } class a__ ( UpperCamelCase__ , UpperCamelCase__ ): a : Any = """resnet""" a : Tuple = ["""basic""", """bottleneck"""] def __init__( self , A=3 , A=64 , A=[256, 512, 1024, 2048] , A=[3, 4, 6, 3] , A="bottleneck" , A="relu" , A=False , A=None , A=None , **A , ) -> Any: '''simple docstring''' super().__init__(**A ) if layer_type not in self.layer_types: raise ValueError(F'''layer_type={layer_type} is not one of {",".join(self.layer_types )}''' ) a = num_channels a = embedding_size a = hidden_sizes a = depths a = layer_type a = hidden_act a = downsample_in_first_stage a = ["stem"] + [F'''stage{idx}''' for idx in range(1 , len(A ) + 1 )] a , a = get_aligned_output_features_output_indices( out_features=A , out_indices=A , stage_names=self.stage_names ) class a__ ( UpperCamelCase__ ): a : Optional[int] = version.parse("""1.11""" ) @property def lowerCAmelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def lowerCAmelCase_ ( self ) -> float: '''simple docstring''' return 1e-3
180
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __A = logging.get_logger(__name__) if is_vision_available(): import PIL class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["pixel_values"] def __init__(self : Optional[Any] , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Union[int, float] = 1 / 255 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Optional[Union[float, List[float]]] = None , UpperCAmelCase_ : Optional[Union[float, List[float]]] = None , UpperCAmelCase_ : bool = True , **UpperCAmelCase_ : Tuple , ) ->None: '''simple docstring''' super().__init__(**UpperCAmelCase_) lowerCamelCase__: Optional[Any] =size if size is not None else {"shortest_edge": 224} lowerCamelCase__: Optional[Any] =get_size_dict(UpperCAmelCase_ , default_to_square=UpperCAmelCase_) lowerCamelCase__: Optional[int] =crop_size if crop_size is not None else {"height": 224, "width": 224} lowerCamelCase__: Tuple =get_size_dict(UpperCAmelCase_ , default_to_square=UpperCAmelCase_ , param_name="crop_size") lowerCamelCase__: Union[str, Any] =do_resize lowerCamelCase__: Union[str, Any] =size lowerCamelCase__: Any =resample lowerCamelCase__: List[str] =do_center_crop lowerCamelCase__: List[Any] =crop_size lowerCamelCase__: List[str] =do_rescale lowerCamelCase__: List[str] =rescale_factor lowerCamelCase__: str =do_normalize lowerCamelCase__: Tuple =image_mean if image_mean is not None else OPENAI_CLIP_MEAN lowerCamelCase__: List[Any] =image_std if image_std is not None else OPENAI_CLIP_STD lowerCamelCase__: int =do_convert_rgb def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Dict[str, int] , UpperCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : List[Any] , ) ->np.ndarray: '''simple docstring''' lowerCamelCase__: List[str] =get_size_dict(UpperCAmelCase_ , default_to_square=UpperCAmelCase_) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""") lowerCamelCase__: Optional[int] =get_resize_output_image_size(UpperCAmelCase_ , size=size["shortest_edge"] , default_to_square=UpperCAmelCase_) return resize(UpperCAmelCase_ , size=UpperCAmelCase_ , resample=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Dict[str, int] , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : Optional[int] , ) ->np.ndarray: '''simple docstring''' lowerCamelCase__: int =get_size_dict(UpperCAmelCase_) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""") return center_crop(UpperCAmelCase_ , size=(size["height"], size["width"]) , data_format=UpperCAmelCase_ , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Union[int, float] , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : List[str] , ) ->int: '''simple docstring''' return rescale(UpperCAmelCase_ , scale=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Union[float, List[float]] , UpperCAmelCase_ : Union[float, List[float]] , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : Any , ) ->np.ndarray: '''simple docstring''' return normalize(UpperCAmelCase_ , mean=UpperCAmelCase_ , std=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Any , UpperCAmelCase_ : ImageInput , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : PILImageResampling = None , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : int = None , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : float = None , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : Optional[Union[float, List[float]]] = None , UpperCAmelCase_ : Optional[Union[float, List[float]]] = None , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : Optional[Union[str, TensorType]] = None , UpperCAmelCase_ : Optional[ChannelDimension] = ChannelDimension.FIRST , **UpperCAmelCase_ : List[str] , ) ->PIL.Image.Image: '''simple docstring''' lowerCamelCase__: Tuple =do_resize if do_resize is not None else self.do_resize lowerCamelCase__: List[Any] =size if size is not None else self.size lowerCamelCase__: List[Any] =get_size_dict(UpperCAmelCase_ , param_name="size" , default_to_square=UpperCAmelCase_) lowerCamelCase__: Any =resample if resample is not None else self.resample lowerCamelCase__: Any =do_center_crop if do_center_crop is not None else self.do_center_crop lowerCamelCase__: Any =crop_size if crop_size is not None else self.crop_size lowerCamelCase__: Union[str, Any] =get_size_dict(UpperCAmelCase_ , param_name="crop_size" , default_to_square=UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase__: List[str] =rescale_factor if rescale_factor is not None else self.rescale_factor lowerCamelCase__: int =do_normalize if do_normalize is not None else self.do_normalize lowerCamelCase__: Optional[Any] =image_mean if image_mean is not None else self.image_mean lowerCamelCase__: Optional[int] =image_std if image_std is not None else self.image_std lowerCamelCase__: Dict =do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowerCamelCase__: Dict =make_list_of_images(UpperCAmelCase_) if not valid_images(UpperCAmelCase_): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray.") if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True.") if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True.") if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True.") if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True.") # PIL RGBA images are converted to RGB if do_convert_rgb: lowerCamelCase__: List[Any] =[convert_to_rgb(UpperCAmelCase_) for image in images] # All transformations expect numpy arrays. lowerCamelCase__: str =[to_numpy_array(UpperCAmelCase_) for image in images] if do_resize: lowerCamelCase__: Union[str, Any] =[self.resize(image=UpperCAmelCase_ , size=UpperCAmelCase_ , resample=UpperCAmelCase_) for image in images] if do_center_crop: lowerCamelCase__: Optional[Any] =[self.center_crop(image=UpperCAmelCase_ , size=UpperCAmelCase_) for image in images] if do_rescale: lowerCamelCase__: Any =[self.rescale(image=UpperCAmelCase_ , scale=UpperCAmelCase_) for image in images] if do_normalize: lowerCamelCase__: List[str] =[self.normalize(image=UpperCAmelCase_ , mean=UpperCAmelCase_ , std=UpperCAmelCase_) for image in images] lowerCamelCase__: List[str] =[to_channel_dimension_format(UpperCAmelCase_ , UpperCAmelCase_) for image in images] lowerCamelCase__: str ={"pixel_values": images} return BatchFeature(data=UpperCAmelCase_ , tensor_type=UpperCAmelCase_)
10
'''simple docstring''' import warnings from ..trainer import Trainer from ..utils import logging __a = logging.get_logger(__name__) class A__ ( UpperCamelCase ): """simple docstring""" def __init__( self : Optional[int] , lowerCAmelCase__ : List[str]=None , **lowerCAmelCase__ : List[str] ) -> Union[str, Any]: """simple docstring""" warnings.warn( "`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` " "instead." , lowerCAmelCase__ , ) super().__init__(args=lowerCAmelCase__ , **lowerCAmelCase__ )
145
0
from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class __snake_case ( nn.Module ): def __init__( self : Any , _lowercase : Any = 16 , _lowercase : List[Any] = 88 , _lowercase : int = None , _lowercase : Optional[Any] = 1 , _lowercase : Dict = 0.0 , _lowercase : List[Any] = 32 , _lowercase : Tuple = None , _lowercase : List[str] = False , _lowercase : List[str] = None , _lowercase : List[Any] = None , _lowercase : Union[str, Any] = "geglu" , _lowercase : List[str] = None , ): """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = nn.ModuleList( [ TransformeraDModel( num_attention_heads=_SCREAMING_SNAKE_CASE , attention_head_dim=_SCREAMING_SNAKE_CASE , in_channels=_SCREAMING_SNAKE_CASE , num_layers=_SCREAMING_SNAKE_CASE , dropout=_SCREAMING_SNAKE_CASE , norm_num_groups=_SCREAMING_SNAKE_CASE , cross_attention_dim=_SCREAMING_SNAKE_CASE , attention_bias=_SCREAMING_SNAKE_CASE , sample_size=_SCREAMING_SNAKE_CASE , num_vector_embeds=_SCREAMING_SNAKE_CASE , activation_fn=_SCREAMING_SNAKE_CASE , num_embeds_ada_norm=_SCREAMING_SNAKE_CASE , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference SCREAMING_SNAKE_CASE__ = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` SCREAMING_SNAKE_CASE__ = [77, 2_57] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` SCREAMING_SNAKE_CASE__ = [1, 0] def __a ( self : Optional[Any] , _lowercase : Dict , _lowercase : List[Any] , _lowercase : List[str]=None , _lowercase : Union[str, Any]=None , _lowercase : str=None , _lowercase : int = True , ): """simple docstring""" SCREAMING_SNAKE_CASE__ = hidden_states SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens SCREAMING_SNAKE_CASE__ = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] SCREAMING_SNAKE_CASE__ = self.transformer_index_for_condition[i] SCREAMING_SNAKE_CASE__ = self.transformers[transformer_index]( _SCREAMING_SNAKE_CASE , encoder_hidden_states=_SCREAMING_SNAKE_CASE , timestep=_SCREAMING_SNAKE_CASE , cross_attention_kwargs=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] SCREAMING_SNAKE_CASE__ = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) SCREAMING_SNAKE_CASE__ = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=_SCREAMING_SNAKE_CASE )
355
import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification __lowerCamelCase : Tuple = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co __lowerCamelCase : Optional[Any] = '''main''' # Default branch name __lowerCamelCase : Optional[int] = '''f2c752cfc5c0ab6f4bdec59acea69eefbee381c2''' # One particular commit (not the top of `main`) __lowerCamelCase : Any = '''aaaaaaa''' # This commit does not exist, so we should 404. __lowerCamelCase : List[str] = '''d9e9f15bc825e4b2c9249e9578f884bbcb5e3684''' # Sha-1 of config.json on the top of `main`, for checking purposes __lowerCamelCase : List[Any] = '''4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3''' @contextlib.contextmanager def __SCREAMING_SNAKE_CASE ( ) -> str: """simple docstring""" print("""Welcome!""" ) yield print("""Bye!""" ) @contextlib.contextmanager def __SCREAMING_SNAKE_CASE ( ) -> Any: """simple docstring""" print("""Bonjour!""" ) yield print("""Au revoir!""" ) class __snake_case ( unittest.TestCase ): def __a ( self : List[Any] ): """simple docstring""" assert transformers.__spec__ is not None assert importlib.util.find_spec("""transformers""" ) is not None class __snake_case ( unittest.TestCase ): @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def __a ( self : List[str] , _lowercase : str ): """simple docstring""" with ContextManagers([] ): print("""Transformers are awesome!""" ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , """Transformers are awesome!\n""" ) @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def __a ( self : Optional[Any] , _lowercase : str ): """simple docstring""" with ContextManagers([context_en()] ): print("""Transformers are awesome!""" ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , """Welcome!\nTransformers are awesome!\nBye!\n""" ) @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def __a ( self : Tuple , _lowercase : Dict ): """simple docstring""" with ContextManagers([context_fr(), context_en()] ): print("""Transformers are awesome!""" ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , """Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n""" ) @require_torch def __a ( self : Union[str, Any] ): """simple docstring""" self.assertEqual(find_labels(_lowercase ) , ["""labels"""] ) self.assertEqual(find_labels(_lowercase ) , ["""labels""", """next_sentence_label"""] ) self.assertEqual(find_labels(_lowercase ) , ["""start_positions""", """end_positions"""] ) class __snake_case ( lowerCamelCase_ ): pass self.assertEqual(find_labels(_lowercase ) , ["""labels"""] ) @require_tf def __a ( self : Any ): """simple docstring""" self.assertEqual(find_labels(_lowercase ) , ["""labels"""] ) self.assertEqual(find_labels(_lowercase ) , ["""labels""", """next_sentence_label"""] ) self.assertEqual(find_labels(_lowercase ) , ["""start_positions""", """end_positions"""] ) class __snake_case ( lowerCamelCase_ ): pass self.assertEqual(find_labels(_lowercase ) , ["""labels"""] ) @require_flax def __a ( self : Union[str, Any] ): """simple docstring""" self.assertEqual(find_labels(_lowercase ) , [] ) self.assertEqual(find_labels(_lowercase ) , [] ) self.assertEqual(find_labels(_lowercase ) , [] ) class __snake_case ( lowerCamelCase_ ): pass self.assertEqual(find_labels(_lowercase ) , [] )
204
0
import math import random from typing import Any from .hill_climbing import SearchProblem def __snake_case ( _UpperCAmelCase , _UpperCAmelCase = True , _UpperCAmelCase = math.inf , _UpperCAmelCase = -math.inf , _UpperCAmelCase = math.inf , _UpperCAmelCase = -math.inf , _UpperCAmelCase = False , _UpperCAmelCase = 100 , _UpperCAmelCase = 0.01 , _UpperCAmelCase = 1 , ): __a = False __a = search_prob __a = start_temperate __a = [] __a = 0 __a = None while not search_end: __a = current_state.score() if best_state is None or current_score > best_state.score(): __a = current_state scores.append(_UpperCAmelCase ) iterations += 1 __a = None __a = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to __a = random.randint(0 , len(_UpperCAmelCase ) - 1 ) # picking a random neighbor __a = neighbors.pop(_UpperCAmelCase ) __a = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: __a = change * -1 # in case we are finding minimum if change > 0: # improves the solution __a = picked_neighbor else: __a = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability __a = picked_neighbor __a = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor __a = True else: __a = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(_UpperCAmelCase ) , _UpperCAmelCase ) plt.xlabel('''Iterations''' ) plt.ylabel('''Function values''' ) plt.show() return best_state if __name__ == "__main__": def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) __snake_case :List[str] = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) __snake_case :int = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( '''The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' f'and 50 > y > - 5 found via hill climbing: {local_min.score()}' ) # starting the problem with initial coordinates (12, 47) __snake_case :str = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) __snake_case :Any = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( '''The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' f'and 50 > y > - 5 found via hill climbing: {local_min.score()}' ) def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): return (3 * x**2) - (6 * y) __snake_case :List[Any] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) __snake_case :List[str] = simulated_annealing(prob, find_max=False, visualization=True) print( '''The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' f'{local_min.score()}' ) __snake_case :str = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) __snake_case :Union[str, Any] = simulated_annealing(prob, find_max=True, visualization=True) print( '''The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' f'{local_min.score()}' )
49
'''simple docstring''' def UpperCAmelCase_ ( __lowercase : str ) -> str: '''simple docstring''' return " ".join( "".join(word[::-1] ) if len(__lowercase ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words('''Hey wollef sroirraw'''))
22
0
'''simple docstring''' from typing import Any def __magic_name__ ( A ) -> list[Any]: if not input_list: return [] snake_case = [input_list.count(A ) for value in input_list] snake_case = max(A ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(A ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
332
'''simple docstring''' import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset lowerCAmelCase_ = pd.read_csv( "https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/" "position_salaries.csv" ) lowerCAmelCase_ = dataset.iloc[:, 1:2].values lowerCAmelCase_ = dataset.iloc[:, 2].values lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = train_test_split(X, y, test_size=0.2, random_state=0) lowerCAmelCase_ = PolynomialFeatures(degree=4) lowerCAmelCase_ = poly_reg.fit_transform(X) lowerCAmelCase_ = LinearRegression() pol_reg.fit(X_poly, y) def __magic_name__ ( ) -> Any: plt.scatter(A , A , color='red' ) plt.plot(A , pol_reg.predict(poly_reg.fit_transform(A ) ) , color='blue' ) plt.title('Truth or Bluff (Linear Regression)' ) plt.xlabel('Position level' ) plt.ylabel('Salary' ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
332
1
from collections import deque class _A: """simple docstring""" def __init__( self , _A , _A , _A ): __A : int = process_name # process name __A : Union[str, Any] = arrival_time # arrival time of the process # completion time of finished process or last interrupted time __A : str = arrival_time __A : Tuple = burst_time # remaining burst time __A : int = 0 # total time of the process wait in ready queue __A : Tuple = 0 # time from arrival time to completion time class _A: """simple docstring""" def __init__( self , _A , _A , _A , _A , ): # total number of mlfq's queues __A : Any = number_of_queues # time slice of queues that round robin algorithm applied __A : Optional[int] = time_slices # unfinished process is in this ready_queue __A : Dict = queue # current time __A : Tuple = current_time # finished process is in this sequence queue __A : deque[Process] = deque() def UpperCAmelCase_ ( self ): __A : List[Any] = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def UpperCAmelCase_ ( self , _A ): __A : Dict = [] for i in range(len(_A ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def UpperCAmelCase_ ( self , _A ): __A : Optional[Any] = [] for i in range(len(_A ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def UpperCAmelCase_ ( self , _A ): __A : str = [] for i in range(len(_A ) ): completion_times.append(queue[i].stop_time ) return completion_times def UpperCAmelCase_ ( self , _A ): return [q.burst_time for q in queue] def UpperCAmelCase_ ( self , _A ): process.waiting_time += self.current_time - process.stop_time return process.waiting_time def UpperCAmelCase_ ( self , _A ): __A : deque[Process] = deque() # sequence deque of finished process while len(_A ) != 0: __A : Optional[Any] = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(_A ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 __A : List[str] = 0 # set the process's turnaround time because it is finished __A : List[Any] = self.current_time - cp.arrival_time # set the completion time __A : Dict = self.current_time # add the process to queue that has finished queue finished.append(_A ) self.finish_queue.extend(_A ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def UpperCAmelCase_ ( self , _A , _A ): __A : deque[Process] = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(_A ) ): __A : Any = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(_A ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time __A : str = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(_A ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished __A : Any = 0 # set the finish time __A : str = self.current_time # update the process' turnaround time because it is finished __A : Optional[int] = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(_A ) self.finish_queue.extend(_A ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def UpperCAmelCase_ ( self ): # all queues except last one have round_robin algorithm for i in range(self.number_of_queues - 1 ): __A , __A : Optional[Any] = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest UpperCAmelCase : Any = Process('''P1''', 0, 53) UpperCAmelCase : Dict = Process('''P2''', 0, 17) UpperCAmelCase : List[str] = Process('''P3''', 0, 68) UpperCAmelCase : Optional[int] = Process('''P4''', 0, 24) UpperCAmelCase : List[Any] = 3 UpperCAmelCase : int = [17, 25] UpperCAmelCase : Any = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={'''queue''': deque([Pa, Pa, Pa, Pa])}) UpperCAmelCase : List[Any] = Process('''P1''', 0, 53) UpperCAmelCase : Optional[Any] = Process('''P2''', 0, 17) UpperCAmelCase : List[str] = Process('''P3''', 0, 68) UpperCAmelCase : Any = Process('''P4''', 0, 24) UpperCAmelCase : Dict = 3 UpperCAmelCase : List[str] = [17, 25] UpperCAmelCase : Dict = deque([Pa, Pa, Pa, Pa]) UpperCAmelCase : List[Any] = MLFQ(number_of_queues, time_slices, queue, 0) UpperCAmelCase : List[str] = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( F"""waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print completion times of processes(P1, P2, P3, P4) print( F"""completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print total turnaround times of processes(P1, P2, P3, P4) print( F"""turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print sequence of finished processes print( F"""sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}""" )
280
from __future__ import annotations def _SCREAMING_SNAKE_CASE ( a ) -> int: if not nums: return 0 __A : Optional[int] = nums[0] __A : str = 0 for num in nums[1:]: __A , __A : Tuple = ( max_excluding + num, max(a , a ), ) return max(a , a ) if __name__ == "__main__": import doctest doctest.testmod()
280
1
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( """The `inpainting.py` script is outdated. Please use directly `from diffusers import""" """ StableDiffusionInpaintPipeline` instead.""" )
358
from __future__ import annotations from statistics import mean def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> list[int]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = [0] * no_of_processes SCREAMING_SNAKE_CASE__ = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(UpperCamelCase_ ): SCREAMING_SNAKE_CASE__ = burst_time[i] SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = -1 for i in range(UpperCamelCase_ ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(UpperCamelCase_ ) if len(UpperCamelCase_ ) > 0: SCREAMING_SNAKE_CASE__ = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: SCREAMING_SNAKE_CASE__ = i total_time += burst_time[target_process] completed += 1 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> list[int]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = [0] * no_of_processes for i in range(UpperCamelCase_ ): SCREAMING_SNAKE_CASE__ = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print("""[TEST CASE 01]""") __snake_case = 4 __snake_case = [2, 5, 3, 7] __snake_case = [0, 0, 0, 0] __snake_case = calculate_waitingtime(arrival_time, burst_time, no_of_processes) __snake_case = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print("""PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time""") for i, process_id in enumerate(list(range(1, 5))): print( F"""{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t""" F"""{waiting_time[i]}\t\t\t\t{turn_around_time[i]}""" ) print(F"""\nAverage waiting time = {mean(waiting_time):.5f}""") print(F"""Average turnaround time = {mean(turn_around_time):.5f}""")
169
0
import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class __lowercase ( unittest.TestCase ): """simple docstring""" UpperCamelCase : Dict = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING UpperCamelCase : Union[str, Any] = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def __A ( self , A , A , A ) -> Optional[Any]: '''simple docstring''' lowerCamelCase = TextaTextGenerationPipeline(model=A , tokenizer=A ) return generator, ["Something to write", "Something else"] def __A ( self , A , A ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase = generator("""Something there""" ) self.assertEqual(A , [{"""generated_text""": ANY(A )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]["""generated_text"""].startswith("""Something there""" ) ) lowerCamelCase = generator(["""This is great !""", """Something else"""] , num_return_sequences=2 , do_sample=A ) self.assertEqual( A , [ [{"""generated_text""": ANY(A )}, {"""generated_text""": ANY(A )}], [{"""generated_text""": ANY(A )}, {"""generated_text""": ANY(A )}], ] , ) lowerCamelCase = generator( ["""This is great !""", """Something else"""] , num_return_sequences=2 , batch_size=2 , do_sample=A ) self.assertEqual( A , [ [{"""generated_text""": ANY(A )}, {"""generated_text""": ANY(A )}], [{"""generated_text""": ANY(A )}, {"""generated_text""": ANY(A )}], ] , ) with self.assertRaises(A ): generator(4 ) @require_torch def __A ( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""pt""" ) # do_sample=False necessary for reproducibility lowerCamelCase = generator("""Something there""" , do_sample=A ) self.assertEqual(A , [{"""generated_text""": """"""}] ) lowerCamelCase = 3 lowerCamelCase = generator( """Something there""" , num_return_sequences=A , num_beams=A , ) lowerCamelCase = [ {"generated_text": "Beide Beide Beide Beide Beide Beide Beide Beide Beide"}, {"generated_text": "Beide Beide Beide Beide Beide Beide Beide Beide"}, {"generated_text": ""}, ] self.assertEqual(A , A ) lowerCamelCase = generator("""This is a test""" , do_sample=A , num_return_sequences=2 , return_tensors=A ) self.assertEqual( A , [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ] , ) lowerCamelCase = generator.model.config.eos_token_id lowerCamelCase = "<pad>" lowerCamelCase = generator( ["""This is a test""", """This is a second test"""] , do_sample=A , num_return_sequences=2 , batch_size=2 , return_tensors=A , ) self.assertEqual( A , [ [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ], [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ], ] , ) @require_tf def __A ( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""tf""" ) # do_sample=False necessary for reproducibility lowerCamelCase = generator("""Something there""" , do_sample=A ) self.assertEqual(A , [{"""generated_text""": """"""}] )
252
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer lowerCAmelCase : Tuple =logging.get_logger(__name__) lowerCAmelCase : List[str] ={'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} # See all MVP models at https://huggingface.co/models?filter=mvp lowerCAmelCase : Optional[int] ={ '''vocab_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json''', }, '''added_tokens.json''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json''', }, '''merges_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json''', }, } lowerCAmelCase : List[Any] ={ '''RUCAIBox/mvp''': 1_024, } class a_ ( _lowerCAmelCase ): __A = VOCAB_FILES_NAMES __A = PRETRAINED_VOCAB_FILES_MAP __A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A = ["input_ids", "attention_mask"] __A = MvpTokenizer def __init__( self : Optional[Any] , lowercase : Any=None , lowercase : List[Any]=None , lowercase : Dict=None , lowercase : int="replace" , lowercase : int="<s>" , lowercase : List[str]="</s>" , lowercase : Optional[Any]="</s>" , lowercase : List[str]="<s>" , lowercase : List[str]="<unk>" , lowercase : List[str]="<pad>" , lowercase : Tuple="<mask>" , lowercase : Tuple=False , lowercase : Dict=True , **lowercase : List[str] , ): """simple docstring""" super().__init__( lowercase , lowercase , tokenizer_file=lowercase , errors=lowercase , bos_token=lowercase , eos_token=lowercase , sep_token=lowercase , cls_token=lowercase , unk_token=lowercase , pad_token=lowercase , mask_token=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase , **lowercase , ) lowercase_ :Dict = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , lowercase ) != add_prefix_space: lowercase_ :List[str] = getattr(lowercase , pre_tok_state.pop("type" ) ) lowercase_ :int = add_prefix_space lowercase_ :Optional[int] = pre_tok_class(**lowercase ) lowercase_ :Any = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` lowercase_ :List[Any] = "post_processor" lowercase_ :str = getattr(self.backend_tokenizer , lowercase , lowercase ) if tokenizer_component_instance: lowercase_ :Any = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowercase_ :int = tuple(state["sep"] ) if "cls" in state: lowercase_ :Any = tuple(state["cls"] ) lowercase_ :int = False if state.get("add_prefix_space" , lowercase ) != add_prefix_space: lowercase_ :Union[str, Any] = add_prefix_space lowercase_ :int = True if state.get("trim_offsets" , lowercase ) != trim_offsets: lowercase_ :Any = trim_offsets lowercase_ :int = True if changes_to_apply: lowercase_ :Tuple = getattr(lowercase , state.pop("type" ) ) lowercase_ :Any = component_class(**lowercase ) setattr(self.backend_tokenizer , lowercase , lowercase ) @property def lowercase__ ( self : Optional[int] ): """simple docstring""" if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def lowercase__ ( self : int , lowercase : Dict ): """simple docstring""" lowercase_ :List[str] = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase ) if isinstance(lowercase , lowercase ) else value lowercase_ :Union[str, Any] = value def lowercase__ ( self : Optional[Any] , *lowercase : List[Any] , **lowercase : Any ): """simple docstring""" lowercase_ :Any = kwargs.get("is_split_into_words" , lowercase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*lowercase , **lowercase ) def lowercase__ ( self : Optional[Any] , *lowercase : Optional[int] , **lowercase : int ): """simple docstring""" lowercase_ :Any = kwargs.get("is_split_into_words" , lowercase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*lowercase , **lowercase ) def lowercase__ ( self : Dict , lowercase : str , lowercase : Optional[str] = None ): """simple docstring""" lowercase_ :str = self._tokenizer.model.save(lowercase , name=lowercase ) return tuple(lowercase ) def lowercase__ ( self : Tuple , lowercase : Dict , lowercase : int=None ): """simple docstring""" lowercase_ :List[str] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowercase__ ( self : int , lowercase : List[int] , lowercase : Optional[List[int]] = None ): """simple docstring""" lowercase_ :Union[str, Any] = [self.sep_token_id] lowercase_ :Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
223
0
'''simple docstring''' from __future__ import annotations import time import numpy as np A__ : str = [8, 5, 9, 7] A__ : List[str] = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] A__ : Dict = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class snake_case__ : def __init__( self : Union[str, Any] , __a : list[int] , __a : list[list[int]] , __a : list[list[int]] , ) -> None: '''simple docstring''' __snake_case : int = claim_vector __snake_case : Optional[int] = allocated_resources_table __snake_case : List[str] = maximum_claim_table def A_ ( self : str ) -> list[int]: '''simple docstring''' return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def A_ ( self : int ) -> list[int]: '''simple docstring''' return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def A_ ( self : int ) -> list[list[int]]: '''simple docstring''' return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(__a ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def A_ ( self : str ) -> dict[int, list[int]]: '''simple docstring''' return {self.__need().index(__a ): i for i in self.__need()} def A_ ( self : Union[str, Any] , **__a : int ) -> None: '''simple docstring''' __snake_case : str = self.__need() __snake_case : List[Any] = self.__allocated_resources_table __snake_case : Optional[int] = self.__available_resources() __snake_case : Union[str, Any] = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print('_' * 50 + '\n' ) while need_list: __snake_case : Tuple = False for each_need in need_list: __snake_case : Any = True for index, need in enumerate(__a ): if need > available_resources[index]: __snake_case : List[str] = False break if execution: __snake_case : Union[str, Any] = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: __snake_case : str = original_need_index print(f'''Process {process_number + 1} is executing.''' ) # remove the process run from stack need_list.remove(__a ) # update available/freed resources stack __snake_case : Union[str, Any] = np.array(__a ) + np.array( alloc_resources_table[process_number] ) print( 'Updated available resource stack for processes: ' + ' '.join([str(__a ) for x in available_resources] ) ) break if safe: print('The process is in a safe state.\n' ) else: print('System in unsafe state. Aborting...\n' ) break def A_ ( self : List[str] ) -> Optional[int]: '''simple docstring''' print(' ' * 9 + 'Allocated Resource Table' ) for item in self.__allocated_resources_table: print( f'''P{self.__allocated_resources_table.index(__a ) + 1}''' + ' '.join(f'''{it:>8}''' for it in item ) + '\n' ) print(' ' * 9 + 'System Resource Table' ) for item in self.__maximum_claim_table: print( f'''P{self.__maximum_claim_table.index(__a ) + 1}''' + ' '.join(f'''{it:>8}''' for it in item ) + '\n' ) print( 'Current Usage by Active Processes: ' + ' '.join(str(__a ) for x in self.__claim_vector ) ) print( 'Initial Available Resources: ' + ' '.join(str(__a ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
0
'''simple docstring''' from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging A__ : List[Any] = logging.get_logger(__name__) A__ : Tuple = { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/config.json''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/config.json''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/config.json''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/config.json''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/config.json''', } class snake_case__ ( SCREAMING_SNAKE_CASE_ ): A__ = '''t5''' A__ = ['''past_key_values'''] A__ = {'''hidden_size''': '''d_model''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self : str , __a : Dict=32128 , __a : Dict=512 , __a : Union[str, Any]=64 , __a : str=2048 , __a : Union[str, Any]=6 , __a : Any=None , __a : Any=8 , __a : List[Any]=32 , __a : Any=128 , __a : Tuple=0.1 , __a : str=1e-6 , __a : Dict=1.0 , __a : Tuple="relu" , __a : Dict=True , __a : Union[str, Any]=True , __a : Any=0 , __a : Dict=1 , **__a : Union[str, Any] , ) -> Union[str, Any]: '''simple docstring''' __snake_case : int = vocab_size __snake_case : str = d_model __snake_case : str = d_kv __snake_case : List[Any] = d_ff __snake_case : List[str] = num_layers __snake_case : Tuple = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __snake_case : Union[str, Any] = num_heads __snake_case : Tuple = relative_attention_num_buckets __snake_case : Optional[int] = relative_attention_max_distance __snake_case : Optional[Any] = dropout_rate __snake_case : str = layer_norm_epsilon __snake_case : List[str] = initializer_factor __snake_case : int = feed_forward_proj __snake_case : Optional[Any] = use_cache __snake_case : Optional[Any] = self.feed_forward_proj.split('-' ) __snake_case : Dict = act_info[-1] __snake_case : List[str] = act_info[0] == 'gated' if len(__a ) > 1 and act_info[0] != "gated" or len(__a ) > 2: raise ValueError( f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": __snake_case : Dict = 'gelu_new' super().__init__( pad_token_id=__a , eos_token_id=__a , is_encoder_decoder=__a , **__a , ) class snake_case__ ( SCREAMING_SNAKE_CASE_ ): @property def A_ ( self : str ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' __snake_case : Union[str, Any] = { 'input_ids': {0: 'batch', 1: 'encoder_sequence'}, 'attention_mask': {0: 'batch', 1: 'encoder_sequence'}, } if self.use_past: __snake_case : Tuple = 'past_encoder_sequence + sequence' __snake_case : Dict = {0: 'batch'} __snake_case : Dict = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: __snake_case : Tuple = {0: 'batch', 1: 'decoder_sequence'} __snake_case : int = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(__a , direction='inputs' ) return common_inputs @property def A_ ( self : List[Any] ) -> int: '''simple docstring''' return 13
0
1
"""simple docstring""" import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: lowerCAmelCase__ : Union[str, Any] = OmegaConf.load(__UpperCAmelCase ) lowerCAmelCase__ : Tuple = torch.load(__UpperCAmelCase , map_location="""cpu""" )["""model"""] lowerCAmelCase__ : Dict = list(state_dict.keys() ) # extract state_dict for VQVAE lowerCAmelCase__ : Tuple = {} lowerCAmelCase__ : Union[str, Any] = """first_stage_model.""" for key in keys: if key.startswith(__UpperCAmelCase ): lowerCAmelCase__ : Tuple = state_dict[key] # extract state_dict for UNetLDM lowerCAmelCase__ : int = {} lowerCAmelCase__ : Optional[Any] = """model.diffusion_model.""" for key in keys: if key.startswith(__UpperCAmelCase ): lowerCAmelCase__ : Tuple = state_dict[key] lowerCAmelCase__ : Any = config.model.params.first_stage_config.params lowerCAmelCase__ : Dict = config.model.params.unet_config.params lowerCAmelCase__ : Union[str, Any] = VQModel(**__UpperCAmelCase ).eval() vqvae.load_state_dict(__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = UNetLDMModel(**__UpperCAmelCase ).eval() unet.load_state_dict(__UpperCAmelCase ) lowerCAmelCase__ : Optional[Any] = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule="""scaled_linear""" , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=__UpperCAmelCase , ) lowerCAmelCase__ : Union[str, Any] = LDMPipeline(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) pipeline.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument("""--checkpoint_path""", type=str, required=True) parser.add_argument("""--config_path""", type=str, required=True) parser.add_argument("""--output_path""", type=str, required=True) _A = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
242
"""simple docstring""" from string import ascii_uppercase _A = {str(ord(c) - 5_5): c for c in ascii_uppercase} def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase ) -> str: if isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError("""int() can't convert non-string with explicit base""" ) if num < 0: raise ValueError("""parameter must be positive int""" ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError("""'str' object cannot be interpreted as an integer""" ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError("""'float' object cannot be interpreted as an integer""" ) if base in (0, 1): raise ValueError("""base must be >= 2""" ) if base > 36: raise ValueError("""base must be <= 36""" ) lowerCAmelCase__ : int = """""" lowerCAmelCase__ : List[Any] = 0 lowerCAmelCase__ : Tuple = 0 while div != 1: lowerCAmelCase__ , lowerCAmelCase__ : List[str] = divmod(__UpperCAmelCase , __UpperCAmelCase ) if base >= 11 and 9 < mod < 36: lowerCAmelCase__ : Dict = ALPHABET_VALUES[str(__UpperCAmelCase )] else: lowerCAmelCase__ : Union[str, Any] = str(__UpperCAmelCase ) new_value += actual_value lowerCAmelCase__ : Optional[Any] = num // base lowerCAmelCase__ : Union[str, Any] = div if div == 0: return str(new_value[::-1] ) elif div == 1: new_value += str(__UpperCAmelCase ) return str(new_value[::-1] ) return new_value[::-1] if __name__ == "__main__": import doctest doctest.testmod() for base in range(2, 3_7): for num in range(1_0_0_0): assert int(decimal_to_any(num, base), base) == num, ( num, base, decimal_to_any(num, base), int(decimal_to_any(num, base), base), )
242
1
"""simple docstring""" def _A (__a = 10 , __a = 22 ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = range(1 , __a ) SCREAMING_SNAKE_CASE_ : Tuple = range(1 , __a ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(f'''{solution(10, 22) = }''')
318
"""simple docstring""" from ...processing_utils import ProcessorMixin class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = "SpeechT5FeatureExtractor" __UpperCamelCase = "SpeechT5Tokenizer" def __init__( self : Any , lowercase_ : Dict , lowercase_ : Optional[Any]): '''simple docstring''' super().__init__(lowercase_ , lowercase_) def __call__( self : List[Any] , *lowercase_ : List[Any] , **lowercase_ : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = kwargs.pop('''audio''' , lowercase_) SCREAMING_SNAKE_CASE_ : Optional[int] = kwargs.pop('''text''' , lowercase_) SCREAMING_SNAKE_CASE_ : Any = kwargs.pop('''text_target''' , lowercase_) SCREAMING_SNAKE_CASE_ : Dict = kwargs.pop('''audio_target''' , lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = kwargs.pop('''sampling_rate''' , lowercase_) if audio is not None and text is not None: raise ValueError( '''Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?''') if audio_target is not None and text_target is not None: raise ValueError( '''Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?''') if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( '''You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.''') if audio is not None: SCREAMING_SNAKE_CASE_ : Any = self.feature_extractor(lowercase_ , *lowercase_ , sampling_rate=lowercase_ , **lowercase_) elif text is not None: SCREAMING_SNAKE_CASE_ : Dict = self.tokenizer(lowercase_ , **lowercase_) else: SCREAMING_SNAKE_CASE_ : Any = None if audio_target is not None: SCREAMING_SNAKE_CASE_ : List[Any] = self.feature_extractor(audio_target=lowercase_ , *lowercase_ , sampling_rate=lowercase_ , **lowercase_) SCREAMING_SNAKE_CASE_ : Optional[int] = targets['''input_values'''] elif text_target is not None: SCREAMING_SNAKE_CASE_ : int = self.tokenizer(lowercase_ , **lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = targets['''input_ids'''] else: SCREAMING_SNAKE_CASE_ : int = None if inputs is None: return targets if targets is not None: SCREAMING_SNAKE_CASE_ : Union[str, Any] = labels SCREAMING_SNAKE_CASE_ : Optional[Any] = targets.get('''attention_mask''') if decoder_attention_mask is not None: SCREAMING_SNAKE_CASE_ : Any = decoder_attention_mask return inputs def _SCREAMING_SNAKE_CASE ( self : Tuple , *lowercase_ : Tuple , **lowercase_ : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = kwargs.pop('''input_values''' , lowercase_) SCREAMING_SNAKE_CASE_ : int = kwargs.pop('''input_ids''' , lowercase_) SCREAMING_SNAKE_CASE_ : Dict = kwargs.pop('''labels''' , lowercase_) if input_values is not None and input_ids is not None: raise ValueError('''Cannot process both `input_values` and `input_ids` inputs.''') if input_values is None and input_ids is None and labels is None: raise ValueError( '''You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.''') if input_values is not None: SCREAMING_SNAKE_CASE_ : Any = self.feature_extractor.pad(lowercase_ , *lowercase_ , **lowercase_) elif input_ids is not None: SCREAMING_SNAKE_CASE_ : Tuple = self.tokenizer.pad(lowercase_ , **lowercase_) else: SCREAMING_SNAKE_CASE_ : List[Any] = None if labels is not None: if "input_ids" in labels or (isinstance(lowercase_ , lowercase_) and "input_ids" in labels[0]): SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.tokenizer.pad(lowercase_ , **lowercase_) SCREAMING_SNAKE_CASE_ : Dict = targets['''input_ids'''] else: SCREAMING_SNAKE_CASE_ : Dict = self.feature_extractor.feature_size SCREAMING_SNAKE_CASE_ : Optional[int] = self.feature_extractor.num_mel_bins SCREAMING_SNAKE_CASE_ : str = self.feature_extractor.pad(lowercase_ , *lowercase_ , **lowercase_) SCREAMING_SNAKE_CASE_ : str = feature_size_hack SCREAMING_SNAKE_CASE_ : Dict = targets['''input_values'''] else: SCREAMING_SNAKE_CASE_ : List[Any] = None if inputs is None: return targets if targets is not None: SCREAMING_SNAKE_CASE_ : Dict = labels SCREAMING_SNAKE_CASE_ : List[str] = targets.get('''attention_mask''') if decoder_attention_mask is not None: SCREAMING_SNAKE_CASE_ : Optional[Any] = decoder_attention_mask return inputs def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , *lowercase_ : Optional[int] , **lowercase_ : Tuple): '''simple docstring''' return self.tokenizer.batch_decode(*lowercase_ , **lowercase_) def _SCREAMING_SNAKE_CASE ( self : List[Any] , *lowercase_ : Dict , **lowercase_ : List[Any]): '''simple docstring''' return self.tokenizer.decode(*lowercase_ , **lowercase_)
318
1
"""simple docstring""" from __future__ import annotations def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = len(UpperCamelCase_ ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: __SCREAMING_SNAKE_CASE = i + 1 else: __SCREAMING_SNAKE_CASE = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(F"""{two_pointer([2, 7, 11, 15], 9) = }""")
100
from math import sqrt def lowerCAmelCase ( lowerCAmelCase_ )-> bool: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and ( number >= 0 ), "'number' must been an int and positive" lowerCAmelCase_ : List[Any] = True # 0 and 1 are none primes. if number <= 1: lowerCAmelCase_ : Optional[int] = False for divisor in range(2 , int(round(sqrt(lowerCAmelCase_ ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: lowerCAmelCase_ : Tuple = False break # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), "'status' must been from type bool" return status def lowerCAmelCase ( lowerCAmelCase_ )-> Tuple: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N lowerCAmelCase_ : Tuple = list(range(2 , n + 1 ) ) lowerCAmelCase_ : Optional[int] = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(lowerCAmelCase_ ) ): for j in range(i + 1 , len(lowerCAmelCase_ ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): lowerCAmelCase_ : str = 0 # filters actual prime numbers. lowerCAmelCase_ : Optional[int] = [x for x in begin_list if x != 0] # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), "'ans' must been from type list" return ans def lowerCAmelCase ( lowerCAmelCase_ )-> Optional[Any]: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (n > 2), "'N' must been an int and > 2" lowerCAmelCase_ : List[Any] = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(lowerCAmelCase_ ): ans.append(lowerCAmelCase_ ) # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), "'ans' must been from type list" return ans def lowerCAmelCase ( lowerCAmelCase_ )-> List[Any]: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and number >= 0, "'number' must been an int and >= 0" lowerCAmelCase_ : int = [] # this list will be returns of the function. # potential prime number factors. lowerCAmelCase_ : List[Any] = 2 lowerCAmelCase_ : Optional[int] = number if number == 0 or number == 1: ans.append(lowerCAmelCase_ ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(lowerCAmelCase_ ): while quotient != 1: if is_prime(lowerCAmelCase_ ) and (quotient % factor == 0): ans.append(lowerCAmelCase_ ) quotient /= factor else: factor += 1 else: ans.append(lowerCAmelCase_ ) # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), "'ans' must been from type list" return ans def lowerCAmelCase ( lowerCAmelCase_ )-> Optional[int]: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowerCAmelCase_ : Dict = 0 # prime factorization of 'number' lowerCAmelCase_ : Any = prime_factorization(lowerCAmelCase_ ) lowerCAmelCase_ : Tuple = max(lowerCAmelCase_ ) # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), "'ans' must been from type int" return ans def lowerCAmelCase ( lowerCAmelCase_ )-> int: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowerCAmelCase_ : List[Any] = 0 # prime factorization of 'number' lowerCAmelCase_ : Dict = prime_factorization(lowerCAmelCase_ ) lowerCAmelCase_ : int = min(lowerCAmelCase_ ) # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), "'ans' must been from type int" return ans def lowerCAmelCase ( lowerCAmelCase_ )-> Optional[Any]: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), "'number' must been an int" assert isinstance(number % 2 == 0 , lowerCAmelCase_ ), "compare bust been from type bool" return number % 2 == 0 def lowerCAmelCase ( lowerCAmelCase_ )-> List[Any]: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), "'number' must been an int" assert isinstance(number % 2 != 0 , lowerCAmelCase_ ), "compare bust been from type bool" return number % 2 != 0 def lowerCAmelCase ( lowerCAmelCase_ )-> List[str]: assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (number > 2) and is_even(lowerCAmelCase_ ) ), "'number' must been an int, even and > 2" lowerCAmelCase_ : str = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' lowerCAmelCase_ : int = get_prime_numbers(lowerCAmelCase_ ) lowerCAmelCase_ : List[str] = len(lowerCAmelCase_ ) # run variable for while-loops. lowerCAmelCase_ : Union[str, Any] = 0 lowerCAmelCase_ : Tuple = None # exit variable. for break up the loops lowerCAmelCase_ : int = True while i < len_pn and loop: lowerCAmelCase_ : int = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: lowerCAmelCase_ : Tuple = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (len(lowerCAmelCase_ ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ )-> Dict: assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." lowerCAmelCase_ : int = 0 while numbera != 0: lowerCAmelCase_ : str = numbera % numbera lowerCAmelCase_ : List[Any] = numbera lowerCAmelCase_ : Any = rest # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ )-> Optional[int]: assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." lowerCAmelCase_ : List[Any] = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' lowerCAmelCase_ : int = prime_factorization(lowerCAmelCase_ ) lowerCAmelCase_ : int = prime_factorization(lowerCAmelCase_ ) elif numbera == 1 or numbera == 1: lowerCAmelCase_ : Union[str, Any] = [] lowerCAmelCase_ : List[str] = [] lowerCAmelCase_ : Union[str, Any] = max(lowerCAmelCase_ , lowerCAmelCase_ ) lowerCAmelCase_ : Optional[int] = 0 lowerCAmelCase_ : Dict = 0 lowerCAmelCase_ : Union[str, Any] = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: lowerCAmelCase_ : Optional[Any] = prime_fac_a.count(lowerCAmelCase_ ) lowerCAmelCase_ : Tuple = prime_fac_a.count(lowerCAmelCase_ ) for _ in range(max(lowerCAmelCase_ , lowerCAmelCase_ ) ): ans *= n else: lowerCAmelCase_ : List[str] = prime_fac_a.count(lowerCAmelCase_ ) for _ in range(lowerCAmelCase_ ): ans *= n done.append(lowerCAmelCase_ ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: lowerCAmelCase_ : Optional[Any] = prime_fac_a.count(lowerCAmelCase_ ) for _ in range(lowerCAmelCase_ ): ans *= n done.append(lowerCAmelCase_ ) # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def lowerCAmelCase ( lowerCAmelCase_ )-> int: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (n >= 0), "'number' must been a positive int" lowerCAmelCase_ : List[Any] = 0 lowerCAmelCase_ : Optional[int] = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(lowerCAmelCase_ ): ans += 1 # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and is_prime( lowerCAmelCase_ ), "'ans' must been a prime number and from type int" return ans def lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ )-> List[Any]: assert ( is_prime(lowerCAmelCase_ ) and is_prime(lowerCAmelCase_ ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" lowerCAmelCase_ : Union[str, Any] = p_number_a + 1 # jump to the next number lowerCAmelCase_ : Optional[int] = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(lowerCAmelCase_ ): number += 1 while number < p_number_a: ans.append(lowerCAmelCase_ ) number += 1 # fetch the next prime number. while not is_prime(lowerCAmelCase_ ): number += 1 # precondition assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and ans[0] != p_number_a and ans[len(lowerCAmelCase_ ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def lowerCAmelCase ( lowerCAmelCase_ )-> Tuple: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (n >= 1), "'n' must been int and >= 1" lowerCAmelCase_ : List[Any] = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(lowerCAmelCase_ ) # precondition assert ans[0] == 1 and ans[len(lowerCAmelCase_ ) - 1] == n, "Error in function getDivisiors(...)" return ans def lowerCAmelCase ( lowerCAmelCase_ )-> List[Any]: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and ( number > 1 ), "'number' must been an int and >= 1" lowerCAmelCase_ : Union[str, Any] = get_divisors(lowerCAmelCase_ ) # precondition assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (divisors[0] == 1) and (divisors[len(lowerCAmelCase_ ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ )-> Union[str, Any]: assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. lowerCAmelCase_ : Optional[Any] = gcd(abs(lowerCAmelCase_ ) , abs(lowerCAmelCase_ ) ) # precondition assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def lowerCAmelCase ( lowerCAmelCase_ )-> Tuple: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (n >= 0), "'n' must been a int and >= 0" lowerCAmelCase_ : Any = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def lowerCAmelCase ( lowerCAmelCase_ )-> int: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (n >= 0), "'n' must been an int and >= 0" lowerCAmelCase_ : Any = 0 lowerCAmelCase_ : List[Any] = 1 lowerCAmelCase_ : Union[str, Any] = 1 # this will be return for _ in range(n - 1 ): lowerCAmelCase_ : Union[str, Any] = ans ans += fiba lowerCAmelCase_ : Optional[Any] = tmp return ans
262
0
"""simple docstring""" from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging lowercase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = ["""pixel_values"""] def __init__( self , lowercase = True , lowercase = 1 / 255 , lowercase = True , lowercase = 8 , **lowercase , ): super().__init__(**lowercase ) _lowerCamelCase : Optional[Any] = do_rescale _lowerCamelCase : Union[str, Any] = rescale_factor _lowerCamelCase : Any = do_pad _lowerCamelCase : Optional[int] = pad_size def A_ ( self , lowercase , lowercase , lowercase = None , **lowercase ): return rescale(lowercase , scale=lowercase , data_format=lowercase , **lowercase ) def A_ ( self , lowercase , lowercase , lowercase = None ): _lowerCamelCase, _lowerCamelCase : Tuple = get_image_size(lowercase ) _lowerCamelCase : Union[str, Any] = (old_height // size + 1) * size - old_height _lowerCamelCase : Tuple = (old_width // size + 1) * size - old_width return pad(lowercase , ((0, pad_height), (0, pad_width)) , mode='symmetric' , data_format=lowercase ) def A_ ( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = ChannelDimension.FIRST , **lowercase , ): _lowerCamelCase : List[str] = do_rescale if do_rescale is not None else self.do_rescale _lowerCamelCase : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCamelCase : Any = do_pad if do_pad is not None else self.do_pad _lowerCamelCase : int = pad_size if pad_size is not None else self.pad_size _lowerCamelCase : Dict = make_list_of_images(lowercase ) if not valid_images(lowercase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) # All transformations expect numpy arrays. _lowerCamelCase : Dict = [to_numpy_array(lowercase ) for image in images] if do_rescale: _lowerCamelCase : str = [self.rescale(image=lowercase , scale=lowercase ) for image in images] if do_pad: _lowerCamelCase : str = [self.pad(lowercase , size=lowercase ) for image in images] _lowerCamelCase : Any = [to_channel_dimension_format(lowercase , lowercase ) for image in images] _lowerCamelCase : Union[str, Any] = {'pixel_values': images} return BatchFeature(data=lowercase , tensor_type=lowercase )
12
"""simple docstring""" # XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path lowercase__ = Path(__file__).resolve().parents[3] / """src""" sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) lowercase__ = {"""base""": """patrickvonplaten/wav2vec2_tiny_random""", """robust""": """patrickvonplaten/wav2vec2_tiny_random_robust"""} lowercase__ = """zero2""" lowercase__ = """zero3""" lowercase__ = [ZEROa, ZEROa] def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param _lowerCamelCase : List[str] = parameterized.to_safe_name('_'.join(str(lowercase__ ) for x in param.args ) ) return f'''{func.__name__}_{param_based_name}''' # Cartesian-product of zero stages with models to test lowercase__ = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class lowerCAmelCase__ ( lowercase ): '''simple docstring''' @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @require_torch_multi_gpu @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @require_torch_multi_gpu @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) def A_ ( self , lowercase ): # XXX: run_asr is premature and doesn't save any results # so all we check for now is that the process didn't fail pass def A_ ( self , lowercase , lowercase , lowercase = 10 , lowercase = True , lowercase = True , lowercase = True , ): _lowerCamelCase : List[str] = models[model] _lowerCamelCase : Optional[int] = self.run_trainer( stage=lowercase , model_name=lowercase , eval_steps=lowercase , num_train_epochs=1 , distributed=lowercase , fpaa=lowercase , ) self.do_checks(lowercase ) return output_dir def A_ ( self , lowercase , lowercase , lowercase = 10 , lowercase = 1 , lowercase = True , lowercase = True , ): _lowerCamelCase : List[str] = self.get_auto_remove_tmp_dir('./xxx' , after=lowercase ) _lowerCamelCase : Any = F''' --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(lowercase )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none '''.split() if fpaa: args.extend(['--fp16'] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files _lowerCamelCase : Optional[int] = F'''--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'''.split() _lowerCamelCase : Optional[Any] = [F'''{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py'''] _lowerCamelCase : Dict = self.get_launcher(lowercase ) _lowerCamelCase : Union[str, Any] = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(lowercase , env=self.get_env() ) return output_dir def A_ ( self , lowercase=False ): # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup # - it won't be able to handle that # 2. for now testing with just 2 gpus max (since some quality tests may give different # results with mode gpus because we use very little data) _lowerCamelCase : Any = min(2 , get_gpu_count() ) if distributed else 1 return F'''deepspeed --num_nodes 1 --num_gpus {num_gpus}'''.split()
12
1
"""simple docstring""" from math import isqrt def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> list[int]: '''simple docstring''' lowercase_ = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , __lowerCAmelCase , __lowerCAmelCase ): lowercase_ = False return [i for i in range(2 , __lowerCAmelCase ) if is_prime[i]] def _SCREAMING_SNAKE_CASE (__lowerCAmelCase = 10**8 ) -> int: '''simple docstring''' lowercase_ = calculate_prime_numbers(max_number // 2 ) lowercase_ = 0 lowercase_ = 0 lowercase_ = len(__lowerCAmelCase ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(F"{solution() = }")
136
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase : Tuple = {"configuration_plbart": ["PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP", "PLBartConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[Any] = ["PLBartTokenizer"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Dict = [ "PLBART_PRETRAINED_MODEL_ARCHIVE_LIST", "PLBartForCausalLM", "PLBartForConditionalGeneration", "PLBartForSequenceClassification", "PLBartModel", "PLBartPreTrainedModel", ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys UpperCAmelCase : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure)
136
1
"""simple docstring""" import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase) -> List[Any]: a = "https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg" a = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase).raw).convert("RGB") a = transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC), transforms.ToTensor(), transforms.Normalize((0.48_145_466, 0.4_578_275, 0.40_821_073) , (0.26_862_954, 0.26_130_258, 0.27_577_711)), ]) a = transform(__UpperCamelCase).unsqueeze(0).to(__UpperCamelCase) return image def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> Optional[int]: if "visual_encoder" in key: a = re.sub("visual_encoder*" , "vision_model.encoder" , __UpperCamelCase) if "blocks" in key: a = re.sub(r"blocks" , "layers" , __UpperCamelCase) if "attn" in key: a = re.sub(r"attn" , "self_attn" , __UpperCamelCase) if "norm1" in key: a = re.sub(r"norm1" , "layer_norm1" , __UpperCamelCase) if "norm2" in key: a = re.sub(r"norm2" , "layer_norm2" , __UpperCamelCase) if "encoder.norm" in key: a = re.sub(r"encoder.norm" , "post_layernorm" , __UpperCamelCase) if "encoder.patch_embed.proj" in key: a = re.sub(r"encoder.patch_embed.proj" , "embeddings.patch_embedding" , __UpperCamelCase) if "encoder.pos_embed" in key: a = re.sub(r"encoder.pos_embed" , "embeddings.position_embedding" , __UpperCamelCase) if "encoder.cls_token" in key: a = re.sub(r"encoder.cls_token" , "embeddings.class_embedding" , __UpperCamelCase) if "self_attn" in key: a = re.sub(r"self_attn.proj" , "self_attn.projection" , __UpperCamelCase) return key @torch.no_grad() def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase=None) -> List[str]: if config_path is not None: a = BlipConfig.from_pretrained(__UpperCamelCase) else: a = BlipConfig(projection_dim=5_12 , text_config={} , vision_config={}) a = BlipForConditionalGeneration(__UpperCamelCase).eval() a = "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth" a = blip_decoder(pretrained=__UpperCamelCase , image_size=3_84 , vit="base") a = pt_model.eval() a = pt_model.state_dict() for key in modified_state_dict.copy(): a = modified_state_dict.pop(__UpperCamelCase) a = rename_key(__UpperCamelCase) a = value hf_model.load_state_dict(__UpperCamelCase) a = 3_84 a = load_demo_image(image_size=__UpperCamelCase , device="cpu") a = BertTokenizer.from_pretrained("bert-base-uncased") a = tokenizer(["a picture of"]).input_ids a = hf_model.generate(__UpperCamelCase , __UpperCamelCase) assert out[0].tolist() == [3_05_22, 10_37, 38_61, 19_97, 10_37, 24_50, 35_64, 20_06, 19_96, 35_09, 20_07, 20_14, 38_99, 1_02] a = hf_model.generate(__UpperCamelCase) assert out[0].tolist() == [3_05_22, 10_37, 24_50, 35_64, 20_06, 19_96, 35_09, 20_07, 20_14, 38_99, 1_02] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(__UpperCamelCase) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' a = ( "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth" ) a = blip_vqa(pretrained=__UpperCamelCase , image_size=__UpperCamelCase , vit="base") vqa_model.eval() a = vqa_model.state_dict() for key in modified_state_dict.copy(): a = modified_state_dict.pop(__UpperCamelCase) a = rename_key(__UpperCamelCase) a = value a = BlipForQuestionAnswering(__UpperCamelCase) hf_vqa_model.load_state_dict(__UpperCamelCase) a = ["How many dogs are in this image?"] a = tokenizer(__UpperCamelCase , return_tensors="pt").input_ids a = hf_vqa_model.generate(__UpperCamelCase , __UpperCamelCase) print(tokenizer.decode(answer[0])) assert tokenizer.decode(answer[0]) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + "_vqa") a = "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth" a = blip_itm(pretrained=__UpperCamelCase , image_size=__UpperCamelCase , vit="base") itm_model.eval() a = itm_model.state_dict() for key in modified_state_dict.copy(): a = modified_state_dict.pop(__UpperCamelCase) a = rename_key(__UpperCamelCase) a = value a = BlipForImageTextRetrieval(__UpperCamelCase) a = ["A picture of a woman with a dog sitting in a beach"] a = tokenizer( __UpperCamelCase , return_tensors="pt" , padding="max_length" , truncation=__UpperCamelCase , max_length=35 , ).input_ids hf_itm_model.load_state_dict(__UpperCamelCase) hf_itm_model.eval() a = hf_itm_model(__UpperCamelCase , __UpperCamelCase , use_itm_head=__UpperCamelCase) a = hf_itm_model(__UpperCamelCase , __UpperCamelCase , use_itm_head=__UpperCamelCase) assert out[0].item() == 0.2_110_687_494_277_954 assert torch.nn.functional.softmax(out_itm[0] , dim=1)[:, 1].item() == 0.45_698_845_386_505_127 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + "_itm") if __name__ == "__main__": lowercase__ : Tuple = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") lowercase__ : Union[str, Any] = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
368
from __future__ import annotations def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> list[int]: a = 2 a = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(__UpperCamelCase) if n > 1: factors.append(__UpperCamelCase) return factors if __name__ == "__main__": import doctest doctest.testmod()
180
0
"""simple docstring""" from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput _a : Dict = 8 def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple ,_lowerCamelCase : Tuple=BITS ) -> Union[str, Any]: _lowerCAmelCase : Union[str, Any] = x.device _lowerCAmelCase : Any = (x * 255).int().clamp(0 ,255 ) _lowerCAmelCase : Union[str, Any] = 2 ** torch.arange(bits - 1 ,-1 ,-1 ,device=_lowerCamelCase ) _lowerCAmelCase : Any = rearrange(_lowerCamelCase ,"""d -> d 1 1""" ) _lowerCAmelCase : str = rearrange(_lowerCamelCase ,"""b c h w -> b c 1 h w""" ) _lowerCAmelCase : Dict = ((x & mask) != 0).float() _lowerCAmelCase : Any = rearrange(_lowerCamelCase ,"""b c d h w -> b (c d) h w""" ) _lowerCAmelCase : str = bits * 2 - 1 return bits def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[int] ,_lowerCamelCase : Optional[Any]=BITS ) -> List[Any]: _lowerCAmelCase : List[str] = x.device _lowerCAmelCase : Optional[int] = (x > 0).int() _lowerCAmelCase : Optional[Any] = 2 ** torch.arange(bits - 1 ,-1 ,-1 ,device=_lowerCamelCase ,dtype=torch.intaa ) _lowerCAmelCase : Dict = rearrange(_lowerCamelCase ,"""d -> d 1 1""" ) _lowerCAmelCase : Dict = rearrange(_lowerCamelCase ,"""b (c d) h w -> b c d h w""" ,d=8 ) _lowerCAmelCase : Dict = reduce(x * mask ,"""b c d h w -> b c h w""" ,"""sum""" ) return (dec / 255).clamp(0.0 ,1.0 ) def SCREAMING_SNAKE_CASE ( self : List[Any] ,_lowerCamelCase : torch.FloatTensor ,_lowerCamelCase : int ,_lowerCamelCase : torch.FloatTensor ,_lowerCamelCase : float = 0.0 ,_lowerCamelCase : bool = True ,_lowerCamelCase : Union[str, Any]=None ,_lowerCamelCase : bool = True ,) -> Union[DDIMSchedulerOutput, Tuple]: if self.num_inference_steps is None: raise ValueError( """Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler""" ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) _lowerCAmelCase : Tuple = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas _lowerCAmelCase : List[Any] = self.alphas_cumprod[timestep] _lowerCAmelCase : Optional[int] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod _lowerCAmelCase : Union[str, Any] = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _lowerCAmelCase : List[str] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" _lowerCAmelCase : List[Any] = self.bit_scale if self.config.clip_sample: _lowerCAmelCase : Union[str, Any] = torch.clamp(_lowerCamelCase ,-scale ,_lowerCamelCase ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) _lowerCAmelCase : Any = self._get_variance(_lowerCamelCase ,_lowerCamelCase ) _lowerCAmelCase : Any = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide _lowerCAmelCase : Dict = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _lowerCAmelCase : Dict = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _lowerCAmelCase : Optional[Any] = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 _lowerCAmelCase : List[Any] = model_output.device if torch.is_tensor(_lowerCamelCase ) else """cpu""" _lowerCAmelCase : Optional[Any] = torch.randn(model_output.shape ,dtype=model_output.dtype ,generator=_lowerCamelCase ).to(_lowerCamelCase ) _lowerCAmelCase : Tuple = self._get_variance(_lowerCamelCase ,_lowerCamelCase ) ** 0.5 * eta * noise _lowerCAmelCase : int = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=_lowerCamelCase ,pred_original_sample=_lowerCamelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,_lowerCamelCase : torch.FloatTensor ,_lowerCamelCase : int ,_lowerCamelCase : torch.FloatTensor ,_lowerCamelCase : Any="epsilon" ,_lowerCamelCase : str=None ,_lowerCamelCase : bool = True ,) -> Union[DDPMSchedulerOutput, Tuple]: _lowerCAmelCase : str = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: _lowerCAmelCase , _lowerCAmelCase : int = torch.split(_lowerCamelCase ,sample.shape[1] ,dim=1 ) else: _lowerCAmelCase : Any = None # 1. compute alphas, betas _lowerCAmelCase : Dict = self.alphas_cumprod[t] _lowerCAmelCase : Union[str, Any] = self.alphas_cumprod[t - 1] if t > 0 else self.one _lowerCAmelCase : str = 1 - alpha_prod_t _lowerCAmelCase : Dict = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": _lowerCAmelCase : Union[str, Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": _lowerCAmelCase : str = model_output else: raise ValueError(f"Unsupported prediction_type {prediction_type}." ) # 3. Clip "predicted x_0" _lowerCAmelCase : Optional[int] = self.bit_scale if self.config.clip_sample: _lowerCAmelCase : List[Any] = torch.clamp(_lowerCamelCase ,-scale ,_lowerCamelCase ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _lowerCAmelCase : int = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t _lowerCAmelCase : List[str] = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _lowerCAmelCase : List[Any] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise _lowerCAmelCase : Optional[Any] = 0 if t > 0: _lowerCAmelCase : Dict = torch.randn( model_output.size() ,dtype=model_output.dtype ,layout=model_output.layout ,generator=_lowerCamelCase ).to(model_output.device ) _lowerCAmelCase : List[str] = (self._get_variance(_lowerCamelCase ,predicted_variance=_lowerCamelCase ) ** 0.5) * noise _lowerCAmelCase : Optional[Any] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=_lowerCamelCase ,pred_original_sample=_lowerCamelCase ) class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self , a__ , a__ , a__ = 1.0 , ): super().__init__() _lowerCAmelCase : Optional[int] = bit_scale _lowerCAmelCase : int = ( ddim_bit_scheduler_step if isinstance(a__ , a__ ) else ddpm_bit_scheduler_step ) self.register_modules(unet=a__ , scheduler=a__ ) @torch.no_grad() def __call__( self , a__ = 256 , a__ = 256 , a__ = 50 , a__ = None , a__ = 1 , a__ = "pil" , a__ = True , **a__ , ): _lowerCAmelCase : Optional[int] = torch.randn( (batch_size, self.unet.config.in_channels, height, width) , generator=a__ , ) _lowerCAmelCase : Dict = decimal_to_bits(a__ ) * self.bit_scale _lowerCAmelCase : Dict = latents.to(self.device ) self.scheduler.set_timesteps(a__ ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual _lowerCAmelCase : Tuple = self.unet(a__ , a__ ).sample # compute the previous noisy sample x_t -> x_t-1 _lowerCAmelCase : Tuple = self.scheduler.step(a__ , a__ , a__ ).prev_sample _lowerCAmelCase : Dict = bits_to_decimal(a__ ) if output_type == "pil": _lowerCAmelCase : Optional[Any] = self.numpy_to_pil(a__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=a__ )
44
"""simple docstring""" # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( 'stable diffusion controlnet', '0.22.0', 'Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.', standard_warn=False, stacklevel=3, )
44
1
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = {'''vocab_file''': '''spiece.model'''} __UpperCAmelCase = { '''vocab_file''': { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model''', } } __UpperCAmelCase = { '''xlnet-base-cased''': None, '''xlnet-large-cased''': None, } # Segments (not really needed) __UpperCAmelCase = 0 __UpperCAmelCase = 1 __UpperCAmelCase = 2 __UpperCAmelCase = 3 __UpperCAmelCase = 4 class lowerCamelCase__ ( _a ): _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = '''left''' def __init__( self : Dict , _a : List[Any] , _a : Any=False , _a : int=True , _a : Union[str, Any]=False , _a : Dict="<s>" , _a : str="</s>" , _a : Optional[int]="<unk>" , _a : Union[str, Any]="<sep>" , _a : List[Any]="<pad>" , _a : Optional[Any]="<cls>" , _a : str="<mask>" , _a : Any=["<eop>", "<eod>"] , _a : Optional[Dict[str, Any]] = None , **_a : Optional[int] , ): # Mask token behave like a normal word, i.e. include the space before it a__: Dict =AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else mask_token a__: Optional[int] ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_a , remove_space=_a , keep_accents=_a , bos_token=_a , eos_token=_a , unk_token=_a , sep_token=_a , pad_token=_a , cls_token=_a , mask_token=_a , additional_special_tokens=_a , sp_model_kwargs=self.sp_model_kwargs , **_a , ) a__: Dict =3 a__: Tuple =do_lower_case a__: int =remove_space a__: List[Any] =keep_accents a__: List[str] =vocab_file a__: Union[str, Any] =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_a ) @property def _lowerCamelCase ( self : Any ): return len(self.sp_model ) def _lowerCamelCase ( self : List[Any] ): a__: Dict ={self.convert_ids_to_tokens(_a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Tuple ): a__: Dict =self.__dict__.copy() a__: List[Any] =None return state def __setstate__( self : Optional[Any] , _a : Tuple ): a__: List[Any] =d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): a__: List[str] ={} a__: int =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowerCamelCase ( self : Dict , _a : str ): if self.remove_space: a__: Optional[int] =" ".join(inputs.strip().split() ) else: a__: Optional[int] =inputs a__: Dict =outputs.replace("``" , "\"" ).replace("''" , "\"" ) if not self.keep_accents: a__: Optional[int] =unicodedata.normalize("NFKD" , _a ) a__: int ="".join([c for c in outputs if not unicodedata.combining(_a )] ) if self.do_lower_case: a__: Dict =outputs.lower() return outputs def _lowerCamelCase ( self : List[Any] , _a : str ): a__: Dict =self.preprocess_text(_a ) a__: Dict =self.sp_model.encode(_a , out_type=_a ) a__: str =[] for piece in pieces: if len(_a ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit(): a__: Optional[Any] =self.sp_model.EncodeAsPieces(piece[:-1].replace(_a , "" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: a__: Optional[int] =cur_pieces[1:] else: a__: Tuple =cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_a ) else: new_pieces.append(_a ) return new_pieces def _lowerCamelCase ( self : Dict , _a : Dict ): return self.sp_model.PieceToId(_a ) def _lowerCamelCase ( self : Dict , _a : Optional[Any] ): return self.sp_model.IdToPiece(_a ) def _lowerCamelCase ( self : Optional[Any] , _a : Tuple ): a__: Tuple ="".join(_a ).replace(_a , " " ).strip() return out_string def _lowerCamelCase ( self : Optional[int] , _a : List[int] , _a : bool = False , _a : bool = None , _a : bool = True , **_a : Union[str, Any] , ): a__: Optional[int] =kwargs.pop("use_source_tokenizer" , _a ) a__: Any =self.convert_ids_to_tokens(_a , skip_special_tokens=_a ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 a__: List[str] =[] a__: Any =[] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_a ) ) a__: List[str] =[] sub_texts.append(_a ) else: current_sub_text.append(_a ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_a ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens a__: Union[str, Any] ="".join(_a ) a__: List[Any] =( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: a__: Optional[int] =self.clean_up_tokenization(_a ) return clean_text else: return text def _lowerCamelCase ( self : Tuple , _a : List[int] , _a : Optional[List[int]] = None ): a__: Dict =[self.sep_token_id] a__: Optional[Any] =[self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _lowerCamelCase ( self : Dict , _a : List[int] , _a : Optional[List[int]] = None , _a : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_a , token_ids_a=_a , already_has_special_tokens=_a ) if token_ids_a is not None: return ([0] * len(_a )) + [1] + ([0] * len(_a )) + [1, 1] return ([0] * len(_a )) + [1, 1] def _lowerCamelCase ( self : Dict , _a : List[int] , _a : Optional[List[int]] = None ): a__: Any =[self.sep_token_id] a__: List[Any] =[2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _lowerCamelCase ( self : List[str] , _a : str , _a : Optional[str] = None ): if not os.path.isdir(_a ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return a__: List[Any] =os.path.join( _a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _a ) elif not os.path.isfile(self.vocab_file ): with open(_a , "wb" ) as fi: a__: Optional[Any] =self.sp_model.serialized_model_proto() fi.write(_a ) return (out_vocab_file,)
367
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = '''▁''' __UpperCAmelCase = { '''vocab_file''': '''vocab.json''', '''spm_file''': '''sentencepiece.bpe.model''', '''tokenizer_config_file''': '''tokenizer_config.json''', } __UpperCAmelCase = { '''vocab_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json''', }, '''spm_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model''', }, '''tokenizer_config_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json''', }, } __UpperCAmelCase = { '''facebook/m2m100_418M''': 10_24, } # fmt: off __UpperCAmelCase = { '''m2m100''': ['''af''', '''am''', '''ar''', '''ast''', '''az''', '''ba''', '''be''', '''bg''', '''bn''', '''br''', '''bs''', '''ca''', '''ceb''', '''cs''', '''cy''', '''da''', '''de''', '''el''', '''en''', '''es''', '''et''', '''fa''', '''ff''', '''fi''', '''fr''', '''fy''', '''ga''', '''gd''', '''gl''', '''gu''', '''ha''', '''he''', '''hi''', '''hr''', '''ht''', '''hu''', '''hy''', '''id''', '''ig''', '''ilo''', '''is''', '''it''', '''ja''', '''jv''', '''ka''', '''kk''', '''km''', '''kn''', '''ko''', '''lb''', '''lg''', '''ln''', '''lo''', '''lt''', '''lv''', '''mg''', '''mk''', '''ml''', '''mn''', '''mr''', '''ms''', '''my''', '''ne''', '''nl''', '''no''', '''ns''', '''oc''', '''or''', '''pa''', '''pl''', '''ps''', '''pt''', '''ro''', '''ru''', '''sd''', '''si''', '''sk''', '''sl''', '''so''', '''sq''', '''sr''', '''ss''', '''su''', '''sv''', '''sw''', '''ta''', '''th''', '''tl''', '''tn''', '''tr''', '''uk''', '''ur''', '''uz''', '''vi''', '''wo''', '''xh''', '''yi''', '''yo''', '''zh''', '''zu'''], '''wmt21''': ['''en''', '''ha''', '''is''', '''ja''', '''cs''', '''ru''', '''zh''', '''de'''] } class lowerCamelCase__ ( _a ): _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = ['''input_ids''', '''attention_mask'''] _lowerCAmelCase = [] _lowerCAmelCase = [] def __init__( self : Dict , _a : Tuple , _a : List[Any] , _a : Tuple=None , _a : Dict=None , _a : Any="<s>" , _a : Union[str, Any]="</s>" , _a : str="</s>" , _a : int="<pad>" , _a : str="<unk>" , _a : Tuple="m2m100" , _a : Optional[Dict[str, Any]] = None , _a : str=8 , **_a : str , ): a__: str ={} if sp_model_kwargs is None else sp_model_kwargs a__: Optional[int] =language_codes a__: Dict =FAIRSEQ_LANGUAGE_CODES[language_codes] a__: Tuple ={lang_code: F"__{lang_code}__" for lang_code in fairseq_language_code} a__: Any =kwargs.get("additional_special_tokens" , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(_a ) for lang_code in fairseq_language_code if self.get_lang_token(_a ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=_a , tgt_lang=_a , bos_token=_a , eos_token=_a , sep_token=_a , unk_token=_a , pad_token=_a , language_codes=_a , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=_a , **_a , ) a__: Optional[Any] =vocab_file a__: Tuple =load_json(_a ) a__: Any ={v: k for k, v in self.encoder.items()} a__: List[str] =spm_file a__: str =load_spm(_a , self.sp_model_kwargs ) a__: Any =len(self.encoder ) a__: Dict ={ self.get_lang_token(_a ): self.encoder_size + i for i, lang_code in enumerate(_a ) } a__: List[Any] ={lang_code: self.encoder_size + i for i, lang_code in enumerate(_a )} a__: Dict ={v: k for k, v in self.lang_token_to_id.items()} a__: List[str] =src_lang if src_lang is not None else "en" a__: Any =tgt_lang a__: Tuple =self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) a__: str =num_madeup_words @property def _lowerCamelCase ( self : int ): return len(self.encoder ) + len(self.lang_token_to_id ) @property def _lowerCamelCase ( self : List[str] ): return self._src_lang @src_lang.setter def _lowerCamelCase ( self : Tuple , _a : str ): a__: Optional[int] =new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _lowerCamelCase ( self : int , _a : str ): return self.sp_model.encode(_a , out_type=_a ) def _lowerCamelCase ( self : Tuple , _a : int ): if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(_a , self.encoder[self.unk_token] ) def _lowerCamelCase ( self : int , _a : int ): if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(_a , self.unk_token ) def _lowerCamelCase ( self : Dict , _a : List[str] ): a__: str =[] a__: Union[str, Any] ="" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_a ) + token a__: Dict =[] else: current_sub_tokens.append(_a ) out_string += self.sp_model.decode(_a ) return out_string.strip() def _lowerCamelCase ( self : str , _a : List[int] , _a : Optional[List[int]] = None , _a : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_a , token_ids_a=_a , already_has_special_tokens=_a ) a__: Union[str, Any] =[1] * len(self.prefix_tokens ) a__: Optional[Any] =[1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(_a )) + suffix_ones return prefix_ones + ([0] * len(_a )) + ([0] * len(_a )) + suffix_ones def _lowerCamelCase ( self : Optional[int] , _a : List[int] , _a : Optional[List[int]] = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _lowerCamelCase ( self : Dict ): a__: List[Any] ={self.convert_ids_to_tokens(_a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Tuple ): a__: Dict =self.__dict__.copy() a__: Union[str, Any] =None return state def __setstate__( self : Tuple , _a : Dict ): a__: str =d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): a__: Optional[Any] ={} a__: Optional[Any] =load_spm(self.spm_file , self.sp_model_kwargs ) def _lowerCamelCase ( self : Any , _a : str , _a : Optional[str] = None ): a__: Union[str, Any] =Path(_a ) if not save_dir.is_dir(): raise OSError(F"{save_directory} should be a directory" ) a__: Union[str, Any] =save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["vocab_file"] ) a__: Optional[int] =save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["spm_file"] ) save_json(self.encoder , _a ) if os.path.abspath(self.spm_file ) != os.path.abspath(_a ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , _a ) elif not os.path.isfile(self.spm_file ): with open(_a , "wb" ) as fi: a__: str =self.sp_model.serialized_model_proto() fi.write(_a ) return (str(_a ), str(_a )) def _lowerCamelCase ( self : List[str] , _a : List[str] , _a : str = "en" , _a : Optional[List[str]] = None , _a : str = "ro" , **_a : Optional[Any] , ): a__: Tuple =src_lang a__: int =tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(_a , _a , **_a ) def _lowerCamelCase ( self : List[str] , _a : Dict , _a : Optional[str] , _a : Optional[str] , **_a : Optional[Any] ): if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) a__: Dict =src_lang a__: Optional[int] =self(_a , add_special_tokens=_a , **_a ) a__: Union[str, Any] =self.get_lang_id(_a ) a__: Tuple =tgt_lang_id return inputs def _lowerCamelCase ( self : List[Any] ): self.set_src_lang_special_tokens(self.src_lang ) def _lowerCamelCase ( self : List[Any] ): self.set_tgt_lang_special_tokens(self.tgt_lang ) def _lowerCamelCase ( self : Union[str, Any] , _a : str ): a__: Tuple =self.get_lang_token(_a ) a__: Optional[int] =self.lang_token_to_id[lang_token] a__: Any =[self.cur_lang_id] a__: Optional[Any] =[self.eos_token_id] def _lowerCamelCase ( self : str , _a : str ): a__: List[str] =self.get_lang_token(_a ) a__: Optional[Any] =self.lang_token_to_id[lang_token] a__: Optional[int] =[self.cur_lang_id] a__: Dict =[self.eos_token_id] def _lowerCamelCase ( self : Any , _a : str ): return self.lang_code_to_token[lang] def _lowerCamelCase ( self : int , _a : str ): a__: int =self.get_lang_token(_a ) return self.lang_token_to_id[lang_token] def __lowerCamelCase ( __magic_name__ : str , __magic_name__ : Dict[str, Any] ): a__: Tuple =sentencepiece.SentencePieceProcessor(**__magic_name__ ) spm.Load(str(__magic_name__ ) ) return spm def __lowerCamelCase ( __magic_name__ : str ): with open(__magic_name__ , "r" ) as f: return json.load(__magic_name__ ) def __lowerCamelCase ( __magic_name__ : Optional[Any] , __magic_name__ : str ): with open(__magic_name__ , "w" ) as f: json.dump(__magic_name__ , __magic_name__ , indent=2 )
42
0
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowercase__ = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class __snake_case ( __lowerCAmelCase , unittest.TestCase ): a__ = XLNetTokenizer a__ = XLNetTokenizerFast a__ = True a__ = True def lowerCamelCase_ ( self) -> Optional[Any]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing a__: Dict = XLNetTokenizer(lowercase , keep_accents=lowercase) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname) def lowerCamelCase_ ( self) -> Optional[int]: '''simple docstring''' a__: Any = '<s>' a__: Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase) , lowercase) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase) , lowercase) def lowerCamelCase_ ( self) -> int: '''simple docstring''' a__: Optional[Any] = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '<unk>') self.assertEqual(vocab_keys[1] , '<s>') self.assertEqual(vocab_keys[-1] , '<eod>') self.assertEqual(len(lowercase) , 10_06) def lowerCamelCase_ ( self) -> List[str]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 10_00) def lowerCamelCase_ ( self) -> int: '''simple docstring''' a__: Optional[Any] = XLNetTokenizer(lowercase , keep_accents=lowercase) a__: List[Any] = tokenizer.tokenize('This is a test') self.assertListEqual(lowercase , ['▁This', '▁is', '▁a', '▁t', 'est']) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase) , [2_85, 46, 10, 1_70, 3_82]) a__: Dict = tokenizer.tokenize('I was born in 92000, and this is falsé.') self.assertListEqual( lowercase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) a__: str = tokenizer.convert_tokens_to_ids(lowercase) self.assertListEqual(lowercase , [8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4]) a__: List[Any] = tokenizer.convert_ids_to_tokens(lowercase) self.assertListEqual( lowercase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) def lowerCamelCase_ ( self) -> Any: '''simple docstring''' a__: List[Any] = XLNetTokenizer(lowercase , do_lower_case=lowercase) a__: Dict = tokenizer.tokenize('I was born in 92000, and this is falsé.') self.assertListEqual( lowercase , [ SPIECE_UNDERLINE + '', 'i', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 'se', '.', ] , ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo') , ['▁he', 'll', 'o']) def lowerCamelCase_ ( self) -> Any: '''simple docstring''' a__: Tuple = XLNetTokenizer(lowercase , do_lower_case=lowercase) a__: Optional[Any] = tokenizer.tokenize('I was born in 92000, and this is falsé.') self.assertListEqual( lowercase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 'se', '.', ] , ) @slow def lowerCamelCase_ ( self) -> Union[str, Any]: '''simple docstring''' a__: Tuple = XLNetTokenizer.from_pretrained('xlnet-base-cased') a__: Union[str, Any] = tokenizer.encode('sequence builders' , add_special_tokens=lowercase) a__: List[Any] = tokenizer.encode('multi-sequence build' , add_special_tokens=lowercase) a__: Tuple = tokenizer.build_inputs_with_special_tokens(lowercase) a__: str = tokenizer.build_inputs_with_special_tokens(lowercase , lowercase) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def lowerCamelCase_ ( self) -> List[Any]: '''simple docstring''' a__: List[str] = {'input_ids': [[17, 2_14_42, 2_70, 17, 10, 1_46_45, 3_18, 34, 17, 45_46, 31_45, 7_87, 13, 77_52, 2_20_18, 23, 21, 17, 45_46, 31_45, 7_87, 13, 33_52, 1_44_31, 13, 55_00, 11, 11_76, 5_80, 13, 1_68_19, 47_97, 23, 17, 10, 1_71_35, 6_58, 19, 4_57, 79_32, 13, 1_84, 19, 31_54, 1_71_35, 64_68, 19, 14_04, 1_22_69, 19, 42_29, 53_56, 1_62_64, 46, 19, 17, 2_05_45, 1_03_95, 9, 9, 9, 11, 28, 64_21, 95_31, 2_07_29, 17, 10, 3_53, 1_70_22, 11, 21, 64_21, 95_31, 1_69_49, 17, 10, 1_15_09, 7_53, 11, 33, 95, 24_21, 73_85, 9_56, 1_44_31, 26_26, 25, 8_42, 73_85, 48_36, 21, 14_29, 22_72, 98_55, 31_20, 1_61, 2_47_38, 19, 1_32_03, 6_58, 2_18, 7_87, 21, 4_30, 1_84_82, 8_47, 26_37, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3_22, 2_21_78, 27, 10_64, 22, 9_56, 13, 1_11_01, 14_29, 58_54, 2_43_13, 1_89_53, 40, 4_22, 2_43_66, 68, 17_58, 37, 1_04_83, 1_42_57, 31, 2_07, 2_63, 21, 2_03, 37_73, 25, 71, 97_35, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 32, 20_49, 34_42, 17, 1_38_94, 33_80, 23, 95, 18, 1_76_34, 22_88, 9, 4, 3]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase , model_name='xlnet-base-cased' , revision='c841166438c31ec7ca9a106dee7bb312b73ae511' , )
290
"""simple docstring""" def __a ( _SCREAMING_SNAKE_CASE = 1000000 ) ->int: a__: int = limit + 1 a__: Optional[int] = [0] * limit for first_term in range(1 , _SCREAMING_SNAKE_CASE ): for n in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): a__: List[Any] = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a a__: Any = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(f"{solution() = }")
290
1
"""simple docstring""" import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = (EulerDiscreteScheduler,) lowercase__ = 10 def _UpperCAmelCase ( self : Optional[int] , **lowerCAmelCase_ : Tuple): """simple docstring""" lowercase_ = { """num_train_timesteps""": 1_1_0_0, """beta_start""": 0.0_001, """beta_end""": 0.02, """beta_schedule""": """linear""", } config.update(**lowerCAmelCase_) return config def _UpperCAmelCase ( self : Tuple): """simple docstring""" for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=lowerCAmelCase_) def _UpperCAmelCase ( self : List[Any]): """simple docstring""" for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02]): self.check_over_configs(beta_start=lowerCAmelCase_ , beta_end=lowerCAmelCase_) def _UpperCAmelCase ( self : str): """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=lowerCAmelCase_) def _UpperCAmelCase ( self : Tuple): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase_) def _UpperCAmelCase ( self : Tuple): """simple docstring""" lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config() lowercase_ = scheduler_class(**lowerCAmelCase_) scheduler.set_timesteps(self.num_inference_steps) lowercase_ = torch.manual_seed(0) lowercase_ = self.dummy_model() lowercase_ = self.dummy_sample_deter * scheduler.init_noise_sigma lowercase_ = sample.to(lowerCAmelCase_) for i, t in enumerate(scheduler.timesteps): lowercase_ = scheduler.scale_model_input(lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = model(lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_) lowercase_ = output.prev_sample lowercase_ = torch.sum(torch.abs(lowerCAmelCase_)) lowercase_ = torch.mean(torch.abs(lowerCAmelCase_)) assert abs(result_sum.item() - 10.0_807) < 1E-2 assert abs(result_mean.item() - 0.0_131) < 1E-3 def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config(prediction_type="""v_prediction""") lowercase_ = scheduler_class(**lowerCAmelCase_) scheduler.set_timesteps(self.num_inference_steps) lowercase_ = torch.manual_seed(0) lowercase_ = self.dummy_model() lowercase_ = self.dummy_sample_deter * scheduler.init_noise_sigma lowercase_ = sample.to(lowerCAmelCase_) for i, t in enumerate(scheduler.timesteps): lowercase_ = scheduler.scale_model_input(lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = model(lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_) lowercase_ = output.prev_sample lowercase_ = torch.sum(torch.abs(lowerCAmelCase_)) lowercase_ = torch.mean(torch.abs(lowerCAmelCase_)) assert abs(result_sum.item() - 0.0_002) < 1E-2 assert abs(result_mean.item() - 2.2676E-06) < 1E-3 def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config() lowercase_ = scheduler_class(**lowerCAmelCase_) scheduler.set_timesteps(self.num_inference_steps , device=lowerCAmelCase_) lowercase_ = torch.manual_seed(0) lowercase_ = self.dummy_model() lowercase_ = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() lowercase_ = sample.to(lowerCAmelCase_) for t in scheduler.timesteps: lowercase_ = scheduler.scale_model_input(lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = model(lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_) lowercase_ = output.prev_sample lowercase_ = torch.sum(torch.abs(lowerCAmelCase_)) lowercase_ = torch.mean(torch.abs(lowerCAmelCase_)) assert abs(result_sum.item() - 10.0_807) < 1E-2 assert abs(result_mean.item() - 0.0_131) < 1E-3 def _UpperCAmelCase ( self : Any): """simple docstring""" lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config() lowercase_ = scheduler_class(**lowerCAmelCase_ , use_karras_sigmas=lowerCAmelCase_) scheduler.set_timesteps(self.num_inference_steps , device=lowerCAmelCase_) lowercase_ = torch.manual_seed(0) lowercase_ = self.dummy_model() lowercase_ = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() lowercase_ = sample.to(lowerCAmelCase_) for t in scheduler.timesteps: lowercase_ = scheduler.scale_model_input(lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = model(lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_) lowercase_ = output.prev_sample lowercase_ = torch.sum(torch.abs(lowerCAmelCase_)) lowercase_ = torch.mean(torch.abs(lowerCAmelCase_)) assert abs(result_sum.item() - 124.52_299_499_511_719) < 1E-2 assert abs(result_mean.item() - 0.16_213_932_633_399_963) < 1E-3
313
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase=False ) -> Union[str, Any]: '''simple docstring''' lowercase_ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''module.blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''module.blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (F'''module.blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''module.blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''module.blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''module.blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ("""module.cls_token""", """vit.embeddings.cls_token"""), ("""module.patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""module.patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""module.pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""module.norm.weight""", """layernorm.weight"""), ("""module.norm.bias""", """layernorm.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowercase_ = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False ) -> Any: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: lowercase_ = """""" else: lowercase_ = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase_ = state_dict.pop(F'''module.blocks.{i}.attn.qkv.weight''' ) lowercase_ = state_dict.pop(F'''module.blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict lowercase_ = in_proj_weight[ : config.hidden_size, : ] lowercase_ = in_proj_bias[: config.hidden_size] lowercase_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase_ = in_proj_weight[ -config.hidden_size :, : ] lowercase_ = in_proj_bias[-config.hidden_size :] def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[str]: '''simple docstring''' lowercase_ = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> str: '''simple docstring''' lowercase_ = [ """module.fc.fc1.weight""", """module.fc.fc1.bias""", """module.fc.bn1.weight""", """module.fc.bn1.bias""", """module.fc.bn1.running_mean""", """module.fc.bn1.running_var""", """module.fc.bn1.num_batches_tracked""", """module.fc.fc2.weight""", """module.fc.fc2.bias""", """module.fc.bn2.weight""", """module.fc.bn2.bias""", """module.fc.bn2.running_mean""", """module.fc.bn2.running_var""", """module.fc.bn2.num_batches_tracked""", """module.fc.fc3.weight""", """module.fc.fc3.bias""", ] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Tuple: '''simple docstring''' lowercase_ = dct.pop(__lowerCAmelCase ) lowercase_ = val def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Tuple: '''simple docstring''' lowercase_ = ViTMSNConfig() lowercase_ = 10_00 lowercase_ = """datasets/huggingface/label-files""" lowercase_ = """imagenet-1k-id2label.json""" lowercase_ = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase ) , """r""" ) ) lowercase_ = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} lowercase_ = idalabel lowercase_ = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: lowercase_ = 3_84 lowercase_ = 15_36 lowercase_ = 6 elif "l16" in checkpoint_url: lowercase_ = 10_24 lowercase_ = 40_96 lowercase_ = 24 lowercase_ = 16 lowercase_ = 0.1 elif "b4" in checkpoint_url: lowercase_ = 4 elif "l7" in checkpoint_url: lowercase_ = 7 lowercase_ = 10_24 lowercase_ = 40_96 lowercase_ = 24 lowercase_ = 16 lowercase_ = 0.1 lowercase_ = ViTMSNModel(__lowerCAmelCase ) lowercase_ = torch.hub.load_state_dict_from_url(__lowerCAmelCase , map_location="""cpu""" )["""target_encoder"""] lowercase_ = ViTImageProcessor(size=config.image_size ) remove_projection_head(__lowerCAmelCase ) lowercase_ = create_rename_keys(__lowerCAmelCase , base_model=__lowerCAmelCase ) for src, dest in rename_keys: rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) read_in_q_k_v(__lowerCAmelCase , __lowerCAmelCase , base_model=__lowerCAmelCase ) model.load_state_dict(__lowerCAmelCase ) model.eval() lowercase_ = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowercase_ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) lowercase_ = ViTImageProcessor( size=config.image_size , image_mean=__lowerCAmelCase , image_std=__lowerCAmelCase ) lowercase_ = image_processor(images=__lowerCAmelCase , return_tensors="""pt""" ) # forward pass torch.manual_seed(2 ) lowercase_ = model(**__lowerCAmelCase ) lowercase_ = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: lowercase_ = torch.tensor([[-1.0_915, -1.4_876, -1.1_809]] ) elif "b16" in checkpoint_url: lowercase_ = torch.tensor([[14.2_889, -18.9_045, 11.7_281]] ) elif "l16" in checkpoint_url: lowercase_ = torch.tensor([[41.5_028, -22.8_681, 45.6_475]] ) elif "b4" in checkpoint_url: lowercase_ = torch.tensor([[-4.3_868, 5.2_932, -0.4_137]] ) else: lowercase_ = torch.tensor([[-0.1_792, -0.6_465, 2.4_263]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , __lowerCAmelCase , atol=1E-4 ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(__lowerCAmelCase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) UpperCAmelCase : Tuple = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
313
1
'''simple docstring''' def _A ( snake_case ) -> List[str]: for i in range(len(snake_case ) - 1 , 0 , -1 ): _lowercase : Tuple = False for j in range(snake_case , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: _lowercase , _lowercase : Union[str, Any] = unsorted[j - 1], unsorted[j] _lowercase : Dict = True for j in range(snake_case ): if unsorted[j] > unsorted[j + 1]: _lowercase , _lowercase : Dict = unsorted[j + 1], unsorted[j] _lowercase : Union[str, Any] = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() _snake_case = input('Enter numbers separated by a comma:\n').strip() _snake_case = [int(item) for item in user_input.split(',')] print(F'''{cocktail_shaker_sort(unsorted) = }''')
250
"""simple docstring""" def _A ( lowercase , lowercase ): """simple docstring""" return number | (1 << position) def _A ( lowercase , lowercase ): """simple docstring""" return number & ~(1 << position) def _A ( lowercase , lowercase ): """simple docstring""" return number ^ (1 << position) def _A ( lowercase , lowercase ): """simple docstring""" return ((number >> position) & 1) == 1 def _A ( lowercase , lowercase ): """simple docstring""" return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
81
0
"""simple docstring""" import argparse import os import re _UpperCamelCase : int = 'src/transformers' # Pattern that looks at the indentation in a line. _UpperCamelCase : Union[str, Any] = re.compile(r'^(\s*)\S') # Pattern that matches `"key":" and puts `key` in group 0. _UpperCamelCase : List[Any] = re.compile(r'^\s*"([^"]+)":') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. _UpperCamelCase : Optional[Any] = re.compile(r'^\s*_import_structure\["([^"]+)"\]') # Pattern that matches `"key",` and puts `key` in group 0. _UpperCamelCase : int = re.compile(r'^\s*"([^"]+)",\s*$') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. _UpperCamelCase : int = re.compile(r'\[([^\]]+)\]') def snake_case (A_ :List[Any] ): '''simple docstring''' a : str = _re_indent.search(A_ ) return "" if search is None else search.groups()[0] def snake_case (A_ :Any , A_ :Optional[Any]="" , A_ :List[str]=None , A_ :List[str]=None ): '''simple docstring''' a : Dict = 0 a : Any = code.split('\n' ) if start_prompt is not None: while not lines[index].startswith(A_ ): index += 1 a : Tuple = ['\n'.join(lines[:index] )] else: a : List[Any] = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). a : Optional[int] = [lines[index]] index += 1 while index < len(A_ ) and (end_prompt is None or not lines[index].startswith(A_ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(A_ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ): current_block.append(lines[index] ) blocks.append('\n'.join(A_ ) ) if index < len(A_ ) - 1: a : Optional[int] = [lines[index + 1]] index += 1 else: a : int = [] else: blocks.append('\n'.join(A_ ) ) a : int = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(A_ ) > 0: blocks.append('\n'.join(A_ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(A_ ): blocks.append('\n'.join(lines[index:] ) ) return blocks def snake_case (A_ :Dict ): '''simple docstring''' def _inner(A_ :Optional[Any] ): return key(A_ ).lower().replace('_' , '' ) return _inner def snake_case (A_ :List[Any] , A_ :List[Any]=None ): '''simple docstring''' def noop(A_ :Union[str, Any] ): return x if key is None: a : Union[str, Any] = noop # Constants are all uppercase, they go first. a : Any = [obj for obj in objects if key(A_ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. a : Optional[int] = [obj for obj in objects if key(A_ )[0].isupper() and not key(A_ ).isupper()] # Functions begin with a lowercase, they go last. a : int = [obj for obj in objects if not key(A_ )[0].isupper()] a : List[Any] = ignore_underscore(A_ ) return sorted(A_ , key=A_ ) + sorted(A_ , key=A_ ) + sorted(A_ , key=A_ ) def snake_case (A_ :Dict ): '''simple docstring''' def _replace(A_ :str ): a : int = match.groups()[0] if "," not in imports: return f'''[{imports}]''' a : Any = [part.strip().replace('"' , '' ) for part in imports.split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: a : Any = keys[:-1] return "[" + ", ".join([f'''"{k}"''' for k in sort_objects(A_ )] ) + "]" a : Tuple = import_statement.split('\n' ) if len(A_ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. a : Dict = 2 if lines[1].strip() == '[' else 1 a : Optional[int] = [(i, _re_strip_line.search(A_ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] a : List[Any] = sort_objects(A_ , key=lambda A_ : x[1] ) a : Any = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(A_ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: a : Any = _re_bracket_content.sub(_replace , lines[1] ) else: a : Any = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: a : Optional[int] = keys[:-1] a : List[Any] = get_indent(lines[1] ) + ', '.join([f'''"{k}"''' for k in sort_objects(A_ )] ) return "\n".join(A_ ) else: # Finally we have to deal with imports fitting on one line a : Union[str, Any] = _re_bracket_content.sub(_replace , A_ ) return import_statement def snake_case (A_ :Optional[int] , A_ :Any=True ): '''simple docstring''' with open(A_ , encoding='utf-8' ) as f: a : List[str] = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 a : Optional[int] = split_code_in_indented_blocks( A_ , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(A_ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. a : Tuple = main_blocks[block_idx] a : Tuple = block.split('\n' ) # Get to the start of the imports. a : Union[str, Any] = 0 while line_idx < len(A_ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: a : List[Any] = len(A_ ) else: line_idx += 1 if line_idx >= len(A_ ): continue # Ignore beginning and last line: they don't contain anything. a : List[Any] = '\n'.join(block_lines[line_idx:-1] ) a : int = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. a : Tuple = split_code_in_indented_blocks(A_ , indent_level=A_ ) # We have two categories of import key: list or _import_structure[key].append/extend a : Optional[int] = _re_direct_key if '_import_structure = {' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. a : Any = [(pattern.search(A_ ).groups()[0] if pattern.search(A_ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. a : Union[str, Any] = [(i, key) for i, key in enumerate(A_ ) if key is not None] a : Any = [x[0] for x in sorted(A_ , key=lambda A_ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. a : Any = 0 a : List[str] = [] for i in range(len(A_ ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: a : Dict = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(A_ ) count += 1 # And we put our main block back together with its first and last line. a : Optional[Any] = '\n'.join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(A_ ): if check_only: return True else: print(f'''Overwriting {file}.''' ) with open(A_ , 'w' , encoding='utf-8' ) as f: f.write('\n'.join(A_ ) ) def snake_case (A_ :Optional[int]=True ): '''simple docstring''' a : Optional[int] = [] for root, _, files in os.walk(A_ ): if "__init__.py" in files: a : Dict = sort_imports(os.path.join(A_ , '__init__.py' ) , check_only=A_ ) if result: a : str = [os.path.join(A_ , '__init__.py' )] if len(A_ ) > 0: raise ValueError(f'''Would overwrite {len(A_ )} files, run `make style`.''' ) if __name__ == "__main__": _UpperCamelCase : str = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') _UpperCamelCase : List[Any] = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
350
"""simple docstring""" import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin _UpperCamelCase : int = get_tests_dir('fixtures/test_sentencepiece_bpe.model') class snake_case ( UpperCAmelCase , unittest.TestCase ): __magic_name__ = BartphoTokenizer __magic_name__ = False __magic_name__ = True def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' super().setUp() a : Any = ['▁This', '▁is', '▁a', '▁t', 'est'] a : List[Any] = dict(zip(A , range(len(A ) ) ) ) a : int = {'unk_token': '<unk>'} a : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['monolingual_vocab_file'] ) with open(self.monolingual_vocab_file , 'w' , encoding='utf-8' ) as fp: for token in vocab_tokens: fp.write(F'''{token} {vocab_tokens[token]}\n''' ) a : Optional[int] = BartphoTokenizer(A , self.monolingual_vocab_file , **self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase__ ( self : Dict , **A : str ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname , **A ) def lowerCamelCase__ ( self : Optional[int] , A : Dict ): '''simple docstring''' a : Tuple = 'This is a là test' a : List[Any] = 'This is a<unk><unk> test' return input_text, output_text def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' a : Tuple = BartphoTokenizer(A , self.monolingual_vocab_file , **self.special_tokens_map ) a : int = 'This is a là test' a : int = '▁This ▁is ▁a ▁l à ▁t est'.split() a : str = tokenizer.tokenize(A ) self.assertListEqual(A , A ) a : Union[str, Any] = tokens + [tokenizer.unk_token] a : Dict = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , A )
186
0
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = "philschmid/bart-large-cnn-samsum" lowercase__ = ( "This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, " "and returns a summary of the text." ) lowercase__ = "summarizer" lowercase__ = AutoTokenizer lowercase__ = AutoModelForSeqaSeqLM lowercase__ = ["text"] lowercase__ = ["text"] def _UpperCAmelCase ( self : str , lowerCAmelCase_ : Optional[int]): """simple docstring""" return self.pre_processor(lowerCAmelCase_ , return_tensors="""pt""" , truncation=lowerCAmelCase_) def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : str): """simple docstring""" return self.model.generate(**lowerCAmelCase_)[0] def _UpperCAmelCase ( self : str , lowerCAmelCase_ : int): """simple docstring""" return self.pre_processor.decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_)
136
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase : Tuple = {"configuration_plbart": ["PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP", "PLBartConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[Any] = ["PLBartTokenizer"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Dict = [ "PLBART_PRETRAINED_MODEL_ARCHIVE_LIST", "PLBartForCausalLM", "PLBartForConditionalGeneration", "PLBartForSequenceClassification", "PLBartModel", "PLBartPreTrainedModel", ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys UpperCAmelCase : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure)
136
1
"""simple docstring""" import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model SCREAMING_SNAKE_CASE : Optional[Any] = """0.12""" # assumed parallelism: 8 if is_torch_available(): import torch def lowercase ( _snake_case : List[str] , _snake_case : Any , _snake_case : int=None ) ->Tuple: """simple docstring""" if rng is None: __snake_case : str = random.Random() __snake_case : Optional[int] = 1 for dim in shape: total_dims *= dim __snake_case : Optional[int] = [] for _ in range(_snake_case ): values.append(rng.randint(0 , vocab_size - 1 ) ) __snake_case : List[str] = np.array(_snake_case , dtype=jnp.intaa ).reshape(_snake_case ) return output def lowercase ( _snake_case : Optional[int] , _snake_case : List[Any]=None ) ->Any: """simple docstring""" __snake_case : Optional[int] = ids_tensor(_snake_case , vocab_size=2 , rng=_snake_case ) # make sure that at least one token is attended to for each batch __snake_case : Optional[Any] = 1 return attn_mask @require_flax class _UpperCAmelCase : '''simple docstring''' lowerCamelCase__ =None lowerCamelCase__ =() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case , __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 __snake_case : str = 2 __snake_case : Tuple = inputs['''input_ids'''].shape[-1] // 2 __snake_case : int = inputs['''input_ids'''][:max_batch_size, :sequence_length] __snake_case : int = jnp.ones_like(a_ ) __snake_case : Optional[int] = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens __snake_case : Dict = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` __snake_case : str = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case , __snake_case , __snake_case , __snake_case : Any = self._get_input_ids_and_config() __snake_case : Optional[Any] = False __snake_case : Tuple = max_length __snake_case : int = 0 for model_class in self.all_generative_model_classes: __snake_case : Optional[Any] = model_class(a_ ) __snake_case : Tuple = model_class.__name__[4:] # Skip the "Flax" at the beginning __snake_case : Any = getattr(a_ , a_ ) __snake_case : Optional[Any] = pt_model_class(a_ ).eval() __snake_case : Union[str, Any] = load_flax_weights_in_pytorch_model(a_ , flax_model.params ) __snake_case : Optional[Any] = flax_model.generate(a_ ).sequences __snake_case : Dict = pt_model.generate(torch.tensor(a_ , dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: __snake_case : int = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist() ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case , __snake_case , __snake_case , __snake_case : Union[str, Any] = self._get_input_ids_and_config() __snake_case : Any = False __snake_case : Optional[Any] = max_length for model_class in self.all_generative_model_classes: __snake_case : Dict = model_class(a_ ) __snake_case : Union[str, Any] = model.generate(a_ ).sequences self.assertEqual(generation_outputs.shape[-1] , a_ ) __snake_case : Tuple = jit(model.generate ) __snake_case : Tuple = jit_generate(a_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case , __snake_case , __snake_case , __snake_case : Tuple = self._get_input_ids_and_config() __snake_case : Dict = True __snake_case : Optional[Any] = max_length for model_class in self.all_generative_model_classes: __snake_case : List[str] = model_class(a_ ) __snake_case : Tuple = model.generate(a_ ).sequences self.assertEqual(generation_outputs.shape[-1] , a_ ) __snake_case : Union[str, Any] = jit(model.generate ) __snake_case : List[str] = jit_generate(a_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case , __snake_case , __snake_case , __snake_case : str = self._get_input_ids_and_config() __snake_case : List[str] = False __snake_case : List[Any] = max_length __snake_case : List[str] = 2 for model_class in self.all_generative_model_classes: __snake_case : Optional[int] = model_class(a_ ) __snake_case : str = model.generate(a_ ).sequences self.assertEqual(generation_outputs.shape[-1] , a_ ) __snake_case : List[Any] = jit(model.generate ) __snake_case : List[str] = jit_generate(a_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case , __snake_case , __snake_case , __snake_case : Union[str, Any] = self._get_input_ids_and_config() __snake_case : Optional[Any] = False __snake_case : Dict = max_length __snake_case : List[str] = 2 __snake_case : List[str] = 2 for model_class in self.all_generative_model_classes: __snake_case : Optional[Any] = model_class(a_ ) __snake_case : str = model.generate(a_ ).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case , __snake_case , __snake_case , __snake_case : Optional[int] = self._get_input_ids_and_config() __snake_case : List[str] = True __snake_case : Tuple = max_length __snake_case : Optional[int] = 0.8 __snake_case : Dict = 10 __snake_case : Tuple = 0.3 __snake_case : List[Any] = 1 __snake_case : Tuple = 8 __snake_case : Optional[int] = 9 for model_class in self.all_generative_model_classes: __snake_case : Any = model_class(a_ ) __snake_case : Any = model.generate(a_ ).sequences self.assertEqual(generation_outputs.shape[-1] , a_ ) __snake_case : Any = jit(model.generate ) __snake_case : int = jit_generate(a_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case , __snake_case , __snake_case , __snake_case : int = self._get_input_ids_and_config() __snake_case : Optional[int] = max_length __snake_case : int = 1 __snake_case : Dict = 8 __snake_case : Dict = 9 for model_class in self.all_generative_model_classes: __snake_case : Tuple = model_class(a_ ) __snake_case : Union[str, Any] = model.generate(a_ ).sequences self.assertEqual(generation_outputs.shape[-1] , a_ ) __snake_case : Optional[Any] = jit(model.generate ) __snake_case : Optional[Any] = jit_generate(a_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case , __snake_case , __snake_case , __snake_case : List[str] = self._get_input_ids_and_config() __snake_case : Optional[int] = max_length __snake_case : Tuple = 2 __snake_case : Any = 1 __snake_case : Any = 8 __snake_case : Any = 9 for model_class in self.all_generative_model_classes: __snake_case : Optional[Any] = model_class(a_ ) __snake_case : Any = model.generate(a_ ).sequences self.assertEqual(generation_outputs.shape[-1] , a_ ) __snake_case : Optional[Any] = jit(model.generate ) __snake_case : Optional[int] = jit_generate(a_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case , __snake_case , __snake_case , __snake_case : Any = self._get_input_ids_and_config() # pad attention mask on the left __snake_case : Optional[int] = attention_mask.at[(0, 0)].set(0 ) __snake_case : str = False __snake_case : int = max_length for model_class in self.all_generative_model_classes: __snake_case : Union[str, Any] = model_class(a_ ) __snake_case : int = model.generate(a_ , attention_mask=a_ ).sequences self.assertEqual(generation_outputs.shape[-1] , a_ ) __snake_case : int = jit(model.generate ) __snake_case : Tuple = jit_generate(a_ , attention_mask=a_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case , __snake_case , __snake_case , __snake_case : Optional[Any] = self._get_input_ids_and_config() # pad attention mask on the left __snake_case : Any = attention_mask.at[(0, 0)].set(0 ) __snake_case : Optional[Any] = True __snake_case : List[str] = max_length for model_class in self.all_generative_model_classes: __snake_case : str = model_class(a_ ) __snake_case : Dict = model.generate(a_ , attention_mask=a_ ).sequences self.assertEqual(generation_outputs.shape[-1] , a_ ) __snake_case : Optional[int] = jit(model.generate ) __snake_case : List[Any] = jit_generate(a_ , attention_mask=a_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case , __snake_case , __snake_case , __snake_case : List[Any] = self._get_input_ids_and_config() # pad attention mask on the left __snake_case : Any = attention_mask.at[(0, 0)].set(0 ) __snake_case : Union[str, Any] = 2 __snake_case : int = max_length for model_class in self.all_generative_model_classes: __snake_case : List[str] = model_class(a_ ) __snake_case : Dict = model.generate(a_ , attention_mask=a_ ).sequences self.assertEqual(generation_outputs.shape[-1] , a_ ) __snake_case : Any = jit(model.generate ) __snake_case : Optional[int] = jit_generate(a_ , attention_mask=a_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) @require_flax class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-bert''' ) __snake_case : int = FlaxAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) __snake_case : Union[str, Any] = '''Hello world''' __snake_case : Optional[Any] = tokenizer(a_ , return_tensors='''np''' ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(a_ , '''do_samples''' ): model.generate(a_ , do_samples=a_ ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(a_ , '''foo''' ): __snake_case : Optional[int] = {'''foo''': '''bar'''} model.generate(a_ , **a_ )
24
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' for model_result in results.values(): for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ): __snake_case : Dict = model_result['''result'''][batch_size][sequence_length] self.assertIsNotNone(a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = '''sshleifer/tiny-gpt2''' __snake_case : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=a_ , multi_process=a_ , ) __snake_case : Optional[int] = TensorFlowBenchmark(a_ ) __snake_case : str = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = '''sgugger/tiny-distilbert-classification''' __snake_case : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , only_pretrain_model=a_ , ) __snake_case : Optional[Any] = TensorFlowBenchmark(a_ ) __snake_case : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = '''sshleifer/tiny-gpt2''' __snake_case : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , ) __snake_case : Any = TensorFlowBenchmark(a_ ) __snake_case : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = '''sshleifer/tiny-gpt2''' __snake_case : Union[str, Any] = AutoConfig.from_pretrained(a_ ) __snake_case : int = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=a_ , multi_process=a_ , ) __snake_case : List[str] = TensorFlowBenchmark(a_ , [config] ) __snake_case : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[str] = '''sshleifer/tiny-gpt2''' __snake_case : Optional[Any] = AutoConfig.from_pretrained(a_ ) __snake_case : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , ) __snake_case : Dict = TensorFlowBenchmark(a_ , [config] ) __snake_case : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = '''sshleifer/tiny-gpt2''' __snake_case : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , ) __snake_case : int = TensorFlowBenchmark(a_ ) __snake_case : Any = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = '''sshleifer/tiny-gpt2''' __snake_case : Dict = AutoConfig.from_pretrained(a_ ) __snake_case : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , ) __snake_case : List[Any] = TensorFlowBenchmark(a_ , [config] ) __snake_case : Any = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = '''patrickvonplaten/t5-tiny-random''' __snake_case : Tuple = AutoConfig.from_pretrained(a_ ) __snake_case : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , ) __snake_case : List[str] = TensorFlowBenchmark(a_ , configs=[config] ) __snake_case : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , '''Cannot do xla on CPU.''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = '''sshleifer/tiny-gpt2''' __snake_case : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , use_xla=a_ , multi_process=a_ , ) __snake_case : Optional[int] = TensorFlowBenchmark(a_ ) __snake_case : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = '''sshleifer/tiny-gpt2''' with tempfile.TemporaryDirectory() as tmp_dir: __snake_case : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=a_ , save_to_csv=a_ , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(a_ , '''inf_time.csv''' ) , inference_memory_csv_file=os.path.join(a_ , '''inf_mem.csv''' ) , env_info_csv_file=os.path.join(a_ , '''env.csv''' ) , multi_process=a_ , ) __snake_case : Union[str, Any] = TensorFlowBenchmark(a_ ) benchmark.run() self.assertTrue(Path(os.path.join(a_ , '''inf_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(a_ , '''inf_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(a_ , '''env.csv''' ) ).exists() ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = '''sshleifer/tiny-gpt2''' def _check_summary_is_not_empty(a_ ): self.assertTrue(hasattr(a_ , '''sequential''' ) ) self.assertTrue(hasattr(a_ , '''cumulative''' ) ) self.assertTrue(hasattr(a_ , '''current''' ) ) self.assertTrue(hasattr(a_ , '''total''' ) ) with tempfile.TemporaryDirectory() as tmp_dir: __snake_case : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(a_ , '''log.txt''' ) , log_print=a_ , trace_memory_line_by_line=a_ , eager_mode=a_ , multi_process=a_ , ) __snake_case : List[Any] = TensorFlowBenchmark(a_ ) __snake_case : Optional[int] = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(a_ , '''log.txt''' ) ).exists() )
24
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ : List[str] = logging.get_logger(__name__) def __magic_name__ ( __lowerCAmelCase : List[str] ) -> Tuple: __lowerCamelCase = SwinConfig( embed_dim=192 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=['''stage2''', '''stage3''', '''stage4'''] , ) __lowerCamelCase = DetaConfig( backbone_config=__lowerCAmelCase , num_queries=900 , encoder_ffn_dim=2048 , decoder_ffn_dim=2048 , num_feature_levels=5 , assign_first_stage=__lowerCAmelCase , with_box_refine=__lowerCAmelCase , two_stage=__lowerCAmelCase , ) # set labels __lowerCamelCase = '''huggingface/label-files''' if "o365" in model_name: __lowerCamelCase = 366 __lowerCamelCase = '''object365-id2label.json''' else: __lowerCamelCase = 91 __lowerCamelCase = '''coco-detection-id2label.json''' __lowerCamelCase = num_labels __lowerCamelCase = json.load(open(cached_download(hf_hub_url(__lowerCAmelCase , __lowerCAmelCase , repo_type='''dataset''' ) ) , '''r''' ) ) __lowerCamelCase = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} __lowerCamelCase = idalabel __lowerCamelCase = {v: k for k, v in idalabel.items()} return config def __magic_name__ ( __lowerCAmelCase : str ) -> str: __lowerCamelCase = [] # stem # fmt: off rename_keys.append(('''backbone.0.body.patch_embed.proj.weight''', '''model.backbone.model.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.0.body.patch_embed.proj.bias''', '''model.backbone.model.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.0.body.patch_embed.norm.weight''', '''model.backbone.model.embeddings.norm.weight''') ) rename_keys.append(('''backbone.0.body.patch_embed.norm.bias''', '''model.backbone.model.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm1.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm1.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm2.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm2.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.reduction.weight''', f'''model.backbone.model.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.norm.weight''', f'''model.backbone.model.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.norm.bias''', f'''model.backbone.model.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append(('''backbone.0.body.norm1.weight''', '''model.backbone.model.hidden_states_norms.stage2.weight''') ) rename_keys.append(('''backbone.0.body.norm1.bias''', '''model.backbone.model.hidden_states_norms.stage2.bias''') ) rename_keys.append(('''backbone.0.body.norm2.weight''', '''model.backbone.model.hidden_states_norms.stage3.weight''') ) rename_keys.append(('''backbone.0.body.norm2.bias''', '''model.backbone.model.hidden_states_norms.stage3.bias''') ) rename_keys.append(('''backbone.0.body.norm3.weight''', '''model.backbone.model.hidden_states_norms.stage4.weight''') ) rename_keys.append(('''backbone.0.body.norm3.bias''', '''model.backbone.model.hidden_states_norms.stage4.bias''') ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight''', f'''model.encoder.layers.{i}.self_attn.sampling_offsets.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias''', f'''model.encoder.layers.{i}.self_attn.sampling_offsets.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.attention_weights.weight''', f'''model.encoder.layers.{i}.self_attn.attention_weights.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.attention_weights.bias''', f'''model.encoder.layers.{i}.self_attn.attention_weights.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.value_proj.weight''', f'''model.encoder.layers.{i}.self_attn.value_proj.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.value_proj.bias''', f'''model.encoder.layers.{i}.self_attn.value_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.output_proj.weight''', f'''model.encoder.layers.{i}.self_attn.output_proj.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.output_proj.bias''', f'''model.encoder.layers.{i}.self_attn.output_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.weight''', f'''model.encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.bias''', f'''model.encoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.weight''', f'''model.encoder.layers.{i}.fc1.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.bias''', f'''model.encoder.layers.{i}.fc1.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.weight''', f'''model.encoder.layers.{i}.fc2.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.bias''', f'''model.encoder.layers.{i}.fc2.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.weight''', f'''model.encoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.bias''', f'''model.encoder.layers.{i}.final_layer_norm.bias''') ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight''', f'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias''', f'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.attention_weights.weight''', f'''model.decoder.layers.{i}.encoder_attn.attention_weights.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.attention_weights.bias''', f'''model.decoder.layers.{i}.encoder_attn.attention_weights.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.value_proj.weight''', f'''model.decoder.layers.{i}.encoder_attn.value_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.value_proj.bias''', f'''model.decoder.layers.{i}.encoder_attn.value_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.output_proj.weight''', f'''model.decoder.layers.{i}.encoder_attn.output_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.output_proj.bias''', f'''model.decoder.layers.{i}.encoder_attn.output_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.weight''', f'''model.decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.bias''', f'''model.decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', f'''model.decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', f'''model.decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm2.weight''', f'''model.decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm2.bias''', f'''model.decoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.weight''', f'''model.decoder.layers.{i}.fc1.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.bias''', f'''model.decoder.layers.{i}.fc1.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.weight''', f'''model.decoder.layers.{i}.fc2.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.bias''', f'''model.decoder.layers.{i}.fc2.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.weight''', f'''model.decoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.bias''', f'''model.decoder.layers.{i}.final_layer_norm.bias''') ) # fmt: on return rename_keys def __magic_name__ ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple ) -> Optional[Any]: __lowerCamelCase = dct.pop(__lowerCAmelCase ) __lowerCamelCase = val def __magic_name__ ( __lowerCAmelCase : Any , __lowerCAmelCase : Dict ) -> List[Any]: __lowerCamelCase = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __lowerCamelCase = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __lowerCamelCase = state_dict.pop(f'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight''' ) __lowerCamelCase = state_dict.pop(f'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict __lowerCamelCase = in_proj_weight[:dim, :] __lowerCamelCase = in_proj_bias[: dim] __lowerCamelCase = in_proj_weight[ dim : dim * 2, : ] __lowerCamelCase = in_proj_bias[ dim : dim * 2 ] __lowerCamelCase = in_proj_weight[ -dim :, : ] __lowerCamelCase = in_proj_bias[-dim :] # fmt: on def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : Optional[int] ) -> Optional[int]: # transformer decoder self-attention layers __lowerCamelCase = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention __lowerCamelCase = state_dict.pop(f'''transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) __lowerCamelCase = state_dict.pop(f'''transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict __lowerCamelCase = in_proj_weight[:hidden_size, :] __lowerCamelCase = in_proj_bias[:hidden_size] __lowerCamelCase = in_proj_weight[ hidden_size : hidden_size * 2, : ] __lowerCamelCase = in_proj_bias[hidden_size : hidden_size * 2] __lowerCamelCase = in_proj_weight[-hidden_size:, :] __lowerCamelCase = in_proj_bias[-hidden_size:] def __magic_name__ ( ) -> List[Any]: __lowerCamelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __lowerCamelCase = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) return im @torch.no_grad() def __magic_name__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Dict ) -> List[Any]: __lowerCamelCase = get_deta_config(__lowerCAmelCase ) # load original state dict if model_name == "deta-swin-large": __lowerCamelCase = hf_hub_download(repo_id='''nielsr/deta-checkpoints''' , filename='''adet_swin_ft.pth''' ) elif model_name == "deta-swin-large-o365": __lowerCamelCase = hf_hub_download(repo_id='''jozhang97/deta-swin-l-o365''' , filename='''deta_swin_pt_o365.pth''' ) else: raise ValueError(f'''Model name {model_name} not supported''' ) __lowerCamelCase = torch.load(__lowerCAmelCase , map_location='''cpu''' )['''model'''] # original state dict for name, param in state_dict.items(): print(__lowerCAmelCase , param.shape ) # rename keys __lowerCamelCase = create_rename_keys(__lowerCAmelCase ) for src, dest in rename_keys: rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) read_in_swin_q_k_v(__lowerCAmelCase , config.backbone_config ) read_in_decoder_q_k_v(__lowerCAmelCase , __lowerCAmelCase ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: __lowerCamelCase = state_dict.pop(__lowerCAmelCase ) __lowerCamelCase = val if "input_proj" in key: __lowerCamelCase = state_dict.pop(__lowerCAmelCase ) __lowerCamelCase = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: __lowerCamelCase = state_dict.pop(__lowerCAmelCase ) __lowerCamelCase = val # finally, create HuggingFace model and load state dict __lowerCamelCase = DetaForObjectDetection(__lowerCAmelCase ) model.load_state_dict(__lowerCAmelCase ) model.eval() __lowerCamelCase = '''cuda''' if torch.cuda.is_available() else '''cpu''' model.to(__lowerCAmelCase ) # load image processor __lowerCamelCase = DetaImageProcessor(format='''coco_detection''' ) # verify our conversion on image __lowerCamelCase = prepare_img() __lowerCamelCase = processor(images=__lowerCAmelCase , return_tensors='''pt''' ) __lowerCamelCase = encoding['''pixel_values'''] __lowerCamelCase = model(pixel_values.to(__lowerCAmelCase ) ) # verify logits print('''Logits:''' , outputs.logits[0, :3, :3] ) print('''Boxes:''' , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": __lowerCamelCase = torch.tensor( [[-7.6308, -2.8485, -5.3737], [-7.2037, -4.5505, -4.8027], [-7.2943, -4.2611, -4.6617]] ) __lowerCamelCase = torch.tensor([[0.4987, 0.4969, 0.9999], [0.2549, 0.5498, 0.4805], [0.5498, 0.2757, 0.0569]] ) elif model_name == "deta-swin-large-o365": __lowerCamelCase = torch.tensor( [[-8.0122, -3.5720, -4.9717], [-8.1547, -3.6886, -4.6389], [-7.6610, -3.6194, -5.0134]] ) __lowerCamelCase = torch.tensor([[0.2523, 0.5549, 0.4881], [0.7715, 0.4149, 0.4601], [0.5503, 0.2753, 0.0575]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(__lowerCAmelCase ) , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(__lowerCAmelCase ) , atol=1E-4 ) print('''Everything ok!''' ) if pytorch_dump_folder_path: # Save model and processor logger.info(f'''Saving PyTorch model and processor to {pytorch_dump_folder_path}...''' ) Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) model.save_pretrained(__lowerCAmelCase ) processor.save_pretrained(__lowerCAmelCase ) # Push to hub if push_to_hub: print('''Pushing model and processor to hub...''' ) model.push_to_hub(f'''jozhang97/{model_name}''' ) processor.push_to_hub(f'''jozhang97/{model_name}''' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : Optional[Any] = argparse.ArgumentParser() parser.add_argument( "--model_name", type=str, default="deta-swin-large", choices=["deta-swin-large", "deta-swin-large-o365"], help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) SCREAMING_SNAKE_CASE__ : List[str] = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
270
def UpperCAmelCase_ ( __lowerCAmelCase ) -> int: if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or number < 0: raise ValueError('''Input must be a non-negative integer''' ) __lowercase : List[str] = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
156
0
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo _snake_case = "\\n@misc{wu2016googles,\n title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n" _snake_case = "\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe 'GLEU score'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore's range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n" _snake_case = "\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n 'google_bleu': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class UpperCAmelCase_ ( datasets.Metric): def snake_case__ ( self): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string", id="token"), id="sequence"), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string", id="token"), id="sequence"), id="references"), }), ) def snake_case__ ( self, __a, __a, __a = 1, __a = 4, ): '''simple docstring''' return { "google_bleu": gleu_score.corpus_gleu( list_of_references=__a, hypotheses=__a, min_len=__a, max_len=__a) }
300
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor _snake_case = logging.get_logger(__name__) class UpperCAmelCase_ ( a): def __init__( self, *__a, **__a): '''simple docstring''' warnings.warn( "The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use VideoMAEImageProcessor instead.", __a, ) super().__init__(*__a, **__a)
300
1
def lowerCAmelCase_ ( A_ ,A_ ,A_ ,A_): # 1. Validate that path exists between current and next vertices if graph[path[curr_ind - 1]][next_ver] == 0: return False # 2. Validate that next vertex is not already in path return not any(vertex == next_ver for vertex in path) def lowerCAmelCase_ ( A_ ,A_ ,A_): # Base Case if curr_ind == len(A_): # return whether path exists between current and starting vertices return graph[path[curr_ind - 1]][path[0]] == 1 # Recursive Step for next_ver in range(0 ,len(A_)): if valid_connection(A_ ,A_ ,A_ ,A_): # Insert current vertex into path as next transition UpperCamelCase__: Dict = next_ver # Validate created path if util_hamilton_cycle(A_ ,A_ ,curr_ind + 1): return True # Backtrack UpperCamelCase__: Any = -1 return False def lowerCAmelCase_ ( A_ ,A_ = 0): UpperCamelCase__: Tuple = [-1] * (len(A_) + 1) # initialize start and end of path with starting index UpperCamelCase__: List[Any] = start_index # evaluate and if we find answer return path either return empty array return path if util_hamilton_cycle(A_ ,A_ ,1) else []
149
from ..utils import DummyObject, requires_backends class _a ( metaclass=UpperCamelCase__): """simple docstring""" UpperCamelCase__ = ["""flax""", """transformers"""] def __init__( self: Optional[int] , *__lowerCamelCase: Union[str, Any] , **__lowerCamelCase: List[str] ): '''simple docstring''' requires_backends(self , ["flax", "transformers"] ) @classmethod def UpperCAmelCase_ ( cls: Optional[int] , *__lowerCamelCase: str , **__lowerCamelCase: Any ): '''simple docstring''' requires_backends(cls , ["flax", "transformers"] ) @classmethod def UpperCAmelCase_ ( cls: Any , *__lowerCamelCase: List[str] , **__lowerCamelCase: Any ): '''simple docstring''' requires_backends(cls , ["flax", "transformers"] ) class _a ( metaclass=UpperCamelCase__): """simple docstring""" UpperCamelCase__ = ["""flax""", """transformers"""] def __init__( self: List[str] , *__lowerCamelCase: str , **__lowerCamelCase: int ): '''simple docstring''' requires_backends(self , ["flax", "transformers"] ) @classmethod def UpperCAmelCase_ ( cls: Any , *__lowerCamelCase: Union[str, Any] , **__lowerCamelCase: Optional[int] ): '''simple docstring''' requires_backends(cls , ["flax", "transformers"] ) @classmethod def UpperCAmelCase_ ( cls: str , *__lowerCamelCase: List[str] , **__lowerCamelCase: str ): '''simple docstring''' requires_backends(cls , ["flax", "transformers"] ) class _a ( metaclass=UpperCamelCase__): """simple docstring""" UpperCamelCase__ = ["""flax""", """transformers"""] def __init__( self: List[Any] , *__lowerCamelCase: Optional[int] , **__lowerCamelCase: Union[str, Any] ): '''simple docstring''' requires_backends(self , ["flax", "transformers"] ) @classmethod def UpperCAmelCase_ ( cls: Optional[Any] , *__lowerCamelCase: Dict , **__lowerCamelCase: Union[str, Any] ): '''simple docstring''' requires_backends(cls , ["flax", "transformers"] ) @classmethod def UpperCAmelCase_ ( cls: Any , *__lowerCamelCase: Dict , **__lowerCamelCase: str ): '''simple docstring''' requires_backends(cls , ["flax", "transformers"] ) class _a ( metaclass=UpperCamelCase__): """simple docstring""" UpperCamelCase__ = ["""flax""", """transformers"""] def __init__( self: Any , *__lowerCamelCase: Any , **__lowerCamelCase: List[Any] ): '''simple docstring''' requires_backends(self , ["flax", "transformers"] ) @classmethod def UpperCAmelCase_ ( cls: List[Any] , *__lowerCamelCase: Optional[int] , **__lowerCamelCase: Any ): '''simple docstring''' requires_backends(cls , ["flax", "transformers"] ) @classmethod def UpperCAmelCase_ ( cls: Tuple , *__lowerCamelCase: int , **__lowerCamelCase: Any ): '''simple docstring''' requires_backends(cls , ["flax", "transformers"] )
149
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) snake_case : Tuple = { '''configuration_mega''': ['''MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegaConfig''', '''MegaOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : List[Any] = [ '''MEGA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MegaForCausalLM''', '''MegaForMaskedLM''', '''MegaForMultipleChoice''', '''MegaForQuestionAnswering''', '''MegaForSequenceClassification''', '''MegaForTokenClassification''', '''MegaModel''', '''MegaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys snake_case : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
353
from ...configuration_utils import PretrainedConfig class _snake_case ( _snake_case ): SCREAMING_SNAKE_CASE__ = 'bert-generation' def __init__( self , _lowerCamelCase=5_0358 , _lowerCamelCase=1024 , _lowerCamelCase=24 , _lowerCamelCase=16 , _lowerCamelCase=4096 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=512 , _lowerCamelCase=0.02 , _lowerCamelCase=1e-12 , _lowerCamelCase=0 , _lowerCamelCase=2 , _lowerCamelCase=1 , _lowerCamelCase="absolute" , _lowerCamelCase=True , **_lowerCamelCase , ): super().__init__(pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , **_lowerCamelCase ) a :Optional[int] = vocab_size a :Tuple = hidden_size a :Any = num_hidden_layers a :Any = num_attention_heads a :List[Any] = hidden_act a :Tuple = intermediate_size a :Any = hidden_dropout_prob a :int = attention_probs_dropout_prob a :Dict = max_position_embeddings a :int = initializer_range a :Union[str, Any] = layer_norm_eps a :str = position_embedding_type a :int = use_cache
281
0
'''simple docstring''' import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) a : Tuple = logging.getLogger() def lowercase ( ): '''simple docstring''' UpperCAmelCase : List[Any] = argparse.ArgumentParser() parser.add_argument("-f" ) UpperCAmelCase : List[str] = parser.parse_args() return args.f class UpperCamelCase__ ( lowercase__ ): """simple docstring""" def A_ ( self ): '''simple docstring''' UpperCAmelCase : List[Any] = logging.StreamHandler(sys.stdout ) logger.addHandler(snake_case ) def A_ ( self , snake_case ): '''simple docstring''' UpperCAmelCase : Dict = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , "run_glue_deebert.py" ) with patch.object(snake_case , "argv" , snake_case ): UpperCAmelCase : int = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(snake_case , 0.666 ) @slow @require_torch_non_multi_gpu def A_ ( self ): '''simple docstring''' UpperCAmelCase : str = "\n --model_type roberta\n --model_name_or_path roberta-base\n --task_name MRPC\n --do_train\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --max_seq_length 128\n --per_gpu_eval_batch_size=1\n --per_gpu_train_batch_size=8\n --learning_rate 2e-4\n --num_train_epochs 3\n --overwrite_output_dir\n --seed 42\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --save_steps 0\n --overwrite_cache\n --eval_after_first_stage\n ".split() self.run_and_check(snake_case ) UpperCAmelCase : Optional[Any] = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --eval_each_highway\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split() self.run_and_check(snake_case ) UpperCAmelCase : int = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --early_exit_entropy 0.1\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split() self.run_and_check(snake_case )
311
'''simple docstring''' import argparse import copy def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : List[str] = {} with open(__magic_name__ ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: UpperCAmelCase : List[Any] = [] _list.append([line.split()[1], line.split()[2]] ) UpperCAmelCase : Tuple = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: UpperCAmelCase : Any = [] _list.append([line.split()[0], line.split()[2]] ) UpperCAmelCase : int = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def lowercase ( __magic_name__ , __magic_name__ ): '''simple docstring''' with open(__magic_name__ ) as f: UpperCAmelCase : List[str] = f.read(1 ) UpperCAmelCase : List[Any] = start_node UpperCAmelCase : Union[str, Any] = [] UpperCAmelCase : Any = start_node UpperCAmelCase : Optional[Any] = 0 while visiting not in first_solution: UpperCAmelCase : Optional[Any] = 1_0000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(__magic_name__ ) and k[0] not in first_solution: UpperCAmelCase : Tuple = k[1] UpperCAmelCase : Dict = k[0] first_solution.append(__magic_name__ ) UpperCAmelCase : int = distance_of_first_solution + int(__magic_name__ ) UpperCAmelCase : str = best_node first_solution.append(__magic_name__ ) UpperCAmelCase : int = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 UpperCAmelCase : str = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 1_0000 ) return first_solution, distance_of_first_solution def lowercase ( __magic_name__ , __magic_name__ ): '''simple docstring''' UpperCAmelCase : Optional[Any] = [] for n in solution[1:-1]: UpperCAmelCase : Any = solution.index(__magic_name__ ) for kn in solution[1:-1]: UpperCAmelCase : Dict = solution.index(__magic_name__ ) if n == kn: continue UpperCAmelCase : Tuple = copy.deepcopy(__magic_name__ ) UpperCAmelCase : Optional[int] = kn UpperCAmelCase : List[str] = n UpperCAmelCase : str = 0 for k in _tmp[:-1]: UpperCAmelCase : List[Any] = _tmp[_tmp.index(__magic_name__ ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: UpperCAmelCase : List[Any] = distance + int(i[1] ) _tmp.append(__magic_name__ ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) UpperCAmelCase : List[str] = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda __magic_name__ : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): '''simple docstring''' UpperCAmelCase : List[Any] = 1 UpperCAmelCase : List[str] = first_solution UpperCAmelCase : str = [] UpperCAmelCase : Union[str, Any] = distance_of_first_solution UpperCAmelCase : Union[str, Any] = solution while count <= iters: UpperCAmelCase : int = find_neighborhood(__magic_name__ , __magic_name__ ) UpperCAmelCase : Any = 0 UpperCAmelCase : List[str] = neighborhood[index_of_best_solution] UpperCAmelCase : Dict = len(__magic_name__ ) - 1 UpperCAmelCase : Dict = False while not found: UpperCAmelCase : List[Any] = 0 while i < len(__magic_name__ ): if best_solution[i] != solution[i]: UpperCAmelCase : int = best_solution[i] UpperCAmelCase : Optional[int] = solution[i] break UpperCAmelCase : List[str] = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) UpperCAmelCase : List[str] = True UpperCAmelCase : List[Any] = best_solution[:-1] UpperCAmelCase : str = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: UpperCAmelCase : Union[str, Any] = cost UpperCAmelCase : Tuple = solution else: UpperCAmelCase : Optional[Any] = index_of_best_solution + 1 UpperCAmelCase : str = neighborhood[index_of_best_solution] if len(__magic_name__ ) >= size: tabu_list.pop(0 ) UpperCAmelCase : int = count + 1 return best_solution_ever, best_cost def lowercase ( __magic_name__=None ): '''simple docstring''' UpperCAmelCase : Dict = generate_neighbours(args.File ) UpperCAmelCase , UpperCAmelCase : Any = generate_first_solution( args.File , __magic_name__ ) UpperCAmelCase , UpperCAmelCase : Any = tabu_search( __magic_name__ , __magic_name__ , __magic_name__ , args.Iterations , args.Size , ) print(F"Best solution: {best_sol}, with total distance: {best_cost}." ) if __name__ == "__main__": a : Union[str, Any] = argparse.ArgumentParser(description="Tabu Search") parser.add_argument( "-f", "--File", type=str, help="Path to the file containing the data", required=True, ) parser.add_argument( "-i", "--Iterations", type=int, help="How many iterations the algorithm should perform", required=True, ) parser.add_argument( "-s", "--Size", type=int, help="Size of the tabu list", required=True ) # Pass the arguments to main method main(parser.parse_args())
311
1
def lowerCAmelCase_ ( _lowercase : list[int]) -> int: """simple docstring""" if not numbers: return 0 if not isinstance(_lowercase , (list, tuple)) or not all( isinstance(_lowercase , _lowercase) for number in numbers): raise ValueError("""numbers must be an iterable of integers""") a__ : Dict = numbers[0] for i in range(1 , len(_lowercase)): # update the maximum and minimum subarray products a__ : Union[str, Any] = numbers[i] if number < 0: a__ , a__ : str = min_till_now, max_till_now a__ : Optional[Any] = max(_lowercase , max_till_now * number) a__ : Optional[int] = min(_lowercase , min_till_now * number) # update the maximum product found till now a__ : List[Any] = max(_lowercase , _lowercase) return max_prod
266
import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class snake_case__ (ctypes.Structure ): """simple docstring""" __lowerCAmelCase :Dict = [("size", ctypes.c_int), ("visible", ctypes.c_byte)] def lowerCAmelCase_ ( ) -> List[Any]: """simple docstring""" if os.name == "nt": a__ : int = CursorInfo() a__ : Union[str, Any] = ctypes.windll.kernelaa.GetStdHandle(-11) ctypes.windll.kernelaa.GetConsoleCursorInfo(_lowercase , ctypes.byref(_lowercase)) a__ : List[str] = False ctypes.windll.kernelaa.SetConsoleCursorInfo(_lowercase , ctypes.byref(_lowercase)) elif os.name == "posix": sys.stdout.write("""\033[?25l""") sys.stdout.flush() def lowerCAmelCase_ ( ) -> Optional[Any]: """simple docstring""" if os.name == "nt": a__ : List[Any] = CursorInfo() a__ : Optional[int] = ctypes.windll.kernelaa.GetStdHandle(-11) ctypes.windll.kernelaa.GetConsoleCursorInfo(_lowercase , ctypes.byref(_lowercase)) a__ : Dict = True ctypes.windll.kernelaa.SetConsoleCursorInfo(_lowercase , ctypes.byref(_lowercase)) elif os.name == "posix": sys.stdout.write("""\033[?25h""") sys.stdout.flush() @contextmanager def lowerCAmelCase_ ( ) -> Any: """simple docstring""" try: hide_cursor() yield finally: show_cursor()
266
1
import warnings from ...utils import logging from .image_processing_deit import DeiTImageProcessor _lowerCAmelCase : List[str] = logging.get_logger(__name__) class __magic_name__ ( lowerCAmelCase_ ): def __init__( self , *__snake_case , **__snake_case ) -> str: '''simple docstring''' warnings.warn( 'The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use DeiTImageProcessor instead.' , __snake_case , ) super().__init__(*__snake_case , **__snake_case )
218
"""simple docstring""" def _snake_case ( lowercase__ ): if not isinstance(lowercase__ , lowercase__ ): raise ValueError('Input series is not valid, valid series - [2, 4, 6]' ) if len(lowercase__ ) == 0: raise ValueError('Input list must be a non empty list' ) if len(lowercase__ ) == 1: return True _lowerCamelCase : List[Any] = series[1] - series[0] for index in range(len(lowercase__ ) - 1 ): if series[index + 1] - series[index] != common_diff: return False return True def _snake_case ( lowercase__ ): if not isinstance(lowercase__ , lowercase__ ): raise ValueError('Input series is not valid, valid series - [2, 4, 6]' ) if len(lowercase__ ) == 0: raise ValueError('Input list must be a non empty list' ) _lowerCamelCase : Optional[int] = 0 for val in series: answer += val return answer / len(lowercase__ ) if __name__ == "__main__": import doctest doctest.testmod()
96
0
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: _lowerCamelCase : Dict = None _lowerCamelCase : str = logging.get_logger(__name__) _lowerCamelCase : Dict = {"vocab_file": "sentencepiece.model", "tokenizer_file": "tokenizer.json"} _lowerCamelCase : int = { "vocab_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/sentencepiece.model", }, "tokenizer_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/tokenizer.json", }, } _lowerCamelCase : int = { "google/rembert": 256, } _lowerCamelCase : int = "▁" class __UpperCAmelCase ( __lowerCAmelCase ): '''simple docstring''' __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = RemBertTokenizer def __init__(self : Union[str, Any] , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : Dict=None , _lowerCAmelCase : int=True , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Union[str, Any]=False , _lowerCAmelCase : Dict="[CLS]" , _lowerCAmelCase : Tuple="[SEP]" , _lowerCAmelCase : List[str]="<unk>" , _lowerCAmelCase : List[Any]="[SEP]" , _lowerCAmelCase : Optional[int]="<pad>" , _lowerCAmelCase : Tuple="[CLS]" , _lowerCAmelCase : Optional[int]="[MASK]" , **_lowerCAmelCase : List[str] , ): A = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else mask_token super().__init__( lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , do_lower_case=lowerCamelCase__ , remove_space=lowerCamelCase__ , keep_accents=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , **lowerCamelCase__ , ) A = do_lower_case A = remove_space A = keep_accents A = vocab_file A = False if not self.vocab_file else True def A (self : Tuple , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def A (self : Dict , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None , _lowerCAmelCase : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(lowerCamelCase__ )) + [1] + ([0] * len(lowerCamelCase__ )) + [1] return [1] + ([0] * len(lowerCamelCase__ )) + [1] def A (self : Optional[int] , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A (self : Any , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ): if not os.path.isdir(lowerCamelCase__ ): logger.error("""Vocabulary path ({}) should be a directory""".format(lowerCamelCase__ ) ) return A = os.path.join( lowerCamelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase__ ): copyfile(self.vocab_file , lowerCamelCase__ ) return (out_vocab_file,)
357
'''simple docstring''' from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging _lowerCamelCase : List[Any] = logging.get_logger(__name__) def __a ( UpperCAmelCase ) ->List[int]: """simple docstring""" if isinstance(UpperCAmelCase , np.ndarray ): return list(tensor.shape ) A = tf.shape(UpperCAmelCase ) if tensor.shape == tf.TensorShape(UpperCAmelCase ): return dynamic A = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(UpperCAmelCase )] def __a ( UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None ) ->tf.Tensor: """simple docstring""" return tf.nn.softmax(logits=logits + 1E-9 , axis=UpperCAmelCase , name=UpperCAmelCase ) def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=1E-5 , UpperCAmelCase=-1 ) ->str: """simple docstring""" if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(UpperCAmelCase , UpperCAmelCase ): raise NotImplementedError("""Only 1D weight and bias tensors are supported for now, with only a single axis.""" ) # Get mean and variance on the axis to be normalized A , A = tf.nn.moments(UpperCAmelCase , axes=[axis] , keepdims=UpperCAmelCase ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis A = [1] * inputs.shape.rank A = shape_list(UpperCAmelCase )[axis] A = tf.reshape(UpperCAmelCase , UpperCAmelCase ) A = tf.reshape(UpperCAmelCase , UpperCAmelCase ) # Compute layer normalization using the batch_normalization # function. A = tf.nn.batch_normalization( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , offset=UpperCAmelCase , scale=UpperCAmelCase , variance_epsilon=UpperCAmelCase , ) return outputs def __a ( UpperCAmelCase , UpperCAmelCase=0 , UpperCAmelCase=-1 ) ->int: """simple docstring""" if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input A = tf.shape(UpperCAmelCase ) A = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) A = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(UpperCAmelCase , UpperCAmelCase ) def __a ( UpperCAmelCase ) ->tf.Tensor: """simple docstring""" if not isinstance(UpperCAmelCase , tf.Tensor ): A = tf.convert_to_tensor(UpperCAmelCase ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: A = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: A = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) A = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = "input_ids" ) ->None: """simple docstring""" tf.debugging.assert_less( UpperCAmelCase , tf.cast(UpperCAmelCase , dtype=tensor.dtype ) , message=( f"""The maximum value of {tensor_name} ({tf.math.reduce_max(UpperCAmelCase )}) must be smaller than the embedding """ f"""layer's input dimension ({embed_dim}). The likely cause is some problem at tokenization time.""" ) , ) def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Optional[Any]: """simple docstring""" A = 64512 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. A = [x for x in data if len(UpperCAmelCase ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( """The following attributes cannot be saved to HDF5 file because """ f"""they are larger than {HDF5_OBJECT_HEADER_LIMIT} """ f"""bytes: {bad_attributes}""" ) A = np.asarray(UpperCAmelCase ) A = 1 A = np.array_split(UpperCAmelCase , UpperCAmelCase ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 A = np.array_split(UpperCAmelCase , UpperCAmelCase ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(UpperCAmelCase ): A = chunk_data else: A = data def __a ( UpperCAmelCase , UpperCAmelCase ) ->int: """simple docstring""" if name in group.attrs: A = [n.decode("""utf8""" ) if hasattr(UpperCAmelCase , """decode""" ) else n for n in group.attrs[name]] else: A = [] A = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode("""utf8""" ) if hasattr(UpperCAmelCase , """decode""" ) else n for n in group.attrs["""%s%d""" % (name, chunk_id)]] ) chunk_id += 1 return data def __a ( UpperCAmelCase ) ->Optional[Any]: """simple docstring""" def _expand_single_ad_tensor(UpperCAmelCase ): if isinstance(UpperCAmelCase , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(UpperCAmelCase , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , UpperCAmelCase )
337
0
from collections import deque from math import floor from random import random from time import time class __lowerCAmelCase : """simple docstring""" def __init__( self ) -> str: '''simple docstring''' __lowerCamelCase = {} def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=1 ) -> str: '''simple docstring''' if self.graph.get(lowerCamelCase__ ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: __lowerCamelCase = [[w, v]] if not self.graph.get(lowerCamelCase__ ): __lowerCamelCase = [] def lowercase_ ( self ) -> Any: '''simple docstring''' return list(self.graph ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> Any: '''simple docstring''' if self.graph.get(lowerCamelCase__ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__=-2 , lowerCamelCase__=-1 ) -> Dict: '''simple docstring''' if s == d: return [] __lowerCamelCase = [] __lowerCamelCase = [] if s == -2: __lowerCamelCase = list(self.graph )[0] stack.append(lowerCamelCase__ ) visited.append(lowerCamelCase__ ) __lowerCamelCase = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __lowerCamelCase = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(lowerCamelCase__ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) __lowerCamelCase = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowerCamelCase__ ) != 0: __lowerCamelCase = stack[len(lowerCamelCase__ ) - 1] else: __lowerCamelCase = ss # check if se have reached the starting point if len(lowerCamelCase__ ) == 0: return visited def lowercase_ ( self , lowerCamelCase__=-1 ) -> Tuple: '''simple docstring''' if c == -1: __lowerCamelCase = floor(random() * 10_000 ) + 10 for i in range(lowerCamelCase__ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): __lowerCamelCase = floor(random() * c ) + 1 if n != i: self.add_pair(lowerCamelCase__ , lowerCamelCase__ , 1 ) def lowercase_ ( self , lowerCamelCase__=-2 ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = deque() __lowerCamelCase = [] if s == -2: __lowerCamelCase = list(self.graph )[0] d.append(lowerCamelCase__ ) visited.append(lowerCamelCase__ ) while d: __lowerCamelCase = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def lowercase_ ( self , lowerCamelCase__ ) -> str: '''simple docstring''' __lowerCamelCase = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def lowercase_ ( self , lowerCamelCase__ ) -> Tuple: '''simple docstring''' return len(self.graph[u] ) def lowercase_ ( self , lowerCamelCase__=-2 ) -> List[str]: '''simple docstring''' __lowerCamelCase = [] __lowerCamelCase = [] if s == -2: __lowerCamelCase = list(self.graph )[0] stack.append(lowerCamelCase__ ) visited.append(lowerCamelCase__ ) __lowerCamelCase = s __lowerCamelCase = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __lowerCamelCase = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) __lowerCamelCase = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(lowerCamelCase__ ) != 0: __lowerCamelCase = stack[len(lowerCamelCase__ ) - 1] else: __lowerCamelCase = ss # check if se have reached the starting point if len(lowerCamelCase__ ) == 0: return sorted_nodes def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = [] __lowerCamelCase = [] __lowerCamelCase = list(self.graph )[0] stack.append(lowerCamelCase__ ) visited.append(lowerCamelCase__ ) __lowerCamelCase = -2 __lowerCamelCase = [] __lowerCamelCase = s __lowerCamelCase = False __lowerCamelCase = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __lowerCamelCase = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): __lowerCamelCase = len(lowerCamelCase__ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) __lowerCamelCase = node[1] break # check if all the children are visited if s == ss: stack.pop() __lowerCamelCase = True if len(lowerCamelCase__ ) != 0: __lowerCamelCase = stack[len(lowerCamelCase__ ) - 1] else: __lowerCamelCase = False indirect_parents.append(lowerCamelCase__ ) __lowerCamelCase = s __lowerCamelCase = ss # check if se have reached the starting point if len(lowerCamelCase__ ) == 0: return list(lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = [] __lowerCamelCase = [] __lowerCamelCase = list(self.graph )[0] stack.append(lowerCamelCase__ ) visited.append(lowerCamelCase__ ) __lowerCamelCase = -2 __lowerCamelCase = [] __lowerCamelCase = s __lowerCamelCase = False __lowerCamelCase = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __lowerCamelCase = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): __lowerCamelCase = len(lowerCamelCase__ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) __lowerCamelCase = node[1] break # check if all the children are visited if s == ss: stack.pop() __lowerCamelCase = True if len(lowerCamelCase__ ) != 0: __lowerCamelCase = stack[len(lowerCamelCase__ ) - 1] else: __lowerCamelCase = False indirect_parents.append(lowerCamelCase__ ) __lowerCamelCase = s __lowerCamelCase = ss # check if se have reached the starting point if len(lowerCamelCase__ ) == 0: return False def lowercase_ ( self , lowerCamelCase__=-2 , lowerCamelCase__=-1 ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = time() self.dfs(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = time() return end - begin def lowercase_ ( self , lowerCamelCase__=-2 ) -> List[Any]: '''simple docstring''' __lowerCamelCase = time() self.bfs(lowerCamelCase__ ) __lowerCamelCase = time() return end - begin class __lowerCAmelCase : """simple docstring""" def __init__( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = {} def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=1 ) -> Tuple: '''simple docstring''' # check if the u exists if self.graph.get(lowerCamelCase__ ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist __lowerCamelCase = [[w, v]] # add the other way if self.graph.get(lowerCamelCase__ ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist __lowerCamelCase = [[w, u]] def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> List[Any]: '''simple docstring''' if self.graph.get(lowerCamelCase__ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowerCamelCase__ ) # the other way round if self.graph.get(lowerCamelCase__ ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__=-2 , lowerCamelCase__=-1 ) -> List[Any]: '''simple docstring''' if s == d: return [] __lowerCamelCase = [] __lowerCamelCase = [] if s == -2: __lowerCamelCase = list(self.graph )[0] stack.append(lowerCamelCase__ ) visited.append(lowerCamelCase__ ) __lowerCamelCase = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __lowerCamelCase = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(lowerCamelCase__ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) __lowerCamelCase = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowerCamelCase__ ) != 0: __lowerCamelCase = stack[len(lowerCamelCase__ ) - 1] else: __lowerCamelCase = ss # check if se have reached the starting point if len(lowerCamelCase__ ) == 0: return visited def lowercase_ ( self , lowerCamelCase__=-1 ) -> str: '''simple docstring''' if c == -1: __lowerCamelCase = floor(random() * 10_000 ) + 10 for i in range(lowerCamelCase__ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): __lowerCamelCase = floor(random() * c ) + 1 if n != i: self.add_pair(lowerCamelCase__ , lowerCamelCase__ , 1 ) def lowercase_ ( self , lowerCamelCase__=-2 ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = deque() __lowerCamelCase = [] if s == -2: __lowerCamelCase = list(self.graph )[0] d.append(lowerCamelCase__ ) visited.append(lowerCamelCase__ ) while d: __lowerCamelCase = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def lowercase_ ( self , lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' return len(self.graph[u] ) def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = [] __lowerCamelCase = [] __lowerCamelCase = list(self.graph )[0] stack.append(lowerCamelCase__ ) visited.append(lowerCamelCase__ ) __lowerCamelCase = -2 __lowerCamelCase = [] __lowerCamelCase = s __lowerCamelCase = False __lowerCamelCase = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __lowerCamelCase = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): __lowerCamelCase = len(lowerCamelCase__ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) __lowerCamelCase = node[1] break # check if all the children are visited if s == ss: stack.pop() __lowerCamelCase = True if len(lowerCamelCase__ ) != 0: __lowerCamelCase = stack[len(lowerCamelCase__ ) - 1] else: __lowerCamelCase = False indirect_parents.append(lowerCamelCase__ ) __lowerCamelCase = s __lowerCamelCase = ss # check if se have reached the starting point if len(lowerCamelCase__ ) == 0: return list(lowerCamelCase__ ) def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = [] __lowerCamelCase = [] __lowerCamelCase = list(self.graph )[0] stack.append(lowerCamelCase__ ) visited.append(lowerCamelCase__ ) __lowerCamelCase = -2 __lowerCamelCase = [] __lowerCamelCase = s __lowerCamelCase = False __lowerCamelCase = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __lowerCamelCase = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): __lowerCamelCase = len(lowerCamelCase__ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) __lowerCamelCase = node[1] break # check if all the children are visited if s == ss: stack.pop() __lowerCamelCase = True if len(lowerCamelCase__ ) != 0: __lowerCamelCase = stack[len(lowerCamelCase__ ) - 1] else: __lowerCamelCase = False indirect_parents.append(lowerCamelCase__ ) __lowerCamelCase = s __lowerCamelCase = ss # check if se have reached the starting point if len(lowerCamelCase__ ) == 0: return False def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' return list(self.graph ) def lowercase_ ( self , lowerCamelCase__=-2 , lowerCamelCase__=-1 ) -> List[Any]: '''simple docstring''' __lowerCamelCase = time() self.dfs(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = time() return end - begin def lowercase_ ( self , lowerCamelCase__=-2 ) -> List[Any]: '''simple docstring''' __lowerCamelCase = time() self.bfs(lowerCamelCase__ ) __lowerCamelCase = time() return end - begin
90
import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=13 , lowerCamelCase__=7 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=99 , lowerCamelCase__=32 , lowerCamelCase__=5 , lowerCamelCase__=4 , lowerCamelCase__=37 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=512 , lowerCamelCase__=16 , lowerCamelCase__=2 , lowerCamelCase__=0.02 , lowerCamelCase__=False , lowerCamelCase__=True , lowerCamelCase__="None" , lowerCamelCase__=3 , lowerCamelCase__=4 , lowerCamelCase__=None , ) -> int: '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = seq_length __lowerCamelCase = is_training __lowerCamelCase = use_input_mask __lowerCamelCase = use_token_type_ids __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = type_sequence_label_size __lowerCamelCase = initializer_range __lowerCamelCase = num_labels __lowerCamelCase = num_choices __lowerCamelCase = relative_attention __lowerCamelCase = position_biased_input __lowerCamelCase = pos_att_type __lowerCamelCase = scope def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = None if self.use_input_mask: __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) __lowerCamelCase = None if self.use_token_type_ids: __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCamelCase = None __lowerCamelCase = None __lowerCamelCase = None if self.use_labels: __lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCamelCase = ids_tensor([self.batch_size] , self.num_choices ) __lowerCamelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = self.get_config() __lowerCamelCase = 300 return config def lowercase_ ( self , lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' self.parent.assertListEqual(list(result.loss.size() ) , [] ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Any: '''simple docstring''' __lowerCamelCase = DebertaModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ )[0] __lowerCamelCase = model(lowerCamelCase__ , token_type_ids=lowerCamelCase__ )[0] __lowerCamelCase = model(lowerCamelCase__ )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Tuple: '''simple docstring''' __lowerCamelCase = DebertaForMaskedLM(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = self.num_labels __lowerCamelCase = DebertaForSequenceClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = self.num_labels __lowerCamelCase = DebertaForTokenClassification(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Dict: '''simple docstring''' __lowerCamelCase = DebertaForQuestionAnswering(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model( lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , start_positions=lowerCamelCase__ , end_positions=lowerCamelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = self.prepare_config_and_inputs() ( ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ) = config_and_inputs __lowerCamelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) snake_case_ = ( { '''feature-extraction''': DebertaModel, '''fill-mask''': DebertaForMaskedLM, '''question-answering''': DebertaForQuestionAnswering, '''text-classification''': DebertaForSequenceClassification, '''token-classification''': DebertaForTokenClassification, '''zero-shot''': DebertaForSequenceClassification, } if is_torch_available() else {} ) snake_case_ = True snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = DebertaModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=lowerCamelCase__ , hidden_size=37 ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*lowerCamelCase__ ) def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*lowerCamelCase__ ) def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*lowerCamelCase__ ) @slow def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase = DebertaModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) @require_torch @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @unittest.skip(reason='Model not available yet' ) def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' pass @slow def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = DebertaModel.from_pretrained('microsoft/deberta-base' ) __lowerCamelCase = torch.tensor([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) __lowerCamelCase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowerCamelCase = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ )[0] # compare the actual values for a slice. __lowerCamelCase = torch.tensor( [[[-0.59_86, -0.80_55, -0.84_62], [1.44_84, -0.93_48, -0.80_59], [0.31_23, 0.00_32, -1.41_31]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowerCamelCase__ , atol=1e-4 ) , f"""{output[:, 1:4, 1:4]}""" )
90
1
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('TEST_SAGEMAKER' , 'False' ) ) is not True , reason='Skipping test because should only be run when releasing minor transformers version' , ) @pytest.mark.usefixtures('sm_env' ) @parameterized_class( [ { 'framework': 'pytorch', 'script': 'run_glue_model_parallelism.py', 'model_name_or_path': 'roberta-large', 'instance_type': 'ml.p3dn.24xlarge', 'results': {'train_runtime': 16_00, 'eval_accuracy': 0.3, 'eval_loss': 1.2}, }, { 'framework': 'pytorch', 'script': 'run_glue.py', 'model_name_or_path': 'roberta-large', 'instance_type': 'ml.p3dn.24xlarge', 'results': {'train_runtime': 16_00, 'eval_accuracy': 0.3, 'eval_loss': 1.2}, }, ] ) class a ( unittest.TestCase ): def lowerCAmelCase_ ( self : Dict ): if self.framework == "pytorch": subprocess.run( f'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split() , encoding="""utf-8""" , check=__lowerCAmelCase , ) assert hasattr(self , """env""" ) def lowerCAmelCase_ ( self : Union[str, Any] , __lowerCAmelCase : Optional[int] ): # configuration for running training on smdistributed Model Parallel _UpperCAmelCase = { """enabled""": True, """processes_per_host""": 8, } _UpperCAmelCase = { """enabled""": True, """parameters""": { """microbatches""": 4, """placement_strategy""": """spread""", """pipeline""": """interleaved""", """optimize""": """speed""", """partitions""": 4, """ddp""": True, }, } _UpperCAmelCase = {"""smdistributed""": {"""modelparallel""": smp_options}, """mpi""": mpi_options} _UpperCAmelCase = """trainer""" if self.script == """run_glue.py""" else """smtrainer""" # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f'''{self.env.base_job_name}-{instance_count}-smp-{name_extension}''' , instance_count=__lowerCAmelCase , instance_type=self.instance_type , debugger_hook_config=__lowerCAmelCase , hyperparameters={ **self.env.hyperparameters, """model_name_or_path""": self.model_name_or_path, """max_steps""": 500, } , metric_definitions=self.env.metric_definitions , distribution=__lowerCAmelCase , py_version="""py36""" , ) def lowerCAmelCase_ ( self : str , __lowerCAmelCase : int ): TrainingJobAnalytics(__lowerCAmelCase ).export_csv(f'''{self.env.test_path}/{job_name}_metrics.csv''' ) @parameterized.expand([(1,)] ) def lowerCAmelCase_ ( self : str , __lowerCAmelCase : List[str] ): # create estimator _UpperCAmelCase = self.create_estimator(__lowerCAmelCase ) # run training estimator.fit() # result dataframe _UpperCAmelCase = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis _UpperCAmelCase = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] ) _UpperCAmelCase = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping _UpperCAmelCase = ( Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" , 99_9999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy ) assert all(t <= self.results["""eval_loss"""] for t in eval_loss ) # dump tests result into json file to share in PR with open(f'''{estimator.latest_training_job.name}.json''' , """w""" ) as outfile: json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} , __lowerCAmelCase )
361
"""simple docstring""" import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging UpperCAmelCase__ = logging.get_logger(__name__) logging.set_verbosity_info() def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" if "xprophetnet" in prophetnet_checkpoint_path: _UpperCAmelCase = XLMProphetNetForConditionalGenerationOld.from_pretrained(lowercase ) _UpperCAmelCase , _UpperCAmelCase = XLMProphetNetForConditionalGeneration.from_pretrained( lowercase ,output_loading_info=lowercase ) else: _UpperCAmelCase = ProphetNetForConditionalGenerationOld.from_pretrained(lowercase ) _UpperCAmelCase , _UpperCAmelCase = ProphetNetForConditionalGeneration.from_pretrained( lowercase ,output_loading_info=lowercase ) _UpperCAmelCase = ["""key_proj""", """value_proj""", """query_proj"""] _UpperCAmelCase = { """self_attn""": """ngram_self_attn""", """cross_attn""": """encoder_attn""", """cross_attn_layer_norm""": """encoder_attn_layer_norm""", """feed_forward_layer_norm""": """final_layer_norm""", """feed_forward""": """""", """intermediate""": """fc1""", """output""": """fc2""", """key_proj""": """k_proj""", """query_proj""": """q_proj""", """value_proj""": """v_proj""", """word_embeddings""": """embed_tokens""", """embeddings_layer_norm""": """emb_layer_norm""", """relative_pos_embeddings""": """relative_linear""", """ngram_embeddings""": """ngram_input_embed""", """position_embeddings""": """embed_positions""", } for key in loading_info["missing_keys"]: _UpperCAmelCase = key.split(""".""" ) if attributes[0] == "lm_head": _UpperCAmelCase = prophet _UpperCAmelCase = prophet_old else: _UpperCAmelCase = prophet.prophetnet _UpperCAmelCase = prophet_old.model _UpperCAmelCase = False for attribute in attributes: if attribute in mapping: _UpperCAmelCase = mapping[attribute] if not hasattr(lowercase ,lowercase ) and len(lowercase ) > 0: _UpperCAmelCase = attribute elif hasattr(lowercase ,lowercase ): _UpperCAmelCase = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" _UpperCAmelCase = old_model.weight logger.info(f'''{attribute} is initialized.''' ) _UpperCAmelCase = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" _UpperCAmelCase = old_model.bias logger.info(f'''{attribute} is initialized''' ) _UpperCAmelCase = True break elif attribute in special_keys and hasattr(lowercase ,"""in_proj_weight""" ): _UpperCAmelCase = old_model.in_proj_weight.shape[0] // 3 _UpperCAmelCase = getattr(lowercase ,lowercase ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": _UpperCAmelCase = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) _UpperCAmelCase = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": _UpperCAmelCase = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) _UpperCAmelCase = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": _UpperCAmelCase = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) _UpperCAmelCase = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) _UpperCAmelCase = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 5_12, "We want 512 position_embeddings." _UpperCAmelCase = nn.Parameter(old_model.embed_positions.weight[:5_12, :] ) _UpperCAmelCase = True break if attribute.isdigit(): _UpperCAmelCase = model[int(lowercase )] _UpperCAmelCase = old_model[int(lowercase )] else: _UpperCAmelCase = getattr(lowercase ,lowercase ) if old_attribute == "": _UpperCAmelCase = old_model else: if not hasattr(lowercase ,lowercase ): raise ValueError(f'''{old_model} does not have {old_attribute}''' ) _UpperCAmelCase = getattr(lowercase ,lowercase ) if not is_key_init: raise ValueError(f'''{key} was not correctly initialized!''' ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) prophet.save_pretrained(lowercase ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--prophetnet_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) UpperCAmelCase__ = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
30
0
"""simple docstring""" import argparse from collections import defaultdict import yaml __UpperCAmelCase = 'docs/source/en/_toctree.yml' def _snake_case ( lowercase__ : Any ) -> Any: '''simple docstring''' lowerCAmelCase_ :Any = defaultdict(lowercase__ ) lowerCAmelCase_ :Union[str, Any] = [] lowerCAmelCase_ :int = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({"""local""": doc["""local"""], """title""": doc["""title"""]} ) else: new_doc_list.append(lowercase__ ) lowerCAmelCase_ :int = new_doc_list lowerCAmelCase_ :str = [key for key, value in counts.items() if value > 1] lowerCAmelCase_ :Tuple = [] for duplicate_key in duplicates: lowerCAmelCase_ :Any = list({doc["""title"""] for doc in doc_list if doc["""local"""] == duplicate_key} ) if len(lowercase__ ) > 1: raise ValueError( f"""{duplicate_key} is present several times in the documentation table of content at """ """`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the """ """others.""" ) # Only add this once new_doc.append({"""local""": duplicate_key, """title""": titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if """local""" not in counts or counts[doc["""local"""]] == 1] ) lowerCAmelCase_ :int = sorted(lowercase__ , key=lambda lowercase__ : s["title"].lower() ) # "overview" gets special treatment and is always first if len(lowercase__ ) > 1: raise ValueError("""{doc_list} has two 'overview' docs which is not allowed.""" ) overview_doc.extend(lowercase__ ) # Sort return overview_doc def _snake_case ( lowercase__ : Optional[Any]=False ) -> str: '''simple docstring''' with open(lowercase__ , encoding="""utf-8""" ) as f: lowerCAmelCase_ :int = yaml.safe_load(f.read() ) # Get to the API doc lowerCAmelCase_ :List[str] = 0 while content[api_idx]["title"] != "API": api_idx += 1 lowerCAmelCase_ :List[str] = content[api_idx]["""sections"""] # Then to the model doc lowerCAmelCase_ :int = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 lowerCAmelCase_ :Dict = api_doc[scheduler_idx]["""sections"""] lowerCAmelCase_ :Optional[Any] = clean_doc_toc(lowercase__ ) lowerCAmelCase_ :str = False if new_scheduler_doc != scheduler_doc: lowerCAmelCase_ :Optional[int] = True if overwrite: lowerCAmelCase_ :Tuple = new_scheduler_doc if diff: if overwrite: lowerCAmelCase_ :str = api_doc with open(lowercase__ , """w""" , encoding="""utf-8""" ) as f: f.write(yaml.dump(lowercase__ , allow_unicode=lowercase__ ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) def _snake_case ( lowercase__ : Any=False ) -> int: '''simple docstring''' with open(lowercase__ , encoding="""utf-8""" ) as f: lowerCAmelCase_ :int = yaml.safe_load(f.read() ) # Get to the API doc lowerCAmelCase_ :Optional[int] = 0 while content[api_idx]["title"] != "API": api_idx += 1 lowerCAmelCase_ :Optional[int] = content[api_idx]["""sections"""] # Then to the model doc lowerCAmelCase_ :List[Any] = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 lowerCAmelCase_ :Optional[int] = False lowerCAmelCase_ :Any = api_doc[pipeline_idx]["""sections"""] lowerCAmelCase_ :str = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: lowerCAmelCase_ :int = pipeline_doc["""section"""] lowerCAmelCase_ :Tuple = clean_doc_toc(lowercase__ ) if overwrite: lowerCAmelCase_ :List[str] = new_sub_pipeline_doc new_pipeline_docs.append(lowercase__ ) # sort overall pipeline doc lowerCAmelCase_ :Union[str, Any] = clean_doc_toc(lowercase__ ) if new_pipeline_docs != pipeline_docs: lowerCAmelCase_ :Tuple = True if overwrite: lowerCAmelCase_ :Optional[Any] = new_pipeline_docs if diff: if overwrite: lowerCAmelCase_ :Tuple = api_doc with open(lowercase__ , """w""" , encoding="""utf-8""" ) as f: f.write(yaml.dump(lowercase__ , allow_unicode=lowercase__ ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') __UpperCAmelCase = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
84
"""simple docstring""" import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class _SCREAMING_SNAKE_CASE ( A__ , unittest.TestCase ): UpperCAmelCase_ :Any = BioGptTokenizer UpperCAmelCase_ :str = False def __lowerCAmelCase ( self ) -> List[Any]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCAmelCase_ :Optional[Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """w</w>""", """r</w>""", """t</w>""", """lo""", """low""", """er</w>""", """low</w>""", """lowest</w>""", """newer</w>""", """wider</w>""", """<unk>""", ] lowerCAmelCase_ :str = dict(zip(__A , range(len(__A ) ) ) ) lowerCAmelCase_ :int = ["""l o 123""", """lo w 1456""", """e r</w> 1789""", """"""] lowerCAmelCase_ :Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) lowerCAmelCase_ :Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" ) as fp: fp.write(json.dumps(__A ) ) with open(self.merges_file , """w""" ) as fp: fp.write("""\n""".join(__A ) ) def __lowerCAmelCase ( self , __A ) -> Optional[int]: lowerCAmelCase_ :List[Any] = """lower newer""" lowerCAmelCase_ :Tuple = """lower newer""" return input_text, output_text def __lowerCAmelCase ( self ) -> str: lowerCAmelCase_ :List[str] = BioGptTokenizer(self.vocab_file , self.merges_file ) lowerCAmelCase_ :Union[str, Any] = """lower""" lowerCAmelCase_ :Any = ["""low""", """er</w>"""] lowerCAmelCase_ :Union[str, Any] = tokenizer.tokenize(__A ) self.assertListEqual(__A , __A ) lowerCAmelCase_ :Dict = tokens + ["""<unk>"""] lowerCAmelCase_ :List[str] = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ) , __A ) @slow def __lowerCAmelCase ( self ) -> List[Any]: lowerCAmelCase_ :Optional[Any] = BioGptTokenizer.from_pretrained("""microsoft/biogpt""" ) lowerCAmelCase_ :List[Any] = tokenizer.encode("""sequence builders""" , add_special_tokens=__A ) lowerCAmelCase_ :List[str] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=__A ) lowerCAmelCase_ :Optional[int] = tokenizer.build_inputs_with_special_tokens(__A ) lowerCAmelCase_ :List[str] = tokenizer.build_inputs_with_special_tokens(__A , __A ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
84
1
"""simple docstring""" import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated __snake_case = collections.namedtuple('''_Datasets''', ['''train''', '''validation''', '''test''']) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ __snake_case = '''https://storage.googleapis.com/cvdf-datasets/mnist/''' def A_ ( _lowerCAmelCase : Any ): """simple docstring""" _a = numpy.dtype(numpy.uintaa ).newbyteorder('''>''' ) return numpy.frombuffer(bytestream.read(4 ), dtype=_lowerCAmelCase )[0] @deprecated(_lowerCAmelCase, '''Please use tf.data to implement this functionality.''' ) def A_ ( _lowerCAmelCase : str ): """simple docstring""" print('''Extracting''', f.name ) with gzip.GzipFile(fileobj=_lowerCAmelCase ) as bytestream: _a = _readaa(_lowerCAmelCase ) if magic != 20_51: raise ValueError( '''Invalid magic number %d in MNIST image file: %s''' % (magic, f.name) ) _a = _readaa(_lowerCAmelCase ) _a = _readaa(_lowerCAmelCase ) _a = _readaa(_lowerCAmelCase ) _a = bytestream.read(rows * cols * num_images ) _a = numpy.frombuffer(_lowerCAmelCase, dtype=numpy.uinta ) _a = data.reshape(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, 1 ) return data @deprecated(_lowerCAmelCase, '''Please use tf.one_hot on tensors.''' ) def A_ ( _lowerCAmelCase : int, _lowerCAmelCase : Tuple ): """simple docstring""" _a = labels_dense.shape[0] _a = numpy.arange(_lowerCAmelCase ) * num_classes _a = numpy.zeros((num_labels, num_classes) ) _a = 1 return labels_one_hot @deprecated(_lowerCAmelCase, '''Please use tf.data to implement this functionality.''' ) def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Optional[int]=False, _lowerCAmelCase : Tuple=10 ): """simple docstring""" print('''Extracting''', f.name ) with gzip.GzipFile(fileobj=_lowerCAmelCase ) as bytestream: _a = _readaa(_lowerCAmelCase ) if magic != 20_49: raise ValueError( '''Invalid magic number %d in MNIST label file: %s''' % (magic, f.name) ) _a = _readaa(_lowerCAmelCase ) _a = bytestream.read(_lowerCAmelCase ) _a = numpy.frombuffer(_lowerCAmelCase, dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(_lowerCAmelCase, _lowerCAmelCase ) return labels class __lowerCamelCase : '''simple docstring''' @deprecated( _a , '''Please use alternatives such as official/mnist/_DataSet.py''' ''' from tensorflow/models.''' , ) def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=dtypes.floataa , __UpperCAmelCase=True , __UpperCAmelCase=None , ) -> List[str]: _a = random_seed.get_seed(_a ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) _a = dtypes.as_dtype(_a ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError('''Invalid image dtype %r, expected uint8 or float32''' % dtype ) if fake_data: _a = 10000 _a = one_hot else: assert ( images.shape[0] == labels.shape[0] ), F'images.shape: {images.shape} labels.shape: {labels.shape}' _a = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 _a = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. _a = images.astype(numpy.floataa ) _a = numpy.multiply(_a , 1.0 / 255.0 ) _a = images _a = labels _a = 0 _a = 0 @property def _UpperCAmelCase ( self ) -> Dict: return self._images @property def _UpperCAmelCase ( self ) -> Optional[int]: return self._labels @property def _UpperCAmelCase ( self ) -> Optional[Any]: return self._num_examples @property def _UpperCAmelCase ( self ) -> List[Any]: return self._epochs_completed def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase=True ) -> Union[str, Any]: if fake_data: _a = [1] * 784 _a = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(_a )], [fake_label for _ in range(_a )], ) _a = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: _a = numpy.arange(self._num_examples ) numpy.random.shuffle(_a ) _a = self.images[perma] _a = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch _a = self._num_examples - start _a = self._images[start : self._num_examples] _a = self._labels[start : self._num_examples] # Shuffle the data if shuffle: _a = numpy.arange(self._num_examples ) numpy.random.shuffle(_a ) _a = self.images[perm] _a = self.labels[perm] # Start next epoch _a = 0 _a = batch_size - rest_num_examples _a = self._index_in_epoch _a = self._images[start:end] _a = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size _a = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(_lowerCAmelCase, '''Please write your own downloading logic.''' ) def A_ ( _lowerCAmelCase : Tuple, _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : Optional[Any] ): """simple docstring""" if not gfile.Exists(_lowerCAmelCase ): gfile.MakeDirs(_lowerCAmelCase ) _a = os.path.join(_lowerCAmelCase, _lowerCAmelCase ) if not gfile.Exists(_lowerCAmelCase ): urllib.request.urlretrieve(_lowerCAmelCase, _lowerCAmelCase ) # noqa: S310 with gfile.GFile(_lowerCAmelCase ) as f: _a = f.size() print('''Successfully downloaded''', _lowerCAmelCase, _lowerCAmelCase, '''bytes.''' ) return filepath @deprecated( _lowerCAmelCase, '''Please use alternatives such as:''' ''' tensorflow_datasets.load(\'mnist\')''' ) def A_ ( _lowerCAmelCase : Dict, _lowerCAmelCase : Union[str, Any]=False, _lowerCAmelCase : Union[str, Any]=False, _lowerCAmelCase : Optional[int]=dtypes.floataa, _lowerCAmelCase : Union[str, Any]=True, _lowerCAmelCase : Optional[int]=50_00, _lowerCAmelCase : List[Any]=None, _lowerCAmelCase : Union[str, Any]=DEFAULT_SOURCE_URL, ): """simple docstring""" if fake_data: def fake(): return _DataSet( [], [], fake_data=_lowerCAmelCase, one_hot=_lowerCAmelCase, dtype=_lowerCAmelCase, seed=_lowerCAmelCase ) _a = fake() _a = fake() _a = fake() return _Datasets(train=_lowerCAmelCase, validation=_lowerCAmelCase, test=_lowerCAmelCase ) if not source_url: # empty string check _a = DEFAULT_SOURCE_URL _a = "train-images-idx3-ubyte.gz" _a = "train-labels-idx1-ubyte.gz" _a = "t10k-images-idx3-ubyte.gz" _a = "t10k-labels-idx1-ubyte.gz" _a = _maybe_download( _lowerCAmelCase, _lowerCAmelCase, source_url + train_images_file ) with gfile.Open(_lowerCAmelCase, '''rb''' ) as f: _a = _extract_images(_lowerCAmelCase ) _a = _maybe_download( _lowerCAmelCase, _lowerCAmelCase, source_url + train_labels_file ) with gfile.Open(_lowerCAmelCase, '''rb''' ) as f: _a = _extract_labels(_lowerCAmelCase, one_hot=_lowerCAmelCase ) _a = _maybe_download( _lowerCAmelCase, _lowerCAmelCase, source_url + test_images_file ) with gfile.Open(_lowerCAmelCase, '''rb''' ) as f: _a = _extract_images(_lowerCAmelCase ) _a = _maybe_download( _lowerCAmelCase, _lowerCAmelCase, source_url + test_labels_file ) with gfile.Open(_lowerCAmelCase, '''rb''' ) as f: _a = _extract_labels(_lowerCAmelCase, one_hot=_lowerCAmelCase ) if not 0 <= validation_size <= len(_lowerCAmelCase ): _a = ( "Validation size should be between 0 and " f'{len(_lowerCAmelCase )}. Received: {validation_size}.' ) raise ValueError(_lowerCAmelCase ) _a = train_images[:validation_size] _a = train_labels[:validation_size] _a = train_images[validation_size:] _a = train_labels[validation_size:] _a = {"dtype": dtype, "reshape": reshape, "seed": seed} _a = _DataSet(_lowerCAmelCase, _lowerCAmelCase, **_lowerCAmelCase ) _a = _DataSet(_lowerCAmelCase, _lowerCAmelCase, **_lowerCAmelCase ) _a = _DataSet(_lowerCAmelCase, _lowerCAmelCase, **_lowerCAmelCase ) return _Datasets(train=_lowerCAmelCase, validation=_lowerCAmelCase, test=_lowerCAmelCase )
370
"""simple docstring""" import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCamelCase ( a__ , unittest.TestCase ): '''simple docstring''' A_ : Optional[int] = RobertaTokenizer A_ : Any = RobertaTokenizerFast A_ : Dict = True A_ : Tuple = {'cls_token': '<s>'} def _UpperCAmelCase ( self ) -> Dict: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _a = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] _a = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) _a = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] _a = {'''unk_token''': '''<unk>'''} _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__UpperCAmelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__UpperCAmelCase ) ) def _UpperCAmelCase ( self , **__UpperCAmelCase ) -> List[str]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def _UpperCAmelCase ( self , **__UpperCAmelCase ) -> Union[str, Any]: kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Optional[int]: _a = '''lower newer''' _a = '''lower newer''' return input_text, output_text def _UpperCAmelCase ( self ) -> Tuple: _a = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) _a = '''lower newer''' _a = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] _a = tokenizer.tokenize(__UpperCAmelCase ) # , add_prefix_space=True) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) _a = tokens + [tokenizer.unk_token] _a = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , __UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Union[str, Any]: _a = self.get_tokenizer() self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=__UpperCAmelCase ) , [0, 31414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=__UpperCAmelCase ) , [0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2] , ) @slow def _UpperCAmelCase ( self ) -> Tuple: _a = self.tokenizer_class.from_pretrained('''roberta-base''' ) _a = tokenizer.encode('''sequence builders''' , add_special_tokens=__UpperCAmelCase ) _a = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__UpperCAmelCase ) _a = tokenizer.encode( '''sequence builders''' , add_special_tokens=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase ) _a = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase ) _a = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase ) _a = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase , __UpperCAmelCase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def _UpperCAmelCase ( self ) -> Union[str, Any]: _a = self.get_tokenizer() _a = '''Encode this sequence.''' _a = tokenizer.byte_encoder[''' '''.encode('''utf-8''' )[0]] # Testing encoder arguments _a = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase ) _a = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(__UpperCAmelCase , __UpperCAmelCase ) _a = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase ) _a = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} ) _a = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) _a = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(__UpperCAmelCase , __UpperCAmelCase ) # Testing spaces after special tokens _a = '''<mask>''' tokenizer.add_special_tokens( {'''mask_token''': AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase )} ) # mask token has a left space _a = tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) _a = '''Encode <mask> sequence''' _a = '''Encode <mask>sequence''' _a = tokenizer.encode(__UpperCAmelCase ) _a = encoded.index(__UpperCAmelCase ) _a = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) _a = tokenizer.encode(__UpperCAmelCase ) _a = encoded.index(__UpperCAmelCase ) _a = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(__UpperCAmelCase , __UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Any: pass def _UpperCAmelCase ( self ) -> Optional[int]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): _a = self.rust_tokenizer_class.from_pretrained(__UpperCAmelCase , **__UpperCAmelCase ) _a = self.tokenizer_class.from_pretrained(__UpperCAmelCase , **__UpperCAmelCase ) _a = '''A, <mask> AllenNLP sentence.''' _a = tokenizer_r.encode_plus(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase ) _a = tokenizer_p.encode_plus(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) _a = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) _a = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( __UpperCAmelCase , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( __UpperCAmelCase , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) def _UpperCAmelCase ( self ) -> Any: for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): _a = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , trim_offsets=__UpperCAmelCase ) _a = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) _a = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , __UpperCAmelCase ) self.assertEqual(post_processor_state['''add_prefix_space'''] , __UpperCAmelCase ) self.assertEqual(post_processor_state['''trim_offsets'''] , __UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Union[str, Any]: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): _a = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` _a = F'{text_of_1_token} {text_of_1_token}' _a = self.rust_tokenizer_class.from_pretrained( __UpperCAmelCase , use_fast=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , trim_offsets=__UpperCAmelCase ) _a = tokenizer_r(__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__UpperCAmelCase ) + 1, len(__UpperCAmelCase ) + 1 + len(__UpperCAmelCase )) , ) _a = self.rust_tokenizer_class.from_pretrained( __UpperCAmelCase , use_fast=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , trim_offsets=__UpperCAmelCase ) _a = tokenizer_r(__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__UpperCAmelCase ) + 1, len(__UpperCAmelCase ) + 1 + len(__UpperCAmelCase )) , ) _a = self.rust_tokenizer_class.from_pretrained( __UpperCAmelCase , use_fast=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , trim_offsets=__UpperCAmelCase ) _a = tokenizer_r(__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__UpperCAmelCase ), len(__UpperCAmelCase ) + 1 + len(__UpperCAmelCase )) , ) _a = self.rust_tokenizer_class.from_pretrained( __UpperCAmelCase , use_fast=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , trim_offsets=__UpperCAmelCase ) _a = tokenizer_r(__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__UpperCAmelCase ), len(__UpperCAmelCase ) + 1 + len(__UpperCAmelCase )) , ) _a = F' {text}' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) _a = self.rust_tokenizer_class.from_pretrained( __UpperCAmelCase , use_fast=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , trim_offsets=__UpperCAmelCase ) _a = tokenizer_r(__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__UpperCAmelCase ) + 1, 1 + len(__UpperCAmelCase ) + 1 + len(__UpperCAmelCase )) , ) _a = self.rust_tokenizer_class.from_pretrained( __UpperCAmelCase , use_fast=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , trim_offsets=__UpperCAmelCase ) _a = tokenizer_r(__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__UpperCAmelCase ), 1 + len(__UpperCAmelCase ) + 1 + len(__UpperCAmelCase )) , ) _a = self.rust_tokenizer_class.from_pretrained( __UpperCAmelCase , use_fast=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , trim_offsets=__UpperCAmelCase ) _a = tokenizer_r(__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__UpperCAmelCase ), 1 + len(__UpperCAmelCase ) + 1 + len(__UpperCAmelCase )) , )
153
0
import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def lowerCAmelCase_ ( __A, __A ) -> int: '''simple docstring''' UpperCAmelCase__ = checkpoint UpperCAmelCase__ = {} UpperCAmelCase__ = vae_state_dict["encoder.conv_in.weight"] UpperCAmelCase__ = vae_state_dict["encoder.conv_in.bias"] UpperCAmelCase__ = vae_state_dict["encoder.conv_out.weight"] UpperCAmelCase__ = vae_state_dict["encoder.conv_out.bias"] UpperCAmelCase__ = vae_state_dict["encoder.norm_out.weight"] UpperCAmelCase__ = vae_state_dict["encoder.norm_out.bias"] UpperCAmelCase__ = vae_state_dict["decoder.conv_in.weight"] UpperCAmelCase__ = vae_state_dict["decoder.conv_in.bias"] UpperCAmelCase__ = vae_state_dict["decoder.conv_out.weight"] UpperCAmelCase__ = vae_state_dict["decoder.conv_out.bias"] UpperCAmelCase__ = vae_state_dict["decoder.norm_out.weight"] UpperCAmelCase__ = vae_state_dict["decoder.norm_out.bias"] UpperCAmelCase__ = vae_state_dict["quant_conv.weight"] UpperCAmelCase__ = vae_state_dict["quant_conv.bias"] UpperCAmelCase__ = vae_state_dict["post_quant_conv.weight"] UpperCAmelCase__ = vae_state_dict["post_quant_conv.bias"] # Retrieves the keys for the encoder down blocks only UpperCAmelCase__ = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "encoder.down" in layer} ) UpperCAmelCase__ = { layer_id: [key for key in vae_state_dict if f"""down.{layer_id}""" in key] for layer_id in range(__A ) } # Retrieves the keys for the decoder up blocks only UpperCAmelCase__ = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "decoder.up" in layer} ) UpperCAmelCase__ = { layer_id: [key for key in vae_state_dict if f"""up.{layer_id}""" in key] for layer_id in range(__A ) } for i in range(__A ): UpperCAmelCase__ = [key for key in down_blocks[i] if f"""down.{i}""" in key and f"""down.{i}.downsample""" not in key] if f"""encoder.down.{i}.downsample.conv.weight""" in vae_state_dict: UpperCAmelCase__ = vae_state_dict.pop( f"""encoder.down.{i}.downsample.conv.weight""" ) UpperCAmelCase__ = vae_state_dict.pop( f"""encoder.down.{i}.downsample.conv.bias""" ) UpperCAmelCase__ = renew_vae_resnet_paths(__A ) UpperCAmelCase__ = {"old": f"""down.{i}.block""", "new": f"""down_blocks.{i}.resnets"""} assign_to_checkpoint(__A, __A, __A, additional_replacements=[meta_path], config=__A ) UpperCAmelCase__ = [key for key in vae_state_dict if "encoder.mid.block" in key] UpperCAmelCase__ = 2 for i in range(1, num_mid_res_blocks + 1 ): UpperCAmelCase__ = [key for key in mid_resnets if f"""encoder.mid.block_{i}""" in key] UpperCAmelCase__ = renew_vae_resnet_paths(__A ) UpperCAmelCase__ = {"old": f"""mid.block_{i}""", "new": f"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(__A, __A, __A, additional_replacements=[meta_path], config=__A ) UpperCAmelCase__ = [key for key in vae_state_dict if "encoder.mid.attn" in key] UpperCAmelCase__ = renew_vae_attention_paths(__A ) UpperCAmelCase__ = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(__A, __A, __A, additional_replacements=[meta_path], config=__A ) conv_attn_to_linear(__A ) for i in range(__A ): UpperCAmelCase__ = num_up_blocks - 1 - i UpperCAmelCase__ = [ key for key in up_blocks[block_id] if f"""up.{block_id}""" in key and f"""up.{block_id}.upsample""" not in key ] if f"""decoder.up.{block_id}.upsample.conv.weight""" in vae_state_dict: UpperCAmelCase__ = vae_state_dict[ f"""decoder.up.{block_id}.upsample.conv.weight""" ] UpperCAmelCase__ = vae_state_dict[ f"""decoder.up.{block_id}.upsample.conv.bias""" ] UpperCAmelCase__ = renew_vae_resnet_paths(__A ) UpperCAmelCase__ = {"old": f"""up.{block_id}.block""", "new": f"""up_blocks.{i}.resnets"""} assign_to_checkpoint(__A, __A, __A, additional_replacements=[meta_path], config=__A ) UpperCAmelCase__ = [key for key in vae_state_dict if "decoder.mid.block" in key] UpperCAmelCase__ = 2 for i in range(1, num_mid_res_blocks + 1 ): UpperCAmelCase__ = [key for key in mid_resnets if f"""decoder.mid.block_{i}""" in key] UpperCAmelCase__ = renew_vae_resnet_paths(__A ) UpperCAmelCase__ = {"old": f"""mid.block_{i}""", "new": f"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(__A, __A, __A, additional_replacements=[meta_path], config=__A ) UpperCAmelCase__ = [key for key in vae_state_dict if "decoder.mid.attn" in key] UpperCAmelCase__ = renew_vae_attention_paths(__A ) UpperCAmelCase__ = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(__A, __A, __A, additional_replacements=[meta_path], config=__A ) conv_attn_to_linear(__A ) return new_checkpoint def lowerCAmelCase_ ( __A, __A, ) -> Optional[int]: '''simple docstring''' UpperCAmelCase__ = requests.get( " https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml" ) UpperCAmelCase__ = io.BytesIO(r.content ) UpperCAmelCase__ = OmegaConf.load(__A ) UpperCAmelCase__ = 512 UpperCAmelCase__ = "cuda" if torch.cuda.is_available() else "cpu" if checkpoint_path.endswith("safetensors" ): from safetensors import safe_open UpperCAmelCase__ = {} with safe_open(__A, framework="pt", device="cpu" ) as f: for key in f.keys(): UpperCAmelCase__ = f.get_tensor(__A ) else: UpperCAmelCase__ = torch.load(__A, map_location=__A )["state_dict"] # Convert the VAE model. UpperCAmelCase__ = create_vae_diffusers_config(__A, image_size=__A ) UpperCAmelCase__ = custom_convert_ldm_vae_checkpoint(__A, __A ) UpperCAmelCase__ = AutoencoderKL(**__A ) vae.load_state_dict(__A ) vae.save_pretrained(__A ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument('--vae_pt_path', default=None, type=str, required=True, help='Path to the VAE.pt to convert.') parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the VAE.pt to convert.') UpperCamelCase__ = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
65
"""simple docstring""" # DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class __snake_case : """simple docstring""" _lowerCamelCase = 42 # setable values _lowerCamelCase = 42 _lowerCamelCase = 42 _lowerCamelCase = None @classmethod def UpperCamelCase__( cls , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' return cls(common=__lowerCamelCase , init_noise_sigma=__lowerCamelCase , timesteps=__lowerCamelCase ) @dataclass class __snake_case ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = 42 class __snake_case ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = [e.name for e in FlaxKarrasDiffusionSchedulers] _lowerCamelCase = 42 @property def UpperCamelCase__( self ): '''simple docstring''' return True @register_to_config def __init__( self , __lowerCamelCase = 1000 , __lowerCamelCase = 0.0_0_0_1 , __lowerCamelCase = 0.0_2 , __lowerCamelCase = "linear" , __lowerCamelCase = None , __lowerCamelCase = "fixed_small" , __lowerCamelCase = True , __lowerCamelCase = "epsilon" , __lowerCamelCase = jnp.floataa , ): '''simple docstring''' __A : Tuple = dtype def UpperCamelCase__( self , __lowerCamelCase = None ): '''simple docstring''' if common is None: __A : Tuple = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution __A : Tuple = jnp.array(1.0 , dtype=self.dtype ) __A : Optional[int] = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=__lowerCamelCase , init_noise_sigma=__lowerCamelCase , timesteps=__lowerCamelCase , ) def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = None ): '''simple docstring''' return sample def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = () ): '''simple docstring''' __A : Optional[Any] = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 __A : Optional[Any] = (jnp.arange(0 , __lowerCamelCase ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=__lowerCamelCase , timesteps=__lowerCamelCase , ) def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None ): '''simple docstring''' __A : int = state.common.alphas_cumprod[t] __A : List[str] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample __A : str = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: __A : Dict = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": __A : List[Any] = jnp.clip(__lowerCamelCase , a_min=1e-2_0 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": __A : Optional[Any] = jnp.log(jnp.clip(__lowerCamelCase , a_min=1e-2_0 ) ) elif variance_type == "fixed_large": __A : Tuple = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log __A : Union[str, Any] = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": __A : Optional[Any] = variance __A : Optional[Any] = state.common.betas[t] __A : Any = (predicted_variance + 1) / 2 __A : Union[str, Any] = frac * max_log + (1 - frac) * min_log return variance def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = True , ): '''simple docstring''' __A : Optional[int] = timestep if key is None: __A : List[Any] = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: __A , __A : Tuple = jnp.split(__lowerCamelCase , sample.shape[1] , axis=1 ) else: __A : List[str] = None # 1. compute alphas, betas __A : Dict = state.common.alphas_cumprod[t] __A : int = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) __A : Tuple = 1 - alpha_prod_t __A : Optional[int] = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": __A : Optional[Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": __A : Any = model_output elif self.config.prediction_type == "v_prediction": __A : str = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` """ ''' for the FlaxDDPMScheduler.''' ) # 3. Clip "predicted x_0" if self.config.clip_sample: __A : str = jnp.clip(__lowerCamelCase , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __A : Optional[Any] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t __A : Union[str, Any] = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __A : Optional[Any] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): __A : List[Any] = jax.random.split(__lowerCamelCase , num=1 ) __A : List[str] = jax.random.normal(__lowerCamelCase , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(__lowerCamelCase , __lowerCamelCase , predicted_variance=__lowerCamelCase ) ** 0.5) * noise __A : Optional[Any] = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) __A : Any = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=__lowerCamelCase , state=__lowerCamelCase ) def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ): '''simple docstring''' return add_noise_common(state.common , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ): '''simple docstring''' return get_velocity_common(state.common , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def __len__( self ): '''simple docstring''' return self.config.num_train_timesteps
179
0
"""simple docstring""" import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py snake_case__ : List[str] = '''src/transformers''' # This is to make sure the transformers module imported is the one in the repo. snake_case__ : int = direct_transformers_import(PATH_TO_TRANSFORMERS) snake_case__ : List[str] = transformers.models.auto.configuration_auto.CONFIG_MAPPING snake_case__ : Optional[Any] = { # used to compute the property `self.chunk_length` '''EncodecConfig''': ['''overlap'''], # used as `self.bert_model = BertModel(config, ...)` '''DPRConfig''': True, # not used in modeling files, but it's an important information '''FSMTConfig''': ['''langs'''], # used internally in the configuration class file '''GPTNeoConfig''': ['''attention_types'''], # used internally in the configuration class file '''EsmConfig''': ['''is_folding_model'''], # used during training (despite we don't have training script for these models yet) '''Mask2FormerConfig''': ['''ignore_value'''], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) '''OneFormerConfig''': ['''ignore_value''', '''norm'''], # used during preprocessing and collation, see `collating_graphormer.py` '''GraphormerConfig''': ['''spatial_pos_max'''], # used internally in the configuration class file '''T5Config''': ['''feed_forward_proj'''], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally '''MT5Config''': ['''feed_forward_proj''', '''tokenizer_class'''], '''UMT5Config''': ['''feed_forward_proj''', '''tokenizer_class'''], # used internally in the configuration class file '''LongT5Config''': ['''feed_forward_proj'''], # used internally in the configuration class file '''SwitchTransformersConfig''': ['''feed_forward_proj'''], # having default values other than `1e-5` - we can't fix them without breaking '''BioGptConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''GLPNConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''SegformerConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''CvtConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''PerceiverConfig''': ['''layer_norm_eps'''], # used internally to calculate the feature size '''InformerConfig''': ['''num_static_real_features''', '''num_time_features'''], # used internally to calculate the feature size '''TimeSeriesTransformerConfig''': ['''num_static_real_features''', '''num_time_features'''], # used internally to calculate the feature size '''AutoformerConfig''': ['''num_static_real_features''', '''num_time_features'''], # used internally to calculate `mlp_dim` '''SamVisionConfig''': ['''mlp_ratio'''], # For (head) training, but so far not implemented '''ClapAudioConfig''': ['''num_classes'''], # Not used, but providing useful information to users '''SpeechT5HifiGanConfig''': ['''sampling_rate'''], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { '''CLIPSegConfig''': True, '''DeformableDetrConfig''': True, '''DetaConfig''': True, '''DinatConfig''': True, '''DonutSwinConfig''': True, '''EfficientFormerConfig''': True, '''FSMTConfig''': True, '''JukeboxConfig''': True, '''LayoutLMv2Config''': True, '''MaskFormerSwinConfig''': True, '''MT5Config''': True, '''NatConfig''': True, '''OneFormerConfig''': True, '''PerceiverConfig''': True, '''RagConfig''': True, '''SpeechT5Config''': True, '''SwinConfig''': True, '''Swin2SRConfig''': True, '''Swinv2Config''': True, '''SwitchTransformersConfig''': True, '''TableTransformerConfig''': True, '''TapasConfig''': True, '''TransfoXLConfig''': True, '''UniSpeechConfig''': True, '''UniSpeechSatConfig''': True, '''WavLMConfig''': True, '''WhisperConfig''': True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) '''JukeboxPriorConfig''': True, # TODO: @Younes (for `is_decoder`) '''Pix2StructTextConfig''': True, } ) def _snake_case ( _snake_case : Union[str, Any] , _snake_case : List[str] , _snake_case : Dict , _snake_case : Dict ): lowerCAmelCase : List[Any] = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( f'''config.{attribute}''' in modeling_source or f'''getattr(config, "{attribute}"''' in modeling_source or f'''getattr(self.config, "{attribute}"''' in modeling_source ): lowerCAmelCase : Optional[Any] = True # Deal with multi-line cases elif ( re.search( rf'''getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*"{attribute}"''' , _snake_case , ) is not None ): lowerCAmelCase : Optional[int] = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: lowerCAmelCase : Optional[Any] = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files lowerCAmelCase : List[str] = [ '''bos_index''', '''eos_index''', '''pad_index''', '''unk_index''', '''mask_index''', '''image_size''', '''use_cache''', '''out_features''', '''out_indices''', ] lowerCAmelCase : List[Any] = ['''encoder_no_repeat_ngram_size'''] # Special cases to be allowed lowerCAmelCase : List[str] = True if not attribute_used: lowerCAmelCase : Optional[int] = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: lowerCAmelCase : Any = True elif attribute in ["tie_word_embeddings"] and default_value is False: lowerCAmelCase : Any = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: lowerCAmelCase : Union[str, Any] = True elif attribute.endswith('''_token_id''' ): lowerCAmelCase : Union[str, Any] = True # configuration class specific cases if not case_allowed: lowerCAmelCase : Any = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) lowerCAmelCase : Optional[Any] = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def _snake_case ( _snake_case : List[str] ): lowerCAmelCase : Tuple = dict(inspect.signature(config_class.__init__ ).parameters ) lowerCAmelCase : Optional[int] = [x for x in list(signature.keys() ) if x not in ['''self''', '''kwargs''']] lowerCAmelCase : Optional[Any] = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass lowerCAmelCase : List[Any] = {} if len(config_class.attribute_map ) > 0: lowerCAmelCase : Dict = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files lowerCAmelCase : Any = inspect.getsourcefile(_snake_case ) lowerCAmelCase : Dict = os.path.dirname(_snake_case ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. lowerCAmelCase : int = [os.path.join(_snake_case , _snake_case ) for fn in os.listdir(_snake_case ) if fn.startswith('''modeling_''' )] # Get the source code strings lowerCAmelCase : Dict = [] for path in modeling_paths: if os.path.isfile(_snake_case ): with open(_snake_case ) as fp: modeling_sources.append(fp.read() ) lowerCAmelCase : Optional[int] = [] for config_param, default_value in zip(_snake_case , _snake_case ): # `attributes` here is all the variant names for `config_param` lowerCAmelCase : Tuple = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(_snake_case , _snake_case , _snake_case , _snake_case ): unused_attributes.append(attributes[0] ) return sorted(_snake_case ) def _snake_case ( ): lowerCAmelCase : Tuple = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) lowerCAmelCase : Dict = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda _snake_case : inspect.isclass(_snake_case ) and issubclass(_snake_case , _snake_case ) and inspect.getmodule(_snake_case ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: lowerCAmelCase : str = check_config_attributes_being_used(_snake_case ) if len(_snake_case ) > 0: lowerCAmelCase : Tuple = unused_attributes if len(_snake_case ) > 0: lowerCAmelCase : Tuple = '''The following configuration classes contain unused attributes in the corresponding modeling files:\n''' for name, attributes in configs_with_unused_attributes.items(): error += f'''{name}: {attributes}\n''' raise ValueError(_snake_case ) if __name__ == "__main__": check_config_attributes()
314
"""simple docstring""" import numpy as np import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel from ...utils import logging snake_case__ : List[str] = logging.get_logger(__name__) class snake_case_( a__ ): __UpperCamelCase = CLIPConfig __UpperCamelCase = ['''CLIPEncoderLayer'''] def __init__( self : List[Any] , UpperCamelCase_ : CLIPConfig ): super().__init__(UpperCamelCase_ ) lowerCAmelCase : str = CLIPVisionModelWithProjection(config.vision_config ) lowerCAmelCase : Any = nn.Linear(config.vision_config.projection_dim , 1 ) lowerCAmelCase : Dict = nn.Linear(config.vision_config.projection_dim , 1 ) @torch.no_grad() def lowerCamelCase__ ( self : Any , UpperCamelCase_ : int , UpperCamelCase_ : Any , UpperCamelCase_ : Dict=0.5 , UpperCamelCase_ : List[str]=0.5 ): lowerCAmelCase : List[Any] = self.vision_model(UpperCamelCase_ )[0] lowerCAmelCase : Tuple = self.p_head(UpperCamelCase_ ) lowerCAmelCase : Any = nsfw_detected.flatten() lowerCAmelCase : Dict = nsfw_detected > p_threshold lowerCAmelCase : int = nsfw_detected.tolist() if any(UpperCamelCase_ ): logger.warning( '''Potential NSFW content was detected in one or more images. A black image will be returned instead.''' ''' Try again with a different prompt and/or seed.''' ) for idx, nsfw_detected_ in enumerate(UpperCamelCase_ ): if nsfw_detected_: lowerCAmelCase : List[Any] = np.zeros(images[idx].shape ) lowerCAmelCase : Union[str, Any] = self.w_head(UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = watermark_detected.flatten() lowerCAmelCase : Optional[int] = watermark_detected > w_threshold lowerCAmelCase : Union[str, Any] = watermark_detected.tolist() if any(UpperCamelCase_ ): logger.warning( '''Potential watermarked content was detected in one or more images. A black image will be returned instead.''' ''' Try again with a different prompt and/or seed.''' ) for idx, watermark_detected_ in enumerate(UpperCamelCase_ ): if watermark_detected_: lowerCAmelCase : List[str] = np.zeros(images[idx].shape ) return images, nsfw_detected, watermark_detected
314
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available A ={ 'configuration_pix2struct': [ 'PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Pix2StructConfig', 'Pix2StructTextConfig', 'Pix2StructVisionConfig', ], 'processing_pix2struct': ['Pix2StructProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A =['Pix2StructImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A =[ 'PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Pix2StructPreTrainedModel', 'Pix2StructForConditionalGeneration', 'Pix2StructVisionModel', 'Pix2StructTextModel', ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys A =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
34
import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class __lowerCAmelCase ( unittest.TestCase ): lowerCamelCase_ : Any = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__ ) -> Dict: '''simple docstring''' snake_case_ : Any = hf_hub_download( repo_id='''nateraw/video-demo''' , filename='''archery.mp4''' , repo_type='''dataset''' ) snake_case_ : List[Any] = VideoClassificationPipeline(model=__magic_name__ , image_processor=__magic_name__ , top_k=2 ) snake_case_ : str = [ example_video_filepath, '''https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4''', ] return video_classifier, examples def lowerCamelCase (self , __magic_name__ , __magic_name__ ) -> Any: '''simple docstring''' for example in examples: snake_case_ : Union[str, Any] = video_classifier(__magic_name__ ) self.assertEqual( __magic_name__ , [ {'''score''': ANY(__magic_name__ ), '''label''': ANY(__magic_name__ )}, {'''score''': ANY(__magic_name__ ), '''label''': ANY(__magic_name__ )}, ] , ) @require_torch def lowerCamelCase (self ) -> str: '''simple docstring''' snake_case_ : Any = '''hf-internal-testing/tiny-random-VideoMAEForVideoClassification''' snake_case_ : str = VideoMAEFeatureExtractor( size={'''shortest_edge''': 10} , crop_size={'''height''': 10, '''width''': 10} ) snake_case_ : int = pipeline( '''video-classification''' , model=__magic_name__ , feature_extractor=__magic_name__ , frame_sampling_rate=4 ) snake_case_ : List[str] = hf_hub_download(repo_id='''nateraw/video-demo''' , filename='''archery.mp4''' , repo_type='''dataset''' ) snake_case_ : Union[str, Any] = video_classifier(__magic_name__ , top_k=2 ) self.assertEqual( nested_simplify(__magic_name__ , decimals=4 ) , [{'''score''': 0.5_199, '''label''': '''LABEL_0'''}, {'''score''': 0.4_801, '''label''': '''LABEL_1'''}] , ) snake_case_ : int = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(__magic_name__ , decimals=4 ) , [ [{'''score''': 0.5_199, '''label''': '''LABEL_0'''}, {'''score''': 0.4_801, '''label''': '''LABEL_1'''}], [{'''score''': 0.5_199, '''label''': '''LABEL_0'''}, {'''score''': 0.4_801, '''label''': '''LABEL_1'''}], ] , ) @require_tf def lowerCamelCase (self ) -> Optional[int]: '''simple docstring''' pass
279
0
import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class lowercase ( unittest.TestCase ): @slow def a ( self ): snake_case_ = AutoImageProcessor.from_pretrained('microsoft/dit-base-finetuned-rvlcdip' ) snake_case_ = AutoModelForImageClassification.from_pretrained('microsoft/dit-base-finetuned-rvlcdip' ) model.to(snake_case ) from datasets import load_dataset snake_case_ = load_dataset('nielsr/rvlcdip-demo' ) snake_case_ = dataset['train'][0]['image'].convert('RGB' ) snake_case_ = image_processor(snake_case , return_tensors='pt' ).to(snake_case ) # forward pass with torch.no_grad(): snake_case_ = model(**snake_case ) snake_case_ = outputs.logits snake_case_ = torch.Size((1, 16) ) self.assertEqual(logits.shape , snake_case ) snake_case_ = torch.tensor( [-0.41_58, -0.40_92, -0.43_47] , device=snake_case , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , snake_case , atol=1e-4 ) )
200
import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class lowercase ( unittest.TestCase ): def a ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() def a ( self ): snake_case_ , snake_case_ = FlaxControlNetModel.from_pretrained( 'lllyasviel/sd-controlnet-canny' , from_pt=snake_case , dtype=jnp.bfloataa ) snake_case_ , snake_case_ = FlaxStableDiffusionControlNetPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , controlnet=snake_case , from_pt=snake_case , dtype=jnp.bfloataa ) snake_case_ = controlnet_params snake_case_ = 'bird' snake_case_ = jax.device_count() snake_case_ = pipe.prepare_text_inputs([prompts] * num_samples ) snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png' ) snake_case_ = pipe.prepare_image_inputs([canny_image] * num_samples ) snake_case_ = jax.random.PRNGKey(0 ) snake_case_ = jax.random.split(snake_case , jax.device_count() ) snake_case_ = replicate(snake_case ) snake_case_ = shard(snake_case ) snake_case_ = shard(snake_case ) snake_case_ = pipe( prompt_ids=snake_case , image=snake_case , params=snake_case , prng_seed=snake_case , num_inference_steps=50 , jit=snake_case , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) snake_case_ = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) snake_case_ = images[0, 253:256, 253:256, -1] snake_case_ = jnp.asarray(jax.device_get(image_slice.flatten() ) ) snake_case_ = jnp.array( [0.16_79_69, 0.11_66_99, 0.08_15_43, 0.15_42_97, 0.13_28_12, 0.10_88_87, 0.16_99_22, 0.16_99_22, 0.20_50_78] ) print(F'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def a ( self ): snake_case_ , snake_case_ = FlaxControlNetModel.from_pretrained( 'lllyasviel/sd-controlnet-openpose' , from_pt=snake_case , dtype=jnp.bfloataa ) snake_case_ , snake_case_ = FlaxStableDiffusionControlNetPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , controlnet=snake_case , from_pt=snake_case , dtype=jnp.bfloataa ) snake_case_ = controlnet_params snake_case_ = 'Chef in the kitchen' snake_case_ = jax.device_count() snake_case_ = pipe.prepare_text_inputs([prompts] * num_samples ) snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png' ) snake_case_ = pipe.prepare_image_inputs([pose_image] * num_samples ) snake_case_ = jax.random.PRNGKey(0 ) snake_case_ = jax.random.split(snake_case , jax.device_count() ) snake_case_ = replicate(snake_case ) snake_case_ = shard(snake_case ) snake_case_ = shard(snake_case ) snake_case_ = pipe( prompt_ids=snake_case , image=snake_case , params=snake_case , prng_seed=snake_case , num_inference_steps=50 , jit=snake_case , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) snake_case_ = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) snake_case_ = images[0, 253:256, 253:256, -1] snake_case_ = jnp.asarray(jax.device_get(image_slice.flatten() ) ) snake_case_ = jnp.array( [[0.27_14_84, 0.26_17_19, 0.27_53_91, 0.27_73_44, 0.27_92_97, 0.29_10_16, 0.29_49_22, 0.30_27_34, 0.30_27_34]] ) print(F'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
200
1
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class _UpperCAmelCase ( unittest.TestCase ): @slow def lowerCamelCase ( self :Dict ): A = XLMRobertaModel.from_pretrained("xlm-roberta-base" ) A = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] ) # The dog is cute and lives in the garden house A = torch.Size((1, 12, 7_68) ) # batch_size, sequence_length, embedding_vector_dim A = torch.tensor( [[-0.0_101, 0.1_218, -0.0_803, 0.0_801, 0.1_327, 0.0_776, -0.1_215, 0.2_383, 0.3_338, 0.3_106, 0.0_300, 0.0_252]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): A = model(__UpperCamelCase )["last_hidden_state"].detach() self.assertEqual(output.shape , __UpperCamelCase ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , __UpperCamelCase , atol=1e-3 ) ) @slow def lowerCamelCase ( self :Tuple ): A = XLMRobertaModel.from_pretrained("xlm-roberta-large" ) A = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] ) # The dog is cute and lives in the garden house A = torch.Size((1, 12, 10_24) ) # batch_size, sequence_length, embedding_vector_dim A = torch.tensor( [[-0.0_699, -0.0_318, 0.0_705, -0.1_241, 0.0_999, -0.0_520, 0.1_004, -0.1_838, -0.4_704, 0.1_437, 0.0_821, 0.0_126]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): A = model(__UpperCamelCase )["last_hidden_state"].detach() self.assertEqual(output.shape , __UpperCamelCase ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , __UpperCamelCase , atol=1e-3 ) )
292
"""simple docstring""" # A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def A__ ( UpperCamelCase ): A = [False] * len(UpperCamelCase ) A = [-1] * len(UpperCamelCase ) def dfs(UpperCamelCase , UpperCamelCase ): A = True A = c for u in graph[v]: if not visited[u]: dfs(UpperCamelCase , 1 - c ) for i in range(len(UpperCamelCase ) ): if not visited[i]: dfs(UpperCamelCase , 0 ) for i in range(len(UpperCamelCase ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph _snake_case : str = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
292
1
import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() __lowerCamelCase = logging.get_logger(__name__) def UpperCamelCase ( __lowerCamelCase : int ): snake_case : int = MobileNetVaConfig(layer_norm_eps=0.001 ) if "_quant" in model_name: raise ValueError("Quantized models are not supported." ) snake_case : List[Any] = re.match(r"^mobilenet_v1_([^_]*)_([^_]*)$" , __lowerCamelCase ) if matches: snake_case : List[Any] = float(matches[1] ) snake_case : Any = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". snake_case : Dict = 1001 snake_case : Any = "imagenet-1k-id2label.json" snake_case : Optional[Any] = "huggingface/label-files" snake_case : Any = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type="dataset" ) , "r" ) ) snake_case : int = {int(__lowerCamelCase ) + 1: v for k, v in idalabel.items()} snake_case : Tuple = "background" snake_case : Optional[int] = idalabel snake_case : Dict = {v: k for k, v in idalabel.items()} return config def UpperCamelCase ( ): snake_case : Dict = "http://images.cocodataset.org/val2017/000000039769.jpg" snake_case : Union[str, Any] = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ) return im @torch.no_grad() def UpperCamelCase ( __lowerCamelCase : List[Any] , __lowerCamelCase : Any , __lowerCamelCase : int , __lowerCamelCase : int=False ): snake_case : Optional[Any] = get_mobilenet_va_config(__lowerCamelCase ) # Load 🤗 model snake_case : Optional[Any] = MobileNetVaForImageClassification(__lowerCamelCase ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor snake_case : Any = MobileNetVaImageProcessor( crop_size={"width": config.image_size, "height": config.image_size} , size={"shortest_edge": config.image_size + 32} , ) snake_case : Dict = image_processor(images=prepare_img() , return_tensors="pt" ) snake_case : str = model(**__lowerCamelCase ) snake_case : Dict = outputs.logits assert logits.shape == (1, 1001) if model_name == "mobilenet_v1_1.0_224": snake_case : Union[str, Any] = torch.tensor([-4.1739, -1.1233, 3.1205] ) elif model_name == "mobilenet_v1_0.75_192": snake_case : Optional[int] = torch.tensor([-3.9440, -2.3141, -0.3333] ) else: snake_case : Optional[Any] = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , __lowerCamelCase , atol=1E-4 ) Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowerCamelCase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__lowerCamelCase ) if push_to_hub: print("Pushing to the hub..." ) snake_case : str = "google/" + model_name image_processor.push_to_hub(__lowerCamelCase ) model.push_to_hub(__lowerCamelCase ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""mobilenet_v1_1.0_224""", type=str, help="""Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.""", ) parser.add_argument( """--checkpoint_path""", required=True, type=str, help="""Path to the original TensorFlow checkpoint (.ckpt file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) __lowerCamelCase = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
10
import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor __lowerCamelCase = logging.get_logger(__name__) class UpperCAmelCase ( A_ ): def __init__(self : List[Any] , *snake_case__ : List[str] , **snake_case__ : Dict ) -> None: '''simple docstring''' warnings.warn( "The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use PerceiverImageProcessor instead." , snake_case__ , ) super().__init__(*snake_case__ , **snake_case__ )
10
1
import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast snake_case_ = datasets.utils.logging.get_logger(__name__) @dataclass class SCREAMING_SNAKE_CASE__ ( datasets.BuilderConfig ): A_ : int = 10_000 A_ : Optional[List[str]] = None A_ : Optional[datasets.Features] = None class SCREAMING_SNAKE_CASE__ ( datasets.ArrowBasedBuilder ): A_ : Optional[Any] = ParquetConfig def a (self : Optional[int] ): """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def a (self : List[str] , a__ : List[str] ): """simple docstring""" if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) __snake_case = dl_manager.download_and_extract(self.config.data_files ) if isinstance(a__ , (str, list, tuple) ): __snake_case = data_files if isinstance(a__ , a__ ): __snake_case = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __snake_case = [dl_manager.iter_files(a__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] __snake_case = [] for split_name, files in data_files.items(): if isinstance(a__ , a__ ): __snake_case = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __snake_case = [dl_manager.iter_files(a__ ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(a__ ): with open(a__ , '''rb''' ) as f: __snake_case = datasets.Features.from_arrow_schema(pq.read_schema(a__ ) ) break splits.append(datasets.SplitGenerator(name=a__ , gen_kwargs={'''files''': files} ) ) return splits def a (self : str , a__ : pa.Table ): """simple docstring""" if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example __snake_case = table_cast(a__ , self.info.features.arrow_schema ) return pa_table def a (self : Any , a__ : Dict ): """simple docstring""" __snake_case = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( f"""Tried to load parquet data with columns '{self.config.columns}' with mismatching features '{self.info.features}'""" ) for file_idx, file in enumerate(itertools.chain.from_iterable(a__ ) ): with open(a__ , '''rb''' ) as f: __snake_case = pq.ParquetFile(a__ ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): __snake_case = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield f"""{file_idx}_{batch_idx}""", self._cast_table(a__ ) except ValueError as e: logger.error(f"""Failed to read file '{file}' with error {type(a__ )}: {e}""" ) raise
24
import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Dict: """simple docstring""" A__ = args.pruning_method A__ = args.threshold A__ = args.model_name_or_path.rstrip('''/''' ) A__ = args.target_model_path print(f"""Load fine-pruned model from {model_name_or_path}""" ) A__ = torch.load(os.path.join(lowercase_ , '''pytorch_model.bin''' ) ) A__ = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: A__ = tensor print(f"""Copied layer {name}""" ) elif "classifier" in name or "qa_output" in name: A__ = tensor print(f"""Copied layer {name}""" ) elif "bias" in name: A__ = tensor print(f"""Copied layer {name}""" ) else: if pruning_method == "magnitude": A__ = MagnitudeBinarizer.apply(inputs=lowercase_ , threshold=lowercase_ ) A__ = tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "topK": if "mask_scores" in name: continue A__ = name[:-6] A__ = model[f"""{prefix_}mask_scores"""] A__ = TopKBinarizer.apply(lowercase_ , lowercase_ ) A__ = tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue A__ = name[:-6] A__ = model[f"""{prefix_}mask_scores"""] A__ = ThresholdBinarizer.apply(lowercase_ , lowercase_ , lowercase_ ) A__ = tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "l0": if "mask_scores" in name: continue A__ = name[:-6] A__ = model[f"""{prefix_}mask_scores"""] A__ , A__ = -0.1, 1.1 A__ = torch.sigmoid(lowercase_ ) A__ = s * (r - l) + l A__ = s_bar.clamp(min=0.0 , max=1.0 ) A__ = tensor * mask print(f"""Pruned layer {name}""" ) else: raise ValueError('''Unknown pruning method''' ) if target_model_path is None: A__ = os.path.join( os.path.dirname(lowercase_ ) , f"""bertarized_{os.path.basename(lowercase_ )}""" ) if not os.path.isdir(lowercase_ ): shutil.copytree(lowercase_ , lowercase_ ) print(f"""\nCreated folder {target_model_path}""" ) torch.save(lowercase_ , os.path.join(lowercase_ , '''pytorch_model.bin''' ) ) print('''\nPruned model saved! See you later!''' ) if __name__ == "__main__": _lowerCamelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( """--pruning_method""", choices=["""l0""", """magnitude""", """topK""", """sigmoied_threshold"""], type=str, required=True, help=( """Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,""" """ sigmoied_threshold = Soft movement pruning)""" ), ) parser.add_argument( """--threshold""", type=float, required=False, help=( """For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.""" """For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.""" """Not needed for `l0`""" ), ) parser.add_argument( """--model_name_or_path""", type=str, required=True, help="""Folder containing the model that was previously fine-pruned""", ) parser.add_argument( """--target_model_path""", default=None, type=str, required=False, help="""Folder containing the model that was previously fine-pruned""", ) _lowerCamelCase : int = parser.parse_args() main(args)
14
0
'''simple docstring''' import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class UpperCamelCase_ : lowercase = None lowercase = False lowercase = False lowercase = False lowercase = None lowercase = None lowercase = False lowercase = False lowercase = False lowercase = True lowercase = None lowercase = 1 lowercase = None lowercase = False lowercase = None lowercase = None def _lowercase( self ) -> "DownloadConfig": return self.__class__(**{k: copy.deepcopy(A ) for k, v in self.__dict__.items()} )
338
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule a : Optional[int] = {"""tokenization_wav2vec2_phoneme""": ["""Wav2Vec2PhonemeCTCTokenizer"""]} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys a : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
338
1
import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 lowerCamelCase : str = sys.version_info >= (3, 10) def _SCREAMING_SNAKE_CASE ( lowercase : Tuple=None , lowercase : Tuple=None ): '''simple docstring''' return field(default_factory=lambda: default , metadata=_SCREAMING_SNAKE_CASE ) @dataclass class A: '''simple docstring''' UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 @dataclass class A: '''simple docstring''' UpperCamelCase = 42 UpperCamelCase = field(default='''toto''' , metadata={'''help''': '''help message'''} ) @dataclass class A: '''simple docstring''' UpperCamelCase = False UpperCamelCase = True UpperCamelCase = None class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''titi''' UpperCamelCase = '''toto''' class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''titi''' UpperCamelCase = '''toto''' UpperCamelCase = 42 @dataclass class A: '''simple docstring''' UpperCamelCase = '''toto''' def a__ ( self : Tuple ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = BasicEnum(self.foo ) @dataclass class A: '''simple docstring''' UpperCamelCase = '''toto''' def a__ ( self : List[str] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = MixedTypeEnum(self.foo ) @dataclass class A: '''simple docstring''' UpperCamelCase = None UpperCamelCase = field(default=UpperCamelCase , metadata={'''help''': '''help message'''} ) UpperCamelCase = None UpperCamelCase = list_field(default=[] ) UpperCamelCase = list_field(default=[] ) @dataclass class A: '''simple docstring''' UpperCamelCase = list_field(default=[] ) UpperCamelCase = list_field(default=[1, 2, 3] ) UpperCamelCase = list_field(default=['''Hallo''', '''Bonjour''', '''Hello'''] ) UpperCamelCase = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class A: '''simple docstring''' UpperCamelCase = field() UpperCamelCase = field() UpperCamelCase = field() def a__ ( self : int ) -> str: """simple docstring""" lowerCamelCase_ = BasicEnum(self.required_enum ) @dataclass class A: '''simple docstring''' UpperCamelCase = 42 UpperCamelCase = field() UpperCamelCase = None UpperCamelCase = field(default='''toto''' , metadata={'''help''': '''help message'''} ) UpperCamelCase = list_field(default=['''Hallo''', '''Bonjour''', '''Hello'''] ) if is_python_no_less_than_3_10: @dataclass class A: '''simple docstring''' UpperCamelCase = False UpperCamelCase = True UpperCamelCase = None @dataclass class A: '''simple docstring''' UpperCamelCase = None UpperCamelCase = field(default=UpperCamelCase , metadata={'''help''': '''help message'''} ) UpperCamelCase = None UpperCamelCase = list_field(default=[] ) UpperCamelCase = list_field(default=[] ) class A( unittest.TestCase ): '''simple docstring''' def a__ ( self : int , A_ : argparse.ArgumentParser , A_ : argparse.ArgumentParser ) -> Dict: """simple docstring""" self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): lowerCamelCase_ = {k: v for k, v in vars(__UpperCamelCase ).items() if k != 'container'} lowerCamelCase_ = {k: v for k, v in vars(__UpperCamelCase ).items() if k != 'container'} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('choices' , __UpperCamelCase ) and yy.get('choices' , __UpperCamelCase ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['type'](__UpperCamelCase ) , yy['type'](__UpperCamelCase ) ) del xx["type"], yy["type"] self.assertEqual(__UpperCamelCase , __UpperCamelCase ) def a__ ( self : int ) -> str: """simple docstring""" lowerCamelCase_ = HfArgumentParser(__UpperCamelCase ) lowerCamelCase_ = argparse.ArgumentParser() expected.add_argument('--foo' , type=__UpperCamelCase , required=__UpperCamelCase ) expected.add_argument('--bar' , type=__UpperCamelCase , required=__UpperCamelCase ) expected.add_argument('--baz' , type=__UpperCamelCase , required=__UpperCamelCase ) expected.add_argument('--flag' , type=__UpperCamelCase , default=__UpperCamelCase , const=__UpperCamelCase , nargs='?' ) self.argparsersEqual(__UpperCamelCase , __UpperCamelCase ) lowerCamelCase_ = ['--foo', '1', '--baz', 'quux', '--bar', '0.5'] ((lowerCamelCase_ ) , ) = parser.parse_args_into_dataclasses(__UpperCamelCase , look_for_args_file=__UpperCamelCase ) self.assertFalse(example.flag ) def a__ ( self : Dict ) -> List[Any]: """simple docstring""" lowerCamelCase_ = HfArgumentParser(__UpperCamelCase ) lowerCamelCase_ = argparse.ArgumentParser() expected.add_argument('--foo' , default=42 , type=__UpperCamelCase ) expected.add_argument('--baz' , default='toto' , type=__UpperCamelCase , help='help message' ) self.argparsersEqual(__UpperCamelCase , __UpperCamelCase ) def a__ ( self : Tuple ) -> List[str]: """simple docstring""" lowerCamelCase_ = argparse.ArgumentParser() expected.add_argument('--foo' , type=__UpperCamelCase , default=__UpperCamelCase , const=__UpperCamelCase , nargs='?' ) expected.add_argument('--baz' , type=__UpperCamelCase , default=__UpperCamelCase , const=__UpperCamelCase , nargs='?' ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('--no_baz' , action='store_false' , default=__UpperCamelCase , dest='baz' ) expected.add_argument('--opt' , type=__UpperCamelCase , default=__UpperCamelCase ) lowerCamelCase_ = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(__UpperCamelCase ) for dataclass_type in dataclass_types: lowerCamelCase_ = HfArgumentParser(__UpperCamelCase ) self.argparsersEqual(__UpperCamelCase , __UpperCamelCase ) lowerCamelCase_ = parser.parse_args([] ) self.assertEqual(__UpperCamelCase , Namespace(foo=__UpperCamelCase , baz=__UpperCamelCase , opt=__UpperCamelCase ) ) lowerCamelCase_ = parser.parse_args(['--foo', '--no_baz'] ) self.assertEqual(__UpperCamelCase , Namespace(foo=__UpperCamelCase , baz=__UpperCamelCase , opt=__UpperCamelCase ) ) lowerCamelCase_ = parser.parse_args(['--foo', '--baz'] ) self.assertEqual(__UpperCamelCase , Namespace(foo=__UpperCamelCase , baz=__UpperCamelCase , opt=__UpperCamelCase ) ) lowerCamelCase_ = parser.parse_args(['--foo', 'True', '--baz', 'True', '--opt', 'True'] ) self.assertEqual(__UpperCamelCase , Namespace(foo=__UpperCamelCase , baz=__UpperCamelCase , opt=__UpperCamelCase ) ) lowerCamelCase_ = parser.parse_args(['--foo', 'False', '--baz', 'False', '--opt', 'False'] ) self.assertEqual(__UpperCamelCase , Namespace(foo=__UpperCamelCase , baz=__UpperCamelCase , opt=__UpperCamelCase ) ) def a__ ( self : Optional[Any] ) -> str: """simple docstring""" lowerCamelCase_ = HfArgumentParser(__UpperCamelCase ) lowerCamelCase_ = argparse.ArgumentParser() expected.add_argument( '--foo' , default='toto' , choices=['titi', 'toto', 42] , type=make_choice_type_function(['titi', 'toto', 42] ) , ) self.argparsersEqual(__UpperCamelCase , __UpperCamelCase ) lowerCamelCase_ = parser.parse_args([] ) self.assertEqual(args.foo , 'toto' ) lowerCamelCase_ = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) lowerCamelCase_ = parser.parse_args(['--foo', 'titi'] ) self.assertEqual(args.foo , 'titi' ) lowerCamelCase_ = parser.parse_args_into_dataclasses(['--foo', 'titi'] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) lowerCamelCase_ = parser.parse_args(['--foo', '42'] ) self.assertEqual(args.foo , 42 ) lowerCamelCase_ = parser.parse_args_into_dataclasses(['--foo', '42'] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def a__ ( self : List[str] ) -> List[str]: """simple docstring""" @dataclass class A: '''simple docstring''' UpperCamelCase = '''toto''' lowerCamelCase_ = HfArgumentParser(__UpperCamelCase ) lowerCamelCase_ = argparse.ArgumentParser() expected.add_argument( '--foo' , default='toto' , choices=('titi', 'toto', 42) , type=make_choice_type_function(['titi', 'toto', 42] ) , ) self.argparsersEqual(__UpperCamelCase , __UpperCamelCase ) lowerCamelCase_ = parser.parse_args([] ) self.assertEqual(args.foo , 'toto' ) lowerCamelCase_ = parser.parse_args(['--foo', 'titi'] ) self.assertEqual(args.foo , 'titi' ) lowerCamelCase_ = parser.parse_args(['--foo', '42'] ) self.assertEqual(args.foo , 42 ) def a__ ( self : int ) -> int: """simple docstring""" lowerCamelCase_ = HfArgumentParser(__UpperCamelCase ) lowerCamelCase_ = argparse.ArgumentParser() expected.add_argument('--foo_int' , nargs='+' , default=[] , type=__UpperCamelCase ) expected.add_argument('--bar_int' , nargs='+' , default=[1, 2, 3] , type=__UpperCamelCase ) expected.add_argument('--foo_str' , nargs='+' , default=['Hallo', 'Bonjour', 'Hello'] , type=__UpperCamelCase ) expected.add_argument('--foo_float' , nargs='+' , default=[0.1, 0.2, 0.3] , type=__UpperCamelCase ) self.argparsersEqual(__UpperCamelCase , __UpperCamelCase ) lowerCamelCase_ = parser.parse_args([] ) self.assertEqual( __UpperCamelCase , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['Hallo', 'Bonjour', 'Hello'] , foo_float=[0.1, 0.2, 0.3] ) , ) lowerCamelCase_ = parser.parse_args('--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'.split() ) self.assertEqual(__UpperCamelCase , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['a', 'b', 'c'] , foo_float=[0.1, 0.7] ) ) def a__ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" lowerCamelCase_ = argparse.ArgumentParser() expected.add_argument('--foo' , default=__UpperCamelCase , type=__UpperCamelCase ) expected.add_argument('--bar' , default=__UpperCamelCase , type=__UpperCamelCase , help='help message' ) expected.add_argument('--baz' , default=__UpperCamelCase , type=__UpperCamelCase ) expected.add_argument('--ces' , nargs='+' , default=[] , type=__UpperCamelCase ) expected.add_argument('--des' , nargs='+' , default=[] , type=__UpperCamelCase ) lowerCamelCase_ = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(__UpperCamelCase ) for dataclass_type in dataclass_types: lowerCamelCase_ = HfArgumentParser(__UpperCamelCase ) self.argparsersEqual(__UpperCamelCase , __UpperCamelCase ) lowerCamelCase_ = parser.parse_args([] ) self.assertEqual(__UpperCamelCase , Namespace(foo=__UpperCamelCase , bar=__UpperCamelCase , baz=__UpperCamelCase , ces=[] , des=[] ) ) lowerCamelCase_ = parser.parse_args('--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'.split() ) self.assertEqual(__UpperCamelCase , Namespace(foo=12 , bar=3.14 , baz='42' , ces=['a', 'b', 'c'] , des=[1, 2, 3] ) ) def a__ ( self : Any ) -> int: """simple docstring""" lowerCamelCase_ = HfArgumentParser(__UpperCamelCase ) lowerCamelCase_ = argparse.ArgumentParser() expected.add_argument('--required_list' , nargs='+' , type=__UpperCamelCase , required=__UpperCamelCase ) expected.add_argument('--required_str' , type=__UpperCamelCase , required=__UpperCamelCase ) expected.add_argument( '--required_enum' , type=make_choice_type_function(['titi', 'toto'] ) , choices=['titi', 'toto'] , required=__UpperCamelCase , ) self.argparsersEqual(__UpperCamelCase , __UpperCamelCase ) def a__ ( self : str ) -> List[Any]: """simple docstring""" lowerCamelCase_ = HfArgumentParser(__UpperCamelCase ) lowerCamelCase_ = argparse.ArgumentParser() expected.add_argument('--foo' , type=__UpperCamelCase , required=__UpperCamelCase ) expected.add_argument( '--required_enum' , type=make_choice_type_function(['titi', 'toto'] ) , choices=['titi', 'toto'] , required=__UpperCamelCase , ) expected.add_argument('--opt' , type=__UpperCamelCase , default=__UpperCamelCase ) expected.add_argument('--baz' , default='toto' , type=__UpperCamelCase , help='help message' ) expected.add_argument('--foo_str' , nargs='+' , default=['Hallo', 'Bonjour', 'Hello'] , type=__UpperCamelCase ) self.argparsersEqual(__UpperCamelCase , __UpperCamelCase ) def a__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = HfArgumentParser(__UpperCamelCase ) lowerCamelCase_ = { 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, } lowerCamelCase_ = parser.parse_dict(__UpperCamelCase )[0] lowerCamelCase_ = BasicExample(**__UpperCamelCase ) self.assertEqual(__UpperCamelCase , __UpperCamelCase ) def a__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ = HfArgumentParser(__UpperCamelCase ) lowerCamelCase_ = { 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, 'extra': 42, } self.assertRaises(__UpperCamelCase , parser.parse_dict , __UpperCamelCase , allow_extra_keys=__UpperCamelCase ) def a__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = HfArgumentParser(__UpperCamelCase ) lowerCamelCase_ = { 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, } with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase_ = os.path.join(__UpperCamelCase , 'temp_json' ) os.mkdir(__UpperCamelCase ) with open(temp_local_path + '.json' , 'w+' ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) lowerCamelCase_ = parser.parse_yaml_file(Path(temp_local_path + '.json' ) )[0] lowerCamelCase_ = BasicExample(**__UpperCamelCase ) self.assertEqual(__UpperCamelCase , __UpperCamelCase ) def a__ ( self : Union[str, Any] ) -> Any: """simple docstring""" lowerCamelCase_ = HfArgumentParser(__UpperCamelCase ) lowerCamelCase_ = { 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, } with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase_ = os.path.join(__UpperCamelCase , 'temp_yaml' ) os.mkdir(__UpperCamelCase ) with open(temp_local_path + '.yaml' , 'w+' ) as f: yaml.dump(__UpperCamelCase , __UpperCamelCase ) lowerCamelCase_ = parser.parse_yaml_file(Path(temp_local_path + '.yaml' ) )[0] lowerCamelCase_ = BasicExample(**__UpperCamelCase ) self.assertEqual(__UpperCamelCase , __UpperCamelCase ) def a__ ( self : int ) -> List[str]: """simple docstring""" lowerCamelCase_ = HfArgumentParser(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase )
204
"""simple docstring""" import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = (DPMSolverSinglestepScheduler,) UpperCamelCase__ = (("""num_inference_steps""", 25),) def lowercase__ ( self : Tuple , **__UpperCamelCase : Tuple )->Any: _UpperCAmelCase = { '''num_train_timesteps''': 1_0_0_0, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', '''solver_order''': 2, '''prediction_type''': '''epsilon''', '''thresholding''': False, '''sample_max_value''': 1.0, '''algorithm_type''': '''dpmsolver++''', '''solver_type''': '''midpoint''', '''lambda_min_clipped''': -float('''inf''' ), '''variance_type''': None, } config.update(**__UpperCamelCase ) return config def lowercase__ ( self : Dict , __UpperCamelCase : Tuple=0 , **__UpperCamelCase : Optional[int] )->Tuple: _UpperCAmelCase = dict(self.forward_default_kwargs ) _UpperCAmelCase = kwargs.pop('''num_inference_steps''' , __UpperCamelCase ) _UpperCAmelCase = self.dummy_sample _UpperCAmelCase = 0.1 * sample _UpperCAmelCase = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: _UpperCAmelCase = self.get_scheduler_config(**__UpperCamelCase ) _UpperCAmelCase = scheduler_class(**__UpperCamelCase ) scheduler.set_timesteps(__UpperCamelCase ) # copy over dummy past residuals _UpperCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__UpperCamelCase ) _UpperCAmelCase = scheduler_class.from_pretrained(__UpperCamelCase ) new_scheduler.set_timesteps(__UpperCamelCase ) # copy over dummy past residuals _UpperCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order] _UpperCAmelCase , _UpperCAmelCase = sample, sample for t in range(__UpperCamelCase , time_step + scheduler.config.solver_order + 1 ): _UpperCAmelCase = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample _UpperCAmelCase = new_scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def lowercase__ ( self : Any )->Union[str, Any]: pass def lowercase__ ( self : str , __UpperCamelCase : Tuple=0 , **__UpperCamelCase : List[Any] )->Dict: _UpperCAmelCase = dict(self.forward_default_kwargs ) _UpperCAmelCase = kwargs.pop('''num_inference_steps''' , __UpperCamelCase ) _UpperCAmelCase = self.dummy_sample _UpperCAmelCase = 0.1 * sample _UpperCAmelCase = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: _UpperCAmelCase = self.get_scheduler_config() _UpperCAmelCase = scheduler_class(**__UpperCamelCase ) scheduler.set_timesteps(__UpperCamelCase ) # copy over dummy past residuals (must be after setting timesteps) _UpperCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__UpperCamelCase ) _UpperCAmelCase = scheduler_class.from_pretrained(__UpperCamelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(__UpperCamelCase ) # copy over dummy past residual (must be after setting timesteps) _UpperCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order] _UpperCAmelCase = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample _UpperCAmelCase = new_scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def lowercase__ ( self : int , __UpperCamelCase : List[str]=None , **__UpperCamelCase : Optional[int] )->List[Any]: if scheduler is None: _UpperCAmelCase = self.scheduler_classes[0] _UpperCAmelCase = self.get_scheduler_config(**__UpperCamelCase ) _UpperCAmelCase = scheduler_class(**__UpperCamelCase ) _UpperCAmelCase = self.scheduler_classes[0] _UpperCAmelCase = self.get_scheduler_config(**__UpperCamelCase ) _UpperCAmelCase = scheduler_class(**__UpperCamelCase ) _UpperCAmelCase = 1_0 _UpperCAmelCase = self.dummy_model() _UpperCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(__UpperCamelCase ) for i, t in enumerate(scheduler.timesteps ): _UpperCAmelCase = model(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ).prev_sample return sample def lowercase__ ( self : List[Any] )->Dict: _UpperCAmelCase = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) _UpperCAmelCase = 5_0 _UpperCAmelCase = self.dummy_model() _UpperCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(__UpperCamelCase ) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:] ): _UpperCAmelCase = model(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ).prev_sample _UpperCAmelCase = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_mean.item() - 0.2_5_7_4 ) < 1e-3 def lowercase__ ( self : Dict )->Dict: for timesteps in [2_5, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_configs(num_train_timesteps=__UpperCamelCase ) def lowercase__ ( self : str )->Optional[Any]: # make sure that iterating over schedulers with same config names gives same results # for defaults _UpperCAmelCase = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) _UpperCAmelCase = self.full_loop(scheduler=__UpperCamelCase ) _UpperCAmelCase = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_mean.item() - 0.2_7_9_1 ) < 1e-3 _UpperCAmelCase = DEISMultistepScheduler.from_config(scheduler.config ) _UpperCAmelCase = DPMSolverMultistepScheduler.from_config(scheduler.config ) _UpperCAmelCase = UniPCMultistepScheduler.from_config(scheduler.config ) _UpperCAmelCase = DPMSolverSinglestepScheduler.from_config(scheduler.config ) _UpperCAmelCase = self.full_loop(scheduler=__UpperCamelCase ) _UpperCAmelCase = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_mean.item() - 0.2_7_9_1 ) < 1e-3 def lowercase__ ( self : Union[str, Any] )->int: self.check_over_configs(thresholding=__UpperCamelCase ) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=__UpperCamelCase , prediction_type=__UpperCamelCase , sample_max_value=__UpperCamelCase , algorithm_type='''dpmsolver++''' , solver_order=__UpperCamelCase , solver_type=__UpperCamelCase , ) def lowercase__ ( self : str )->str: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__UpperCamelCase ) def lowercase__ ( self : List[Any] )->Tuple: for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=__UpperCamelCase , solver_type=__UpperCamelCase , prediction_type=__UpperCamelCase , algorithm_type=__UpperCamelCase , ) _UpperCAmelCase = self.full_loop( solver_order=__UpperCamelCase , solver_type=__UpperCamelCase , prediction_type=__UpperCamelCase , algorithm_type=__UpperCamelCase , ) assert not torch.isnan(__UpperCamelCase ).any(), "Samples have nan numbers" def lowercase__ ( self : Dict )->List[str]: self.check_over_configs(lower_order_final=__UpperCamelCase ) self.check_over_configs(lower_order_final=__UpperCamelCase ) def lowercase__ ( self : Dict )->str: self.check_over_configs(lambda_min_clipped=-float('''inf''' ) ) self.check_over_configs(lambda_min_clipped=-5.1 ) def lowercase__ ( self : List[str] )->int: self.check_over_configs(variance_type=__UpperCamelCase ) self.check_over_configs(variance_type='''learned_range''' ) def lowercase__ ( self : List[str] )->Union[str, Any]: for num_inference_steps in [1, 2, 3, 5, 1_0, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_forward(num_inference_steps=__UpperCamelCase , time_step=0 ) def lowercase__ ( self : List[Any] )->int: _UpperCAmelCase = self.full_loop() _UpperCAmelCase = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_mean.item() - 0.2_7_9_1 ) < 1e-3 def lowercase__ ( self : List[str] )->List[str]: _UpperCAmelCase = self.full_loop(use_karras_sigmas=__UpperCamelCase ) _UpperCAmelCase = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_mean.item() - 0.2_2_4_8 ) < 1e-3 def lowercase__ ( self : int )->List[Any]: _UpperCAmelCase = self.full_loop(prediction_type='''v_prediction''' ) _UpperCAmelCase = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_mean.item() - 0.1_4_5_3 ) < 1e-3 def lowercase__ ( self : Optional[Any] )->Dict: _UpperCAmelCase = self.full_loop(prediction_type='''v_prediction''' , use_karras_sigmas=__UpperCamelCase ) _UpperCAmelCase = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_mean.item() - 0.0_6_4_9 ) < 1e-3 def lowercase__ ( self : Union[str, Any] )->List[str]: _UpperCAmelCase = self.scheduler_classes[0] _UpperCAmelCase = self.get_scheduler_config(thresholding=__UpperCamelCase , dynamic_thresholding_ratio=0 ) _UpperCAmelCase = scheduler_class(**__UpperCamelCase ) _UpperCAmelCase = 1_0 _UpperCAmelCase = self.dummy_model() _UpperCAmelCase = self.dummy_sample_deter.half() scheduler.set_timesteps(__UpperCamelCase ) for i, t in enumerate(scheduler.timesteps ): _UpperCAmelCase = model(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ).prev_sample assert sample.dtype == torch.floataa
260
0
from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
60
import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html SCREAMING_SNAKE_CASE :int = """platform""" import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class __magic_name__ : UpperCamelCase_ :str = PegasusConfig UpperCamelCase_ :List[str] = {} UpperCamelCase_ :str = """gelu""" def __init__( self , _lowercase , _lowercase=13 , _lowercase=7 , _lowercase=True , _lowercase=False , _lowercase=99 , _lowercase=32 , _lowercase=5 , _lowercase=4 , _lowercase=37 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=20 , _lowercase=2 , _lowercase=1 , _lowercase=0 , )-> Tuple: UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = seq_length UpperCamelCase_ = is_training UpperCamelCase_ = use_labels UpperCamelCase_ = vocab_size UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = intermediate_size UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = max_position_embeddings UpperCamelCase_ = eos_token_id UpperCamelCase_ = pad_token_id UpperCamelCase_ = bos_token_id def UpperCAmelCase_ ( self )-> List[str]: UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) UpperCamelCase_ = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) UpperCamelCase_ = np.concatenate([input_ids, eos_tensor] , axis=1 ) UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCamelCase_ = prepare_pegasus_inputs_dict(_lowercase , _lowercase , _lowercase ) return config, inputs_dict def UpperCAmelCase_ ( self , _lowercase , _lowercase , _lowercase )-> Optional[Any]: UpperCamelCase_ = 20 UpperCamelCase_ = model_class_name(_lowercase ) UpperCamelCase_ = model.encode(inputs_dict["input_ids"] ) UpperCamelCase_ , UpperCamelCase_ = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) UpperCamelCase_ = model.init_cache(decoder_input_ids.shape[0] , _lowercase , _lowercase ) UpperCamelCase_ = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4" ) UpperCamelCase_ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) UpperCamelCase_ = model.decode( decoder_input_ids[:, :-1] , _lowercase , decoder_attention_mask=_lowercase , past_key_values=_lowercase , decoder_position_ids=_lowercase , ) UpperCamelCase_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) UpperCamelCase_ = model.decode( decoder_input_ids[:, -1:] , _lowercase , decoder_attention_mask=_lowercase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=_lowercase , ) UpperCamelCase_ = model.decode(_lowercase , _lowercase ) UpperCamelCase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F"Max diff is {diff}" ) def UpperCAmelCase_ ( self , _lowercase , _lowercase , _lowercase )-> Tuple: UpperCamelCase_ = 20 UpperCamelCase_ = model_class_name(_lowercase ) UpperCamelCase_ = model.encode(inputs_dict["input_ids"] ) UpperCamelCase_ , UpperCamelCase_ = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) UpperCamelCase_ = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) UpperCamelCase_ = model.init_cache(decoder_input_ids.shape[0] , _lowercase , _lowercase ) UpperCamelCase_ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) UpperCamelCase_ = model.decode( decoder_input_ids[:, :-1] , _lowercase , decoder_attention_mask=_lowercase , past_key_values=_lowercase , decoder_position_ids=_lowercase , ) UpperCamelCase_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) UpperCamelCase_ = model.decode( decoder_input_ids[:, -1:] , _lowercase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=_lowercase , decoder_position_ids=_lowercase , ) UpperCamelCase_ = model.decode(_lowercase , _lowercase , decoder_attention_mask=_lowercase ) UpperCamelCase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F"Max diff is {diff}" ) def lowerCAmelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , )-> Tuple: """simple docstring""" if attention_mask is None: UpperCamelCase_ = np.not_equal(SCREAMING_SNAKE_CASE_ , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: UpperCamelCase_ = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class __magic_name__ ( snake_case , unittest.TestCase ): UpperCamelCase_ :Dict = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) UpperCamelCase_ :Optional[int] = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () UpperCamelCase_ :List[str] = True UpperCamelCase_ :Any = False UpperCamelCase_ :Union[str, Any] = False UpperCamelCase_ :Tuple = False def UpperCAmelCase_ ( self )-> List[str]: UpperCamelCase_ = FlaxPegasusModelTester(self ) UpperCamelCase_ = ConfigTester(self , config_class=_lowercase ) def UpperCAmelCase_ ( self )-> Optional[int]: self.config_tester.run_common_tests() def UpperCAmelCase_ ( self )-> int: UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(_lowercase , _lowercase , _lowercase ) def UpperCAmelCase_ ( self )-> Any: UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(_lowercase , _lowercase , _lowercase ) def UpperCAmelCase_ ( self )-> int: UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCamelCase_ = self._prepare_for_class(_lowercase , _lowercase ) UpperCamelCase_ = model_class(_lowercase ) @jax.jit def encode_jitted(_lowercase , _lowercase=None , **_lowercase ): return model.encode(input_ids=_lowercase , attention_mask=_lowercase ) with self.subTest("JIT Enabled" ): UpperCamelCase_ = encode_jitted(**_lowercase ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): UpperCamelCase_ = encode_jitted(**_lowercase ).to_tuple() self.assertEqual(len(_lowercase ) , len(_lowercase ) ) for jitted_output, output in zip(_lowercase , _lowercase ): self.assertEqual(jitted_output.shape , output.shape ) def UpperCAmelCase_ ( self )-> Optional[Any]: UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCamelCase_ = model_class(_lowercase ) UpperCamelCase_ = model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"] ) UpperCamelCase_ = { "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(_lowercase , _lowercase , _lowercase ): return model.decode( decoder_input_ids=_lowercase , decoder_attention_mask=_lowercase , encoder_outputs=_lowercase , ) with self.subTest("JIT Enabled" ): UpperCamelCase_ = decode_jitted(**_lowercase ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): UpperCamelCase_ = decode_jitted(**_lowercase ).to_tuple() self.assertEqual(len(_lowercase ) , len(_lowercase ) ) for jitted_output, output in zip(_lowercase , _lowercase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def UpperCAmelCase_ ( self )-> int: for model_class_name in self.all_model_classes: UpperCamelCase_ = model_class_name.from_pretrained("google/pegasus-large" , from_pt=_lowercase ) UpperCamelCase_ = np.ones((1, 1) ) UpperCamelCase_ = model(_lowercase ) self.assertIsNotNone(_lowercase ) @slow def UpperCAmelCase_ ( self )-> str: UpperCamelCase_ = FlaxPegasusForConditionalGeneration.from_pretrained("google/pegasus-xsum" ) UpperCamelCase_ = PegasusTokenizer.from_pretrained("google/pegasus-xsum" ) UpperCamelCase_ = [ " PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.", " The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" ", ] UpperCamelCase_ = [ "California's largest electricity provider has turned off power to hundreds of thousands of customers.", "Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.", ] UpperCamelCase_ = tokenizer(_lowercase , return_tensors="np" , truncation=_lowercase , max_length=512 , padding=_lowercase ) UpperCamelCase_ = model.generate(**_lowercase , num_beams=2 ).sequences UpperCamelCase_ = tokenizer.batch_decode(_lowercase , skip_special_tokens=_lowercase ) assert tgt_text == decoded
60
1
'''simple docstring''' import contextlib import os import sqlitea import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def UpperCamelCase_( snake_case : Union[str, Any] , snake_case : List[Any] ): '''simple docstring''' assert isinstance(__lowerCamelCase , __lowerCamelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def UpperCamelCase_( snake_case : List[Any] , snake_case : Dict , snake_case : Dict , snake_case : Optional[int] ): '''simple docstring''' snake_case_ = tmp_path / "cache" snake_case_ = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): snake_case_ = SqlDatasetReader( "dataset" , "sqlite:///" + sqlite_path , cache_dir=__lowerCamelCase , keep_in_memory=__lowerCamelCase ).read() _check_sql_dataset(__lowerCamelCase , __lowerCamelCase ) @require_sqlalchemy @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def UpperCamelCase_( snake_case : Dict , snake_case : int , snake_case : Tuple , snake_case : List[str] ): '''simple docstring''' snake_case_ = tmp_path / "cache" snake_case_ = {"col_1": "string", "col_2": "int64", "col_3": "float64"} snake_case_ = features.copy() if features else default_expected_features snake_case_ = ( Features({feature: Value(__lowerCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case_ = SqlDatasetReader("dataset" , "sqlite:///" + sqlite_path , features=__lowerCamelCase , cache_dir=__lowerCamelCase ).read() _check_sql_dataset(__lowerCamelCase , __lowerCamelCase ) def UpperCamelCase_( snake_case : int ): '''simple docstring''' with contextlib.closing(sqlitea.connect(__lowerCamelCase ) ) as con: snake_case_ = con.cursor() cur.execute("SELECT * FROM dataset" ) for row in cur: yield row @require_sqlalchemy def UpperCamelCase_( snake_case : Optional[int] , snake_case : List[Any] , snake_case : Optional[Any] ): '''simple docstring''' snake_case_ = tmp_path / "cache" snake_case_ = os.path.join(__lowerCamelCase , "tmp.sql" ) snake_case_ = SqlDatasetReader("dataset" , "sqlite:///" + sqlite_path , cache_dir=__lowerCamelCase ).read() SqlDatasetWriter(__lowerCamelCase , "dataset" , "sqlite:///" + output_sqlite_path , num_proc=1 ).write() snake_case_ = iter_sql_file(__lowerCamelCase ) snake_case_ = iter_sql_file(__lowerCamelCase ) for rowa, rowa in zip(__lowerCamelCase , __lowerCamelCase ): assert rowa == rowa @require_sqlalchemy def UpperCamelCase_( snake_case : Optional[int] , snake_case : str , snake_case : Any ): '''simple docstring''' snake_case_ = tmp_path / "cache" snake_case_ = os.path.join(__lowerCamelCase , "tmp.sql" ) snake_case_ = SqlDatasetReader("dataset" , "sqlite:///" + sqlite_path , cache_dir=__lowerCamelCase ).read() SqlDatasetWriter(__lowerCamelCase , "dataset" , "sqlite:///" + output_sqlite_path , num_proc=2 ).write() snake_case_ = iter_sql_file(__lowerCamelCase ) snake_case_ = iter_sql_file(__lowerCamelCase ) for rowa, rowa in zip(__lowerCamelCase , __lowerCamelCase ): assert rowa == rowa @require_sqlalchemy def UpperCamelCase_( snake_case : List[Any] , snake_case : Union[str, Any] , snake_case : Tuple ): '''simple docstring''' snake_case_ = tmp_path / "cache" snake_case_ = os.path.join(__lowerCamelCase , "tmp.sql" ) snake_case_ = SqlDatasetReader("dataset" , "sqlite:///" + sqlite_path , cache_dir=__lowerCamelCase ).read() with pytest.raises(__lowerCamelCase ): SqlDatasetWriter(__lowerCamelCase , "dataset" , "sqlite:///" + output_sqlite_path , num_proc=0 ).write()
85
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() _snake_case : int = logging.get_logger(__name__) def lowerCAmelCase_ ( __lowerCamelCase ): __snake_case : Any = DPTConfig(embedding_type="hybrid" ) if "large" in checkpoint_url: __snake_case : Optional[int] = 1_0_2_4 __snake_case : List[Any] = 4_0_9_6 __snake_case : List[Any] = 2_4 __snake_case : Optional[Any] = 1_6 __snake_case : str = [5, 1_1, 1_7, 2_3] __snake_case : List[str] = [2_5_6, 5_1_2, 1_0_2_4, 1_0_2_4] __snake_case : Union[str, Any] = (1, 3_8_4, 3_8_4) if "nyu" or "midas" in checkpoint_url: __snake_case : Tuple = 7_6_8 __snake_case : Any = [1, 1, 1, 0.5] __snake_case : Any = [2_5_6, 5_1_2, 7_6_8, 7_6_8] __snake_case : Any = 1_5_0 __snake_case : Optional[Any] = 1_6 __snake_case : List[str] = (1, 3_8_4, 3_8_4) __snake_case : Tuple = False __snake_case : Optional[Any] = "project" if "ade" in checkpoint_url: __snake_case : Optional[int] = True __snake_case : List[str] = 7_6_8 __snake_case : int = [1, 1, 1, 0.5] __snake_case : Any = 1_5_0 __snake_case : Tuple = 1_6 __snake_case : List[str] = "huggingface/label-files" __snake_case : Union[str, Any] = "ade20k-id2label.json" __snake_case : List[str] = json.load(open(cached_download(hf_hub_url(__lowerCamelCase , __lowerCamelCase , repo_type="dataset" ) ) , "r" ) ) __snake_case : int = {int(__lowerCamelCase ): v for k, v in idalabel.items()} __snake_case : Optional[Any] = idalabel __snake_case : str = {v: k for k, v in idalabel.items()} __snake_case : Tuple = [1, 1_5_0, 4_8_0, 4_8_0] return config, expected_shape def lowerCAmelCase_ ( __lowerCamelCase ): __snake_case : Tuple = ["pretrained.model.head.weight", "pretrained.model.head.bias"] for k in ignore_keys: state_dict.pop(__lowerCamelCase , __lowerCamelCase ) def lowerCAmelCase_ ( __lowerCamelCase ): if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): __snake_case : Tuple = name.replace("pretrained.model" , "dpt.encoder" ) if "pretrained.model" in name: __snake_case : Tuple = name.replace("pretrained.model" , "dpt.embeddings" ) if "patch_embed" in name: __snake_case : Optional[Any] = name.replace("patch_embed" , "" ) if "pos_embed" in name: __snake_case : Optional[int] = name.replace("pos_embed" , "position_embeddings" ) if "attn.proj" in name: __snake_case : List[str] = name.replace("attn.proj" , "attention.output.dense" ) if "proj" in name and "project" not in name: __snake_case : Union[str, Any] = name.replace("proj" , "projection" ) if "blocks" in name: __snake_case : int = name.replace("blocks" , "layer" ) if "mlp.fc1" in name: __snake_case : Tuple = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: __snake_case : Any = name.replace("mlp.fc2" , "output.dense" ) if "norm1" in name and "backbone" not in name: __snake_case : Optional[Any] = name.replace("norm1" , "layernorm_before" ) if "norm2" in name and "backbone" not in name: __snake_case : Any = name.replace("norm2" , "layernorm_after" ) if "scratch.output_conv" in name: __snake_case : Dict = name.replace("scratch.output_conv" , "head" ) if "scratch" in name: __snake_case : Union[str, Any] = name.replace("scratch" , "neck" ) if "layer1_rn" in name: __snake_case : List[Any] = name.replace("layer1_rn" , "convs.0" ) if "layer2_rn" in name: __snake_case : str = name.replace("layer2_rn" , "convs.1" ) if "layer3_rn" in name: __snake_case : List[str] = name.replace("layer3_rn" , "convs.2" ) if "layer4_rn" in name: __snake_case : Optional[int] = name.replace("layer4_rn" , "convs.3" ) if "refinenet" in name: __snake_case : Optional[int] = int(name[len("neck.refinenet" ) : len("neck.refinenet" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 __snake_case : int = name.replace(F'refinenet{layer_idx}' , F'fusion_stage.layers.{abs(layer_idx-4 )}' ) if "out_conv" in name: __snake_case : Any = name.replace("out_conv" , "projection" ) if "resConfUnit1" in name: __snake_case : List[Any] = name.replace("resConfUnit1" , "residual_layer1" ) if "resConfUnit2" in name: __snake_case : Tuple = name.replace("resConfUnit2" , "residual_layer2" ) if "conv1" in name: __snake_case : List[str] = name.replace("conv1" , "convolution1" ) if "conv2" in name: __snake_case : str = name.replace("conv2" , "convolution2" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: __snake_case : Union[str, Any] = name.replace("pretrained.act_postprocess1.0.project.0" , "neck.reassemble_stage.readout_projects.0.0" ) if "pretrained.act_postprocess2.0.project.0" in name: __snake_case : Optional[int] = name.replace("pretrained.act_postprocess2.0.project.0" , "neck.reassemble_stage.readout_projects.1.0" ) if "pretrained.act_postprocess3.0.project.0" in name: __snake_case : List[str] = name.replace("pretrained.act_postprocess3.0.project.0" , "neck.reassemble_stage.readout_projects.2.0" ) if "pretrained.act_postprocess4.0.project.0" in name: __snake_case : Dict = name.replace("pretrained.act_postprocess4.0.project.0" , "neck.reassemble_stage.readout_projects.3.0" ) # resize blocks if "pretrained.act_postprocess1.3" in name: __snake_case : Tuple = name.replace("pretrained.act_postprocess1.3" , "neck.reassemble_stage.layers.0.projection" ) if "pretrained.act_postprocess1.4" in name: __snake_case : int = name.replace("pretrained.act_postprocess1.4" , "neck.reassemble_stage.layers.0.resize" ) if "pretrained.act_postprocess2.3" in name: __snake_case : Union[str, Any] = name.replace("pretrained.act_postprocess2.3" , "neck.reassemble_stage.layers.1.projection" ) if "pretrained.act_postprocess2.4" in name: __snake_case : Optional[Any] = name.replace("pretrained.act_postprocess2.4" , "neck.reassemble_stage.layers.1.resize" ) if "pretrained.act_postprocess3.3" in name: __snake_case : Optional[int] = name.replace("pretrained.act_postprocess3.3" , "neck.reassemble_stage.layers.2.projection" ) if "pretrained.act_postprocess4.3" in name: __snake_case : Dict = name.replace("pretrained.act_postprocess4.3" , "neck.reassemble_stage.layers.3.projection" ) if "pretrained.act_postprocess4.4" in name: __snake_case : Union[str, Any] = name.replace("pretrained.act_postprocess4.4" , "neck.reassemble_stage.layers.3.resize" ) if "pretrained" in name: __snake_case : Union[str, Any] = name.replace("pretrained" , "dpt" ) if "bn" in name: __snake_case : Tuple = name.replace("bn" , "batch_norm" ) if "head" in name: __snake_case : Dict = name.replace("head" , "head.head" ) if "encoder.norm" in name: __snake_case : Optional[int] = name.replace("encoder.norm" , "layernorm" ) if "auxlayer" in name: __snake_case : Tuple = name.replace("auxlayer" , "auxiliary_head.head" ) if "backbone" in name: __snake_case : str = name.replace("backbone" , "backbone.bit.encoder" ) if ".." in name: __snake_case : Tuple = name.replace(".." , "." ) if "stem.conv" in name: __snake_case : int = name.replace("stem.conv" , "bit.embedder.convolution" ) if "blocks" in name: __snake_case : Any = name.replace("blocks" , "layers" ) if "convolution" in name and "backbone" in name: __snake_case : Optional[int] = name.replace("convolution" , "conv" ) if "layer" in name and "backbone" in name: __snake_case : List[Any] = name.replace("layer" , "layers" ) if "backbone.bit.encoder.bit" in name: __snake_case : Optional[int] = name.replace("backbone.bit.encoder.bit" , "backbone.bit" ) if "embedder.conv" in name: __snake_case : int = name.replace("embedder.conv" , "embedder.convolution" ) if "backbone.bit.encoder.stem.norm" in name: __snake_case : Optional[Any] = name.replace("backbone.bit.encoder.stem.norm" , "backbone.bit.embedder.norm" ) return name def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __snake_case : int = state_dict.pop(F'dpt.encoder.layer.{i}.attn.qkv.weight' ) __snake_case : Any = state_dict.pop(F'dpt.encoder.layer.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict __snake_case : str = in_proj_weight[: config.hidden_size, :] __snake_case : List[Any] = in_proj_bias[: config.hidden_size] __snake_case : str = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __snake_case : Tuple = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __snake_case : Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] __snake_case : int = in_proj_bias[-config.hidden_size :] def lowerCAmelCase_ ( ): __snake_case : List[str] = "http://images.cocodataset.org/val2017/000000039769.jpg" __snake_case : int = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): __snake_case , __snake_case : Optional[int] = get_dpt_config(__lowerCamelCase ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") __snake_case : Optional[int] = torch.load(__lowerCamelCase , map_location="cpu" ) # remove certain keys remove_ignore_keys_(__lowerCamelCase ) # rename keys for key in state_dict.copy().keys(): __snake_case : Optional[int] = state_dict.pop(__lowerCamelCase ) __snake_case : Optional[Any] = val # read in qkv matrices read_in_q_k_v(__lowerCamelCase , __lowerCamelCase ) # load HuggingFace model __snake_case : Dict = DPTForSemanticSegmentation(__lowerCamelCase ) if "ade" in checkpoint_url else DPTForDepthEstimation(__lowerCamelCase ) model.load_state_dict(__lowerCamelCase ) model.eval() # Check outputs on an image __snake_case : str = 4_8_0 if "ade" in checkpoint_url else 3_8_4 __snake_case : Any = DPTImageProcessor(size=__lowerCamelCase ) __snake_case : int = prepare_img() __snake_case : Union[str, Any] = image_processor(__lowerCamelCase , return_tensors="pt" ) # forward pass __snake_case : Dict = model(**__lowerCamelCase ).logits if "ade" in checkpoint_url else model(**__lowerCamelCase ).predicted_depth if show_prediction: __snake_case : int = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode="bicubic" , align_corners=__lowerCamelCase , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 2_5_5 ).show() if pytorch_dump_folder_path is not None: Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) print(F'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(__lowerCamelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(__lowerCamelCase ) if push_to_hub: model.push_to_hub("ybelkada/dpt-hybrid-midas" ) image_processor.push_to_hub("ybelkada/dpt-hybrid-midas" ) if __name__ == "__main__": _snake_case : int = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt", type=str, help="URL of the original DPT checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=False, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", ) parser.add_argument( "--model_name", default="dpt-large", type=str, help="Name of the model, in case you're pushing to the hub.", ) parser.add_argument( "--show_prediction", action="store_true", ) _snake_case : str = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
123
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = {"vocab_file": "sentencepiece.bpe.model"} lowerCamelCase__ = { "vocab_file": { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model", } } lowerCamelCase__ = { "camembert-base": 512, } lowerCamelCase__ = "▁" class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :List[str] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ :str = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ :Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ :int = ["input_ids", "attention_mask"] def __init__( self : Dict , __a : int , __a : Optional[Any]="<s>" , __a : int="</s>" , __a : Tuple="</s>" , __a : Optional[int]="<s>" , __a : str="<unk>" , __a : Dict="<pad>" , __a : List[str]="<mask>" , __a : int=["<s>NOTUSED", "</s>NOTUSED"] , __a : Optional[Dict[str, Any]] = None , **__a : Optional[int] , ) -> None: # Mask token behave like a normal word, i.e. include the space before it _UpperCamelCase : List[str] = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else mask_token _UpperCamelCase : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__a , eos_token=__a , unk_token=__a , sep_token=__a , cls_token=__a , pad_token=__a , mask_token=__a , additional_special_tokens=__a , sp_model_kwargs=self.sp_model_kwargs , **__a , ) _UpperCamelCase : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__a ) ) _UpperCamelCase : List[Any] = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> _UpperCamelCase : Optional[Any] = {"<s>NOTUSED": 0, "<pad>": 1, "</s>NOTUSED": 2, "<unk>": 3} _UpperCamelCase : Optional[int] = len(self.fairseq_tokens_to_ids ) _UpperCamelCase : Tuple = len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) _UpperCamelCase : str = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __SCREAMING_SNAKE_CASE ( self : Any , __a : List[int] , __a : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _UpperCamelCase : str = [self.cls_token_id] _UpperCamelCase : Union[str, Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __SCREAMING_SNAKE_CASE ( self : Any , __a : List[int] , __a : Optional[List[int]] = None , __a : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__a , token_ids_a=__a , already_has_special_tokens=__a ) if token_ids_a is None: return [1] + ([0] * len(__a )) + [1] return [1] + ([0] * len(__a )) + [1, 1] + ([0] * len(__a )) + [1] def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : List[int] , __a : Optional[List[int]] = None ) -> List[int]: _UpperCamelCase : List[Any] = [self.sep_token_id] _UpperCamelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __SCREAMING_SNAKE_CASE ( self : Any ) -> int: return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: _UpperCamelCase : Optional[int] = {self.convert_ids_to_tokens(__a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : str ) -> List[str]: return self.sp_model.encode(__a , out_type=__a ) def __SCREAMING_SNAKE_CASE ( self : str , __a : List[str] ) -> List[Any]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(__a ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(__a ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : List[Any] ) -> Any: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : List[str] ) -> Optional[Any]: _UpperCamelCase : Optional[Any] = [] _UpperCamelCase : Union[str, Any] = "" _UpperCamelCase : Optional[int] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__a ) + token _UpperCamelCase : List[str] = True _UpperCamelCase : Dict = [] else: current_sub_tokens.append(__a ) _UpperCamelCase : Union[str, Any] = False out_string += self.sp_model.decode(__a ) return out_string.strip() def __getstate__( self : List[Any] ) -> Dict: _UpperCamelCase : Any = self.__dict__.copy() _UpperCamelCase : int = None return state def __setstate__( self : Optional[int] , __a : Optional[int] ) -> Optional[int]: _UpperCamelCase : List[str] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _UpperCamelCase : Any = {} _UpperCamelCase : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : str , __a : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__a ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _UpperCamelCase : Union[str, Any] = os.path.join( __a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __a ) elif not os.path.isfile(self.vocab_file ): with open(__a , "wb" ) as fi: _UpperCamelCase : int = self.sp_model.serialized_model_proto() fi.write(__a ) return (out_vocab_file,)
310
"""simple docstring""" import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) -> Optional[Any]: """simple docstring""" with open(lowercase_ ) as metadata_file: _UpperCamelCase : Dict = json.load(lowercase_ ) _UpperCamelCase : str = LukeConfig(use_entity_aware_attention=lowercase_ ,**metadata["model_config"] ) # Load in the weights from the checkpoint_path _UpperCamelCase : str = torch.load(lowercase_ ,map_location="cpu" )["module"] # Load the entity vocab file _UpperCamelCase : Dict = load_original_entity_vocab(lowercase_ ) # add an entry for [MASK2] _UpperCamelCase : Any = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 _UpperCamelCase : Optional[Any] = XLMRobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] ) # Add special tokens to the token vocabulary for downstream tasks _UpperCamelCase : Dict = AddedToken("<ent>" ,lstrip=lowercase_ ,rstrip=lowercase_ ) _UpperCamelCase : Union[str, Any] = AddedToken("<ent2>" ,lstrip=lowercase_ ,rstrip=lowercase_ ) tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'''Saving tokenizer to {pytorch_dump_folder_path}''' ) tokenizer.save_pretrained(lowercase_ ) with open(os.path.join(lowercase_ ,"tokenizer_config.json" ) ,"r" ) as f: _UpperCamelCase : Tuple = json.load(lowercase_ ) _UpperCamelCase : Optional[int] = "MLukeTokenizer" with open(os.path.join(lowercase_ ,"tokenizer_config.json" ) ,"w" ) as f: json.dump(lowercase_ ,lowercase_ ) with open(os.path.join(lowercase_ ,MLukeTokenizer.vocab_files_names["entity_vocab_file"] ) ,"w" ) as f: json.dump(lowercase_ ,lowercase_ ) _UpperCamelCase : int = MLukeTokenizer.from_pretrained(lowercase_ ) # Initialize the embeddings of the special tokens _UpperCamelCase : List[Any] = tokenizer.convert_tokens_to_ids(["@"] )[0] _UpperCamelCase : str = tokenizer.convert_tokens_to_ids(["#"] )[0] _UpperCamelCase : Union[str, Any] = state_dict["embeddings.word_embeddings.weight"] _UpperCamelCase : Optional[Any] = word_emb[ent_init_index].unsqueeze(0 ) _UpperCamelCase : List[str] = word_emb[enta_init_index].unsqueeze(0 ) _UpperCamelCase : Union[str, Any] = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: _UpperCamelCase : Optional[Any] = state_dict[bias_name] _UpperCamelCase : List[Any] = decoder_bias[ent_init_index].unsqueeze(0 ) _UpperCamelCase : Tuple = decoder_bias[enta_init_index].unsqueeze(0 ) _UpperCamelCase : Optional[int] = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: _UpperCamelCase : Tuple = F'''encoder.layer.{layer_index}.attention.self.''' _UpperCamelCase : List[Any] = state_dict[prefix + matrix_name] _UpperCamelCase : str = state_dict[prefix + matrix_name] _UpperCamelCase : Any = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks _UpperCamelCase : Any = state_dict["entity_embeddings.entity_embeddings.weight"] _UpperCamelCase : Tuple = entity_emb[entity_vocab["[MASK]"]].unsqueeze(0 ) _UpperCamelCase : int = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' _UpperCamelCase : int = state_dict["entity_predictions.bias"] _UpperCamelCase : Dict = entity_prediction_bias[entity_vocab["[MASK]"]].unsqueeze(0 ) _UpperCamelCase : List[Any] = torch.cat([entity_prediction_bias, entity_mask_bias] ) _UpperCamelCase : str = LukeForMaskedLM(config=lowercase_ ).eval() state_dict.pop("entity_predictions.decoder.weight" ) state_dict.pop("lm_head.decoder.weight" ) state_dict.pop("lm_head.decoder.bias" ) _UpperCamelCase : List[str] = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("lm_head" ) or key.startswith("entity_predictions" )): _UpperCamelCase : Union[str, Any] = state_dict[key] else: _UpperCamelCase : Dict = state_dict[key] _UpperCamelCase, _UpperCamelCase : Optional[Any] = model.load_state_dict(lowercase_ ,strict=lowercase_ ) if set(lowercase_ ) != {"luke.embeddings.position_ids"}: raise ValueError(F'''Unexpected unexpected_keys: {unexpected_keys}''' ) if set(lowercase_ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F'''Unexpected missing_keys: {missing_keys}''' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs _UpperCamelCase : List[Any] = MLukeTokenizer.from_pretrained(lowercase_ ,task="entity_classification" ) _UpperCamelCase : Dict = "ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)." _UpperCamelCase : Optional[Any] = (0, 9) _UpperCamelCase : int = tokenizer(lowercase_ ,entity_spans=[span] ,return_tensors="pt" ) _UpperCamelCase : List[str] = model(**lowercase_ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base _UpperCamelCase : Tuple = torch.Size((1, 33, 768) ) _UpperCamelCase : List[Any] = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] ,lowercase_ ,atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base _UpperCamelCase : Tuple = torch.Size((1, 1, 768) ) _UpperCamelCase : List[Any] = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is''' F''' {expected_shape}''' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] ,lowercase_ ,atol=1e-4 ): raise ValueError # Verify masked word/entity prediction _UpperCamelCase : List[Any] = MLukeTokenizer.from_pretrained(lowercase_ ) _UpperCamelCase : int = "Tokyo is the capital of <mask>." _UpperCamelCase : List[Any] = (24, 30) _UpperCamelCase : Any = tokenizer(lowercase_ ,entity_spans=[span] ,return_tensors="pt" ) _UpperCamelCase : Optional[Any] = model(**lowercase_ ) _UpperCamelCase : int = encoding["input_ids"][0].tolist() _UpperCamelCase : List[Any] = input_ids.index(tokenizer.convert_tokens_to_ids("<mask>" ) ) _UpperCamelCase : List[str] = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(lowercase_ ) _UpperCamelCase : Union[str, Any] = outputs.entity_logits[0][0].argmax().item() _UpperCamelCase : Tuple = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("en:" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("Saving PyTorch model to {}".format(lowercase_ ) ) model.save_pretrained(lowercase_ ) def lowercase__ ( lowercase_ ) -> Tuple: """simple docstring""" _UpperCamelCase : List[str] = ["[MASK]", "[PAD]", "[UNK]"] _UpperCamelCase : Tuple = [json.loads(lowercase_ ) for line in open(lowercase_ )] _UpperCamelCase : List[str] = {} for entry in data: _UpperCamelCase : Any = entry["id"] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: _UpperCamelCase : Dict = entity_id break _UpperCamelCase : Dict = F'''{language}:{entity_name}''' _UpperCamelCase : str = entity_id return new_mapping if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.") parser.add_argument( "--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration." ) parser.add_argument( "--entity_vocab_path", default=None, type=str, help="Path to an entity_vocab.tsv file, containing the entity vocabulary.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model." ) parser.add_argument( "--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted." ) lowerCamelCase__ = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
310
1
class _UpperCamelCase : """simple docstring""" def __init__( self , lowerCAmelCase__ ) -> Union[str, Any]: '''simple docstring''' __lowercase = val __lowercase = None __lowercase = None def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ ) -> List[Any]: '''simple docstring''' if self.val: if val < self.val: if self.left is None: __lowercase = Node(lowerCAmelCase__ ) else: self.left.insert(lowerCAmelCase__ ) elif val > self.val: if self.right is None: __lowercase = Node(lowerCAmelCase__ ) else: self.right.insert(lowerCAmelCase__ ) else: __lowercase = val def UpperCAmelCase ( lowercase , lowercase ): """simple docstring""" if root: inorder(root.left , lowercase ) res.append(root.val ) inorder(root.right , lowercase ) def UpperCAmelCase ( lowercase ): """simple docstring""" if len(lowercase ) == 0: return arr __lowercase = Node(arr[0] ) for i in range(1 , len(lowercase ) ): root.insert(arr[i] ) # Traverse BST in order. __lowercase = [] inorder(lowercase , lowercase ) return res if __name__ == "__main__": print(tree_sort([1_0, 1, 3, 2, 9, 1_4, 1_3]))
210
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __a : Any = { """configuration_bloom""": ["""BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BloomConfig""", """BloomOnnxConfig"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a : Optional[int] = ["""BloomTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a : str = [ """BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST""", """BloomForCausalLM""", """BloomModel""", """BloomPreTrainedModel""", """BloomForSequenceClassification""", """BloomForTokenClassification""", """BloomForQuestionAnswering""", ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys __a : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
210
1
'''simple docstring''' import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated _lowerCamelCase : int = collections.namedtuple("_Datasets", ["train", "validation", "test"]) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ _lowerCamelCase : Union[str, Any] = "https://storage.googleapis.com/cvdf-datasets/mnist/" def __lowerCamelCase ( A__ ) -> Tuple: """simple docstring""" UpperCamelCase = numpy.dtype(numpy.uintaa ).newbyteorder('>' ) return numpy.frombuffer(bytestream.read(4 ) , dtype=A__ )[0] @deprecated(A__ , 'Please use tf.data to implement this functionality.' ) def __lowerCamelCase ( A__ ) -> Optional[Any]: """simple docstring""" print('Extracting' , f.name ) with gzip.GzipFile(fileobj=A__ ) as bytestream: UpperCamelCase = _readaa(A__ ) if magic != 2_051: raise ValueError( 'Invalid magic number %d in MNIST image file: %s' % (magic, f.name) ) UpperCamelCase = _readaa(A__ ) UpperCamelCase = _readaa(A__ ) UpperCamelCase = _readaa(A__ ) UpperCamelCase = bytestream.read(rows * cols * num_images ) UpperCamelCase = numpy.frombuffer(A__ , dtype=numpy.uinta ) UpperCamelCase = data.reshape(A__ , A__ , A__ , 1 ) return data @deprecated(A__ , 'Please use tf.one_hot on tensors.' ) def __lowerCamelCase ( A__ , A__ ) -> Any: """simple docstring""" UpperCamelCase = labels_dense.shape[0] UpperCamelCase = numpy.arange(A__ ) * num_classes UpperCamelCase = numpy.zeros((num_labels, num_classes) ) UpperCamelCase = 1 return labels_one_hot @deprecated(A__ , 'Please use tf.data to implement this functionality.' ) def __lowerCamelCase ( A__ , A__=False , A__=10 ) -> str: """simple docstring""" print('Extracting' , f.name ) with gzip.GzipFile(fileobj=A__ ) as bytestream: UpperCamelCase = _readaa(A__ ) if magic != 2_049: raise ValueError( 'Invalid magic number %d in MNIST label file: %s' % (magic, f.name) ) UpperCamelCase = _readaa(A__ ) UpperCamelCase = bytestream.read(A__ ) UpperCamelCase = numpy.frombuffer(A__ , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(A__ , A__ ) return labels class SCREAMING_SNAKE_CASE : """simple docstring""" @deprecated( UpperCamelCase__ , 'Please use alternatives such as official/mnist/_DataSet.py' ' from tensorflow/models.' , ) def __init__( self : List[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : List[Any] , UpperCamelCase__ : int=False , UpperCamelCase__ : int=False , UpperCamelCase__ : Dict=dtypes.floataa , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : Dict=None , ): """simple docstring""" UpperCamelCase , UpperCamelCase = random_seed.get_seed(UpperCamelCase__ ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) UpperCamelCase = dtypes.as_dtype(UpperCamelCase__ ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError('Invalid image dtype %r, expected uint8 or float32' % dtype ) if fake_data: UpperCamelCase = 1_0_0_0_0 UpperCamelCase = one_hot else: assert ( images.shape[0] == labels.shape[0] ), f"""images.shape: {images.shape} labels.shape: {labels.shape}""" UpperCamelCase = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 UpperCamelCase = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. UpperCamelCase = images.astype(numpy.floataa ) UpperCamelCase = numpy.multiply(UpperCamelCase__ , 1.0 / 2_5_5.0 ) UpperCamelCase = images UpperCamelCase = labels UpperCamelCase = 0 UpperCamelCase = 0 @property def A ( self : Tuple ): """simple docstring""" return self._images @property def A ( self : Optional[Any] ): """simple docstring""" return self._labels @property def A ( self : Tuple ): """simple docstring""" return self._num_examples @property def A ( self : Dict ): """simple docstring""" return self._epochs_completed def A ( self : Optional[int] , UpperCamelCase__ : Dict , UpperCamelCase__ : int=False , UpperCamelCase__ : str=True ): """simple docstring""" if fake_data: UpperCamelCase = [1] * 7_8_4 UpperCamelCase = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(UpperCamelCase__ )], [fake_label for _ in range(UpperCamelCase__ )], ) UpperCamelCase = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: UpperCamelCase = numpy.arange(self._num_examples ) numpy.random.shuffle(UpperCamelCase__ ) UpperCamelCase = self.images[perma] UpperCamelCase = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch UpperCamelCase = self._num_examples - start UpperCamelCase = self._images[start : self._num_examples] UpperCamelCase = self._labels[start : self._num_examples] # Shuffle the data if shuffle: UpperCamelCase = numpy.arange(self._num_examples ) numpy.random.shuffle(UpperCamelCase__ ) UpperCamelCase = self.images[perm] UpperCamelCase = self.labels[perm] # Start next epoch UpperCamelCase = 0 UpperCamelCase = batch_size - rest_num_examples UpperCamelCase = self._index_in_epoch UpperCamelCase = self._images[start:end] UpperCamelCase = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size UpperCamelCase = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(A__ , 'Please write your own downloading logic.' ) def __lowerCamelCase ( A__ , A__ , A__ ) -> Union[str, Any]: """simple docstring""" if not gfile.Exists(A__ ): gfile.MakeDirs(A__ ) UpperCamelCase = os.path.join(A__ , A__ ) if not gfile.Exists(A__ ): urllib.request.urlretrieve(A__ , A__ ) # noqa: S310 with gfile.GFile(A__ ) as f: UpperCamelCase = f.size() print('Successfully downloaded' , A__ , A__ , 'bytes.' ) return filepath @deprecated( A__ , 'Please use alternatives such as:' ' tensorflow_datasets.load(\'mnist\')' ) def __lowerCamelCase ( A__ , A__=False , A__=False , A__=dtypes.floataa , A__=True , A__=5_000 , A__=None , A__=DEFAULT_SOURCE_URL , ) -> int: """simple docstring""" if fake_data: def fake(): return _DataSet( [] , [] , fake_data=A__ , one_hot=A__ , dtype=A__ , seed=A__ ) UpperCamelCase = fake() UpperCamelCase = fake() UpperCamelCase = fake() return _Datasets(train=A__ , validation=A__ , test=A__ ) if not source_url: # empty string check UpperCamelCase = DEFAULT_SOURCE_URL UpperCamelCase = 'train-images-idx3-ubyte.gz' UpperCamelCase = 'train-labels-idx1-ubyte.gz' UpperCamelCase = 't10k-images-idx3-ubyte.gz' UpperCamelCase = 't10k-labels-idx1-ubyte.gz' UpperCamelCase = _maybe_download( A__ , A__ , source_url + train_images_file ) with gfile.Open(A__ , 'rb' ) as f: UpperCamelCase = _extract_images(A__ ) UpperCamelCase = _maybe_download( A__ , A__ , source_url + train_labels_file ) with gfile.Open(A__ , 'rb' ) as f: UpperCamelCase = _extract_labels(A__ , one_hot=A__ ) UpperCamelCase = _maybe_download( A__ , A__ , source_url + test_images_file ) with gfile.Open(A__ , 'rb' ) as f: UpperCamelCase = _extract_images(A__ ) UpperCamelCase = _maybe_download( A__ , A__ , source_url + test_labels_file ) with gfile.Open(A__ , 'rb' ) as f: UpperCamelCase = _extract_labels(A__ , one_hot=A__ ) if not 0 <= validation_size <= len(A__ ): UpperCamelCase = ( 'Validation size should be between 0 and ' F"""{len(A__ )}. Received: {validation_size}.""" ) raise ValueError(A__ ) UpperCamelCase = train_images[:validation_size] UpperCamelCase = train_labels[:validation_size] UpperCamelCase = train_images[validation_size:] UpperCamelCase = train_labels[validation_size:] UpperCamelCase = {'dtype': dtype, 'reshape': reshape, 'seed': seed} UpperCamelCase = _DataSet(A__ , A__ , **A__ ) UpperCamelCase = _DataSet(A__ , A__ , **A__ ) UpperCamelCase = _DataSet(A__ , A__ , **A__ ) return _Datasets(train=A__ , validation=A__ , test=A__ )
351
'''simple docstring''' from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class SCREAMING_SNAKE_CASE : """simple docstring""" _SCREAMING_SNAKE_CASE = XGLMConfig _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = """gelu""" def __init__( self : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : List[Any]=1_4 , UpperCamelCase__ : int=7 , UpperCamelCase__ : List[Any]=True , UpperCamelCase__ : Optional[Any]=True , UpperCamelCase__ : str=True , UpperCamelCase__ : List[str]=9_9 , UpperCamelCase__ : str=3_2 , UpperCamelCase__ : Any=2 , UpperCamelCase__ : Optional[int]=4 , UpperCamelCase__ : str=3_7 , UpperCamelCase__ : Tuple="gelu" , UpperCamelCase__ : str=0.1 , UpperCamelCase__ : List[str]=0.1 , UpperCamelCase__ : Union[str, Any]=5_1_2 , UpperCamelCase__ : Optional[Any]=0.0_2 , ): """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = seq_length UpperCamelCase = is_training UpperCamelCase = use_input_mask UpperCamelCase = use_labels UpperCamelCase = vocab_size UpperCamelCase = d_model UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = ffn_dim UpperCamelCase = activation_function UpperCamelCase = activation_dropout UpperCamelCase = attention_dropout UpperCamelCase = max_position_embeddings UpperCamelCase = initializer_range UpperCamelCase = None UpperCamelCase = 0 UpperCamelCase = 2 UpperCamelCase = 1 def A ( self : Union[str, Any] ): """simple docstring""" return XGLMConfig.from_pretrained('facebook/xglm-564M' ) def A ( self : List[Any] ): """simple docstring""" UpperCamelCase = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) UpperCamelCase = None if self.use_input_mask: UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase = self.get_config() UpperCamelCase = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def A ( self : Union[str, Any] ): """simple docstring""" return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=UpperCamelCase__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=UpperCamelCase__ , ) def A ( self : Tuple ): """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) = config_and_inputs UpperCamelCase = { 'input_ids': input_ids, 'head_mask': head_mask, } return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE ( _a , _a , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () _SCREAMING_SNAKE_CASE = (TFXGLMForCausalLM,) if is_tf_available() else () _SCREAMING_SNAKE_CASE = ( {"""feature-extraction""": TFXGLMModel, """text-generation""": TFXGLMForCausalLM} if is_tf_available() else {} ) _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False def A ( self : Dict ): """simple docstring""" UpperCamelCase = TFXGLMModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=UpperCamelCase__ , n_embd=3_7 ) def A ( self : Optional[Any] ): """simple docstring""" self.config_tester.run_common_tests() @slow def A ( self : List[str] ): """simple docstring""" for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = TFXGLMModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) @unittest.skip(reason='Currently, model embeddings are going to undergo a major refactor.' ) def A ( self : Dict ): """simple docstring""" super().test_resize_token_embeddings() @require_tf class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @slow def A ( self : Optional[int] , UpperCamelCase__ : Tuple=True ): """simple docstring""" UpperCamelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) UpperCamelCase = tf.convert_to_tensor([[2, 2_6_8, 9_8_6_5]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off UpperCamelCase = [2, 2_6_8, 9_8_6_5, 6_7, 1_1, 1_9_8_8, 5_7_2_5_2, 9_8_6_5, 5, 9_8_4, 6_7, 1_9_8_8, 2_1_3_8_3_8, 1_6_5_8, 5_3, 7_0_4_4_6, 3_3, 6_6_5_7, 2_7_8, 1_5_8_1] # fmt: on UpperCamelCase = model.generate(UpperCamelCase__ , do_sample=UpperCamelCase__ , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , UpperCamelCase__ ) @slow def A ( self : List[Any] ): """simple docstring""" UpperCamelCase = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) UpperCamelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) tf.random.set_seed(0 ) UpperCamelCase = tokenizer('Today is a nice day and' , return_tensors='tf' ) UpperCamelCase = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(':/CPU:0' ): UpperCamelCase = model.generate(UpperCamelCase__ , do_sample=UpperCamelCase__ , seed=[7, 0] ) UpperCamelCase = tokenizer.decode(output_ids[0] , skip_special_tokens=UpperCamelCase__ ) UpperCamelCase = ( 'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due' ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) @slow def A ( self : Dict ): """simple docstring""" UpperCamelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) UpperCamelCase = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) UpperCamelCase = 'left' # use different length sentences to test batching UpperCamelCase = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When', 'Hello, my dog is a little', ] UpperCamelCase = tokenizer(UpperCamelCase__ , return_tensors='tf' , padding=UpperCamelCase__ ) UpperCamelCase = inputs['input_ids'] UpperCamelCase = model.generate(input_ids=UpperCamelCase__ , attention_mask=inputs['attention_mask'] , max_new_tokens=1_2 ) UpperCamelCase = tokenizer(sentences[0] , return_tensors='tf' ).input_ids UpperCamelCase = model.generate(input_ids=UpperCamelCase__ , max_new_tokens=1_2 ) UpperCamelCase = tokenizer(sentences[1] , return_tensors='tf' ).input_ids UpperCamelCase = model.generate(input_ids=UpperCamelCase__ , max_new_tokens=1_2 ) UpperCamelCase = tokenizer.batch_decode(UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ ) UpperCamelCase = tokenizer.decode(output_non_padded[0] , skip_special_tokens=UpperCamelCase__ ) UpperCamelCase = tokenizer.decode(output_padded[0] , skip_special_tokens=UpperCamelCase__ ) UpperCamelCase = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ' 'a single', 'Hello, my dog is a little bit of a shy one, but he is very friendly', ] self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , [non_padded_sentence, padded_sentence] )
249
0
'''simple docstring''' from PIL import Image def __lowerCamelCase ( A__ , A__ ) -> Image: """simple docstring""" def brightness(A__ ) -> float: return 128 + level + (c - 128) if not -255.0 <= level <= 255.0: raise ValueError('level must be between -255.0 (black) and 255.0 (white)' ) return img.point(A__ ) if __name__ == "__main__": # Load image with Image.open("image_data/lena.jpg") as img: # Change brightness to 100 _lowerCamelCase : List[str] = change_brightness(img, 100) brigt_img.save("image_data/lena_brightness.png", format="png")
28
"""simple docstring""" import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotSmallConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html _lowerCamelCase : Tuple = 'platform' import jax import jax.numpy as jnp from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, shift_tokens_right, ) def lowercase_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , ): """simple docstring""" if attention_mask is None: A_ : int = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: A_ : List[Any] = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: A_ : List[Any] = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: A_ : Dict = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: A_ : Optional[Any] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class lowercase : def __init__( self : int , _lowerCamelCase : Optional[Any] , _lowerCamelCase : List[Any]=13 , _lowerCamelCase : Optional[int]=7 , _lowerCamelCase : Optional[int]=True , _lowerCamelCase : Tuple=False , _lowerCamelCase : Dict=99 , _lowerCamelCase : List[Any]=16 , _lowerCamelCase : Any=2 , _lowerCamelCase : Union[str, Any]=4 , _lowerCamelCase : Dict=4 , _lowerCamelCase : Any="gelu" , _lowerCamelCase : Any=0.1 , _lowerCamelCase : Tuple=0.1 , _lowerCamelCase : List[Any]=32 , _lowerCamelCase : str=2 , _lowerCamelCase : List[Any]=1 , _lowerCamelCase : Optional[int]=0 , _lowerCamelCase : Optional[Any]=0.02 , ): """simple docstring""" A_ : Any = parent A_ : Any = batch_size A_ : Optional[Any] = seq_length A_ : Union[str, Any] = is_training A_ : Optional[Any] = use_labels A_ : str = vocab_size A_ : Optional[Any] = hidden_size A_ : Dict = num_hidden_layers A_ : List[str] = num_attention_heads A_ : List[str] = intermediate_size A_ : int = hidden_act A_ : List[Any] = hidden_dropout_prob A_ : List[Any] = attention_probs_dropout_prob A_ : List[Any] = max_position_embeddings A_ : Tuple = eos_token_id A_ : int = pad_token_id A_ : int = bos_token_id A_ : str = initializer_range def a_ ( self : List[Any] ): """simple docstring""" A_ : Optional[Any] = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) A_ : Optional[int] = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) A_ : Optional[Any] = shift_tokens_right(_lowerCamelCase , 1 , 2 ) A_ : Optional[Any] = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=_lowerCamelCase , ) A_ : Any = prepare_blenderbot_inputs_dict(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return config, inputs_dict def a_ ( self : Optional[int] ): """simple docstring""" A_ , A_ : str = self.prepare_config_and_inputs() return config, inputs_dict def a_ ( self : int , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Dict , _lowerCamelCase : Dict ): """simple docstring""" A_ : str = 20 A_ : Any = model_class_name(_lowerCamelCase ) A_ : List[Any] = model.encode(inputs_dict['''input_ids'''] ) A_ , A_ : int = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) A_ : int = model.init_cache(decoder_input_ids.shape[0] , _lowerCamelCase , _lowerCamelCase ) A_ : List[Any] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='''i4''' ) A_ : Dict = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) A_ : Optional[int] = model.decode( decoder_input_ids[:, :-1] , _lowerCamelCase , decoder_attention_mask=_lowerCamelCase , past_key_values=_lowerCamelCase , decoder_position_ids=_lowerCamelCase , ) A_ : List[str] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) A_ : Tuple = model.decode( decoder_input_ids[:, -1:] , _lowerCamelCase , decoder_attention_mask=_lowerCamelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=_lowerCamelCase , ) A_ : str = model.decode(_lowerCamelCase , _lowerCamelCase ) A_ : List[str] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) def a_ ( self : List[Any] , _lowerCamelCase : Any , _lowerCamelCase : int , _lowerCamelCase : Optional[Any] ): """simple docstring""" A_ : Union[str, Any] = 20 A_ : Dict = model_class_name(_lowerCamelCase ) A_ : Dict = model.encode(inputs_dict['''input_ids'''] ) A_ , A_ : Optional[int] = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) A_ : Union[str, Any] = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) A_ : Dict = model.init_cache(decoder_input_ids.shape[0] , _lowerCamelCase , _lowerCamelCase ) A_ : Union[str, Any] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) A_ : Optional[int] = model.decode( decoder_input_ids[:, :-1] , _lowerCamelCase , decoder_attention_mask=_lowerCamelCase , past_key_values=_lowerCamelCase , decoder_position_ids=_lowerCamelCase , ) A_ : Optional[Any] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) A_ : List[str] = model.decode( decoder_input_ids[:, -1:] , _lowerCamelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=_lowerCamelCase , decoder_position_ids=_lowerCamelCase , ) A_ : Tuple = model.decode(_lowerCamelCase , _lowerCamelCase , decoder_attention_mask=_lowerCamelCase ) A_ : Dict = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) @require_flax class lowercase ( unittest.TestCase): __lowerCAmelCase : Dict = 99 def a_ ( self : str ): """simple docstring""" A_ : List[str] = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) A_ : List[str] = input_ids.shape[0] A_ : Optional[int] = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def a_ ( self : List[str] ): """simple docstring""" A_ , A_ , A_ : List[Any] = self._get_config_and_data() A_ : Dict = FlaxBlenderbotSmallForConditionalGeneration(_lowerCamelCase ) A_ : Optional[int] = lm_model(input_ids=_lowerCamelCase ) A_ : Optional[Any] = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['''logits'''].shape , _lowerCamelCase ) def a_ ( self : str ): """simple docstring""" A_ : Tuple = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) A_ : Optional[int] = FlaxBlenderbotSmallForConditionalGeneration(_lowerCamelCase ) A_ : List[str] = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) A_ : Optional[int] = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) A_ : Dict = lm_model(input_ids=_lowerCamelCase , decoder_input_ids=_lowerCamelCase ) A_ : Any = (*summary.shape, config.vocab_size) self.assertEqual(outputs['''logits'''].shape , _lowerCamelCase ) def a_ ( self : Union[str, Any] ): """simple docstring""" A_ : int = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) A_ : Tuple = shift_tokens_right(_lowerCamelCase , 1 , 2 ) A_ : Optional[int] = np.equal(_lowerCamelCase , 1 ).astype(np.floataa ).sum() A_ : Tuple = np.equal(_lowerCamelCase , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(_lowerCamelCase , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class lowercase ( __UpperCAmelCase , unittest.TestCase , __UpperCAmelCase): __lowerCAmelCase : Any = True __lowerCAmelCase : List[Any] = ( ( FlaxBlenderbotSmallModel, FlaxBlenderbotSmallForConditionalGeneration, ) if is_flax_available() else () ) __lowerCAmelCase : List[str] = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else () def a_ ( self : Tuple ): """simple docstring""" A_ : Optional[int] = FlaxBlenderbotSmallModelTester(self ) def a_ ( self : List[str] ): """simple docstring""" A_ , A_ : int = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def a_ ( self : Tuple ): """simple docstring""" A_ , A_ : Tuple = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def a_ ( self : List[Any] ): """simple docstring""" A_ , A_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): A_ : str = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) A_ : Tuple = model_class(_lowerCamelCase ) @jax.jit def encode_jitted(_lowerCamelCase : Optional[int] , _lowerCamelCase : Union[str, Any]=None , **_lowerCamelCase : List[str] ): return model.encode(input_ids=_lowerCamelCase , attention_mask=_lowerCamelCase ) with self.subTest('''JIT Enabled''' ): A_ : Optional[Any] = encode_jitted(**_lowerCamelCase ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): A_ : List[Any] = encode_jitted(**_lowerCamelCase ).to_tuple() self.assertEqual(len(_lowerCamelCase ) , len(_lowerCamelCase ) ) for jitted_output, output in zip(_lowerCamelCase , _lowerCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) def a_ ( self : Tuple ): """simple docstring""" A_ , A_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): A_ : Union[str, Any] = model_class(_lowerCamelCase ) A_ : Optional[Any] = model.encode(inputs_dict['''input_ids'''] , inputs_dict['''attention_mask'''] ) A_ : Tuple = { '''decoder_input_ids''': inputs_dict['''decoder_input_ids'''], '''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''], '''encoder_outputs''': encoder_outputs, } @jax.jit def decode_jitted(_lowerCamelCase : List[str] , _lowerCamelCase : int , _lowerCamelCase : Dict ): return model.decode( decoder_input_ids=_lowerCamelCase , decoder_attention_mask=_lowerCamelCase , encoder_outputs=_lowerCamelCase , ) with self.subTest('''JIT Enabled''' ): A_ : Union[str, Any] = decode_jitted(**_lowerCamelCase ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): A_ : Optional[Any] = decode_jitted(**_lowerCamelCase ).to_tuple() self.assertEqual(len(_lowerCamelCase ) , len(_lowerCamelCase ) ) for jitted_output, output in zip(_lowerCamelCase , _lowerCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def a_ ( self : Tuple ): """simple docstring""" for model_class_name in self.all_model_classes: A_ : str = model_class_name.from_pretrained('''facebook/blenderbot_small-90M''' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids A_ : str = np.ones((1, 1) ) * model.config.eos_token_id A_ : List[Any] = model(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase )
167
0
from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class lowercase__ ( UpperCamelCase_ , UpperCamelCase_): @register_to_config def __init__( self : str , UpperCamelCase__ : int = 768 , ): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE : int = nn.Parameter(torch.zeros(1 , UpperCamelCase__ ) ) SCREAMING_SNAKE_CASE : Optional[Any] = nn.Parameter(torch.ones(1 , UpperCamelCase__ ) ) def __A ( self : List[str] , UpperCamelCase__ : Optional[Union[str, torch.device]] = None , UpperCamelCase__ : Optional[torch.dtype] = None , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = nn.Parameter(self.mean.to(UpperCamelCase__ ).to(UpperCamelCase__ ) ) SCREAMING_SNAKE_CASE : List[Any] = nn.Parameter(self.std.to(UpperCamelCase__ ).to(UpperCamelCase__ ) ) return self def __A ( self : Optional[Any] , UpperCamelCase__ : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = (embeds - self.mean) * 1.0 / self.std return embeds def __A ( self : Dict , UpperCamelCase__ : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = (embeds * self.std) + self.mean return embeds
258
from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class lowercase__ ( UpperCamelCase_): UpperCamelCase_ = 42 UpperCamelCase_ = 42 if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
258
1
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging lowerCAmelCase : str = logging.get_logger(__name__) lowerCAmelCase : Tuple = {"""vocab_file""": """spiece.model"""} lowerCAmelCase : Optional[Any] = { """vocab_file""": { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model""", } } lowerCAmelCase : Any = { """xlnet-base-cased""": None, """xlnet-large-cased""": None, } # Segments (not really needed) lowerCAmelCase : Any = 0 lowerCAmelCase : List[Any] = 1 lowerCAmelCase : Union[str, Any] = 2 lowerCAmelCase : Dict = 3 lowerCAmelCase : List[Any] = 4 class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : List[Any] = VOCAB_FILES_NAMES _UpperCAmelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase : List[Any] = '''left''' def __init__( self : List[str] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Union[str, Any]=False , lowerCAmelCase__ : Dict=True , lowerCAmelCase__ : str=False , lowerCAmelCase__ : Any="<s>" , lowerCAmelCase__ : Optional[int]="</s>" , lowerCAmelCase__ : Optional[int]="<unk>" , lowerCAmelCase__ : List[str]="<sep>" , lowerCAmelCase__ : Tuple="<pad>" , lowerCAmelCase__ : int="<cls>" , lowerCAmelCase__ : List[str]="<mask>" , lowerCAmelCase__ : List[Any]=["<eop>", "<eod>"] , lowerCAmelCase__ : Optional[Dict[str, Any]] = None , **lowerCAmelCase__ : int , ): # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE_: Union[str, Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else mask_token SCREAMING_SNAKE_CASE_: Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=lowerCAmelCase__ , remove_space=lowerCAmelCase__ , keep_accents=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , additional_special_tokens=lowerCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE_: Dict = 3 SCREAMING_SNAKE_CASE_: List[str] = do_lower_case SCREAMING_SNAKE_CASE_: List[Any] = remove_space SCREAMING_SNAKE_CASE_: int = keep_accents SCREAMING_SNAKE_CASE_: Tuple = vocab_file SCREAMING_SNAKE_CASE_: Any = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(lowerCAmelCase__) @property def _SCREAMING_SNAKE_CASE ( self : List[str]): return len(self.sp_model) def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: Optional[Any] = {self.convert_ids_to_tokens(lowerCAmelCase__): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self : Optional[int]): SCREAMING_SNAKE_CASE_: Optional[Any] = self.__dict__.copy() SCREAMING_SNAKE_CASE_: Optional[int] = None return state def __setstate__( self : Tuple , lowerCAmelCase__ : Any): SCREAMING_SNAKE_CASE_: Any = d # for backward compatibility if not hasattr(self , "sp_model_kwargs"): SCREAMING_SNAKE_CASE_: List[Any] = {} SCREAMING_SNAKE_CASE_: int = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase__ : Any): if self.remove_space: SCREAMING_SNAKE_CASE_: int = " ".join(inputs.strip().split()) else: SCREAMING_SNAKE_CASE_: int = inputs SCREAMING_SNAKE_CASE_: Tuple = outputs.replace("``" , "\"").replace("''" , "\"") if not self.keep_accents: SCREAMING_SNAKE_CASE_: List[str] = unicodedata.normalize("NFKD" , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = "".join([c for c in outputs if not unicodedata.combining(lowerCAmelCase__)]) if self.do_lower_case: SCREAMING_SNAKE_CASE_: Union[str, Any] = outputs.lower() return outputs def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : str): SCREAMING_SNAKE_CASE_: str = self.preprocess_text(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = self.sp_model.encode(lowerCAmelCase__ , out_type=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = [] for piece in pieces: if len(lowerCAmelCase__) > 1 and piece[-1] == str(",") and piece[-2].isdigit(): SCREAMING_SNAKE_CASE_: List[str] = self.sp_model.EncodeAsPieces(piece[:-1].replace(lowerCAmelCase__ , "")) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: SCREAMING_SNAKE_CASE_: List[str] = cur_pieces[1:] else: SCREAMING_SNAKE_CASE_: Union[str, Any] = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(lowerCAmelCase__) else: new_pieces.append(lowerCAmelCase__) return new_pieces def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase__ : Dict): return self.sp_model.PieceToId(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase__ : Dict): return self.sp_model.IdToPiece(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : Union[str, Any]): SCREAMING_SNAKE_CASE_: List[str] = "".join(lowerCAmelCase__).replace(lowerCAmelCase__ , " ").strip() return out_string def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : bool = None , lowerCAmelCase__ : bool = True , **lowerCAmelCase__ : Optional[int] , ): SCREAMING_SNAKE_CASE_: List[Any] = kwargs.pop("use_source_tokenizer" , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = self.convert_ids_to_tokens(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 SCREAMING_SNAKE_CASE_: Optional[int] = [] SCREAMING_SNAKE_CASE_: Optional[Any] = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCAmelCase__)) SCREAMING_SNAKE_CASE_: Dict = [] sub_texts.append(lowerCAmelCase__) else: current_sub_text.append(lowerCAmelCase__) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCAmelCase__)) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens SCREAMING_SNAKE_CASE_: Union[str, Any] = "".join(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: SCREAMING_SNAKE_CASE_: Dict = self.clean_up_tokenization(lowerCAmelCase__) return clean_text else: return text def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None): SCREAMING_SNAKE_CASE_: Optional[int] = [self.sep_token_id] SCREAMING_SNAKE_CASE_: Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : bool = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__) if token_ids_a is not None: return ([0] * len(lowerCAmelCase__)) + [1] + ([0] * len(lowerCAmelCase__)) + [1, 1] return ([0] * len(lowerCAmelCase__)) + [1, 1] def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None): SCREAMING_SNAKE_CASE_: Tuple = [self.sep_token_id] SCREAMING_SNAKE_CASE_: List[str] = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None): if not os.path.isdir(lowerCAmelCase__): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return SCREAMING_SNAKE_CASE_: int = os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(lowerCAmelCase__) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , lowerCAmelCase__) elif not os.path.isfile(self.vocab_file): with open(lowerCAmelCase__ , "wb") as fi: SCREAMING_SNAKE_CASE_: Dict = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase__) return (out_vocab_file,)
13
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase_ : def __init__( self, __a, __a=13, __a=7, __a=True, __a=True, __a=True, __a=True, __a=99, __a=24, __a=2, __a=6, __a=37, __a="gelu", __a=0.1, __a=0.1, __a=512, __a=16, __a=2, __a=0.02, __a=3, __a=None, __a=1000, ): '''simple docstring''' _lowerCAmelCase : Tuple = parent _lowerCAmelCase : List[str] = batch_size _lowerCAmelCase : int = seq_length _lowerCAmelCase : Optional[int] = is_training _lowerCAmelCase : Dict = use_input_mask _lowerCAmelCase : List[str] = use_token_type_ids _lowerCAmelCase : str = use_labels _lowerCAmelCase : Optional[Any] = vocab_size _lowerCAmelCase : Tuple = hidden_size _lowerCAmelCase : List[Any] = num_hidden_layers _lowerCAmelCase : Optional[Any] = num_attention_heads _lowerCAmelCase : Any = intermediate_size _lowerCAmelCase : List[str] = hidden_act _lowerCAmelCase : Union[str, Any] = hidden_dropout_prob _lowerCAmelCase : Any = attention_probs_dropout_prob _lowerCAmelCase : int = max_position_embeddings _lowerCAmelCase : Optional[int] = type_vocab_size _lowerCAmelCase : Optional[Any] = type_sequence_label_size _lowerCAmelCase : List[str] = initializer_range _lowerCAmelCase : List[Any] = num_labels _lowerCAmelCase : Tuple = scope _lowerCAmelCase : str = range_bbox def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) _lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length, 4], self.range_bbox) # Ensure that bbox is legal for i in range(bbox.shape[0]): for j in range(bbox.shape[1]): if bbox[i, j, 3] < bbox[i, j, 1]: _lowerCAmelCase : Dict = bbox[i, j, 3] _lowerCAmelCase : int = bbox[i, j, 1] _lowerCAmelCase : Tuple = t if bbox[i, j, 2] < bbox[i, j, 0]: _lowerCAmelCase : str = bbox[i, j, 2] _lowerCAmelCase : List[Any] = bbox[i, j, 0] _lowerCAmelCase : str = t _lowerCAmelCase : Optional[Any] = None if self.use_input_mask: _lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) _lowerCAmelCase : Dict = None if self.use_token_type_ids: _lowerCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) _lowerCAmelCase : Optional[int] = None _lowerCAmelCase : Optional[Any] = None if self.use_labels: _lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size) _lowerCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length], self.num_labels) _lowerCAmelCase : Optional[int] = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def snake_case__ ( self): '''simple docstring''' return LiltConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, ) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a, ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = LiltModel(config=__a) model.to(__a) model.eval() _lowerCAmelCase : Dict = model(__a, bbox=__a, attention_mask=__a, token_type_ids=__a) _lowerCAmelCase : str = model(__a, bbox=__a, token_type_ids=__a) _lowerCAmelCase : List[Any] = model(__a, bbox=__a) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a, ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.num_labels _lowerCAmelCase : Optional[Any] = LiltForTokenClassification(config=__a) model.to(__a) model.eval() _lowerCAmelCase : Dict = model( __a, bbox=__a, attention_mask=__a, token_type_ids=__a, labels=__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a, ): '''simple docstring''' _lowerCAmelCase : Optional[int] = LiltForQuestionAnswering(config=__a) model.to(__a) model.eval() _lowerCAmelCase : Tuple = model( __a, bbox=__a, attention_mask=__a, token_type_ids=__a, start_positions=__a, end_positions=__a, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : Dict = config_and_inputs _lowerCAmelCase : List[Any] = { "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class UpperCAmelCase_ ( a , a , a , unittest.TestCase): lowerCamelCase__ = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) lowerCamelCase__ = ( { 'feature-extraction': LiltModel, 'question-answering': LiltForQuestionAnswering, 'text-classification': LiltForSequenceClassification, 'token-classification': LiltForTokenClassification, 'zero-shot': LiltForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False def snake_case__ ( self, __a, __a, __a, __a, __a): '''simple docstring''' return True def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = LiltModelTester(self) _lowerCAmelCase : Union[str, Any] = ConfigTester(self, config_class=__a, hidden_size=37) def snake_case__ ( self): '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowerCAmelCase : Any = type self.model_tester.create_and_check_model(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__a) @slow def snake_case__ ( self): '''simple docstring''' for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : str = LiltModel.from_pretrained(__a) self.assertIsNotNone(__a) @require_torch @slow class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = LiltModel.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base").to(__a) _lowerCAmelCase : Any = torch.tensor([[1, 2]], device=__a) _lowerCAmelCase : str = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]], device=__a) # forward pass with torch.no_grad(): _lowerCAmelCase : Optional[Any] = model(input_ids=__a, bbox=__a) _lowerCAmelCase : Optional[int] = torch.Size([1, 2, 768]) _lowerCAmelCase : List[str] = torch.tensor( [[-0.0_653, 0.0_950, -0.0_061], [-0.0_545, 0.0_926, -0.0_324]], device=__a, ) self.assertTrue(outputs.last_hidden_state.shape, __a) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3], __a, atol=1E-3))
36
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __A = { '''configuration_canine''': ['''CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CanineConfig'''], '''tokenization_canine''': ['''CanineTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ '''CANINE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CanineForMultipleChoice''', '''CanineForQuestionAnswering''', '''CanineForSequenceClassification''', '''CanineForTokenClassification''', '''CanineLayer''', '''CanineModel''', '''CaninePreTrainedModel''', '''load_tf_weights_in_canine''', ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys __A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
354
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class lowercase_ ( unittest.TestCase ): def __init__( self : Union[str, Any] , A__ : int , A__ : List[str]=7 , A__ : Tuple=3 , A__ : List[str]=10 , A__ : Optional[int]=18 , A__ : int=30 , A__ : Tuple=400 , A__ : Dict=True , A__ : str=None , A__ : str=True , A__ : List[str]=[0.5, 0.5, 0.5] , A__ : int=[0.5, 0.5, 0.5] , A__ : List[Any]=None , ) -> int: _snake_case = size if size is not None else {'''shortest_edge''': 18} _snake_case = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} _snake_case = parent _snake_case = batch_size _snake_case = num_channels _snake_case = num_frames _snake_case = image_size _snake_case = min_resolution _snake_case = max_resolution _snake_case = do_resize _snake_case = size _snake_case = do_normalize _snake_case = image_mean _snake_case = image_std _snake_case = crop_size def UpperCamelCase_ ( self : List[str] ) -> Union[str, Any]: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class lowercase_ ( __lowercase , unittest.TestCase ): UpperCamelCase_ : Tuple = VivitImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self : Union[str, Any] ) -> List[str]: _snake_case = VivitImageProcessingTester(self ) @property def UpperCamelCase_ ( self : Union[str, Any] ) -> Optional[Any]: return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : Optional[int] ) -> Optional[Any]: _snake_case = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A__ , '''image_mean''' ) ) self.assertTrue(hasattr(A__ , '''image_std''' ) ) self.assertTrue(hasattr(A__ , '''do_normalize''' ) ) self.assertTrue(hasattr(A__ , '''do_resize''' ) ) self.assertTrue(hasattr(A__ , '''do_center_crop''' ) ) self.assertTrue(hasattr(A__ , '''size''' ) ) def UpperCamelCase_ ( self : int ) -> List[Any]: _snake_case = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) _snake_case = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def UpperCamelCase_ ( self : List[Any] ) -> Optional[Any]: # Initialize image_processing _snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PIL videos _snake_case = prepare_video_inputs(self.image_processor_tester , equal_resolution=A__ ) for video in video_inputs: self.assertIsInstance(A__ , A__ ) self.assertIsInstance(video[0] , Image.Image ) # Test not batched input _snake_case = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _snake_case = image_processing(A__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def UpperCamelCase_ ( self : Any ) -> List[str]: # Initialize image_processing _snake_case = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _snake_case = prepare_video_inputs(self.image_processor_tester , equal_resolution=A__ , numpify=A__ ) for video in video_inputs: self.assertIsInstance(A__ , A__ ) self.assertIsInstance(video[0] , np.ndarray ) # Test not batched input _snake_case = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _snake_case = image_processing(A__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def UpperCamelCase_ ( self : Optional[Any] ) -> int: # Initialize image_processing _snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _snake_case = prepare_video_inputs(self.image_processor_tester , equal_resolution=A__ , torchify=A__ ) for video in video_inputs: self.assertIsInstance(A__ , A__ ) self.assertIsInstance(video[0] , torch.Tensor ) # Test not batched input _snake_case = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _snake_case = image_processing(A__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
278
0
"""simple docstring""" import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class a ( lowerCAmelCase_ ): UpperCamelCase : List[Any] = (DPMSolverSinglestepScheduler,) UpperCamelCase : Tuple = (('num_inference_steps', 2_5),) def lowerCamelCase__ ( self : Optional[int] , **lowerCAmelCase : Optional[Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: str ={ '''num_train_timesteps''': 1000, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', '''solver_order''': 2, '''prediction_type''': '''epsilon''', '''thresholding''': False, '''sample_max_value''': 1.0, '''algorithm_type''': '''dpmsolver++''', '''solver_type''': '''midpoint''', '''lambda_min_clipped''': -float("""inf""" ), '''variance_type''': None, } config.update(**lowerCAmelCase ) return config def lowerCamelCase__ ( self : Optional[Any] , lowerCAmelCase : Optional[int]=0 , **lowerCAmelCase : Dict ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE_: Tuple =dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE_: str =kwargs.pop("""num_inference_steps""" , lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Any =self.dummy_sample SCREAMING_SNAKE_CASE_: Union[str, Any] =0.1 * sample SCREAMING_SNAKE_CASE_: Optional[int] =[residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE_: str =self.get_scheduler_config(**lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[Any] =scheduler_class(**lowerCAmelCase ) scheduler.set_timesteps(lowerCAmelCase ) # copy over dummy past residuals SCREAMING_SNAKE_CASE_: Any =dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[Any] =scheduler_class.from_pretrained(lowerCAmelCase ) new_scheduler.set_timesteps(lowerCAmelCase ) # copy over dummy past residuals SCREAMING_SNAKE_CASE_: Tuple =dummy_past_residuals[: new_scheduler.config.solver_order] SCREAMING_SNAKE_CASE_: Optional[int] =sample, sample for t in range(lowerCAmelCase , time_step + scheduler.config.solver_order + 1 ): SCREAMING_SNAKE_CASE_: Tuple =scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ).prev_sample SCREAMING_SNAKE_CASE_: Optional[Any] =new_scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCamelCase__ ( self : List[str] ) -> Optional[int]: '''simple docstring''' pass def lowerCamelCase__ ( self : Optional[Any] , lowerCAmelCase : str=0 , **lowerCAmelCase : List[Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Dict =dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE_: Tuple =kwargs.pop("""num_inference_steps""" , lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] =self.dummy_sample SCREAMING_SNAKE_CASE_: Dict =0.1 * sample SCREAMING_SNAKE_CASE_: Dict =[residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE_: int =self.get_scheduler_config() SCREAMING_SNAKE_CASE_: Dict =scheduler_class(**lowerCAmelCase ) scheduler.set_timesteps(lowerCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) SCREAMING_SNAKE_CASE_: List[Any] =dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] =scheduler_class.from_pretrained(lowerCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(lowerCAmelCase ) # copy over dummy past residual (must be after setting timesteps) SCREAMING_SNAKE_CASE_: Any =dummy_past_residuals[: new_scheduler.config.solver_order] SCREAMING_SNAKE_CASE_: List[Any] =scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ).prev_sample SCREAMING_SNAKE_CASE_: Any =new_scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCamelCase__ ( self : Dict , lowerCAmelCase : Optional[int]=None , **lowerCAmelCase : Dict ) -> int: '''simple docstring''' if scheduler is None: SCREAMING_SNAKE_CASE_: Optional[int] =self.scheduler_classes[0] SCREAMING_SNAKE_CASE_: List[str] =self.get_scheduler_config(**lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Dict =scheduler_class(**lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] =self.scheduler_classes[0] SCREAMING_SNAKE_CASE_: int =self.get_scheduler_config(**lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Any =scheduler_class(**lowerCAmelCase ) SCREAMING_SNAKE_CASE_: int =10 SCREAMING_SNAKE_CASE_: Any =self.dummy_model() SCREAMING_SNAKE_CASE_: Optional[int] =self.dummy_sample_deter scheduler.set_timesteps(lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE_: Optional[Any] =model(lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE_: str =scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ).prev_sample return sample def lowerCamelCase__ ( self : int ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE_: Dict =DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) SCREAMING_SNAKE_CASE_: Tuple =50 SCREAMING_SNAKE_CASE_: Dict =self.dummy_model() SCREAMING_SNAKE_CASE_: Any =self.dummy_sample_deter scheduler.set_timesteps(lowerCAmelCase ) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:] ): SCREAMING_SNAKE_CASE_: Any =model(lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[Any] =scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ).prev_sample SCREAMING_SNAKE_CASE_: Optional[int] =torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2_5_7_4 ) < 1E-3 def lowerCamelCase__ ( self : List[Any] ) -> List[str]: '''simple docstring''' for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=lowerCAmelCase ) def lowerCamelCase__ ( self : int ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Tuple =DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) SCREAMING_SNAKE_CASE_: List[Any] =self.full_loop(scheduler=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Tuple =torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2_7_9_1 ) < 1E-3 SCREAMING_SNAKE_CASE_: List[str] =DEISMultistepScheduler.from_config(scheduler.config ) SCREAMING_SNAKE_CASE_: Tuple =DPMSolverMultistepScheduler.from_config(scheduler.config ) SCREAMING_SNAKE_CASE_: List[str] =UniPCMultistepScheduler.from_config(scheduler.config ) SCREAMING_SNAKE_CASE_: Any =DPMSolverSinglestepScheduler.from_config(scheduler.config ) SCREAMING_SNAKE_CASE_: Optional[int] =self.full_loop(scheduler=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Dict =torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2_7_9_1 ) < 1E-3 def lowerCamelCase__ ( self : str ) -> Any: '''simple docstring''' self.check_over_configs(thresholding=lowerCAmelCase ) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=lowerCAmelCase , prediction_type=lowerCAmelCase , sample_max_value=lowerCAmelCase , algorithm_type="""dpmsolver++""" , solver_order=lowerCAmelCase , solver_type=lowerCAmelCase , ) def lowerCamelCase__ ( self : str ) -> Any: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase ) def lowerCamelCase__ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=lowerCAmelCase , solver_type=lowerCAmelCase , prediction_type=lowerCAmelCase , algorithm_type=lowerCAmelCase , ) SCREAMING_SNAKE_CASE_: List[Any] =self.full_loop( solver_order=lowerCAmelCase , solver_type=lowerCAmelCase , prediction_type=lowerCAmelCase , algorithm_type=lowerCAmelCase , ) assert not torch.isnan(lowerCAmelCase ).any(), "Samples have nan numbers" def lowerCamelCase__ ( self : Dict ) -> Any: '''simple docstring''' self.check_over_configs(lower_order_final=lowerCAmelCase ) self.check_over_configs(lower_order_final=lowerCAmelCase ) def lowerCamelCase__ ( self : Any ) -> List[str]: '''simple docstring''' self.check_over_configs(lambda_min_clipped=-float("""inf""" ) ) self.check_over_configs(lambda_min_clipped=-5.1 ) def lowerCamelCase__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' self.check_over_configs(variance_type=lowerCAmelCase ) self.check_over_configs(variance_type="""learned_range""" ) def lowerCamelCase__ ( self : List[str] ) -> List[str]: '''simple docstring''' for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=lowerCAmelCase , time_step=0 ) def lowerCamelCase__ ( self : List[str] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE_: int =self.full_loop() SCREAMING_SNAKE_CASE_: int =torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2_7_9_1 ) < 1E-3 def lowerCamelCase__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[Any] =self.full_loop(use_karras_sigmas=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] =torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2_2_4_8 ) < 1E-3 def lowerCamelCase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Dict =self.full_loop(prediction_type="""v_prediction""" ) SCREAMING_SNAKE_CASE_: List[str] =torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_mean.item() - 0.1_4_5_3 ) < 1E-3 def lowerCamelCase__ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: int =self.full_loop(prediction_type="""v_prediction""" , use_karras_sigmas=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[Any] =torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_mean.item() - 0.0_6_4_9 ) < 1E-3 def lowerCamelCase__ ( self : Any ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[int] =self.scheduler_classes[0] SCREAMING_SNAKE_CASE_: Any =self.get_scheduler_config(thresholding=lowerCAmelCase , dynamic_thresholding_ratio=0 ) SCREAMING_SNAKE_CASE_: int =scheduler_class(**lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Any =10 SCREAMING_SNAKE_CASE_: List[str] =self.dummy_model() SCREAMING_SNAKE_CASE_: Dict =self.dummy_sample_deter.half() scheduler.set_timesteps(lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE_: int =model(lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] =scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ).prev_sample assert sample.dtype == torch.floataa
173
"""simple docstring""" import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def snake_case__ ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Any , __lowerCamelCase : Tuple , __lowerCamelCase : Tuple=True , __lowerCamelCase : Dict="pt" ): """simple docstring""" lowerCamelCase__ : str ={'''add_prefix_space''': True} if isinstance(__lowerCamelCase , __lowerCamelCase ) and not line.startswith(''' ''' ) else {} lowerCamelCase__ : int =padding_side return tokenizer( [line] , max_length=__lowerCamelCase , padding='''max_length''' if pad_to_max_length else None , truncation=__lowerCamelCase , return_tensors=__lowerCamelCase , add_special_tokens=__lowerCamelCase , **__lowerCamelCase , ) def snake_case__ ( __lowerCamelCase : str , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[int]=None , ): """simple docstring""" lowerCamelCase__ : Any =input_ids.ne(__lowerCamelCase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' def __init__( self : str, lowerCamelCase : Union[str, Any], lowerCamelCase : Dict, lowerCamelCase : Union[str, Any], lowerCamelCase : Dict, lowerCamelCase : str="train", lowerCamelCase : List[Any]=None, lowerCamelCase : Tuple=None, lowerCamelCase : List[str]=None, lowerCamelCase : int="", )-> List[Any]: super().__init__() lowerCamelCase__ : Tuple =Path(lowerCamelCase ).joinpath(type_path + '''.source''' ) lowerCamelCase__ : str =Path(lowerCamelCase ).joinpath(type_path + '''.target''' ) lowerCamelCase__ : Dict =self.get_char_lens(self.src_file ) lowerCamelCase__ : Tuple =max_source_length lowerCamelCase__ : Optional[int] =max_target_length assert min(self.src_lens ) > 0, F'''found empty line in {self.src_file}''' lowerCamelCase__ : Dict =tokenizer lowerCamelCase__ : List[str] =prefix if n_obs is not None: lowerCamelCase__ : int =self.src_lens[:n_obs] lowerCamelCase__ : Dict =src_lang lowerCamelCase__ : Tuple =tgt_lang def __len__( self : Dict )-> Optional[int]: return len(self.src_lens ) def __getitem__( self : List[str], lowerCamelCase : Optional[int] )-> Dict[str, torch.Tensor]: lowerCamelCase__ : List[Any] =index + 1 # linecache starts at 1 lowerCamelCase__ : Optional[int] =self.prefix + linecache.getline(str(self.src_file ), lowerCamelCase ).rstrip('''\n''' ) lowerCamelCase__ : Optional[Any] =linecache.getline(str(self.tgt_file ), lowerCamelCase ).rstrip('''\n''' ) assert source_line, F'''empty source line for index {index}''' assert tgt_line, F'''empty tgt line for index {index}''' # Need to add eos token manually for T5 if isinstance(self.tokenizer, lowerCamelCase ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right lowerCamelCase__ : Optional[int] =( self.tokenizer.question_encoder if isinstance(self.tokenizer, lowerCamelCase ) else self.tokenizer ) lowerCamelCase__ : Tuple =self.tokenizer.generator if isinstance(self.tokenizer, lowerCamelCase ) else self.tokenizer lowerCamelCase__ : Optional[int] =encode_line(lowerCamelCase, lowerCamelCase, self.max_source_length, '''right''' ) lowerCamelCase__ : str =encode_line(lowerCamelCase, lowerCamelCase, self.max_target_length, '''right''' ) lowerCamelCase__ : str =source_inputs['''input_ids'''].squeeze() lowerCamelCase__ : str =target_inputs['''input_ids'''].squeeze() lowerCamelCase__ : Union[str, Any] =source_inputs['''attention_mask'''].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def snake_case ( lowerCamelCase : Union[str, Any] )-> Optional[int]: return [len(lowerCamelCase ) for x in Path(lowerCamelCase ).open().readlines()] def snake_case ( self : str, lowerCamelCase : str )-> Dict[str, torch.Tensor]: lowerCamelCase__ : List[Any] =torch.stack([x['''input_ids'''] for x in batch] ) lowerCamelCase__ : int =torch.stack([x['''attention_mask'''] for x in batch] ) lowerCamelCase__ : Union[str, Any] =torch.stack([x['''decoder_input_ids'''] for x in batch] ) lowerCamelCase__ : str =( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer, lowerCamelCase ) else self.tokenizer.pad_token_id ) lowerCamelCase__ : List[str] =( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer, lowerCamelCase ) else self.tokenizer.pad_token_id ) lowerCamelCase__ : Optional[int] =trim_batch(lowerCamelCase, lowerCamelCase ) lowerCamelCase__ , lowerCamelCase__ : Any =trim_batch(lowerCamelCase, lowerCamelCase, attention_mask=lowerCamelCase ) lowerCamelCase__ : List[str] ={ '''input_ids''': source_ids, '''attention_mask''': source_mask, '''decoder_input_ids''': y, } return batch _lowercase : Any = getLogger(__name__) def snake_case__ ( __lowerCamelCase : List[List] ): """simple docstring""" return list(itertools.chain.from_iterable(__lowerCamelCase ) ) def snake_case__ ( __lowerCamelCase : str ): """simple docstring""" lowerCamelCase__ : Dict =get_git_info() save_json(__lowerCamelCase , os.path.join(__lowerCamelCase , '''git_log.json''' ) ) def snake_case__ ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Dict=4 , **__lowerCamelCase : int ): """simple docstring""" with open(__lowerCamelCase , '''w''' ) as f: json.dump(__lowerCamelCase , __lowerCamelCase , indent=__lowerCamelCase , **__lowerCamelCase ) def snake_case__ ( __lowerCamelCase : List[Any] ): """simple docstring""" with open(__lowerCamelCase ) as f: return json.load(__lowerCamelCase ) def snake_case__ ( ): """simple docstring""" lowerCamelCase__ : List[Any] =git.Repo(search_parent_directories=__lowerCamelCase ) lowerCamelCase__ : Union[str, Any] ={ '''repo_id''': str(__lowerCamelCase ), '''repo_sha''': str(repo.head.object.hexsha ), '''repo_branch''': str(repo.active_branch ), '''hostname''': str(socket.gethostname() ), } return repo_infos def snake_case__ ( __lowerCamelCase : Callable , __lowerCamelCase : Iterable ): """simple docstring""" return list(map(__lowerCamelCase , __lowerCamelCase ) ) def snake_case__ ( __lowerCamelCase : Any , __lowerCamelCase : List[Any] ): """simple docstring""" with open(__lowerCamelCase , '''wb''' ) as f: return pickle.dump(__lowerCamelCase , __lowerCamelCase ) def snake_case__ ( __lowerCamelCase : str ): """simple docstring""" def remove_articles(__lowerCamelCase : List[Any] ): return re.sub(R'''\b(a|an|the)\b''' , ''' ''' , __lowerCamelCase ) def white_space_fix(__lowerCamelCase : Any ): return " ".join(text.split() ) def remove_punc(__lowerCamelCase : Optional[Any] ): lowerCamelCase__ : Tuple =set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__lowerCamelCase : Any ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__lowerCamelCase ) ) ) ) def snake_case__ ( __lowerCamelCase : List[str] , __lowerCamelCase : List[str] ): """simple docstring""" lowerCamelCase__ : List[str] =normalize_answer(__lowerCamelCase ).split() lowerCamelCase__ : List[str] =normalize_answer(__lowerCamelCase ).split() lowerCamelCase__ : Optional[int] =Counter(__lowerCamelCase ) & Counter(__lowerCamelCase ) lowerCamelCase__ : Union[str, Any] =sum(common.values() ) if num_same == 0: return 0 lowerCamelCase__ : Dict =1.0 * num_same / len(__lowerCamelCase ) lowerCamelCase__ : List[str] =1.0 * num_same / len(__lowerCamelCase ) lowerCamelCase__ : Union[str, Any] =(2 * precision * recall) / (precision + recall) return fa def snake_case__ ( __lowerCamelCase : Dict , __lowerCamelCase : int ): """simple docstring""" return normalize_answer(__lowerCamelCase ) == normalize_answer(__lowerCamelCase ) def snake_case__ ( __lowerCamelCase : List[str] , __lowerCamelCase : List[str] ): """simple docstring""" assert len(__lowerCamelCase ) == len(__lowerCamelCase ) lowerCamelCase__ : Any =0 for hypo, pred in zip(__lowerCamelCase , __lowerCamelCase ): em += exact_match_score(__lowerCamelCase , __lowerCamelCase ) if len(__lowerCamelCase ) > 0: em /= len(__lowerCamelCase ) return {"em": em} def snake_case__ ( __lowerCamelCase : List[str] ): """simple docstring""" return model_prefix.startswith('''rag''' ) def snake_case__ ( __lowerCamelCase : Any , __lowerCamelCase : List[str] , __lowerCamelCase : str ): """simple docstring""" lowerCamelCase__ : Any ={p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead lowerCamelCase__ : Optional[int] ='''dropout_rate''' for p in extra_params: if getattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): if not hasattr(__lowerCamelCase , __lowerCamelCase ) and not hasattr(__lowerCamelCase , equivalent_param[p] ): logger.info('''config doesn\'t have a `{}` attribute'''.format(__lowerCamelCase ) ) delattr(__lowerCamelCase , __lowerCamelCase ) continue lowerCamelCase__ : List[Any] =p if hasattr(__lowerCamelCase , __lowerCamelCase ) else equivalent_param[p] setattr(__lowerCamelCase , __lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase ) ) delattr(__lowerCamelCase , __lowerCamelCase ) return hparams, config
238
0
"""simple docstring""" def lowercase ( A_ , A_ )-> Optional[int]: '''simple docstring''' _validate_point(lowercase__ ) _validate_point(lowercase__ ) if len(lowercase__ ) != len(lowercase__ ): raise ValueError("Both points must be in the same n-dimensional space" ) return float(sum(abs(a - b ) for a, b in zip(lowercase__ , lowercase__ ) ) ) def lowercase ( A_ )-> Optional[int]: '''simple docstring''' if point: if isinstance(lowercase__ , lowercase__ ): for item in point: if not isinstance(lowercase__ , (int, float) ): a : Any = ( "Expected a list of numbers as input, found " F'''{type(lowercase__ ).__name__}''' ) raise TypeError(lowercase__ ) else: a : str = F'''Expected a list of numbers as input, found {type(lowercase__ ).__name__}''' raise TypeError(lowercase__ ) else: raise ValueError("Missing an input" ) def lowercase ( A_ , A_ )-> Tuple: '''simple docstring''' _validate_point(lowercase__ ) _validate_point(lowercase__ ) if len(lowercase__ ) != len(lowercase__ ): raise ValueError("Both points must be in the same n-dimensional space" ) return float(sum(abs(x - y ) for x, y in zip(lowercase__ , lowercase__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
363
"""simple docstring""" import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def lowercase ( )-> Union[str, Any]: '''simple docstring''' a : Union[str, Any] = torch.nn.Linear(2 , 4 ) a : Tuple = torch.optim.AdamW(model.parameters() , lr=1.0 ) a : Union[str, Any] = torch.optim.lr_scheduler.OneCycleLR(A_ , max_lr=0.0_1 , steps_per_epoch=2 , epochs=1 ) a : List[str] = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) ) a : int = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) ) return model, optimizer, scheduler, train_dl, valid_dl def lowercase ( A_ )-> List[Any]: '''simple docstring''' return (model.weight.abs().sum() + model.bias.abs().sum()).item() def lowercase ( A_ )-> Tuple: '''simple docstring''' a : Optional[int] = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict() model.load_state_dict(A_ ) class _A ( _a ): """simple docstring""" @require_cuda def __snake_case ( self : Any): a : List[str] = Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(__UpperCAmelCase): a : Any = Accelerator(cpu=__UpperCAmelCase) def __snake_case ( self : List[Any]): a : str = Accelerator() a : Optional[Any] = GradientState() assert state.num_steps == 1 a : Dict = 4 assert state.num_steps == 4 assert state.sync_gradients is True a : Optional[int] = False assert state.sync_gradients is False GradientState._reset_state() def __snake_case ( self : str): a : int = Accelerator() a , a , a , a , a : Tuple = create_components() ( ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ) : Tuple = accelerator.prepare(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) self.assertTrue(prepared_model in accelerator._models) self.assertTrue(prepared_optimizer in accelerator._optimizers) self.assertTrue(prepared_scheduler in accelerator._schedulers) self.assertTrue(prepared_train_dl in accelerator._dataloaders) self.assertTrue(prepared_valid_dl in accelerator._dataloaders) def __snake_case ( self : Dict): a : Dict = Accelerator() a , a , a , a , a : Any = create_components() accelerator.prepare(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) accelerator.free_memory() self.assertTrue(len(accelerator._models) == 0) self.assertTrue(len(accelerator._optimizers) == 0) self.assertTrue(len(accelerator._schedulers) == 0) self.assertTrue(len(accelerator._dataloaders) == 0) def __snake_case ( self : int): PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*__UpperCAmelCase : Union[str, Any] , **__UpperCAmelCase : Any): pass with patch("torch.cuda.set_device" , __UpperCAmelCase), patch_environment(ACCELERATE_TORCH_DEVICE="cuda:64"): a : int = Accelerator() self.assertEqual(str(accelerator.state.device) , "cuda:64") def __snake_case ( self : List[str]): a : Tuple = Accelerator() a , a , a , a , a : Optional[Any] = create_components() accelerator.prepare(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) a : Dict = get_signature(__UpperCAmelCase) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(__UpperCAmelCase) # make sure random weights don't match load_random_weights(__UpperCAmelCase) self.assertTrue(abs(model_signature - get_signature(__UpperCAmelCase)) > 1e-3) # make sure loaded weights match accelerator.load_state(__UpperCAmelCase) self.assertTrue(abs(model_signature - get_signature(__UpperCAmelCase)) < 1e-3) def __snake_case ( self : Optional[int]): a : str = Accelerator() a , a , a , a , a : Dict = create_components() accelerator.prepare(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) a : Union[str, Any] = get_signature(__UpperCAmelCase) # saving hook def save_config(__UpperCAmelCase : Tuple , __UpperCAmelCase : int , __UpperCAmelCase : Union[str, Any]): a : Tuple = {"class_name": models[0].__class__.__name__} with open(os.path.join(__UpperCAmelCase , "data.json") , "w") as f: json.dump(__UpperCAmelCase , __UpperCAmelCase) # loading hook def load_config(__UpperCAmelCase : Dict , __UpperCAmelCase : Union[str, Any]): with open(os.path.join(__UpperCAmelCase , "data.json") , "r") as f: a : Optional[Any] = json.load(__UpperCAmelCase) a : Tuple = config["class_name"] a : Optional[int] = accelerator.register_save_state_pre_hook(__UpperCAmelCase) a : Tuple = accelerator.register_load_state_pre_hook(__UpperCAmelCase) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(__UpperCAmelCase) # make sure random weights don't match with hooks load_random_weights(__UpperCAmelCase) self.assertTrue(abs(model_signature - get_signature(__UpperCAmelCase)) > 1e-3) # random class name to verify correct one is loaded a : int = "random" # make sure loaded weights match with hooks accelerator.load_state(__UpperCAmelCase) self.assertTrue(abs(model_signature - get_signature(__UpperCAmelCase)) < 1e-3) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(__UpperCAmelCase) # make sure random weights don't match with hooks removed load_random_weights(__UpperCAmelCase) self.assertTrue(abs(model_signature - get_signature(__UpperCAmelCase)) > 1e-3) # random class name to verify correct one is loaded a : Dict = "random" # make sure loaded weights match with hooks removed accelerator.load_state(__UpperCAmelCase) self.assertTrue(abs(model_signature - get_signature(__UpperCAmelCase)) < 1e-3) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__) def __snake_case ( self : Optional[Any]): a : List[str] = Accelerator() a , a , a , a , a : int = create_components() a : Tuple = None # This should work a , a , a , a , a , a : Any = accelerator.prepare( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) self.assertTrue(dummy_obj is None) def __snake_case ( self : List[str]): a : str = Accelerator() a , a , a , a , a : List[Any] = create_components() a : Union[str, Any] = [1, 2, 3] # This should work a , a , a , a , a , a : str = accelerator.prepare( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) self.assertEqual( getattr(__UpperCAmelCase , "_is_accelerate_prepared" , __UpperCAmelCase) , __UpperCAmelCase , "Dummy object should have `_is_accelerate_prepared` set to `True`" , ) self.assertEqual( getattr(__UpperCAmelCase , "_is_accelerate_prepared" , __UpperCAmelCase) , __UpperCAmelCase , "Model is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(__UpperCAmelCase , "_is_accelerate_prepared" , __UpperCAmelCase) , __UpperCAmelCase , "Optimizer is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(__UpperCAmelCase , "_is_accelerate_prepared" , __UpperCAmelCase) , __UpperCAmelCase , "Scheduler is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(__UpperCAmelCase , "_is_accelerate_prepared" , __UpperCAmelCase) , __UpperCAmelCase , "Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(__UpperCAmelCase , "_is_accelerate_prepared" , __UpperCAmelCase) , __UpperCAmelCase , "Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`" , ) @slow @require_bnb def __snake_case ( self : Optional[int]): from transformers import AutoModelForCausalLM a : Optional[int] = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , load_in_abit=__UpperCAmelCase , device_map={"": 0} , ) a : Tuple = Accelerator() # This should work a : List[Any] = accelerator.prepare(__UpperCAmelCase) @slow @require_bnb def __snake_case ( self : Optional[int]): from transformers import AutoModelForCausalLM a : Dict = Accelerator() with init_empty_weights(): a : Any = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , ) model.tie_weights() a : Union[str, Any] = infer_auto_device_map(__UpperCAmelCase) a : str = "cpu" a : int = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , device_map=__UpperCAmelCase , load_in_abit=__UpperCAmelCase , llm_inta_enable_fpaa_cpu_offload=__UpperCAmelCase) # This should not work and get value error with self.assertRaises(__UpperCAmelCase): a : Optional[int] = accelerator.prepare(__UpperCAmelCase) @slow @require_bnb @require_multi_gpu def __snake_case ( self : Optional[int]): from transformers import AutoModelForCausalLM a : Union[str, Any] = {"distributed_type": DistributedType.MULTI_GPU} with init_empty_weights(): a : List[str] = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , ) model.tie_weights() a : Any = infer_auto_device_map(__UpperCAmelCase) a : Dict = 1 a : Any = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , load_in_abit=__UpperCAmelCase , device_map=__UpperCAmelCase , ) a : int = Accelerator() # This should not work and get value error with self.assertRaises(__UpperCAmelCase): a : Optional[int] = accelerator.prepare(__UpperCAmelCase) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def __snake_case ( self : Tuple): from transformers import AutoModelForCausalLM with init_empty_weights(): a : List[str] = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , ) a : Tuple = infer_auto_device_map(__UpperCAmelCase) a : str = 1 a : Optional[int] = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , load_in_abit=__UpperCAmelCase , device_map=__UpperCAmelCase , ) a : str = Accelerator() # This should work a : Any = accelerator.prepare(__UpperCAmelCase) @require_cuda def __snake_case ( self : List[Any]): a : Tuple = torch.nn.Linear(10 , 10) a : int = torch.optim.SGD(model.parameters() , lr=0.01) a : Optional[Any] = Accelerator(cpu=__UpperCAmelCase) a : List[str] = accelerator.prepare(__UpperCAmelCase)
226
0
from ....configuration_utils import PretrainedConfig from ....utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { "CarlCochet/trajectory-transformer-halfcheetah-medium-v2": ( "https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json" ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class __lowercase (_UpperCAmelCase ): _UpperCamelCase = """trajectory_transformer""" _UpperCamelCase = ["""past_key_values"""] _UpperCamelCase = { """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , A_=100 , A_=5 , A_=1 , A_=1 , A_=249 , A_=6 , A_=17 , A_=25 , A_=4 , A_=4 , A_=128 , A_=0.1 , A_=0.1 , A_=0.1 , A_=0.0_006 , A_=512 , A_=0.02 , A_=1e-12 , A_=1 , A_=True , A_=1 , A_=5_0256 , A_=5_0256 , **A_ , ) ->int: '''simple docstring''' __lowerCAmelCase : Any = vocab_size __lowerCAmelCase : Tuple = action_weight __lowerCAmelCase : Tuple = reward_weight __lowerCAmelCase : Union[str, Any] = value_weight __lowerCAmelCase : List[str] = max_position_embeddings __lowerCAmelCase : str = block_size __lowerCAmelCase : Optional[Any] = action_dim __lowerCAmelCase : Union[str, Any] = observation_dim __lowerCAmelCase : Union[str, Any] = transition_dim __lowerCAmelCase : Dict = learning_rate __lowerCAmelCase : Any = n_layer __lowerCAmelCase : Any = n_head __lowerCAmelCase : Optional[int] = n_embd __lowerCAmelCase : str = embd_pdrop __lowerCAmelCase : Dict = attn_pdrop __lowerCAmelCase : Optional[int] = resid_pdrop __lowerCAmelCase : Union[str, Any] = initializer_range __lowerCAmelCase : Optional[int] = layer_norm_eps __lowerCAmelCase : Any = kaiming_initializer_range __lowerCAmelCase : List[str] = use_cache super().__init__(pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , **A_ )
275
def _lowercase ( lowercase__ , lowercase__ ): return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def _lowercase ( lowercase__ , lowercase__=0 ): return sorted(lowercase__ , key=lambda lowercase__ : x[column] ) def _lowercase ( lowercase__ , lowercase__ , lowercase__=float('''inf''' ) ): for i in range(points_counts - 1 ): for j in range(i + 1 , lowercase__ ): __lowerCAmelCase : List[str] = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: __lowerCAmelCase : Tuple = current_dis return min_dis def _lowercase ( lowercase__ , lowercase__ , lowercase__=float('''inf''' ) ): for i in range(min(6 , points_counts - 1 ) , lowercase__ ): for j in range(max(0 , i - 6 ) , lowercase__ ): __lowerCAmelCase : Union[str, Any] = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: __lowerCAmelCase : int = current_dis return min_dis def _lowercase ( lowercase__ , lowercase__ , lowercase__ ): # base case if points_counts <= 3: return dis_between_closest_pair(lowercase__ , lowercase__ ) # recursion __lowerCAmelCase : Optional[Any] = points_counts // 2 __lowerCAmelCase : Optional[Any] = closest_pair_of_points_sqr( lowercase__ , points_sorted_on_y[:mid] , lowercase__ ) __lowerCAmelCase : str = closest_pair_of_points_sqr( lowercase__ , points_sorted_on_y[mid:] , points_counts - mid ) __lowerCAmelCase : Optional[int] = min(lowercase__ , lowercase__ ) __lowerCAmelCase : Tuple = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(lowercase__ ) __lowerCAmelCase : List[Any] = dis_between_closest_in_strip( lowercase__ , len(lowercase__ ) , lowercase__ ) return min(lowercase__ , lowercase__ ) def _lowercase ( lowercase__ , lowercase__ ): __lowerCAmelCase : Union[str, Any] = column_based_sort(lowercase__ , column=0 ) __lowerCAmelCase : Any = column_based_sort(lowercase__ , column=1 ) return ( closest_pair_of_points_sqr( lowercase__ , lowercase__ , lowercase__ ) ) ** 0.5 if __name__ == "__main__": _UpperCamelCase = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)] print("Distance:", closest_pair_of_points(points, len(points)))
275
1
from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" def _lowercase ( self : Optional[Any] ): snake_case__ : Optional[Any] = SMALL_MODEL_IDENTIFIER snake_case__ : Any = "pt" snake_case__ : Any = "tf" def _lowercase ( self : Union[str, Any] , __A : List[Any] ): snake_case__ : int = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(__A ) def _lowercase ( self : Optional[int] , __A : Tuple ): snake_case__ : List[Any] = TFAutoModel.from_pretrained(self.test_model , from_pt=__A ) model_tf.save_pretrained(__A ) def _lowercase ( self : str ): snake_case__ : Optional[Any] = "mock_framework" # Framework provided - return whatever the user provides snake_case__ : Optional[Any] = FeaturesManager.determine_framework(self.test_model , __A ) self.assertEqual(__A , __A ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(__A ) snake_case__ : Optional[int] = FeaturesManager.determine_framework(__A , __A ) self.assertEqual(__A , __A ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(__A ) snake_case__ : int = FeaturesManager.determine_framework(__A , __A ) self.assertEqual(__A , __A ) def _lowercase ( self : Dict ): # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(__A ) snake_case__ : List[str] = FeaturesManager.determine_framework(__A ) self.assertEqual(__A , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(__A ) snake_case__ : Tuple = FeaturesManager.determine_framework(__A ) self.assertEqual(__A , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(__A ): snake_case__ : int = FeaturesManager.determine_framework(__A ) def _lowercase ( self : Dict ): snake_case__ : Dict = MagicMock(return_value=__A ) with patch("transformers.onnx.features.is_tf_available" , __A ): snake_case__ : List[Any] = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__A , self.framework_pt ) # PyTorch not in environment -> use TensorFlow snake_case__ : Tuple = MagicMock(return_value=__A ) with patch("transformers.onnx.features.is_torch_available" , __A ): snake_case__ : int = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__A , self.framework_tf ) # Both in environment -> use PyTorch snake_case__ : Dict = MagicMock(return_value=__A ) snake_case__ : Optional[int] = MagicMock(return_value=__A ) with patch("transformers.onnx.features.is_tf_available" , __A ), patch( "transformers.onnx.features.is_torch_available" , __A ): snake_case__ : Optional[Any] = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__A , self.framework_pt ) # Both not in environment -> raise error snake_case__ : List[str] = MagicMock(return_value=__A ) snake_case__ : Optional[Any] = MagicMock(return_value=__A ) with patch("transformers.onnx.features.is_tf_available" , __A ), patch( "transformers.onnx.features.is_torch_available" , __A ): with self.assertRaises(__A ): snake_case__ : Optional[Any] = FeaturesManager.determine_framework(self.test_model )
366
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : Union[str, Any] , __A : str , __A : Optional[Any]=1_3 , __A : Dict=7 , __A : List[str]=True , __A : Any=True , __A : str=True , __A : Optional[Any]=True , __A : List[str]=9_9 , __A : Dict=3_2 , __A : Tuple=2 , __A : Tuple=4 , __A : Dict=3_7 , __A : Tuple="gelu" , __A : Any=0.1 , __A : str=0.1 , __A : int=5_1_2 , __A : Union[str, Any]=1_6 , __A : Optional[int]=2 , __A : Union[str, Any]=0.0_2 , __A : Tuple=3 , __A : Union[str, Any]=4 , __A : Optional[int]=None , ): snake_case__ : Optional[int] = parent snake_case__ : Optional[Any] = 1_3 snake_case__ : int = 7 snake_case__ : Optional[int] = True snake_case__ : Optional[Any] = True snake_case__ : List[str] = True snake_case__ : int = True snake_case__ : Optional[int] = 9_9 snake_case__ : Union[str, Any] = 3_8_4 snake_case__ : Optional[Any] = 2 snake_case__ : Union[str, Any] = 4 snake_case__ : Any = 3_7 snake_case__ : Any = "gelu" snake_case__ : str = 0.1 snake_case__ : Optional[Any] = 0.1 snake_case__ : Union[str, Any] = 5_1_2 snake_case__ : Optional[Any] = 1_6 snake_case__ : List[Any] = 2 snake_case__ : Optional[int] = 0.0_2 snake_case__ : Dict = 3 snake_case__ : Any = 4 snake_case__ : int = 1_2_8 snake_case__ : Dict = 2 snake_case__ : Any = 9 snake_case__ : List[str] = 1 snake_case__ : List[Any] = None def _lowercase ( self : List[str] ): snake_case__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ : str = None if self.use_input_mask: snake_case__ : str = random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ : Union[str, Any] = None if self.use_token_type_ids: snake_case__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case__ : Optional[Any] = None snake_case__ : Any = None snake_case__ : Tuple = None if self.use_labels: snake_case__ : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case__ : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case__ : int = ids_tensor([self.batch_size] , self.num_choices ) snake_case__ : int = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__A , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase ( self : Dict , __A : Dict , __A : Dict , __A : Union[str, Any] , __A : Optional[int] , __A : Any , __A : Union[str, Any] , __A : Tuple ): snake_case__ : Optional[int] = TFConvBertModel(config=__A ) snake_case__ : Optional[int] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} snake_case__ : List[str] = [input_ids, input_mask] snake_case__ : Union[str, Any] = model(__A ) snake_case__ : str = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self : Union[str, Any] , __A : List[Any] , __A : Any , __A : Union[str, Any] , __A : int , __A : Optional[Any] , __A : Dict , __A : Optional[int] ): snake_case__ : List[str] = TFConvBertForMaskedLM(config=__A ) snake_case__ : Any = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } snake_case__ : int = model(__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase ( self : Tuple , __A : Union[str, Any] , __A : List[Any] , __A : Any , __A : List[Any] , __A : List[Any] , __A : Optional[int] , __A : List[str] ): snake_case__ : Any = self.num_labels snake_case__ : List[Any] = TFConvBertForSequenceClassification(config=__A ) snake_case__ : Any = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } snake_case__ : Optional[int] = model(__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase ( self : int , __A : List[Any] , __A : Union[str, Any] , __A : Optional[Any] , __A : List[Any] , __A : Union[str, Any] , __A : Union[str, Any] , __A : Optional[int] ): snake_case__ : Optional[Any] = self.num_choices snake_case__ : Any = TFConvBertForMultipleChoice(config=__A ) snake_case__ : Optional[int] = tf.tile(tf.expand_dims(__A , 1 ) , (1, self.num_choices, 1) ) snake_case__ : Optional[Any] = tf.tile(tf.expand_dims(__A , 1 ) , (1, self.num_choices, 1) ) snake_case__ : Optional[int] = tf.tile(tf.expand_dims(__A , 1 ) , (1, self.num_choices, 1) ) snake_case__ : int = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } snake_case__ : Optional[Any] = model(__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowercase ( self : List[str] , __A : Tuple , __A : str , __A : Union[str, Any] , __A : Union[str, Any] , __A : Any , __A : int , __A : Tuple ): snake_case__ : Dict = self.num_labels snake_case__ : str = TFConvBertForTokenClassification(config=__A ) snake_case__ : Optional[Any] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } snake_case__ : List[str] = model(__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowercase ( self : Optional[int] , __A : Union[str, Any] , __A : List[Any] , __A : List[str] , __A : Any , __A : Any , __A : Optional[int] , __A : Optional[Any] ): snake_case__ : Any = TFConvBertForQuestionAnswering(config=__A ) snake_case__ : List[str] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } snake_case__ : int = model(__A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowercase ( self : Any ): snake_case__ : List[Any] = self.prepare_config_and_inputs() ( ( snake_case__ ), ( snake_case__ ), ( snake_case__ ), ( snake_case__ ), ( snake_case__ ), ( snake_case__ ), ( snake_case__ ), ) : List[str] = config_and_inputs snake_case__ : Tuple = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) a_ = ( { "feature-extraction": TFConvBertModel, "fill-mask": TFConvBertForMaskedLM, "question-answering": TFConvBertForQuestionAnswering, "text-classification": TFConvBertForSequenceClassification, "token-classification": TFConvBertForTokenClassification, "zero-shot": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) a_ = False a_ = False a_ = False def _lowercase ( self : int ): snake_case__ : Optional[Any] = TFConvBertModelTester(self ) snake_case__ : List[str] = ConfigTester(self , config_class=__A , hidden_size=3_7 ) def _lowercase ( self : List[Any] ): self.config_tester.run_common_tests() def _lowercase ( self : Any ): snake_case__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def _lowercase ( self : Union[str, Any] ): snake_case__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__A ) def _lowercase ( self : Dict ): snake_case__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__A ) def _lowercase ( self : Optional[Any] ): snake_case__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__A ) def _lowercase ( self : Optional[int] ): snake_case__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__A ) def _lowercase ( self : Dict ): snake_case__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__A ) @slow def _lowercase ( self : Dict ): snake_case__, snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : int = True snake_case__ : int = True if hasattr(__A , "use_cache" ): snake_case__ : Optional[Any] = True snake_case__ : Dict = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) snake_case__ : List[str] = getattr(self.model_tester , "key_length" , __A ) for model_class in self.all_model_classes: snake_case__ : Tuple = self._prepare_for_class(__A , __A ) snake_case__ : List[str] = model_class(__A ) snake_case__ : List[Any] = len(model(__A ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__A , saved_model=__A ) snake_case__ : str = os.path.join(__A , "saved_model" , "1" ) snake_case__ : str = tf.keras.models.load_model(__A ) snake_case__ : Optional[Any] = model(__A ) if self.is_encoder_decoder: snake_case__ : Tuple = outputs["encoder_hidden_states"] snake_case__ : str = outputs["encoder_attentions"] else: snake_case__ : Dict = outputs["hidden_states"] snake_case__ : Tuple = outputs["attentions"] self.assertEqual(len(__A ) , __A ) snake_case__ : int = getattr( self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__A ) , __A ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(__A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def _lowercase ( self : Tuple ): snake_case__ : Optional[Any] = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) self.assertIsNotNone(__A ) def _lowercase ( self : List[str] ): snake_case__, snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : Optional[Any] = True snake_case__ : List[Any] = getattr(self.model_tester , "decoder_seq_length" , self.model_tester.seq_length ) snake_case__ : int = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) snake_case__ : Any = getattr(self.model_tester , "key_length" , __A ) snake_case__ : List[Any] = getattr(self.model_tester , "key_length" , __A ) def check_decoder_attentions_output(__A : Optional[int] ): snake_case__ : Optional[Any] = len(__A ) self.assertEqual(out_len % 2 , 0 ) snake_case__ : Optional[int] = outputs.decoder_attentions self.assertEqual(len(__A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(__A : Any ): snake_case__ : List[Any] = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(__A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: snake_case__ : Optional[int] = True snake_case__ : Any = False snake_case__ : Dict = model_class(__A ) snake_case__ : List[Any] = model(self._prepare_for_class(__A , __A ) ) snake_case__ : Dict = len(__A ) self.assertEqual(config.output_hidden_states , __A ) check_encoder_attentions_output(__A ) if self.is_encoder_decoder: snake_case__ : str = model_class(__A ) snake_case__ : List[Any] = model(self._prepare_for_class(__A , __A ) ) self.assertEqual(config.output_hidden_states , __A ) check_decoder_attentions_output(__A ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] snake_case__ : Optional[int] = True snake_case__ : Optional[Any] = model_class(__A ) snake_case__ : Union[str, Any] = model(self._prepare_for_class(__A , __A ) ) self.assertEqual(config.output_hidden_states , __A ) check_encoder_attentions_output(__A ) # Check attention is always last and order is fine snake_case__ : Optional[int] = True snake_case__ : List[Any] = True snake_case__ : Any = model_class(__A ) snake_case__ : str = model(self._prepare_for_class(__A , __A ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__A ) ) self.assertEqual(model.config.output_hidden_states , __A ) check_encoder_attentions_output(__A ) @require_tf class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @slow def _lowercase ( self : int ): snake_case__ : int = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) snake_case__ : int = tf.constant([[0, 1, 2, 3, 4, 5]] ) snake_case__ : str = model(__A )[0] snake_case__ : int = [1, 6, 7_6_8] self.assertEqual(output.shape , __A ) snake_case__ : List[Any] = tf.constant( [ [ [-0.0_3_4_7_5_4_9_3, -0.4_6_8_6_0_3_4, -0.3_0_6_3_8_8_3_2], [0.2_2_6_3_7_2_4_8, -0.2_6_9_8_8_6_4_6, -0.7_4_2_3_4_2_4], [0.1_0_3_2_4_8_6_8, -0.4_5_0_1_3_5_0_8, -0.5_8_2_8_0_7_8_4], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __A , atol=1e-4 )
286
0
from __future__ import annotations def a__ ( UpperCAmelCase : list[int] , UpperCAmelCase : list[int] , UpperCAmelCase : int ) -> tuple[float, list[float]]: UpperCAmelCase : str = list(range(len(UpperCAmelCase ) ) ) UpperCAmelCase : List[Any] = [v / w for v, w in zip(UpperCAmelCase , UpperCAmelCase )] index.sort(key=lambda UpperCAmelCase : ratio[i] , reverse=UpperCAmelCase ) UpperCAmelCase : float = 0 UpperCAmelCase : list[float] = [0] * len(UpperCAmelCase ) for i in index: if weight[i] <= capacity: UpperCAmelCase : Optional[int] = 1 max_value += value[i] capacity -= weight[i] else: UpperCAmelCase : Dict = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
336
import numpy # List of input, output pairs _lowerCamelCase : Dict = ( ((5, 2, 3), 1_5), ((6, 5, 9), 2_5), ((1_1, 1_2, 1_3), 4_1), ((1, 1, 1), 8), ((1_1, 1_2, 1_3), 4_1), ) _lowerCamelCase : str = (((5_1_5, 2_2, 1_3), 5_5_5), ((6_1, 3_5, 4_9), 1_5_0)) _lowerCamelCase : Dict = [2, 4, 1, 5] _lowerCamelCase : Dict = len(train_data) _lowerCamelCase : int = 0.0_0_9 def a__ ( UpperCAmelCase : Dict , UpperCAmelCase : Optional[int]="train" ) -> Dict: return calculate_hypothesis_value(UpperCAmelCase , UpperCAmelCase ) - output( UpperCAmelCase , UpperCAmelCase ) def a__ ( UpperCAmelCase : int ) -> Any: UpperCAmelCase : str = 0 for i in range(len(UpperCAmelCase ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def a__ ( UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any] ) -> Optional[int]: if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def a__ ( UpperCAmelCase : int , UpperCAmelCase : Optional[Any] ) -> List[str]: if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def a__ ( UpperCAmelCase : Dict , UpperCAmelCase : str=m ) -> Dict: UpperCAmelCase : Optional[int] = 0 for i in range(UpperCAmelCase ): if index == -1: summation_value += _error(UpperCAmelCase ) else: summation_value += _error(UpperCAmelCase ) * train_data[i][0][index] return summation_value def a__ ( UpperCAmelCase : Dict ) -> Dict: UpperCAmelCase : Dict = summation_of_cost_derivative(UpperCAmelCase , UpperCAmelCase ) / m return cost_derivative_value def a__ ( ) -> List[Any]: global parameter_vector # Tune these values to set a tolerance value for predicted output UpperCAmelCase : List[str] = 0.000002 UpperCAmelCase : Any = 0 UpperCAmelCase : Dict = 0 while True: j += 1 UpperCAmelCase : List[Any] = [0, 0, 0, 0] for i in range(0 , len(UpperCAmelCase ) ): UpperCAmelCase : List[str] = get_cost_derivative(i - 1 ) UpperCAmelCase : Tuple = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( UpperCAmelCase , UpperCAmelCase , atol=UpperCAmelCase , rtol=UpperCAmelCase , ): break UpperCAmelCase : int = temp_parameter_vector print(('''Number of iterations:''', j) ) def a__ ( ) -> List[Any]: for i in range(len(UpperCAmelCase ) ): print(('''Actual output value:''', output(UpperCAmelCase , '''test''' )) ) print(('''Hypothesis output:''', calculate_hypothesis_value(UpperCAmelCase , '''test''' )) ) if __name__ == "__main__": run_gradient_descent() print("\nTesting gradient descent for a linear hypothesis function.\n") test_gradient_descent()
336
1
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class a__ ( unittest.TestCase ): @slow def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained("google/mt5-small" , return_dict=_UpperCamelCase ).to(_UpperCamelCase ) _lowercase : Optional[int] = AutoTokenizer.from_pretrained("google/mt5-small" ) _lowercase : Optional[Any] = tokenizer("Hello there" , return_tensors="pt" ).input_ids _lowercase : Tuple = tokenizer("Hi I am" , return_tensors="pt" ).input_ids _lowercase : Dict = model(input_ids.to(_UpperCamelCase ) , labels=labels.to(_UpperCamelCase ) ).loss _lowercase : List[str] = -(labels.shape[-1] * loss.item()) _lowercase : Any = -8_4.9_1_2_7 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
199
'''simple docstring''' from timeit import timeit def _A ( snake_case ) -> int: if number < 0: raise ValueError("the value of input must not be negative" ) _lowercase : Union[str, Any] = 0 while number: number &= number - 1 result += 1 return result def _A ( snake_case ) -> int: if number < 0: raise ValueError("the value of input must not be negative" ) _lowercase : int = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def _A ( ) -> None: def do_benchmark(snake_case ) -> None: _lowercase : Optional[int] = "import __main__ as z" print(F'''Benchmark when {number = }:''' ) print(F'''{get_set_bits_count_using_modulo_operator(snake_case ) = }''' ) _lowercase : int = timeit("z.get_set_bits_count_using_modulo_operator(25)" , setup=snake_case ) print(F'''timeit() runs in {timing} seconds''' ) print(F'''{get_set_bits_count_using_brian_kernighans_algorithm(snake_case ) = }''' ) _lowercase : Optional[int] = timeit( "z.get_set_bits_count_using_brian_kernighans_algorithm(25)" , setup=snake_case , ) print(F'''timeit() runs in {timing} seconds''' ) for number in (25, 37, 58, 0): do_benchmark(snake_case ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
199
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ (self ) -> str: # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. __UpperCAmelCase = [[1, 2, 4], [1, 2, 3, 4]] __UpperCAmelCase = DisjunctiveConstraint(lowercase__ ) self.assertTrue(isinstance(dc.token_ids , lowercase__ ) ) with self.assertRaises(lowercase__ ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(lowercase__ ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def lowerCAmelCase_ (self ) -> Dict: # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). __UpperCAmelCase = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(lowercase__ ): DisjunctiveConstraint(lowercase__ ) # fails here def lowerCAmelCase_ (self ) -> Any: __UpperCAmelCase = [[1, 2, 3], [1, 2, 4]] __UpperCAmelCase = DisjunctiveConstraint(lowercase__ ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = dc.update(1 ) __UpperCAmelCase = stepped is True and completed is False and reset is False self.assertTrue(lowercase__ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = dc.update(2 ) __UpperCAmelCase = stepped is True and completed is False and reset is False self.assertTrue(lowercase__ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = dc.update(3 ) __UpperCAmelCase = stepped is True and completed is True and reset is False self.assertTrue(lowercase__ ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def lowerCAmelCase_ (self ) -> List[str]: __UpperCAmelCase = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] __UpperCAmelCase = DisjunctiveConstraint(lowercase__ ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
333
def __a ( ) -> list[list[int]]: '''simple docstring''' return [list(range(1_0_0_0 - i , -1_0_0_0 - i , -1 ) ) for i in range(1_0_0_0 )] A_ : Union[str, Any] = generate_large_matrix() A_ : Union[str, Any] = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def __a ( SCREAMING_SNAKE_CASE ) -> None: '''simple docstring''' assert all(row == sorted(SCREAMING_SNAKE_CASE , reverse=SCREAMING_SNAKE_CASE ) for row in grid ) assert all(list(SCREAMING_SNAKE_CASE ) == sorted(SCREAMING_SNAKE_CASE , reverse=SCREAMING_SNAKE_CASE ) for col in zip(*SCREAMING_SNAKE_CASE ) ) def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' __UpperCAmelCase = 0 __UpperCAmelCase = len(SCREAMING_SNAKE_CASE ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: __UpperCAmelCase = (left + right) // 2 __UpperCAmelCase = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: __UpperCAmelCase = mid + 1 else: __UpperCAmelCase = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' __UpperCAmelCase = 0 __UpperCAmelCase = len(grid[0] ) for i in range(len(SCREAMING_SNAKE_CASE ) ): __UpperCAmelCase = find_negative_index(grid[i][:bound] ) total += bound return (len(SCREAMING_SNAKE_CASE ) * len(grid[0] )) - total def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' return len([number for row in grid for number in row if number < 0] ) def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' __UpperCAmelCase = 0 for row in grid: for i, number in enumerate(SCREAMING_SNAKE_CASE ): if number < 0: total += len(SCREAMING_SNAKE_CASE ) - i break return total def __a ( ) -> None: '''simple docstring''' from timeit import timeit print('''Running benchmarks''' ) __UpperCAmelCase = ( '''from __main__ import count_negatives_binary_search, ''' '''count_negatives_brute_force, count_negatives_brute_force_with_break, grid''' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): __UpperCAmelCase = timeit(f'''{func}(grid=grid)''' , setup=SCREAMING_SNAKE_CASE , number=5_0_0 ) print(f'''{func}() took {time:0.4f} seconds''' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
333
1
import argparse import math import traceback import dateutil.parser as date_parser import requests def UpperCAmelCase ( a_ ) -> List[Any]: """simple docstring""" __A = {} __A = job["started_at"] __A = job["completed_at"] __A = date_parser.parse(a_ ) __A = date_parser.parse(a_ ) __A = round((end_datetime - start_datetime).total_seconds() / 60.0 ) __A = start __A = end __A = duration_in_min return job_info def UpperCAmelCase ( a_ , a_=None ) -> List[Any]: """simple docstring""" __A = None if token is not None: __A = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''} __A = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100''' __A = requests.get(a_ , headers=a_ ).json() __A = {} try: job_time.update({job["name"]: extract_time_from_single_job(a_ ) for job in result["jobs"]} ) __A = math.ceil((result["total_count"] - 1_0_0) / 1_0_0 ) for i in range(a_ ): __A = requests.get(url + F'''&page={i + 2}''' , headers=a_ ).json() job_time.update({job["name"]: extract_time_from_single_job(a_ ) for job in result["jobs"]} ) return job_time except Exception: print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} if __name__ == "__main__": SCREAMING_SNAKE_CASE :Dict = argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') SCREAMING_SNAKE_CASE :List[str] = parser.parse_args() SCREAMING_SNAKE_CASE :Optional[int] = get_job_time(args.workflow_run_id) SCREAMING_SNAKE_CASE :int = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(f'''{k}: {v["duration"]}''')
124
from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split SCREAMING_SNAKE_CASE :Tuple = datasets.load_iris() SCREAMING_SNAKE_CASE :Dict = np.array(data['data']) SCREAMING_SNAKE_CASE :Optional[int] = np.array(data['target']) SCREAMING_SNAKE_CASE :List[str] = data['target_names'] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :List[Any] = train_test_split(X, y) def UpperCAmelCase ( a_ , a_ ) -> Tuple: """simple docstring""" return np.linalg.norm(np.array(a_ ) - np.array(a_ ) ) def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_=5 ) -> Dict: """simple docstring""" __A = zip(a_ , a_ ) # List of distances of all points from the point to be classified __A = [] for data_point in data: __A = euclidean_distance(data_point[0] , a_ ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. __A = [i[1] for i in sorted(a_ )[:k]] # Most commonly occurring class among them # is the class into which the point is classified __A = Counter(a_ ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
124
1
import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class __snake_case ( _lowerCamelCase ): def __a ( self ) -> Optional[int]: '''simple docstring''' snake_case__ : List[Any] = tempfile.mkdtemp() snake_case__ : Optional[int] = 5 # Realm tok snake_case__ : str = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'test', 'question', 'this', 'is', 'the', 'first', 'second', 'third', 'fourth', 'fifth', 'record', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] snake_case__ : List[str] = os.path.join(self.tmpdirname , 'realm_tokenizer' ) os.makedirs(__UpperCamelCase , exist_ok=__UpperCamelCase ) snake_case__ : List[str] = os.path.join(__UpperCamelCase , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) snake_case__ : Dict = os.path.join(self.tmpdirname , 'realm_block_records' ) os.makedirs(__UpperCamelCase , exist_ok=__UpperCamelCase ) def __a ( self ) -> RealmTokenizer: '''simple docstring''' return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'realm_tokenizer' ) ) def __a ( self ) -> Optional[int]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def __a ( self ) -> List[str]: '''simple docstring''' snake_case__ : Any = RealmConfig(num_block_records=self.num_block_records ) return config def __a ( self ) -> List[Any]: '''simple docstring''' snake_case__ : int = Dataset.from_dict( { 'id': ['0', '1'], 'question': ['foo', 'bar'], 'answers': [['Foo', 'Bar'], ['Bar']], } ) return dataset def __a ( self ) -> List[str]: '''simple docstring''' snake_case__ : Dict = np.array( [ B'This is the first record', B'This is the second record', B'This is the third record', B'This is the fourth record', B'This is the fifth record', B'This is a longer longer longer record', ] , dtype=__UpperCamelCase , ) return block_records def __a ( self ) -> Optional[Any]: '''simple docstring''' snake_case__ : Dict = RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def __a ( self ) -> Optional[Any]: '''simple docstring''' snake_case__ : int = self.get_config() snake_case__ : int = self.get_dummy_retriever() snake_case__ : Union[str, Any] = retriever.tokenizer snake_case__ : Optional[int] = np.array([0, 3] , dtype='long' ) snake_case__ : Optional[int] = tokenizer(['Test question'] ).input_ids snake_case__ : Union[str, Any] = tokenizer( ['the fourth'] , add_special_tokens=__UpperCamelCase , return_token_type_ids=__UpperCamelCase , return_attention_mask=__UpperCamelCase , ).input_ids snake_case__ : Tuple = config.reader_seq_len snake_case__ , snake_case__ , snake_case__ , snake_case__ : Tuple = retriever( __UpperCamelCase , __UpperCamelCase , answer_ids=__UpperCamelCase , max_length=__UpperCamelCase , return_tensors='np' ) self.assertEqual(len(__UpperCamelCase ) , 2 ) self.assertEqual(len(__UpperCamelCase ) , 2 ) self.assertEqual(len(__UpperCamelCase ) , 2 ) self.assertEqual(concat_inputs.input_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.attention_mask.shape , (2, 10) ) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 10) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ['[CLS]', 'test', 'question', '[SEP]', 'this', 'is', 'the', 'first', 'record', '[SEP]'] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ['[CLS]', 'test', 'question', '[SEP]', 'this', 'is', 'the', 'fourth', 'record', '[SEP]'] , ) def __a ( self ) -> int: '''simple docstring''' snake_case__ : Any = self.get_config() snake_case__ : Optional[int] = self.get_dummy_retriever() snake_case__ : Tuple = retriever.tokenizer snake_case__ : Optional[int] = np.array([0, 3, 5] , dtype='long' ) snake_case__ : Tuple = tokenizer(['Test question'] ).input_ids snake_case__ : Any = tokenizer( ['the fourth', 'longer longer'] , add_special_tokens=__UpperCamelCase , return_token_type_ids=__UpperCamelCase , return_attention_mask=__UpperCamelCase , ).input_ids snake_case__ : Optional[int] = config.reader_seq_len snake_case__ , snake_case__ , snake_case__ , snake_case__ : Optional[int] = retriever( __UpperCamelCase , __UpperCamelCase , answer_ids=__UpperCamelCase , max_length=__UpperCamelCase , return_tensors='np' ) self.assertEqual([False, True, True] , __UpperCamelCase ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , __UpperCamelCase ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , __UpperCamelCase ) def __a ( self ) -> Optional[int]: '''simple docstring''' snake_case__ : Optional[Any] = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , 'realm_block_records' ) ) # Test local path snake_case__ : Union[str, Any] = retriever.from_pretrained(os.path.join(self.tmpdirname , 'realm_block_records' ) ) self.assertEqual(retriever.block_records[0] , B'This is the first record' ) # Test mocked remote path with patch('transformers.models.realm.retrieval_realm.hf_hub_download' ) as mock_hf_hub_download: snake_case__ : List[str] = os.path.join( os.path.join(self.tmpdirname , 'realm_block_records' ) , _REALM_BLOCK_RECORDS_FILENAME ) snake_case__ : Optional[int] = RealmRetriever.from_pretrained('google/realm-cc-news-pretrained-openqa' ) self.assertEqual(retriever.block_records[0] , B'This is the first record' )
143
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ : int = logging.get_logger(__name__) def UpperCamelCase__ ( A__ , A__=False ) -> List[Any]: snake_case__ : str = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""deit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""deit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""deit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""deit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""deit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""deit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""deit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""deit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""deit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""deit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('cls_token', 'deit.embeddings.cls_token'), ('dist_token', 'deit.embeddings.distillation_token'), ('patch_embed.proj.weight', 'deit.embeddings.patch_embeddings.projection.weight'), ('patch_embed.proj.bias', 'deit.embeddings.patch_embeddings.projection.bias'), ('pos_embed', 'deit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ('pre_logits.fc.weight', 'pooler.dense.weight'), ('pre_logits.fc.bias', 'pooler.dense.bias'), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" snake_case__ : Dict = [(pair[0], pair[1][4:]) if pair[1].startswith('deit' ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ('norm.weight', 'deit.layernorm.weight'), ('norm.bias', 'deit.layernorm.bias'), ('head.weight', 'cls_classifier.weight'), ('head.bias', 'cls_classifier.bias'), ('head_dist.weight', 'distillation_classifier.weight'), ('head_dist.bias', 'distillation_classifier.bias'), ] ) return rename_keys def UpperCamelCase__ ( A__ , A__ , A__=False ) -> Dict: for i in range(config.num_hidden_layers ): if base_model: snake_case__ : Tuple = '' else: snake_case__ : List[Any] = 'deit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case__ : Tuple = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) snake_case__ : List[Any] = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict snake_case__ : int = in_proj_weight[ : config.hidden_size, : ] snake_case__ : Optional[Any] = in_proj_bias[: config.hidden_size] snake_case__ : List[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case__ : str = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case__ : Tuple = in_proj_weight[ -config.hidden_size :, : ] snake_case__ : int = in_proj_bias[-config.hidden_size :] def UpperCamelCase__ ( A__ , A__ , A__ ) -> str: snake_case__ : Optional[int] = dct.pop(A__ ) snake_case__ : int = val def UpperCamelCase__ ( ) -> Dict: snake_case__ : str = 'http://images.cocodataset.org/val2017/000000039769.jpg' snake_case__ : Dict = Image.open(requests.get(A__ , stream=A__ ).raw ) return im @torch.no_grad() def UpperCamelCase__ ( A__ , A__ ) -> List[str]: snake_case__ : List[Any] = DeiTConfig() # all deit models have fine-tuned heads snake_case__ : Optional[int] = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size snake_case__ : Any = 1000 snake_case__ : Union[str, Any] = 'huggingface/label-files' snake_case__ : int = 'imagenet-1k-id2label.json' snake_case__ : str = json.load(open(hf_hub_download(A__ , A__ , repo_type='dataset' ) , 'r' ) ) snake_case__ : int = {int(A__ ): v for k, v in idalabel.items()} snake_case__ : List[Any] = idalabel snake_case__ : List[Any] = {v: k for k, v in idalabel.items()} snake_case__ : Tuple = int(deit_name[-6:-4] ) snake_case__ : str = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith('tiny' ): snake_case__ : Optional[int] = 192 snake_case__ : str = 768 snake_case__ : Optional[Any] = 12 snake_case__ : Tuple = 3 elif deit_name[9:].startswith('small' ): snake_case__ : str = 384 snake_case__ : str = 1536 snake_case__ : Dict = 12 snake_case__ : str = 6 if deit_name[9:].startswith('base' ): pass elif deit_name[4:].startswith('large' ): snake_case__ : List[Any] = 1024 snake_case__ : str = 4096 snake_case__ : Tuple = 24 snake_case__ : Tuple = 16 # load original model from timm snake_case__ : Optional[int] = timm.create_model(A__ , pretrained=A__ ) timm_model.eval() # load state_dict of original model, remove and rename some keys snake_case__ : Optional[Any] = timm_model.state_dict() snake_case__ : Tuple = create_rename_keys(A__ , A__ ) for src, dest in rename_keys: rename_key(A__ , A__ , A__ ) read_in_q_k_v(A__ , A__ , A__ ) # load HuggingFace model snake_case__ : int = DeiTForImageClassificationWithTeacher(A__ ).eval() model.load_state_dict(A__ ) # Check outputs on an image, prepared by DeiTImageProcessor snake_case__ : Union[str, Any] = int( (256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 snake_case__ : List[Any] = DeiTImageProcessor(size=A__ , crop_size=config.image_size ) snake_case__ : Tuple = image_processor(images=prepare_img() , return_tensors='pt' ) snake_case__ : Tuple = encoding['pixel_values'] snake_case__ : Dict = model(A__ ) snake_case__ : Union[str, Any] = timm_model(A__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(A__ , outputs.logits , atol=1e-3 ) Path(A__ ).mkdir(exist_ok=A__ ) print(F"""Saving model {deit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(A__ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(A__ ) if __name__ == "__main__": lowerCAmelCase__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--deit_name''', default='''vit_deit_base_distilled_patch16_224''', type=str, help='''Name of the DeiT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) lowerCAmelCase__ : int = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
143
1
'''simple docstring''' import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} lowerCAmelCase_ = { "vocab_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json", }, "merges_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt", }, "tokenizer_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json", }, } lowerCAmelCase_ = { "allenai/led-base-16384": 1_6_3_8_4, } class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = LEDTokenizer snake_case_ = ['''input_ids''', '''attention_mask'''] def __init__( self, lowercase_=None, lowercase_=None, lowercase_=None, lowercase_="replace", lowercase_="<s>", lowercase_="</s>", lowercase_="</s>", lowercase_="<s>", lowercase_="<unk>", lowercase_="<pad>", lowercase_="<mask>", lowercase_=False, lowercase_=True, **lowercase_, ) -> int: super().__init__( lowercase_, lowercase_, tokenizer_file=lowercase_, errors=lowercase_, bos_token=lowercase_, eos_token=lowercase_, sep_token=lowercase_, cls_token=lowercase_, unk_token=lowercase_, pad_token=lowercase_, mask_token=lowercase_, add_prefix_space=lowercase_, trim_offsets=lowercase_, **lowercase_, ) snake_case = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space', lowercase_ ) != add_prefix_space: snake_case = getattr(lowercase_, pre_tok_state.pop('type' ) ) snake_case = add_prefix_space snake_case = pre_tok_class(**lowercase_ ) snake_case = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` snake_case = 'post_processor' snake_case = getattr(self.backend_tokenizer, lowercase_, lowercase_ ) if tokenizer_component_instance: snake_case = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: snake_case = tuple(state['sep'] ) if "cls" in state: snake_case = tuple(state['cls'] ) snake_case = False if state.get('add_prefix_space', lowercase_ ) != add_prefix_space: snake_case = add_prefix_space snake_case = True if state.get('trim_offsets', lowercase_ ) != trim_offsets: snake_case = trim_offsets snake_case = True if changes_to_apply: snake_case = getattr(lowercase_, state.pop('type' ) ) snake_case = component_class(**lowercase_ ) setattr(self.backend_tokenizer, lowercase_, lowercase_ ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def _lowerCamelCase ( self ) -> str: if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def _lowerCamelCase ( self, lowercase_ ) -> Any: snake_case = AddedToken(lowercase_, lstrip=lowercase_, rstrip=lowercase_ ) if isinstance(lowercase_, lowercase_ ) else value snake_case = value def _lowerCamelCase ( self, *lowercase_, **lowercase_ ) -> BatchEncoding: snake_case = kwargs.get('is_split_into_words', lowercase_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*lowercase_, **lowercase_ ) def _lowerCamelCase ( self, *lowercase_, **lowercase_ ) -> BatchEncoding: snake_case = kwargs.get('is_split_into_words', lowercase_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' 'to use it with pretokenized inputs.' ) return super()._encode_plus(*lowercase_, **lowercase_ ) def _lowerCamelCase ( self, lowercase_, lowercase_ = None ) -> Tuple[str]: snake_case = self._tokenizer.model.save(lowercase_, name=lowercase_ ) return tuple(lowercase_ ) def _lowerCamelCase ( self, lowercase_, lowercase_=None ) -> Dict: snake_case = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _lowerCamelCase ( self, lowercase_, lowercase_ = None ) -> List[int]: snake_case = [self.sep_token_id] snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowerCamelCase ( self, lowercase_, lowercase_ = None, lowercase_ = PaddingStrategy.DO_NOT_PAD, lowercase_ = None, lowercase_ = None, ) -> dict: snake_case = super()._pad( encoded_inputs=lowercase_, max_length=lowercase_, padding_strategy=lowercase_, pad_to_multiple_of=lowercase_, return_attention_mask=lowercase_, ) # Load from model defaults if return_attention_mask is None: snake_case = 'attention_mask' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: snake_case = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. snake_case = len(encoded_inputs['global_attention_mask'] ) != len(lowercase_ ) if needs_to_be_padded: snake_case = len(lowercase_ ) - len(encoded_inputs['global_attention_mask'] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` snake_case = ( encoded_inputs['global_attention_mask'] + [-1] * difference ) elif self.padding_side == "left": snake_case = [-1] * difference + encoded_inputs[ 'global_attention_mask' ] else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return encoded_inputs
332
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ = { "configuration_git": ["GIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GitConfig", "GitVisionConfig"], "processing_git": ["GitProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ "GIT_PRETRAINED_MODEL_ARCHIVE_LIST", "GitForCausalLM", "GitModel", "GitPreTrainedModel", "GitVisionModel", ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
332
1
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = (UniPCMultistepScheduler,) lowerCAmelCase_ = (('''num_inference_steps''', 25),) def UpperCAmelCase__ ( self : List[str] , **_A : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = { '''num_train_timesteps''': 1000, '''beta_start''': 0.00_01, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''solver_order''': 2, '''solver_type''': '''bh2''', } config.update(**_A ) return config def UpperCAmelCase__ ( self : Any , _A : List[Any]=0 , **_A : Optional[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = dict(self.forward_default_kwargs ) __SCREAMING_SNAKE_CASE : Dict = kwargs.pop('''num_inference_steps''' , _A ) __SCREAMING_SNAKE_CASE : Tuple = self.dummy_sample __SCREAMING_SNAKE_CASE : int = 0.1 * sample __SCREAMING_SNAKE_CASE : List[Any] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: __SCREAMING_SNAKE_CASE : Dict = self.get_scheduler_config(**_A ) __SCREAMING_SNAKE_CASE : Optional[int] = scheduler_class(**_A ) scheduler.set_timesteps(_A ) # copy over dummy past residuals __SCREAMING_SNAKE_CASE : Optional[int] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_A ) __SCREAMING_SNAKE_CASE : Any = scheduler_class.from_pretrained(_A ) new_scheduler.set_timesteps(_A ) # copy over dummy past residuals __SCREAMING_SNAKE_CASE : Optional[Any] = dummy_past_residuals[: new_scheduler.config.solver_order] __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : List[Any] = sample, sample for t in range(_A , time_step + scheduler.config.solver_order + 1 ): __SCREAMING_SNAKE_CASE : Optional[Any] = scheduler.step(_A , _A , _A , **_A ).prev_sample __SCREAMING_SNAKE_CASE : Tuple = new_scheduler.step(_A , _A , _A , **_A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCAmelCase__ ( self : Optional[int] , _A : Tuple=0 , **_A : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = dict(self.forward_default_kwargs ) __SCREAMING_SNAKE_CASE : int = kwargs.pop('''num_inference_steps''' , _A ) __SCREAMING_SNAKE_CASE : Optional[Any] = self.dummy_sample __SCREAMING_SNAKE_CASE : Union[str, Any] = 0.1 * sample __SCREAMING_SNAKE_CASE : Optional[int] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: __SCREAMING_SNAKE_CASE : Optional[Any] = self.get_scheduler_config() __SCREAMING_SNAKE_CASE : List[str] = scheduler_class(**_A ) scheduler.set_timesteps(_A ) # copy over dummy past residuals (must be after setting timesteps) __SCREAMING_SNAKE_CASE : List[Any] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_A ) __SCREAMING_SNAKE_CASE : Optional[Any] = scheduler_class.from_pretrained(_A ) # copy over dummy past residuals new_scheduler.set_timesteps(_A ) # copy over dummy past residual (must be after setting timesteps) __SCREAMING_SNAKE_CASE : Optional[int] = dummy_past_residuals[: new_scheduler.config.solver_order] __SCREAMING_SNAKE_CASE : Union[str, Any] = scheduler.step(_A , _A , _A , **_A ).prev_sample __SCREAMING_SNAKE_CASE : Tuple = new_scheduler.step(_A , _A , _A , **_A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCAmelCase__ ( self : int , _A : List[Any]=None , **_A : Optional[Any] ): """simple docstring""" if scheduler is None: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.scheduler_classes[0] __SCREAMING_SNAKE_CASE : List[str] = self.get_scheduler_config(**_A ) __SCREAMING_SNAKE_CASE : List[str] = scheduler_class(**_A ) __SCREAMING_SNAKE_CASE : List[Any] = self.scheduler_classes[0] __SCREAMING_SNAKE_CASE : Any = self.get_scheduler_config(**_A ) __SCREAMING_SNAKE_CASE : Optional[Any] = scheduler_class(**_A ) __SCREAMING_SNAKE_CASE : str = 10 __SCREAMING_SNAKE_CASE : Any = self.dummy_model() __SCREAMING_SNAKE_CASE : Any = self.dummy_sample_deter scheduler.set_timesteps(_A ) for i, t in enumerate(scheduler.timesteps ): __SCREAMING_SNAKE_CASE : Tuple = model(_A , _A ) __SCREAMING_SNAKE_CASE : str = scheduler.step(_A , _A , _A ).prev_sample return sample def UpperCAmelCase__ ( self : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = dict(self.forward_default_kwargs ) __SCREAMING_SNAKE_CASE : List[str] = kwargs.pop('''num_inference_steps''' , _A ) for scheduler_class in self.scheduler_classes: __SCREAMING_SNAKE_CASE : Tuple = self.get_scheduler_config() __SCREAMING_SNAKE_CASE : List[Any] = scheduler_class(**_A ) __SCREAMING_SNAKE_CASE : Any = self.dummy_sample __SCREAMING_SNAKE_CASE : Any = 0.1 * sample if num_inference_steps is not None and hasattr(_A , '''set_timesteps''' ): scheduler.set_timesteps(_A ) elif num_inference_steps is not None and not hasattr(_A , '''set_timesteps''' ): __SCREAMING_SNAKE_CASE : Dict = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) __SCREAMING_SNAKE_CASE : List[Any] = [residual + 0.2, residual + 0.15, residual + 0.10] __SCREAMING_SNAKE_CASE : Optional[Any] = dummy_past_residuals[: scheduler.config.solver_order] __SCREAMING_SNAKE_CASE : Union[str, Any] = scheduler.timesteps[5] __SCREAMING_SNAKE_CASE : Optional[int] = scheduler.timesteps[6] __SCREAMING_SNAKE_CASE : Optional[Any] = scheduler.step(_A , _A , _A , **_A ).prev_sample __SCREAMING_SNAKE_CASE : int = scheduler.step(_A , _A , _A , **_A ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCAmelCase__ ( self : Optional[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = UniPCMultistepScheduler(**self.get_scheduler_config() ) __SCREAMING_SNAKE_CASE : Optional[Any] = self.full_loop(scheduler=_A ) __SCREAMING_SNAKE_CASE : Tuple = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.24_64 ) < 1e-3 __SCREAMING_SNAKE_CASE : str = DPMSolverSinglestepScheduler.from_config(scheduler.config ) __SCREAMING_SNAKE_CASE : Any = DEISMultistepScheduler.from_config(scheduler.config ) __SCREAMING_SNAKE_CASE : List[Any] = DPMSolverMultistepScheduler.from_config(scheduler.config ) __SCREAMING_SNAKE_CASE : Any = UniPCMultistepScheduler.from_config(scheduler.config ) __SCREAMING_SNAKE_CASE : Optional[Any] = self.full_loop(scheduler=_A ) __SCREAMING_SNAKE_CASE : Any = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.24_64 ) < 1e-3 def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=_A ) def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" self.check_over_configs(thresholding=_A ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_A , prediction_type=_A , sample_max_value=_A , solver_order=_A , solver_type=_A , ) def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_A ) def UpperCAmelCase__ ( self : Optional[Any] ): """simple docstring""" for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_A , solver_type=_A , prediction_type=_A , ) __SCREAMING_SNAKE_CASE : Tuple = self.full_loop( solver_order=_A , solver_type=_A , prediction_type=_A , ) assert not torch.isnan(_A ).any(), "Samples have nan numbers" def UpperCAmelCase__ ( self : str ): """simple docstring""" self.check_over_configs(lower_order_final=_A ) self.check_over_configs(lower_order_final=_A ) def UpperCAmelCase__ ( self : str ): """simple docstring""" for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=_A , time_step=0 ) def UpperCAmelCase__ ( self : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = self.full_loop() __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.24_64 ) < 1e-3 def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = self.full_loop(prediction_type='''v_prediction''' ) __SCREAMING_SNAKE_CASE : Dict = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.10_14 ) < 1e-3 def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = self.scheduler_classes[0] __SCREAMING_SNAKE_CASE : Optional[int] = self.get_scheduler_config(thresholding=_A , dynamic_thresholding_ratio=0 ) __SCREAMING_SNAKE_CASE : List[Any] = scheduler_class(**_A ) __SCREAMING_SNAKE_CASE : int = 10 __SCREAMING_SNAKE_CASE : Dict = self.dummy_model() __SCREAMING_SNAKE_CASE : Any = self.dummy_sample_deter.half() scheduler.set_timesteps(_A ) for i, t in enumerate(scheduler.timesteps ): __SCREAMING_SNAKE_CASE : Tuple = model(_A , _A ) __SCREAMING_SNAKE_CASE : str = scheduler.step(_A , _A , _A ).prev_sample assert sample.dtype == torch.floataa def UpperCAmelCase__ ( self : Any , **_A : Optional[Any] ): """simple docstring""" for scheduler_class in self.scheduler_classes: __SCREAMING_SNAKE_CASE : Optional[Any] = self.get_scheduler_config(**_A ) __SCREAMING_SNAKE_CASE : Optional[Any] = scheduler_class(**_A ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
303
from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline lowercase_ = logging.get_logger(__name__) # pylint: disable=invalid-name class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" def __init__( self : List[str] , _A : Dict , _A : List[Any] ): """simple docstring""" super().__init__() self.register_modules(unet=_A , scheduler=_A ) @torch.no_grad() def __call__( self : List[str] , _A : int = 1 , _A : int = 100 , _A : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _A : Optional[float] = None , _A : bool = True , ): """simple docstring""" if audio_length_in_s is None: __SCREAMING_SNAKE_CASE : Optional[Any] = self.unet.config.sample_size / self.unet.config.sample_rate __SCREAMING_SNAKE_CASE : List[Any] = audio_length_in_s * self.unet.config.sample_rate __SCREAMING_SNAKE_CASE : Any = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( F'''{audio_length_in_s} is too small. Make sure it\'s bigger or equal to''' F''' {3 * down_scale_factor / self.unet.config.sample_rate}.''' ) __SCREAMING_SNAKE_CASE : int = int(_A ) if sample_size % down_scale_factor != 0: __SCREAMING_SNAKE_CASE : Optional[int] = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( F'''{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled''' F''' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising''' ''' process.''' ) __SCREAMING_SNAKE_CASE : List[Any] = int(_A ) __SCREAMING_SNAKE_CASE : Union[str, Any] = next(iter(self.unet.parameters() ) ).dtype __SCREAMING_SNAKE_CASE : int = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(_A , _A ) and len(_A ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(_A )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) __SCREAMING_SNAKE_CASE : Dict = randn_tensor(_A , generator=_A , device=self.device , dtype=_A ) # set step values self.scheduler.set_timesteps(_A , device=audio.device ) __SCREAMING_SNAKE_CASE : Dict = self.scheduler.timesteps.to(_A ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output __SCREAMING_SNAKE_CASE : List[Any] = self.unet(_A , _A ).sample # 2. compute previous image: x_t -> t_t-1 __SCREAMING_SNAKE_CASE : Optional[int] = self.scheduler.step(_A , _A , _A ).prev_sample __SCREAMING_SNAKE_CASE : str = audio.clamp(-1 , 1 ).float().cpu().numpy() __SCREAMING_SNAKE_CASE : str = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=_A )
303
1
"""simple docstring""" import re def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> str: """simple docstring""" if len(re.findall('''[ATCG]''', snake_case_ ) ) != len(snake_case_ ): raise ValueError('''Invalid Strand''' ) return dna.translate(dna.maketrans('''ATCG''', '''TAGC''' ) ) if __name__ == "__main__": import doctest doctest.testmod()
363
from __future__ import annotations import os from collections.abc import Mapping UpperCamelCase__ : Any = tuple[int, int] class lowerCamelCase_ : def __init__( self : Optional[Any] ,__lowerCamelCase : set[int] ,__lowerCamelCase : Mapping[EdgeT, int] ): '''simple docstring''' a = vertices a = { (min(__lowerCamelCase ), max(__lowerCamelCase )): weight for edge, weight in edges.items() } def SCREAMING_SNAKE_CASE_ ( self : str ,__lowerCamelCase : EdgeT ,__lowerCamelCase : int ): '''simple docstring''' self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) a = weight def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' a = Graph({min(self.vertices )} ,{} ) a = 42 a = 42 a = 42 a = 42 while len(subgraph.vertices ) < len(self.vertices ): a = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: a = edge a = weight subgraph.add_edge(__lowerCamelCase ,__lowerCamelCase ) return subgraph def SCREAMING_SNAKE_CASE__ ( snake_case_ = "p107_network.txt" ) -> int: """simple docstring""" a = os.path.abspath(os.path.dirname(snake_case_ ) ) a = os.path.join(snake_case_, snake_case_ ) a = {} a = 42 a = 42 a = 42 with open(snake_case_ ) as f: a = f.read().strip().split('''\n''' ) a = [line.split(''',''' ) for line in data] for edgea in range(1, len(snake_case_ ) ): for edgea in range(snake_case_ ): if adjaceny_matrix[edgea][edgea] != "-": a = int(adjaceny_matrix[edgea][edgea] ) a = Graph(set(range(len(snake_case_ ) ) ), snake_case_ ) a = graph.prims_algorithm() a = sum(graph.edges.values() ) a = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(F"{solution() = }")
330
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available snake_case__ : Optional[int] = { '''configuration_altclip''': [ '''ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AltCLIPConfig''', '''AltCLIPTextConfig''', '''AltCLIPVisionConfig''', ], '''processing_altclip''': ['''AltCLIPProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : List[str] = [ '''ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AltCLIPPreTrainedModel''', '''AltCLIPModel''', '''AltCLIPTextModel''', '''AltCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys snake_case__ : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
60
import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class snake_case__(_UpperCamelCase ): """simple docstring""" def snake_case ( self : Optional[Any] ): lowercase__ : str = tempfile.mkdtemp() lowercase__ : Optional[Any] = 8 # DPR tok lowercase__ : Dict = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] lowercase__ : List[Any] = os.path.join(self.tmpdirname , "dpr_tokenizer" ) os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) lowercase__ : str = os.path.join(SCREAMING_SNAKE_CASE , DPR_VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) # BART tok lowercase__ : Optional[Any] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] lowercase__ : List[str] = dict(zip(SCREAMING_SNAKE_CASE , range(len(SCREAMING_SNAKE_CASE ) ) ) ) lowercase__ : Dict = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] lowercase__ : List[Any] = {"unk_token": "<unk>"} lowercase__ : Any = os.path.join(self.tmpdirname , "bart_tokenizer" ) os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) lowercase__ : Tuple = os.path.join(SCREAMING_SNAKE_CASE , BART_VOCAB_FILES_NAMES["vocab_file"] ) lowercase__ : str = os.path.join(SCREAMING_SNAKE_CASE , BART_VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(SCREAMING_SNAKE_CASE ) ) def snake_case ( self : Any ): return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , "dpr_tokenizer" ) ) def snake_case ( self : Any ): return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , "dpr_tokenizer" ) ) def snake_case ( self : Any ): return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , "bart_tokenizer" ) ) def snake_case ( self : Tuple ): shutil.rmtree(self.tmpdirname ) def snake_case ( self : Optional[int] ): lowercase__ : int = Dataset.from_dict( { "id": ["0", "1"], "text": ["foo", "bar"], "title": ["Foo", "Bar"], "embeddings": [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index("embeddings" , string_factory="Flat" , metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def snake_case ( self : List[str] ): lowercase__ : Union[str, Any] = self.get_dummy_dataset() lowercase__ : str = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , ) with patch("transformers.models.rag.retrieval_rag.load_dataset" ) as mock_load_dataset: lowercase__ : Union[str, Any] = dataset lowercase__ : List[str] = RagRetriever( SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) return retriever def snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE : bool ): lowercase__ : Union[str, Any] = self.get_dummy_dataset() lowercase__ : Optional[int] = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name="custom" , ) if from_disk: lowercase__ : Any = os.path.join(self.tmpdirname , "dataset" ) lowercase__ : Union[str, Any] = os.path.join(self.tmpdirname , "index.faiss" ) dataset.get_index("embeddings" ).save(os.path.join(self.tmpdirname , "index.faiss" ) ) dataset.drop_index("embeddings" ) dataset.save_to_disk(os.path.join(self.tmpdirname , "dataset" ) ) del dataset lowercase__ : Tuple = RagRetriever( SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) else: lowercase__ : Dict = RagRetriever( SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , SCREAMING_SNAKE_CASE ) , ) return retriever def snake_case ( self : Tuple ): lowercase__ : Optional[int] = Dataset.from_dict( { "id": ["0", "1"], "text": ["foo", "bar"], "title": ["Foo", "Bar"], "embeddings": [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index("embeddings" , string_factory="Flat" , metric_type=faiss.METRIC_INNER_PRODUCT ) lowercase__ : Union[str, Any] = os.path.join(self.tmpdirname , "hf_bert_base.hnswSQ8_correct_phi_128.c_index" ) dataset.save_faiss_index("embeddings" , index_file_name + ".index.dpr" ) pickle.dump(dataset["id"] , open(index_file_name + ".index_meta.dpr" , "wb" ) ) lowercase__ : Optional[int] = os.path.join(self.tmpdirname , "psgs_w100.tsv.pkl" ) lowercase__ : List[str] = {sample["id"]: [sample["text"], sample["title"]] for sample in dataset} pickle.dump(SCREAMING_SNAKE_CASE , open(SCREAMING_SNAKE_CASE , "wb" ) ) lowercase__ : int = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name="legacy" , index_path=self.tmpdirname , ) lowercase__ : Any = RagRetriever( SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() ) return retriever def snake_case ( self : int ): lowercase__ : Any = 1 lowercase__ : str = self.get_dummy_canonical_hf_index_retriever() lowercase__ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["embeddings", "id", "text", "title"] ) self.assertEqual(len(doc_dicts[0]["id"] ) , SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]["id"][0] , "1" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0] , "0" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def snake_case ( self : str ): lowercase__ : Dict = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch("transformers.models.rag.retrieval_rag.load_dataset" ) as mock_load_dataset: lowercase__ : Tuple = self.get_dummy_dataset() retriever.save_pretrained(SCREAMING_SNAKE_CASE ) lowercase__ : Optional[Any] = RagRetriever.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ : int = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowercase__ : List[str] = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) def snake_case ( self : str ): lowercase__ : Union[str, Any] = 1 lowercase__ : Tuple = self.get_dummy_custom_hf_index_retriever(from_disk=SCREAMING_SNAKE_CASE ) lowercase__ : List[str] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowercase__ , lowercase__ , lowercase__ : Optional[Any] = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["embeddings", "id", "text", "title"] ) self.assertEqual(len(doc_dicts[0]["id"] ) , SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]["id"][0] , "1" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0] , "0" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def snake_case ( self : Union[str, Any] ): lowercase__ : str = self.get_dummy_custom_hf_index_retriever(from_disk=SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(SCREAMING_SNAKE_CASE ) lowercase__ : List[Any] = RagRetriever.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ : str = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowercase__ : str = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) def snake_case ( self : Union[str, Any] ): lowercase__ : Optional[Any] = 1 lowercase__ : str = self.get_dummy_custom_hf_index_retriever(from_disk=SCREAMING_SNAKE_CASE ) lowercase__ : Optional[int] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowercase__ , lowercase__ , lowercase__ : Dict = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["embeddings", "id", "text", "title"] ) self.assertEqual(len(doc_dicts[0]["id"] ) , SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]["id"][0] , "1" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0] , "0" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def snake_case ( self : List[str] ): lowercase__ : List[str] = self.get_dummy_custom_hf_index_retriever(from_disk=SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(SCREAMING_SNAKE_CASE ) lowercase__ : int = RagRetriever.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowercase__ : Dict = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) def snake_case ( self : Union[str, Any] ): lowercase__ : List[Any] = 1 lowercase__ : List[str] = self.get_dummy_legacy_index_retriever() lowercase__ : Any = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowercase__ , lowercase__ , lowercase__ : str = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["text", "title"] ) self.assertEqual(len(doc_dicts[0]["text"] ) , SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]["text"][0] , "bar" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["text"][0] , "foo" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def snake_case ( self : Dict ): lowercase__ : Optional[int] = self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(SCREAMING_SNAKE_CASE ) lowercase__ : Optional[int] = RagRetriever.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowercase__ : str = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def snake_case ( self : Any ): import torch lowercase__ : List[Any] = 1 lowercase__ : Union[str, Any] = self.get_dummy_canonical_hf_index_retriever() lowercase__ : Tuple = [[5, 7], [10, 11]] lowercase__ : Optional[Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowercase__ : int = retriever(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , prefix=retriever.config.generator.prefix , n_docs=SCREAMING_SNAKE_CASE ) lowercase__ , lowercase__ , lowercase__ : List[str] = ( out["context_input_ids"], out["context_attention_mask"], out["retrieved_doc_embeds"], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , np.ndarray ) lowercase__ : List[str] = retriever( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , prefix=retriever.config.generator.prefix , n_docs=SCREAMING_SNAKE_CASE , return_tensors="pt" , ) lowercase__ , lowercase__ , lowercase__ , lowercase__ : List[Any] = ( # noqa: F841 out["context_input_ids"], out["context_attention_mask"], out["retrieved_doc_embeds"], out["doc_ids"], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(SCREAMING_SNAKE_CASE , torch.Tensor ) self.assertIsInstance(SCREAMING_SNAKE_CASE , torch.Tensor ) self.assertIsInstance(SCREAMING_SNAKE_CASE , torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def snake_case ( self : int ): lowercase__ : List[Any] = self.get_dpr_ctx_encoder_tokenizer() lowercase__ : Optional[int] = 1 lowercase__ : str = self.get_dummy_custom_hf_index_retriever(from_disk=SCREAMING_SNAKE_CASE ) retriever.set_ctx_encoder_tokenizer(SCREAMING_SNAKE_CASE ) lowercase__ : Union[str, Any] = [[5, 7], [10, 11]] lowercase__ : int = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowercase__ : List[Any] = retriever(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , prefix=retriever.config.generator.prefix , n_docs=SCREAMING_SNAKE_CASE ) self.assertEqual( len(SCREAMING_SNAKE_CASE ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ("tokenized_doc_ids", "tokenized_doc_attention_mask") ) , SCREAMING_SNAKE_CASE ) # check for doc token related keys in dictionary.
130
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class UpperCamelCase ( metaclass=lowerCamelCase_ ): lowercase = ["""transformers""", """torch""", """note_seq"""] def __init__( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> str: '''simple docstring''' requires_backends(self ,['transformers', 'torch', 'note_seq'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> int: '''simple docstring''' requires_backends(cls ,['transformers', 'torch', 'note_seq'] ) @classmethod def _UpperCAmelCase ( cls ,*__UpperCamelCase ,**__UpperCamelCase ) -> List[str]: '''simple docstring''' requires_backends(cls ,['transformers', 'torch', 'note_seq'] )
367
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class UpperCamelCase ( unittest.TestCase ): def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : Union[str, Any] = [[1, 2, 4], [1, 2, 3, 4]] lowercase_ : List[Any] = DisjunctiveConstraint(__UpperCamelCase ) self.assertTrue(isinstance(dc.token_ids ,__UpperCamelCase ) ) with self.assertRaises(__UpperCamelCase ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(__UpperCamelCase ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : List[Any] = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(__UpperCamelCase ): DisjunctiveConstraint(__UpperCamelCase ) # fails here def _UpperCAmelCase ( self ) -> str: '''simple docstring''' lowercase_ : Optional[int] = [[1, 2, 3], [1, 2, 4]] lowercase_ : Dict = DisjunctiveConstraint(__UpperCamelCase ) lowercase_ , lowercase_ , lowercase_ : Union[str, Any] = dc.update(1 ) lowercase_ : str = stepped is True and completed is False and reset is False self.assertTrue(__UpperCamelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) lowercase_ , lowercase_ , lowercase_ : Optional[Any] = dc.update(2 ) lowercase_ : Any = stepped is True and completed is False and reset is False self.assertTrue(__UpperCamelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) lowercase_ , lowercase_ , lowercase_ : Tuple = dc.update(3 ) lowercase_ : Union[str, Any] = stepped is True and completed is True and reset is False self.assertTrue(__UpperCamelCase ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : List[str] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] lowercase_ : Union[str, Any] = DisjunctiveConstraint(__UpperCamelCase ) lowercase_ , lowercase_ , lowercase_ : Optional[int] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) lowercase_ , lowercase_ , lowercase_ : int = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) lowercase_ , lowercase_ , lowercase_ : str = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) lowercase_ , lowercase_ , lowercase_ : List[str] = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() lowercase_ , lowercase_ , lowercase_ : Optional[int] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) lowercase_ , lowercase_ , lowercase_ : int = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) lowercase_ , lowercase_ , lowercase_ : Dict = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
321
0
from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) a : Any = logging.get_logger(__name__) # pylint: disable=invalid-name a : Optional[Any] = "\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to(\"cuda\")\n\n >>> prompt = \"A red cartoon frog, 4k\"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-decoder\", torch_dtype=torch.float16\n ... )\n >>> pipe.to(\"cuda\")\n\n >>> init_image = load_image(\n ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"\n ... \"/kandinsky/frog.png\"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save(\"red_frog.png\")\n ```\n" def lowerCAmelCase_ (lowerCAmelCase__: int , lowerCAmelCase__: int , lowerCAmelCase__: Dict=8 ): """simple docstring""" UpperCAmelCase_: Any = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 UpperCAmelCase_: Dict = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def lowerCAmelCase_ (lowerCAmelCase__: Union[str, Any] , lowerCAmelCase__: str=5_1_2 , lowerCAmelCase__: str=5_1_2 ): """simple docstring""" UpperCAmelCase_: Union[str, Any] = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) UpperCAmelCase_: int = np.array(pil_image.convert("""RGB""" ) ) UpperCAmelCase_: Optional[Any] = arr.astype(np.floataa ) / 127.5 - 1 UpperCAmelCase_: List[str] = np.transpose(lowerCAmelCase__ , [2, 0, 1] ) UpperCAmelCase_: Optional[Any] = torch.from_numpy(lowerCAmelCase__ ).unsqueeze(0 ) return image class _a ( UpperCAmelCase__ ): def __init__(self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, ) -> Dict: super().__init__() self.register_modules( unet=_SCREAMING_SNAKE_CASE, scheduler=_SCREAMING_SNAKE_CASE, movq=_SCREAMING_SNAKE_CASE, ) UpperCAmelCase_: Any = 2 ** (len(self.movq.config.block_out_channels ) - 1) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> List[Any]: UpperCAmelCase_: Union[str, Any] = min(int(num_inference_steps * strength ), _SCREAMING_SNAKE_CASE ) UpperCAmelCase_: str = max(num_inference_steps - init_timestep, 0 ) UpperCAmelCase_: Union[str, Any] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=None ) -> str: if not isinstance(_SCREAMING_SNAKE_CASE, (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f'`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_SCREAMING_SNAKE_CASE )}' ) UpperCAmelCase_: List[str] = image.to(device=_SCREAMING_SNAKE_CASE, dtype=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_: Optional[Any] = batch_size * num_images_per_prompt if image.shape[1] == 4: UpperCAmelCase_: str = image else: if isinstance(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE ) and len(_SCREAMING_SNAKE_CASE ) != batch_size: raise ValueError( f'You have passed a list of generators of length {len(_SCREAMING_SNAKE_CASE )}, but requested an effective batch' f' size of {batch_size}. Make sure the batch size matches the length of the generators.' ) elif isinstance(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE ): UpperCAmelCase_: Dict = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(_SCREAMING_SNAKE_CASE ) ] UpperCAmelCase_: List[str] = torch.cat(_SCREAMING_SNAKE_CASE, dim=0 ) else: UpperCAmelCase_: str = self.movq.encode(_SCREAMING_SNAKE_CASE ).latent_dist.sample(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_: Tuple = self.movq.config.scaling_factor * init_latents UpperCAmelCase_: Tuple = torch.cat([init_latents], dim=0 ) UpperCAmelCase_: int = init_latents.shape UpperCAmelCase_: Union[str, Any] = randn_tensor(_SCREAMING_SNAKE_CASE, generator=_SCREAMING_SNAKE_CASE, device=_SCREAMING_SNAKE_CASE, dtype=_SCREAMING_SNAKE_CASE ) # get latents UpperCAmelCase_: Optional[Any] = self.scheduler.add_noise(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE ) UpperCAmelCase_: List[Any] = init_latents return latents def __snake_case (self, SCREAMING_SNAKE_CASE_=0 ) -> Optional[int]: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) UpperCAmelCase_: Any = torch.device(f'cuda:{gpu_id}' ) UpperCAmelCase_: Union[str, Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE ) def __snake_case (self, SCREAMING_SNAKE_CASE_=0 ) -> Tuple: if is_accelerate_available() and is_accelerate_version(""">=""", """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) UpperCAmelCase_: str = torch.device(f'cuda:{gpu_id}' ) if self.device.type != "cpu": self.to("""cpu""", silence_dtype_warnings=_SCREAMING_SNAKE_CASE ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) UpperCAmelCase_: Dict = None for cpu_offloaded_model in [self.unet, self.movq]: UpperCAmelCase_: int = cpu_offload_with_hook(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, prev_module_hook=_SCREAMING_SNAKE_CASE ) # We'll offload the last model manually. UpperCAmelCase_: List[Any] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __snake_case (self ) -> Dict: if not hasattr(self.unet, """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(_SCREAMING_SNAKE_CASE, """_hf_hook""" ) and hasattr(module._hf_hook, """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_SCREAMING_SNAKE_CASE ) def __call__(self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = 512, SCREAMING_SNAKE_CASE_ = 512, SCREAMING_SNAKE_CASE_ = 100, SCREAMING_SNAKE_CASE_ = 4.0, SCREAMING_SNAKE_CASE_ = 0.3, SCREAMING_SNAKE_CASE_ = 1, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = "pil", SCREAMING_SNAKE_CASE_ = True, ) -> Tuple: UpperCAmelCase_: Any = self._execution_device UpperCAmelCase_: Union[str, Any] = guidance_scale > 1.0 if isinstance(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE ): UpperCAmelCase_: int = torch.cat(_SCREAMING_SNAKE_CASE, dim=0 ) UpperCAmelCase_: Any = image_embeds.shape[0] if isinstance(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE ): UpperCAmelCase_: str = torch.cat(_SCREAMING_SNAKE_CASE, dim=0 ) if do_classifier_free_guidance: UpperCAmelCase_: int = image_embeds.repeat_interleave(_SCREAMING_SNAKE_CASE, dim=0 ) UpperCAmelCase_: List[Any] = negative_image_embeds.repeat_interleave(_SCREAMING_SNAKE_CASE, dim=0 ) UpperCAmelCase_: Optional[int] = torch.cat([negative_image_embeds, image_embeds], dim=0 ).to(dtype=self.unet.dtype, device=_SCREAMING_SNAKE_CASE ) if not isinstance(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE ): UpperCAmelCase_: Tuple = [image] if not all(isinstance(_SCREAMING_SNAKE_CASE, (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( f'Input is in incorrect format: {[type(_SCREAMING_SNAKE_CASE ) for i in image]}. Currently, we only support PIL image and pytorch tensor' ) UpperCAmelCase_: Optional[Any] = torch.cat([prepare_image(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE ) for i in image], dim=0 ) UpperCAmelCase_: Any = image.to(dtype=image_embeds.dtype, device=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_: int = self.movq.encode(_SCREAMING_SNAKE_CASE )["""latents"""] UpperCAmelCase_: Tuple = latents.repeat_interleave(_SCREAMING_SNAKE_CASE, dim=0 ) self.scheduler.set_timesteps(_SCREAMING_SNAKE_CASE, device=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_: Dict = self.get_timesteps(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE ) UpperCAmelCase_: str = timesteps[:1].repeat(batch_size * num_images_per_prompt ) UpperCAmelCase_: int = downscale_height_and_width(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, self.movq_scale_factor ) UpperCAmelCase_: str = self.prepare_latents( _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, image_embeds.dtype, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE ) for i, t in enumerate(self.progress_bar(_SCREAMING_SNAKE_CASE ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase_: str = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase_: Union[str, Any] = {"""image_embeds""": image_embeds} UpperCAmelCase_: Union[str, Any] = self.unet( sample=_SCREAMING_SNAKE_CASE, timestep=_SCREAMING_SNAKE_CASE, encoder_hidden_states=_SCREAMING_SNAKE_CASE, added_cond_kwargs=_SCREAMING_SNAKE_CASE, return_dict=_SCREAMING_SNAKE_CASE, )[0] if do_classifier_free_guidance: UpperCAmelCase_: Dict = noise_pred.split(latents.shape[1], dim=1 ) UpperCAmelCase_: Union[str, Any] = noise_pred.chunk(2 ) UpperCAmelCase_: Any = variance_pred.chunk(2 ) UpperCAmelCase_: Tuple = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) UpperCAmelCase_: Optional[int] = torch.cat([noise_pred, variance_pred_text], dim=1 ) if not ( hasattr(self.scheduler.config, """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): UpperCAmelCase_: int = noise_pred.split(latents.shape[1], dim=1 ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase_: List[Any] = self.scheduler.step( _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, generator=_SCREAMING_SNAKE_CASE, )[0] # post-processing UpperCAmelCase_: Optional[Any] = self.movq.decode(_SCREAMING_SNAKE_CASE, force_not_quantize=_SCREAMING_SNAKE_CASE )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(f'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' ) if output_type in ["np", "pil"]: UpperCAmelCase_: Union[str, Any] = image * 0.5 + 0.5 UpperCAmelCase_: Any = image.clamp(0, 1 ) UpperCAmelCase_: Optional[int] = image.cpu().permute(0, 2, 3, 1 ).float().numpy() if output_type == "pil": UpperCAmelCase_: Tuple = self.numpy_to_pil(_SCREAMING_SNAKE_CASE ) if not return_dict: return (image,) return ImagePipelineOutput(images=_SCREAMING_SNAKE_CASE )
147
"""simple docstring""" from math import isqrt, loga def _snake_case ( UpperCamelCase : int ): UpperCAmelCase : Any = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , UpperCamelCase , UpperCamelCase ): UpperCAmelCase : str = False return [i for i in range(2 , UpperCamelCase ) if is_prime[i]] def _snake_case ( UpperCamelCase : int = 800800 , UpperCamelCase : int = 800800 ): UpperCAmelCase : Union[str, Any] = degree * loga(UpperCamelCase ) UpperCAmelCase : int = int(UpperCamelCase ) UpperCAmelCase : Union[str, Any] = calculate_prime_numbers(UpperCamelCase ) UpperCAmelCase : Dict = 0 UpperCAmelCase : Optional[int] = 0 UpperCAmelCase : Dict = len(UpperCamelCase ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(f"""{solution() = }""")
109
0
'''simple docstring''' import shutil import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_tf_cross_test, require_tf, require_torch, require_torchvision, require_vision, ) from transformers.utils import is_tf_available, is_torch_available, is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, SamImageProcessor, SamProcessor if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf @require_vision @require_torchvision class UpperCAmelCase ( unittest.TestCase): def lowercase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase__ = tempfile.mkdtemp() UpperCamelCase__ = SamImageProcessor() UpperCamelCase__ = SamProcessor(__lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) def lowercase_ ( self : Tuple, **a_ : int ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname, **__lowerCAmelCase ).image_processor def lowercase_ ( self : str ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowercase_ ( self : Tuple ): """simple docstring""" UpperCamelCase__ = [np.random.randint(255, size=(3, 30, 400), dtype=np.uinta )] UpperCamelCase__ = [Image.fromarray(np.moveaxis(__lowerCAmelCase, 0, -1 ) ) for x in image_inputs] return image_inputs def lowercase_ ( self : Dict ): """simple docstring""" UpperCamelCase__ = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase__ = self.get_image_processor(do_normalize=__lowerCAmelCase, padding_value=1.0 ) UpperCamelCase__ = SamProcessor.from_pretrained(self.tmpdirname, do_normalize=__lowerCAmelCase, padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor, __lowerCAmelCase ) def lowercase_ ( self : Tuple ): """simple docstring""" UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = SamProcessor(image_processor=__lowerCAmelCase ) UpperCamelCase__ = self.prepare_image_inputs() UpperCamelCase__ = image_processor(__lowerCAmelCase, return_tensors="np" ) UpperCamelCase__ = processor(images=__lowerCAmelCase, return_tensors="np" ) input_feat_extract.pop("original_sizes" ) # pop original_sizes as it is popped in the processor input_feat_extract.pop("reshaped_input_sizes" ) # pop original_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2 ) @require_torch def lowercase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = SamProcessor(image_processor=__lowerCAmelCase ) UpperCamelCase__ = [torch.ones((1, 3, 5, 5) )] UpperCamelCase__ = [[1764, 2646]] UpperCamelCase__ = [[683, 1024]] UpperCamelCase__ = processor.post_process_masks(__lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase ) self.assertEqual(masks[0].shape, (1, 3, 1764, 2646) ) UpperCamelCase__ = processor.post_process_masks( __lowerCAmelCase, torch.tensor(__lowerCAmelCase ), torch.tensor(__lowerCAmelCase ) ) self.assertEqual(masks[0].shape, (1, 3, 1764, 2646) ) # should also work with np UpperCamelCase__ = [np.ones((1, 3, 5, 5) )] UpperCamelCase__ = processor.post_process_masks(__lowerCAmelCase, np.array(__lowerCAmelCase ), np.array(__lowerCAmelCase ) ) self.assertEqual(masks[0].shape, (1, 3, 1764, 2646) ) UpperCamelCase__ = [[1, 0], [0, 1]] with self.assertRaises(__lowerCAmelCase ): UpperCamelCase__ = processor.post_process_masks(__lowerCAmelCase, np.array(__lowerCAmelCase ), np.array(__lowerCAmelCase ) ) @require_vision @require_tf class UpperCAmelCase ( unittest.TestCase): def lowercase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase__ = tempfile.mkdtemp() UpperCamelCase__ = SamImageProcessor() UpperCamelCase__ = SamProcessor(__lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) def lowercase_ ( self : str, **a_ : str ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname, **__lowerCAmelCase ).image_processor def lowercase_ ( self : List[Any] ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowercase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase__ = [np.random.randint(255, size=(3, 30, 400), dtype=np.uinta )] UpperCamelCase__ = [Image.fromarray(np.moveaxis(__lowerCAmelCase, 0, -1 ) ) for x in image_inputs] return image_inputs def lowercase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase__ = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase__ = self.get_image_processor(do_normalize=__lowerCAmelCase, padding_value=1.0 ) UpperCamelCase__ = SamProcessor.from_pretrained(self.tmpdirname, do_normalize=__lowerCAmelCase, padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor, __lowerCAmelCase ) def lowercase_ ( self : Tuple ): """simple docstring""" UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = SamProcessor(image_processor=__lowerCAmelCase ) UpperCamelCase__ = self.prepare_image_inputs() UpperCamelCase__ = image_processor(__lowerCAmelCase, return_tensors="np" ) UpperCamelCase__ = processor(images=__lowerCAmelCase, return_tensors="np" ) input_feat_extract.pop("original_sizes" ) # pop original_sizes as it is popped in the processor input_feat_extract.pop("reshaped_input_sizes" ) # pop reshaped_input_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2 ) @require_tf def lowercase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = SamProcessor(image_processor=__lowerCAmelCase ) UpperCamelCase__ = [tf.ones((1, 3, 5, 5) )] UpperCamelCase__ = [[1764, 2646]] UpperCamelCase__ = [[683, 1024]] UpperCamelCase__ = processor.post_process_masks(__lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase, return_tensors="tf" ) self.assertEqual(masks[0].shape, (1, 3, 1764, 2646) ) UpperCamelCase__ = processor.post_process_masks( __lowerCAmelCase, tf.convert_to_tensor(__lowerCAmelCase ), tf.convert_to_tensor(__lowerCAmelCase ), return_tensors="tf", ) self.assertEqual(masks[0].shape, (1, 3, 1764, 2646) ) # should also work with np UpperCamelCase__ = [np.ones((1, 3, 5, 5) )] UpperCamelCase__ = processor.post_process_masks( __lowerCAmelCase, np.array(__lowerCAmelCase ), np.array(__lowerCAmelCase ), return_tensors="tf" ) self.assertEqual(masks[0].shape, (1, 3, 1764, 2646) ) UpperCamelCase__ = [[1, 0], [0, 1]] with self.assertRaises(tf.errors.InvalidArgumentError ): UpperCamelCase__ = processor.post_process_masks( __lowerCAmelCase, np.array(__lowerCAmelCase ), np.array(__lowerCAmelCase ), return_tensors="tf" ) @require_vision @require_torchvision class UpperCAmelCase ( unittest.TestCase): def lowercase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase__ = tempfile.mkdtemp() UpperCamelCase__ = SamImageProcessor() UpperCamelCase__ = SamProcessor(__lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) def lowercase_ ( self : str, **a_ : str ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname, **__lowerCAmelCase ).image_processor def lowercase_ ( self : Any ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowercase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase__ = [np.random.randint(255, size=(3, 30, 400), dtype=np.uinta )] UpperCamelCase__ = [Image.fromarray(np.moveaxis(__lowerCAmelCase, 0, -1 ) ) for x in image_inputs] return image_inputs @is_pt_tf_cross_test def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = SamProcessor(image_processor=__lowerCAmelCase ) UpperCamelCase__ = np.random.randint(0, 2, size=(1, 3, 5, 5) ).astype(np.floataa ) UpperCamelCase__ = [tf.convert_to_tensor(__lowerCAmelCase )] UpperCamelCase__ = [torch.tensor(__lowerCAmelCase )] UpperCamelCase__ = [[1764, 2646]] UpperCamelCase__ = [[683, 1024]] UpperCamelCase__ = processor.post_process_masks( __lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase, return_tensors="tf" ) UpperCamelCase__ = processor.post_process_masks( __lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase, return_tensors="pt" ) self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) ) @is_pt_tf_cross_test def lowercase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = SamProcessor(image_processor=__lowerCAmelCase ) UpperCamelCase__ = self.prepare_image_inputs() UpperCamelCase__ = image_processor(__lowerCAmelCase, return_tensors="pt" )["pixel_values"].numpy() UpperCamelCase__ = processor(images=__lowerCAmelCase, return_tensors="pt" )["pixel_values"].numpy() UpperCamelCase__ = image_processor(__lowerCAmelCase, return_tensors="tf" )["pixel_values"].numpy() UpperCamelCase__ = processor(images=__lowerCAmelCase, return_tensors="tf" )["pixel_values"].numpy() self.assertTrue(np.allclose(__lowerCAmelCase, __lowerCAmelCase ) ) self.assertTrue(np.allclose(__lowerCAmelCase, __lowerCAmelCase ) ) self.assertTrue(np.allclose(__lowerCAmelCase, __lowerCAmelCase ) )
359
'''simple docstring''' import math import sys def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> str: '''simple docstring''' UpperCamelCase__ = "" try: with open(_UpperCamelCase , "rb" ) as binary_file: UpperCamelCase__ = binary_file.read() for dat in data: UpperCamelCase__ = F'{dat:08b}' result += curr_byte return result except OSError: print("File not accessible" ) sys.exit() def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> str: '''simple docstring''' UpperCamelCase__ = {"0": "0", "1": "1"} UpperCamelCase__ , UpperCamelCase__ = "", "" UpperCamelCase__ = len(_UpperCamelCase ) for i in range(len(_UpperCamelCase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue UpperCamelCase__ = lexicon[curr_string] result += last_match_id UpperCamelCase__ = last_match_id + "0" if math.loga(_UpperCamelCase ).is_integer(): UpperCamelCase__ = {} for curr_key in list(_UpperCamelCase ): UpperCamelCase__ = lexicon.pop(_UpperCamelCase ) UpperCamelCase__ = new_lex UpperCamelCase__ = last_match_id + "1" index += 1 UpperCamelCase__ = "" return result def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str , _UpperCamelCase : str ) -> None: '''simple docstring''' UpperCamelCase__ = 8 try: with open(_UpperCamelCase , "wb" ) as opened_file: UpperCamelCase__ = [ to_write[i : i + byte_length] for i in range(0 , len(_UpperCamelCase ) , _UpperCamelCase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("10000000" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(_UpperCamelCase , 2 ).to_bytes(1 , byteorder="big" ) ) except OSError: print("File not accessible" ) sys.exit() def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> str: '''simple docstring''' UpperCamelCase__ = 0 for letter in data_bits: if letter == "1": break counter += 1 UpperCamelCase__ = data_bits[counter:] UpperCamelCase__ = data_bits[counter + 1 :] return data_bits def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str , _UpperCamelCase : str ) -> None: '''simple docstring''' UpperCamelCase__ = read_file_binary(_UpperCamelCase ) UpperCamelCase__ = remove_prefix(_UpperCamelCase ) UpperCamelCase__ = decompress_data(_UpperCamelCase ) write_file_binary(_UpperCamelCase , _UpperCamelCase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
31
0
'''simple docstring''' import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def lowercase__ ( __lowercase : Tuple , __lowercase : Union[str, Any]=0.9_9_9 , __lowercase : List[Any]="cosine" , ) -> List[Any]: """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(__lowercase : Optional[Any] ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__lowercase : str ): return math.exp(t * -1_2.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) __UpperCamelCase = [] for i in range(SCREAMING_SNAKE_CASE__ ): __UpperCamelCase = i / num_diffusion_timesteps __UpperCamelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(SCREAMING_SNAKE_CASE__ ) / alpha_bar_fn(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) ) return torch.tensor(SCREAMING_SNAKE_CASE__ , dtype=torch.floataa ) class snake_case ( __lowerCamelCase , __lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple =[e.name for e in KarrasDiffusionSchedulers] SCREAMING_SNAKE_CASE_ : int =2 @register_to_config def __init__( self : Tuple , __A : Optional[int] = 1_0_0_0 , __A : int = 0.0_0085 , __A : Optional[Any] = 0.012 , __A : Dict = "linear" , __A : List[Any] = None , __A : Optional[int] = "epsilon" , __A : Union[str, Any] = False , __A : int = False , __A : Optional[int] = 1.0 , __A : Optional[int] = "linspace" , __A : int = 0 , ): if trained_betas is not None: __UpperCamelCase = torch.tensor(__A , dtype=torch.floataa ) elif beta_schedule == "linear": __UpperCamelCase = torch.linspace(__A , __A , __A , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __UpperCamelCase = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , __A , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __UpperCamelCase = betas_for_alpha_bar(__A , alpha_transform_type='cosine' ) elif beta_schedule == "exp": __UpperCamelCase = betas_for_alpha_bar(__A , alpha_transform_type='exp' ) else: raise NotImplementedError(f'''{beta_schedule} does is not implemented for {self.__class__}''' ) __UpperCamelCase = 1.0 - self.betas __UpperCamelCase = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(__A , __A , __A ) __UpperCamelCase = use_karras_sigmas def _lowerCamelCase ( self : List[Any] , __A : List[Any] , __A : Any=None ): if schedule_timesteps is None: __UpperCamelCase = self.timesteps __UpperCamelCase = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: __UpperCamelCase = 1 if len(__A ) > 1 else 0 else: __UpperCamelCase = timestep.cpu().item() if torch.is_tensor(__A ) else timestep __UpperCamelCase = self._index_counter[timestep_int] return indices[pos].item() @property def _lowerCamelCase ( self : List[Any] ): if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def _lowerCamelCase ( self : Union[str, Any] , __A : List[str] , __A : Tuple , ): __UpperCamelCase = self.index_for_timestep(__A ) __UpperCamelCase = self.sigmas[step_index] __UpperCamelCase = sample / ((sigma**2 + 1) ** 0.5) return sample def _lowerCamelCase ( self : Any , __A : Dict , __A : List[str] = None , __A : Union[str, Any] = None , ): __UpperCamelCase = num_inference_steps __UpperCamelCase = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": __UpperCamelCase = np.linspace(0 , num_train_timesteps - 1 , __A , dtype=__A )[::-1].copy() elif self.config.timestep_spacing == "leading": __UpperCamelCase = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __UpperCamelCase = (np.arange(0 , __A ) * step_ratio).round()[::-1].copy().astype(__A ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": __UpperCamelCase = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __UpperCamelCase = (np.arange(__A , 0 , -step_ratio )).round().copy().astype(__A ) timesteps -= 1 else: raise ValueError( f'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' ) __UpperCamelCase = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) __UpperCamelCase = np.log(__A ) __UpperCamelCase = np.interp(__A , np.arange(0 , len(__A ) ) , __A ) if self.config.use_karras_sigmas: __UpperCamelCase = self._convert_to_karras(in_sigmas=__A , num_inference_steps=self.num_inference_steps ) __UpperCamelCase = np.array([self._sigma_to_t(__A , __A ) for sigma in sigmas] ) __UpperCamelCase = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) __UpperCamelCase = torch.from_numpy(__A ).to(device=__A ) __UpperCamelCase = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) __UpperCamelCase = torch.from_numpy(__A ) __UpperCamelCase = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(__A ).startswith('mps' ): # mps does not support float64 __UpperCamelCase = timesteps.to(__A , dtype=torch.floataa ) else: __UpperCamelCase = timesteps.to(device=__A ) # empty dt and derivative __UpperCamelCase = None __UpperCamelCase = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter __UpperCamelCase = defaultdict(__A ) def _lowerCamelCase ( self : Tuple , __A : Any , __A : Tuple ): __UpperCamelCase = np.log(__A ) # get distribution __UpperCamelCase = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range __UpperCamelCase = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) __UpperCamelCase = low_idx + 1 __UpperCamelCase = log_sigmas[low_idx] __UpperCamelCase = log_sigmas[high_idx] # interpolate sigmas __UpperCamelCase = (low - log_sigma) / (low - high) __UpperCamelCase = np.clip(__A , 0 , 1 ) # transform interpolation to time range __UpperCamelCase = (1 - w) * low_idx + w * high_idx __UpperCamelCase = t.reshape(sigma.shape ) return t def _lowerCamelCase ( self : Tuple , __A : str , __A : Dict ): __UpperCamelCase = in_sigmas[-1].item() __UpperCamelCase = in_sigmas[0].item() __UpperCamelCase = 7.0 # 7.0 is the value used in the paper __UpperCamelCase = np.linspace(0 , 1 , __A ) __UpperCamelCase = sigma_min ** (1 / rho) __UpperCamelCase = sigma_max ** (1 / rho) __UpperCamelCase = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def _lowerCamelCase ( self : Optional[Any] ): return self.dt is None def _lowerCamelCase ( self : Optional[int] , __A : List[Any] , __A : Optional[int] , __A : Tuple , __A : List[str] = True , ): __UpperCamelCase = self.index_for_timestep(__A ) # advance index counter by 1 __UpperCamelCase = timestep.cpu().item() if torch.is_tensor(__A ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: __UpperCamelCase = self.sigmas[step_index] __UpperCamelCase = self.sigmas[step_index + 1] else: # 2nd order / Heun's method __UpperCamelCase = self.sigmas[step_index - 1] __UpperCamelCase = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API __UpperCamelCase = 0 __UpperCamelCase = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": __UpperCamelCase = sigma_hat if self.state_in_first_order else sigma_next __UpperCamelCase = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": __UpperCamelCase = sigma_hat if self.state_in_first_order else sigma_next __UpperCamelCase = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": __UpperCamelCase = model_output else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' ) if self.config.clip_sample: __UpperCamelCase = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order __UpperCamelCase = (sample - pred_original_sample) / sigma_hat # 3. delta timestep __UpperCamelCase = sigma_next - sigma_hat # store for 2nd order step __UpperCamelCase = derivative __UpperCamelCase = dt __UpperCamelCase = sample else: # 2. 2nd order / Heun's method __UpperCamelCase = (sample - pred_original_sample) / sigma_next __UpperCamelCase = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample __UpperCamelCase = self.dt __UpperCamelCase = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__A ) def _lowerCamelCase ( self : int , __A : Any , __A : Dict , __A : Union[str, Any] , ): __UpperCamelCase = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(__A ): # mps does not support float64 __UpperCamelCase = self.timesteps.to(original_samples.device , dtype=torch.floataa ) __UpperCamelCase = timesteps.to(original_samples.device , dtype=torch.floataa ) else: __UpperCamelCase = self.timesteps.to(original_samples.device ) __UpperCamelCase = timesteps.to(original_samples.device ) __UpperCamelCase = [self.index_for_timestep(__A , __A ) for t in timesteps] __UpperCamelCase = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): __UpperCamelCase = sigma.unsqueeze(-1 ) __UpperCamelCase = original_samples + noise * sigma return noisy_samples def __len__( self : Tuple ): return self.config.num_train_timesteps
53
def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[str]: if index == r: for j in range(SCREAMING_SNAKE_CASE__ ): print(data[j] , end=""" """ ) print(""" """ ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location lowercase : Tuple = arr[i] combination_util(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , index + 1 , SCREAMING_SNAKE_CASE__ , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[str]: # A temporary array to store all combination one by one lowercase : Optional[int] = [0] * r # Print all combination using temporary array 'data[]' combination_util(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 0 , SCREAMING_SNAKE_CASE__ , 0 ) if __name__ == "__main__": # Driver code to check the function above lowercase : int = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
20
0
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class a__( lowerCamelCase__ ): lowercase__ = ["""image_processor""", """tokenizer"""] lowercase__ = """CLIPImageProcessor""" lowercase__ = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self : Dict , __snake_case : str=None , __snake_case : Dict=None , **__snake_case : int ): a : Any = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , __snake_case , ) a : int = kwargs.pop('feature_extractor' ) a : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(__snake_case , __snake_case ) def __call__( self : Union[str, Any] , __snake_case : str=None , __snake_case : Any=None , __snake_case : str=None , **__snake_case : List[Any] ): if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: a : Any = self.tokenizer(__snake_case , return_tensors=__snake_case , **__snake_case ) if images is not None: a : Optional[Any] = self.image_processor(__snake_case , return_tensors=__snake_case , **__snake_case ) if text is not None and images is not None: a : Any = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__snake_case ) , tensor_type=__snake_case ) def lowercase_ ( self : List[str] , *__snake_case : str , **__snake_case : Union[str, Any] ): return self.tokenizer.batch_decode(*__snake_case , **__snake_case ) def lowercase_ ( self : Optional[Any] , *__snake_case : Tuple , **__snake_case : Tuple ): return self.tokenizer.decode(*__snake_case , **__snake_case ) @property def lowercase_ ( self : Optional[Any] ): a : Optional[Any] = self.tokenizer.model_input_names a : List[str] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def lowercase_ ( self : int ): warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , __snake_case , ) return self.image_processor_class @property def lowercase_ ( self : Any ): warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , __snake_case , ) return self.image_processor
362
'''simple docstring''' import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class a__( lowerCamelCase__ , unittest.TestCase ): lowercase__ = BertJapaneseTokenizer lowercase__ = False lowercase__ = True def lowercase_ ( self : int ): super().setUp() a : List[Any] = [ '[UNK]', '[CLS]', '[SEP]', 'こんにちは', 'こん', 'にちは', 'ばんは', '##こん', '##にちは', '##ばんは', '世界', '##世界', '、', '##、', '。', '##。', ] a : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def lowercase_ ( self : Any , __snake_case : str ): a : Union[str, Any] = 'こんにちは、世界。 \nこんばんは、世界。' a : List[Any] = 'こんにちは 、 世界 。 こんばんは 、 世界 。' return input_text, output_text def lowercase_ ( self : Optional[Any] , __snake_case : Optional[Any] ): a , a : List[str] = self.get_input_output_texts(__snake_case ) a : Optional[int] = tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) a : str = tokenizer.decode(__snake_case , clean_up_tokenization_spaces=__snake_case ) return text, ids def lowercase_ ( self : Optional[Any] ): pass # TODO add if relevant def lowercase_ ( self : List[Any] ): pass # TODO add if relevant def lowercase_ ( self : Dict ): pass # TODO add if relevant def lowercase_ ( self : List[Any] ): a : Optional[int] = self.tokenizer_class(self.vocab_file ) a : Optional[int] = tokenizer.tokenize('こんにちは、世界。\nこんばんは、世界。' ) self.assertListEqual(__snake_case , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) def lowercase_ ( self : Union[str, Any] ): a : Tuple = self.tokenizer_class(self.vocab_file , word_tokenizer_type='mecab' ) self.assertIsNotNone(__snake_case ) a : List[str] = 'こんにちは、世界。\nこんばんは、世界。' a : Tuple = tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) a : Optional[int] = os.path.join(self.tmpdirname , 'tokenizer.bin' ) with open(__snake_case , 'wb' ) as handle: pickle.dump(__snake_case , __snake_case ) with open(__snake_case , 'rb' ) as handle: a : Optional[Any] = pickle.load(__snake_case ) a : Tuple = tokenizer_new.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) def lowercase_ ( self : Dict ): a : List[str] = MecabTokenizer(mecab_dic='ipadic' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def lowercase_ ( self : List[Any] ): try: a : int = MecabTokenizer(mecab_dic='unidic_lite' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def lowercase_ ( self : Any ): try: a : Union[str, Any] = MecabTokenizer(mecab_dic='unidic' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def lowercase_ ( self : str ): a : Tuple = MecabTokenizer(do_lower_case=__snake_case , mecab_dic='ipadic' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iphone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def lowercase_ ( self : Union[str, Any] ): try: a : Any = MecabTokenizer( do_lower_case=__snake_case , normalize_text=__snake_case , mecab_option='-d /usr/local/lib/mecab/dic/jumandic' ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れた', '\u3000', '。'] , ) def lowercase_ ( self : List[Any] ): a : Dict = MecabTokenizer(normalize_text=__snake_case , mecab_dic='ipadic' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', ' ', '。'] , ) @require_sudachi def lowercase_ ( self : str ): a : Optional[int] = self.tokenizer_class(self.vocab_file , word_tokenizer_type='sudachi' ) self.assertIsNotNone(__snake_case ) a : List[Any] = 'こんにちは、世界。\nこんばんは、世界。' a : int = tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) a : Tuple = os.path.join(self.tmpdirname , 'tokenizer.bin' ) with open(__snake_case , 'wb' ) as handle: pickle.dump(__snake_case , __snake_case ) with open(__snake_case , 'rb' ) as handle: a : Optional[int] = pickle.load(__snake_case ) a : List[Any] = tokenizer_new.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) @require_sudachi def lowercase_ ( self : List[Any] ): a : Optional[Any] = SudachiTokenizer(sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , [' ', '\t', 'アップル', 'ストア', 'で', 'iPhone', '8', ' ', 'が', ' ', ' ', '\n ', '発売', 'さ', 'れ', 'た', ' ', '。', ' ', ' '] , ) @require_sudachi def lowercase_ ( self : Any ): a : str = SudachiTokenizer(sudachi_dict_type='core' , sudachi_split_mode='A' ) self.assertListEqual(tokenizer.tokenize('外国人参政権' ) , ['外国', '人', '参政', '権'] ) @require_sudachi def lowercase_ ( self : Optional[Any] ): a : Optional[int] = SudachiTokenizer(sudachi_dict_type='core' , sudachi_split_mode='B' ) self.assertListEqual(tokenizer.tokenize('外国人参政権' ) , ['外国人', '参政権'] ) @require_sudachi def lowercase_ ( self : Optional[Any] ): a : Dict = SudachiTokenizer(sudachi_dict_type='core' , sudachi_split_mode='C' ) self.assertListEqual(tokenizer.tokenize('外国人参政権' ) , ['外国人参政権'] ) @require_sudachi def lowercase_ ( self : Dict ): a : Optional[int] = SudachiTokenizer(do_lower_case=__snake_case , sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , [' ', '\t', 'アップル', 'ストア', 'で', 'iphone', '8', ' ', 'が', ' ', ' ', '\n ', '発売', 'さ', 'れ', 'た', ' ', '。', ' ', ' '] , ) @require_sudachi def lowercase_ ( self : Tuple ): a : int = SudachiTokenizer(normalize_text=__snake_case , sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , [' ', '\t', 'アップル', 'ストア', 'で', 'iPhone', '8', ' ', 'が', ' ', ' ', '\n ', '発売', 'さ', 'れ', 'た', '\u3000', '。', ' ', ' '] , ) @require_sudachi def lowercase_ ( self : Union[str, Any] ): a : List[str] = SudachiTokenizer(trim_whitespace=__snake_case , sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) @require_jumanpp def lowercase_ ( self : List[Any] ): a : Optional[int] = self.tokenizer_class(self.vocab_file , word_tokenizer_type='jumanpp' ) self.assertIsNotNone(__snake_case ) a : str = 'こんにちは、世界。\nこんばんは、世界。' a : Tuple = tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) a : Optional[Any] = os.path.join(self.tmpdirname , 'tokenizer.bin' ) with open(__snake_case , 'wb' ) as handle: pickle.dump(__snake_case , __snake_case ) with open(__snake_case , 'rb' ) as handle: a : List[str] = pickle.load(__snake_case ) a : Any = tokenizer_new.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) @require_jumanpp def lowercase_ ( self : List[str] ): a : Any = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', '\u3000', 'が', '\u3000', '\u3000', '\u3000', '発売', 'さ', 'れた', '\u3000', '。'] , ) @require_jumanpp def lowercase_ ( self : List[str] ): a : List[Any] = JumanppTokenizer(do_lower_case=__snake_case ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iphone', '8', '\u3000', 'が', '\u3000', '\u3000', '\u3000', '発売', 'さ', 'れた', '\u3000', '。'] , ) @require_jumanpp def lowercase_ ( self : Any ): a : List[Any] = JumanppTokenizer(normalize_text=__snake_case ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['ア', 'ッ', 'フ', '゚', 'ル', 'ストア', 'で', 'iPhone', '8', '\u3000', 'が', '\u3000', '\u3000', '\u3000', '発売', 'さ', 'れた', '\u3000', '。'] , ) @require_jumanpp def lowercase_ ( self : Any ): a : str = JumanppTokenizer(trim_whitespace=__snake_case ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れた', '。'] , ) @require_jumanpp def lowercase_ ( self : Tuple ): a : int = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize('ありがとうございますm(_ _)m見つけるのが大変です。' ) , ['ありがとう', 'ございます', 'm(_ _)m', '見つける', 'の', 'が', '大変です', '。'] , ) def lowercase_ ( self : Any ): a : int = ['[UNK]', '[CLS]', '[SEP]', 'こんにちは', 'こん', 'にちは', 'ばんは', '##こん', '##にちは', '##ばんは'] a : Optional[int] = {} for i, token in enumerate(__snake_case ): a : Dict = i a : Optional[Any] = WordpieceTokenizer(vocab=__snake_case , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('こんにちは' ) , ['こんにちは'] ) self.assertListEqual(tokenizer.tokenize('こんばんは' ) , ['こん', '##ばんは'] ) self.assertListEqual(tokenizer.tokenize('こんばんは こんばんにちは こんにちは' ) , ['こん', '##ばんは', '[UNK]', 'こんにちは'] ) def lowercase_ ( self : Tuple ): a : List[Any] = BertJapaneseTokenizer.from_pretrained('nlp-waseda/roberta-base-japanese-with-auto-jumanpp' ) a : List[Any] = tokenizer.subword_tokenizer a : List[str] = subword_tokenizer.tokenize('国境 の 長い トンネル を 抜ける と 雪国 であった 。' ) self.assertListEqual(__snake_case , ['▁国境', '▁の', '▁長い', '▁トンネル', '▁を', '▁抜ける', '▁と', '▁雪', '国', '▁であった', '▁。'] ) a : Union[str, Any] = subword_tokenizer.tokenize('こんばんは こんばん にち は こんにちは' ) self.assertListEqual(__snake_case , ['▁こん', 'ばん', 'は', '▁こん', 'ばん', '▁に', 'ち', '▁は', '▁こんにちは'] ) def lowercase_ ( self : Union[str, Any] ): a : Optional[Any] = self.tokenizer_class.from_pretrained('cl-tohoku/bert-base-japanese' ) a : Dict = tokenizer.encode('ありがとう。' , add_special_tokens=__snake_case ) a : str = tokenizer.encode('どういたしまして。' , add_special_tokens=__snake_case ) a : Optional[int] = tokenizer.build_inputs_with_special_tokens(__snake_case ) a : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(__snake_case , __snake_case ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class a__( lowerCamelCase__ , unittest.TestCase ): lowercase__ = BertJapaneseTokenizer lowercase__ = False def lowercase_ ( self : List[Any] ): super().setUp() a : List[Any] = ['[UNK]', '[CLS]', '[SEP]', 'こ', 'ん', 'に', 'ち', 'は', 'ば', '世', '界', '、', '。'] a : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def lowercase_ ( self : Optional[Any] , **__snake_case : List[Any] ): return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type='character' , **__snake_case ) def lowercase_ ( self : Tuple , __snake_case : List[str] ): a : int = 'こんにちは、世界。 \nこんばんは、世界。' a : Optional[Any] = 'こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。' return input_text, output_text def lowercase_ ( self : str ): pass # TODO add if relevant def lowercase_ ( self : List[str] ): pass # TODO add if relevant def lowercase_ ( self : Any ): pass # TODO add if relevant def lowercase_ ( self : Any ): a : Optional[int] = self.tokenizer_class(self.vocab_file , subword_tokenizer_type='character' ) a : Tuple = tokenizer.tokenize('こんにちは、世界。 \nこんばんは、世界。' ) self.assertListEqual( __snake_case , ['こ', 'ん', 'に', 'ち', 'は', '、', '世', '界', '。', 'こ', 'ん', 'ば', 'ん', 'は', '、', '世', '界', '。'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__snake_case ) , [3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12] ) def lowercase_ ( self : Any ): a : Union[str, Any] = ['[UNK]', '[CLS]', '[SEP]', 'こ', 'ん', 'に', 'ち', 'は', 'ば', '世', '界', '、', '。'] a : Optional[Any] = {} for i, token in enumerate(__snake_case ): a : Tuple = i a : Optional[int] = CharacterTokenizer(vocab=__snake_case , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('こんにちは' ) , ['こ', 'ん', 'に', 'ち', 'は'] ) self.assertListEqual(tokenizer.tokenize('こんにちほ' ) , ['こ', 'ん', 'に', 'ち', '[UNK]'] ) def lowercase_ ( self : Tuple ): a : List[Any] = self.tokenizer_class.from_pretrained('cl-tohoku/bert-base-japanese-char' ) a : Optional[int] = tokenizer.encode('ありがとう。' , add_special_tokens=__snake_case ) a : List[str] = tokenizer.encode('どういたしまして。' , add_special_tokens=__snake_case ) a : Optional[int] = tokenizer.build_inputs_with_special_tokens(__snake_case ) a : Dict = tokenizer.build_inputs_with_special_tokens(__snake_case , __snake_case ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class a__( unittest.TestCase ): def lowercase_ ( self : List[str] ): a : List[Any] = 'cl-tohoku/bert-base-japanese' a : Dict = AutoTokenizer.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) class a__( unittest.TestCase ): def lowercase_ ( self : Union[str, Any] ): a : List[str] = 'cl-tohoku/bert-base-japanese' with self.assertLogs('transformers' , level='WARNING' ) as cm: BertTokenizer.from_pretrained(__snake_case ) self.assertTrue( cm.records[0].message.startswith( 'The tokenizer class you load from this checkpoint is not the same type as the class this function' ' is called from.' ) ) a : Dict = 'bert-base-cased' with self.assertLogs('transformers' , level='WARNING' ) as cm: BertJapaneseTokenizer.from_pretrained(__snake_case ) self.assertTrue( cm.records[0].message.startswith( 'The tokenizer class you load from this checkpoint is not the same type as the class this function' ' is called from.' ) )
96
0
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class UpperCAmelCase_ ( unittest.TestCase): def __init__( self , a , a=7 , a=3 , a=3_0 , a=4_0_0 , a=True , a=None , a=True , a=[0.5, 0.5, 0.5] , a=[0.5, 0.5, 0.5] , a=True , a=1 / 2_5_5 , a=True , ) -> Any: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p lowercase__ : Dict = size if size is not None else {'shortest_edge': 1_8, 'longest_edge': 1_3_3_3} lowercase__ : Optional[int] = parent lowercase__ : Tuple = batch_size lowercase__ : List[str] = num_channels lowercase__ : List[str] = min_resolution lowercase__ : Tuple = max_resolution lowercase__ : Union[str, Any] = do_resize lowercase__ : Dict = size lowercase__ : str = do_normalize lowercase__ : List[Any] = image_mean lowercase__ : int = image_std lowercase__ : List[Any] = do_rescale lowercase__ : int = rescale_factor lowercase__ : int = do_pad def _UpperCAmelCase ( self ) -> Optional[Any]: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _UpperCAmelCase ( self , a , a=False ) -> Dict: if not batched: lowercase__ : str = image_inputs[0] if isinstance(a , Image.Image ): lowercase__ , lowercase__ : List[str] = image.size else: lowercase__ , lowercase__ : int = image.shape[1], image.shape[2] if w < h: lowercase__ : Any = int(self.size['shortest_edge'] * h / w ) lowercase__ : Dict = self.size['shortest_edge'] elif w > h: lowercase__ : int = self.size['shortest_edge'] lowercase__ : Tuple = int(self.size['shortest_edge'] * w / h ) else: lowercase__ : Optional[Any] = self.size['shortest_edge'] lowercase__ : List[Any] = self.size['shortest_edge'] else: lowercase__ : Union[str, Any] = [] for image in image_inputs: lowercase__ , lowercase__ : int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowercase__ : Optional[Any] = max(a , key=lambda a : item[0] )[0] lowercase__ : Optional[Any] = max(a , key=lambda a : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class UpperCAmelCase_ ( _a , unittest.TestCase): lowerCamelCase__ : List[str] = DetaImageProcessor if is_vision_available() else None def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : Optional[Any] = DetaImageProcessingTester(self ) @property def _UpperCAmelCase ( self ) -> List[str]: return self.image_processor_tester.prepare_image_processor_dict() def _UpperCAmelCase ( self ) -> Optional[int]: lowercase__ : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a , 'image_mean' ) ) self.assertTrue(hasattr(a , 'image_std' ) ) self.assertTrue(hasattr(a , 'do_normalize' ) ) self.assertTrue(hasattr(a , 'do_resize' ) ) self.assertTrue(hasattr(a , 'do_rescale' ) ) self.assertTrue(hasattr(a , 'do_pad' ) ) self.assertTrue(hasattr(a , 'size' ) ) def _UpperCAmelCase ( self ) -> str: lowercase__ : Tuple = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 1_8, 'longest_edge': 1_3_3_3} ) self.assertEqual(image_processor.do_pad , a ) def _UpperCAmelCase ( self ) -> Optional[Any]: pass def _UpperCAmelCase ( self ) -> Tuple: # Initialize image_processing lowercase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=a ) for image in image_inputs: self.assertIsInstance(a , Image.Image ) # Test not batched input lowercase__ : List[str] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values lowercase__ , lowercase__ : Optional[int] = self.image_processor_tester.get_expected_values(a ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase__ , lowercase__ : Tuple = self.image_processor_tester.get_expected_values(a , batched=a ) lowercase__ : List[str] = image_processing(a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _UpperCAmelCase ( self ) -> str: # Initialize image_processing lowercase__ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , numpify=a ) for image in image_inputs: self.assertIsInstance(a , np.ndarray ) # Test not batched input lowercase__ : int = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values lowercase__ , lowercase__ : List[Any] = self.image_processor_tester.get_expected_values(a ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase__ : Union[str, Any] = image_processing(a , return_tensors='pt' ).pixel_values lowercase__ , lowercase__ : int = self.image_processor_tester.get_expected_values(a , batched=a ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _UpperCAmelCase ( self ) -> Tuple: # Initialize image_processing lowercase__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , torchify=a ) for image in image_inputs: self.assertIsInstance(a , torch.Tensor ) # Test not batched input lowercase__ : Dict = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values lowercase__ , lowercase__ : Optional[Any] = self.image_processor_tester.get_expected_values(a ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase__ : Optional[int] = image_processing(a , return_tensors='pt' ).pixel_values lowercase__ , lowercase__ : Optional[Any] = self.image_processor_tester.get_expected_values(a , batched=a ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _UpperCAmelCase ( self ) -> Dict: # prepare image and target lowercase__ : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: lowercase__ : Tuple = json.loads(f.read() ) lowercase__ : Optional[int] = {'image_id': 3_9_7_6_9, 'annotations': target} # encode them lowercase__ : Union[str, Any] = DetaImageProcessor() lowercase__ : List[str] = image_processing(images=a , annotations=a , return_tensors='pt' ) # verify pixel values lowercase__ : int = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding['pixel_values'].shape , a ) lowercase__ : List[str] = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , a , atol=1e-4 ) ) # verify area lowercase__ : List[str] = torch.tensor([5_887.9_600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , a ) ) # verify boxes lowercase__ : Dict = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , a ) lowercase__ : str = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , a , atol=1e-3 ) ) # verify image_id lowercase__ : Tuple = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , a ) ) # verify is_crowd lowercase__ : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , a ) ) # verify class_labels lowercase__ : List[Any] = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , a ) ) # verify orig_size lowercase__ : Tuple = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , a ) ) # verify size lowercase__ : Optional[int] = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , a ) ) @slow def _UpperCAmelCase ( self ) -> List[str]: # prepare image, target and masks_path lowercase__ : str = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: lowercase__ : int = json.loads(f.read() ) lowercase__ : Optional[Any] = {'file_name': '000000039769.png', 'image_id': 3_9_7_6_9, 'segments_info': target} lowercase__ : Any = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them lowercase__ : List[Any] = DetaImageProcessor(format='coco_panoptic' ) lowercase__ : int = image_processing(images=a , annotations=a , masks_path=a , return_tensors='pt' ) # verify pixel values lowercase__ : List[Any] = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding['pixel_values'].shape , a ) lowercase__ : Optional[int] = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , a , atol=1e-4 ) ) # verify area lowercase__ : List[str] = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5_879.6_562, 7_634.1_147] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , a ) ) # verify boxes lowercase__ : int = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , a ) lowercase__ : List[Any] = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , a , atol=1e-3 ) ) # verify image_id lowercase__ : Union[str, Any] = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , a ) ) # verify is_crowd lowercase__ : Union[str, Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , a ) ) # verify class_labels lowercase__ : Tuple = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , a ) ) # verify masks lowercase__ : Dict = 8_2_2_8_7_3 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , a ) # verify orig_size lowercase__ : Any = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , a ) ) # verify size lowercase__ : List[str] = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , a ) )
77
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __a : Optional[int] = logging.get_logger(__name__) __a : Tuple = { """facebook/data2vec-text-base""": """https://huggingface.co/data2vec/resolve/main/config.json""", } class _UpperCamelCase ( _UpperCAmelCase ): """simple docstring""" __a : Dict = '''data2vec-text''' def __init__( self , lowerCAmelCase__=3_05_22 , lowerCAmelCase__=7_68 , lowerCAmelCase__=12 , lowerCAmelCase__=12 , lowerCAmelCase__=30_72 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=5_12 , lowerCAmelCase__=2 , lowerCAmelCase__=0.02 , lowerCAmelCase__=1E-12 , lowerCAmelCase__=1 , lowerCAmelCase__=0 , lowerCAmelCase__=2 , lowerCAmelCase__="absolute" , lowerCAmelCase__=True , lowerCAmelCase__=None , **lowerCAmelCase__ , ) -> Any: '''simple docstring''' super().__init__(pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = hidden_act __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = position_embedding_type __lowercase = use_cache __lowercase = classifier_dropout class _UpperCamelCase ( _UpperCAmelCase ): """simple docstring""" @property def _SCREAMING_SNAKE_CASE ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": __lowercase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __lowercase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
210
0
import numpy as np from PIL import Image def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> np.ndarray: lowercase__ = np.array(_SCREAMING_SNAKE_CASE ) if arr.shape[0] != arr.shape[1]: raise ValueError('The input array is not a square matrix' ) lowercase__ = 0 lowercase__ = 0 lowercase__ = 0 lowercase__ = 0 # compute the shape of the output matrix lowercase__ = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape lowercase__ = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix lowercase__ = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 lowercase__ = 0 lowercase__ = 0 return updated_arr def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> np.ndarray: lowercase__ = np.array(_SCREAMING_SNAKE_CASE ) if arr.shape[0] != arr.shape[1]: raise ValueError('The input array is not a square matrix' ) lowercase__ = 0 lowercase__ = 0 lowercase__ = 0 lowercase__ = 0 # compute the shape of the output matrix lowercase__ = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape lowercase__ = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix lowercase__ = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 lowercase__ = 0 lowercase__ = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name="""avgpooling""", verbose=True) # Loading the image lowercase_ = Image.open("""path_to_image""") # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
269
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL lowercase_ = logging.get_logger(__name__) def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple[int, int]: def constraint_to_multiple_of(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=None ): lowercase__ = round(val / multiple ) * multiple if max_val is not None and x > max_val: lowercase__ = math.floor(val / multiple ) * multiple if x < min_val: lowercase__ = math.ceil(val / multiple ) * multiple return x lowercase__ = (output_size, output_size) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else output_size lowercase__ , lowercase__ = get_image_size(_SCREAMING_SNAKE_CASE ) lowercase__ , lowercase__ = output_size # determine new height and width lowercase__ = output_height / input_height lowercase__ = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width lowercase__ = scale_width else: # fit height lowercase__ = scale_height lowercase__ = constraint_to_multiple_of(scale_height * input_height , multiple=_SCREAMING_SNAKE_CASE ) lowercase__ = constraint_to_multiple_of(scale_width * input_width , multiple=_SCREAMING_SNAKE_CASE ) return (new_height, new_width) class SCREAMING_SNAKE_CASE (UpperCAmelCase ): _UpperCamelCase : Dict = ['pixel_values'] def __init__( self : Any , a : bool = True , a : Dict[str, int] = None , a : PILImageResampling = PILImageResampling.BILINEAR , a : bool = False , a : int = 1 , a : bool = True , a : Union[int, float] = 1 / 255 , a : bool = True , a : Optional[Union[float, List[float]]] = None , a : Optional[Union[float, List[float]]] = None , **a : Tuple , )-> None: """simple docstring""" super().__init__(**a ) lowercase__ = size if size is not None else {'height': 384, 'width': 384} lowercase__ = get_size_dict(a ) lowercase__ = do_resize lowercase__ = size lowercase__ = keep_aspect_ratio lowercase__ = ensure_multiple_of lowercase__ = resample lowercase__ = do_rescale lowercase__ = rescale_factor lowercase__ = do_normalize lowercase__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase__ = image_std if image_std is not None else IMAGENET_STANDARD_STD def SCREAMING_SNAKE_CASE_ ( self : Dict , a : np.ndarray , a : Dict[str, int] , a : bool = False , a : int = 1 , a : PILImageResampling = PILImageResampling.BICUBIC , a : Optional[Union[str, ChannelDimension]] = None , **a : Optional[Any] , )-> np.ndarray: """simple docstring""" lowercase__ = get_size_dict(a ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) lowercase__ = get_resize_output_image_size( a , output_size=(size['height'], size['width']) , keep_aspect_ratio=a , multiple=a , ) return resize(a , size=a , resample=a , data_format=a , **a ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , a : np.ndarray , a : Union[int, float] , a : Optional[Union[str, ChannelDimension]] = None , **a : Dict , )-> str: """simple docstring""" return rescale(a , scale=a , data_format=a , **a ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , a : np.ndarray , a : Union[float, List[float]] , a : Union[float, List[float]] , a : Optional[Union[str, ChannelDimension]] = None , **a : Optional[int] , )-> np.ndarray: """simple docstring""" return normalize(a , mean=a , std=a , data_format=a , **a ) def SCREAMING_SNAKE_CASE_ ( self : int , a : ImageInput , a : bool = None , a : int = None , a : bool = None , a : int = None , a : PILImageResampling = None , a : bool = None , a : float = None , a : bool = None , a : Optional[Union[float, List[float]]] = None , a : Optional[Union[float, List[float]]] = None , a : Optional[Union[str, TensorType]] = None , a : ChannelDimension = ChannelDimension.FIRST , **a : str , )-> PIL.Image.Image: """simple docstring""" lowercase__ = do_resize if do_resize is not None else self.do_resize lowercase__ = size if size is not None else self.size lowercase__ = get_size_dict(a ) lowercase__ = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio lowercase__ = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of lowercase__ = resample if resample is not None else self.resample lowercase__ = do_rescale if do_rescale is not None else self.do_rescale lowercase__ = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ = do_normalize if do_normalize is not None else self.do_normalize lowercase__ = image_mean if image_mean is not None else self.image_mean lowercase__ = image_std if image_std is not None else self.image_std lowercase__ = make_list_of_images(a ) if not valid_images(a ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. lowercase__ = [to_numpy_array(a ) for image in images] if do_resize: lowercase__ = [self.resize(image=a , size=a , resample=a ) for image in images] if do_rescale: lowercase__ = [self.rescale(image=a , scale=a ) for image in images] if do_normalize: lowercase__ = [self.normalize(image=a , mean=a , std=a ) for image in images] lowercase__ = [to_channel_dimension_format(a , a ) for image in images] lowercase__ = {'pixel_values': images} return BatchFeature(data=a , tensor_type=a ) def SCREAMING_SNAKE_CASE_ ( self : Dict , a : str , a : List[Tuple] = None )-> Optional[int]: """simple docstring""" lowercase__ = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(a ) != len(a ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(a ): lowercase__ = target_sizes.numpy() lowercase__ = [] for idx in range(len(a ) ): lowercase__ = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='bilinear' , align_corners=a ) lowercase__ = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(a ) else: lowercase__ = logits.argmax(dim=1 ) lowercase__ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
269
1
"""simple docstring""" from collections import defaultdict from pathlib import Path import pandas as pd from rouge_cli import calculate_rouge_path from utils import calculate_rouge __UpperCamelCase : Tuple = [ '''Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of the''' ''' final seconds on board Flight 9525. The Germanwings co-pilot says he had a "previous episode of severe''' ''' depression\" German airline confirms it knew of Andreas Lubitz\'s depression years before he took control.''', '''The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal''' ''' accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC\'s''' ''' founding Rome Statute in January. Israel and the United States opposed the Palestinians\' efforts to join the''' ''' body.''', '''Amnesty International releases its annual report on the death penalty. The report catalogs the use of''' ''' state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the''' ''' world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital''' ''' punishment.''', ] __UpperCamelCase : str = [ '''Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .''' ''' Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz''' ''' had informed his Lufthansa training school of an episode of severe depression, airline says .''', '''Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June .''' ''' Israel and the United States opposed the move, which could open the door to war crimes investigations against''' ''' Israelis .''', '''Amnesty\'s annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to''' ''' death . Organization claims that governments around the world are using the threat of terrorism to advance''' ''' executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death''' ''' sentences up by 28% .''', ] def __SCREAMING_SNAKE_CASE ( ): lowerCAmelCase__ : str = calculate_rouge(A_ , A_ , bootstrap_aggregation=A_ , rouge_keys=['''rouge2''', '''rougeL'''] ) assert isinstance(A_ , A_ ) lowerCAmelCase__ : Tuple = calculate_rouge(A_ , A_ , bootstrap_aggregation=A_ , rouge_keys=['''rouge2'''] ) assert ( pd.DataFrame(no_aggregation['''rouge2'''] ).fmeasure.mean() == pd.DataFrame(no_aggregation_just_ra['''rouge2'''] ).fmeasure.mean() ) def __SCREAMING_SNAKE_CASE ( ): lowerCAmelCase__ : List[Any] = '''rougeLsum''' lowerCAmelCase__ : Any = calculate_rouge(A_ , A_ , newline_sep=A_ , rouge_keys=[k] )[k] lowerCAmelCase__ : Union[str, Any] = calculate_rouge(A_ , A_ , newline_sep=A_ , rouge_keys=[k] )[k] assert score > score_no_sep def __SCREAMING_SNAKE_CASE ( ): lowerCAmelCase__ : List[str] = ['''rouge1''', '''rouge2''', '''rougeL'''] lowerCAmelCase__ : Tuple = calculate_rouge(A_ , A_ , newline_sep=A_ , rouge_keys=A_ ) lowerCAmelCase__ : Optional[int] = calculate_rouge(A_ , A_ , newline_sep=A_ , rouge_keys=A_ ) assert score_sep == score_no_sep def __SCREAMING_SNAKE_CASE ( ): lowerCAmelCase__ : List[str] = [ '''Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.''', '''Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .''', ] lowerCAmelCase__ : List[str] = [ '''Margot Frank, died in 1945, a month earlier than previously thought.''', '''Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of''' ''' the final seconds on board Flight 9525.''', ] assert calculate_rouge(A_ , A_ , newline_sep=A_ ) == calculate_rouge(A_ , A_ , newline_sep=A_ ) def __SCREAMING_SNAKE_CASE ( ): lowerCAmelCase__ : Optional[int] = [ '''" "a person who has such a video needs to immediately give it to the investigators," prosecutor says .<n> "it is a very disturbing scene," editor-in-chief of bild online tells "erin burnett: outfront" ''' ] lowerCAmelCase__ : int = [ ''' Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports . Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says .''' ] lowerCAmelCase__ : Union[str, Any] = calculate_rouge(A_ , A_ , rouge_keys=['''rougeLsum'''] , newline_sep=A_ )['''rougeLsum'''] lowerCAmelCase__ : str = calculate_rouge(A_ , A_ , rouge_keys=['''rougeLsum'''] )['''rougeLsum'''] assert new_score > prev_score def __SCREAMING_SNAKE_CASE ( ): lowerCAmelCase__ : Optional[Any] = Path('''examples/seq2seq/test_data/wmt_en_ro''' ) lowerCAmelCase__ : List[Any] = calculate_rouge_path(data_dir.joinpath('''test.source''' ) , data_dir.joinpath('''test.target''' ) ) assert isinstance(A_ , A_ ) lowerCAmelCase__ : str = calculate_rouge_path( data_dir.joinpath('''test.source''' ) , data_dir.joinpath('''test.target''' ) , bootstrap_aggregation=A_ ) assert isinstance(A_ , A_ )
106
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available __UpperCamelCase : str = { '''configuration_longt5''': ['''LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LongT5Config''', '''LongT5OnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : str = [ '''LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LongT5EncoderModel''', '''LongT5ForConditionalGeneration''', '''LongT5Model''', '''LongT5PreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : int = [ '''FlaxLongT5ForConditionalGeneration''', '''FlaxLongT5Model''', '''FlaxLongT5PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys __UpperCamelCase : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
106
1
'''simple docstring''' from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar lowerCAmelCase_ : int = TypeVar('''T''') class __lowerCAmelCase ( Generic[T] ): snake_case : deque[T] # Cache store of keys snake_case : set[T] # References of the keys in cache snake_case : int = 1_0 # Maximum capacity of cache def __init__(self , lowerCAmelCase__ ): _UpperCAmelCase : Union[str, Any] = deque() _UpperCAmelCase : Optional[int] = set() if not n: _UpperCAmelCase : Optional[int] = sys.maxsize elif n < 0: raise ValueError("""n should be an integer greater than 0.""" ) else: _UpperCAmelCase : Optional[Any] = n def snake_case_ (self , lowerCAmelCase__ ): if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: _UpperCAmelCase : Optional[int] = self.dq_store.pop() self.key_reference.remove(lowerCAmelCase__ ) else: self.dq_store.remove(lowerCAmelCase__ ) self.dq_store.appendleft(lowerCAmelCase__ ) self.key_reference.add(lowerCAmelCase__ ) def snake_case_ (self ): for k in self.dq_store: print(lowerCAmelCase__ ) def __repr__(self ): return F"LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}" if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase_ : Union[str, Any] = LRUCache(4) lru_cache.refer('''A''') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('''A''') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
366
'''simple docstring''' import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def __A ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None ): # set parameter of one layer assert torch_layer.weight.shape == weight.shape, f"{torch_layer} layer.weight does not match" _UpperCAmelCase : Dict = nn.Parameter(lowerCAmelCase_ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, f"{torch_layer} layer.bias does not match" _UpperCAmelCase : Optional[Any] = nn.Parameter(lowerCAmelCase_ ) def __A ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): # set torch weights for 1-to-1 comparison _UpperCAmelCase : List[str] = np.asarray(weights[0] ) _UpperCAmelCase : Union[str, Any] = np.asarray(weights[1] ) _UpperCAmelCase : Optional[Any] = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(lowerCAmelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCAmelCase_ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(lowerCAmelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCAmelCase_ ) , ) set_param( torch_layer.output.dense , torch.tensor(lowerCAmelCase_ ).view(-1 , lowerCAmelCase_ ).contiguous().transpose(0 , 1 ) , ) def __A ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): # set torch weights for 1-to-1 comparison _UpperCAmelCase : Optional[int] = np.asarray(weights[0] ) _UpperCAmelCase : Tuple = np.asarray(weights[1] ) _UpperCAmelCase : List[str] = np.asarray(weights[2] ) _UpperCAmelCase : str = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(lowerCAmelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCAmelCase_ ) , ) set_param( torch_layer.self_attention.key , torch.tensor(lowerCAmelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCAmelCase_ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(lowerCAmelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCAmelCase_ ) , ) set_param( torch_layer.output.dense , torch.tensor(lowerCAmelCase_ ).view(-1 , lowerCAmelCase_ ).contiguous().transpose(0 , 1 ) , ) def __A ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): # layernorm 1 _UpperCAmelCase : Tuple = weights[0][0][0] _UpperCAmelCase : Optional[int] = np.asarray(layer_norm_a[0] ) _UpperCAmelCase : List[str] = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(lowerCAmelCase_ ) , torch.tensor(lowerCAmelCase_ ) , ) # lsh weights + output _UpperCAmelCase : List[Any] = weights[0][1] if len(lowerCAmelCase_ ) < 4: set_layer_weights_in_torch_lsh(lowerCAmelCase_ , torch_block.attention , lowerCAmelCase_ ) else: set_layer_weights_in_torch_local(lowerCAmelCase_ , torch_block.attention , lowerCAmelCase_ ) # intermediate weighs _UpperCAmelCase : int = weights[2][0][1][2] # Chunked Feed Forward if len(lowerCAmelCase_ ) == 4: _UpperCAmelCase : List[str] = intermediate_weights[2] # layernorm 2 _UpperCAmelCase : str = np.asarray(intermediate_weights[0][0] ) _UpperCAmelCase : Dict = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(lowerCAmelCase_ ) , torch.tensor(lowerCAmelCase_ ) , ) # intermediate dense _UpperCAmelCase : int = np.asarray(intermediate_weights[1][0] ) _UpperCAmelCase : List[Any] = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(lowerCAmelCase_ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCAmelCase_ ) , ) # intermediate out _UpperCAmelCase : Tuple = np.asarray(intermediate_weights[4][0] ) _UpperCAmelCase : List[Any] = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(lowerCAmelCase_ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCAmelCase_ ) , ) def __A ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): # reformer model _UpperCAmelCase : Union[str, Any] = torch_model.reformer # word embeds _UpperCAmelCase : Union[str, Any] = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(lowerCAmelCase_ ) , ) if isinstance(weights[3] , lowerCAmelCase_ ): _UpperCAmelCase : Union[str, Any] = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): _UpperCAmelCase : Any = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), f"{position_embeddings[emb_idx]} emb does not match" _UpperCAmelCase : Dict = nn.Parameter(torch.tensor(lowerCAmelCase_ ) ) _UpperCAmelCase : str = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( lowerCAmelCase_ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): _UpperCAmelCase : Any = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # output layer norm _UpperCAmelCase : str = np.asarray(weights[7][0] ) _UpperCAmelCase : Optional[int] = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(lowerCAmelCase_ ) , torch.tensor(lowerCAmelCase_ ) , ) # output embeddings _UpperCAmelCase : Tuple = np.asarray(weights[9][0] ) _UpperCAmelCase : Optional[Any] = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(lowerCAmelCase_ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCAmelCase_ ) , ) def __A ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): # Initialise PyTorch model _UpperCAmelCase : Optional[int] = ReformerConfig.from_json_file(lowerCAmelCase_ ) print(f"Building PyTorch model from configuration: {config}" ) _UpperCAmelCase : Any = ReformerModelWithLMHead(lowerCAmelCase_ ) with open(lowerCAmelCase_ , """rb""" ) as f: _UpperCAmelCase : List[str] = pickle.load(lowerCAmelCase_ )["""weights"""] set_model_weights_in_torch(lowerCAmelCase_ , lowerCAmelCase_ , config.hidden_size ) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , lowerCAmelCase_ ) if __name__ == "__main__": lowerCAmelCase_ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--trax_model_pkl_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained Reformer model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCAmelCase_ : Tuple = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
170
0
'''simple docstring''' import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def UpperCAmelCase_ ( __lowercase : Union[str, Any] , __lowercase : Tuple , __lowercase : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = MobileBertConfig.from_json_file(__lowercase ) print(f'Building PyTorch model from configuration: {config}' ) _UpperCAmelCase = MobileBertForPreTraining(__lowercase ) # Load weights from tf checkpoint _UpperCAmelCase = load_tf_weights_in_mobilebert(__lowercase , __lowercase , __lowercase ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , __lowercase ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE :Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--mobilebert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained MobileBERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __SCREAMING_SNAKE_CASE :Optional[int] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
22
"""simple docstring""" def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: def count_of_possible_combinations(__UpperCAmelCase ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(__UpperCAmelCase ) def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: def count_of_possible_combinations_with_dp_array( __UpperCAmelCase , __UpperCAmelCase ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] lowerCAmelCase__ : str = sum( count_of_possible_combinations_with_dp_array(target - item , __UpperCAmelCase ) for item in array ) lowerCAmelCase__ : List[str] = answer return answer lowerCAmelCase__ : Dict = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(__UpperCAmelCase , __UpperCAmelCase ) def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: lowerCAmelCase__ : int = [0] * (target + 1) lowerCAmelCase__ : int = 1 for i in range(1 , target + 1 ): for j in range(__UpperCAmelCase ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() _A = 3 _A = 5 _A = [1, 2, 5] print(combination_sum_iv(n, array, target))
242
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCAmelCase: int = logging.get_logger(__name__) lowerCAmelCase: List[Any] = { 'microsoft/focalnet-tiny': 'https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json', } class a__( lowerCamelCase__ , lowerCamelCase__ ): lowercase__ = """focalnet""" def __init__( self : Tuple , __snake_case : str=2_24 , __snake_case : Dict=4 , __snake_case : str=3 , __snake_case : Union[str, Any]=96 , __snake_case : List[str]=False , __snake_case : int=[1_92, 3_84, 7_68, 7_68] , __snake_case : List[str]=[2, 2, 6, 2] , __snake_case : int=[2, 2, 2, 2] , __snake_case : Tuple=[3, 3, 3, 3] , __snake_case : List[str]="gelu" , __snake_case : List[Any]=4.0 , __snake_case : Optional[Any]=0.0 , __snake_case : Optional[int]=0.1 , __snake_case : List[Any]=False , __snake_case : Any=1e-4 , __snake_case : Optional[Any]=False , __snake_case : int=False , __snake_case : Dict=False , __snake_case : str=0.02 , __snake_case : int=1e-5 , __snake_case : Optional[Any]=32 , __snake_case : Dict=None , __snake_case : Dict=None , **__snake_case : List[str] , ): super().__init__(**__snake_case ) a : Optional[int] = image_size a : Union[str, Any] = patch_size a : int = num_channels a : List[str] = embed_dim a : Union[str, Any] = use_conv_embed a : Any = hidden_sizes a : List[Any] = depths a : Any = focal_levels a : Any = focal_windows a : Optional[int] = hidden_act a : List[Any] = mlp_ratio a : Optional[Any] = hidden_dropout_prob a : Dict = drop_path_rate a : Optional[int] = use_layerscale a : Tuple = layerscale_value a : Optional[Any] = use_post_layernorm a : List[str] = use_post_layernorm_in_modulation a : Optional[int] = normalize_modulator a : Union[str, Any] = initializer_range a : Optional[Any] = layer_norm_eps a : Optional[Any] = encoder_stride a : str = ['stem'] + [F"""stage{idx}""" for idx in range(1 , len(self.depths ) + 1 )] a , a : Optional[int] = get_aligned_output_features_output_indices( out_features=__snake_case , out_indices=__snake_case , stage_names=self.stage_names )
96
'''simple docstring''' import argparse import os import re import packaging.version lowerCAmelCase: List[str] = 'examples/' lowerCAmelCase: List[Any] = { 'examples': (re.compile(r'^check_min_version\("[^"]+"\)\s*$', re.MULTILINE), 'check_min_version("VERSION")\n'), 'init': (re.compile(r'^__version__\s+=\s+"([^"]+)"\s*$', re.MULTILINE), '__version__ = "VERSION"\n'), 'setup': (re.compile(r'^(\s*)version\s*=\s*"[^"]+",', re.MULTILINE), r'\1version="VERSION",'), 'doc': (re.compile(r'^(\s*)release\s*=\s*"[^"]+"$', re.MULTILINE), 'release = "VERSION"\n'), } lowerCAmelCase: str = { 'init': 'src/transformers/__init__.py', 'setup': 'setup.py', } lowerCAmelCase: str = 'README.md' def lowerCamelCase__ ( _A , _A , _A ): with open(_A , 'r' , encoding='utf-8' , newline='\n' ) as f: a : Tuple = f.read() a , a : Tuple = REPLACE_PATTERNS[pattern] a : Dict = replace.replace('VERSION' , _A ) a : Dict = re_pattern.sub(_A , _A ) with open(_A , 'w' , encoding='utf-8' , newline='\n' ) as f: f.write(_A ) def lowerCamelCase__ ( _A ): for folder, directories, fnames in os.walk(_A ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('research_projects' ) if "legacy" in directories: directories.remove('legacy' ) for fname in fnames: if fname.endswith('.py' ): update_version_in_file(os.path.join(_A , _A ) , _A , pattern='examples' ) def lowerCamelCase__ ( _A , _A=False ): for pattern, fname in REPLACE_FILES.items(): update_version_in_file(_A , _A , _A ) if not patch: update_version_in_examples(_A ) def lowerCamelCase__ ( ): a : Tuple = '🤗 Transformers currently provides the following architectures' a : Any = '1. Want to contribute a new model?' with open(_A , 'r' , encoding='utf-8' , newline='\n' ) as f: a : Tuple = f.readlines() # Find the start of the list. a : Optional[int] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 a : Optional[int] = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('1.' ): a : List[Any] = lines[index].replace( 'https://huggingface.co/docs/transformers/main/model_doc' , 'https://huggingface.co/docs/transformers/model_doc' , ) index += 1 with open(_A , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(_A ) def lowerCamelCase__ ( ): with open(REPLACE_FILES['init'] , 'r' ) as f: a : Union[str, Any] = f.read() a : Tuple = REPLACE_PATTERNS['init'][0].search(_A ).groups()[0] return packaging.version.parse(_A ) def lowerCamelCase__ ( _A=False ): a : int = get_version() if patch and default_version.is_devrelease: raise ValueError('Can\'t create a patch version from the dev branch, checkout a released version!' ) if default_version.is_devrelease: a : Any = default_version.base_version elif patch: a : Dict = f"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: a : Union[str, Any] = f"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. a : List[Any] = input(f"""Which version are you releasing? [{default_version}]""" ) if len(_A ) == 0: a : Union[str, Any] = default_version print(f"""Updating version to {version}.""" ) global_version_update(_A , patch=_A ) if not patch: print('Cleaning main README, don\'t forget to run `make fix-copies`.' ) clean_main_ref_in_model_list() def lowerCamelCase__ ( ): a : int = get_version() a : Any = f"""{current_version.major}.{current_version.minor + 1}.0.dev0""" a : int = current_version.base_version # Check with the user we got that right. a : Tuple = input(f"""Which version are we developing now? [{dev_version}]""" ) if len(_A ) == 0: a : Optional[int] = dev_version print(f"""Updating version to {version}.""" ) global_version_update(_A ) print('Cleaning main README, don\'t forget to run `make fix-copies`.' ) clean_main_ref_in_model_list() if __name__ == "__main__": lowerCAmelCase: Tuple = argparse.ArgumentParser() parser.add_argument('--post_release', action='store_true', help='Whether this is pre or post release.') parser.add_argument('--patch', action='store_true', help='Whether or not this is a patch release.') lowerCAmelCase: Optional[Any] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('Nothing to do after a patch :-)') else: post_release_work()
96
1
import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int UpperCAmelCase : Tuple = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class _A( datasets.BuilderConfig ): """simple docstring""" UpperCamelCase : Optional[datasets.Features] = None def _SCREAMING_SNAKE_CASE ( a , a , ) -> Union[str, Any]: import pyspark def generate_fn(): __A : str = df.select('*' , pyspark.sql.functions.spark_partition_id().alias('part_id' ) ) for partition_id in partition_order: __A : int = df_with_partition_id.select('*' ).where(F"""part_id = {partition_id}""" ).drop('part_id' ) __A : Optional[Any] = partition_df.collect() __A : Optional[Any] = 0 for row in rows: yield F"""{partition_id}_{row_id}""", row.asDict() row_id += 1 return generate_fn class _A( _BaseExamplesIterable ): """simple docstring""" def __init__( self , _A , _A=None , ): __A : Union[str, Any] = df __A : Any = partition_order or range(self.df.rdd.getNumPartitions() ) __A : Union[str, Any] = _generate_iterable_examples(self.df , self.partition_order ) def __iter__( self ): yield from self.generate_examples_fn() def UpperCAmelCase_ ( self , _A ): __A : Optional[int] = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(_A ) return SparkExamplesIterable(self.df , partition_order=_A ) def UpperCAmelCase_ ( self , _A , _A ): __A : Optional[int] = self.split_shard_indices_by_worker(_A , _A ) return SparkExamplesIterable(self.df , partition_order=_A ) @property def UpperCAmelCase_ ( self ): return len(self.partition_order ) class _A( datasets.DatasetBuilder ): """simple docstring""" UpperCamelCase : List[Any] = SparkConfig def __init__( self , _A , _A = None , _A = None , **_A , ): import pyspark __A : Any = pyspark.sql.SparkSession.builder.getOrCreate() __A : List[Any] = df __A : Optional[int] = working_dir super().__init__( cache_dir=_A , config_name=str(self.df.semanticHash() ) , **_A , ) def UpperCAmelCase_ ( self ): # Returns the path of the created file. def create_cache_and_write_probe(_A ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=_A ) __A : Any = os.path.join(self._cache_dir , 'fs_test' + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(_A , 'a' ) return [probe_file] if self._spark.conf.get('spark.master' , '' ).startswith('local' ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: __A : List[str] = ( self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(_A ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( 'When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir' ) def UpperCAmelCase_ ( self ): return datasets.DatasetInfo(features=self.config.features ) def UpperCAmelCase_ ( self , _A ): return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def UpperCAmelCase_ ( self , _A ): import pyspark def get_arrow_batch_size(_A ): for batch in it: yield pa.RecordBatch.from_pydict({'batch_bytes': [batch.nbytes]} ) __A : Any = self.df.count() __A : List[str] = df_num_rows if df_num_rows <= 100 else 100 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. __A : str = ( self.df.limit(_A ) .repartition(1 ) .mapInArrow(_A , 'batch_bytes: long' ) .agg(pyspark.sql.functions.sum('batch_bytes' ).alias('sample_bytes' ) ) .collect()[0] .sample_bytes / sample_num_rows ) __A : List[Any] = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. __A : Optional[Any] = min(_A , int(approx_total_size / max_shard_size ) ) __A : str = self.df.repartition(_A ) def UpperCAmelCase_ ( self , _A , _A , _A , ): import pyspark __A : Tuple = ParquetWriter if file_format == 'parquet' else ArrowWriter __A : Optional[Any] = os.path.join(self._working_dir , os.path.basename(_A ) ) if self._working_dir else fpath __A : Dict = file_format == 'parquet' # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. __A : int = self.config.features __A : List[Any] = self._writer_batch_size __A : int = self._fs.storage_options def write_arrow(_A ): # Within the same SparkContext, no two task attempts will share the same attempt ID. __A : List[Any] = pyspark.TaskContext().taskAttemptId() __A : List[str] = next(_A , _A ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=['task_id', 'num_examples', 'num_bytes'] , ) __A : Dict = 0 __A : List[str] = writer_class( features=_A , path=working_fpath.replace('SSSSS' , F"""{shard_id:05d}""" ).replace('TTTTT' , F"""{task_id:05d}""" ) , writer_batch_size=_A , storage_options=_A , embed_local_files=_A , ) __A : Tuple = pa.Table.from_batches([first_batch] ) writer.write_table(_A ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: __A , __A : Optional[Any] = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['task_id', 'num_examples', 'num_bytes'] , ) shard_id += 1 __A : List[Any] = writer_class( features=writer._features , path=working_fpath.replace('SSSSS' , F"""{shard_id:05d}""" ).replace('TTTTT' , F"""{task_id:05d}""" ) , writer_batch_size=_A , storage_options=_A , embed_local_files=_A , ) __A : List[Any] = pa.Table.from_batches([batch] ) writer.write_table(_A ) if writer._num_bytes > 0: __A , __A : Union[str, Any] = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['task_id', 'num_examples', 'num_bytes'] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(_A ) ): __A : List[Any] = os.path.join(os.path.dirname(_A ) , os.path.basename(_A ) ) shutil.move(_A , _A ) __A : List[str] = ( self.df.mapInArrow(_A , 'task_id: long, num_examples: long, num_bytes: long' ) .groupBy('task_id' ) .agg( pyspark.sql.functions.sum('num_examples' ).alias('total_num_examples' ) , pyspark.sql.functions.sum('num_bytes' ).alias('total_num_bytes' ) , pyspark.sql.functions.count('num_bytes' ).alias('num_shards' ) , pyspark.sql.functions.collect_list('num_examples' ).alias('shard_lengths' ) , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def UpperCAmelCase_ ( self , _A , _A = "arrow" , _A = None , _A = None , **_A , ): self._validate_cache_dir() __A : Dict = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(_A ) __A : List[Any] = not is_remote_filesystem(self._fs ) __A : Union[str, Any] = os.path.join if is_local else posixpath.join __A : List[str] = '-TTTTT-SSSSS-of-NNNNN' __A : Any = F"""{self.name}-{split_generator.name}{SUFFIX}.{file_format}""" __A : str = path_join(self._output_dir , _A ) __A : Any = 0 __A : List[str] = 0 __A : Optional[Any] = 0 __A : Tuple = [] __A : Optional[Any] = [] for task_id, content in self._prepare_split_single(_A , _A , _A ): ( ( __A ) , ( __A ) , ( __A ) , ( __A ) , ) : List[str] = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(_A ) __A : Optional[int] = total_num_examples __A : Tuple = total_num_bytes # should rename everything at the end logger.debug(F"""Renaming {total_shards} shards.""" ) if total_shards > 1: __A : Any = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. __A : Union[str, Any] = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( _A , _A , _A , ): rename( _A , fpath.replace('SSSSS' , F"""{shard_id:05d}""" ).replace('TTTTT' , F"""{task_id:05d}""" ) , fpath.replace('TTTTT-SSSSS' , F"""{global_shard_id:05d}""" ).replace('NNNNN' , F"""{total_shards:05d}""" ) , ) __A : List[Any] = [] __A : List[Any] = 0 for i in range(len(_A ) ): __A , __A : Tuple = task_id_and_num_shards[i] for shard_id in range(_A ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(_A , len(_A ) ).map(lambda _A : _rename_shard(*_A ) ).collect() else: # don't use any pattern __A : Union[str, Any] = 0 __A : Dict = task_id_and_num_shards[0][0] self._rename( fpath.replace('SSSSS' , F"""{shard_id:05d}""" ).replace('TTTTT' , F"""{task_id:05d}""" ) , fpath.replace(_A , '' ) , ) def UpperCAmelCase_ ( self , _A , ): return SparkExamplesIterable(self.df )
280
import colorsys from PIL import Image # type: ignore def _SCREAMING_SNAKE_CASE ( a , a , a ) -> float: __A : List[str] = x __A : str = y for step in range(a ): # noqa: B007 __A : Union[str, Any] = a * a - b * b + x __A : Optional[int] = 2 * a * b + y __A : List[str] = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def _SCREAMING_SNAKE_CASE ( a ) -> tuple: if distance == 1: return (0, 0, 0) else: return (2_55, 2_55, 2_55) def _SCREAMING_SNAKE_CASE ( a ) -> tuple: if distance == 1: return (0, 0, 0) else: return tuple(round(i * 2_55 ) for i in colorsys.hsv_to_rgb(a , 1 , 1 ) ) def _SCREAMING_SNAKE_CASE ( a = 8_00 , a = 6_00 , a = -0.6 , a = 0 , a = 3.2 , a = 50 , a = True , ) -> Image.Image: __A : str = Image.new('RGB' , (image_width, image_height) ) __A : Dict = img.load() # loop through the image-coordinates for image_x in range(a ): for image_y in range(a ): # determine the figure-coordinates based on the image-coordinates __A : Dict = figure_width / image_width * image_height __A : Union[str, Any] = figure_center_x + (image_x / image_width - 0.5) * figure_width __A : Optional[Any] = figure_center_y + (image_y / image_height - 0.5) * figure_height __A : Union[str, Any] = get_distance(a , a , a ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: __A : Optional[Any] = get_color_coded_rgb(a ) else: __A : Dict = get_black_and_white_rgb(a ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure UpperCAmelCase : str = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
280
1
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _A = logging.getLogger(__name__) def lowerCamelCase__ ( a__ : Tuple , a__ : Optional[int] ) -> Dict: return (preds == labels).mean() @dataclass class lowercase_ : A__ : str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) A__ : Optional[str] = field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) A__ : Optional[str] = field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) A__ : Optional[str] = field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class lowercase_ : A__ : str = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(processors.keys() )} ) A__ : str = field(metadata={"""help""": """Should contain the data files for the task."""} ) A__ : int = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) A__ : bool = field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def lowerCamelCase__ ( ) -> Dict: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCamelCase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , a__ ) # Set seed set_seed(training_args.seed ) try: UpperCamelCase_ = processors[data_args.task_name]() UpperCamelCase_ = processor.get_labels() UpperCamelCase_ = len(a__ ) except KeyError: raise ValueError("""Task not found: %s""" % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase_ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=a__ , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) UpperCamelCase_ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) UpperCamelCase_ = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=a__ , cache_dir=model_args.cache_dir , ) # Get datasets UpperCamelCase_ = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=a__ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) UpperCamelCase_ = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=a__ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(a__ : EvalPrediction ) -> Dict: UpperCamelCase_ = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(a__ , p.label_ids )} # Data collator UpperCamelCase_ = DataCollatorWithPadding(a__ , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer UpperCamelCase_ = Trainer( model=a__ , args=a__ , train_dataset=a__ , eval_dataset=a__ , compute_metrics=a__ , data_collator=a__ , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation UpperCamelCase_ = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) UpperCamelCase_ = trainer.evaluate() UpperCamelCase_ = os.path.join(training_args.output_dir , """eval_results.txt""" ) if trainer.is_world_master(): with open(a__ , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in result.items(): logger.info(""" %s = %s""" , a__ , a__ ) writer.write("""%s = %s\n""" % (key, value) ) results.update(a__ ) return results def lowerCamelCase__ ( a__ : int ) -> Tuple: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
261
import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { '''kakaobrain/align-base''': '''https://huggingface.co/kakaobrain/align-base/resolve/main/config.json''', } class lowercase_ ( __SCREAMING_SNAKE_CASE ): A__ : List[str] = """align_text_model""" def __init__( self , __UpperCamelCase=3_0_5_2_2 , __UpperCamelCase=7_6_8 , __UpperCamelCase=1_2 , __UpperCamelCase=1_2 , __UpperCamelCase=3_0_7_2 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=5_1_2 , __UpperCamelCase=2 , __UpperCamelCase=0.02 , __UpperCamelCase=1e-12 , __UpperCamelCase=0 , __UpperCamelCase="absolute" , __UpperCamelCase=True , **__UpperCamelCase , ): """simple docstring""" super().__init__(**__UpperCamelCase ) UpperCamelCase_ = vocab_size UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = hidden_act UpperCamelCase_ = intermediate_size UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = max_position_embeddings UpperCamelCase_ = type_vocab_size UpperCamelCase_ = initializer_range UpperCamelCase_ = layer_norm_eps UpperCamelCase_ = position_embedding_type UpperCamelCase_ = use_cache UpperCamelCase_ = pad_token_id @classmethod def lowerCamelCase_ ( cls , __UpperCamelCase , **__UpperCamelCase ): """simple docstring""" cls._set_token_in_kwargs(__UpperCamelCase ) UpperCamelCase_ , UpperCamelCase_ = cls.get_config_dict(__UpperCamelCase , **__UpperCamelCase ) # get the text config dict if we are loading from AlignConfig if config_dict.get("""model_type""" ) == "align": UpperCamelCase_ = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__UpperCamelCase , **__UpperCamelCase ) class lowercase_ ( __SCREAMING_SNAKE_CASE ): A__ : Optional[int] = """align_vision_model""" def __init__( self , __UpperCamelCase = 3 , __UpperCamelCase = 6_0_0 , __UpperCamelCase = 2.0 , __UpperCamelCase = 3.1 , __UpperCamelCase = 8 , __UpperCamelCase = [3, 3, 5, 3, 5, 5, 3] , __UpperCamelCase = [3_2, 1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2] , __UpperCamelCase = [1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2, 3_2_0] , __UpperCamelCase = [] , __UpperCamelCase = [1, 2, 2, 2, 1, 2, 1] , __UpperCamelCase = [1, 2, 2, 3, 3, 4, 1] , __UpperCamelCase = [1, 6, 6, 6, 6, 6, 6] , __UpperCamelCase = 0.25 , __UpperCamelCase = "swish" , __UpperCamelCase = 2_5_6_0 , __UpperCamelCase = "mean" , __UpperCamelCase = 0.02 , __UpperCamelCase = 0.001 , __UpperCamelCase = 0.99 , __UpperCamelCase = 0.2 , **__UpperCamelCase , ): """simple docstring""" super().__init__(**__UpperCamelCase ) UpperCamelCase_ = num_channels UpperCamelCase_ = image_size UpperCamelCase_ = width_coefficient UpperCamelCase_ = depth_coefficient UpperCamelCase_ = depth_divisor UpperCamelCase_ = kernel_sizes UpperCamelCase_ = in_channels UpperCamelCase_ = out_channels UpperCamelCase_ = depthwise_padding UpperCamelCase_ = strides UpperCamelCase_ = num_block_repeats UpperCamelCase_ = expand_ratios UpperCamelCase_ = squeeze_expansion_ratio UpperCamelCase_ = hidden_act UpperCamelCase_ = hidden_dim UpperCamelCase_ = pooling_type UpperCamelCase_ = initializer_range UpperCamelCase_ = batch_norm_eps UpperCamelCase_ = batch_norm_momentum UpperCamelCase_ = drop_connect_rate UpperCamelCase_ = sum(__UpperCamelCase ) * 4 @classmethod def lowerCamelCase_ ( cls , __UpperCamelCase , **__UpperCamelCase ): """simple docstring""" cls._set_token_in_kwargs(__UpperCamelCase ) UpperCamelCase_ , UpperCamelCase_ = cls.get_config_dict(__UpperCamelCase , **__UpperCamelCase ) # get the vision config dict if we are loading from AlignConfig if config_dict.get("""model_type""" ) == "align": UpperCamelCase_ = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__UpperCamelCase , **__UpperCamelCase ) class lowercase_ ( __SCREAMING_SNAKE_CASE ): A__ : Tuple = """align""" A__ : int = True def __init__( self , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=6_4_0 , __UpperCamelCase=1.0 , __UpperCamelCase=0.02 , **__UpperCamelCase , ): """simple docstring""" super().__init__(**__UpperCamelCase ) if text_config is None: UpperCamelCase_ = {} logger.info("""text_config is None. Initializing the AlignTextConfig with default values.""" ) if vision_config is None: UpperCamelCase_ = {} logger.info("""vision_config is None. Initializing the AlignVisionConfig with default values.""" ) UpperCamelCase_ = AlignTextConfig(**__UpperCamelCase ) UpperCamelCase_ = AlignVisionConfig(**__UpperCamelCase ) UpperCamelCase_ = projection_dim UpperCamelCase_ = temperature_init_value UpperCamelCase_ = initializer_range @classmethod def lowerCamelCase_ ( cls , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ): """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__UpperCamelCase ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = copy.deepcopy(self.__dict__ ) UpperCamelCase_ = self.text_config.to_dict() UpperCamelCase_ = self.vision_config.to_dict() UpperCamelCase_ = self.__class__.model_type return output
261
1