code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase : Dict = logging.get_logger(__name__) lowerCAmelCase : Dict = { """YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json""", """YituTech/conv-bert-medium-small""": ( """https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json""" ), """YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json""", # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class __magic_name__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = "convbert" def __init__( self , _a=30_522 , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=2 , _a=0.02 , _a=1e-1_2 , _a=1 , _a=0 , _a=2 , _a=768 , _a=2 , _a=9 , _a=1 , _a=None , **_a , ): """simple docstring""" super().__init__( pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a , ) lowerCamelCase = vocab_size lowerCamelCase = hidden_size lowerCamelCase = num_hidden_layers lowerCamelCase = num_attention_heads lowerCamelCase = intermediate_size lowerCamelCase = hidden_act lowerCamelCase = hidden_dropout_prob lowerCamelCase = attention_probs_dropout_prob lowerCamelCase = max_position_embeddings lowerCamelCase = type_vocab_size lowerCamelCase = initializer_range lowerCamelCase = layer_norm_eps lowerCamelCase = embedding_size lowerCamelCase = head_ratio lowerCamelCase = conv_kernel_size lowerCamelCase = num_groups lowerCamelCase = classifier_dropout class __magic_name__ ( UpperCAmelCase__ ): '''simple docstring''' @property def _lowerCAmelCase ( self ): """simple docstring""" if self.task == "multiple-choice": lowerCamelCase = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowerCamelCase = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
291
"""simple docstring""" import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def a__ ( ) -> Union[str, Any]: lowerCamelCase = ArgumentParser( description=( """PyTorch TPU distributed training launch """ """helper utility that will spawn up """ """multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=snake_case__ , default=1 , help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" , type=snake_case__ , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=snake_case__ ) return parser.parse_args() def a__ ( ) -> List[str]: lowerCamelCase = parse_args() # Import training_script as a module. lowerCamelCase = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) lowerCamelCase = script_fpath.stem lowerCamelCase = importlib.import_module(snake_case__ ) # Patch sys.argv lowerCamelCase = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
291
1
'''simple docstring''' import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class lowercase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = '''laion/clap-htsat-unfused''' __lowercase = tempfile.mkdtemp() def SCREAMING_SNAKE_CASE ( self : Any ,**lowercase__ : int ): return RobertaTokenizer.from_pretrained(self.checkpoint ,**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ,**lowercase__ : Dict ): return ClapFeatureExtractor.from_pretrained(self.checkpoint ,**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ): shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = self.get_tokenizer() __lowercase = self.get_feature_extractor() __lowercase = ClapProcessor(tokenizer=lowercase__ ,feature_extractor=lowercase__ ) processor.save_pretrained(self.tmpdirname ) __lowercase = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer ,lowercase__ ) self.assertEqual(processor.feature_extractor.to_json_string() ,feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = ClapProcessor(tokenizer=self.get_tokenizer() ,feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) __lowercase = self.get_tokenizer(bos_token='''(BOS)''' ,eos_token='''(EOS)''' ) __lowercase = self.get_feature_extractor(do_normalize=lowercase__ ,padding_value=1.0 ) __lowercase = ClapProcessor.from_pretrained( self.tmpdirname ,bos_token='''(BOS)''' ,eos_token='''(EOS)''' ,do_normalize=lowercase__ ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,lowercase__ ) self.assertEqual(processor.feature_extractor.to_json_string() ,feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Tuple ): __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = ClapProcessor(tokenizer=lowercase__ ,feature_extractor=lowercase__ ) __lowercase = floats_list((3, 1_0_0_0) ) __lowercase = feature_extractor(lowercase__ ,return_tensors='''np''' ) __lowercase = processor(audios=lowercase__ ,return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1e-2 ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = ClapProcessor(tokenizer=lowercase__ ,feature_extractor=lowercase__ ) __lowercase = '''This is a test string''' __lowercase = processor(text=lowercase__ ) __lowercase = tokenizer(lowercase__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = ClapProcessor(tokenizer=lowercase__ ,feature_extractor=lowercase__ ) __lowercase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowercase = processor.batch_decode(lowercase__ ) __lowercase = tokenizer.batch_decode(lowercase__ ) self.assertListEqual(lowercase__ ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Tuple ): __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = ClapProcessor(tokenizer=lowercase__ ,feature_extractor=lowercase__ ) self.assertListEqual( processor.model_input_names[2:] ,feature_extractor.model_input_names ,msg='''`processor` and `feature_extractor` model input names do not match''' ,)
52
'''simple docstring''' # Function to print upper half of diamond (pyramid) def _A ( A__ ): """simple docstring""" for i in range(0 , A__ ): for _ in range(0 , n - i - 1 ): # printing spaces print(''' ''' , end='''''' ) for _ in range(0 , i + 1 ): # printing stars print('''* ''' , end='''''' ) print() def _A ( A__ ): """simple docstring""" for i in range(A__ , 0 , -1 ): for _ in range(A__ , 0 , -1 ): # printing stars print('''* ''' , end='''''' ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(''' ''' , end='''''' ) def _A ( A__ ): """simple docstring""" if n <= 0: print(''' ... .... nothing printing :(''' ) return floyd(A__ ) # upper half reverse_floyd(A__ ) # lower half if __name__ == "__main__": print(R'''| /\ | |- | |- |--| |\ /| |-''') print(R'''|/ \| |- |_ |_ |__| | \/ | |_''') lowerCAmelCase__ = 1 while K: lowerCAmelCase__ = int(input('''enter the number and , and see the magic : ''')) print() pretty_print(user_number) lowerCAmelCase__ = int(input('''press 0 to exit... and 1 to continue...''')) print('''Good Bye...''')
52
1
import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def lowercase_ ( _A : Tuple , _A : int , _A : Tuple=1024 , _A : Optional[int]=1024 , _A : Optional[Any]=False , **_A : List[Any] ): """simple docstring""" lowerCamelCase__ : Tuple = AutoTokenizer.from_pretrained(_A ) lowerCamelCase__ : Dict = SeqaSeqDataset(_A , _A , _A , _A , type_path="train" , **_A ) lowerCamelCase__ : int = tok.pad_token_id def get_lens(_A : List[str] ): lowerCamelCase__ : Optional[int] = tqdm( DataLoader(_A , batch_size=512 , num_workers=8 , shuffle=_A , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) lowerCamelCase__ : Any = [] for batch in dl: lowerCamelCase__ : Dict = batch["input_ids"].ne(_A ).sum(1 ).tolist() lowerCamelCase__ : List[Any] = batch["labels"].ne(_A ).sum(1 ).tolist() if consider_target: for src, tgt in zip(_A , _A ): max_lens.append(max(_A , _A ) ) else: max_lens.extend(_A ) return max_lens lowerCamelCase__ : int = get_lens(_A ) lowerCamelCase__ : int = SeqaSeqDataset(_A , _A , _A , _A , type_path="val" , **_A ) lowerCamelCase__ : int = get_lens(_A ) pickle_save(_A , train_ds.len_file ) pickle_save(_A , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
184
from collections import defaultdict def lowercase_ ( _A : int ): """simple docstring""" lowerCamelCase__ : Union[str, Any] = 1 lowerCamelCase__ : Dict = True for v in tree[start]: if v not in visited: ret += dfs(_A ) if ret % 2 == 0: cuts.append(_A ) return ret def lowercase_ ( ): """simple docstring""" dfs(1 ) if __name__ == "__main__": A, A : Tuple = 10, 9 A : int = defaultdict(list) A : dict[int, bool] = {} A : list[int] = [] A : List[str] = 0 A : Tuple = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
184
1
"""simple docstring""" from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class _UpperCAmelCase ( __A ): def __init__( self : Dict , _lowercase : Any , _lowercase : List[str]=None , _lowercase : Optional[Any]=None , _lowercase : Tuple=0 ): __UpperCAmelCase = 1.0 if scale is None else scale __UpperCAmelCase = 0.0 if loc is None else loc super().__init__(__lowercase , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=__lowercase )] ) @property def a ( self : Dict ): return self.base_dist.mean * self.scale + self.loc @property def a ( self : List[Any] ): return self.base_dist.variance * self.scale**2 @property def a ( self : Optional[int] ): return self.variance.sqrt() class _UpperCAmelCase ( nn.Module ): def __init__( self : str , _lowercase : Tuple , _lowercase : List[str] , _lowercase : Dict , **_lowercase : str ): super().__init__(**__lowercase ) __UpperCAmelCase = args_dim __UpperCAmelCase = nn.ModuleList([nn.Linear(__lowercase , __lowercase ) for dim in args_dim.values()] ) __UpperCAmelCase = domain_map def a ( self : List[Any] , _lowercase : List[Any] ): __UpperCAmelCase = [proj(__lowercase ) for proj in self.proj] return self.domain_map(*__lowercase ) class _UpperCAmelCase ( nn.Module ): def __init__( self : List[str] , _lowercase : int ): super().__init__() __UpperCAmelCase = function def a ( self : Optional[int] , _lowercase : List[Any] , *_lowercase : Any ): return self.function(__lowercase , *__lowercase ) class _UpperCAmelCase : a__ : type a__ : int a__ : Dict[str, int] def __init__( self : Union[str, Any] , _lowercase : List[Any] = 1 ): __UpperCAmelCase = dim __UpperCAmelCase = {k: dim * self.args_dim[k] for k in self.args_dim} def a ( self : int , _lowercase : Any ): if self.dim == 1: return self.distribution_class(*__lowercase ) else: return Independent(self.distribution_class(*__lowercase ) , 1 ) def a ( self : Optional[int] , _lowercase : Tuple , _lowercase : List[Any] = None , _lowercase : str = None , ): __UpperCAmelCase = self._base_distribution(__lowercase ) if loc is None and scale is None: return distr else: return AffineTransformed(__lowercase , loc=__lowercase , scale=__lowercase , event_dim=self.event_dim ) @property def a ( self : int ): return () if self.dim == 1 else (self.dim,) @property def a ( self : Any ): return len(self.event_shape ) @property def a ( self : Optional[int] ): return 0.0 def a ( self : List[str] , _lowercase : Tuple ): return ParameterProjection( in_features=__lowercase , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def a ( self : List[str] , *_lowercase : str ): raise NotImplementedError() @staticmethod def a ( _lowercase : Optional[int] ): return (x + torch.sqrt(torch.square(__lowercase ) + 4.0 )) / 2.0 class _UpperCAmelCase ( __A ): a__ : Dict[str, int] = {"df": 1, "loc": 1, "scale": 1} a__ : type = StudentT @classmethod def a ( cls : Any , _lowercase : List[Any] , _lowercase : int , _lowercase : List[Any] ): __UpperCAmelCase = cls.squareplus(__lowercase ).clamp_min(torch.finfo(scale.dtype ).eps ) __UpperCAmelCase = 2.0 + cls.squareplus(__lowercase ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class _UpperCAmelCase ( __A ): a__ : Dict[str, int] = {"loc": 1, "scale": 1} a__ : type = Normal @classmethod def a ( cls : List[str] , _lowercase : Tuple , _lowercase : Union[str, Any] ): __UpperCAmelCase = cls.squareplus(__lowercase ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class _UpperCAmelCase ( __A ): a__ : Dict[str, int] = {"total_count": 1, "logits": 1} a__ : type = NegativeBinomial @classmethod def a ( cls : Optional[int] , _lowercase : Any , _lowercase : Tuple ): __UpperCAmelCase = cls.squareplus(__lowercase ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def a ( self : str , _lowercase : Union[str, Any] ): __UpperCAmelCase , __UpperCAmelCase = distr_args if self.dim == 1: return self.distribution_class(total_count=__lowercase , logits=__lowercase ) else: return Independent(self.distribution_class(total_count=__lowercase , logits=__lowercase ) , 1 ) def a ( self : List[Any] , _lowercase : Optional[Any] , _lowercase : Union[str, Any] = None , _lowercase : str = None ): __UpperCAmelCase , __UpperCAmelCase = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
359
"""simple docstring""" def lowercase__ ( snake_case_ :int , snake_case_ :int , snake_case_ :int ): __UpperCAmelCase = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def lowercase__ ( ): print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
86
0
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> str: if number < 0 or shift_amount < 0: raise ValueError('''both inputs must be positive integers''' ) lowercase__: List[str] = str(bin(__UpperCAmelCase ) ) binary_number += "0" * shift_amount return binary_number def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> str: if number < 0 or shift_amount < 0: raise ValueError('''both inputs must be positive integers''' ) lowercase__: Any = str(bin(__UpperCAmelCase ) )[2:] if shift_amount >= len(__UpperCAmelCase ): return "0b0" lowercase__: List[str] = binary_number[: len(__UpperCAmelCase ) - shift_amount] return "0b" + shifted_binary_number def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> str: if number >= 0: # Get binary representation of positive number lowercase__: Optional[Any] = '''0''' + str(bin(__UpperCAmelCase ) ).strip('''-''' )[2:] else: # Get binary (2's complement) representation of negative number lowercase__: Union[str, Any] = len(bin(__UpperCAmelCase )[3:] ) # Find 2's complement of number lowercase__: Any = bin(abs(__UpperCAmelCase ) - (1 << binary_number_length) )[3:] lowercase__: str = ( '''1''' + '''0''' * (binary_number_length - len(__UpperCAmelCase )) + binary_number ) if shift_amount >= len(__UpperCAmelCase ): return "0b" + binary_number[0] * len(__UpperCAmelCase ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(__UpperCAmelCase ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
177
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> int: if not grid or not grid[0]: raise TypeError('''The grid does not contain the appropriate information''' ) for cell_n in range(1 , len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] lowercase__: Tuple = grid[0] for row_n in range(1 , len(__UpperCAmelCase ) ): lowercase__: Tuple = grid[row_n] lowercase__: Dict = fill_row(__UpperCAmelCase , __UpperCAmelCase ) lowercase__: Union[str, Any] = grid[row_n] return grid[-1][-1] def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> list: current_row[0] += row_above[0] for cell_n in range(1 , len(__UpperCAmelCase ) ): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
177
1
'''simple docstring''' import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class _UpperCAmelCase : def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=13,__SCREAMING_SNAKE_CASE=7,__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE=99,__SCREAMING_SNAKE_CASE=32,__SCREAMING_SNAKE_CASE=5,__SCREAMING_SNAKE_CASE=4,__SCREAMING_SNAKE_CASE=37,__SCREAMING_SNAKE_CASE="gelu",__SCREAMING_SNAKE_CASE=0.1,__SCREAMING_SNAKE_CASE=0.1,__SCREAMING_SNAKE_CASE=1_28,__SCREAMING_SNAKE_CASE=32,__SCREAMING_SNAKE_CASE=16,__SCREAMING_SNAKE_CASE=2,__SCREAMING_SNAKE_CASE=0.02,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=4,__SCREAMING_SNAKE_CASE=None,): '''simple docstring''' __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = seq_length __lowerCAmelCase = is_training __lowerCAmelCase = use_input_mask __lowerCAmelCase = use_token_type_ids __lowerCAmelCase = use_labels __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = num_labels __lowerCAmelCase = num_choices __lowerCAmelCase = scope def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) __lowerCAmelCase = None if self.use_input_mask: __lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase = None if self.use_token_type_ids: __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length],self.type_vocab_size ) __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size],self.type_sequence_label_size ) __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length],self.num_labels ) __lowerCAmelCase = ids_tensor([self.batch_size],self.num_choices ) __lowerCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase__ ( self ): '''simple docstring''' return NezhaConfig( vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,type_vocab_size=self.type_vocab_size,is_decoder=__SCREAMING_SNAKE_CASE,initializer_range=self.initializer_range,) def lowerCamelCase__ ( self ): '''simple docstring''' ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = self.prepare_config_and_inputs() __lowerCAmelCase = True __lowerCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length],vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = NezhaModel(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE,attention_mask=__SCREAMING_SNAKE_CASE,token_type_ids=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE,token_type_ids=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape,(self.batch_size, self.hidden_size) ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = True __lowerCAmelCase = NezhaModel(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __lowerCAmelCase = model( __SCREAMING_SNAKE_CASE,attention_mask=__SCREAMING_SNAKE_CASE,token_type_ids=__SCREAMING_SNAKE_CASE,encoder_hidden_states=__SCREAMING_SNAKE_CASE,encoder_attention_mask=__SCREAMING_SNAKE_CASE,) __lowerCAmelCase = model( __SCREAMING_SNAKE_CASE,attention_mask=__SCREAMING_SNAKE_CASE,token_type_ids=__SCREAMING_SNAKE_CASE,encoder_hidden_states=__SCREAMING_SNAKE_CASE,) __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE,attention_mask=__SCREAMING_SNAKE_CASE,token_type_ids=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape,(self.batch_size, self.hidden_size) ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = NezhaForMaskedLM(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE,attention_mask=__SCREAMING_SNAKE_CASE,token_type_ids=__SCREAMING_SNAKE_CASE,labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = NezhaForNextSentencePrediction(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __lowerCAmelCase = model( __SCREAMING_SNAKE_CASE,attention_mask=__SCREAMING_SNAKE_CASE,token_type_ids=__SCREAMING_SNAKE_CASE,labels=__SCREAMING_SNAKE_CASE,) self.parent.assertEqual(result.logits.shape,(self.batch_size, 2) ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = NezhaForPreTraining(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __lowerCAmelCase = model( __SCREAMING_SNAKE_CASE,attention_mask=__SCREAMING_SNAKE_CASE,token_type_ids=__SCREAMING_SNAKE_CASE,labels=__SCREAMING_SNAKE_CASE,next_sentence_label=__SCREAMING_SNAKE_CASE,) self.parent.assertEqual(result.prediction_logits.shape,(self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape,(self.batch_size, 2) ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = NezhaForQuestionAnswering(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __lowerCAmelCase = model( __SCREAMING_SNAKE_CASE,attention_mask=__SCREAMING_SNAKE_CASE,token_type_ids=__SCREAMING_SNAKE_CASE,start_positions=__SCREAMING_SNAKE_CASE,end_positions=__SCREAMING_SNAKE_CASE,) self.parent.assertEqual(result.start_logits.shape,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape,(self.batch_size, self.seq_length) ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = self.num_labels __lowerCAmelCase = NezhaForSequenceClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE,attention_mask=__SCREAMING_SNAKE_CASE,token_type_ids=__SCREAMING_SNAKE_CASE,labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_labels) ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = self.num_labels __lowerCAmelCase = NezhaForTokenClassification(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE,attention_mask=__SCREAMING_SNAKE_CASE,token_type_ids=__SCREAMING_SNAKE_CASE,labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = self.num_choices __lowerCAmelCase = NezhaForMultipleChoice(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __lowerCAmelCase = input_ids.unsqueeze(1 ).expand(-1,self.num_choices,-1 ).contiguous() __lowerCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1,self.num_choices,-1 ).contiguous() __lowerCAmelCase = input_mask.unsqueeze(1 ).expand(-1,self.num_choices,-1 ).contiguous() __lowerCAmelCase = model( __SCREAMING_SNAKE_CASE,attention_mask=__SCREAMING_SNAKE_CASE,token_type_ids=__SCREAMING_SNAKE_CASE,labels=__SCREAMING_SNAKE_CASE,) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_choices) ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = config_and_inputs __lowerCAmelCase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _UpperCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): a : List[str] =( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) a : Any =( { """feature-extraction""": NezhaModel, """fill-mask""": NezhaForMaskedLM, """question-answering""": NezhaForQuestionAnswering, """text-classification""": NezhaForSequenceClassification, """token-classification""": NezhaForTokenClassification, """zero-shot""": NezhaForSequenceClassification, } if is_torch_available() else {} ) a : Union[str, Any] =True def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=False ): '''simple docstring''' __lowerCAmelCase = super()._prepare_for_class(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,return_labels=__SCREAMING_SNAKE_CASE ) if return_labels: if model_class in get_values(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length),dtype=torch.long,device=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = torch.zeros( self.model_tester.batch_size,dtype=torch.long,device=__SCREAMING_SNAKE_CASE ) return inputs_dict def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = NezhaModelTester(self ) __lowerCAmelCase = ConfigTester(self,config_class=__SCREAMING_SNAKE_CASE,hidden_size=37 ) def lowerCamelCase__ ( self ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = self.model_tester.prepare_config_and_inputs_for_decoder() __lowerCAmelCase = None self.model_tester.create_and_check_model_as_decoder( __SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__SCREAMING_SNAKE_CASE ) @slow def lowerCamelCase__ ( self ): '''simple docstring''' for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = NezhaModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) @slow @require_torch_gpu def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return __lowerCAmelCase = True __lowerCAmelCase = model_class(config=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self._prepare_for_class(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = torch.jit.trace( __SCREAMING_SNAKE_CASE,(inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(__SCREAMING_SNAKE_CASE,os.path.join(__SCREAMING_SNAKE_CASE,"""bert.pt""" ) ) __lowerCAmelCase = torch.jit.load(os.path.join(__SCREAMING_SNAKE_CASE,"""bert.pt""" ),map_location=__SCREAMING_SNAKE_CASE ) loaded(inputs_dict["""input_ids"""].to(__SCREAMING_SNAKE_CASE ),inputs_dict["""attention_mask"""].to(__SCREAMING_SNAKE_CASE ) ) @require_torch class _UpperCAmelCase ( unittest.TestCase ): @slow def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = NezhaModel.from_pretrained("""sijunhe/nezha-cn-base""" ) __lowerCAmelCase = torch.tensor([[0, 1, 2, 3, 4, 5]] ) __lowerCAmelCase = torch.tensor([[0, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE,attention_mask=__SCREAMING_SNAKE_CASE )[0] __lowerCAmelCase = torch.Size((1, 6, 7_68) ) self.assertEqual(output.shape,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = torch.tensor([[[0.0685, 0.2441, 0.1102], [0.0600, 0.1906, 0.1349], [0.0221, 0.0819, 0.0586]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4],__SCREAMING_SNAKE_CASE,atol=1e-4 ) ) @slow def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = NezhaForMaskedLM.from_pretrained("""sijunhe/nezha-cn-base""" ) __lowerCAmelCase = torch.tensor([[0, 1, 2, 3, 4, 5]] ) __lowerCAmelCase = torch.tensor([[1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE,attention_mask=__SCREAMING_SNAKE_CASE )[0] __lowerCAmelCase = torch.Size((1, 6, 2_11_28) ) self.assertEqual(output.shape,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = torch.tensor( [[-2.7939, -1.7902, -2.2189], [-2.8585, -1.8908, -2.3723], [-2.6499, -1.7750, -2.2558]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4],__SCREAMING_SNAKE_CASE,atol=1e-4 ) )
357
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _a : List[Any] = {"""configuration_focalnet""": ["""FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FocalNetConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Optional[Any] = [ """FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """FocalNetForImageClassification""", """FocalNetForMaskedImageModeling""", """FocalNetBackbone""", """FocalNetModel""", """FocalNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys _a : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
46
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {} class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : str ="llama" a : List[str] =["past_key_values"] def __init__( self , snake_case__=32_000 , snake_case__=4_096 , snake_case__=11_008 , snake_case__=32 , snake_case__=32 , snake_case__=None , snake_case__="silu" , snake_case__=2_048 , snake_case__=0.02 , snake_case__=1e-6 , snake_case__=True , snake_case__=0 , snake_case__=1 , snake_case__=2 , snake_case__=1 , snake_case__=False , snake_case__=None , **snake_case__ , ): """simple docstring""" lowerCAmelCase : Optional[Any] = vocab_size lowerCAmelCase : str = max_position_embeddings lowerCAmelCase : str = hidden_size lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : Any = num_hidden_layers lowerCAmelCase : List[str] = num_attention_heads # for backward compatibility if num_key_value_heads is None: lowerCAmelCase : Tuple = num_attention_heads lowerCAmelCase : Dict = num_key_value_heads lowerCAmelCase : Optional[Any] = hidden_act lowerCAmelCase : Optional[Any] = initializer_range lowerCAmelCase : Any = rms_norm_eps lowerCAmelCase : List[Any] = pretraining_tp lowerCAmelCase : int = use_cache lowerCAmelCase : List[str] = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , tie_word_embeddings=snake_case__ , **snake_case__ , ) def lowercase__ ( self ): """simple docstring""" if self.rope_scaling is None: return if not isinstance(self.rope_scaling , snake_case__ ) or len(self.rope_scaling ) != 2: raise ValueError( "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, " f"""got {self.rope_scaling}""" ) lowerCAmelCase : Optional[Any] = self.rope_scaling.get("type" , snake_case__ ) lowerCAmelCase : int = self.rope_scaling.get("factor" , snake_case__ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(snake_case__ , snake_case__ ) or rope_scaling_factor <= 1.0: raise ValueError(f"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
108
"""simple docstring""" def _snake_case ( lowercase__ : str , lowercase__ : str ) -> int: '''simple docstring''' if len(lowercase__ ) != len(lowercase__ ): raise ValueError("""String lengths must match!""" ) lowerCAmelCase_ :Optional[int] = 0 for chara, chara in zip(lowercase__ , lowercase__ ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
84
0
from math import factorial def SCREAMING_SNAKE_CASE ( lowercase_ = 100 ) -> int: """simple docstring""" return sum(int(lowercase_ ) for x in str(factorial(lowercase_ ) ) ) if __name__ == "__main__": print(solution(int(input("""Enter the Number: """).strip())))
231
from __future__ import annotations from typing import Any def SCREAMING_SNAKE_CASE ( lowercase_ ) -> None: """simple docstring""" create_state_space_tree(lowercase_ , [] , 0 ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> None: """simple docstring""" if index == len(lowercase_ ): print(lowercase_ ) return create_state_space_tree(lowercase_ , lowercase_ , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(lowercase_ , lowercase_ , index + 1 ) current_subsequence.pop() if __name__ == "__main__": _lowerCamelCase : list[Any] = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(["""A""", """B""", """C"""]) generate_all_subsequences(seq)
231
1
"""simple docstring""" a : Any = { '''a''': '''AAAAA''', '''b''': '''AAAAB''', '''c''': '''AAABA''', '''d''': '''AAABB''', '''e''': '''AABAA''', '''f''': '''AABAB''', '''g''': '''AABBA''', '''h''': '''AABBB''', '''i''': '''ABAAA''', '''j''': '''BBBAA''', '''k''': '''ABAAB''', '''l''': '''ABABA''', '''m''': '''ABABB''', '''n''': '''ABBAA''', '''o''': '''ABBAB''', '''p''': '''ABBBA''', '''q''': '''ABBBB''', '''r''': '''BAAAA''', '''s''': '''BAAAB''', '''t''': '''BAABA''', '''u''': '''BAABB''', '''v''': '''BBBAB''', '''w''': '''BABAA''', '''x''': '''BABAB''', '''y''': '''BABBA''', '''z''': '''BABBB''', ''' ''': ''' ''', } a : List[Any] = {value: key for key, value in encode_dict.items()} def _SCREAMING_SNAKE_CASE ( _lowercase : str ) ->str: '''simple docstring''' a : int = "" for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception("encode() accepts only letters of the alphabet and spaces" ) return encoded def _SCREAMING_SNAKE_CASE ( _lowercase : str ) ->str: '''simple docstring''' if set(_lowercase ) - {"A", "B", " "} != set(): raise Exception("decode() accepts only 'A', 'B' and spaces" ) a : Optional[Any] = "" for word in coded.split(): while len(_lowercase ) != 0: decoded += decode_dict[word[:5]] a : List[Any] = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
105
"""simple docstring""" from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig a : Optional[int] = logging.get_logger(__name__) # General docstring a : Union[str, Any] = '''MobileNetV1Config''' # Base docstring a : str = '''google/mobilenet_v1_1.0_224''' a : str = [1, 1024, 7, 7] # Image classification docstring a : Optional[Any] = '''google/mobilenet_v1_1.0_224''' a : Optional[int] = '''tabby, tabby cat''' a : List[str] = [ '''google/mobilenet_v1_1.0_224''', '''google/mobilenet_v1_0.75_192''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def _SCREAMING_SNAKE_CASE ( _lowercase : List[Any] , _lowercase : str , _lowercase : int=None ) ->int: '''simple docstring''' a : List[Any] = {} if isinstance(_lowercase , _lowercase ): a : Union[str, Any] = model.mobilenet_va else: a : List[str] = model a : Dict = "MobilenetV1/Conv2d_0/" a : Tuple = backbone.conv_stem.convolution.weight a : Dict = backbone.conv_stem.normalization.bias a : Optional[Any] = backbone.conv_stem.normalization.weight a : Optional[Any] = backbone.conv_stem.normalization.running_mean a : Tuple = backbone.conv_stem.normalization.running_var for i in range(13 ): a : List[str] = i + 1 a : Dict = i * 2 a : int = backbone.layer[pt_index] a : List[str] = F"""MobilenetV1/Conv2d_{tf_index}_depthwise/""" a : int = pointer.convolution.weight a : Union[str, Any] = pointer.normalization.bias a : Union[str, Any] = pointer.normalization.weight a : Optional[Any] = pointer.normalization.running_mean a : Dict = pointer.normalization.running_var a : List[Any] = backbone.layer[pt_index + 1] a : Union[str, Any] = F"""MobilenetV1/Conv2d_{tf_index}_pointwise/""" a : Dict = pointer.convolution.weight a : Optional[Any] = pointer.normalization.bias a : Dict = pointer.normalization.weight a : Optional[Any] = pointer.normalization.running_mean a : Optional[Any] = pointer.normalization.running_var if isinstance(_lowercase , _lowercase ): a : Dict = "MobilenetV1/Logits/Conv2d_1c_1x1/" a : Tuple = model.classifier.weight a : Optional[int] = model.classifier.bias return tf_to_pt_map def _SCREAMING_SNAKE_CASE ( _lowercase : Any , _lowercase : List[Any] , _lowercase : Tuple ) ->int: '''simple docstring''' try: import numpy as np import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise # Load weights from TF model a : List[Any] = tf.train.list_variables(_lowercase ) a : Optional[int] = {} for name, shape in init_vars: logger.info(F"""Loading TF weight {name} with shape {shape}""" ) a : Union[str, Any] = tf.train.load_variable(_lowercase , _lowercase ) a : Optional[Any] = array # Build TF to PyTorch weights loading map a : Tuple = _build_tf_to_pytorch_map(_lowercase , _lowercase , _lowercase ) for name, pointer in tf_to_pt_map.items(): logger.info(F"""Importing {name}""" ) if name not in tf_weights: logger.info(F"""{name} not in tf pre-trained weights, skipping""" ) continue a : List[str] = tf_weights[name] if "depthwise_weights" in name: logger.info("Transposing depthwise" ) a : List[Any] = np.transpose(_lowercase , (2, 3, 0, 1) ) elif "weights" in name: logger.info("Transposing" ) if len(pointer.shape ) == 2: # copying into linear layer a : Union[str, Any] = array.squeeze().transpose() else: a : Any = np.transpose(_lowercase , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(F"""Pointer shape {pointer.shape} and array shape {array.shape} mismatched""" ) logger.info(F"""Initialize PyTorch weight {name} {array.shape}""" ) a : str = torch.from_numpy(_lowercase ) tf_weights.pop(_lowercase , _lowercase ) tf_weights.pop(name + "/RMSProp" , _lowercase ) tf_weights.pop(name + "/RMSProp_1" , _lowercase ) tf_weights.pop(name + "/ExponentialMovingAverage" , _lowercase ) logger.info(F"""Weights not copied to PyTorch model: {', '.join(tf_weights.keys() )}""" ) return model def _SCREAMING_SNAKE_CASE ( _lowercase : torch.Tensor , _lowercase : nn.Convad ) ->torch.Tensor: '''simple docstring''' a, a : Any = features.shape[-2:] a, a : Dict = conv_layer.stride a, a : int = conv_layer.kernel_size if in_height % stride_height == 0: a : Tuple = max(kernel_height - stride_height , 0 ) else: a : Optional[Any] = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: a : Optional[Any] = max(kernel_width - stride_width , 0 ) else: a : str = max(kernel_width - (in_width % stride_width) , 0 ) a : Any = pad_along_width // 2 a : List[str] = pad_along_width - pad_left a : List[str] = pad_along_height // 2 a : List[Any] = pad_along_height - pad_top a : int = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(_lowercase , _lowercase , "constant" , 0.0 ) class __UpperCamelCase ( nn.Module ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 1 , lowerCAmelCase__ = 1 , lowerCAmelCase__ = False , lowerCAmelCase__ = True , lowerCAmelCase__ = True , ) -> None: super().__init__() a : str = config if in_channels % groups != 0: raise ValueError(f"""Input channels ({in_channels}) are not divisible by {groups} groups.""" ) if out_channels % groups != 0: raise ValueError(f"""Output channels ({out_channels}) are not divisible by {groups} groups.""" ) a : Optional[int] = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) a : Tuple = nn.Convad( in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , kernel_size=lowerCAmelCase__ , stride=lowerCAmelCase__ , padding=lowerCAmelCase__ , groups=lowerCAmelCase__ , bias=lowerCAmelCase__ , padding_mode="zeros" , ) if use_normalization: a : Optional[int] = nn.BatchNormad( num_features=lowerCAmelCase__ , eps=config.layer_norm_eps , momentum=0.9_997 , affine=lowerCAmelCase__ , track_running_stats=lowerCAmelCase__ , ) else: a : int = None if use_activation: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): a : Optional[int] = ACTaFN[use_activation] elif isinstance(config.hidden_act , lowerCAmelCase__ ): a : Dict = ACTaFN[config.hidden_act] else: a : Union[str, Any] = config.hidden_act else: a : int = None def __a ( self , lowerCAmelCase__ ) -> torch.Tensor: if self.config.tf_padding: a : Union[str, Any] = apply_tf_padding(lowerCAmelCase__ , self.convolution ) a : List[str] = self.convolution(lowerCAmelCase__ ) if self.normalization is not None: a : int = self.normalization(lowerCAmelCase__ ) if self.activation is not None: a : Dict = self.activation(lowerCAmelCase__ ) return features class __UpperCamelCase ( a__ ): lowerCamelCase : List[str] =MobileNetVaConfig lowerCamelCase : str =load_tf_weights_in_mobilenet_va lowerCamelCase : List[str] ="""mobilenet_v1""" lowerCamelCase : Tuple ="""pixel_values""" lowerCamelCase : Optional[Any] =False def __a ( self , lowerCAmelCase__ ) -> None: if isinstance(lowerCAmelCase__ , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(lowerCAmelCase__ , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) a : Optional[Any] = R''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' a : List[str] = R''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( """The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.""" , a__ , ) class __UpperCamelCase ( a__ ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ = True ) -> List[str]: super().__init__(lowerCAmelCase__ ) a : Tuple = config a : Dict = 32 a : Optional[int] = max(int(depth * config.depth_multiplier ) , config.min_depth ) a : Dict = MobileNetVaConvLayer( lowerCAmelCase__ , in_channels=config.num_channels , out_channels=lowerCAmelCase__ , kernel_size=3 , stride=2 , ) a : Dict = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] a : int = nn.ModuleList() for i in range(13 ): a : Optional[Any] = out_channels if strides[i] == 2 or i == 0: depth *= 2 a : List[str] = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( lowerCAmelCase__ , in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , kernel_size=3 , stride=strides[i] , groups=lowerCAmelCase__ , ) ) self.layer.append( MobileNetVaConvLayer( lowerCAmelCase__ , in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , kernel_size=1 , ) ) a : Tuple = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def __a ( self , lowerCAmelCase__ ) -> Optional[Any]: raise NotImplementedError @add_start_docstrings_to_model_forward(lowerCAmelCase__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def __a ( self , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , ) -> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]: a : Dict = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) a : Optional[int] = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values" ) a : List[str] = self.conv_stem(lowerCAmelCase__ ) a : Dict = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): a : List[Any] = layer_module(lowerCAmelCase__ ) if output_hidden_states: a : Optional[Any] = all_hidden_states + (hidden_states,) a : Any = hidden_states if self.pooler is not None: a : Union[str, Any] = torch.flatten(self.pooler(lowerCAmelCase__ ) , start_dim=1 ) else: a : List[Any] = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCAmelCase__ , pooler_output=lowerCAmelCase__ , hidden_states=lowerCAmelCase__ , ) @add_start_docstrings( """ MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ , a__ , ) class __UpperCamelCase ( a__ ): def __init__( self , lowerCAmelCase__ ) -> None: super().__init__(lowerCAmelCase__ ) a : int = config.num_labels a : List[Any] = MobileNetVaModel(lowerCAmelCase__ ) a : List[str] = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head a : Union[str, Any] = nn.Dropout(config.classifier_dropout_prob , inplace=lowerCAmelCase__ ) a : str = nn.Linear(lowerCAmelCase__ , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def __a ( self , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , ) -> Union[tuple, ImageClassifierOutputWithNoAttention]: a : Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict a : Any = self.mobilenet_va(lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , return_dict=lowerCAmelCase__ ) a : Optional[int] = outputs.pooler_output if return_dict else outputs[1] a : Tuple = self.classifier(self.dropout(lowerCAmelCase__ ) ) a : Tuple = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: a : List[Any] = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): a : Any = "single_label_classification" else: a : int = "multi_label_classification" if self.config.problem_type == "regression": a : Tuple = MSELoss() if self.num_labels == 1: a : Dict = loss_fct(logits.squeeze() , labels.squeeze() ) else: a : str = loss_fct(lowerCAmelCase__ , lowerCAmelCase__ ) elif self.config.problem_type == "single_label_classification": a : List[Any] = CrossEntropyLoss() a : Any = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": a : int = BCEWithLogitsLoss() a : Optional[int] = loss_fct(lowerCAmelCase__ , lowerCAmelCase__ ) if not return_dict: a : Optional[Any] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=lowerCAmelCase__ , logits=lowerCAmelCase__ , hidden_states=outputs.hidden_states , )
105
1
import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _UpperCAmelCase : Optional[int] = logging.get_logger(__name__) _UpperCAmelCase : Union[str, Any] = {"""vocab_file""": """sentencepiece.model"""} _UpperCAmelCase : List[Any] = { """vocab_file""": { """google/rembert""": """https://huggingface.co/google/rembert/resolve/main/sentencepiece.model""", }, } _UpperCAmelCase : Optional[Any] = { """google/rembert""": 256, } class lowercase ( lowercase_ ): __SCREAMING_SNAKE_CASE : Tuple = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : List[str] = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , snake_case , snake_case=False , snake_case=True , snake_case=True , snake_case="[CLS]" , snake_case="[SEP]" , snake_case="[UNK]" , snake_case="[SEP]" , snake_case="[PAD]" , snake_case="[CLS]" , snake_case="[MASK]" , **snake_case , ): super().__init__( do_lower_case=snake_case , remove_space=snake_case , keep_accents=snake_case , bos_token=snake_case , eos_token=snake_case , unk_token=snake_case , sep_token=snake_case , pad_token=snake_case , cls_token=snake_case , mask_token=snake_case , **snake_case , ) snake_case_ = do_lower_case snake_case_ = remove_space snake_case_ = keep_accents snake_case_ = vocab_file snake_case_ = spm.SentencePieceProcessor() self.sp_model.Load(snake_case ) @property def a ( self ): return len(self.sp_model ) def a ( self ): snake_case_ = {self.convert_ids_to_tokens(snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): snake_case_ = self.__dict__.copy() snake_case_ = None return state def __setstate__( self , snake_case ): snake_case_ = d snake_case_ = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def a ( self , snake_case , snake_case=False ): snake_case_ = self.sp_model.EncodeAsPieces(snake_case ) return pieces def a ( self , snake_case ): return self.sp_model.PieceToId(snake_case ) def a ( self , snake_case ): return self.sp_model.IdToPiece(snake_case ) def a ( self , snake_case ): snake_case_ = self.sp_model.decode_pieces(snake_case ) return out_string def a ( self , snake_case , snake_case = None ): snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def a ( self , snake_case , snake_case = None , snake_case = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(snake_case )) + [1] + ([0] * len(snake_case )) + [1] return [1] + ([0] * len(snake_case )) + [1] def a ( self , snake_case , snake_case = None ): snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a ( self , snake_case , snake_case = None ): if not os.path.isdir(snake_case ): logger.error('Vocabulary path ({}) should be a directory'.format(snake_case ) ) return snake_case_ = os.path.join( snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case ): copyfile(self.vocab_file , snake_case ) return (out_vocab_file,)
200
from __future__ import annotations def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' snake_case_ = [] create_all_state(1 , UpperCamelCase__ , UpperCamelCase__ , [] , UpperCamelCase__ ) return result def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ): '''simple docstring''' if level == 0: total_list.append(current_list[:] ) return for i in range(UpperCamelCase__ , total_number - level + 2 ): current_list.append(UpperCamelCase__ ) create_all_state(i + 1 , UpperCamelCase__ , level - 1 , UpperCamelCase__ , UpperCamelCase__ ) current_list.pop() def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' for i in total_list: print(*UpperCamelCase__ ) if __name__ == "__main__": _UpperCAmelCase : str = 4 _UpperCAmelCase : Tuple = 2 _UpperCAmelCase : Optional[int] = generate_all_combinations(n, k) print_all_state(total_list)
200
1
'''simple docstring''' import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) __lowercase : Union[str, Any] = '\\n Text data.\n Second line of data.' __lowercase : Optional[int] = 'file' @pytest.fixture(scope='session' ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : Dict ): __a : Optional[int] = tmp_path_factory.mktemp('data' ) / (FILE_PATH + '.zstd') __a : Optional[int] = bytes(_SCREAMING_SNAKE_CASE , 'utf-8' ) with zstd.open(_SCREAMING_SNAKE_CASE , 'wb' ) as f: f.write(_SCREAMING_SNAKE_CASE ) return path @pytest.fixture def lowerCamelCase (_SCREAMING_SNAKE_CASE : int ): with open(os.path.join(tmpfs.local_root_dir , _SCREAMING_SNAKE_CASE ) , 'w' ) as f: f.write(_SCREAMING_SNAKE_CASE ) return FILE_PATH @pytest.mark.parametrize('compression_format' , ['gzip', 'xz', 'zstd'] ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Optional[Any] ): __a : Optional[int] = {'gzip': gz_file, 'xz': xz_file, 'zstd': zstd_path} __a : Optional[int] = input_paths[compression_format] __a : Any = tmp_path / 'cache' __a : int = DownloadConfig(cache_dir=_SCREAMING_SNAKE_CASE , extract_compressed_file=_SCREAMING_SNAKE_CASE ) __a : str = cached_path(_SCREAMING_SNAKE_CASE , download_config=_SCREAMING_SNAKE_CASE ) with open(_SCREAMING_SNAKE_CASE ) as f: __a : int = f.read() with open(_SCREAMING_SNAKE_CASE ) as f: __a : Union[str, Any] = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize('default_extracted' , [True, False] ) @pytest.mark.parametrize('default_cache_dir' , [True, False] ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : List[Any] ): __a : Optional[int] = 'custom_cache' __a : str = 'custom_extracted_dir' __a : Optional[int] = tmp_path / 'custom_extracted_path' if default_extracted: __a : str = ('downloads' if default_cache_dir else custom_cache_dir, 'extracted') else: monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_DIR' , _SCREAMING_SNAKE_CASE ) monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_PATH' , str(_SCREAMING_SNAKE_CASE ) ) __a : Union[str, Any] = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) __a : Optional[int] = xz_file __a : Dict = ( DownloadConfig(extract_compressed_file=_SCREAMING_SNAKE_CASE ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=_SCREAMING_SNAKE_CASE ) ) __a : int = cached_path(_SCREAMING_SNAKE_CASE , download_config=_SCREAMING_SNAKE_CASE ) assert Path(_SCREAMING_SNAKE_CASE ).parent.parts[-2:] == expected def lowerCamelCase (_SCREAMING_SNAKE_CASE : List[str] ): # absolute path __a : List[str] = str(Path(_SCREAMING_SNAKE_CASE ).resolve() ) assert cached_path(_SCREAMING_SNAKE_CASE ) == text_file # relative path __a : List[Any] = str(Path(_SCREAMING_SNAKE_CASE ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(_SCREAMING_SNAKE_CASE ) == text_file def lowerCamelCase (_SCREAMING_SNAKE_CASE : Optional[int] ): # absolute path __a : Any = str(tmp_path.resolve() / '__missing_file__.txt' ) with pytest.raises(_SCREAMING_SNAKE_CASE ): cached_path(_SCREAMING_SNAKE_CASE ) # relative path __a : Tuple = './__missing_file__.txt' with pytest.raises(_SCREAMING_SNAKE_CASE ): cached_path(_SCREAMING_SNAKE_CASE ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : List[Any] ): __a : Tuple = get_from_cache(F"""tmp://{tmpfs_file}""" ) with open(_SCREAMING_SNAKE_CASE ) as f: __a : str = f.read() assert output_file_content == FILE_CONTENT @patch('datasets.config.HF_DATASETS_OFFLINE' , _SCREAMING_SNAKE_CASE ) def lowerCamelCase (): with pytest.raises(_SCREAMING_SNAKE_CASE ): cached_path('https://huggingface.co' ) @patch('datasets.config.HF_DATASETS_OFFLINE' , _SCREAMING_SNAKE_CASE ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : Any ): __a : Tuple = tmp_path_factory.mktemp('data' ) / 'file.html' with pytest.raises(_SCREAMING_SNAKE_CASE ): http_get('https://huggingface.co' , temp_file=_SCREAMING_SNAKE_CASE ) with pytest.raises(_SCREAMING_SNAKE_CASE ): http_head('https://huggingface.co' ) @patch('datasets.config.HF_DATASETS_OFFLINE' , _SCREAMING_SNAKE_CASE ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : Optional[Any] ): __a : Optional[Any] = tmp_path_factory.mktemp('data' ) / 'file.html' with pytest.raises(_SCREAMING_SNAKE_CASE ): ftp_get('ftp://huggingface.co' , temp_file=_SCREAMING_SNAKE_CASE ) with pytest.raises(_SCREAMING_SNAKE_CASE ): ftp_head('ftp://huggingface.co' ) @patch('datasets.config.HF_DATASETS_OFFLINE' , _SCREAMING_SNAKE_CASE ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : Dict ): __a : Union[str, Any] = tmp_path_factory.mktemp('data' ) / 'file.html' with pytest.raises(_SCREAMING_SNAKE_CASE ): fsspec_get('s3://huggingface.co' , temp_file=_SCREAMING_SNAKE_CASE ) with pytest.raises(_SCREAMING_SNAKE_CASE ): fsspec_head('s3://huggingface.co' )
27
"""simple docstring""" from __future__ import annotations import math def _A ( lowercase ): """simple docstring""" if num <= 0: a =f'''{num}: Invalid input, please enter a positive integer.''' raise ValueError(lowercase ) a =[True] * (num + 1) a =[] a =2 a =int(math.sqrt(lowercase ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(lowercase ) # Set multiples of start be False for i in range(start * start , num + 1 , lowercase ): if sieve[i] is True: a =False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(lowercase ) return prime if __name__ == "__main__": print(prime_sieve(int(input("""Enter a positive integer: """).strip())))
81
0
import argparse import os import re import packaging.version lowerCAmelCase : Any = """examples/""" lowerCAmelCase : Tuple = { """examples""": (re.compile(R"""^check_min_version\(\"[^\"]+\"\)\s*$""", re.MULTILINE), """check_min_version(\"VERSION\")\n"""), """init""": (re.compile(R"""^__version__\s+=\s+\"([^\"]+)\"\s*$""", re.MULTILINE), """__version__ = \"VERSION\"\n"""), """setup""": (re.compile(R"""^(\s*)version\s*=\s*\"[^\"]+\",""", re.MULTILINE), R"""\1version=\"VERSION\","""), """doc""": (re.compile(R"""^(\s*)release\s*=\s*\"[^\"]+\"$""", re.MULTILINE), """release = \"VERSION\"\n"""), } lowerCAmelCase : List[Any] = { """init""": """src/transformers/__init__.py""", """setup""": """setup.py""", } lowerCAmelCase : Any = """README.md""" def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): with open(lowercase__ , "r" , encoding="utf-8" , newline="\n" ) as f: SCREAMING_SNAKE_CASE_: Tuple = f.read() SCREAMING_SNAKE_CASE_: Tuple = REPLACE_PATTERNS[pattern] SCREAMING_SNAKE_CASE_: Dict = replace.replace("VERSION" , lowercase__ ) SCREAMING_SNAKE_CASE_: Any = re_pattern.sub(lowercase__ , lowercase__ ) with open(lowercase__ , "w" , encoding="utf-8" , newline="\n" ) as f: f.write(lowercase__ ) def A_ ( _UpperCAmelCase ): for folder, directories, fnames in os.walk(lowercase__ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("research_projects" ) if "legacy" in directories: directories.remove("legacy" ) for fname in fnames: if fname.endswith(".py" ): update_version_in_file(os.path.join(lowercase__ , lowercase__ ) , lowercase__ , pattern="examples" ) def A_ ( _UpperCAmelCase , _UpperCAmelCase=False ): for pattern, fname in REPLACE_FILES.items(): update_version_in_file(lowercase__ , lowercase__ , lowercase__ ) if not patch: update_version_in_examples(lowercase__ ) def A_ ( ): SCREAMING_SNAKE_CASE_: int = """🤗 Transformers currently provides the following architectures""" SCREAMING_SNAKE_CASE_: List[Any] = """1. Want to contribute a new model?""" with open(lowercase__ , "r" , encoding="utf-8" , newline="\n" ) as f: SCREAMING_SNAKE_CASE_: str = f.readlines() # Find the start of the list. SCREAMING_SNAKE_CASE_: Tuple = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 SCREAMING_SNAKE_CASE_: str = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("1." ): SCREAMING_SNAKE_CASE_: List[str] = lines[index].replace( "https://huggingface.co/docs/transformers/main/model_doc" , "https://huggingface.co/docs/transformers/model_doc" , ) index += 1 with open(lowercase__ , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(lowercase__ ) def A_ ( ): with open(REPLACE_FILES["init"] , "r" ) as f: SCREAMING_SNAKE_CASE_: int = f.read() SCREAMING_SNAKE_CASE_: List[Any] = REPLACE_PATTERNS["""init"""][0].search(lowercase__ ).groups()[0] return packaging.version.parse(lowercase__ ) def A_ ( _UpperCAmelCase=False ): SCREAMING_SNAKE_CASE_: Optional[int] = get_version() if patch and default_version.is_devrelease: raise ValueError("Can't create a patch version from the dev branch, checkout a released version!" ) if default_version.is_devrelease: SCREAMING_SNAKE_CASE_: Optional[Any] = default_version.base_version elif patch: SCREAMING_SNAKE_CASE_: Optional[int] = f"{default_version.major}.{default_version.minor}.{default_version.micro + 1}" else: SCREAMING_SNAKE_CASE_: Union[str, Any] = f"{default_version.major}.{default_version.minor + 1}.0" # Now let's ask nicely if that's the right one. SCREAMING_SNAKE_CASE_: Union[str, Any] = input(f"Which version are you releasing? [{default_version}]" ) if len(lowercase__ ) == 0: SCREAMING_SNAKE_CASE_: int = default_version print(f"Updating version to {version}." ) global_version_update(lowercase__ , patch=lowercase__ ) if not patch: print("Cleaning main README, don't forget to run `make fix-copies`." ) clean_main_ref_in_model_list() def A_ ( ): SCREAMING_SNAKE_CASE_: Dict = get_version() SCREAMING_SNAKE_CASE_: Dict = f"{current_version.major}.{current_version.minor + 1}.0.dev0" SCREAMING_SNAKE_CASE_: Union[str, Any] = current_version.base_version # Check with the user we got that right. SCREAMING_SNAKE_CASE_: str = input(f"Which version are we developing now? [{dev_version}]" ) if len(lowercase__ ) == 0: SCREAMING_SNAKE_CASE_: Dict = dev_version print(f"Updating version to {version}." ) global_version_update(lowercase__ ) print("Cleaning main README, don't forget to run `make fix-copies`." ) clean_main_ref_in_model_list() if __name__ == "__main__": lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("""--post_release""", action="""store_true""", help="""Whether this is pre or post release.""") parser.add_argument("""--patch""", action="""store_true""", help="""Whether or not this is a patch release.""") lowerCAmelCase : Any = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("""Nothing to do after a patch :-)""") else: post_release_work()
356
import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class __lowercase ( tf.keras.optimizers.schedules.LearningRateSchedule ): """simple docstring""" def __init__( self : List[Any] , lowerCAmelCase__ : float , lowerCAmelCase__ : Callable , lowerCAmelCase__ : int , lowerCAmelCase__ : float = 1.0 , lowerCAmelCase__ : str = None , ): super().__init__() SCREAMING_SNAKE_CASE_: str = initial_learning_rate SCREAMING_SNAKE_CASE_: Dict = warmup_steps SCREAMING_SNAKE_CASE_: Any = power SCREAMING_SNAKE_CASE_: int = decay_schedule_fn SCREAMING_SNAKE_CASE_: Union[str, Any] = name def __call__( self : Optional[Any] , lowerCAmelCase__ : Any): with tf.name_scope(self.name or "WarmUp") as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. SCREAMING_SNAKE_CASE_: Any = tf.cast(lowerCAmelCase__ , tf.floataa) SCREAMING_SNAKE_CASE_: Optional[Any] = tf.cast(self.warmup_steps , tf.floataa) SCREAMING_SNAKE_CASE_: Optional[int] = global_step_float / warmup_steps_float SCREAMING_SNAKE_CASE_: Union[str, Any] = self.initial_learning_rate * tf.math.pow(lowerCAmelCase__ , self.power) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps) , name=lowerCAmelCase__ , ) def _SCREAMING_SNAKE_CASE ( self : Tuple): return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 0.0 , _UpperCAmelCase = 0.9 , _UpperCAmelCase = 0.9_9_9 , _UpperCAmelCase = 1e-8 , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = 0.0 , _UpperCAmelCase = 1.0 , _UpperCAmelCase = None , ): SCREAMING_SNAKE_CASE_: Optional[int] = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=_UpperCAmelCase , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=_UpperCAmelCase , ) if num_warmup_steps: SCREAMING_SNAKE_CASE_: Tuple = WarmUp( initial_learning_rate=_UpperCAmelCase , decay_schedule_fn=_UpperCAmelCase , warmup_steps=_UpperCAmelCase , ) if weight_decay_rate > 0.0: SCREAMING_SNAKE_CASE_: List[str] = AdamWeightDecay( learning_rate=_UpperCAmelCase , weight_decay_rate=_UpperCAmelCase , beta_a=_UpperCAmelCase , beta_a=_UpperCAmelCase , epsilon=_UpperCAmelCase , clipnorm=_UpperCAmelCase , global_clipnorm=_UpperCAmelCase , exclude_from_weight_decay=["LayerNorm", "layer_norm", "bias"] , include_in_weight_decay=_UpperCAmelCase , ) else: SCREAMING_SNAKE_CASE_: int = tf.keras.optimizers.Adam( learning_rate=_UpperCAmelCase , beta_a=_UpperCAmelCase , beta_a=_UpperCAmelCase , epsilon=_UpperCAmelCase , clipnorm=_UpperCAmelCase , global_clipnorm=_UpperCAmelCase , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class __lowercase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : List[Any] , lowerCAmelCase__ : Union[float, tf.keras.optimizers.schedules.LearningRateSchedule] = 0.001 , lowerCAmelCase__ : float = 0.9 , lowerCAmelCase__ : float = 0.999 , lowerCAmelCase__ : float = 1E-7 , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : float = 0.0 , lowerCAmelCase__ : Optional[List[str]] = None , lowerCAmelCase__ : Optional[List[str]] = None , lowerCAmelCase__ : str = "AdamWeightDecay" , **lowerCAmelCase__ : int , ): super().__init__(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = weight_decay_rate SCREAMING_SNAKE_CASE_: List[Any] = include_in_weight_decay SCREAMING_SNAKE_CASE_: List[Any] = exclude_from_weight_decay @classmethod def _SCREAMING_SNAKE_CASE ( cls : Dict , lowerCAmelCase__ : Dict): SCREAMING_SNAKE_CASE_: List[str] = {"WarmUp": WarmUp} return super(lowerCAmelCase__ , cls).from_config(lowerCAmelCase__ , custom_objects=lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[int]): super(lowerCAmelCase__ , self)._prepare_local(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = tf.constant( self.weight_decay_rate , name="adam_weight_decay_rate") def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Any , lowerCAmelCase__ : Tuple): SCREAMING_SNAKE_CASE_: str = self._do_use_weight_decay(var.name) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]["weight_decay_rate"] , use_locking=self._use_locking , ) return tf.no_op() def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any]=None , **lowerCAmelCase__ : List[str]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = list(zip(*lowerCAmelCase__)) return super(lowerCAmelCase__ , self).apply_gradients(zip(lowerCAmelCase__ , lowerCAmelCase__) , name=lowerCAmelCase__ , **lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Tuple): if apply_state is None: return self._decayed_lr_t[var_dtype], {} SCREAMING_SNAKE_CASE_: Dict = apply_state or {} SCREAMING_SNAKE_CASE_: List[str] = apply_state.get((var_device, var_dtype)) if coefficients is None: SCREAMING_SNAKE_CASE_: Optional[int] = self._fallback_apply_state(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple=None): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = self._get_lr(var.device , var.dtype.base_dtype , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = self._decay_weights_op(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) with tf.control_dependencies([decay]): return super(lowerCAmelCase__ , self)._resource_apply_dense(lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Dict=None): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = self._get_lr(var.device , var.dtype.base_dtype , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = self._decay_weights_op(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) with tf.control_dependencies([decay]): return super(lowerCAmelCase__ , self)._resource_apply_sparse(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_: List[str] = super().get_config() config.update({"weight_decay_rate": self.weight_decay_rate}) return config def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Tuple): if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(lowerCAmelCase__ , lowerCAmelCase__) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(lowerCAmelCase__ , lowerCAmelCase__) is not None: return False return True class __lowercase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Optional[Any]): SCREAMING_SNAKE_CASE_: Any = [] SCREAMING_SNAKE_CASE_: Any = None @property def _SCREAMING_SNAKE_CASE ( self : int): if self._accum_steps is None: SCREAMING_SNAKE_CASE_: Tuple = tf.Variable( tf.constant(0 , dtype=tf.intaa) , trainable=lowerCAmelCase__ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def _SCREAMING_SNAKE_CASE ( self : Tuple): if not self._gradients: raise ValueError("The accumulator should be called first to initialize the gradients") return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self : str , lowerCAmelCase__ : Tuple): if not self._gradients: SCREAMING_SNAKE_CASE_: Optional[Any] = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(lowerCAmelCase__) , trainable=lowerCAmelCase__ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ]) if len(lowerCAmelCase__) != len(self._gradients): raise ValueError(F"Expected {len(self._gradients)} gradients, but got {len(lowerCAmelCase__)}") for accum_gradient, gradient in zip(self._gradients , lowerCAmelCase__): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(lowerCAmelCase__) self._accum_steps.assign_add(1) def _SCREAMING_SNAKE_CASE ( self : int): if not self._gradients: return self._accum_steps.assign(0) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(lowerCAmelCase__))
127
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class __a : def __init__( self : Optional[Any] , __magic_name__ : Tuple , __magic_name__ : Optional[int]=13 , __magic_name__ : str=7 , __magic_name__ : Dict=True , __magic_name__ : Dict=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : Tuple=99 , __magic_name__ : List[str]=32 , __magic_name__ : int=2 , __magic_name__ : List[str]=4 , __magic_name__ : Tuple=37 , __magic_name__ : Dict="gelu" , __magic_name__ : int=0.1 , __magic_name__ : Optional[int]=0.1 , __magic_name__ : Optional[int]=5_12 , __magic_name__ : Tuple=16 , __magic_name__ : Optional[int]=2 , __magic_name__ : Optional[int]=0.0_2 , __magic_name__ : Dict=3 , __magic_name__ : str=4 , __magic_name__ : Optional[Any]=None , __magic_name__ : Any=0 , ) -> Any: """simple docstring""" UpperCAmelCase_ : str = parent UpperCAmelCase_ : List[Any] = batch_size UpperCAmelCase_ : List[Any] = seq_length UpperCAmelCase_ : Dict = is_training UpperCAmelCase_ : Optional[Any] = use_input_mask UpperCAmelCase_ : Tuple = use_token_type_ids UpperCAmelCase_ : int = use_labels UpperCAmelCase_ : Union[str, Any] = vocab_size UpperCAmelCase_ : Union[str, Any] = hidden_size UpperCAmelCase_ : Dict = num_hidden_layers UpperCAmelCase_ : Any = num_attention_heads UpperCAmelCase_ : Any = intermediate_size UpperCAmelCase_ : Dict = hidden_act UpperCAmelCase_ : Tuple = hidden_dropout_prob UpperCAmelCase_ : List[Any] = attention_probs_dropout_prob UpperCAmelCase_ : str = max_position_embeddings UpperCAmelCase_ : str = type_vocab_size UpperCAmelCase_ : List[str] = type_sequence_label_size UpperCAmelCase_ : Tuple = initializer_range UpperCAmelCase_ : str = num_labels UpperCAmelCase_ : Tuple = num_choices UpperCAmelCase_ : Union[str, Any] = scope UpperCAmelCase_ : Union[str, Any] = projection_dim def UpperCAmelCase__ ( self : Optional[Any] ) -> int: """simple docstring""" UpperCAmelCase_ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : Dict = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py UpperCAmelCase_ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : Tuple = None if self.use_token_type_ids: UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : int = None if self.use_labels: UpperCAmelCase_ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase_ : Optional[Any] = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__magic_name__ , initializer_range=self.initializer_range , ) UpperCAmelCase_ : List[str] = DPRConfig(projection_dim=self.projection_dim , **config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase__ ( self : str , __magic_name__ : str , __magic_name__ : Tuple , __magic_name__ : int , __magic_name__ : List[str] , __magic_name__ : List[str] , __magic_name__ : Tuple , __magic_name__ : Any ) -> List[str]: """simple docstring""" UpperCAmelCase_ : Optional[Any] = TFDPRContextEncoder(config=__magic_name__ ) UpperCAmelCase_ : Tuple = model(__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ ) UpperCAmelCase_ : int = model(__magic_name__ , token_type_ids=__magic_name__ ) UpperCAmelCase_ : Any = model(__magic_name__ ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def UpperCAmelCase__ ( self : List[str] , __magic_name__ : int , __magic_name__ : Dict , __magic_name__ : Tuple , __magic_name__ : Dict , __magic_name__ : str , __magic_name__ : Any , __magic_name__ : Tuple ) -> int: """simple docstring""" UpperCAmelCase_ : List[str] = TFDPRQuestionEncoder(config=__magic_name__ ) UpperCAmelCase_ : Optional[int] = model(__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ ) UpperCAmelCase_ : Optional[int] = model(__magic_name__ , token_type_ids=__magic_name__ ) UpperCAmelCase_ : List[Any] = model(__magic_name__ ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : List[Any] , __magic_name__ : List[Any] , __magic_name__ : Any , __magic_name__ : int , __magic_name__ : Optional[int] , __magic_name__ : Tuple , __magic_name__ : List[Any] ) -> List[str]: """simple docstring""" UpperCAmelCase_ : int = TFDPRReader(config=__magic_name__ ) UpperCAmelCase_ : Tuple = model(__magic_name__ , attention_mask=__magic_name__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,) ) def UpperCAmelCase__ ( self : Optional[Any] ) -> Any: """simple docstring""" UpperCAmelCase_ : List[Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Optional[int] = config_and_inputs UpperCAmelCase_ : Any = {'''input_ids''': input_ids} return config, inputs_dict @require_tf class __a (lowerCamelCase , lowerCamelCase , unittest.TestCase ): __a : Any = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) __a : int = {"feature-extraction": TFDPRQuestionEncoder} if is_tf_available() else {} __a : str = False __a : str = False __a : Dict = False __a : Optional[Any] = False __a : Any = False def UpperCAmelCase__ ( self : int ) -> Tuple: """simple docstring""" UpperCAmelCase_ : Optional[int] = TFDPRModelTester(self ) UpperCAmelCase_ : Dict = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 ) def UpperCAmelCase__ ( self : List[str] ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*__magic_name__ ) def UpperCAmelCase__ ( self : Optional[Any] ) -> Any: """simple docstring""" UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*__magic_name__ ) def UpperCAmelCase__ ( self : int ) -> List[str]: """simple docstring""" UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*__magic_name__ ) @slow def UpperCAmelCase__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Union[str, Any] = TFDPRContextEncoder.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Optional[Any] = TFDPRContextEncoder.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Tuple = TFDPRQuestionEncoder.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Tuple = TFDPRReader.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) @require_tf class __a (unittest.TestCase ): @slow def UpperCAmelCase__ ( self : Optional[int] ) -> str: """simple docstring""" UpperCAmelCase_ : Any = TFDPRQuestionEncoder.from_pretrained('''facebook/dpr-question_encoder-single-nq-base''' ) UpperCAmelCase_ : Optional[int] = tf.constant( [[1_01, 75_92, 10_10, 20_03, 20_26, 38_99, 1_01_40, 10_29, 1_02]] ) # [CLS] hello, is my dog cute? [SEP] UpperCAmelCase_ : List[Any] = model(__magic_name__ )[0] # embedding shape = (1, 768) # compare the actual values for a slice. UpperCAmelCase_ : List[str] = tf.constant( [ [ 0.0_3_2_3_6_2_5_3, 0.1_2_7_5_3_3_3_5, 0.1_6_8_1_8_5_0_9, 0.0_0_2_7_9_7_8_6, 0.3_8_9_6_9_3_3, 0.2_4_2_6_4_9_4_5, 0.2_1_7_8_9_7_1, -0.0_2_3_3_5_2_2_7, -0.0_8_4_8_1_9_5_9, -0.1_4_3_2_4_1_1_7, ] ] ) self.assertTrue(numpy.allclose(output[:, :10].numpy() , expected_slice.numpy() , atol=1E-4 ) )
125
'''simple docstring''' import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : List[Any] ) -> int: UpperCAmelCase_ : List[Any] = checkpoints.load_tax_checkpoint(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Optional[Any] = flatten_dict(SCREAMING_SNAKE_CASE__ ) return flax_params def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int ) -> List[str]: UpperCAmelCase_ : Optional[int] = {} UpperCAmelCase_ : List[Any] = { '''token_embedder''': '''embeddings''', '''encoder_norm''': '''layernorm''', '''kernel''': '''weight''', '''.out''': '''.output''', '''scale''': '''weight''', '''embedders_0.pos_embedding''': '''row_embedder.weight''', '''embedders_1.pos_embedding''': '''column_embedder.weight''', } UpperCAmelCase_ : str = { '''query''': '''attention.query''', '''key''': '''attention.key''', '''value''': '''attention.value''', '''output.dense''': '''output''', '''encoder_decoder_attention.o''': '''encoder_decoder_attention.attention.o''', '''pre_self_attention_layer_norm''': '''self_attention.layer_norm''', '''pre_cross_attention_layer_norm''': '''encoder_decoder_attention.layer_norm''', '''mlp.''': '''mlp.DenseReluDense.''', '''pre_mlp_layer_norm''': '''mlp.layer_norm''', '''self_attention.o''': '''self_attention.attention.o''', '''decoder.embeddings.embedding''': '''decoder.embed_tokens.weight''', '''decoder.relpos_bias.rel_embedding''': '''decoder.layer.0.self_attention.attention.relative_attention_bias.weight''', '''decoder.decoder_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.logits_dense.weight''': '''decoder.lm_head.weight''', } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key UpperCAmelCase_ : Dict = '''.'''.join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): UpperCAmelCase_ : Any = new_key.replace(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): UpperCAmelCase_ : int = new_key.replace(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number UpperCAmelCase_ : Any = re.sub(R'''layers_(\d+)''', R'''layer.\1''', SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Any = new_key.replace('''encoder''', '''encoder.encoder''' ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number UpperCAmelCase_ : str = re.sub(R'''layers_(\d+)''', R'''layer.\1''', SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Dict = flax_dict[key] UpperCAmelCase_ : List[str] = {} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): UpperCAmelCase_ : Dict = torch.from_numpy(converted_dict[key].T ) else: UpperCAmelCase_ : List[Any] = torch.from_numpy(converted_dict[key] ) return converted_torch_dict def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Optional[Any], SCREAMING_SNAKE_CASE__ : Tuple, SCREAMING_SNAKE_CASE__ : List[str]=False, SCREAMING_SNAKE_CASE__ : Dict=False ) -> int: UpperCAmelCase_ : Optional[Any] = get_flax_param(SCREAMING_SNAKE_CASE__ ) if not use_large: UpperCAmelCase_ : List[str] = PixaStructVisionConfig() UpperCAmelCase_ : List[str] = PixaStructTextConfig() else: UpperCAmelCase_ : Dict = PixaStructVisionConfig( hidden_size=1536, d_ff=3968, num_attention_heads=24, num_hidden_layers=18 ) UpperCAmelCase_ : Optional[int] = PixaStructTextConfig(hidden_size=1536, d_ff=3968, num_heads=24, num_layers=18 ) UpperCAmelCase_ : List[Any] = PixaStructConfig( vision_config=encoder_config.to_dict(), text_config=decoder_config.to_dict(), is_vqa=SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Optional[int] = PixaStructForConditionalGeneration(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Union[str, Any] = rename_and_convert_flax_params(SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained('''ybelkada/test-pix2struct-tokenizer''' ) UpperCAmelCase_ : Tuple = PixaStructImageProcessor() UpperCAmelCase_ : Optional[int] = PixaStructProcessor(image_processor=SCREAMING_SNAKE_CASE__, tokenizer=SCREAMING_SNAKE_CASE__ ) if use_large: UpperCAmelCase_ : Union[str, Any] = 4096 UpperCAmelCase_ : Union[str, Any] = True # mkdir if needed os.makedirs(SCREAMING_SNAKE_CASE__, exist_ok=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) print('''Model saved in {}'''.format(SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": snake_case_ : List[str] = argparse.ArgumentParser() parser.add_argument("--t5x_checkpoint_path", default=None, type=str, help="Path to the original T5x checkpoint.") parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--use_large", action="store_true", help="Use large model.") parser.add_argument("--is_vqa", action="store_true", help="Use large model.") snake_case_ : Optional[Any] = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
125
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase__ : Tuple = logging.get_logger(__name__) lowercase__ : Union[str, Any] = { '''hustvl/yolos-small''': '''https://huggingface.co/hustvl/yolos-small/resolve/main/config.json''', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''yolos''' def __init__( self , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=[512, 864] , _UpperCAmelCase=16 , _UpperCAmelCase=3 , _UpperCAmelCase=True , _UpperCAmelCase=100 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=1 , _UpperCAmelCase=5 , _UpperCAmelCase=2 , _UpperCAmelCase=5 , _UpperCAmelCase=2 , _UpperCAmelCase=0.1 , **_UpperCAmelCase , ): '''simple docstring''' super().__init__(**_UpperCAmelCase) __A : Optional[int] = hidden_size __A : Optional[Any] = num_hidden_layers __A : Union[str, Any] = num_attention_heads __A : str = intermediate_size __A : Any = hidden_act __A : Any = hidden_dropout_prob __A : Any = attention_probs_dropout_prob __A : Union[str, Any] = initializer_range __A : List[str] = layer_norm_eps __A : Union[str, Any] = image_size __A : Union[str, Any] = patch_size __A : List[str] = num_channels __A : List[Any] = qkv_bias __A : List[str] = num_detection_tokens __A : List[str] = use_mid_position_embeddings __A : str = auxiliary_loss # Hungarian matcher __A : List[str] = class_cost __A : Union[str, Any] = bbox_cost __A : Optional[Any] = giou_cost # Loss coefficients __A : Optional[Any] = bbox_loss_coefficient __A : Optional[Any] = giou_loss_coefficient __A : Tuple = eos_coefficient class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = version.parse('''1.11''' ) @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ]) @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return 1e-4 @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return 12
362
'''simple docstring''' import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset lowercase__ : List[Any] = '''bert-base-cased''' lowercase__ : Union[str, Any] = '''google/pegasus-xsum''' lowercase__ : str = [''' Sam ate lunch today.''', '''Sams lunch ingredients.'''] lowercase__ : Optional[Any] = ['''A very interesting story about what I ate for lunch.''', '''Avocado, celery, turkey, coffee'''] lowercase__ : str = '''patrickvonplaten/t5-tiny-random''' lowercase__ : List[str] = '''sshleifer/bart-tiny-random''' lowercase__ : List[str] = '''sshleifer/tiny-mbart''' lowercase__ : str = '''sshleifer/tiny-marian-en-de''' def _lowerCAmelCase ( __snake_case : Path , __snake_case : list ) -> str: __A : Any = '\n'.join(__snake_case ) Path(__snake_case ).open('w' ).writelines(__snake_case ) def _lowerCAmelCase ( __snake_case : Optional[int] ) -> Tuple: for split in ["train", "val", "test"]: _dump_articles(os.path.join(__snake_case , f'{split}.source' ) , __snake_case ) _dump_articles(os.path.join(__snake_case , f'{split}.target' ) , __snake_case ) return tmp_dir class SCREAMING_SNAKE_CASE (a__ ): @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : str = AutoTokenizer.from_pretrained(_UpperCAmelCase) __A : int = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()) __A : int = max(len(tokenizer.encode(_UpperCAmelCase)) for a in ARTICLES) __A : str = max(len(tokenizer.encode(_UpperCAmelCase)) for a in SUMMARIES) __A : Dict = 4 __A : Optional[Any] = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated __A ,__A : Any = 'ro_RO', 'de_DE' # ignored for all but mbart, but never causes error. __A : List[str] = SeqaSeqDataset( _UpperCAmelCase , data_dir=_UpperCAmelCase , type_path='train' , max_source_length=_UpperCAmelCase , max_target_length=_UpperCAmelCase , src_lang=_UpperCAmelCase , tgt_lang=_UpperCAmelCase , ) __A : Any = DataLoader(_UpperCAmelCase , batch_size=2 , collate_fn=train_dataset.collate_fn) for batch in dataloader: assert isinstance(_UpperCAmelCase , _UpperCAmelCase) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place __A : Optional[Any] = shift_tokens_right(batch['labels'] , tokenizer.pad_token_id) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED]) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : str = AutoTokenizer.from_pretrained(_UpperCAmelCase) __A : Optional[int] = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()) __A : Tuple = max(len(tokenizer.encode(_UpperCAmelCase)) for a in ARTICLES) __A : Any = max(len(tokenizer.encode(_UpperCAmelCase)) for a in SUMMARIES) __A : Optional[int] = 4 __A : Any = LegacySeqaSeqDataset( _UpperCAmelCase , data_dir=_UpperCAmelCase , type_path='train' , max_source_length=20 , max_target_length=_UpperCAmelCase , ) __A : Union[str, Any] = DataLoader(_UpperCAmelCase , batch_size=2 , collate_fn=train_dataset.collate_fn) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = AutoTokenizer.from_pretrained('facebook/mbart-large-cc25') __A : int = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir())) __A : List[str] = tmp_dir.joinpath('train.source').open().readlines() __A : Optional[Any] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir())) pack_data_dir(_UpperCAmelCase , _UpperCAmelCase , 128 , _UpperCAmelCase) __A : Dict = {x.name for x in tmp_dir.iterdir()} __A : Dict = {x.name for x in save_dir.iterdir()} __A : str = save_dir.joinpath('train.source').open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(_UpperCAmelCase) < len(_UpperCAmelCase) assert len(_UpperCAmelCase) == 1 assert len(packed_examples[0]) == sum(len(_UpperCAmelCase) for x in orig_examples) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason='This test requires fairseq') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' if not FAIRSEQ_AVAILABLE: return __A ,__A ,__A : List[Any] = self._get_dataset(max_len=64) __A : Union[str, Any] = 64 __A : List[Any] = ds.make_dynamic_sampler(_UpperCAmelCase , required_batch_size_multiple=_UpperCAmelCase) __A : Union[str, Any] = [len(_UpperCAmelCase) for x in batch_sampler] assert len(set(_UpperCAmelCase)) > 1 # it's not dynamic batch size if every batch is the same length assert sum(_UpperCAmelCase) == len(_UpperCAmelCase) # no dropped or added examples __A : List[Any] = DataLoader(_UpperCAmelCase , batch_sampler=_UpperCAmelCase , collate_fn=ds.collate_fn , num_workers=2) __A : Optional[int] = [] __A : Tuple = [] for batch in data_loader: __A : Optional[int] = batch['input_ids'].shape __A : Any = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple __A : Tuple = np.product(batch['input_ids'].shape) num_src_per_batch.append(_UpperCAmelCase) if num_src_tokens > (max_tokens * 1.1): failures.append(_UpperCAmelCase) assert num_src_per_batch[0] == max(_UpperCAmelCase) if failures: raise AssertionError(F'too many tokens in {len(_UpperCAmelCase)} batches') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A ,__A : Optional[int] = self._get_dataset(max_len=512) __A : Optional[int] = 2 __A : Dict = ds.make_sortish_sampler(_UpperCAmelCase , shuffle=_UpperCAmelCase) __A : Tuple = DataLoader(_UpperCAmelCase , batch_size=_UpperCAmelCase , collate_fn=ds.collate_fn , num_workers=2) __A : Union[str, Any] = DataLoader(_UpperCAmelCase , batch_size=_UpperCAmelCase , collate_fn=ds.collate_fn , num_workers=2 , sampler=_UpperCAmelCase) __A : str = tokenizer.pad_token_id def count_pad_tokens(_UpperCAmelCase , _UpperCAmelCase="input_ids"): return [batch[k].eq(_UpperCAmelCase).sum().item() for batch in data_loader] assert sum(count_pad_tokens(_UpperCAmelCase , k='labels')) < sum(count_pad_tokens(_UpperCAmelCase , k='labels')) assert sum(count_pad_tokens(_UpperCAmelCase)) < sum(count_pad_tokens(_UpperCAmelCase)) assert len(_UpperCAmelCase) == len(_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase=1000 , _UpperCAmelCase=128): '''simple docstring''' if os.getenv('USE_REAL_DATA' , _UpperCAmelCase): __A : Dict = 'examples/seq2seq/wmt_en_ro' __A : Any = max_len * 2 * 64 if not Path(_UpperCAmelCase).joinpath('train.len').exists(): save_len_file(_UpperCAmelCase , _UpperCAmelCase) else: __A : int = 'examples/seq2seq/test_data/wmt_en_ro' __A : Any = max_len * 4 save_len_file(_UpperCAmelCase , _UpperCAmelCase) __A : Tuple = AutoTokenizer.from_pretrained(_UpperCAmelCase) __A : Optional[int] = SeqaSeqDataset( _UpperCAmelCase , data_dir=_UpperCAmelCase , type_path='train' , max_source_length=_UpperCAmelCase , max_target_length=_UpperCAmelCase , n_obs=_UpperCAmelCase , ) return ds, max_tokens, tokenizer def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A ,__A : Tuple = self._get_dataset() __A : Optional[int] = set(DistributedSortishSampler(_UpperCAmelCase , 256 , num_replicas=2 , rank=0 , add_extra_examples=_UpperCAmelCase)) __A : List[str] = set(DistributedSortishSampler(_UpperCAmelCase , 256 , num_replicas=2 , rank=1 , add_extra_examples=_UpperCAmelCase)) assert idsa.intersection(_UpperCAmelCase) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : Union[str, Any] = AutoTokenizer.from_pretrained(_UpperCAmelCase , use_fast=_UpperCAmelCase) if tok_name == MBART_TINY: __A : Dict = SeqaSeqDataset( _UpperCAmelCase , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()) , type_path='train' , max_source_length=4 , max_target_length=8 , src_lang='EN' , tgt_lang='FR' , ) __A : List[Any] = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: __A : Any = SeqaSeqDataset( _UpperCAmelCase , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()) , type_path='train' , max_source_length=4 , max_target_length=8 , ) __A : List[str] = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(_UpperCAmelCase) == 1 if tok_name == BART_TINY else len(_UpperCAmelCase) == 0
190
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase : Any = logging.get_logger(__name__) lowerCamelCase : Optional[Any] = { "facebook/data2vec-text-base": "https://huggingface.co/data2vec/resolve/main/config.json", } class A__ ( A__ ): A__ = 'data2vec-text' def __init__( self : Optional[int] , _a : Tuple=3_0522 , _a : Tuple=768 , _a : List[str]=12 , _a : Optional[Any]=12 , _a : List[Any]=3072 , _a : Union[str, Any]="gelu" , _a : Any=0.1 , _a : Dict=0.1 , _a : List[Any]=512 , _a : Union[str, Any]=2 , _a : int=0.02 , _a : Dict=1e-12 , _a : str=1 , _a : str=0 , _a : Union[str, Any]=2 , _a : str="absolute" , _a : List[Any]=True , _a : Optional[Any]=None , **_a : Optional[int] , ) -> Optional[Any]: '''simple docstring''' super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a ) _SCREAMING_SNAKE_CASE =vocab_size _SCREAMING_SNAKE_CASE =hidden_size _SCREAMING_SNAKE_CASE =num_hidden_layers _SCREAMING_SNAKE_CASE =num_attention_heads _SCREAMING_SNAKE_CASE =hidden_act _SCREAMING_SNAKE_CASE =intermediate_size _SCREAMING_SNAKE_CASE =hidden_dropout_prob _SCREAMING_SNAKE_CASE =attention_probs_dropout_prob _SCREAMING_SNAKE_CASE =max_position_embeddings _SCREAMING_SNAKE_CASE =type_vocab_size _SCREAMING_SNAKE_CASE =initializer_range _SCREAMING_SNAKE_CASE =layer_norm_eps _SCREAMING_SNAKE_CASE =position_embedding_type _SCREAMING_SNAKE_CASE =use_cache _SCREAMING_SNAKE_CASE =classifier_dropout class A__ ( A__ ): @property def A ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": _SCREAMING_SNAKE_CASE ={0: 'batch', 1: 'choice', 2: 'sequence'} else: _SCREAMING_SNAKE_CASE ={0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
47
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase_ : Optional[int] = { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json', 'google/bigbird-roberta-large': 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json', 'google/bigbird-base-trivia-itc': 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json', # See all BigBird models at https://huggingface.co/models?filter=big_bird } class lowercase__ ( _snake_case ): '''simple docstring''' A_ : str = """big_bird""" def __init__( self , __snake_case=5_0358 , __snake_case=768 , __snake_case=12 , __snake_case=12 , __snake_case=3072 , __snake_case="gelu_new" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=4096 , __snake_case=2 , __snake_case=0.02 , __snake_case=1e-12 , __snake_case=True , __snake_case=0 , __snake_case=1 , __snake_case=2 , __snake_case=66 , __snake_case="block_sparse" , __snake_case=True , __snake_case=False , __snake_case=64 , __snake_case=3 , __snake_case=None , **__snake_case , ): super().__init__( pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , sep_token_id=__snake_case , **__snake_case , ) _SCREAMING_SNAKE_CASE : str = vocab_size _SCREAMING_SNAKE_CASE : Union[str, Any] = max_position_embeddings _SCREAMING_SNAKE_CASE : List[str] = hidden_size _SCREAMING_SNAKE_CASE : Union[str, Any] = num_hidden_layers _SCREAMING_SNAKE_CASE : Any = num_attention_heads _SCREAMING_SNAKE_CASE : Optional[int] = intermediate_size _SCREAMING_SNAKE_CASE : List[Any] = hidden_act _SCREAMING_SNAKE_CASE : Optional[int] = hidden_dropout_prob _SCREAMING_SNAKE_CASE : Optional[int] = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE : Tuple = initializer_range _SCREAMING_SNAKE_CASE : Any = type_vocab_size _SCREAMING_SNAKE_CASE : Union[str, Any] = layer_norm_eps _SCREAMING_SNAKE_CASE : List[Any] = use_cache _SCREAMING_SNAKE_CASE : List[Any] = rescale_embeddings _SCREAMING_SNAKE_CASE : Union[str, Any] = attention_type _SCREAMING_SNAKE_CASE : Union[str, Any] = use_bias _SCREAMING_SNAKE_CASE : int = block_size _SCREAMING_SNAKE_CASE : Any = num_random_blocks _SCREAMING_SNAKE_CASE : List[str] = classifier_dropout class lowercase__ ( _snake_case ): '''simple docstring''' @property def UpperCAmelCase_ ( self ): if self.task == "multiple-choice": _SCREAMING_SNAKE_CASE : int = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _SCREAMING_SNAKE_CASE : Optional[int] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
200
0
'''simple docstring''' import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""0.12.2"""): raise Exception("""requires fairseq >= 0.12.2""") if version.parse(fairseq.__version__) > version.parse("""2"""): raise Exception("""requires fairseq < v2""") logging.set_verbosity_info() _a : Tuple = logging.get_logger(__name__) _a : Any = """Hello, World!""" _a : str = """en_XX""" def _lowerCAmelCase ( lowercase , lowercase , lowercase ) -> Tuple: __lowerCAmelCase = Path("""data_bin""" ) __lowerCAmelCase = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(lowercase ).parent ) , checkpoint_file=Path(lowercase ).name , _name="""xmod_base""" , arch="""xmod_base""" , task="""multilingual_masked_lm""" , data_name_or_path=str(lowercase ) , bpe="""sentencepiece""" , sentencepiece_model=str(Path(lowercase ).parent / """sentencepiece.bpe.model""" ) , src_dict=str(data_dir / """dict.txt""" ) , ) xmod.eval() # disable dropout print(lowercase ) __lowerCAmelCase = xmod.model.encoder.sentence_encoder __lowerCAmelCase = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , """bottleneck""" , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: __lowerCAmelCase = xmod.model.classification_heads["""mnli"""].out_proj.weight.shape[0] print("""Our X-MOD config:""" , lowercase ) __lowerCAmelCase = XmodForSequenceClassification(lowercase ) if classification_head else XmodForMaskedLM(lowercase ) model.eval() # Now let's copy all the weights. # Embeddings __lowerCAmelCase = xmod_sent_encoder.embed_tokens.weight __lowerCAmelCase = xmod_sent_encoder.embed_positions.weight __lowerCAmelCase = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. __lowerCAmelCase = xmod_sent_encoder.layernorm_embedding.weight __lowerCAmelCase = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer __lowerCAmelCase = model.roberta.encoder.layer[i] __lowerCAmelCase = xmod_sent_encoder.layers[i] # self attention __lowerCAmelCase = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError("""Dimensions of self-attention weights do not match.""" ) __lowerCAmelCase = xmod_layer.self_attn.q_proj.weight __lowerCAmelCase = xmod_layer.self_attn.q_proj.bias __lowerCAmelCase = xmod_layer.self_attn.k_proj.weight __lowerCAmelCase = xmod_layer.self_attn.k_proj.bias __lowerCAmelCase = xmod_layer.self_attn.v_proj.weight __lowerCAmelCase = xmod_layer.self_attn.v_proj.bias # self-attention output __lowerCAmelCase = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError("""Dimensions of self-attention output weights do not match.""" ) __lowerCAmelCase = xmod_layer.self_attn.out_proj.weight __lowerCAmelCase = xmod_layer.self_attn.out_proj.bias __lowerCAmelCase = xmod_layer.self_attn_layer_norm.weight __lowerCAmelCase = xmod_layer.self_attn_layer_norm.bias # intermediate __lowerCAmelCase = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of intermediate weights do not match.""" ) __lowerCAmelCase = xmod_layer.fca.weight __lowerCAmelCase = xmod_layer.fca.bias # output __lowerCAmelCase = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of feed-forward weights do not match.""" ) __lowerCAmelCase = xmod_layer.fca.weight __lowerCAmelCase = xmod_layer.fca.bias __lowerCAmelCase = xmod_layer.final_layer_norm.weight __lowerCAmelCase = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: __lowerCAmelCase = xmod_layer.adapter_layer_norm.weight __lowerCAmelCase = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError("""Lists of language adapters do not match.""" ) for lang_code, adapter in xmod_layer.adapter_modules.items(): __lowerCAmelCase = bert_output.adapter_modules[lang_code] __lowerCAmelCase = xmod_layer.adapter_modules[lang_code] __lowerCAmelCase = from_adapter.fca.weight __lowerCAmelCase = from_adapter.fca.bias __lowerCAmelCase = from_adapter.fca.weight __lowerCAmelCase = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: __lowerCAmelCase = xmod_sent_encoder.layer_norm.weight __lowerCAmelCase = xmod_sent_encoder.layer_norm.bias if classification_head: __lowerCAmelCase = xmod.model.classification_heads["""mnli"""].dense.weight __lowerCAmelCase = xmod.model.classification_heads["""mnli"""].dense.bias __lowerCAmelCase = xmod.model.classification_heads["""mnli"""].out_proj.weight __lowerCAmelCase = xmod.model.classification_heads["""mnli"""].out_proj.bias else: # LM Head __lowerCAmelCase = xmod.model.encoder.lm_head.dense.weight __lowerCAmelCase = xmod.model.encoder.lm_head.dense.bias __lowerCAmelCase = xmod.model.encoder.lm_head.layer_norm.weight __lowerCAmelCase = xmod.model.encoder.lm_head.layer_norm.bias __lowerCAmelCase = xmod.model.encoder.lm_head.weight __lowerCAmelCase = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. __lowerCAmelCase = xmod.encode(lowercase ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(lowercase ) __lowerCAmelCase = model(lowercase )[0] if classification_head: __lowerCAmelCase = xmod.model.classification_heads["""mnli"""](xmod.extract_features(lowercase ) ) else: __lowerCAmelCase = xmod.model(lowercase , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) __lowerCAmelCase = torch.max(torch.abs(our_output - their_output ) ).item() print(f'max_absolute_diff = {max_absolute_diff}' ) # ~ 1e-7 __lowerCAmelCase = torch.allclose(lowercase , lowercase , atol=1e-3 ) print("""Do both models output the same tensors?""" , """🔥""" if success else """💩""" ) if not success: raise Exception("""Something went wRoNg""" ) Path(lowercase ).mkdir(parents=lowercase , exist_ok=lowercase ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(lowercase ) if __name__ == "__main__": _a : str = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) _a : Tuple = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
46
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _a : Union[str, Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : str = ["""BartphoTokenizer"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys _a : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
46
1
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig a__ : List[Any] = logging.get_logger(__name__) a__ : Optional[Any] = { 'Intel/dpt-large': 'https://huggingface.co/Intel/dpt-large/resolve/main/config.json', # See all DPT models at https://huggingface.co/models?filter=dpt } class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = '''dpt''' def __init__( self , lowercase=7_6_8 , lowercase=1_2 , lowercase=1_2 , lowercase=3_0_7_2 , lowercase="gelu" , lowercase=0.0 , lowercase=0.0 , lowercase=0.02 , lowercase=1E-12 , lowercase=3_8_4 , lowercase=1_6 , lowercase=3 , lowercase=False , lowercase=True , lowercase=[2, 5, 8, 1_1] , lowercase="project" , lowercase=[4, 2, 1, 0.5] , lowercase=[9_6, 1_9_2, 3_8_4, 7_6_8] , lowercase=2_5_6 , lowercase=-1 , lowercase=False , lowercase=True , lowercase=0.4 , lowercase=2_5_5 , lowercase=0.1 , lowercase=[1, 1_0_2_4, 2_4, 2_4] , lowercase=[0, 1] , lowercase=None , **lowercase , ) -> Any: super().__init__(**lowercase ) __UpperCamelCase = hidden_size __UpperCamelCase = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info("""Initializing the config with a `BiT` backbone.""" ) __UpperCamelCase = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, } __UpperCamelCase = BitConfig(**lowercase ) elif isinstance(lowercase , lowercase ): logger.info("""Initializing the config with a `BiT` backbone.""" ) __UpperCamelCase = BitConfig(**lowercase ) elif isinstance(lowercase , lowercase ): __UpperCamelCase = backbone_config else: raise ValueError( f"backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}." ) __UpperCamelCase = backbone_featmap_shape __UpperCamelCase = neck_ignore_stages if readout_type != "project": raise ValueError("""Readout type must be 'project' when using `DPT-hybrid` mode.""" ) else: __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = [] __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = initializer_range __UpperCamelCase = layer_norm_eps __UpperCamelCase = image_size __UpperCamelCase = patch_size __UpperCamelCase = num_channels __UpperCamelCase = qkv_bias __UpperCamelCase = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError("""Readout_type must be one of ['ignore', 'add', 'project']""" ) __UpperCamelCase = readout_type __UpperCamelCase = reassemble_factors __UpperCamelCase = neck_hidden_sizes __UpperCamelCase = fusion_hidden_size __UpperCamelCase = head_in_index __UpperCamelCase = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) __UpperCamelCase = use_auxiliary_head __UpperCamelCase = auxiliary_loss_weight __UpperCamelCase = semantic_loss_ignore_index __UpperCamelCase = semantic_classifier_dropout def __lowerCamelCase ( self ) -> str: __UpperCamelCase = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: __UpperCamelCase = self.backbone_config.to_dict() __UpperCamelCase = self.__class__.model_type return output
349
'''simple docstring''' from datetime import datetime import requests def _lowercase ( __A ): '''simple docstring''' __UpperCamelCase = """https://downloadgram.net/wp-json/wppress/video-downloader/video?url=""" __UpperCamelCase = requests.get(base_url + url ).json()[0]["""urls"""][0]["""src"""] return requests.get(__A ).content if __name__ == "__main__": a__ : int = input('Enter Video/IGTV url: ').strip() a__ : int = f'''{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4''' with open(file_name, 'wb') as fp: fp.write(download_video(url)) print(f'''Done. Video saved to disk as {file_name}.''')
349
1
from decimal import Decimal, getcontext from math import ceil, factorial def lowerCAmelCase_ ( __lowerCAmelCase )-> str: '''simple docstring''' if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError('''Undefined for non-integers''' ) elif precision < 1: raise ValueError('''Undefined for non-natural numbers''' ) UpperCAmelCase : List[Any] =precision UpperCAmelCase : Union[str, Any] =ceil(precision / 14 ) UpperCAmelCase : Dict =42_68_80 * Decimal(1_00_05 ).sqrt() UpperCAmelCase : Dict =1 UpperCAmelCase : List[Any] =13_59_14_09 UpperCAmelCase : str =Decimal(__lowerCAmelCase ) for k in range(1 , __lowerCAmelCase ): UpperCAmelCase : Optional[int] =factorial(6 * k ) // (factorial(3 * k ) * factorial(__lowerCAmelCase ) ** 3) linear_term += 5_45_14_01_34 exponential_term *= -26_25_37_41_26_40_76_80_00 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": __snake_case = 50 print(f'The first {n} digits of pi is: {pi(n)}')
78
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __snake_case = logging.get_logger(__name__) class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : List[str] = ["""pixel_values"""] def __init__( self , snake_case__ = True , snake_case__ = None , snake_case__ = PILImageResampling.BICUBIC , snake_case__ = True , snake_case__ = 1 / 255 , snake_case__ = True , snake_case__ = None , snake_case__ = None , snake_case__ = True , **snake_case__ , ) -> None: '''simple docstring''' super().__init__(**snake_case__ ) UpperCAmelCase : List[str] =size if size is not None else {'''height''': 384, '''width''': 384} UpperCAmelCase : List[str] =get_size_dict(snake_case__ , default_to_square=snake_case__ ) UpperCAmelCase : List[str] =do_resize UpperCAmelCase : Tuple =size UpperCAmelCase : Optional[Any] =resample UpperCAmelCase : Optional[Any] =do_rescale UpperCAmelCase : Dict =rescale_factor UpperCAmelCase : Union[str, Any] =do_normalize UpperCAmelCase : Dict =image_mean if image_mean is not None else OPENAI_CLIP_MEAN UpperCAmelCase : Any =image_std if image_std is not None else OPENAI_CLIP_STD UpperCAmelCase : List[Any] =do_convert_rgb def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ = PILImageResampling.BICUBIC , snake_case__ = None , **snake_case__ , ) -> np.ndarray: '''simple docstring''' UpperCAmelCase : int =get_size_dict(snake_case__ , default_to_square=snake_case__ ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}''' ) UpperCAmelCase : Union[str, Any] =(size['''height'''], size['''width''']) return resize(snake_case__ , size=snake_case__ , resample=snake_case__ , data_format=snake_case__ , **snake_case__ ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ = None , **snake_case__ , ) -> Optional[int]: '''simple docstring''' return rescale(snake_case__ , scale=snake_case__ , data_format=snake_case__ , **snake_case__ ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ = None , **snake_case__ , ) -> np.ndarray: '''simple docstring''' return normalize(snake_case__ , mean=snake_case__ , std=snake_case__ , data_format=snake_case__ , **snake_case__ ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = ChannelDimension.FIRST , **snake_case__ , ) -> PIL.Image.Image: '''simple docstring''' UpperCAmelCase : List[str] =do_resize if do_resize is not None else self.do_resize UpperCAmelCase : Union[str, Any] =resample if resample is not None else self.resample UpperCAmelCase : Any =do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase : int =rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase : Union[str, Any] =do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase : List[str] =image_mean if image_mean is not None else self.image_mean UpperCAmelCase : List[Any] =image_std if image_std is not None else self.image_std UpperCAmelCase : Optional[Any] =do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb UpperCAmelCase : List[Any] =size if size is not None else self.size UpperCAmelCase : Tuple =get_size_dict(snake_case__ , default_to_square=snake_case__ ) UpperCAmelCase : int =make_list_of_images(snake_case__ ) if not valid_images(snake_case__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: UpperCAmelCase : Optional[int] =[convert_to_rgb(snake_case__ ) for image in images] # All transformations expect numpy arrays. UpperCAmelCase : str =[to_numpy_array(snake_case__ ) for image in images] if do_resize: UpperCAmelCase : List[Any] =[self.resize(image=snake_case__ , size=snake_case__ , resample=snake_case__ ) for image in images] if do_rescale: UpperCAmelCase : int =[self.rescale(image=snake_case__ , scale=snake_case__ ) for image in images] if do_normalize: UpperCAmelCase : Dict =[self.normalize(image=snake_case__ , mean=snake_case__ , std=snake_case__ ) for image in images] UpperCAmelCase : Optional[int] =[to_channel_dimension_format(snake_case__ , snake_case__ ) for image in images] UpperCAmelCase : str =BatchFeature(data={'''pixel_values''': images} , tensor_type=snake_case__ ) return encoded_outputs
78
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) a_ : List[str] = { """configuration_swiftformer""": [ """SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SwiftFormerConfig""", """SwiftFormerOnnxConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Tuple = [ """SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """SwiftFormerForImageClassification""", """SwiftFormerModel""", """SwiftFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys a_ : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
55
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class snake_case ( lowercase ): """simple docstring""" _lowerCamelCase = 42 _lowerCamelCase = 42 def __init__( self , UpperCamelCase , UpperCamelCase ): """simple docstring""" super().__init__() self.register_modules(unet=UpperCamelCase , scheduler=UpperCamelCase ) @torch.no_grad() def __call__( self , UpperCamelCase = 1 , UpperCamelCase = 2000 , UpperCamelCase = None , UpperCamelCase = "pil" , UpperCamelCase = True , **UpperCamelCase , ): """simple docstring""" lowerCamelCase_ = self.unet.config.sample_size lowerCamelCase_ = (batch_size, 3, img_size, img_size) lowerCamelCase_ = self.unet lowerCamelCase_ = randn_tensor(UpperCamelCase , generator=UpperCamelCase ) * self.scheduler.init_noise_sigma lowerCamelCase_ = sample.to(self.device ) self.scheduler.set_timesteps(UpperCamelCase ) self.scheduler.set_sigmas(UpperCamelCase ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): lowerCamelCase_ = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): lowerCamelCase_ = self.unet(UpperCamelCase , UpperCamelCase ).sample lowerCamelCase_ = self.scheduler.step_correct(UpperCamelCase , UpperCamelCase , generator=UpperCamelCase ).prev_sample # prediction step lowerCamelCase_ = model(UpperCamelCase , UpperCamelCase ).sample lowerCamelCase_ = self.scheduler.step_pred(UpperCamelCase , UpperCamelCase , UpperCamelCase , generator=UpperCamelCase ) lowerCamelCase_ ,lowerCamelCase_ = output.prev_sample, output.prev_sample_mean lowerCamelCase_ = sample_mean.clamp(0 , 1 ) lowerCamelCase_ = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCamelCase_ = self.numpy_to_pil(UpperCamelCase ) if not return_dict: return (sample,) return ImagePipelineOutput(images=UpperCamelCase )
55
1
"""simple docstring""" def _UpperCAmelCase ( __lowerCamelCase : list , __lowerCamelCase : list , __lowerCamelCase : int ) -> list: _snake_case = len(__lowerCamelCase ) _snake_case = [[0] * n for i in range(__lowerCamelCase )] for i in range(__lowerCamelCase ): _snake_case = y_points[i] for i in range(2 , __lowerCamelCase ): for j in range(__lowerCamelCase , __lowerCamelCase ): _snake_case = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
40
"""simple docstring""" from __future__ import annotations from random import random class lowerCAmelCase__ : def __init__( self : str , _lowerCamelCase : int | None = None ): _snake_case = value _snake_case = random() _snake_case = None _snake_case = None def __repr__( self : int ): from pprint import pformat if self.left is None and self.right is None: return f'''\'{self.value}: {self.prior:.5}\'''' else: return pformat( {f'''{self.value}: {self.prior:.5}''': (self.left, self.right)} , indent=1 ) def __str__( self : Optional[int] ): _snake_case = str(self.value ) + ''' ''' _snake_case = str(self.left or '''''' ) _snake_case = str(self.right or '''''' ) return value + left + right def _UpperCAmelCase ( __lowerCamelCase : Node | None , __lowerCamelCase : int ) -> tuple[Node | None, Node | None]: if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: _snake_case , _snake_case = split(root.left , __lowerCamelCase ) return left, root else: _snake_case , _snake_case = split(root.right , __lowerCamelCase ) return root, right def _UpperCAmelCase ( __lowerCamelCase : Node | None , __lowerCamelCase : Node | None ) -> Node | None: if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: _snake_case = merge(left.right , __lowerCamelCase ) return left else: _snake_case = merge(__lowerCamelCase , right.left ) return right def _UpperCAmelCase ( __lowerCamelCase : Node | None , __lowerCamelCase : int ) -> Node | None: _snake_case = Node(__lowerCamelCase ) _snake_case , _snake_case = split(__lowerCamelCase , __lowerCamelCase ) return merge(merge(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase ) def _UpperCAmelCase ( __lowerCamelCase : Node | None , __lowerCamelCase : int ) -> Node | None: _snake_case , _snake_case = split(__lowerCamelCase , value - 1 ) _snake_case , _snake_case = split(__lowerCamelCase , __lowerCamelCase ) return merge(__lowerCamelCase , __lowerCamelCase ) def _UpperCAmelCase ( __lowerCamelCase : Node | None ) -> None: if not root: # None return else: inorder(root.left ) print(root.value , end=''',''' ) inorder(root.right ) def _UpperCAmelCase ( __lowerCamelCase : Node | None , __lowerCamelCase : str ) -> Node | None: for arg in args.split(): if arg[0] == "+": _snake_case = insert(__lowerCamelCase , int(arg[1:] ) ) elif arg[0] == "-": _snake_case = erase(__lowerCamelCase , int(arg[1:] ) ) else: print('''Unknown command''' ) return root def _UpperCAmelCase ( ) -> None: _snake_case = None print( '''enter numbers to create a tree, + value to add value into treap, ''' '''- value to erase all nodes with value. \'q\' to quit. ''' ) _snake_case = input() while args != "q": _snake_case = interact_treap(__lowerCamelCase , __lowerCamelCase ) print(__lowerCamelCase ) _snake_case = input() print('''good by!''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
40
1
from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class _SCREAMING_SNAKE_CASE : _UpperCamelCase:List[str] _UpperCamelCase:Optional[str] = None # Automatically constructed _UpperCamelCase:ClassVar[str] = "dict" _UpperCamelCase:ClassVar[Any] = None _UpperCamelCase:str = field(default="Translation" , init=a__ , repr=a__) def __call__( self )-> Optional[Any]: return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def _snake_case ( self )-> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value return {k: Value("""string""" ) for k in sorted(self.languages )} @dataclass class _SCREAMING_SNAKE_CASE : _UpperCamelCase:Optional[List] = None _UpperCamelCase:Optional[int] = None _UpperCamelCase:Optional[str] = None # Automatically constructed _UpperCamelCase:ClassVar[str] = "dict" _UpperCamelCase:ClassVar[Any] = None _UpperCamelCase:str = field(default="TranslationVariableLanguages" , init=a__ , repr=a__) def _snake_case ( self )-> Optional[Any]: lowerCamelCase_ =sorted(set(self.languages ) ) if self.languages else None lowerCamelCase_ =len(self.languages ) if self.languages else None def __call__( self )-> Any: return pa.struct({"""language""": pa.list_(pa.string() ), """translation""": pa.list_(pa.string() )} ) def _snake_case ( self , _SCREAMING_SNAKE_CASE )-> Union[str, Any]: lowerCamelCase_ =set(self.languages ) if self.languages and set(lowerCAmelCase__ ) - lang_set: raise ValueError( f'Some languages in example ({", ".join(sorted(set(lowerCAmelCase__ ) - lang_set ) )}) are not in valid set ({", ".join(lowerCAmelCase__ )}).' ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. lowerCamelCase_ =[] for lang, text in translation_dict.items(): if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. lowerCamelCase_ =zip(*sorted(lowerCAmelCase__ ) ) return {"language": languages, "translation": translations} def _snake_case ( self )-> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Sequence, Value return { "language": Sequence(Value("""string""" ) ), "translation": Sequence(Value("""string""" ) ), }
154
"""simple docstring""" import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def _SCREAMING_SNAKE_CASE ( _lowercase : Union[str, Any] ) ->str: '''simple docstring''' a, a : str = image.size a, a : Tuple = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 a : Union[str, Any] = image.resize((w, h) , resample=PIL_INTERPOLATION["lanczos"] ) a : int = np.array(_lowercase ).astype(np.floataa ) / 255.0 a : List[str] = image[None].transpose(0 , 3 , 1 , 2 ) a : Dict = torch.from_numpy(_lowercase ) return 2.0 * image - 1.0 class __UpperCamelCase ( a__ ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) -> str: super().__init__() self.register_modules(vqvae=lowerCAmelCase__ , unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ ) @torch.no_grad() def __call__( self , lowerCAmelCase__ = None , lowerCAmelCase__ = 1 , lowerCAmelCase__ = 100 , lowerCAmelCase__ = 0.0 , lowerCAmelCase__ = None , lowerCAmelCase__ = "pil" , lowerCAmelCase__ = True , ) -> Union[Tuple, ImagePipelineOutput]: if isinstance(lowerCAmelCase__ , PIL.Image.Image ): a : int = 1 elif isinstance(lowerCAmelCase__ , torch.Tensor ): a : str = image.shape[0] else: raise ValueError(f"""`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(lowerCAmelCase__ )}""" ) if isinstance(lowerCAmelCase__ , PIL.Image.Image ): a : Tuple = preprocess(lowerCAmelCase__ ) a, a : Optional[Any] = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image a : Tuple = (batch_size, self.unet.config.in_channels // 2, height, width) a : List[str] = next(self.unet.parameters() ).dtype a : Any = randn_tensor(lowerCAmelCase__ , generator=lowerCAmelCase__ , device=self.device , dtype=lowerCAmelCase__ ) a : Union[str, Any] = image.to(device=self.device , dtype=lowerCAmelCase__ ) # set timesteps and move to the correct device self.scheduler.set_timesteps(lowerCAmelCase__ , device=self.device ) a : int = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler a : str = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] a : str = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) a : List[Any] = {} if accepts_eta: a : Any = eta for t in self.progress_bar(lowerCAmelCase__ ): # concat latents and low resolution image in the channel dimension. a : str = torch.cat([latents, image] , dim=1 ) a : int = self.scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) # predict the noise residual a : Union[str, Any] = self.unet(lowerCAmelCase__ , lowerCAmelCase__ ).sample # compute the previous noisy sample x_t -> x_t-1 a : Tuple = self.scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample # decode the image latents with the VQVAE a : List[Any] = self.vqvae.decode(lowerCAmelCase__ ).sample a : int = torch.clamp(lowerCAmelCase__ , -1.0 , 1.0 ) a : Optional[int] = image / 2 + 0.5 a : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": a : Union[str, Any] = self.numpy_to_pil(lowerCAmelCase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCAmelCase__ )
105
0
from ..utils import DummyObject, requires_backends class _a ( metaclass=snake_case_ ): """simple docstring""" _lowerCamelCase : Union[str, Any] = ['torch', 'transformers', 'onnx'] def __init__( self : List[Any] , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : str ): requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Tuple , *UpperCAmelCase : Tuple , **UpperCAmelCase : Union[str, Any] ): requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Dict , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Tuple ): requires_backends(cls , ["torch", "transformers", "onnx"] ) class _a ( metaclass=snake_case_ ): """simple docstring""" _lowerCamelCase : Tuple = ['torch', 'transformers', 'onnx'] def __init__( self : Optional[Any] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : List[Any] ): requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : List[Any] , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : str ): requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Tuple , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : int ): requires_backends(cls , ["torch", "transformers", "onnx"] ) class _a ( metaclass=snake_case_ ): """simple docstring""" _lowerCamelCase : Any = ['torch', 'transformers', 'onnx'] def __init__( self : Dict , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Optional[int] ): requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Union[str, Any] , *UpperCAmelCase : Tuple , **UpperCAmelCase : Optional[int] ): requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Tuple , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : int ): requires_backends(cls , ["torch", "transformers", "onnx"] ) class _a ( metaclass=snake_case_ ): """simple docstring""" _lowerCamelCase : List[str] = ['torch', 'transformers', 'onnx'] def __init__( self : List[Any] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : int ): requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Any , *UpperCAmelCase : List[Any] , **UpperCAmelCase : str ): requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Optional[int] , *UpperCAmelCase : str , **UpperCAmelCase : int ): requires_backends(cls , ["torch", "transformers", "onnx"] ) class _a ( metaclass=snake_case_ ): """simple docstring""" _lowerCamelCase : Dict = ['torch', 'transformers', 'onnx'] def __init__( self : str , *UpperCAmelCase : int , **UpperCAmelCase : Tuple ): requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Optional[int] , *UpperCAmelCase : str , **UpperCAmelCase : Dict ): requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : int , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : List[str] ): requires_backends(cls , ["torch", "transformers", "onnx"] ) class _a ( metaclass=snake_case_ ): """simple docstring""" _lowerCamelCase : List[Any] = ['torch', 'transformers', 'onnx'] def __init__( self : str , *UpperCAmelCase : str , **UpperCAmelCase : List[Any] ): requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : List[Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : List[Any] ): requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Optional[int] , *UpperCAmelCase : List[str] , **UpperCAmelCase : int ): requires_backends(cls , ["torch", "transformers", "onnx"] )
329
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class _a : """simple docstring""" def __init__( self : str , UpperCAmelCase : Tuple , UpperCAmelCase : List[str]=13 , UpperCAmelCase : Tuple=7 , UpperCAmelCase : int=True , UpperCAmelCase : Dict=True , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : List[str]=True , UpperCAmelCase : Optional[Any]=99 , UpperCAmelCase : str=32 , UpperCAmelCase : Dict=2 , UpperCAmelCase : List[str]=4 , UpperCAmelCase : Optional[int]=37 , UpperCAmelCase : Optional[int]="gelu" , UpperCAmelCase : List[str]=0.1 , UpperCAmelCase : Union[str, Any]=0.1 , UpperCAmelCase : Any=512 , UpperCAmelCase : int=16 , UpperCAmelCase : Any=2 , UpperCAmelCase : Union[str, Any]=0.02 , UpperCAmelCase : Union[str, Any]=3 , UpperCAmelCase : Union[str, Any]=4 , UpperCAmelCase : List[Any]=None , ): A_ = parent A_ = 13 A_ = 7 A_ = True A_ = True A_ = True A_ = True A_ = 99 A_ = 384 A_ = 2 A_ = 4 A_ = 37 A_ = "gelu" A_ = 0.1 A_ = 0.1 A_ = 512 A_ = 16 A_ = 2 A_ = 0.02 A_ = 3 A_ = 4 A_ = 128 A_ = 2 A_ = 9 A_ = 1 A_ = None def __A ( self : Optional[int] ): A_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ = None if self.use_input_mask: A_ = random_attention_mask([self.batch_size, self.seq_length] ) A_ = None if self.use_token_type_ids: A_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A_ = None A_ = None A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ = ids_tensor([self.batch_size] , self.num_choices ) A_ = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __A ( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : int ): A_ = TFConvBertModel(config=UpperCAmelCase ) A_ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} A_ = [input_ids, input_mask] A_ = model(UpperCAmelCase ) A_ = model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : Tuple ): A_ = TFConvBertForMaskedLM(config=UpperCAmelCase ) A_ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } A_ = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self : Dict , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Any , UpperCAmelCase : int ): A_ = self.num_labels A_ = TFConvBertForSequenceClassification(config=UpperCAmelCase ) A_ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } A_ = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self : Any , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : str ): A_ = self.num_choices A_ = TFConvBertForMultipleChoice(config=UpperCAmelCase ) A_ = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) A_ = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) A_ = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) A_ = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } A_ = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __A ( self : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : str ): A_ = self.num_labels A_ = TFConvBertForTokenClassification(config=UpperCAmelCase ) A_ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } A_ = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __A ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : str ): A_ = TFConvBertForQuestionAnswering(config=UpperCAmelCase ) A_ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } A_ = model(UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A ( self : List[str] ): A_ = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) = config_and_inputs A_ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class _a ( snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" _lowerCamelCase : Union[str, Any] = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) _lowerCamelCase : Any = ( { 'feature-extraction': TFConvBertModel, 'fill-mask': TFConvBertForMaskedLM, 'question-answering': TFConvBertForQuestionAnswering, 'text-classification': TFConvBertForSequenceClassification, 'token-classification': TFConvBertForTokenClassification, 'zero-shot': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) _lowerCamelCase : Dict = False _lowerCamelCase : Optional[int] = False _lowerCamelCase : Dict = False def __A ( self : List[str] ): A_ = TFConvBertModelTester(self ) A_ = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 ) def __A ( self : Tuple ): self.config_tester.run_common_tests() def __A ( self : Tuple ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def __A ( self : Dict ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase ) def __A ( self : List[Any] ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase ) def __A ( self : Dict ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase ) def __A ( self : int ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase ) def __A ( self : List[Any] ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase ) @slow def __A ( self : str ): A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = True A_ = True if hasattr(UpperCAmelCase , "use_cache" ): A_ = True A_ = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) A_ = getattr(self.model_tester , "key_length" , UpperCAmelCase ) for model_class in self.all_model_classes: A_ = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) A_ = model_class(UpperCAmelCase ) A_ = len(model(UpperCAmelCase ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCAmelCase , saved_model=UpperCAmelCase ) A_ = os.path.join(UpperCAmelCase , "saved_model" , "1" ) A_ = tf.keras.models.load_model(UpperCAmelCase ) A_ = model(UpperCAmelCase ) if self.is_encoder_decoder: A_ = outputs["encoder_hidden_states"] A_ = outputs["encoder_attentions"] else: A_ = outputs["hidden_states"] A_ = outputs["attentions"] self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) A_ = getattr( self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def __A ( self : List[str] ): A_ = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) self.assertIsNotNone(UpperCAmelCase ) def __A ( self : Any ): A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = True A_ = getattr(self.model_tester , "decoder_seq_length" , self.model_tester.seq_length ) A_ = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) A_ = getattr(self.model_tester , "key_length" , UpperCAmelCase ) A_ = getattr(self.model_tester , "key_length" , UpperCAmelCase ) def check_decoder_attentions_output(UpperCAmelCase : Optional[int] ): A_ = len(UpperCAmelCase ) self.assertEqual(out_len % 2 , 0 ) A_ = outputs.decoder_attentions self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(UpperCAmelCase : Optional[Any] ): A_ = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: A_ = True A_ = False A_ = model_class(UpperCAmelCase ) A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) A_ = len(UpperCAmelCase ) self.assertEqual(config.output_hidden_states , UpperCAmelCase ) check_encoder_attentions_output(UpperCAmelCase ) if self.is_encoder_decoder: A_ = model_class(UpperCAmelCase ) A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) self.assertEqual(config.output_hidden_states , UpperCAmelCase ) check_decoder_attentions_output(UpperCAmelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] A_ = True A_ = model_class(UpperCAmelCase ) A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) self.assertEqual(config.output_hidden_states , UpperCAmelCase ) check_encoder_attentions_output(UpperCAmelCase ) # Check attention is always last and order is fine A_ = True A_ = True A_ = model_class(UpperCAmelCase ) A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(UpperCAmelCase ) ) self.assertEqual(model.config.output_hidden_states , UpperCAmelCase ) check_encoder_attentions_output(UpperCAmelCase ) @require_tf class _a ( unittest.TestCase ): """simple docstring""" @slow def __A ( self : Dict ): A_ = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) A_ = tf.constant([[0, 1, 2, 3, 4, 5]] ) A_ = model(UpperCAmelCase )[0] A_ = [1, 6, 768] self.assertEqual(output.shape , UpperCAmelCase ) A_ = tf.constant( [ [ [-0.03_475_493, -0.4_686_034, -0.30_638_832], [0.22_637_248, -0.26_988_646, -0.7_423_424], [0.10_324_868, -0.45_013_508, -0.58_280_784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase , atol=1E-4 )
329
1
"""simple docstring""" import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class __snake_case ( _a ): a__ = 42 a__ = jnp.floataa a__ = True def lowerCamelCase_ ( self) -> Optional[int]: '''simple docstring''' super().setup() a__: Optional[int] = nn.Dense(5 , dtype=self.dtype) def __call__( self , *lowercase , **lowercase) -> Union[str, Any]: '''simple docstring''' a__: List[str] = super().__call__(*lowercase , **lowercase) a__: str = self.cls(outputs[2]) return outputs[:2] + (cls_out,) class __snake_case ( _a ): a__ = FlaxBigBirdForNaturalQuestionsModule def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Optional[Any]: def cross_entropy(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ): a__: List[str] = logits.shape[-1] a__: Any = (labels[..., None] == jnp.arange(_lowerCAmelCase )[None]).astype('f4' ) a__: Any = jax.nn.log_softmax(_lowerCAmelCase , axis=-1 ) a__: str = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: a__: List[Any] = reduction(_lowerCAmelCase ) return loss a__: int = partial(_lowerCAmelCase , reduction=jnp.mean ) a__: Tuple = cross_entropy(_lowerCAmelCase , _lowerCAmelCase ) a__: int = cross_entropy(_lowerCAmelCase , _lowerCAmelCase ) a__: List[Any] = cross_entropy(_lowerCAmelCase , _lowerCAmelCase ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class __snake_case : a__ = "google/bigbird-roberta-base" a__ = 3000 a__ = 1_0500 a__ = 128 a__ = 3 a__ = 1 a__ = 5 # tx_args a__ = 3e-5 a__ = 0.0 a__ = 2_0000 a__ = 0.0095 a__ = "bigbird-roberta-natural-questions" a__ = "training-expt" a__ = "data/nq-training.jsonl" a__ = "data/nq-validation.jsonl" def lowerCamelCase_ ( self) -> Any: '''simple docstring''' os.makedirs(self.base_dir , exist_ok=lowercase) a__: Tuple = os.path.join(self.base_dir , self.save_dir) a__: int = self.batch_size_per_device * jax.device_count() @dataclass class __snake_case : a__ = 42 a__ = 4096 # no dynamic padding on TPUs def __call__( self , lowercase) -> List[str]: '''simple docstring''' a__: Any = self.collate_fn(lowercase) a__: Dict = jax.tree_util.tree_map(lowercase , lowercase) return batch def lowerCamelCase_ ( self , lowercase) -> Union[str, Any]: '''simple docstring''' a__: Any = self.fetch_inputs(features['input_ids']) a__: Optional[Any] = { 'input_ids': jnp.array(lowercase , dtype=jnp.intaa), 'attention_mask': jnp.array(lowercase , dtype=jnp.intaa), 'start_labels': jnp.array(features['start_token'] , dtype=jnp.intaa), 'end_labels': jnp.array(features['end_token'] , dtype=jnp.intaa), 'pooled_labels': jnp.array(features['category'] , dtype=jnp.intaa), } return batch def lowerCamelCase_ ( self , lowercase) -> List[str]: '''simple docstring''' a__: List[Any] = [self._fetch_inputs(lowercase) for ids in input_ids] return zip(*lowercase) def lowerCamelCase_ ( self , lowercase) -> Tuple: '''simple docstring''' a__: Any = [1 for _ in range(len(lowercase))] while len(lowercase) < self.max_length: input_ids.append(self.pad_id) attention_mask.append(0) return input_ids, attention_mask def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) ->Dict: if seed is not None: a__: Tuple = dataset.shuffle(seed=_lowerCAmelCase ) for i in range(len(_lowerCAmelCase ) // batch_size ): a__: Optional[int] = dataset[i * batch_size : (i + 1) * batch_size] yield dict(_lowerCAmelCase ) @partial(jax.pmap , axis_name='batch' ) def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) ->Optional[Any]: def loss_fn(_SCREAMING_SNAKE_CASE ): a__: Any = model_inputs.pop('start_labels' ) a__: List[str] = model_inputs.pop('end_labels' ) a__: Any = model_inputs.pop('pooled_labels' ) a__: Dict = state.apply_fn(**_lowerCAmelCase , params=_lowerCAmelCase , dropout_rng=_lowerCAmelCase , train=_lowerCAmelCase ) a__: List[Any] = outputs return state.loss_fn( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ) a__: Dict = jax.random.split(_lowerCAmelCase ) a__: Dict = jax.value_and_grad(_lowerCAmelCase ) a__: Dict = grad_fn(state.params ) a__: Optional[Any] = jax.lax.pmean({'loss': loss} , axis_name='batch' ) a__: Tuple = jax.lax.pmean(_lowerCAmelCase , 'batch' ) a__: Tuple = state.apply_gradients(grads=_lowerCAmelCase ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name='batch' ) def __a ( _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) ->Dict: a__: List[str] = model_inputs.pop('start_labels' ) a__: int = model_inputs.pop('end_labels' ) a__: str = model_inputs.pop('pooled_labels' ) a__: Optional[int] = state.apply_fn(**_lowerCAmelCase , params=state.params , train=_lowerCAmelCase ) a__: List[str] = outputs a__: Optional[Any] = state.loss_fn(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) a__: int = jax.lax.pmean({'loss': loss} , axis_name='batch' ) return metrics class __snake_case ( train_state.TrainState ): a__ = struct.field(pytree_node=_a ) @dataclass class __snake_case : a__ = 42 a__ = 42 a__ = 42 a__ = 42 a__ = 42 a__ = 42 a__ = None def lowerCamelCase_ ( self , lowercase , lowercase , lowercase , lowercase=None) -> Dict: '''simple docstring''' a__: Optional[int] = model.params a__: Tuple = TrainState.create( apply_fn=model.__call__ , params=lowercase , tx=lowercase , loss_fn=lowercase , ) if ckpt_dir is not None: a__: Optional[Any] = restore_checkpoint(lowercase , lowercase) a__: List[str] = { 'lr': args.lr, 'init_lr': args.init_lr, 'warmup_steps': args.warmup_steps, 'num_train_steps': num_train_steps, 'weight_decay': args.weight_decay, } a__: str = build_tx(**lowercase) a__: Tuple = train_state.TrainState( step=lowercase , apply_fn=model.__call__ , params=lowercase , tx=lowercase , opt_state=lowercase , ) a__: Optional[int] = args a__: Any = data_collator a__: Union[str, Any] = lr a__: List[Any] = params a__: Tuple = jax_utils.replicate(lowercase) return state def lowerCamelCase_ ( self , lowercase , lowercase , lowercase) -> Optional[int]: '''simple docstring''' a__: str = self.args a__: str = len(lowercase) // args.batch_size a__: List[Any] = jax.random.PRNGKey(0) a__: Tuple = jax.random.split(lowercase , jax.device_count()) for epoch in range(args.max_epochs): a__: Any = jnp.array(0 , dtype=jnp.floataa) a__: List[Any] = get_batched_dataset(lowercase , args.batch_size , seed=lowercase) a__: int = 0 for batch in tqdm(lowercase , total=lowercase , desc=f'Running EPOCH-{epoch}'): a__: Dict = self.data_collator(lowercase) a__: List[Any] = self.train_step_fn(lowercase , lowercase , **lowercase) running_loss += jax_utils.unreplicate(metrics['loss']) i += 1 if i % args.logging_steps == 0: a__: int = jax_utils.unreplicate(state.step) a__: Dict = running_loss.item() / i a__: List[Any] = self.scheduler_fn(state_step - 1) a__: Dict = self.evaluate(lowercase , lowercase) a__: Tuple = { 'step': state_step.item(), 'eval_loss': eval_loss.item(), 'tr_loss': tr_loss, 'lr': lr.item(), } tqdm.write(str(lowercase)) self.logger.log(lowercase , commit=lowercase) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + f'-e{epoch}-s{i}' , state=lowercase) def lowerCamelCase_ ( self , lowercase , lowercase) -> List[Any]: '''simple docstring''' a__: Any = get_batched_dataset(lowercase , self.args.batch_size) a__: Optional[int] = len(lowercase) // self.args.batch_size a__: Union[str, Any] = jnp.array(0 , dtype=jnp.floataa) a__: Optional[int] = 0 for batch in tqdm(lowercase , total=lowercase , desc='Evaluating ... '): a__: int = self.data_collator(lowercase) a__: Optional[int] = self.val_step_fn(lowercase , **lowercase) running_loss += jax_utils.unreplicate(metrics['loss']) i += 1 return running_loss / i def lowerCamelCase_ ( self , lowercase , lowercase) -> List[Any]: '''simple docstring''' a__: int = jax_utils.unreplicate(lowercase) print(f'SAVING CHECKPOINT IN {save_dir}' , end=' ... ') self.model_save_fn(lowercase , params=state.params) with open(os.path.join(lowercase , 'opt_state.msgpack') , 'wb') as f: f.write(to_bytes(state.opt_state)) joblib.dump(self.args , os.path.join(lowercase , 'args.joblib')) joblib.dump(self.data_collator , os.path.join(lowercase , 'data_collator.joblib')) with open(os.path.join(lowercase , 'training_state.json') , 'w') as f: json.dump({'step': state.step.item()} , lowercase) print('DONE') def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->str: print(F'RESTORING CHECKPOINT FROM {save_dir}' , end=' ... ' ) with open(os.path.join(_lowerCAmelCase , 'flax_model.msgpack' ) , 'rb' ) as f: a__: Tuple = from_bytes(state.params , f.read() ) with open(os.path.join(_lowerCAmelCase , 'opt_state.msgpack' ) , 'rb' ) as f: a__: List[str] = from_bytes(state.opt_state , f.read() ) a__: int = joblib.load(os.path.join(_lowerCAmelCase , 'args.joblib' ) ) a__: Optional[Any] = joblib.load(os.path.join(_lowerCAmelCase , 'data_collator.joblib' ) ) with open(os.path.join(_lowerCAmelCase , 'training_state.json' ) , 'r' ) as f: a__: Union[str, Any] = json.load(_lowerCAmelCase ) a__: Tuple = training_state['step'] print('DONE' ) return params, opt_state, step, args, data_collator def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->List[str]: a__: Union[str, Any] = num_train_steps - warmup_steps a__: int = optax.linear_schedule(init_value=_lowerCAmelCase , end_value=_lowerCAmelCase , transition_steps=_lowerCAmelCase ) a__: Optional[Any] = optax.linear_schedule(init_value=_lowerCAmelCase , end_value=1e-7 , transition_steps=_lowerCAmelCase ) a__: int = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Any: def weight_decay_mask(_SCREAMING_SNAKE_CASE ): a__: Tuple = traverse_util.flatten_dict(_lowerCAmelCase ) a__: Any = {k: (v[-1] != 'bias' and v[-2:] != ('LayerNorm', 'scale')) for k, v in params.items()} return traverse_util.unflatten_dict(_lowerCAmelCase ) a__: List[str] = scheduler_fn(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) a__: List[Any] = optax.adamw(learning_rate=_lowerCAmelCase , weight_decay=_lowerCAmelCase , mask=_lowerCAmelCase ) return tx, lr
290
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase_ : def __init__( self , a , a=1_2 , a=7 , a=True , a=True , a=True , a=9_9 , a=3_2 , a=3_2 , a=2 , a=4 , a=3_7 , a=0.1 , a=0.1 , a=5_1_2 , a=0.02 , a=0 , a=None , ) -> Union[str, Any]: lowercase__ : Any = parent lowercase__ : str = batch_size lowercase__ : List[Any] = seq_length lowercase__ : Union[str, Any] = is_training lowercase__ : List[str] = use_input_mask lowercase__ : int = use_labels lowercase__ : List[Any] = vocab_size lowercase__ : str = hidden_size lowercase__ : int = projection_dim lowercase__ : Optional[int] = num_hidden_layers lowercase__ : Any = num_attention_heads lowercase__ : Optional[Any] = intermediate_size lowercase__ : Optional[Any] = dropout lowercase__ : Optional[int] = attention_dropout lowercase__ : Optional[int] = max_position_embeddings lowercase__ : str = initializer_range lowercase__ : Tuple = scope lowercase__ : int = bos_token_id def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ : int = None if self.use_input_mask: lowercase__ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: lowercase__ : int = input_mask.numpy() lowercase__ , lowercase__ : Tuple = input_mask.shape lowercase__ : List[str] = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(a ): lowercase__ : Dict = 1 lowercase__ : Union[str, Any] = 0 lowercase__ : Tuple = self.get_config() return config, input_ids, tf.convert_to_tensor(a ) def _UpperCAmelCase ( self ) -> List[Any]: return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def _UpperCAmelCase ( self , a , a , a ) -> Any: lowercase__ : List[Any] = TFBlipTextModel(config=a ) lowercase__ : Optional[int] = model(a , attention_mask=a , training=a ) lowercase__ : List[str] = model(a , training=a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _UpperCAmelCase ( self ) -> Any: lowercase__ : Optional[Any] = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Any = config_and_inputs lowercase__ : Any = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase_ ( _a , unittest.TestCase): lowerCamelCase__ : Dict = (TFBlipTextModel,) if is_tf_available() else () lowerCamelCase__ : Optional[Any] = False lowerCamelCase__ : List[str] = False lowerCamelCase__ : Any = False def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : Optional[int] = BlipTextModelTester(self ) lowercase__ : int = ConfigTester(self , config_class=a , hidden_size=3_7 ) def _UpperCAmelCase ( self ) -> Tuple: self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> int: lowercase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def _UpperCAmelCase ( self ) -> Optional[Any]: pass def _UpperCAmelCase ( self ) -> Optional[int]: pass @unittest.skip(reason='Blip does not use inputs_embeds' ) def _UpperCAmelCase ( self ) -> List[str]: pass @unittest.skip(reason='BlipTextModel has no base class and is not available in MODEL_MAPPING' ) def _UpperCAmelCase ( self ) -> Dict: pass @unittest.skip(reason='BlipTextModel has no base class and is not available in MODEL_MAPPING' ) def _UpperCAmelCase ( self ) -> str: pass @slow def _UpperCAmelCase ( self ) -> int: for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Any = TFBlipTextModel.from_pretrained(a ) self.assertIsNotNone(a ) def _UpperCAmelCase ( self , a=True ) -> List[str]: super().test_pt_tf_model_equivalence(allow_missing_keys=a )
77
0
"""simple docstring""" import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""0.12.2"""): raise Exception("""requires fairseq >= 0.12.2""") if version.parse(fairseq.__version__) > version.parse("""2"""): raise Exception("""requires fairseq < v2""") logging.set_verbosity_info() __UpperCAmelCase : str = logging.get_logger(__name__) __UpperCAmelCase : str = "Hello, World!" __UpperCAmelCase : List[str] = "en_XX" def lowercase__(A , A , A ) ->int: """simple docstring""" lowercase__ : Any= Path("data_bin" ) lowercase__ : str= FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(UpperCAmelCase_ ).parent ) , checkpoint_file=Path(UpperCAmelCase_ ).name , _name="xmod_base" , arch="xmod_base" , task="multilingual_masked_lm" , data_name_or_path=str(UpperCAmelCase_ ) , bpe="sentencepiece" , sentencepiece_model=str(Path(UpperCAmelCase_ ).parent / "sentencepiece.bpe.model" ) , src_dict=str(data_dir / "dict.txt" ) , ) xmod.eval() # disable dropout print(UpperCAmelCase_ ) lowercase__ : int= xmod.model.encoder.sentence_encoder lowercase__ : Dict= XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , "bottleneck" , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: lowercase__ : Optional[Any]= xmod.model.classification_heads['mnli'].out_proj.weight.shape[0] print("Our X-MOD config:" , UpperCAmelCase_ ) lowercase__ : str= XmodForSequenceClassification(UpperCAmelCase_ ) if classification_head else XmodForMaskedLM(UpperCAmelCase_ ) model.eval() # Now let's copy all the weights. # Embeddings lowercase__ : int= xmod_sent_encoder.embed_tokens.weight lowercase__ : Any= xmod_sent_encoder.embed_positions.weight lowercase__ : int= torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. lowercase__ : Tuple= xmod_sent_encoder.layernorm_embedding.weight lowercase__ : int= xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer lowercase__ : List[str]= model.roberta.encoder.layer[i] lowercase__ : int= xmod_sent_encoder.layers[i] # self attention lowercase__ : List[str]= layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError("Dimensions of self-attention weights do not match." ) lowercase__ : int= xmod_layer.self_attn.q_proj.weight lowercase__ : List[str]= xmod_layer.self_attn.q_proj.bias lowercase__ : List[str]= xmod_layer.self_attn.k_proj.weight lowercase__ : int= xmod_layer.self_attn.k_proj.bias lowercase__ : List[Any]= xmod_layer.self_attn.v_proj.weight lowercase__ : Tuple= xmod_layer.self_attn.v_proj.bias # self-attention output lowercase__ : Any= layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError("Dimensions of self-attention output weights do not match." ) lowercase__ : Tuple= xmod_layer.self_attn.out_proj.weight lowercase__ : List[Any]= xmod_layer.self_attn.out_proj.bias lowercase__ : str= xmod_layer.self_attn_layer_norm.weight lowercase__ : Optional[int]= xmod_layer.self_attn_layer_norm.bias # intermediate lowercase__ : Dict= layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("Dimensions of intermediate weights do not match." ) lowercase__ : Optional[int]= xmod_layer.fca.weight lowercase__ : List[Any]= xmod_layer.fca.bias # output lowercase__ : List[str]= layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("Dimensions of feed-forward weights do not match." ) lowercase__ : str= xmod_layer.fca.weight lowercase__ : Dict= xmod_layer.fca.bias lowercase__ : List[Any]= xmod_layer.final_layer_norm.weight lowercase__ : str= xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: lowercase__ : List[str]= xmod_layer.adapter_layer_norm.weight lowercase__ : List[str]= xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError("Lists of language adapters do not match." ) for lang_code, adapter in xmod_layer.adapter_modules.items(): lowercase__ : Any= bert_output.adapter_modules[lang_code] lowercase__ : Tuple= xmod_layer.adapter_modules[lang_code] lowercase__ : Any= from_adapter.fca.weight lowercase__ : Dict= from_adapter.fca.bias lowercase__ : Optional[Any]= from_adapter.fca.weight lowercase__ : str= from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: lowercase__ : List[str]= xmod_sent_encoder.layer_norm.weight lowercase__ : List[str]= xmod_sent_encoder.layer_norm.bias if classification_head: lowercase__ : List[Any]= xmod.model.classification_heads['mnli'].dense.weight lowercase__ : List[str]= xmod.model.classification_heads['mnli'].dense.bias lowercase__ : Optional[Any]= xmod.model.classification_heads['mnli'].out_proj.weight lowercase__ : List[Any]= xmod.model.classification_heads['mnli'].out_proj.bias else: # LM Head lowercase__ : str= xmod.model.encoder.lm_head.dense.weight lowercase__ : Union[str, Any]= xmod.model.encoder.lm_head.dense.bias lowercase__ : Tuple= xmod.model.encoder.lm_head.layer_norm.weight lowercase__ : Union[str, Any]= xmod.model.encoder.lm_head.layer_norm.bias lowercase__ : Any= xmod.model.encoder.lm_head.weight lowercase__ : str= xmod.model.encoder.lm_head.bias # Let's check that we get the same results. lowercase__ : Dict= xmod.encode(UpperCAmelCase_ ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(UpperCAmelCase_ ) lowercase__ : str= model(UpperCAmelCase_ )[0] if classification_head: lowercase__ : List[str]= xmod.model.classification_heads['mnli'](xmod.extract_features(UpperCAmelCase_ ) ) else: lowercase__ : Optional[Any]= xmod.model(UpperCAmelCase_ , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) lowercase__ : Union[str, Any]= torch.max(torch.abs(our_output - their_output ) ).item() print(f'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 lowercase__ : Optional[Any]= torch.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1e-3 ) print("Do both models output the same tensors?" , "🔥" if success else "💩" ) if not success: raise Exception("Something went wRoNg" ) Path(UpperCAmelCase_ ).mkdir(parents=UpperCAmelCase_ , exist_ok=UpperCAmelCase_ ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCAmelCase_ ) if __name__ == "__main__": __UpperCAmelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) __UpperCAmelCase : List[Any] = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
357
"""simple docstring""" import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): a : Optional[Any] = """pt""" elif is_tf_available(): a : Union[str, Any] = """tf""" else: a : Any = """jax""" class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" __lowerCamelCase = PerceiverTokenizer __lowerCamelCase = False def UpperCAmelCase_ ( self ): '''simple docstring''' super().setUp() lowercase__ : str= PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCAmelCase_ ( self ): '''simple docstring''' return PerceiverTokenizer.from_pretrained("deepmind/language-perceiver" ) def UpperCAmelCase_ ( self , **snake_case__ ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname , **snake_case__ ) def UpperCAmelCase_ ( self , snake_case__ , snake_case__=False , snake_case__=20 , snake_case__=5 ): '''simple docstring''' # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for Perceiver because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. lowercase__ : Union[str, Any]= [] for i in range(len(snake_case__ ) ): try: lowercase__ : Any= tokenizer.decode([i] , clean_up_tokenization_spaces=snake_case__ ) except UnicodeDecodeError: pass toks.append((i, tok) ) lowercase__ : int= list(filter(lambda snake_case__ : re.match(r"^[ a-zA-Z]+$" , t[1] ) , snake_case__ ) ) lowercase__ : Union[str, Any]= list(filter(lambda snake_case__ : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=snake_case__ ) , snake_case__ ) ) if max_length is not None and len(snake_case__ ) > max_length: lowercase__ : int= toks[:max_length] if min_length is not None and len(snake_case__ ) < min_length and len(snake_case__ ) > 0: while len(snake_case__ ) < min_length: lowercase__ : List[str]= toks + toks # toks_str = [t[1] for t in toks] lowercase__ : str= [t[0] for t in toks] # Ensure consistency lowercase__ : Optional[Any]= tokenizer.decode(snake_case__ , clean_up_tokenization_spaces=snake_case__ ) if " " not in output_txt and len(snake_case__ ) > 1: lowercase__ : Dict= ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=snake_case__ ) + " " + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=snake_case__ ) ) if with_prefix_space: lowercase__ : List[Any]= " " + output_txt lowercase__ : Any= tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) return output_txt, output_ids def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Optional[Any]= self.perceiver_tokenizer lowercase__ : Union[str, Any]= "Unicode €." lowercase__ : Tuple= tokenizer(snake_case__ ) lowercase__ : Dict= [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded["input_ids"] , snake_case__ ) # decoding lowercase__ : List[str]= tokenizer.decode(snake_case__ ) self.assertEqual(snake_case__ , "[CLS]Unicode €.[SEP]" ) lowercase__ : List[str]= tokenizer("e è é ê ë" ) lowercase__ : int= [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded["input_ids"] , snake_case__ ) # decoding lowercase__ : Any= tokenizer.decode(snake_case__ ) self.assertEqual(snake_case__ , "[CLS]e è é ê ë[SEP]" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("e è é ê ë" ) ) , "[CLS]e è é ê ë[SEP]" ) def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : str= self.perceiver_tokenizer lowercase__ : Tuple= ["A long paragraph for summarization.", "Another paragraph for summarization."] # fmt: off lowercase__ : List[Any]= [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on lowercase__ : Dict= tokenizer(snake_case__ , padding=snake_case__ , return_tensors=snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) if FRAMEWORK != "jax": lowercase__ : List[Any]= list(batch.input_ids.numpy()[0] ) else: lowercase__ : str= list(batch.input_ids.tolist()[0] ) self.assertListEqual(snake_case__ , snake_case__ ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Optional[Any]= self.perceiver_tokenizer lowercase__ : int= ["A long paragraph for summarization.", "Another paragraph for summarization."] lowercase__ : Union[str, Any]= tokenizer(snake_case__ , padding=snake_case__ , return_tensors=snake_case__ ) # check if input_ids are returned and no decoder_input_ids self.assertIn("input_ids" , snake_case__ ) self.assertIn("attention_mask" , snake_case__ ) self.assertNotIn("decoder_input_ids" , snake_case__ ) self.assertNotIn("decoder_attention_mask" , snake_case__ ) def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Tuple= self.perceiver_tokenizer lowercase__ : int= [ "Summary of the text.", "Another summary.", ] lowercase__ : List[Any]= tokenizer( text_target=snake_case__ , max_length=32 , padding="max_length" , truncation=snake_case__ , return_tensors=snake_case__ ) self.assertEqual(32 , targets["input_ids"].shape[1] ) def UpperCAmelCase_ ( self ): '''simple docstring''' # safety check on max_len default value so we are sure the test works lowercase__ : Union[str, Any]= self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test lowercase__ : List[str]= self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowercase__ : str= tempfile.mkdtemp() lowercase__ : str= " He is very happy, UNwant\u00E9d,running" lowercase__ : int= tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) tokenizer.save_pretrained(snake_case__ ) lowercase__ : List[str]= tokenizer.__class__.from_pretrained(snake_case__ ) lowercase__ : Tuple= after_tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) shutil.rmtree(snake_case__ ) lowercase__ : List[str]= self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowercase__ : Tuple= tempfile.mkdtemp() lowercase__ : List[Any]= " He is very happy, UNwant\u00E9d,running" tokenizer.add_tokens(["bim", "bambam"] ) lowercase__ : Tuple= tokenizer.additional_special_tokens additional_special_tokens.append("new_additional_special_token" ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) lowercase__ : List[str]= tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) tokenizer.save_pretrained(snake_case__ ) lowercase__ : Tuple= tokenizer.__class__.from_pretrained(snake_case__ ) lowercase__ : Tuple= after_tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) self.assertIn("new_additional_special_token" , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) lowercase__ : Tuple= tokenizer.__class__.from_pretrained(snake_case__ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(snake_case__ ) def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Union[str, Any]= [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(snake_case__ ) with open(os.path.join(snake_case__ , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file: lowercase__ : Optional[Any]= json.load(snake_case__ ) with open(os.path.join(snake_case__ , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file: lowercase__ : Optional[Any]= json.load(snake_case__ ) lowercase__ : List[str]= [F'''<extra_id_{i}>''' for i in range(125 )] lowercase__ : Optional[int]= added_tokens_extra_ids + [ "an_additional_special_token" ] lowercase__ : Union[str, Any]= added_tokens_extra_ids + [ "an_additional_special_token" ] with open(os.path.join(snake_case__ , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(snake_case__ , snake_case__ ) with open(os.path.join(snake_case__ , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(snake_case__ , snake_case__ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files lowercase__ : Optional[int]= tokenizer_class.from_pretrained( snake_case__ , ) self.assertIn( "an_additional_special_token" , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ["an_additional_special_token"] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["an_additional_special_token"] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained lowercase__ : int= added_tokens_extra_ids + [AddedToken("a_new_additional_special_token" , lstrip=snake_case__ )] lowercase__ : int= tokenizer_class.from_pretrained( snake_case__ , additional_special_tokens=snake_case__ , ) self.assertIn("a_new_additional_special_token" , tokenizer.additional_special_tokens ) self.assertEqual( ["a_new_additional_special_token"] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["a_new_additional_special_token"] ) ) , ) def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Union[str, Any]= self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ) , "�" ) def UpperCAmelCase_ ( self ): '''simple docstring''' pass def UpperCAmelCase_ ( self ): '''simple docstring''' pass def UpperCAmelCase_ ( self ): '''simple docstring''' pass def UpperCAmelCase_ ( self ): '''simple docstring''' pass def UpperCAmelCase_ ( self ): '''simple docstring''' # The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character # strings and special added tokens as tokens lowercase__ : Optional[int]= self.get_tokenizers(fast=snake_case__ , do_lower_case=snake_case__ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): lowercase__ : Optional[int]= ["[CLS]", "t", "h", "i", "s", " ", "i", "s", " ", "a", " ", "t", "e", "s", "t", "[SEP]"] lowercase__ : Optional[int]= tokenizer.convert_tokens_to_string(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ )
150
0
'''simple docstring''' from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" lowerCamelCase__ = 42 @flax_register_to_config class SCREAMING_SNAKE_CASE( nn.Module , A__ , A__ ): """simple docstring""" lowerCamelCase__ = 32 lowerCamelCase__ = 4 lowerCamelCase__ = 4 lowerCamelCase__ = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) lowerCamelCase__ = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D") lowerCamelCase__ = False lowerCamelCase__ = (320, 640, 1_280, 1_280) lowerCamelCase__ = 2 lowerCamelCase__ = 8 lowerCamelCase__ = None lowerCamelCase__ = 1_280 lowerCamelCase__ = 0.0 lowerCamelCase__ = False lowerCamelCase__ = jnp.floataa lowerCamelCase__ = True lowerCamelCase__ = 0 lowerCamelCase__ = False def A ( self : List[Any] , __snake_case : jax.random.KeyArray ) -> FrozenDict: # init input tensors UpperCAmelCase : List[Any] = (1, self.in_channels, self.sample_size, self.sample_size) UpperCAmelCase : int = jnp.zeros(__snake_case , dtype=jnp.floataa ) UpperCAmelCase : List[Any] = jnp.ones((1,) , dtype=jnp.intaa ) UpperCAmelCase : List[Any] = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = jax.random.split(__snake_case ) UpperCAmelCase : Dict = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(__snake_case , __snake_case , __snake_case , __snake_case )["params"] def A ( self : Tuple ) -> int: UpperCAmelCase : List[str] = self.block_out_channels UpperCAmelCase : Optional[Any] = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( '''At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.''' ) # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. UpperCAmelCase : Union[str, Any] = self.num_attention_heads or self.attention_head_dim # input UpperCAmelCase : Union[str, Any] = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time UpperCAmelCase : Optional[Any] = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) UpperCAmelCase : Optional[Any] = FlaxTimestepEmbedding(__snake_case , dtype=self.dtype ) UpperCAmelCase : Tuple = self.only_cross_attention if isinstance(__snake_case , __snake_case ): UpperCAmelCase : Optional[int] = (only_cross_attention,) * len(self.down_block_types ) if isinstance(__snake_case , __snake_case ): UpperCAmelCase : Optional[int] = (num_attention_heads,) * len(self.down_block_types ) # down UpperCAmelCase : Optional[Any] = [] UpperCAmelCase : str = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types ): UpperCAmelCase : Dict = output_channel UpperCAmelCase : Any = block_out_channels[i] UpperCAmelCase : Optional[int] = i == len(__snake_case ) - 1 if down_block_type == "CrossAttnDownBlock2D": UpperCAmelCase : Tuple = FlaxCrossAttnDownBlockaD( in_channels=__snake_case , out_channels=__snake_case , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: UpperCAmelCase : Any = FlaxDownBlockaD( in_channels=__snake_case , out_channels=__snake_case , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(__snake_case ) UpperCAmelCase : List[Any] = down_blocks # mid UpperCAmelCase : Tuple = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up UpperCAmelCase : Dict = [] UpperCAmelCase : List[Any] = list(reversed(__snake_case ) ) UpperCAmelCase : Optional[int] = list(reversed(__snake_case ) ) UpperCAmelCase : List[Any] = list(reversed(__snake_case ) ) UpperCAmelCase : List[Any] = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types ): UpperCAmelCase : int = output_channel UpperCAmelCase : Any = reversed_block_out_channels[i] UpperCAmelCase : List[Any] = reversed_block_out_channels[min(i + 1 , len(__snake_case ) - 1 )] UpperCAmelCase : Tuple = i == len(__snake_case ) - 1 if up_block_type == "CrossAttnUpBlock2D": UpperCAmelCase : List[str] = FlaxCrossAttnUpBlockaD( in_channels=__snake_case , out_channels=__snake_case , prev_output_channel=__snake_case , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: UpperCAmelCase : List[str] = FlaxUpBlockaD( in_channels=__snake_case , out_channels=__snake_case , prev_output_channel=__snake_case , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(__snake_case ) UpperCAmelCase : int = output_channel UpperCAmelCase : str = up_blocks # out UpperCAmelCase : str = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) UpperCAmelCase : Union[str, Any] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : Tuple , __snake_case : Tuple , __snake_case : List[str] , __snake_case : str , __snake_case : int=None , __snake_case : Optional[int]=None , __snake_case : bool = True , __snake_case : bool = False , ) -> Union[FlaxUNetaDConditionOutput, Tuple]: # 1. time if not isinstance(__snake_case , jnp.ndarray ): UpperCAmelCase : List[str] = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(__snake_case , jnp.ndarray ) and len(timesteps.shape ) == 0: UpperCAmelCase : Union[str, Any] = timesteps.astype(dtype=jnp.floataa ) UpperCAmelCase : Any = jnp.expand_dims(__snake_case , 0 ) UpperCAmelCase : List[Any] = self.time_proj(__snake_case ) UpperCAmelCase : List[str] = self.time_embedding(__snake_case ) # 2. pre-process UpperCAmelCase : List[str] = jnp.transpose(__snake_case , (0, 2, 3, 1) ) UpperCAmelCase : List[str] = self.conv_in(__snake_case ) # 3. down UpperCAmelCase : List[Any] = (sample,) for down_block in self.down_blocks: if isinstance(__snake_case , __snake_case ): UpperCAmelCase , UpperCAmelCase : List[Any] = down_block(__snake_case , __snake_case , __snake_case , deterministic=not train ) else: UpperCAmelCase , UpperCAmelCase : Optional[Any] = down_block(__snake_case , __snake_case , deterministic=not train ) down_block_res_samples += res_samples if down_block_additional_residuals is not None: UpperCAmelCase : List[str] = () for down_block_res_sample, down_block_additional_residual in zip( __snake_case , __snake_case ): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) UpperCAmelCase : str = new_down_block_res_samples # 4. mid UpperCAmelCase : Any = self.mid_block(__snake_case , __snake_case , __snake_case , deterministic=not train ) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: UpperCAmelCase : Tuple = down_block_res_samples[-(self.layers_per_block + 1) :] UpperCAmelCase : int = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(__snake_case , __snake_case ): UpperCAmelCase : Tuple = up_block( __snake_case , temb=__snake_case , encoder_hidden_states=__snake_case , res_hidden_states_tuple=__snake_case , deterministic=not train , ) else: UpperCAmelCase : List[Any] = up_block(__snake_case , temb=__snake_case , res_hidden_states_tuple=__snake_case , deterministic=not train ) # 6. post-process UpperCAmelCase : Optional[Any] = self.conv_norm_out(__snake_case ) UpperCAmelCase : str = nn.silu(__snake_case ) UpperCAmelCase : Optional[Any] = self.conv_out(__snake_case ) UpperCAmelCase : Dict = jnp.transpose(__snake_case , (0, 3, 1, 2) ) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=__snake_case )
23
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" def A ( self : Any ) -> str: UpperCAmelCase : Any = { '''task_specific_params''': { '''summarization''': {'''length_penalty''': 1.0, '''max_length''': 128, '''min_length''': 12, '''num_beams''': 4}, '''summarization_cnn''': {'''length_penalty''': 2.0, '''max_length''': 142, '''min_length''': 56, '''num_beams''': 4}, '''summarization_xsum''': {'''length_penalty''': 1.0, '''max_length''': 62, '''min_length''': 11, '''num_beams''': 6}, } } UpperCAmelCase : int = { '''task_specific_params.summarization.length_penalty''': 1.0, '''task_specific_params.summarization.max_length''': 128, '''task_specific_params.summarization.min_length''': 12, '''task_specific_params.summarization.num_beams''': 4, '''task_specific_params.summarization_cnn.length_penalty''': 2.0, '''task_specific_params.summarization_cnn.max_length''': 142, '''task_specific_params.summarization_cnn.min_length''': 56, '''task_specific_params.summarization_cnn.num_beams''': 4, '''task_specific_params.summarization_xsum.length_penalty''': 1.0, '''task_specific_params.summarization_xsum.max_length''': 62, '''task_specific_params.summarization_xsum.min_length''': 11, '''task_specific_params.summarization_xsum.num_beams''': 6, } self.assertEqual(flatten_dict(__snake_case ) , __snake_case ) def A ( self : int ) -> str: UpperCAmelCase : Any = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(__snake_case ) , x.transpose() ) ) UpperCAmelCase : str = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(__snake_case , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def A ( self : str ) -> Union[str, Any]: UpperCAmelCase : Any = np.random.randn(3 , 4 ) UpperCAmelCase : List[Any] = torch.tensor(__snake_case ) self.assertTrue(np.allclose(transpose(__snake_case ) , transpose(__snake_case ).numpy() ) ) UpperCAmelCase : Tuple = np.random.randn(3 , 4 , 5 ) UpperCAmelCase : Any = torch.tensor(__snake_case ) self.assertTrue(np.allclose(transpose(__snake_case , axes=(1, 2, 0) ) , transpose(__snake_case , axes=(1, 2, 0) ).numpy() ) ) @require_tf def A ( self : List[str] ) -> Optional[Any]: UpperCAmelCase : int = np.random.randn(3 , 4 ) UpperCAmelCase : Optional[int] = tf.constant(__snake_case ) self.assertTrue(np.allclose(transpose(__snake_case ) , transpose(__snake_case ).numpy() ) ) UpperCAmelCase : Union[str, Any] = np.random.randn(3 , 4 , 5 ) UpperCAmelCase : str = tf.constant(__snake_case ) self.assertTrue(np.allclose(transpose(__snake_case , axes=(1, 2, 0) ) , transpose(__snake_case , axes=(1, 2, 0) ).numpy() ) ) @require_flax def A ( self : Tuple ) -> Any: UpperCAmelCase : List[Any] = np.random.randn(3 , 4 ) UpperCAmelCase : List[str] = jnp.array(__snake_case ) self.assertTrue(np.allclose(transpose(__snake_case ) , np.asarray(transpose(__snake_case ) ) ) ) UpperCAmelCase : Dict = np.random.randn(3 , 4 , 5 ) UpperCAmelCase : int = jnp.array(__snake_case ) self.assertTrue(np.allclose(transpose(__snake_case , axes=(1, 2, 0) ) , np.asarray(transpose(__snake_case , axes=(1, 2, 0) ) ) ) ) def A ( self : Optional[Any] ) -> Any: UpperCAmelCase : Union[str, Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(__snake_case , (4, 3) ) , np.reshape(__snake_case , (4, 3) ) ) ) UpperCAmelCase : Union[str, Any] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(__snake_case , (12, 5) ) , np.reshape(__snake_case , (12, 5) ) ) ) @require_torch def A ( self : Union[str, Any] ) -> int: UpperCAmelCase : Dict = np.random.randn(3 , 4 ) UpperCAmelCase : Optional[Any] = torch.tensor(__snake_case ) self.assertTrue(np.allclose(reshape(__snake_case , (4, 3) ) , reshape(__snake_case , (4, 3) ).numpy() ) ) UpperCAmelCase : List[str] = np.random.randn(3 , 4 , 5 ) UpperCAmelCase : List[Any] = torch.tensor(__snake_case ) self.assertTrue(np.allclose(reshape(__snake_case , (12, 5) ) , reshape(__snake_case , (12, 5) ).numpy() ) ) @require_tf def A ( self : int ) -> List[str]: UpperCAmelCase : List[Any] = np.random.randn(3 , 4 ) UpperCAmelCase : List[str] = tf.constant(__snake_case ) self.assertTrue(np.allclose(reshape(__snake_case , (4, 3) ) , reshape(__snake_case , (4, 3) ).numpy() ) ) UpperCAmelCase : List[Any] = np.random.randn(3 , 4 , 5 ) UpperCAmelCase : Optional[Any] = tf.constant(__snake_case ) self.assertTrue(np.allclose(reshape(__snake_case , (12, 5) ) , reshape(__snake_case , (12, 5) ).numpy() ) ) @require_flax def A ( self : Any ) -> Dict: UpperCAmelCase : Tuple = np.random.randn(3 , 4 ) UpperCAmelCase : Union[str, Any] = jnp.array(__snake_case ) self.assertTrue(np.allclose(reshape(__snake_case , (4, 3) ) , np.asarray(reshape(__snake_case , (4, 3) ) ) ) ) UpperCAmelCase : Any = np.random.randn(3 , 4 , 5 ) UpperCAmelCase : Optional[Any] = jnp.array(__snake_case ) self.assertTrue(np.allclose(reshape(__snake_case , (12, 5) ) , np.asarray(reshape(__snake_case , (12, 5) ) ) ) ) def A ( self : List[Any] ) -> List[Any]: UpperCAmelCase : Union[str, Any] = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(__snake_case ) , np.squeeze(__snake_case ) ) ) UpperCAmelCase : str = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(__snake_case , axis=2 ) , np.squeeze(__snake_case , axis=2 ) ) ) @require_torch def A ( self : Optional[int] ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = np.random.randn(1 , 3 , 4 ) UpperCAmelCase : List[str] = torch.tensor(__snake_case ) self.assertTrue(np.allclose(squeeze(__snake_case ) , squeeze(__snake_case ).numpy() ) ) UpperCAmelCase : Any = np.random.randn(1 , 4 , 1 , 5 ) UpperCAmelCase : str = torch.tensor(__snake_case ) self.assertTrue(np.allclose(squeeze(__snake_case , axis=2 ) , squeeze(__snake_case , axis=2 ).numpy() ) ) @require_tf def A ( self : Optional[Any] ) -> Dict: UpperCAmelCase : int = np.random.randn(1 , 3 , 4 ) UpperCAmelCase : Optional[int] = tf.constant(__snake_case ) self.assertTrue(np.allclose(squeeze(__snake_case ) , squeeze(__snake_case ).numpy() ) ) UpperCAmelCase : List[str] = np.random.randn(1 , 4 , 1 , 5 ) UpperCAmelCase : Optional[int] = tf.constant(__snake_case ) self.assertTrue(np.allclose(squeeze(__snake_case , axis=2 ) , squeeze(__snake_case , axis=2 ).numpy() ) ) @require_flax def A ( self : List[Any] ) -> Dict: UpperCAmelCase : Optional[int] = np.random.randn(1 , 3 , 4 ) UpperCAmelCase : int = jnp.array(__snake_case ) self.assertTrue(np.allclose(squeeze(__snake_case ) , np.asarray(squeeze(__snake_case ) ) ) ) UpperCAmelCase : str = np.random.randn(1 , 4 , 1 , 5 ) UpperCAmelCase : int = jnp.array(__snake_case ) self.assertTrue(np.allclose(squeeze(__snake_case , axis=2 ) , np.asarray(squeeze(__snake_case , axis=2 ) ) ) ) def A ( self : Optional[Any] ) -> int: UpperCAmelCase : Optional[Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(__snake_case , axis=1 ) , np.expand_dims(__snake_case , axis=1 ) ) ) @require_torch def A ( self : List[str] ) -> Tuple: UpperCAmelCase : Tuple = np.random.randn(3 , 4 ) UpperCAmelCase : Tuple = torch.tensor(__snake_case ) self.assertTrue(np.allclose(expand_dims(__snake_case , axis=1 ) , expand_dims(__snake_case , axis=1 ).numpy() ) ) @require_tf def A ( self : List[str] ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = np.random.randn(3 , 4 ) UpperCAmelCase : Any = tf.constant(__snake_case ) self.assertTrue(np.allclose(expand_dims(__snake_case , axis=1 ) , expand_dims(__snake_case , axis=1 ).numpy() ) ) @require_flax def A ( self : Any ) -> List[Any]: UpperCAmelCase : List[str] = np.random.randn(3 , 4 ) UpperCAmelCase : str = jnp.array(__snake_case ) self.assertTrue(np.allclose(expand_dims(__snake_case , axis=1 ) , np.asarray(expand_dims(__snake_case , axis=1 ) ) ) )
23
1
"""simple docstring""" from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
317
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : list ) -> list: """simple docstring""" for i in range(len(snake_case_ ) - 1 , 0 , -1 ): _lowerCAmelCase = False for j in range(snake_case_ , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: _lowerCAmelCase , _lowerCAmelCase = unsorted[j - 1], unsorted[j] _lowerCAmelCase = True for j in range(snake_case_ ): if unsorted[j] > unsorted[j + 1]: _lowerCAmelCase , _lowerCAmelCase = unsorted[j + 1], unsorted[j] _lowerCAmelCase = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE : List[Any] = input('''Enter numbers separated by a comma:\n''').strip() SCREAMING_SNAKE_CASE : List[str] = [int(item) for item in user_input.split(''',''')] print(F'{cocktail_shaker_sort(unsorted) = }')
317
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowercase : Optional[Any] = { "configuration_resnet": ["RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "ResNetConfig", "ResNetOnnxConfig"] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[Any] = [ "RESNET_PRETRAINED_MODEL_ARCHIVE_LIST", "ResNetForImageClassification", "ResNetModel", "ResNetPreTrainedModel", "ResNetBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Any = [ "TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST", "TFResNetForImageClassification", "TFResNetModel", "TFResNetPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Any = [ "FlaxResNetForImageClassification", "FlaxResNetModel", "FlaxResNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys lowercase : str = _LazyModule(__name__, globals()["__file__"], _import_structure)
42
"""simple docstring""" import random def UpperCamelCase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : float , lowerCAmelCase__ : bool = False ) -> dict: """simple docstring""" lowerCAmelCase_ : dict = {i: [] for i in range(lowerCAmelCase__ )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(lowerCAmelCase__ ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(lowerCAmelCase__ ): for j in range(i + 1 , lowerCAmelCase__ ): if random.random() < probability: graph[i].append(lowerCAmelCase__ ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(lowerCAmelCase__ ) return graph def UpperCamelCase_ ( lowerCAmelCase__ : int ) -> dict: """simple docstring""" return { i: [j for j in range(lowerCAmelCase__ ) if i != j] for i in range(lowerCAmelCase__ ) } if __name__ == "__main__": import doctest doctest.testmod()
224
0
"""simple docstring""" from __future__ import annotations from scipy.special import comb # type: ignore class snake_case : def __init__( self : Optional[int] , A : list[tuple[float, float]] ): '''simple docstring''' a : List[Any] = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. a : str = len(A ) - 1 def lowerCamelCase__ ( self : Optional[int] , A : float ): '''simple docstring''' assert 0 <= t <= 1, "Time t must be between 0 and 1." a : list[float] = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , A ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(A ) , 5 ) == 1 return output_values def lowerCamelCase__ ( self : List[Any] , A : float ): '''simple docstring''' assert 0 <= t <= 1, "Time t must be between 0 and 1." a : Optional[Any] = self.basis_function(A ) a : Tuple = 0.0 a : Dict = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def lowerCamelCase__ ( self : Union[str, Any] , A : float = 0.01 ): '''simple docstring''' from matplotlib import pyplot as plt # type: ignore a : list[float] = [] # x coordinates of points to plot a : list[float] = [] # y coordinates of points to plot a : Optional[Any] = 0.0 while t <= 1: a : Tuple = self.bezier_curve_function(A ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size a : Any = [i[0] for i in self.list_of_points] a : Union[str, Any] = [i[1] for i in self.list_of_points] plt.plot( A , A , color='blue' , label='Curve of Degree ' + str(self.degree ) , ) plt.scatter(A , A , color='red' , label='Control Points' ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
186
"""simple docstring""" import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class snake_case ( unittest.TestCase ): def __init__( self : List[str] , A : Union[str, Any] , A : Optional[Any]=1_3 , A : List[Any]=3_0 , A : List[Any]=2 , A : Optional[Any]=3 , A : Union[str, Any]=True , A : Union[str, Any]=True , A : Optional[int]=3_2 , A : Tuple=5 , A : List[str]=4 , A : List[Any]=3_7 , A : Optional[Any]="gelu" , A : Any=0.1 , A : Tuple=0.1 , A : Optional[int]=1_0 , A : Union[str, Any]=0.02 , ): '''simple docstring''' a : Optional[Any] = parent a : Tuple = batch_size a : int = image_size a : str = patch_size a : List[str] = num_channels a : List[str] = is_training a : List[str] = use_labels a : Optional[int] = hidden_size a : Optional[Any] = num_hidden_layers a : Optional[int] = num_attention_heads a : str = intermediate_size a : List[str] = hidden_act a : List[str] = hidden_dropout_prob a : Union[str, Any] = attention_probs_dropout_prob a : List[Any] = type_sequence_label_size a : Optional[Any] = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) a : Optional[int] = (image_size // patch_size) ** 2 a : List[Any] = num_patches + 1 def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' a : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a : str = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A , initializer_range=self.initializer_range , ) return config, pixel_values def lowerCamelCase__ ( self : Union[str, Any] , A : str , A : Union[str, Any] ): '''simple docstring''' a : Tuple = FlaxViTModel(config=A ) a : int = model(A ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) a : Optional[Any] = (self.image_size, self.image_size) a : List[str] = (self.patch_size, self.patch_size) a : Optional[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) ) def lowerCamelCase__ ( self : Tuple , A : Dict , A : Optional[int] ): '''simple docstring''' a : Optional[Any] = self.type_sequence_label_size a : List[Any] = FlaxViTForImageClassification(config=A ) a : Tuple = model(A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images a : Dict = 1 a : Tuple = FlaxViTForImageClassification(A ) a : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) a : Optional[int] = model(A ) def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' a : Optional[int] = self.prepare_config_and_inputs() ( ( a ), ( a ), ) : Dict = config_and_inputs a : List[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class snake_case ( UpperCAmelCase , unittest.TestCase ): __magic_name__ = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def lowerCamelCase__ ( self : Any ): '''simple docstring''' a : Any = FlaxViTModelTester(self ) a : List[str] = ConfigTester(self , config_class=A , has_text_modality=A , hidden_size=3_7 ) def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' a : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' a : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) def lowerCamelCase__ ( self : Dict ): '''simple docstring''' a, a : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a : Tuple = model_class(A ) a : str = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a : List[str] = [*signature.parameters.keys()] a : Dict = ['pixel_values'] self.assertListEqual(arg_names[:1] , A ) def lowerCamelCase__ ( self : Any ): '''simple docstring''' a, a : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): a : List[Any] = self._prepare_for_class(A , A ) a : Tuple = model_class(A ) @jax.jit def model_jitted(A : Tuple , **A : int ): return model(pixel_values=A , **A ) with self.subTest('JIT Enabled' ): a : List[str] = model_jitted(**A ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): a : List[str] = model_jitted(**A ).to_tuple() self.assertEqual(len(A ) , len(A ) ) for jitted_output, output in zip(A , A ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' for model_class_name in self.all_model_classes: a : List[str] = model_class_name.from_pretrained('google/vit-base-patch16-224' ) a : Optional[Any] = model(np.ones((1, 3, 2_2_4, 2_2_4) ) ) self.assertIsNotNone(A )
186
1
def A ( a_ ,a_ ,a_ ) -> Tuple: if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(a_ ,n - 1 ,a_ ) * a) % mod else: __UpperCamelCase : Dict =binary_exponentiation(a_ ,n / 2 ,a_ ) return (b * b) % mod # a prime number A_ :str = 701 A_ :Optional[Any] = 1000000000 A_ :int = 10 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
71
import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def A ( a_ ,a_ ) -> Optional[Any]: # Load checkpoint __UpperCamelCase : int =torch.load(a_ ,map_location='cpu' ) __UpperCamelCase : List[Any] =chkpt['model'] # We have the base model one level deeper than the original XLM repository __UpperCamelCase : str ={} for k, v in state_dict.items(): if "pred_layer" in k: __UpperCamelCase : Optional[Any] =v else: __UpperCamelCase : Optional[Any] =v __UpperCamelCase : List[Any] =chkpt['params'] __UpperCamelCase : str ={n: v for n, v in config.items() if not isinstance(a_ ,(torch.FloatTensor, numpy.ndarray) )} __UpperCamelCase : str =chkpt['dico_word2id'] __UpperCamelCase : Dict ={s + '</w>' if s.find('@@' ) == -1 and i > 13 else s.replace('@@' ,'' ): i for s, i in vocab.items()} # Save pytorch-model __UpperCamelCase : List[Any] =pytorch_dump_folder_path + '/' + WEIGHTS_NAME __UpperCamelCase : Tuple =pytorch_dump_folder_path + '/' + CONFIG_NAME __UpperCamelCase : Any =pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['vocab_file'] print(F'Save PyTorch model to {pytorch_weights_dump_path}' ) torch.save(a_ ,a_ ) print(F'Save configuration file to {pytorch_config_dump_path}' ) with open(a_ ,'w' ,encoding='utf-8' ) as f: f.write(json.dumps(a_ ,indent=2 ) + '\n' ) print(F'Save vocab file to {pytorch_config_dump_path}' ) with open(a_ ,'w' ,encoding='utf-8' ) as f: f.write(json.dumps(a_ ,indent=2 ) + '\n' ) if __name__ == "__main__": A_ :str = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--xlm_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) A_ :List[Any] = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
71
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase_ = {"""configuration_vit_msn""": ["""VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTMSNConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ """VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTMSNModel""", """ViTMSNForImageClassification""", """ViTMSNPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
14
lowerCamelCase_ = 6_5_5_2_1 def lowerCamelCase ( a_ ) -> int: lowerCAmelCase_ = 1 lowerCAmelCase_ = 0 for plain_chr in plain_text: lowerCAmelCase_ = (a + ord(a_ )) % MOD_ADLER lowerCAmelCase_ = (b + a) % MOD_ADLER return (b << 16) | a
14
1
from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def a_ ( lowerCAmelCase_ : List[Any], lowerCAmelCase_ : str, lowerCAmelCase_ : Optional[int]=None, lowerCAmelCase_ : List[Any]=None ): if attention_mask is None: __lowerCAmelCase = tf.cast(tf.math.not_equal(lowerCAmelCase_, config.pad_token_id ), tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class _UpperCAmelCase : """simple docstring""" a_ = OPTConfig a_ = {} a_ = """gelu""" def __init__( self : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str]=1_3 , lowerCAmelCase_ : Tuple=7 , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : Any=9_9 , lowerCAmelCase_ : Any=1_6 , lowerCAmelCase_ : List[str]=2 , lowerCAmelCase_ : Dict=4 , lowerCAmelCase_ : str=4 , lowerCAmelCase_ : Any="gelu" , lowerCAmelCase_ : Optional[Any]=0.1 , lowerCAmelCase_ : List[Any]=0.1 , lowerCAmelCase_ : Tuple=2_0 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : Any=1 , lowerCAmelCase_ : List[Any]=0 , lowerCAmelCase_ : Optional[int]=1_6 , lowerCAmelCase_ : Dict=1_6 , ) -> int: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = seq_length __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = eos_token_id __lowerCAmelCase = pad_token_id __lowerCAmelCase = bos_token_id __lowerCAmelCase = embed_dim __lowerCAmelCase = word_embed_proj_dim __lowerCAmelCase = False def lowercase ( self : List[str] ) -> Optional[Any]: __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __lowerCAmelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __lowerCAmelCase = tf.concat([input_ids, eos_tensor] , axis=1 ) __lowerCAmelCase = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=lowerCAmelCase_ , **self.config_updates , ) __lowerCAmelCase = prepare_opt_inputs_dict(lowerCAmelCase_ , lowerCAmelCase_ ) return config, inputs_dict def lowercase ( self : Any , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Dict ) -> List[str]: __lowerCAmelCase = TFOPTModel(config=lowerCAmelCase_ ) __lowerCAmelCase = inputs_dict['input_ids'] __lowerCAmelCase = input_ids[:1, :] __lowerCAmelCase = inputs_dict['attention_mask'][:1, :] __lowerCAmelCase = 1 # first forward pass __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , use_cache=lowerCAmelCase_ ) __lowerCAmelCase , __lowerCAmelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __lowerCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) __lowerCAmelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and __lowerCAmelCase = tf.concat([input_ids, next_tokens] , axis=-1 ) __lowerCAmelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ )[0] __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice __lowerCAmelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) __lowerCAmelCase = output_from_no_past[:, -3:, random_slice_idx] __lowerCAmelCase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowerCAmelCase_ , lowerCAmelCase_ , rtol=1e-3 ) @require_tf class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () a_ = (TFOPTForCausalLM,) if is_tf_available() else () a_ = ( {"""feature-extraction""": TFOPTModel, """text-generation""": TFOPTForCausalLM} if is_tf_available() else {} ) a_ = False a_ = False a_ = False a_ = 10 def lowercase ( self : List[str] ) -> Optional[int]: __lowerCAmelCase = TFOPTModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase_ ) def lowercase ( self : Tuple ) -> Tuple: self.config_tester.run_common_tests() def lowercase ( self : Tuple ) -> Optional[Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCAmelCase_ ) def lowercase ( self : Union[str, Any] ) -> Dict: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(lowerCAmelCase_ : str , lowerCAmelCase_ : Union[str, Any] ): if hasattr(lowerCAmelCase_ , 'weight' ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(lowerCAmelCase_ , 'weight' ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 1_0, config.vocab_size + 1_0]: # build the embeddings __lowerCAmelCase = model_class(config=lowerCAmelCase_ ) __lowerCAmelCase = _get_word_embedding_weight(lowerCAmelCase_ , model.get_input_embeddings() ) __lowerCAmelCase = _get_word_embedding_weight(lowerCAmelCase_ , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(lowerCAmelCase_ ) __lowerCAmelCase = _get_word_embedding_weight(lowerCAmelCase_ , model.get_input_embeddings() ) __lowerCAmelCase = _get_word_embedding_weight(lowerCAmelCase_ , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. __lowerCAmelCase = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , lowerCAmelCase_ ) # check that weights remain the same after resizing __lowerCAmelCase = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: __lowerCAmelCase = False self.assertTrue(lowerCAmelCase_ ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , lowerCAmelCase_ ) __lowerCAmelCase = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: __lowerCAmelCase = False self.assertTrue(lowerCAmelCase_ ) def a_ ( lowerCAmelCase_ : Union[str, Any] ): return tf.constant(lowerCAmelCase_, dtype=tf.intaa ) @require_tf class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" a_ = 99 def lowercase ( self : Optional[int] ) -> Any: __lowerCAmelCase = tf.ones((4, 1) , dtype=tf.intaa ) * 2 __lowerCAmelCase = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) __lowerCAmelCase = input_ids.shape[0] __lowerCAmelCase = OPTConfig( vocab_size=self.vocab_size , hidden_size=2_4 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowercase ( self : str ) -> List[str]: __lowerCAmelCase = TFOPTModel.from_pretrained('facebook/opt-350m' ) __lowerCAmelCase = _long_tensor([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] ) __lowerCAmelCase = tf.not_equal(lowerCAmelCase_ , model.config.pad_token_id ) with tf.GradientTape(): __lowerCAmelCase = model(input_ids=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ ).last_hidden_state __lowerCAmelCase = (1, 1_1, 5_1_2) self.assertEqual(output.shape , lowerCAmelCase_ ) __lowerCAmelCase = tf.constant( [[-0.28_73, -1.92_18, -0.30_33], [-1.27_10, -0.13_38, -0.19_02], [0.40_95, 0.12_14, -1.31_21]] ) self.assertTrue(np.allclose(output[:, :3, :3] , lowerCAmelCase_ , atol=4e-3 ) ) __lowerCAmelCase = tf.function(lowerCAmelCase_ , jit_compile=lowerCAmelCase_ ) __lowerCAmelCase = xla_generate(lowerCAmelCase_ , lowerCAmelCase_ )[0] self.assertTrue(np.allclose(output[:, :3, :3] , lowerCAmelCase_ , atol=4e-2 ) ) @require_tf @slow class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase ( self : int ) -> Dict: super().setUp() __lowerCAmelCase = 'facebook/opt-350m' def lowercase ( self : Dict ) -> Any: __lowerCAmelCase = TFOPTForCausalLM.from_pretrained(self.path_model ) __lowerCAmelCase = GPTaTokenizer.from_pretrained(self.path_model ) __lowerCAmelCase = [ 'Today is a beautiful day and I want to', 'In the city of', 'Paris is the capital of France and', 'Computers and mobile phones have taken', ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False __lowerCAmelCase = tokenizer(lowerCAmelCase_ , return_tensors='tf' , padding=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) __lowerCAmelCase = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) __lowerCAmelCase = tf.constant( [ [1.38_51, -13.89_23, -10.52_29, -10.75_33, -0.23_09, -10.23_84, -0.53_65, -9.09_47, -5.16_70], [-4.70_73, -10.62_76, -3.94_15, -21.52_42, -0.28_22, -0.28_22, -0.28_22, -0.28_22, -0.28_22], [0.62_47, -3.42_29, -8.91_79, -1.42_97, -14.16_50, 1.41_46, -9.02_18, -0.27_03, -0.27_03], [6.47_83, -1.99_13, -10.79_26, -2.33_36, 1.50_92, -0.99_74, -6.82_13, 1.34_77, 1.34_77], ] ) self.assertTrue(np.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-4 ) ) __lowerCAmelCase = tf.function(lowerCAmelCase_ , jit_compile=lowerCAmelCase_ ) __lowerCAmelCase = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-4 ) ) @require_tf @slow class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @property def lowercase ( self : Optional[int] ) -> int: return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def lowercase ( self : int ) -> str: __lowerCAmelCase = 'facebook/opt-125m' __lowerCAmelCase = [ 'Today is a beautiful day and I want to', 'In the city of New York, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] __lowerCAmelCase = [] __lowerCAmelCase = GPTaTokenizer.from_pretrained(lowerCAmelCase_ ) __lowerCAmelCase = TFOPTForCausalLM.from_pretrained(lowerCAmelCase_ ) for prompt in self.prompts: __lowerCAmelCase = tokenizer(lowerCAmelCase_ , return_tensors='tf' ).input_ids __lowerCAmelCase = model.generate(lowerCAmelCase_ , max_length=1_0 ) __lowerCAmelCase = tokenizer.batch_decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ ) predicted_outputs += generated_string self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase ( self : Optional[Any] ) -> str: __lowerCAmelCase = 'facebook/opt-350m' __lowerCAmelCase = GPTaTokenizer.from_pretrained(lowerCAmelCase_ ) __lowerCAmelCase = TFOPTForCausalLM.from_pretrained(lowerCAmelCase_ ) __lowerCAmelCase = 'left' # use different length sentences to test batching __lowerCAmelCase = [ 'Hello, my dog is a little', 'Today, I', ] __lowerCAmelCase = tokenizer(lowerCAmelCase_ , return_tensors='tf' , padding=lowerCAmelCase_ ) __lowerCAmelCase = inputs['input_ids'] __lowerCAmelCase = model.generate(input_ids=lowerCAmelCase_ , attention_mask=inputs['attention_mask'] ) __lowerCAmelCase = tokenizer(sentences[0] , return_tensors='tf' ).input_ids __lowerCAmelCase = model.generate(input_ids=lowerCAmelCase_ ) __lowerCAmelCase = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs['attention_mask'][-1] , tf.intaa ) ) __lowerCAmelCase = tokenizer(sentences[1] , return_tensors='tf' ).input_ids __lowerCAmelCase = model.generate(input_ids=lowerCAmelCase_ , max_length=model.config.max_length - num_paddings ) __lowerCAmelCase = tokenizer.batch_decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ ) __lowerCAmelCase = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowerCAmelCase_ ) __lowerCAmelCase = tokenizer.decode(output_padded[0] , skip_special_tokens=lowerCAmelCase_ ) __lowerCAmelCase = [ 'Hello, my dog is a little bit of a dork.\nI\'m a little bit', 'Today, I was in the middle of a conversation with a friend about the', ] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , [non_padded_sentence, padded_sentence] ) def lowercase ( self : List[Any] ) -> List[Any]: __lowerCAmelCase = 'facebook/opt-350m' __lowerCAmelCase = [ 'Today is a beautiful day and I want to', 'In the city of San Francisco, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] __lowerCAmelCase = [] __lowerCAmelCase = GPTaTokenizer.from_pretrained(lowerCAmelCase_ ) __lowerCAmelCase = TFOPTForCausalLM.from_pretrained(lowerCAmelCase_ ) for prompt in self.prompts: __lowerCAmelCase = tokenizer(lowerCAmelCase_ , return_tensors='tf' ).input_ids __lowerCAmelCase = model.generate(lowerCAmelCase_ , max_length=1_0 ) __lowerCAmelCase = tokenizer.batch_decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ ) predicted_outputs += generated_string self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ )
284
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _snake_case : List[Any] = logging.get_logger(__name__) _snake_case : List[Any] = { 'microsoft/beit-base-patch16-224-pt22k': ( 'https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json' ), # See all BEiT models at https://huggingface.co/models?filter=beit } class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = """beit""" def __init__( self : List[Any] , lowerCAmelCase_ : Tuple=8_1_9_2 , lowerCAmelCase_ : Optional[int]=7_6_8 , lowerCAmelCase_ : int=1_2 , lowerCAmelCase_ : Optional[int]=1_2 , lowerCAmelCase_ : Any=3_0_7_2 , lowerCAmelCase_ : Optional[int]="gelu" , lowerCAmelCase_ : Any=0.0 , lowerCAmelCase_ : Any=0.0 , lowerCAmelCase_ : Any=0.02 , lowerCAmelCase_ : int=1e-12 , lowerCAmelCase_ : int=2_2_4 , lowerCAmelCase_ : str=1_6 , lowerCAmelCase_ : int=3 , lowerCAmelCase_ : Dict=False , lowerCAmelCase_ : int=False , lowerCAmelCase_ : List[Any]=False , lowerCAmelCase_ : int=False , lowerCAmelCase_ : List[str]=0.1 , lowerCAmelCase_ : Union[str, Any]=0.1 , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : List[Any]=[3, 5, 7, 1_1] , lowerCAmelCase_ : Optional[Any]=[1, 2, 3, 6] , lowerCAmelCase_ : Tuple=True , lowerCAmelCase_ : Dict=0.4 , lowerCAmelCase_ : Tuple=2_5_6 , lowerCAmelCase_ : Any=1 , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : Optional[int]=2_5_5 , **lowerCAmelCase_ : Any , ) -> Dict: super().__init__(**lowerCAmelCase_ ) __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = initializer_range __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = image_size __lowerCAmelCase = patch_size __lowerCAmelCase = num_channels __lowerCAmelCase = use_mask_token __lowerCAmelCase = use_absolute_position_embeddings __lowerCAmelCase = use_relative_position_bias __lowerCAmelCase = use_shared_relative_position_bias __lowerCAmelCase = layer_scale_init_value __lowerCAmelCase = drop_path_rate __lowerCAmelCase = use_mean_pooling # decode head attributes (semantic segmentation) __lowerCAmelCase = out_indices __lowerCAmelCase = pool_scales # auxiliary head attributes (semantic segmentation) __lowerCAmelCase = use_auxiliary_head __lowerCAmelCase = auxiliary_loss_weight __lowerCAmelCase = auxiliary_channels __lowerCAmelCase = auxiliary_num_convs __lowerCAmelCase = auxiliary_concat_input __lowerCAmelCase = semantic_loss_ignore_index class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = version.parse("""1.11""" ) @property def lowercase ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowercase ( self : Optional[Any] ) -> float: return 1e-4
284
1
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def __A ( lowerCAmelCase_ ): _UpperCAmelCase : List[str] = filter(lambda lowerCAmelCase_ : p.requires_grad , model.parameters() ) _UpperCAmelCase : Any = sum([np.prod(p.size() ) for p in model_parameters] ) return params lowerCAmelCase_ : Union[str, Any] = logging.getLogger(__name__) def __A ( lowerCAmelCase_ , lowerCAmelCase_ ): if metric == "rouge2": _UpperCAmelCase : Union[str, Any] = """{val_avg_rouge2:.4f}-{step_count}""" elif metric == "bleu": _UpperCAmelCase : Dict = """{val_avg_bleu:.4f}-{step_count}""" elif metric == "em": _UpperCAmelCase : str = """{val_avg_em:.4f}-{step_count}""" else: raise NotImplementedError( f"seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this" """ function.""" ) _UpperCAmelCase : Any = ModelCheckpoint( dirpath=__UpperCamelCase , filename=__UpperCamelCase , monitor=f"val_{metric}" , mode="""max""" , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def __A ( lowerCAmelCase_ , lowerCAmelCase_ ): return EarlyStopping( monitor=f"val_{metric}" , mode="""min""" if """loss""" in metric else """max""" , patience=__UpperCamelCase , verbose=__UpperCamelCase , ) class __lowerCAmelCase ( pl.Callback ): def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : int = {F"lr_group_{i}": param["""lr"""] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(UpperCamelCase__ ) @rank_zero_only def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=True ): logger.info(F"***** {type_path} results at step {trainer.global_step:05d} *****" ) _UpperCAmelCase : Tuple = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["""log""", """progress_bar""", """preds"""]} ) # Log results _UpperCAmelCase : List[str] = Path(pl_module.hparams.output_dir ) if type_path == "test": _UpperCAmelCase : Any = od / """test_results.txt""" _UpperCAmelCase : Optional[int] = od / """test_generations.txt""" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _UpperCAmelCase : Union[str, Any] = od / F"{type_path}_results/{trainer.global_step:05d}.txt" _UpperCAmelCase : Any = od / F"{type_path}_generations/{trainer.global_step:05d}.txt" results_file.parent.mkdir(exist_ok=UpperCamelCase__ ) generations_file.parent.mkdir(exist_ok=UpperCamelCase__ ) with open(UpperCamelCase__ , """a+""" ) as writer: for key in sorted(UpperCamelCase__ ): if key in ["log", "progress_bar", "preds"]: continue _UpperCAmelCase : List[str] = metrics[key] if isinstance(UpperCamelCase__ , torch.Tensor ): _UpperCAmelCase : str = val.item() _UpperCAmelCase : Union[str, Any] = F"{key}: {val:.6f}\n" writer.write(UpperCamelCase__ ) if not save_generations: return if "preds" in metrics: _UpperCAmelCase : List[Any] = """\n""".join(metrics["""preds"""] ) generations_file.open("""w+""" ).write(UpperCamelCase__ ) @rank_zero_only def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ ): try: _UpperCAmelCase : List[str] = pl_module.model.model.num_parameters() except AttributeError: _UpperCAmelCase : Union[str, Any] = pl_module.model.num_parameters() _UpperCAmelCase : int = count_trainable_parameters(UpperCamelCase__ ) # mp stands for million parameters trainer.logger.log_metrics({"""n_params""": npars, """mp""": npars / 1e6, """grad_mp""": n_trainable_pars / 1e6} ) @rank_zero_only def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ ): save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(UpperCamelCase__ , UpperCamelCase__ , """test""" ) @rank_zero_only def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ ): save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
369
'''simple docstring''' from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. lowerCAmelCase_ : Optional[Any] = 10 def __A ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): for i in range(lowerCAmelCase_ , lowerCAmelCase_ ): if array[i] == target: return i return -1 def __A ( lowerCAmelCase_ , lowerCAmelCase_ ): _UpperCAmelCase : Optional[int] = 0 _UpperCAmelCase : str = len(lowerCAmelCase_ ) while left <= right: if right - left < precision: return lin_search(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _UpperCAmelCase : Tuple = (left + right) // 3 + 1 _UpperCAmelCase : str = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: _UpperCAmelCase : List[Any] = one_third - 1 elif array[two_third] < target: _UpperCAmelCase : Optional[Any] = two_third + 1 else: _UpperCAmelCase : Dict = one_third + 1 _UpperCAmelCase : List[Any] = two_third - 1 else: return -1 def __A ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): if left < right: if right - left < precision: return lin_search(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _UpperCAmelCase : List[Any] = (left + right) // 3 + 1 _UpperCAmelCase : int = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(lowerCAmelCase_ , one_third - 1 , lowerCAmelCase_ , lowerCAmelCase_ ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , lowerCAmelCase_ , lowerCAmelCase_ ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase_ : int = input('''Enter numbers separated by comma:\n''').strip() lowerCAmelCase_ : Tuple = [int(item.strip()) for item in user_input.split(''',''')] assert collection == sorted(collection), F"List must be ordered.\n{collection}." lowerCAmelCase_ : Any = int(input('''Enter the number to be found in the list:\n''').strip()) lowerCAmelCase_ : List[str] = ite_ternary_search(collection, target) lowerCAmelCase_ : int = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F"Iterative search: {target} found at positions: {resulta}") print(F"Recursive search: {target} found at positions: {resulta}") else: print('''Not found''')
170
0
"""simple docstring""" from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract lowercase_ = logging.get_logger(__name__) def lowercase ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Union[str, Any] ) -> Any: return [ int(1000 * (box[0] / width) ), int(1000 * (box[1] / height) ), int(1000 * (box[2] / width) ), int(1000 * (box[3] / height) ), ] def lowercase ( lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Optional[str] , lowerCAmelCase__ : Optional[str] ) -> str: __a = to_pil_image(lowerCAmelCase__ ) __a , __a = pil_image.size __a = pytesseract.image_to_data(lowerCAmelCase__ , lang=lowerCAmelCase__ , output_type='''dict''' , config=lowerCAmelCase__ ) __a , __a , __a , __a , __a = data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates __a = [idx for idx, word in enumerate(lowerCAmelCase__ ) if not word.strip()] __a = [word for idx, word in enumerate(lowerCAmelCase__ ) if idx not in irrelevant_indices] __a = [coord for idx, coord in enumerate(lowerCAmelCase__ ) if idx not in irrelevant_indices] __a = [coord for idx, coord in enumerate(lowerCAmelCase__ ) if idx not in irrelevant_indices] __a = [coord for idx, coord in enumerate(lowerCAmelCase__ ) if idx not in irrelevant_indices] __a = [coord for idx, coord in enumerate(lowerCAmelCase__ ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format __a = [] for x, y, w, h in zip(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): __a = [x, y, x + w, y + h] actual_boxes.append(lowerCAmelCase__ ) # finally, normalize the bounding boxes __a = [] for box in actual_boxes: normalized_boxes.append(normalize_box(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) ) assert len(lowerCAmelCase__ ) == len(lowerCAmelCase__ ), "Not as many words as there are bounding boxes" return words, normalized_boxes class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : str = ['pixel_values'] def __init__( self , _a = True , _a = None , _a = PILImageResampling.BILINEAR , _a = True , _a = 1 / 255 , _a = True , _a = None , _a = None , _a = True , _a = None , _a = "" , **_a , ): super().__init__(**_a ) __a = size if size is not None else {'''height''': 224, '''width''': 224} __a = get_size_dict(_a ) __a = do_resize __a = size __a = resample __a = do_rescale __a = rescale_value __a = do_normalize __a = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __a = image_std if image_std is not None else IMAGENET_STANDARD_STD __a = apply_ocr __a = ocr_lang __a = tesseract_config def __UpperCAmelCase ( self , _a , _a , _a = PILImageResampling.BILINEAR , _a = None , **_a , ): __a = get_size_dict(_a ) if "height" not in size or "width" not in size: raise ValueError(f'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' ) __a = (size['''height'''], size['''width''']) return resize(_a , size=_a , resample=_a , data_format=_a , **_a ) def __UpperCAmelCase ( self , _a , _a , _a = None , **_a , ): return rescale(_a , scale=_a , data_format=_a , **_a ) def __UpperCAmelCase ( self , _a , _a , _a , _a = None , **_a , ): return normalize(_a , mean=_a , std=_a , data_format=_a , **_a ) def __UpperCAmelCase ( self , _a , _a = None , _a = None , _a=None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = ChannelDimension.FIRST , **_a , ): __a = do_resize if do_resize is not None else self.do_resize __a = size if size is not None else self.size __a = get_size_dict(_a ) __a = resample if resample is not None else self.resample __a = do_rescale if do_rescale is not None else self.do_rescale __a = rescale_factor if rescale_factor is not None else self.rescale_factor __a = do_normalize if do_normalize is not None else self.do_normalize __a = image_mean if image_mean is not None else self.image_mean __a = image_std if image_std is not None else self.image_std __a = apply_ocr if apply_ocr is not None else self.apply_ocr __a = ocr_lang if ocr_lang is not None else self.ocr_lang __a = tesseract_config if tesseract_config is not None else self.tesseract_config __a = make_list_of_images(_a ) if not valid_images(_a ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''If do_normalize is True, image_mean and image_std must be specified.''' ) # All transformations expect numpy arrays. __a = [to_numpy_array(_a ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , '''pytesseract''' ) __a = [] __a = [] for image in images: __a , __a = apply_tesseract(_a , _a , _a ) words_batch.append(_a ) boxes_batch.append(_a ) if do_resize: __a = [self.resize(image=_a , size=_a , resample=_a ) for image in images] if do_rescale: __a = [self.rescale(image=_a , scale=_a ) for image in images] if do_normalize: __a = [self.normalize(image=_a , mean=_a , std=_a ) for image in images] __a = [to_channel_dimension_format(_a , _a ) for image in images] __a = BatchFeature(data={'''pixel_values''': images} , tensor_type=_a ) if apply_ocr: __a = words_batch __a = boxes_batch return data
45
"""simple docstring""" def lowercase ( lowerCAmelCase__ : str ) -> list: if n_term == "": return [] __a = [] for temp in range(int(lowerCAmelCase__ ) ): series.append(f'''1/{temp + 1}''' if series else '''1''' ) return series if __name__ == "__main__": lowercase_ = input("Enter the last number (nth term) of the Harmonic Series") print("Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n") print(harmonic_series(nth_term))
45
1
'''simple docstring''' import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Union[str, Any]: """simple docstring""" A = OmegaConf.load(UpperCAmelCase ) A = torch.load(UpperCAmelCase , map_location="""cpu""" )["""model"""] A = list(state_dict.keys() ) # extract state_dict for VQVAE A = {} A = """first_stage_model.""" for key in keys: if key.startswith(UpperCAmelCase ): A = state_dict[key] # extract state_dict for UNetLDM A = {} A = """model.diffusion_model.""" for key in keys: if key.startswith(UpperCAmelCase ): A = state_dict[key] A = config.model.params.first_stage_config.params A = config.model.params.unet_config.params A = VQModel(**UpperCAmelCase ).eval() vqvae.load_state_dict(UpperCAmelCase ) A = UNetLDMModel(**UpperCAmelCase ).eval() unet.load_state_dict(UpperCAmelCase ) A = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule="""scaled_linear""" , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=UpperCAmelCase , ) A = LDMPipeline(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) pipeline.save_pretrained(UpperCAmelCase ) if __name__ == "__main__": _lowerCamelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--checkpoint_path', type=str, required=True) parser.add_argument('--config_path', type=str, required=True) parser.add_argument('--output_path', type=str, required=True) _lowerCamelCase : Any = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
358
'''simple docstring''' from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 _lowerCamelCase : Any = { # 1536-bit 5: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 2048-bit 14: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AACAA68FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 3072-bit 15: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 4096-bit 16: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7' + '88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA' + '2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6' + '287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED' + '1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9' + '93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199' + 'FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 6144-bit 17: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08' + '8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B' + '302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9' + 'A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6' + '49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8' + 'FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C' + '180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718' + '3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D' + '04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D' + 'B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226' + '1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC' + 'E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26' + '99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB' + '04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2' + '233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127' + 'D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492' + '36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406' + 'AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918' + 'DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151' + '2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03' + 'F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F' + 'BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA' + 'CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B' + 'B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632' + '387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E' + '6DCC4024FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 8192-bit 18: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7' + '88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA' + '2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6' + '287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED' + '1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9' + '93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492' + '36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD' + 'F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831' + '179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B' + 'DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF' + '5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6' + 'D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3' + '23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA' + 'CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328' + '06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C' + 'DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE' + '12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4' + '38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300' + '741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568' + '3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9' + '22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B' + '4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A' + '062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36' + '4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1' + 'B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92' + '4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47' + '9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71' + '60C980DD98EDD3DFFFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, } class __UpperCAmelCase : '''simple docstring''' def __init__(self : int , _lowerCAmelCase : int = 14 ): if group not in primes: raise ValueError("""Unsupported Group""" ) A = primes[group]["""prime"""] A = primes[group]["""generator"""] A = int(hexlify(urandom(32 ) ) , base=16 ) def A (self : Optional[Any] ): return hex(self.__private_key )[2:] def A (self : Union[str, Any] ): A = pow(self.generator , self.__private_key , self.prime ) return hex(_lowerCAmelCase )[2:] def A (self : Any , _lowerCAmelCase : int ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= key <= self.prime - 2 and pow(_lowerCAmelCase , (self.prime - 1) // 2 , self.prime ) == 1 ) def A (self : List[str] , _lowerCAmelCase : str ): A = int(_lowerCAmelCase , base=16 ) if not self.is_valid_public_key(_lowerCAmelCase ): raise ValueError("""Invalid public key""" ) A = pow(_lowerCAmelCase , self.__private_key , self.prime ) return shaaaa(str(_lowerCAmelCase ).encode() ).hexdigest() @staticmethod def A (_lowerCAmelCase : int , _lowerCAmelCase : int ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= remote_public_key_str <= prime - 2 and pow(_lowerCAmelCase , (prime - 1) // 2 , _lowerCAmelCase ) == 1 ) @staticmethod def A (_lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : int = 14 ): A = int(_lowerCAmelCase , base=16 ) A = int(_lowerCAmelCase , base=16 ) A = primes[group]["""prime"""] if not DiffieHellman.is_valid_public_key_static(_lowerCAmelCase , _lowerCAmelCase ): raise ValueError("""Invalid public key""" ) A = pow(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return shaaaa(str(_lowerCAmelCase ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
337
0
'''simple docstring''' def UpperCamelCase_ ( A__ : int = 60_08_51_47_51_43 ): '''simple docstring''' try: lowerCAmelCase_ : Union[str, Any] = int(A__ ) except (TypeError, ValueError): raise TypeError("""Parameter n must be int or castable to int.""" ) if n <= 0: raise ValueError("""Parameter n must be greater than or equal to one.""" ) lowerCAmelCase_ : int = 1 lowerCAmelCase_ : List[Any] = 2 while i * i <= n: while n % i == 0: lowerCAmelCase_ : List[str] = i n //= i i += 1 if n > 1: lowerCAmelCase_ : Union[str, Any] = n return int(A__ ) if __name__ == "__main__": print(F'''{solution() = }''')
120
'''simple docstring''' import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class __snake_case ( _SCREAMING_SNAKE_CASE): """simple docstring""" lowercase = (IPNDMScheduler,) lowercase = (('num_inference_steps', 50),) def __lowercase ( self : Optional[Any] , **lowerCamelCase : int ) -> Tuple: lowerCAmelCase_ : Dict = {"""num_train_timesteps""": 10_00} config.update(**lowerCamelCase ) return config def __lowercase ( self : Dict , lowerCamelCase : Tuple=0 , **lowerCamelCase : Union[str, Any] ) -> Optional[Any]: lowerCAmelCase_ : Optional[Any] = dict(self.forward_default_kwargs ) lowerCAmelCase_ : Dict = kwargs.pop("""num_inference_steps""" , lowerCamelCase ) lowerCAmelCase_ : List[str] = self.dummy_sample lowerCAmelCase_ : Optional[int] = 0.1 * sample lowerCAmelCase_ : int = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowerCAmelCase_ : List[str] = self.get_scheduler_config(**lowerCamelCase ) lowerCAmelCase_ : int = scheduler_class(**lowerCamelCase ) scheduler.set_timesteps(lowerCamelCase ) # copy over dummy past residuals lowerCAmelCase_ : Optional[int] = dummy_past_residuals[:] if time_step is None: lowerCAmelCase_ : Optional[Any] = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase ) lowerCAmelCase_ : List[Any] = scheduler_class.from_pretrained(lowerCamelCase ) new_scheduler.set_timesteps(lowerCamelCase ) # copy over dummy past residuals lowerCAmelCase_ : str = dummy_past_residuals[:] lowerCAmelCase_ : int = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample lowerCAmelCase_ : Dict = new_scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" lowerCAmelCase_ : List[str] = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample lowerCAmelCase_ : Any = new_scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def __lowercase ( self : str ) -> Tuple: pass def __lowercase ( self : Tuple , lowerCamelCase : int=0 , **lowerCamelCase : Any ) -> int: lowerCAmelCase_ : Optional[int] = dict(self.forward_default_kwargs ) lowerCAmelCase_ : List[str] = kwargs.pop("""num_inference_steps""" , lowerCamelCase ) lowerCAmelCase_ : Tuple = self.dummy_sample lowerCAmelCase_ : Optional[int] = 0.1 * sample lowerCAmelCase_ : List[Any] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowerCAmelCase_ : Optional[int] = self.get_scheduler_config() lowerCAmelCase_ : Optional[int] = scheduler_class(**lowerCamelCase ) scheduler.set_timesteps(lowerCamelCase ) # copy over dummy past residuals (must be after setting timesteps) lowerCAmelCase_ : int = dummy_past_residuals[:] if time_step is None: lowerCAmelCase_ : Optional[Any] = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase ) lowerCAmelCase_ : Optional[Any] = scheduler_class.from_pretrained(lowerCamelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(lowerCamelCase ) # copy over dummy past residual (must be after setting timesteps) lowerCAmelCase_ : Union[str, Any] = dummy_past_residuals[:] lowerCAmelCase_ : Any = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample lowerCAmelCase_ : Optional[Any] = new_scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" lowerCAmelCase_ : List[str] = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample lowerCAmelCase_ : str = new_scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def __lowercase ( self : Optional[int] , **lowerCamelCase : Optional[Any] ) -> str: lowerCAmelCase_ : Optional[int] = self.scheduler_classes[0] lowerCAmelCase_ : List[Any] = self.get_scheduler_config(**lowerCamelCase ) lowerCAmelCase_ : str = scheduler_class(**lowerCamelCase ) lowerCAmelCase_ : Dict = 10 lowerCAmelCase_ : Optional[int] = self.dummy_model() lowerCAmelCase_ : Tuple = self.dummy_sample_deter scheduler.set_timesteps(lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase_ : Optional[Any] = model(lowerCamelCase , lowerCamelCase ) lowerCAmelCase_ : str = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase ).prev_sample for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase_ : Dict = model(lowerCamelCase , lowerCamelCase ) lowerCAmelCase_ : List[str] = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase ).prev_sample return sample def __lowercase ( self : Tuple ) -> Dict: lowerCAmelCase_ : List[Any] = dict(self.forward_default_kwargs ) lowerCAmelCase_ : int = kwargs.pop("""num_inference_steps""" , lowerCamelCase ) for scheduler_class in self.scheduler_classes: lowerCAmelCase_ : Tuple = self.get_scheduler_config() lowerCAmelCase_ : List[str] = scheduler_class(**lowerCamelCase ) lowerCAmelCase_ : int = self.dummy_sample lowerCAmelCase_ : Tuple = 0.1 * sample if num_inference_steps is not None and hasattr(lowerCamelCase , """set_timesteps""" ): scheduler.set_timesteps(lowerCamelCase ) elif num_inference_steps is not None and not hasattr(lowerCamelCase , """set_timesteps""" ): lowerCAmelCase_ : Dict = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowerCAmelCase_ : int = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] lowerCAmelCase_ : List[str] = dummy_past_residuals[:] lowerCAmelCase_ : List[str] = scheduler.timesteps[5] lowerCAmelCase_ : str = scheduler.timesteps[6] lowerCAmelCase_ : Dict = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample lowerCAmelCase_ : List[str] = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) lowerCAmelCase_ : Any = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample lowerCAmelCase_ : Optional[int] = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def __lowercase ( self : Any ) -> int: for timesteps in [1_00, 10_00]: self.check_over_configs(num_train_timesteps=lowerCamelCase , time_step=lowerCamelCase ) def __lowercase ( self : Optional[int] ) -> Optional[int]: for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 1_00] ): self.check_over_forward(num_inference_steps=lowerCamelCase , time_step=lowerCamelCase ) def __lowercase ( self : int ) -> List[Any]: lowerCAmelCase_ : List[Any] = self.full_loop() lowerCAmelCase_ : Any = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_mean.item() - 2_54_05_29 ) < 10
120
1
"""simple docstring""" import gc import threading import time import psutil import torch class __lowercase : def __init__( self ): __a : List[str] = psutil.Process() __a : List[str] = False def _lowerCamelCase ( self ): __a : Dict = -1 while True: __a : int = max(self.process.memory_info().rss , self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def _lowerCamelCase ( self ): __a : List[Any] = True __a : Dict = threading.Thread(target=self.peak_monitor ) __a : Any = True self.thread.start() def _lowerCamelCase ( self ): __a : Optional[int] = False self.thread.join() return self.cpu_memory_peak A = PeakCPUMemory() def __A ( ) -> Optional[int]: # Time __a : List[Any] = {'''time''': time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem __a : int = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count()): __a : Dict = torch.cuda.memory_allocated(SCREAMING_SNAKE_CASE_) torch.cuda.reset_peak_memory_stats() return measures def __A ( a_ :Union[str, Any]) -> Union[str, Any]: # Time __a : Any = {'''time''': time.time() - start_measures['''time''']} gc.collect() torch.cuda.empty_cache() # CPU mem __a : Any = (psutil.Process().memory_info().rss - start_measures['''cpu''']) / 2**20 __a : str = (cpu_peak_tracker.stop() - start_measures['''cpu''']) / 2**20 # GPU mem for i in range(torch.cuda.device_count()): __a : Optional[Any] = (torch.cuda.memory_allocated(SCREAMING_SNAKE_CASE_) - start_measures[str(SCREAMING_SNAKE_CASE_)]) / 2**20 __a : Union[str, Any] = (torch.cuda.max_memory_allocated(SCREAMING_SNAKE_CASE_) - start_measures[str(SCREAMING_SNAKE_CASE_)]) / 2**20 return measures def __A ( a_ :Any , a_ :Union[str, Any]) -> int: print(F"""{description}:""") print(F"""- Time: {measures["time"]:.2f}s""") for i in range(torch.cuda.device_count()): print(F"""- GPU {i} allocated: {measures[str(SCREAMING_SNAKE_CASE_)]:.2f}MiB""") __a : Dict = measures[F"""{i}-peak"""] print(F"""- GPU {i} peak: {peak:.2f}MiB""") print(F"""- CPU RAM allocated: {measures["cpu"]:.2f}MiB""") print(F"""- CPU RAM peak: {measures["cpu-peak"]:.2f}MiB""")
366
"""simple docstring""" from pathlib import Path import numpy as np from PIL import Image def __A ( a_ :np.ndarray) -> np.ndarray: __a , __a , __a : Union[str, Any] = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.2_9_8_9 * r + 0.5_8_7_0 * g + 0.1_1_4_0 * b def __A ( a_ :np.ndarray) -> np.ndarray: return (gray > 1_27) & (gray <= 2_55) def __A ( a_ :np.ndarray , a_ :np.ndarray) -> np.ndarray: __a : Optional[int] = np.zeros_like(a_) __a : Dict = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1)) # Copy image to padded image __a : int = image # Iterate over image & apply kernel for x in range(image.shape[1]): for y in range(image.shape[0]): __a : Optional[Any] = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() __a : Any = int(summation > 0) return output if __name__ == "__main__": # read original image A = Path(__file__).resolve().parent / '''image_data''' / '''lena.jpg''' A = np.array(Image.open(lena_path)) # kernel to be applied A = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) A = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image A = Image.fromarray(output).convert('''RGB''') pil_img.save('''result_dilation.png''')
188
0
def A ( a_ ) -> bool: if not all(x.isalpha() for x in string ): raise ValueError('String must only contain alphabetic characters.' ) __UpperCamelCase : Any =sorted(string.lower() ) return len(a_ ) == len(set(a_ ) ) if __name__ == "__main__": A_ :Any = input('''Enter a string ''').strip() A_ :Union[str, Any] = is_isogram(input_str) print(f"{input_str} is {'an' if isogram else 'not an'} isogram.")
71
import json import os import shutil import tempfile from unittest import TestCase from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available if is_torch_available() and is_datasets_available() and is_faiss_available(): from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.tokenization_rag import RagTokenizer @require_faiss @require_torch class __A ( a ): """simple docstring""" def __lowercase ( self ): """simple docstring""" __UpperCamelCase : str =tempfile.mkdtemp() __UpperCamelCase : Optional[int] =8 # DPR tok __UpperCamelCase : str =[ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] __UpperCamelCase : Optional[Any] =os.path.join(self.tmpdirname , 'dpr_tokenizer' ) os.makedirs(lowerCamelCase__ , exist_ok=lowerCamelCase__ ) __UpperCamelCase : Dict =os.path.join(lowerCamelCase__ , DPR_VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) # BART tok __UpperCamelCase : Optional[int] =[ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] __UpperCamelCase : str =dict(zip(lowerCamelCase__ , range(len(lowerCamelCase__ ) ) ) ) __UpperCamelCase : Optional[int] =['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] __UpperCamelCase : Any ={'unk_token': '<unk>'} __UpperCamelCase : Any =os.path.join(self.tmpdirname , 'bart_tokenizer' ) os.makedirs(lowerCamelCase__ , exist_ok=lowerCamelCase__ ) __UpperCamelCase : Any =os.path.join(lowerCamelCase__ , BART_VOCAB_FILES_NAMES['vocab_file'] ) __UpperCamelCase : Dict =os.path.join(lowerCamelCase__ , BART_VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(lowerCamelCase__ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(lowerCamelCase__ ) ) def __lowercase ( self ): """simple docstring""" return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'dpr_tokenizer' ) ) def __lowercase ( self ): """simple docstring""" return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'bart_tokenizer' ) ) def __lowercase ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) @require_tokenizers def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[str] =os.path.join(self.tmpdirname , 'rag_tokenizer' ) __UpperCamelCase : Dict =RagConfig(question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() ) __UpperCamelCase : List[Any] =RagTokenizer(question_encoder=self.get_dpr_tokenizer() , generator=self.get_bart_tokenizer() ) rag_config.save_pretrained(lowerCamelCase__ ) rag_tokenizer.save_pretrained(lowerCamelCase__ ) __UpperCamelCase : int =RagTokenizer.from_pretrained(lowerCamelCase__ , config=lowerCamelCase__ ) self.assertIsInstance(new_rag_tokenizer.question_encoder , lowerCamelCase__ ) self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() , rag_tokenizer.question_encoder.get_vocab() ) self.assertIsInstance(new_rag_tokenizer.generator , lowerCamelCase__ ) self.assertEqual(new_rag_tokenizer.generator.get_vocab() , rag_tokenizer.generator.get_vocab() ) @slow def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Dict =RagTokenizer.from_pretrained('facebook/rag-token-nq' ) __UpperCamelCase : Union[str, Any] =[ 'who got the first nobel prize in physics', 'when is the next deadpool movie being released', 'which mode is used for short wave broadcast service', 'who is the owner of reading football club', 'when is the next scandal episode coming out', 'when is the last time the philadelphia won the superbowl', 'what is the most current adobe flash player version', 'how many episodes are there in dragon ball z', 'what is the first step in the evolution of the eye', 'where is gall bladder situated in human body', 'what is the main mineral in lithium batteries', 'who is the president of usa right now', 'where do the greasers live in the outsiders', 'panda is a national animal of which country', 'what is the name of manchester united stadium', ] __UpperCamelCase : int =tokenizer(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) @slow def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[str] =RagTokenizer.from_pretrained('facebook/rag-sequence-nq' ) __UpperCamelCase : Union[str, Any] =[ 'who got the first nobel prize in physics', 'when is the next deadpool movie being released', 'which mode is used for short wave broadcast service', 'who is the owner of reading football club', 'when is the next scandal episode coming out', 'when is the last time the philadelphia won the superbowl', 'what is the most current adobe flash player version', 'how many episodes are there in dragon ball z', 'what is the first step in the evolution of the eye', 'where is gall bladder situated in human body', 'what is the main mineral in lithium batteries', 'who is the president of usa right now', 'where do the greasers live in the outsiders', 'panda is a national animal of which country', 'what is the name of manchester united stadium', ] __UpperCamelCase : Any =tokenizer(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ )
71
1
from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal SCREAMING_SNAKE_CASE_:List[str] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_:int = TypeVar("""DatasetType""", Dataset, IterableDataset) def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = "first_exhausted" , ) -> int: """simple docstring""" from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError("""Unable to interleave an empty list of datasets.""" ) for i, dataset in enumerate(_lowerCAmelCase ): if not isinstance(_lowerCAmelCase , (Dataset, IterableDataset) ): if isinstance(_lowerCAmelCase , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f'''Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ''' """is an empty dataset dictionary.""" ) raise ValueError( f'''Dataset at position {i} has at least one split: {list(_lowerCAmelCase )}\n''' f'''Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(_lowerCAmelCase ) )}\']''' ) raise ValueError( f'''Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_lowerCAmelCase ).__name__}.''' ) if i == 0: A , A : List[Any] = ( (Dataset, IterableDataset) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else (IterableDataset, Dataset) ) elif not isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise ValueError( f'''Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.''' ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(f'''{stopping_strategy} is not supported. Please enter a valid stopping_strategy.''' ) if dataset_type is Dataset: return _interleave_map_style_datasets( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , info=_lowerCAmelCase , split=_lowerCAmelCase , stopping_strategy=_lowerCAmelCase ) else: return _interleave_iterable_datasets( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , info=_lowerCAmelCase , split=_lowerCAmelCase , stopping_strategy=_lowerCAmelCase ) def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = 0 , ) -> Any: """simple docstring""" if not dsets: raise ValueError("""Unable to concatenate an empty list of datasets.""" ) for i, dataset in enumerate(_lowerCAmelCase ): if not isinstance(_lowerCAmelCase , (Dataset, IterableDataset) ): if isinstance(_lowerCAmelCase , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f'''Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ''' """is an empty dataset dictionary.""" ) raise ValueError( f'''Dataset at position {i} has at least one split: {list(_lowerCAmelCase )}\n''' f'''Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(_lowerCAmelCase ) )}\']''' ) raise ValueError( f'''Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_lowerCAmelCase ).__name__}.''' ) if i == 0: A , A : List[Any] = ( (Dataset, IterableDataset) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else (IterableDataset, Dataset) ) elif not isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise ValueError( f'''Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.''' ) if dataset_type is Dataset: return _concatenate_map_style_datasets(_lowerCAmelCase , info=_lowerCAmelCase , split=_lowerCAmelCase , axis=_lowerCAmelCase ) else: return _concatenate_iterable_datasets(_lowerCAmelCase , info=_lowerCAmelCase , split=_lowerCAmelCase , axis=_lowerCAmelCase )
353
from random import randint, random def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = False , _lowerCAmelCase = False , _lowerCAmelCase = 5 , ) -> list: """simple docstring""" A : Any = [[-1] * number_of_cells] # Create a highway without any car A : Tuple = 0 A : Dict = max(_lowerCAmelCase , 0 ) while i < number_of_cells: A : Any = ( randint(0 , _lowerCAmelCase ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> int: """simple docstring""" A : List[str] = 0 A : Dict = highway_now[car_index + 1 :] for cell in range(len(_lowerCAmelCase ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(_lowerCAmelCase , -1 ) def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> list: """simple docstring""" A : str = len(_lowerCAmelCase ) # Beforce calculations, the highway is empty A : Any = [-1] * number_of_cells for car_index in range(_lowerCAmelCase ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed A : str = min(highway_now[car_index] + 1 , _lowerCAmelCase ) # Number of empty cell before the next car A : Optional[int] = get_distance(_lowerCAmelCase , _lowerCAmelCase ) - 1 # We can't have the car causing an accident A : Any = min(next_highway[car_index] , _lowerCAmelCase ) if random() < probability: # Randomly, a driver will slow down A : Optional[Any] = max(next_highway[car_index] - 1 , 0 ) return next_highway def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> list: """simple docstring""" A : Any = len(highway[0] ) for i in range(_lowerCAmelCase ): A : Optional[int] = update(highway[i] , _lowerCAmelCase , _lowerCAmelCase ) A : Tuple = [-1] * number_of_cells for car_index in range(_lowerCAmelCase ): A : Dict = next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) A : Optional[int] = (car_index + speed) % number_of_cells # Commit the change of position A : Dict = speed highway.append(_lowerCAmelCase ) return highway if __name__ == "__main__": import doctest doctest.testmod()
115
0
import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class a__ : def __init__( self , _A , _A=9_9 , _A=1_3 , _A=1_6 , _A=7 , _A=True , _A=True , _A=True , _A=False , _A=True , _A=2 , _A=3_2 , _A=4 , _A=4 , _A=3_0 , _A=0 , _A=1 , _A=2 , _A=None , ): """simple docstring""" __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = decoder_seq_length # For common tests __lowerCAmelCase = self.decoder_seq_length __lowerCAmelCase = is_training __lowerCAmelCase = use_attention_mask __lowerCAmelCase = use_labels __lowerCAmelCase = vocab_size __lowerCAmelCase = d_model __lowerCAmelCase = d_model __lowerCAmelCase = decoder_layers __lowerCAmelCase = decoder_layers __lowerCAmelCase = decoder_ffn_dim __lowerCAmelCase = decoder_attention_heads __lowerCAmelCase = decoder_attention_heads __lowerCAmelCase = eos_token_id __lowerCAmelCase = bos_token_id __lowerCAmelCase = pad_token_id __lowerCAmelCase = decoder_start_token_id __lowerCAmelCase = use_cache __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = None __lowerCAmelCase = decoder_seq_length __lowerCAmelCase = 2 __lowerCAmelCase = 1 def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) __lowerCAmelCase = None if self.use_attention_mask: __lowerCAmelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) __lowerCAmelCase = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A , _A , ): """simple docstring""" __lowerCAmelCase = True __lowerCAmelCase = TrOCRDecoder(config=_A ).to(_A ).eval() __lowerCAmelCase = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass __lowerCAmelCase = model(_A , use_cache=_A ) __lowerCAmelCase = model(_A ) __lowerCAmelCase = model(_A , use_cache=_A ) self.parent.assertTrue(len(_A ) == len(_A ) ) self.parent.assertTrue(len(_A ) == len(_A ) + 1 ) __lowerCAmelCase = outputs["past_key_values"] # create hypothetical next token and extent to next_input_ids __lowerCAmelCase = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and __lowerCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) __lowerCAmelCase = model(_A )["last_hidden_state"] __lowerCAmelCase = model(_A , past_key_values=_A )["last_hidden_state"] # select random slice __lowerCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() __lowerCAmelCase = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() __lowerCAmelCase = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(_A , _A , atol=1E-3 ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict @require_torch class a__ ( snake_case__ , snake_case__ , snake_case__ , unittest.TestCase ): _a : List[Any] = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () _a : Dict = (TrOCRForCausalLM,) if is_torch_available() else () _a : Union[str, Any] = {"""text-generation""": TrOCRForCausalLM} if is_torch_available() else {} _a : List[Any] = True _a : Dict = False def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = TrOCRStandaloneDecoderModelTester(self , is_training=_A ) __lowerCAmelCase = ConfigTester(self , config_class=_A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" pass def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" pass def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" pass def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" self.config_tester.run_common_tests() def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*_A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return @unittest.skip("The model doesn't support left padding" ) # and it's not used enough to be worth fixing :) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" pass
92
import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version(""">=""", FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType UpperCamelCase__ = get_logger(__name__) def _a ( SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : str=0 ): os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) with FSDP.state_dict_type( SCREAMING_SNAKE_CASE_ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): __lowerCAmelCase = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __lowerCAmelCase = F"""{MODEL_NAME}.bin""" if model_index == 0 else F"""{MODEL_NAME}_{model_index}.bin""" __lowerCAmelCase = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if accelerator.process_index == 0: logger.info(F"""Saving model to {output_model_file}""" ) torch.save(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) logger.info(F"""Model saved to {output_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __lowerCAmelCase = ( F"""{MODEL_NAME}_rank{accelerator.process_index}.bin""" if model_index == 0 else F"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin""" ) __lowerCAmelCase = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) logger.info(F"""Saving model to {output_model_file}""" ) torch.save(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) logger.info(F"""Model saved to {output_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __lowerCAmelCase = os.path.join(SCREAMING_SNAKE_CASE_ , F"""{MODEL_NAME}_{model_index}""" ) os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) logger.info(F"""Saving model to {ckpt_dir}""" ) __lowerCAmelCase = {"model": state_dict} dist_cp.save_state_dict( state_dict=SCREAMING_SNAKE_CASE_ , storage_writer=dist_cp.FileSystemWriter(SCREAMING_SNAKE_CASE_ ) , planner=DefaultSavePlanner() , ) logger.info(F"""Model saved to {ckpt_dir}""" ) def _a ( SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Any=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( SCREAMING_SNAKE_CASE_ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(SCREAMING_SNAKE_CASE_ ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( "Set the `sync_module_states` flag to `True` so that model states are synced across processes when " "initializing FSDP object" ) return __lowerCAmelCase = F"""{MODEL_NAME}.bin""" if model_index == 0 else F"""{MODEL_NAME}_{model_index}.bin""" __lowerCAmelCase = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) logger.info(F"""Loading model from {input_model_file}""" ) __lowerCAmelCase = torch.load(SCREAMING_SNAKE_CASE_ ) logger.info(F"""Model loaded from {input_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __lowerCAmelCase = ( F"""{MODEL_NAME}_rank{accelerator.process_index}.bin""" if model_index == 0 else F"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin""" ) __lowerCAmelCase = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) logger.info(F"""Loading model from {input_model_file}""" ) __lowerCAmelCase = torch.load(SCREAMING_SNAKE_CASE_ ) logger.info(F"""Model loaded from {input_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __lowerCAmelCase = ( os.path.join(SCREAMING_SNAKE_CASE_ , F"""{MODEL_NAME}_{model_index}""" ) if F"""{MODEL_NAME}""" not in input_dir else input_dir ) logger.info(F"""Loading model from {ckpt_dir}""" ) __lowerCAmelCase = {"model": model.state_dict()} dist_cp.load_state_dict( state_dict=SCREAMING_SNAKE_CASE_ , storage_reader=dist_cp.FileSystemReader(SCREAMING_SNAKE_CASE_ ) , planner=DefaultLoadPlanner() , ) __lowerCAmelCase = state_dict["model"] logger.info(F"""Model loaded from {ckpt_dir}""" ) model.load_state_dict(SCREAMING_SNAKE_CASE_ ) def _a ( SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : str=0 ): os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) with FSDP.state_dict_type( SCREAMING_SNAKE_CASE_ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): __lowerCAmelCase = FSDP.optim_state_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: __lowerCAmelCase = ( F"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else F"""{OPTIMIZER_NAME}_{optimizer_index}.bin""" ) __lowerCAmelCase = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) logger.info(F"""Saving Optimizer state to {output_optimizer_file}""" ) torch.save(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) logger.info(F"""Optimizer state saved in {output_optimizer_file}""" ) else: __lowerCAmelCase = os.path.join(SCREAMING_SNAKE_CASE_ , F"""{OPTIMIZER_NAME}_{optimizer_index}""" ) os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) logger.info(F"""Saving Optimizer state to {ckpt_dir}""" ) dist_cp.save_state_dict( state_dict={"optimizer": optim_state} , storage_writer=dist_cp.FileSystemWriter(SCREAMING_SNAKE_CASE_ ) , planner=DefaultSavePlanner() , ) logger.info(F"""Optimizer state saved in {ckpt_dir}""" ) def _a ( SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Dict=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( SCREAMING_SNAKE_CASE_ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __lowerCAmelCase = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: __lowerCAmelCase = ( F"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else F"""{OPTIMIZER_NAME}_{optimizer_index}.bin""" ) __lowerCAmelCase = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) logger.info(F"""Loading Optimizer state from {input_optimizer_file}""" ) __lowerCAmelCase = torch.load(SCREAMING_SNAKE_CASE_ ) logger.info(F"""Optimizer state loaded from {input_optimizer_file}""" ) else: __lowerCAmelCase = ( os.path.join(SCREAMING_SNAKE_CASE_ , F"""{OPTIMIZER_NAME}_{optimizer_index}""" ) if F"""{OPTIMIZER_NAME}""" not in input_dir else input_dir ) logger.info(F"""Loading Optimizer from {ckpt_dir}""" ) __lowerCAmelCase = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key="optimizer" , storage_reader=dist_cp.FileSystemReader(SCREAMING_SNAKE_CASE_ ) , ) __lowerCAmelCase = optim_state["optimizer"] logger.info(F"""Optimizer loaded from {ckpt_dir}""" ) __lowerCAmelCase = FSDP.optim_state_dict_to_load(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) optimizer.load_state_dict(SCREAMING_SNAKE_CASE_ )
92
1
import os from datetime import datetime as dt from github import Github _UpperCAmelCase = [ 'good first issue', 'feature request', 'wip', ] def lowerCAmelCase_ ( ) -> Union[str, Any]: UpperCamelCase_ = Github(os.environ["GITHUB_TOKEN"] ) UpperCamelCase_ = g.get_repo("huggingface/accelerate" ) UpperCamelCase_ = repo.get_issues(state="open" ) for issue in open_issues: UpperCamelCase_ = sorted([comment for comment in issue.get_comments()] , key=lambda UpperCamelCase_ : i.created_at , reverse=UpperCamelCase_ ) UpperCamelCase_ = comments[0] if len(UpperCamelCase_ ) > 0 else None UpperCamelCase_ = dt.utcnow() UpperCamelCase_ = (current_time - issue.updated_at).days UpperCamelCase_ = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state="closed" ) elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( "This issue has been automatically marked as stale because it has not had " "recent activity. If you think this still needs to be addressed " "please comment on this thread.\n\nPlease note that issues that do not follow the " "[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) " "are likely to be ignored." ) if __name__ == "__main__": main()
357
from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ): @register_to_config def __init__( self: Any , _SCREAMING_SNAKE_CASE: int = 768 , ) -> Tuple: """simple docstring""" super().__init__() UpperCamelCase_ = nn.Parameter(torch.zeros(1 , _SCREAMING_SNAKE_CASE ) ) UpperCamelCase_ = nn.Parameter(torch.ones(1 , _SCREAMING_SNAKE_CASE ) ) def lowercase ( self: List[Any] , _SCREAMING_SNAKE_CASE: Optional[Union[str, torch.device]] = None , _SCREAMING_SNAKE_CASE: Optional[torch.dtype] = None , ) -> List[Any]: """simple docstring""" UpperCamelCase_ = nn.Parameter(self.mean.to(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) ) UpperCamelCase_ = nn.Parameter(self.std.to(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) ) return self def lowercase ( self: str , _SCREAMING_SNAKE_CASE: Dict ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = (embeds - self.mean) * 1.0 / self.std return embeds def lowercase ( self: List[Any] , _SCREAMING_SNAKE_CASE: Union[str, Any] ) -> Dict: """simple docstring""" UpperCamelCase_ = (embeds * self.std) + self.mean return embeds
328
0
def UpperCAmelCase_ ( __snake_case , __snake_case ) -> bool: """simple docstring""" _lowercase =len(__snake_case ) _lowercase =len(__snake_case ) _lowercase =[[False for _ in range(m + 1 )] for _ in range(n + 1 )] _lowercase =True for i in range(__snake_case ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: _lowercase =True if a[i].islower(): _lowercase =True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
5
'''simple docstring''' from __future__ import annotations import string from itertools import cycle, product from pathlib import Path UpperCamelCase_ = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) UpperCamelCase_ = [ord(letter) for letter in string.ascii_lowercase] UpperCamelCase_ = {ord(char) for char in VALID_CHARS} UpperCamelCase_ = ["the", "be", "to", "of", "and", "in", "that", "have"] def lowercase__( __UpperCamelCase: list[int] ,__UpperCamelCase: tuple[int, ...] ): """simple docstring""" SCREAMING_SNAKE_CASE : str = "" SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : int for keychar, cipherchar in zip(cycle(__UpperCamelCase ) ,__UpperCamelCase ): SCREAMING_SNAKE_CASE : Any = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(__UpperCamelCase ) return decoded def lowercase__( __UpperCamelCase: list[int] ): """simple docstring""" SCREAMING_SNAKE_CASE : list[str] = [] for key in product(__UpperCamelCase ,repeat=3 ): SCREAMING_SNAKE_CASE : Union[str, Any] = try_key(__UpperCamelCase ,__UpperCamelCase ) if encoded is not None: possibles.append(__UpperCamelCase ) return possibles def lowercase__( __UpperCamelCase: list[str] ,__UpperCamelCase: str ): """simple docstring""" return [possible for possible in possibles if common_word in possible.lower()] def lowercase__( __UpperCamelCase: str = "p059_cipher.txt" ): """simple docstring""" SCREAMING_SNAKE_CASE : list[int] SCREAMING_SNAKE_CASE : list[str] SCREAMING_SNAKE_CASE : str SCREAMING_SNAKE_CASE : str SCREAMING_SNAKE_CASE : str = Path(__UpperCamelCase ).parent.joinpath(__UpperCamelCase ).read_text(encoding='utf-8' ) SCREAMING_SNAKE_CASE : Optional[int] = [int(__UpperCamelCase ) for number in data.strip().split(',' )] SCREAMING_SNAKE_CASE : List[Any] = filter_valid_chars(__UpperCamelCase ) for common_word in COMMON_WORDS: SCREAMING_SNAKE_CASE : Optional[Any] = filter_common_word(__UpperCamelCase ,__UpperCamelCase ) if len(__UpperCamelCase ) == 1: break SCREAMING_SNAKE_CASE : Dict = possibles[0] return sum(ord(__UpperCamelCase ) for char in decoded_text ) if __name__ == "__main__": print(F"""{solution() = }""")
251
0
def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> list: """simple docstring""" _SCREAMING_SNAKE_CASE = len(snake_case__ ) _SCREAMING_SNAKE_CASE = [] for i in range(len(snake_case__ ) - pat_len + 1 ): _SCREAMING_SNAKE_CASE = True for j in range(snake_case__ ): if s[i + j] != pattern[j]: _SCREAMING_SNAKE_CASE = False break if match_found: position.append(snake_case__ ) return position if __name__ == "__main__": assert naive_pattern_search('''ABCDEFG''', '''DE''') == [3] print(naive_pattern_search('''ABAAABCDBBABCDDEBCABC''', '''ABC'''))
125
import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel UpperCamelCase = '''0.12''' # assumed parallelism: 8 @require_flax @is_staging_test class __UpperCAmelCase (unittest.TestCase ): @classmethod def UpperCamelCase ( cls: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TOKEN HfFolder.save_token(UpperCAmelCase_ ) @classmethod def UpperCamelCase ( cls: Union[str, Any] ): '''simple docstring''' try: delete_repo(token=cls._token , repo_id="""test-model-flax""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-model-flax-org""" ) except HTTPError: pass def UpperCamelCase ( self: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) _SCREAMING_SNAKE_CASE = FlaxBertModel(UpperCAmelCase_ ) model.push_to_hub("""test-model-flax""" , use_auth_token=self._token ) _SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained(F'{USER}/test-model-flax' ) _SCREAMING_SNAKE_CASE = flatten_dict(unfreeze(model.params ) ) _SCREAMING_SNAKE_CASE = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): _SCREAMING_SNAKE_CASE = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(UpperCAmelCase_ , 1E-3 , msg=F'{key} not identical' ) # Reset repo delete_repo(token=self._token , repo_id="""test-model-flax""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(UpperCAmelCase_ , repo_id="""test-model-flax""" , push_to_hub=UpperCAmelCase_ , use_auth_token=self._token ) _SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained(F'{USER}/test-model-flax' ) _SCREAMING_SNAKE_CASE = flatten_dict(unfreeze(model.params ) ) _SCREAMING_SNAKE_CASE = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): _SCREAMING_SNAKE_CASE = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(UpperCAmelCase_ , 1E-3 , msg=F'{key} not identical' ) def UpperCamelCase ( self: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) _SCREAMING_SNAKE_CASE = FlaxBertModel(UpperCAmelCase_ ) model.push_to_hub("""valid_org/test-model-flax-org""" , use_auth_token=self._token ) _SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained("""valid_org/test-model-flax-org""" ) _SCREAMING_SNAKE_CASE = flatten_dict(unfreeze(model.params ) ) _SCREAMING_SNAKE_CASE = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): _SCREAMING_SNAKE_CASE = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(UpperCAmelCase_ , 1E-3 , msg=F'{key} not identical' ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-model-flax-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( UpperCAmelCase_ , repo_id="""valid_org/test-model-flax-org""" , push_to_hub=UpperCAmelCase_ , use_auth_token=self._token ) _SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained("""valid_org/test-model-flax-org""" ) _SCREAMING_SNAKE_CASE = flatten_dict(unfreeze(model.params ) ) _SCREAMING_SNAKE_CASE = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): _SCREAMING_SNAKE_CASE = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(UpperCAmelCase_ , 1E-3 , msg=F'{key} not identical' ) def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = flatten_dict(modela.params ) _SCREAMING_SNAKE_CASE = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: _SCREAMING_SNAKE_CASE = False return models_are_equal @require_flax class __UpperCAmelCase (unittest.TestCase ): def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = BertConfig.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" ) _SCREAMING_SNAKE_CASE = FlaxBertModel(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = """bert""" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) ) with self.assertRaises(UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained(UpperCAmelCase_ , subfolder=UpperCAmelCase_ ) self.assertTrue(check_models_equal(UpperCAmelCase_ , UpperCAmelCase_ ) ) def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = BertConfig.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" ) _SCREAMING_SNAKE_CASE = FlaxBertModel(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = """bert""" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) , max_shard_size="""10KB""" ) with self.assertRaises(UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained(UpperCAmelCase_ , subfolder=UpperCAmelCase_ ) self.assertTrue(check_models_equal(UpperCAmelCase_ , UpperCAmelCase_ ) ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = """bert""" _SCREAMING_SNAKE_CASE = """hf-internal-testing/tiny-random-bert-subfolder""" with self.assertRaises(UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained(UpperCAmelCase_ , subfolder=UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = """bert""" _SCREAMING_SNAKE_CASE = """hf-internal-testing/tiny-random-bert-sharded-subfolder""" with self.assertRaises(UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained(UpperCAmelCase_ , subfolder=UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ )
125
1
import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version _snake_case = version.parse(importlib_metadata.version('''nltk''')) if NLTK_VERSION >= version.Version('''3.6.4'''): from nltk import word_tokenize _snake_case = '''\ @inproceedings{banarjee2005, title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments}, author = {Banerjee, Satanjeev and Lavie, Alon}, booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization}, month = jun, year = {2005}, address = {Ann Arbor, Michigan}, publisher = {Association for Computational Linguistics}, url = {https://www.aclweb.org/anthology/W05-0909}, pages = {65--72}, } ''' _snake_case = '''\ METEOR, an automatic metric for machine translation evaluation that is based on a generalized concept of unigram matching between the machine-produced translation and human-produced reference translations. Unigrams can be matched based on their surface forms, stemmed forms, and meanings; furthermore, METEOR can be easily extended to include more advanced matching strategies. Once all generalized unigram matches between the two strings have been found, METEOR computes a score for this matching using a combination of unigram-precision, unigram-recall, and a measure of fragmentation that is designed to directly capture how well-ordered the matched words in the machine translation are in relation to the reference. METEOR gets an R correlation value of 0.347 with human evaluation on the Arabic data and 0.331 on the Chinese data. This is shown to be an improvement on using simply unigram-precision, unigram-recall and their harmonic F1 combination. ''' _snake_case = ''' Computes METEOR score of translated segments against one or more references. Args: predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. alpha: Parameter for controlling relative weights of precision and recall. default: 0.9 beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3 gamma: Relative weight assigned to fragmentation penalty. default: 0.5 Returns: \'meteor\': meteor score. Examples: >>> meteor = datasets.load_metric(\'meteor\') >>> predictions = ["It is a guide to action which ensures that the military always obeys the commands of the party"] >>> references = ["It is a guide to action that ensures that the military will forever heed Party commands"] >>> results = meteor.compute(predictions=predictions, references=references) >>> print(round(results["meteor"], 4)) 0.6944 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): '''simple docstring''' def _snake_case ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py"] , reference_urls=[ "https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score", "https://en.wikipedia.org/wiki/METEOR", ] , ) def _snake_case ( self , __A ): """simple docstring""" import nltk nltk.download("wordnet" ) if NLTK_VERSION >= version.Version("3.6.5" ): nltk.download("punkt" ) if NLTK_VERSION >= version.Version("3.6.6" ): nltk.download("omw-1.4" ) def _snake_case ( self , __A , __A , __A=0.9 , __A=3 , __A=0.5 ): """simple docstring""" if NLTK_VERSION >= version.Version("3.6.5" ): lowerCamelCase : List[Any] = [ meteor_score.single_meteor_score( word_tokenize(__A ) , word_tokenize(__A ) , alpha=__A , beta=__A , gamma=__A ) for ref, pred in zip(__A , __A ) ] else: lowerCamelCase : Dict = [ meteor_score.single_meteor_score(__A , __A , alpha=__A , beta=__A , gamma=__A ) for ref, pred in zip(__A , __A ) ] return {"meteor": np.mean(__A )}
283
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class UpperCAmelCase_ ( UpperCamelCase , UpperCamelCase , UpperCamelCase , unittest.TestCase ): '''simple docstring''' __A : Tuple = StableUnCLIPPipeline __A : Optional[int] = TEXT_TO_IMAGE_PARAMS __A : str = TEXT_TO_IMAGE_BATCH_PARAMS __A : int = TEXT_TO_IMAGE_IMAGE_PARAMS __A : Tuple = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false __A : Union[str, Any] = False def _snake_case ( self ): """simple docstring""" lowerCamelCase : List[str] = 32 lowerCamelCase : Dict = embedder_hidden_size # prior components torch.manual_seed(0 ) lowerCamelCase : Optional[int] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) lowerCamelCase : Optional[int] = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=__A , projection_dim=__A , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) lowerCamelCase : List[Any] = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=__A , num_layers=1 , ) torch.manual_seed(0 ) lowerCamelCase : Dict = DDPMScheduler( variance_type="fixed_small_log" , prediction_type="sample" , num_train_timesteps=1000 , clip_sample=__A , clip_sample_range=5.0 , beta_schedule="squaredcos_cap_v2" , ) # regular denoising components torch.manual_seed(0 ) lowerCamelCase : Optional[int] = StableUnCLIPImageNormalizer(embedding_dim=__A ) lowerCamelCase : Tuple = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) lowerCamelCase : List[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) lowerCamelCase : str = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=__A , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) lowerCamelCase : Any = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=__A , layers_per_block=1 , upcast_attention=__A , use_linear_projection=__A , ) torch.manual_seed(0 ) lowerCamelCase : int = DDIMScheduler( beta_schedule="scaled_linear" , beta_start=0.00085 , beta_end=0.012 , prediction_type="v_prediction" , set_alpha_to_one=__A , steps_offset=1 , ) torch.manual_seed(0 ) lowerCamelCase : Optional[Any] = AutoencoderKL() lowerCamelCase : Optional[int] = { # prior components "prior_tokenizer": prior_tokenizer, "prior_text_encoder": prior_text_encoder, "prior": prior, "prior_scheduler": prior_scheduler, # image noising components "image_normalizer": image_normalizer, "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder, "unet": unet, "scheduler": scheduler, "vae": vae, } return components def _snake_case ( self , __A , __A=0 ): """simple docstring""" if str(__A ).startswith("mps" ): lowerCamelCase : Optional[int] = torch.manual_seed(__A ) else: lowerCamelCase : Optional[Any] = torch.Generator(device=__A ).manual_seed(__A ) lowerCamelCase : Tuple = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "prior_num_inference_steps": 2, "output_type": "numpy", } return inputs def _snake_case ( self ): """simple docstring""" lowerCamelCase : Dict = torch_device == "cpu" self._test_attention_slicing_forward_pass(test_max_difference=__A ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : List[Any] = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=__A ) @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ): """simple docstring""" lowerCamelCase : Optional[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy" ) lowerCamelCase : str = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowerCamelCase : List[Any] = torch.Generator(device="cpu" ).manual_seed(0 ) lowerCamelCase : Dict = pipe("anime turle" , generator=__A , output_type="np" ) lowerCamelCase : Dict = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__A , __A ) def _snake_case ( self ): """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowerCamelCase : int = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa ) lowerCamelCase : Union[str, Any] = pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowerCamelCase : Any = pipe( "anime turtle" , prior_num_inference_steps=2 , num_inference_steps=2 , output_type="np" , ) lowerCamelCase : List[str] = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
283
1
"""simple docstring""" from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm __A = logging.get_logger(__name__) @dataclass class lowerCamelCase__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase = [ '''no_inference''', '''no_cuda''', '''no_tpu''', '''no_speed''', '''no_memory''', '''no_env_print''', '''no_multi_process''', ] def __init__( self , **__UpperCAmelCase ) -> Union[str, Any]: for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: _lowerCAmelCase =deprecated_arg[3:] setattr(self , UpperCamelCase__ , not kwargs.pop(UpperCamelCase__ ) ) logger.warning( f'''{deprecated_arg} is depreciated. Please use --no_{positive_arg} or''' f''' {positive_arg}={kwargs[positive_arg]}''' ) _lowerCAmelCase =kwargs.pop("""torchscript""" , self.torchscript ) _lowerCAmelCase =kwargs.pop("""torch_xla_tpu_print_metrics""" , self.torch_xla_tpu_print_metrics ) _lowerCAmelCase =kwargs.pop("""fp16_opt_level""" , self.fpaa_opt_level ) super().__init__(**UpperCamelCase__ ) lowerCamelCase = field(default=__SCREAMING_SNAKE_CASE , metadata={'''help''': '''Trace the models using torchscript'''} ) lowerCamelCase = field(default=__SCREAMING_SNAKE_CASE , metadata={'''help''': '''Print Xla/PyTorch tpu metrics'''} ) lowerCamelCase = field( default='''O1''' , metadata={ '''help''': ( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\']. ''' '''See details at https://nvidia.github.io/apex/amp.html''' ) } , ) @cached_property def _lowerCAmelCase ( self ) -> Tuple["torch.device", int]: requires_backends(self , ["""torch"""] ) logger.info("""PyTorch: setting up devices""" ) if not self.cuda: _lowerCAmelCase =torch.device("""cpu""" ) _lowerCAmelCase =0 elif is_torch_tpu_available(): _lowerCAmelCase =xm.xla_device() _lowerCAmelCase =0 else: _lowerCAmelCase =torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) _lowerCAmelCase =torch.cuda.device_count() return device, n_gpu @property def _lowerCAmelCase ( self ) -> Optional[Any]: return is_torch_tpu_available() and self.tpu @property def _lowerCAmelCase ( self ) -> int: requires_backends(self , ["""torch"""] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def _lowerCAmelCase ( self ) -> "torch.device": requires_backends(self , ["""torch"""] ) return self._setup_devices[0] @property def _lowerCAmelCase ( self ) -> Dict: requires_backends(self , ["""torch"""] ) return self._setup_devices[1] @property def _lowerCAmelCase ( self ) -> List[Any]: return self.n_gpu > 0
367
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = {} class lowerCamelCase__ ( __magic_name__ ): '''simple docstring''' lowerCamelCase = '''llama''' lowerCamelCase = ['''past_key_values'''] def __init__( self , __UpperCAmelCase=3_20_00 , __UpperCAmelCase=40_96 , __UpperCAmelCase=1_10_08 , __UpperCAmelCase=32 , __UpperCAmelCase=32 , __UpperCAmelCase=None , __UpperCAmelCase="silu" , __UpperCAmelCase=20_48 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=1e-6 , __UpperCAmelCase=True , __UpperCAmelCase=0 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , __UpperCAmelCase=1 , __UpperCAmelCase=False , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> Optional[Any]: _lowerCAmelCase =vocab_size _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =hidden_size _lowerCAmelCase =intermediate_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads # for backward compatibility if num_key_value_heads is None: _lowerCAmelCase =num_attention_heads _lowerCAmelCase =num_key_value_heads _lowerCAmelCase =hidden_act _lowerCAmelCase =initializer_range _lowerCAmelCase =rms_norm_eps _lowerCAmelCase =pretraining_tp _lowerCAmelCase =use_cache _lowerCAmelCase =rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , tie_word_embeddings=__UpperCAmelCase , **__UpperCAmelCase , ) def _lowerCAmelCase ( self ) -> str: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , __UpperCAmelCase ) or len(self.rope_scaling ) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ f'''got {self.rope_scaling}''' ) _lowerCAmelCase =self.rope_scaling.get("""type""" , __UpperCAmelCase ) _lowerCAmelCase =self.rope_scaling.get("""factor""" , __UpperCAmelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' ) if rope_scaling_factor is None or not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or rope_scaling_factor <= 1.0: raise ValueError(f'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
341
0
'''simple docstring''' from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split __snake_case =datasets.load_iris() __snake_case =np.array(data["""data"""]) __snake_case =np.array(data["""target"""]) __snake_case =data["""target_names"""] __snake_case , __snake_case , __snake_case , __snake_case =train_test_split(X, y) def a_ ( lowerCamelCase : str , lowerCamelCase : Tuple ): return np.linalg.norm(np.array(lowerCamelCase ) - np.array(lowerCamelCase ) ) def a_ ( lowerCamelCase : Optional[Any] , lowerCamelCase : List[Any] , lowerCamelCase : Optional[Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : List[str]=5 ): lowerCAmelCase = zip(lowerCamelCase , lowerCamelCase ) # List of distances of all points from the point to be classified lowerCAmelCase = [] for data_point in data: lowerCAmelCase = euclidean_distance(data_point[0] , lowerCamelCase ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. lowerCAmelCase = [i[1] for i in sorted(lowerCamelCase )[:k]] # Most commonly occurring class among them # is the class into which the point is classified lowerCAmelCase = Counter(lowerCamelCase ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
4
"""simple docstring""" from dataclasses import dataclass, field from typing import Optional @dataclass class lowerCamelCase : lowerCamelCase__ : Optional[str] = field( default='codeparrot/codeparrot' ,metadata={'help': 'Model name or path of model to be trained.'} ) lowerCamelCase__ : Optional[str] = field( default='./' ,metadata={'help': 'Save dir where model repo is cloned and models updates are saved to.'} ) lowerCamelCase__ : Optional[str] = field( default='codeparrot/codeparrot-clean-train' ,metadata={'help': 'Name or path of training dataset.'} ) lowerCamelCase__ : Optional[str] = field( default='codeparrot/codeparrot-clean-valid' ,metadata={'help': 'Name or path of validation dataset.'} ) lowerCamelCase__ : Optional[int] = field(default=2 ,metadata={'help': 'Batch size for training.'} ) lowerCamelCase__ : Optional[int] = field(default=2 ,metadata={'help': 'Batch size for evaluation.'} ) lowerCamelCase__ : Optional[float] = field(default=0.1 ,metadata={'help': 'Value of weight decay.'} ) lowerCamelCase__ : Optional[int] = field( default=1_0_0_0_0 ,metadata={'help': 'Size of buffer used to shuffle streaming dataset.'} ) lowerCamelCase__ : Optional[float] = field(default=2E-4 ,metadata={'help': 'Learning rate fo training.'} ) lowerCamelCase__ : Optional[str] = field(default='cosine' ,metadata={'help': 'Learning rate.'} ) lowerCamelCase__ : Optional[int] = field( default=7_5_0 ,metadata={'help': 'Number of warmup steps in the learning rate schedule.'} ) lowerCamelCase__ : Optional[int] = field( default=1_6 ,metadata={'help': 'Number of gradient accumulation steps.'} ) lowerCamelCase__ : Optional[bool] = field( default=A__ ,metadata={'help': 'Use gradient checkpointing to reduce memory footprint.'} ) lowerCamelCase__ : Optional[int] = field(default=5_0_0_0_0 ,metadata={'help': 'Maximum number of training steps.'} ) lowerCamelCase__ : Optional[int] = field( default=-1 ,metadata={'help': 'Maximum number of evaluation steps. If -1 the full dataset is evaluated.'} ) lowerCamelCase__ : Optional[int] = field(default=1_0_2_4 ,metadata={'help': 'Sequence lengths used for training.'} ) lowerCamelCase__ : Optional[int] = field(default=1 ,metadata={'help': 'Training seed.'} ) lowerCamelCase__ : Optional[int] = field( default=1_0_2_4 ,metadata={'help': 'Interval to save checkpoints. Measured as number of forward passes not training steps.'} ,) lowerCamelCase__ : Optional[str] = field( default=A__ ,metadata={'help': 'States path if the training should continue from a checkpoint folder.'} ) lowerCamelCase__ : Optional[bool] = field(default=A__ ,metadata={'help': 'If True the data is pretokenized.'} ) @dataclass class lowerCamelCase : lowerCamelCase__ : Optional[str] = field( default='codeparrot/codeparrot' ,metadata={'help': 'Model name or path of model to be evaluated.'} ) lowerCamelCase__ : Optional[str] = field( default='codeparrot/codeparrot-clean-valid' ,metadata={'help': 'Name or path of validation dataset.'} ) lowerCamelCase__ : Optional[int] = field(default=2 ,metadata={'help': 'Batch size used for evaluation.'} ) lowerCamelCase__ : Optional[int] = field( default=-1 ,metadata={'help': 'Maximum number of evaluation steps. If -1 the full dataset is evaluated.'} ) lowerCamelCase__ : Optional[int] = field(default=1_0_2_4 ,metadata={'help': 'Length of sequences to be evaluated.'} ) lowerCamelCase__ : Optional[int] = field(default=1 ,metadata={'help': 'Random seed used for evaluation.'} ) @dataclass class lowerCamelCase : lowerCamelCase__ : Optional[str] = field( default='codeparrot/codeparrot' ,metadata={'help': 'Model name or path of model to be evaluated.'} ) lowerCamelCase__ : Optional[int] = field(default=A__ ,metadata={'help': 'Number of workers used for code evaluation.'} ) lowerCamelCase__ : Optional[int] = field( default=A__ ,metadata={'help': 'The number of human-eval tasks to run. If not included all tasks are evaluated.'} ,) lowerCamelCase__ : Optional[bool] = field( default=A__ ,metadata={'help': 'Sample from the language model\'s output distribution.'} ) lowerCamelCase__ : Optional[float] = field(default=0.2 ,metadata={'help': 'Sampling temperature used for generation.'} ) lowerCamelCase__ : Optional[int] = field(default=2_5_6 ,metadata={'help': 'Maximum number of newly generated tokens.'} ) lowerCamelCase__ : Optional[int] = field(default=0 ,metadata={'help': 'Top-k parameter used for generation.'} ) lowerCamelCase__ : Optional[float] = field(default=0.9_5 ,metadata={'help': 'Top-p parameter used for nucleus sampling.'} ) lowerCamelCase__ : Optional[int] = field(default=1_0 ,metadata={'help': 'Number of generations to run in parallel.'} ) lowerCamelCase__ : Optional[int] = field( default=2_0_0 ,metadata={'help': 'Number of completions to generate for each sample.'} ) lowerCamelCase__ : Optional[int] = field(default=1 ,metadata={'help': 'Random seed used for evaluation.'} ) lowerCamelCase__ : Optional[str] = field( default='eval_results.json' ,metadata={'help': 'Random seed used for evaluation.'} ) lowerCamelCase__ : Optional[str] = field( default='0' ,metadata={'help': 'Allow `code_eval` to execute Python code on machine'} ) lowerCamelCase__ : Optional[int] = field( default=-1 ,metadata={ 'help': ( 'Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive' ' number corresponds to which GPU device id to run on.' ) } ,) @dataclass class lowerCamelCase : lowerCamelCase__ : Optional[int] = field( default=A__ ,metadata={ 'help': 'The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.' } ,) lowerCamelCase__ : Optional[str] = field( default='transformersbook/codeparrot' ,metadata={'help': 'Folder or name of dataset to process.'} ) lowerCamelCase__ : Optional[str] = field( default='codeparrot-clean' ,metadata={'help': 'Folder to save processed processed dataset.'} ) lowerCamelCase__ : Optional[int] = field( default=1_0_0_0_0_0 ,metadata={'help': 'Number of files to save per JSON output file.'} ) lowerCamelCase__ : Optional[str] = field(default='content' ,metadata={'help': 'Column containing text data to process.'} ) lowerCamelCase__ : Optional[float] = field( default=1_0_0_0 ,metadata={'help': 'Maximum line length in file, otherwise file is filtered.'} ) lowerCamelCase__ : Optional[float] = field( default=1_0_0 ,metadata={'help': 'Maximum mean line length in file, otherwise file is filtered.'} ) lowerCamelCase__ : Optional[float] = field( default=0.2_5 ,metadata={'help': 'Maximum fraction of non-alphanumeric characters, otherwise file is filtered.'} ) lowerCamelCase__ : Optional[float] = field( default=1.5 ,metadata={'help': 'Minimum character token ratio for the file, otherwise file is filtered.'} ) lowerCamelCase__ : Optional[float] = field( default=0.7 ,metadata={'help': 'Probability for filtering config, test and uncommon files.'} ) lowerCamelCase__ : Optional[str] = field( default='codeparrot/codeparrot' ,metadata={'help': 'Name or path to the tokenizer.'} ,) lowerCamelCase__ : Optional[bool] = field( default=A__ ,metadata={'help': 'If True, near-duplicate samples are removed.'} ) lowerCamelCase__ : Optional[float] = field( default=0.8_5 ,metadata={'help': 'Jaccard threshold for near-duplicate samples.'} ) @dataclass class lowerCamelCase : lowerCamelCase__ : Optional[str] = field( default='gpt2' ,metadata={'help': 'Base tokenizer to build new tokenizer from.'} ) lowerCamelCase__ : Optional[str] = field( default='transformersbook/codeparrot-train' ,metadata={'help': 'Dataset to train tokenizer on.'} ) lowerCamelCase__ : Optional[str] = field(default='content' ,metadata={'help': 'Column containing text data to process.'} ) lowerCamelCase__ : Optional[int] = field(default=2_0_0_0_0_0 ,metadata={'help': 'Number of examples to train tokenizer on.'} ) lowerCamelCase__ : Optional[int] = field( default=3_2_7_6_8 ,metadata={'help': 'Number of examples to train the tokenizer on.'} ) lowerCamelCase__ : Optional[str] = field(default='codeparrot' ,metadata={'help': 'Name of new tokenizer.'} ) lowerCamelCase__ : Optional[bool] = field(default=A__ ,metadata={'help': 'Push saved tokenizer to the hub.'} ) @dataclass class lowerCamelCase : lowerCamelCase__ : Optional[str] = field( default='codeparrot/codeparrot' ,metadata={'help': 'Name or path to the tokenizer.'} ) lowerCamelCase__ : Optional[str] = field( default='codeparrot/codeparrot-clean-train' ,metadata={'help': 'Name or path to the dataset to pretokenize.'} ) lowerCamelCase__ : Optional[str] = field( default='tokenized-codeparrot-train' ,metadata={'help': 'Repo name of the pretokenized data.'} ) lowerCamelCase__ : Optional[int] = field(default=A__ ,metadata={'help': 'Number of workers used for code evaluation.'} ) @dataclass class lowerCamelCase : lowerCamelCase__ : Optional[str] = field( default='gpt2-large' ,metadata={'help': 'Configuration to use for model initialization.'} ) lowerCamelCase__ : Optional[str] = field( default='codeparrot/codeparrot' ,metadata={'help': 'Tokenizer attached to model.'} ) lowerCamelCase__ : Optional[str] = field(default='codeparrot' ,metadata={'help': 'Name of the created model.'} ) lowerCamelCase__ : Optional[bool] = field(default=A__ ,metadata={'help': 'Push saved tokenizer to the hub.'} )
165
0
'''simple docstring''' import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class UpperCamelCase__( __UpperCamelCase , unittest.TestCase ): __magic_name__ : Tuple = BioGptTokenizer __magic_name__ : List[Any] = False def a__( self : Union[str, Any] )-> Optional[Any]: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """w</w>""", """r</w>""", """t</w>""", """lo""", """low""", """er</w>""", """low</w>""", """lowest</w>""", """newer</w>""", """wider</w>""", """<unk>""", ] UpperCAmelCase = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) ) UpperCAmelCase = ["""l o 123""", """lo w 1456""", """e r</w> 1789""", """"""] UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' ) as fp: fp.write(json.dumps(_lowerCAmelCase ) ) with open(self.merges_file , '''w''' ) as fp: fp.write('''\n'''.join(_lowerCAmelCase ) ) def a__( self : List[Any] , lowerCAmelCase : Tuple )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = """lower newer""" UpperCAmelCase = """lower newer""" return input_text, output_text def a__( self : Any )-> List[str]: """simple docstring""" UpperCAmelCase = BioGptTokenizer(self.vocab_file , self.merges_file ) UpperCAmelCase = """lower""" UpperCAmelCase = ["""low""", """er</w>"""] UpperCAmelCase = tokenizer.tokenize(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase = tokens + ["""<unk>"""] UpperCAmelCase = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , _lowerCAmelCase ) @slow def a__( self : List[Any] )-> Dict: """simple docstring""" UpperCAmelCase = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) UpperCAmelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=_lowerCAmelCase ) UpperCAmelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_lowerCAmelCase ) UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase ) UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase , _lowerCAmelCase ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
370
'''simple docstring''' _lowercase : Any = range(2, 20 + 1) _lowercase : str = [10**k for k in range(ks[-1] + 1)] _lowercase : dict[int, dict[int, list[list[int]]]] = {} def lowerCamelCase__ ( A : int , A : str , A : List[Any] , A : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = sum(a_i[j] for j in range(A , len(A ) ) ) UpperCAmelCase = sum(a_i[j] * base[j] for j in range(min(len(A ) , A ) ) ) UpperCAmelCase , UpperCAmelCase = 0, 0 UpperCAmelCase = n - i UpperCAmelCase = memo.get(A ) if sub_memo is not None: UpperCAmelCase = sub_memo.get(A ) if jumps is not None and len(A ) > 0: # find and make the largest jump without going over UpperCAmelCase = -1 for _k in range(len(A ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: UpperCAmelCase = _k break if max_jump >= 0: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = jumps[max_jump] # since the difference between jumps is cached, add c UpperCAmelCase = diff + c for j in range(min(A , len(A ) ) ): UpperCAmelCase , UpperCAmelCase = divmod(A , 10 ) if new_c > 0: add(A , A , A ) else: UpperCAmelCase = [] else: UpperCAmelCase = {c: []} UpperCAmelCase = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps UpperCAmelCase , UpperCAmelCase = next_term(A , k - 1 , i + dn , A ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead UpperCAmelCase , UpperCAmelCase = compute(A , A , i + dn , A ) diff += _diff dn += terms_jumped UpperCAmelCase = sub_memo[c] # keep jumps sorted by # of terms skipped UpperCAmelCase = 0 while j < len(A ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(A , (diff, dn, k) ) return (diff, dn) def lowerCamelCase__ ( A : Dict , A : Optional[int] , A : List[Any] , A : int ): '''simple docstring''' if i >= n: return 0, i if k > len(A ): a_i.extend([0 for _ in range(k - len(A ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) UpperCAmelCase = i UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 0, 0, 0 for j in range(len(A ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 UpperCAmelCase = ds_c + ds_b diff += addend UpperCAmelCase = 0 for j in range(A ): UpperCAmelCase = a_i[j] + addend UpperCAmelCase , UpperCAmelCase = divmod(A , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(A , A , A ) return diff, i - start_i def lowerCamelCase__ ( A : List[str] , A : Optional[int] , A : Optional[Any] ): '''simple docstring''' for j in range(A , len(A ) ): UpperCAmelCase = digits[j] + addend if s >= 10: UpperCAmelCase , UpperCAmelCase = divmod(A , 10 ) UpperCAmelCase = addend // 10 + quotient else: UpperCAmelCase = s UpperCAmelCase = addend // 10 if addend == 0: break while addend > 0: UpperCAmelCase , UpperCAmelCase = divmod(A , 10 ) digits.append(A ) def lowerCamelCase__ ( A : int = 10**15 ): '''simple docstring''' UpperCAmelCase = [1] UpperCAmelCase = 1 UpperCAmelCase = 0 while True: UpperCAmelCase , UpperCAmelCase = next_term(A , 20 , i + dn , A ) dn += terms_jumped if dn == n - i: break UpperCAmelCase = 0 for j in range(len(A ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(F"""{solution() = }""")
91
0
import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class lowerCAmelCase ( __UpperCamelCase, unittest.TestCase ): UpperCAmelCase__ = BertJapaneseTokenizer UpperCAmelCase__ = False UpperCAmelCase__ = True def A_ ( self : Optional[int] ) -> Dict: super().setUp() lowerCamelCase__ : str = [ '[UNK]', '[CLS]', '[SEP]', 'こんにちは', 'こん', 'にちは', 'ばんは', '##こん', '##にちは', '##ばんは', '世界', '##世界', '、', '##、', '。', '##。', ] lowerCamelCase__ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def A_ ( self : Tuple , UpperCAmelCase : Dict ) -> Optional[int]: lowerCamelCase__ : Tuple = 'こんにちは、世界。 \nこんばんは、世界。' lowerCamelCase__ : Union[str, Any] = 'こんにちは 、 世界 。 こんばんは 、 世界 。' return input_text, output_text def A_ ( self : List[str] , UpperCAmelCase : List[Any] ) -> str: lowerCamelCase__ , lowerCamelCase__ : str = self.get_input_output_texts(UpperCAmelCase ) lowerCamelCase__ : int = tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = tokenizer.decode(UpperCAmelCase , clean_up_tokenization_spaces=UpperCAmelCase ) return text, ids def A_ ( self : Dict ) -> List[str]: pass # TODO add if relevant def A_ ( self : List[Any] ) -> Dict: pass # TODO add if relevant def A_ ( self : Any ) -> Dict: pass # TODO add if relevant def A_ ( self : Any ) -> Optional[int]: lowerCamelCase__ : Optional[Any] = self.tokenizer_class(self.vocab_file ) lowerCamelCase__ : str = tokenizer.tokenize('こんにちは、世界。\nこんばんは、世界。' ) self.assertListEqual(UpperCAmelCase , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) def A_ ( self : Any ) -> Tuple: lowerCamelCase__ : Optional[int] = self.tokenizer_class(self.vocab_file , word_tokenizer_type='mecab' ) self.assertIsNotNone(UpperCAmelCase ) lowerCamelCase__ : Any = 'こんにちは、世界。\nこんばんは、世界。' lowerCamelCase__ : Union[str, Any] = tokenizer.tokenize(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) lowerCamelCase__ : Any = os.path.join(self.tmpdirname , 'tokenizer.bin' ) with open(UpperCAmelCase , 'wb' ) as handle: pickle.dump(UpperCAmelCase , UpperCAmelCase ) with open(UpperCAmelCase , 'rb' ) as handle: lowerCamelCase__ : Tuple = pickle.load(UpperCAmelCase ) lowerCamelCase__ : List[str] = tokenizer_new.tokenize(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) def A_ ( self : List[Any] ) -> List[Any]: lowerCamelCase__ : Union[str, Any] = MecabTokenizer(mecab_dic='ipadic' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def A_ ( self : Union[str, Any] ) -> Any: try: lowerCamelCase__ : Optional[int] = MecabTokenizer(mecab_dic='unidic_lite' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def A_ ( self : int ) -> Union[str, Any]: try: lowerCamelCase__ : Optional[Any] = MecabTokenizer(mecab_dic='unidic' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def A_ ( self : str ) -> Optional[int]: lowerCamelCase__ : Union[str, Any] = MecabTokenizer(do_lower_case=UpperCAmelCase , mecab_dic='ipadic' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iphone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def A_ ( self : int ) -> List[str]: try: lowerCamelCase__ : Optional[int] = MecabTokenizer( do_lower_case=UpperCAmelCase , normalize_text=UpperCAmelCase , mecab_option='-d /usr/local/lib/mecab/dic/jumandic' ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れた', '\u3000', '。'] , ) def A_ ( self : Dict ) -> Tuple: lowerCamelCase__ : Any = MecabTokenizer(normalize_text=UpperCAmelCase , mecab_dic='ipadic' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', ' ', '。'] , ) @require_sudachi def A_ ( self : List[Any] ) -> Optional[Any]: lowerCamelCase__ : Dict = self.tokenizer_class(self.vocab_file , word_tokenizer_type='sudachi' ) self.assertIsNotNone(UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = 'こんにちは、世界。\nこんばんは、世界。' lowerCamelCase__ : List[Any] = tokenizer.tokenize(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) lowerCamelCase__ : Optional[Any] = os.path.join(self.tmpdirname , 'tokenizer.bin' ) with open(UpperCAmelCase , 'wb' ) as handle: pickle.dump(UpperCAmelCase , UpperCAmelCase ) with open(UpperCAmelCase , 'rb' ) as handle: lowerCamelCase__ : Optional[int] = pickle.load(UpperCAmelCase ) lowerCamelCase__ : Optional[int] = tokenizer_new.tokenize(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) @require_sudachi def A_ ( self : Dict ) -> int: lowerCamelCase__ : Any = SudachiTokenizer(sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , [' ', '\t', 'アップル', 'ストア', 'で', 'iPhone', '8', ' ', 'が', ' ', ' ', '\n ', '発売', 'さ', 'れ', 'た', ' ', '。', ' ', ' '] , ) @require_sudachi def A_ ( self : Dict ) -> Optional[Any]: lowerCamelCase__ : Optional[Any] = SudachiTokenizer(sudachi_dict_type='core' , sudachi_split_mode='A' ) self.assertListEqual(tokenizer.tokenize('外国人参政権' ) , ['外国', '人', '参政', '権'] ) @require_sudachi def A_ ( self : Any ) -> int: lowerCamelCase__ : Union[str, Any] = SudachiTokenizer(sudachi_dict_type='core' , sudachi_split_mode='B' ) self.assertListEqual(tokenizer.tokenize('外国人参政権' ) , ['外国人', '参政権'] ) @require_sudachi def A_ ( self : Any ) -> Union[str, Any]: lowerCamelCase__ : Dict = SudachiTokenizer(sudachi_dict_type='core' , sudachi_split_mode='C' ) self.assertListEqual(tokenizer.tokenize('外国人参政権' ) , ['外国人参政権'] ) @require_sudachi def A_ ( self : str ) -> Optional[int]: lowerCamelCase__ : List[str] = SudachiTokenizer(do_lower_case=UpperCAmelCase , sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , [' ', '\t', 'アップル', 'ストア', 'で', 'iphone', '8', ' ', 'が', ' ', ' ', '\n ', '発売', 'さ', 'れ', 'た', ' ', '。', ' ', ' '] , ) @require_sudachi def A_ ( self : Union[str, Any] ) -> Tuple: lowerCamelCase__ : int = SudachiTokenizer(normalize_text=UpperCAmelCase , sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , [' ', '\t', 'アップル', 'ストア', 'で', 'iPhone', '8', ' ', 'が', ' ', ' ', '\n ', '発売', 'さ', 'れ', 'た', '\u3000', '。', ' ', ' '] , ) @require_sudachi def A_ ( self : List[Any] ) -> Tuple: lowerCamelCase__ : Union[str, Any] = SudachiTokenizer(trim_whitespace=UpperCAmelCase , sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) @require_jumanpp def A_ ( self : str ) -> List[str]: lowerCamelCase__ : Union[str, Any] = self.tokenizer_class(self.vocab_file , word_tokenizer_type='jumanpp' ) self.assertIsNotNone(UpperCAmelCase ) lowerCamelCase__ : Any = 'こんにちは、世界。\nこんばんは、世界。' lowerCamelCase__ : Any = tokenizer.tokenize(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) lowerCamelCase__ : Any = os.path.join(self.tmpdirname , 'tokenizer.bin' ) with open(UpperCAmelCase , 'wb' ) as handle: pickle.dump(UpperCAmelCase , UpperCAmelCase ) with open(UpperCAmelCase , 'rb' ) as handle: lowerCamelCase__ : Optional[int] = pickle.load(UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = tokenizer_new.tokenize(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) @require_jumanpp def A_ ( self : Tuple ) -> Tuple: lowerCamelCase__ : List[str] = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', '\u3000', 'が', '\u3000', '\u3000', '\u3000', '発売', 'さ', 'れた', '\u3000', '。'] , ) @require_jumanpp def A_ ( self : str ) -> Optional[Any]: lowerCamelCase__ : List[str] = JumanppTokenizer(do_lower_case=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iphone', '8', '\u3000', 'が', '\u3000', '\u3000', '\u3000', '発売', 'さ', 'れた', '\u3000', '。'] , ) @require_jumanpp def A_ ( self : Tuple ) -> List[str]: lowerCamelCase__ : int = JumanppTokenizer(normalize_text=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['ア', 'ッ', 'フ', '゚', 'ル', 'ストア', 'で', 'iPhone', '8', '\u3000', 'が', '\u3000', '\u3000', '\u3000', '発売', 'さ', 'れた', '\u3000', '。'] , ) @require_jumanpp def A_ ( self : str ) -> Dict: lowerCamelCase__ : Optional[Any] = JumanppTokenizer(trim_whitespace=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れた', '。'] , ) @require_jumanpp def A_ ( self : Any ) -> Any: lowerCamelCase__ : Union[str, Any] = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize('ありがとうございますm(_ _)m見つけるのが大変です。' ) , ['ありがとう', 'ございます', 'm(_ _)m', '見つける', 'の', 'が', '大変です', '。'] , ) def A_ ( self : List[Any] ) -> int: lowerCamelCase__ : Optional[int] = ['[UNK]', '[CLS]', '[SEP]', 'こんにちは', 'こん', 'にちは', 'ばんは', '##こん', '##にちは', '##ばんは'] lowerCamelCase__ : int = {} for i, token in enumerate(UpperCAmelCase ): lowerCamelCase__ : List[Any] = i lowerCamelCase__ : int = WordpieceTokenizer(vocab=UpperCAmelCase , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('こんにちは' ) , ['こんにちは'] ) self.assertListEqual(tokenizer.tokenize('こんばんは' ) , ['こん', '##ばんは'] ) self.assertListEqual(tokenizer.tokenize('こんばんは こんばんにちは こんにちは' ) , ['こん', '##ばんは', '[UNK]', 'こんにちは'] ) def A_ ( self : Tuple ) -> str: lowerCamelCase__ : int = BertJapaneseTokenizer.from_pretrained('nlp-waseda/roberta-base-japanese-with-auto-jumanpp' ) lowerCamelCase__ : List[str] = tokenizer.subword_tokenizer lowerCamelCase__ : Any = subword_tokenizer.tokenize('国境 の 長い トンネル を 抜ける と 雪国 であった 。' ) self.assertListEqual(UpperCAmelCase , ['▁国境', '▁の', '▁長い', '▁トンネル', '▁を', '▁抜ける', '▁と', '▁雪', '国', '▁であった', '▁。'] ) lowerCamelCase__ : Optional[int] = subword_tokenizer.tokenize('こんばんは こんばん にち は こんにちは' ) self.assertListEqual(UpperCAmelCase , ['▁こん', 'ばん', 'は', '▁こん', 'ばん', '▁に', 'ち', '▁は', '▁こんにちは'] ) def A_ ( self : Dict ) -> List[Any]: lowerCamelCase__ : Union[str, Any] = self.tokenizer_class.from_pretrained('cl-tohoku/bert-base-japanese' ) lowerCamelCase__ : int = tokenizer.encode('ありがとう。' , add_special_tokens=UpperCAmelCase ) lowerCamelCase__ : List[str] = tokenizer.encode('どういたしまして。' , add_special_tokens=UpperCAmelCase ) lowerCamelCase__ : Optional[int] = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase ) lowerCamelCase__ : List[str] = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase , UpperCAmelCase ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class lowerCAmelCase ( __UpperCamelCase, unittest.TestCase ): UpperCAmelCase__ = BertJapaneseTokenizer UpperCAmelCase__ = False def A_ ( self : Dict ) -> Any: super().setUp() lowerCamelCase__ : List[Any] = ['[UNK]', '[CLS]', '[SEP]', 'こ', 'ん', 'に', 'ち', 'は', 'ば', '世', '界', '、', '。'] lowerCamelCase__ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def A_ ( self : List[Any] , **UpperCAmelCase : str ) -> List[str]: return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type='character' , **UpperCAmelCase ) def A_ ( self : List[str] , UpperCAmelCase : Union[str, Any] ) -> List[Any]: lowerCamelCase__ : str = 'こんにちは、世界。 \nこんばんは、世界。' lowerCamelCase__ : List[str] = 'こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。' return input_text, output_text def A_ ( self : Optional[Any] ) -> List[Any]: pass # TODO add if relevant def A_ ( self : Tuple ) -> Union[str, Any]: pass # TODO add if relevant def A_ ( self : Optional[Any] ) -> Optional[int]: pass # TODO add if relevant def A_ ( self : Tuple ) -> Tuple: lowerCamelCase__ : Optional[int] = self.tokenizer_class(self.vocab_file , subword_tokenizer_type='character' ) lowerCamelCase__ : List[str] = tokenizer.tokenize('こんにちは、世界。 \nこんばんは、世界。' ) self.assertListEqual( UpperCAmelCase , ['こ', 'ん', 'に', 'ち', 'は', '、', '世', '界', '。', 'こ', 'ん', 'ば', 'ん', 'は', '、', '世', '界', '。'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12] ) def A_ ( self : Dict ) -> Any: lowerCamelCase__ : Any = ['[UNK]', '[CLS]', '[SEP]', 'こ', 'ん', 'に', 'ち', 'は', 'ば', '世', '界', '、', '。'] lowerCamelCase__ : Optional[int] = {} for i, token in enumerate(UpperCAmelCase ): lowerCamelCase__ : Union[str, Any] = i lowerCamelCase__ : Optional[int] = CharacterTokenizer(vocab=UpperCAmelCase , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('こんにちは' ) , ['こ', 'ん', 'に', 'ち', 'は'] ) self.assertListEqual(tokenizer.tokenize('こんにちほ' ) , ['こ', 'ん', 'に', 'ち', '[UNK]'] ) def A_ ( self : Any ) -> str: lowerCamelCase__ : Dict = self.tokenizer_class.from_pretrained('cl-tohoku/bert-base-japanese-char' ) lowerCamelCase__ : List[Any] = tokenizer.encode('ありがとう。' , add_special_tokens=UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = tokenizer.encode('どういたしまして。' , add_special_tokens=UpperCAmelCase ) lowerCamelCase__ : Tuple = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase ) lowerCamelCase__ : Optional[int] = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase , UpperCAmelCase ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class lowerCAmelCase ( unittest.TestCase ): def A_ ( self : List[str] ) -> Dict: lowerCamelCase__ : Union[str, Any] = 'cl-tohoku/bert-base-japanese' lowerCamelCase__ : int = AutoTokenizer.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) class lowerCAmelCase ( unittest.TestCase ): def A_ ( self : Tuple ) -> Optional[int]: lowerCamelCase__ : Union[str, Any] = 'cl-tohoku/bert-base-japanese' with self.assertLogs('transformers' , level='WARNING' ) as cm: BertTokenizer.from_pretrained(UpperCAmelCase ) self.assertTrue( cm.records[0].message.startswith( 'The tokenizer class you load from this checkpoint is not the same type as the class this function' ' is called from.' ) ) lowerCamelCase__ : Optional[Any] = 'bert-base-cased' with self.assertLogs('transformers' , level='WARNING' ) as cm: BertJapaneseTokenizer.from_pretrained(UpperCAmelCase ) self.assertTrue( cm.records[0].message.startswith( 'The tokenizer class you load from this checkpoint is not the same type as the class this function' ' is called from.' ) )
50
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __lowerCamelCase : Union[List[np.ndarray], torch.FloatTensor] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
302
0
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase :List[str] = logging.get_logger(__name__) lowerCamelCase :Union[str, Any] = { '''asapp/sew-d-tiny-100k''': '''https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json''', # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class _lowerCAmelCase ( __UpperCAmelCase ): __SCREAMING_SNAKE_CASE : str = 'sew-d' def __init__(self , lowercase=32 , lowercase=768 , lowercase=12 , lowercase=12 , lowercase=3072 , lowercase=2 , lowercase=512 , lowercase=256 , lowercase=True , lowercase=True , lowercase=("p2c", "c2p") , lowercase="layer_norm" , lowercase="gelu_python" , lowercase=0.1 , lowercase=0.1 , lowercase=0.1 , lowercase=0.0 , lowercase=0.1 , lowercase=0.02 , lowercase=1E-7 , lowercase=1E-5 , lowercase="group" , lowercase="gelu" , lowercase=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , lowercase=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowercase=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowercase=False , lowercase=128 , lowercase=16 , lowercase=True , lowercase=0.05 , lowercase=10 , lowercase=2 , lowercase=0.0 , lowercase=10 , lowercase=0 , lowercase="mean" , lowercase=False , lowercase=False , lowercase=256 , lowercase=0 , lowercase=1 , lowercase=2 , **lowercase , ): super().__init__(**lowercase , pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase ) A_ : Optional[Any] = hidden_size A_ : Dict = feat_extract_norm A_ : List[str] = feat_extract_activation A_ : Optional[int] = list(lowercase ) A_ : str = list(lowercase ) A_ : Dict = list(lowercase ) A_ : Any = conv_bias A_ : Tuple = num_conv_pos_embeddings A_ : Any = num_conv_pos_embedding_groups A_ : Optional[int] = len(self.conv_dim ) A_ : Union[str, Any] = num_hidden_layers A_ : int = intermediate_size A_ : Union[str, Any] = squeeze_factor A_ : Optional[int] = max_position_embeddings A_ : int = position_buckets A_ : Optional[int] = share_att_key A_ : List[Any] = relative_attention A_ : List[str] = norm_rel_ebd A_ : Tuple = list(lowercase ) A_ : Tuple = hidden_act A_ : Tuple = num_attention_heads A_ : Any = hidden_dropout A_ : Tuple = attention_dropout A_ : Optional[Any] = activation_dropout A_ : List[str] = feat_proj_dropout A_ : Tuple = final_dropout A_ : Tuple = layer_norm_eps A_ : Optional[int] = feature_layer_norm_eps A_ : str = initializer_range A_ : List[Any] = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect.""" """It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,""" F'but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)' F'= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 A_ : Any = apply_spec_augment A_ : int = mask_time_prob A_ : List[str] = mask_time_length A_ : List[str] = mask_time_min_masks A_ : int = mask_feature_prob A_ : Optional[Any] = mask_feature_length A_ : List[Any] = mask_feature_min_masks # ctc loss A_ : List[str] = ctc_loss_reduction A_ : Optional[int] = ctc_zero_infinity # sequence classification A_ : int = use_weighted_layer_sum A_ : Optional[int] = classifier_proj_size @property def _a (self ): return functools.reduce(operator.mul , self.conv_stride , 1 )
135
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase :Any = logging.get_logger(__name__) lowerCamelCase :List[Any] = { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/config.json''', '''umberto-commoncrawl-cased-v1''': ( '''https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json''' ), '''umberto-wikipedia-uncased-v1''': ( '''https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json''' ), } class _lowerCAmelCase ( __UpperCAmelCase ): __SCREAMING_SNAKE_CASE : Optional[int] = 'camembert' def __init__(self , lowercase=30522 , lowercase=768 , lowercase=12 , lowercase=12 , lowercase=3072 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=2 , lowercase=0.02 , lowercase=1E-12 , lowercase=1 , lowercase=0 , lowercase=2 , lowercase="absolute" , lowercase=True , lowercase=None , **lowercase , ): super().__init__(pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , **lowercase ) A_ : List[Any] = vocab_size A_ : int = hidden_size A_ : Dict = num_hidden_layers A_ : Dict = num_attention_heads A_ : Optional[Any] = hidden_act A_ : str = intermediate_size A_ : int = hidden_dropout_prob A_ : List[Any] = attention_probs_dropout_prob A_ : Optional[Any] = max_position_embeddings A_ : Optional[int] = type_vocab_size A_ : int = initializer_range A_ : str = layer_norm_eps A_ : int = position_embedding_type A_ : Dict = use_cache A_ : Any = classifier_dropout class _lowerCAmelCase ( __UpperCAmelCase ): @property def _a (self ): if self.task == "multiple-choice": A_ : Optional[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: A_ : int = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
135
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ : Optional[int] = { 'configuration_upernet': ['UperNetConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : str = [ 'UperNetForSemanticSegmentation', 'UperNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_upernet import UperNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel else: import sys a__ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
80
'''simple docstring''' from ....utils import logging a__ : Optional[Any] = logging.get_logger(__name__) class lowercase_ ( a__ ): def __init__( self , a , a=None , a=20_48 ): UpperCamelCase__ = config.__dict__ UpperCamelCase__ = modal_hidden_size if num_labels: UpperCamelCase__ = num_labels
80
1
import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class UpperCamelCase__ ( a__ , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =BertJapaneseTokenizer UpperCAmelCase_ =False UpperCAmelCase_ =True def _UpperCamelCase ( self ) -> List[str]: super().setUp() SCREAMING_SNAKE_CASE_ = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''こんにちは''', '''こん''', '''にちは''', '''ばんは''', '''##こん''', '''##にちは''', '''##ばんは''', '''世界''', '''##世界''', '''、''', '''##、''', '''。''', '''##。''', ] SCREAMING_SNAKE_CASE_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def _UpperCamelCase ( self , _A ) -> Tuple: SCREAMING_SNAKE_CASE_ = '''こんにちは、世界。 \nこんばんは、世界。''' SCREAMING_SNAKE_CASE_ = '''こんにちは 、 世界 。 こんばんは 、 世界 。''' return input_text, output_text def _UpperCamelCase ( self , _A ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.get_input_output_texts(_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = tokenizer.decode(_lowerCamelCase , clean_up_tokenization_spaces=_lowerCamelCase ) return text, ids def _UpperCamelCase ( self ) -> Tuple: pass # TODO add if relevant def _UpperCamelCase ( self ) -> Optional[int]: pass # TODO add if relevant def _UpperCamelCase ( self ) -> Optional[Any]: pass # TODO add if relevant def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE_ = self.tokenizer_class(self.vocab_file ) SCREAMING_SNAKE_CASE_ = tokenizer.tokenize('''こんにちは、世界。\nこんばんは、世界。''' ) self.assertListEqual(_lowerCamelCase , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) def _UpperCamelCase ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = self.tokenizer_class(self.vocab_file , word_tokenizer_type='''mecab''' ) self.assertIsNotNone(_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = '''こんにちは、世界。\nこんばんは、世界。''' SCREAMING_SNAKE_CASE_ = tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) SCREAMING_SNAKE_CASE_ = os.path.join(self.tmpdirname , '''tokenizer.bin''' ) with open(_lowerCamelCase , '''wb''' ) as handle: pickle.dump(_lowerCamelCase , _lowerCamelCase ) with open(_lowerCamelCase , '''rb''' ) as handle: SCREAMING_SNAKE_CASE_ = pickle.load(_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = tokenizer_new.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = MecabTokenizer(mecab_dic='''ipadic''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def _UpperCamelCase ( self ) -> str: try: SCREAMING_SNAKE_CASE_ = MecabTokenizer(mecab_dic='''unidic_lite''' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def _UpperCamelCase ( self ) -> str: try: SCREAMING_SNAKE_CASE_ = MecabTokenizer(mecab_dic='''unidic''' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = MecabTokenizer(do_lower_case=_lowerCamelCase , mecab_dic='''ipadic''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iphone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def _UpperCamelCase ( self ) -> Any: try: SCREAMING_SNAKE_CASE_ = MecabTokenizer( do_lower_case=_lowerCamelCase , normalize_text=_lowerCamelCase , mecab_option='''-d /usr/local/lib/mecab/dic/jumandic''' ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) def _UpperCamelCase ( self ) -> Any: SCREAMING_SNAKE_CASE_ = MecabTokenizer(normalize_text=_lowerCamelCase , mecab_dic='''ipadic''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。'''] , ) @require_sudachi def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = self.tokenizer_class(self.vocab_file , word_tokenizer_type='''sudachi''' ) self.assertIsNotNone(_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = '''こんにちは、世界。\nこんばんは、世界。''' SCREAMING_SNAKE_CASE_ = tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) SCREAMING_SNAKE_CASE_ = os.path.join(self.tmpdirname , '''tokenizer.bin''' ) with open(_lowerCamelCase , '''wb''' ) as handle: pickle.dump(_lowerCamelCase , _lowerCamelCase ) with open(_lowerCamelCase , '''rb''' ) as handle: SCREAMING_SNAKE_CASE_ = pickle.load(_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = tokenizer_new.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) @require_sudachi def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = SudachiTokenizer(sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。''', ''' ''', ''' '''] , ) @require_sudachi def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = SudachiTokenizer(sudachi_dict_type='''core''' , sudachi_split_mode='''A''' ) self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ) , ['''外国''', '''人''', '''参政''', '''権'''] ) @require_sudachi def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE_ = SudachiTokenizer(sudachi_dict_type='''core''' , sudachi_split_mode='''B''' ) self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ) , ['''外国人''', '''参政権'''] ) @require_sudachi def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = SudachiTokenizer(sudachi_dict_type='''core''' , sudachi_split_mode='''C''' ) self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ) , ['''外国人参政権'''] ) @require_sudachi def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE_ = SudachiTokenizer(do_lower_case=_lowerCamelCase , sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iphone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。''', ''' ''', ''' '''] , ) @require_sudachi def _UpperCamelCase ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = SudachiTokenizer(normalize_text=_lowerCamelCase , sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', '''\u3000''', '''。''', ''' ''', ''' '''] , ) @require_sudachi def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = SudachiTokenizer(trim_whitespace=_lowerCamelCase , sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) @require_jumanpp def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = self.tokenizer_class(self.vocab_file , word_tokenizer_type='''jumanpp''' ) self.assertIsNotNone(_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = '''こんにちは、世界。\nこんばんは、世界。''' SCREAMING_SNAKE_CASE_ = tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) SCREAMING_SNAKE_CASE_ = os.path.join(self.tmpdirname , '''tokenizer.bin''' ) with open(_lowerCamelCase , '''wb''' ) as handle: pickle.dump(_lowerCamelCase , _lowerCamelCase ) with open(_lowerCamelCase , '''rb''' ) as handle: SCREAMING_SNAKE_CASE_ = pickle.load(_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = tokenizer_new.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) @require_jumanpp def _UpperCamelCase ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) @require_jumanpp def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ = JumanppTokenizer(do_lower_case=_lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iphone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) @require_jumanpp def _UpperCamelCase ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = JumanppTokenizer(normalize_text=_lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''ア''', '''ッ''', '''フ''', '''゚''', '''ル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) @require_jumanpp def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ = JumanppTokenizer(trim_whitespace=_lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れた''', '''。'''] , ) @require_jumanpp def _UpperCamelCase ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize('''ありがとうございますm(_ _)m見つけるのが大変です。''' ) , ['''ありがとう''', '''ございます''', '''m(_ _)m''', '''見つける''', '''の''', '''が''', '''大変です''', '''。'''] , ) def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こんにちは''', '''こん''', '''にちは''', '''ばんは''', '''##こん''', '''##にちは''', '''##ばんは'''] SCREAMING_SNAKE_CASE_ = {} for i, token in enumerate(_lowerCamelCase ): SCREAMING_SNAKE_CASE_ = i SCREAMING_SNAKE_CASE_ = WordpieceTokenizer(vocab=_lowerCamelCase , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''こんにちは''' ) , ['''こんにちは'''] ) self.assertListEqual(tokenizer.tokenize('''こんばんは''' ) , ['''こん''', '''##ばんは'''] ) self.assertListEqual(tokenizer.tokenize('''こんばんは こんばんにちは こんにちは''' ) , ['''こん''', '''##ばんは''', '''[UNK]''', '''こんにちは'''] ) def _UpperCamelCase ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = BertJapaneseTokenizer.from_pretrained('''nlp-waseda/roberta-base-japanese-with-auto-jumanpp''' ) SCREAMING_SNAKE_CASE_ = tokenizer.subword_tokenizer SCREAMING_SNAKE_CASE_ = subword_tokenizer.tokenize('''国境 の 長い トンネル を 抜ける と 雪国 であった 。''' ) self.assertListEqual(_lowerCamelCase , ['''▁国境''', '''▁の''', '''▁長い''', '''▁トンネル''', '''▁を''', '''▁抜ける''', '''▁と''', '''▁雪''', '''国''', '''▁であった''', '''▁。'''] ) SCREAMING_SNAKE_CASE_ = subword_tokenizer.tokenize('''こんばんは こんばん にち は こんにちは''' ) self.assertListEqual(_lowerCamelCase , ['''▁こん''', '''ばん''', '''は''', '''▁こん''', '''ばん''', '''▁に''', '''ち''', '''▁は''', '''▁こんにちは'''] ) def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE_ = self.tokenizer_class.from_pretrained('''cl-tohoku/bert-base-japanese''' ) SCREAMING_SNAKE_CASE_ = tokenizer.encode('''ありがとう。''' , add_special_tokens=_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = tokenizer.encode('''どういたしまして。''' , add_special_tokens=_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase , _lowerCamelCase ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class UpperCamelCase__ ( a__ , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =BertJapaneseTokenizer UpperCAmelCase_ =False def _UpperCamelCase ( self ) -> Union[str, Any]: super().setUp() SCREAMING_SNAKE_CASE_ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こ''', '''ん''', '''に''', '''ち''', '''は''', '''ば''', '''世''', '''界''', '''、''', '''。'''] SCREAMING_SNAKE_CASE_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def _UpperCamelCase ( self , **_A ) -> List[Any]: return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type='''character''' , **_lowerCamelCase ) def _UpperCamelCase ( self , _A ) -> List[Any]: SCREAMING_SNAKE_CASE_ = '''こんにちは、世界。 \nこんばんは、世界。''' SCREAMING_SNAKE_CASE_ = '''こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。''' return input_text, output_text def _UpperCamelCase ( self ) -> Optional[int]: pass # TODO add if relevant def _UpperCamelCase ( self ) -> Any: pass # TODO add if relevant def _UpperCamelCase ( self ) -> Union[str, Any]: pass # TODO add if relevant def _UpperCamelCase ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = self.tokenizer_class(self.vocab_file , subword_tokenizer_type='''character''' ) SCREAMING_SNAKE_CASE_ = tokenizer.tokenize('''こんにちは、世界。 \nこんばんは、世界。''' ) self.assertListEqual( _lowerCamelCase , ['''こ''', '''ん''', '''に''', '''ち''', '''は''', '''、''', '''世''', '''界''', '''。''', '''こ''', '''ん''', '''ば''', '''ん''', '''は''', '''、''', '''世''', '''界''', '''。'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , [3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12] ) def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こ''', '''ん''', '''に''', '''ち''', '''は''', '''ば''', '''世''', '''界''', '''、''', '''。'''] SCREAMING_SNAKE_CASE_ = {} for i, token in enumerate(_lowerCamelCase ): SCREAMING_SNAKE_CASE_ = i SCREAMING_SNAKE_CASE_ = CharacterTokenizer(vocab=_lowerCamelCase , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''こんにちは''' ) , ['''こ''', '''ん''', '''に''', '''ち''', '''は'''] ) self.assertListEqual(tokenizer.tokenize('''こんにちほ''' ) , ['''こ''', '''ん''', '''に''', '''ち''', '''[UNK]'''] ) def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.tokenizer_class.from_pretrained('''cl-tohoku/bert-base-japanese-char''' ) SCREAMING_SNAKE_CASE_ = tokenizer.encode('''ありがとう。''' , add_special_tokens=_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = tokenizer.encode('''どういたしまして。''' , add_special_tokens=_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase , _lowerCamelCase ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def _UpperCamelCase ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = '''cl-tohoku/bert-base-japanese''' SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained(_lowerCamelCase ) self.assertIsInstance(_lowerCamelCase , _lowerCamelCase ) class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ = '''cl-tohoku/bert-base-japanese''' with self.assertLogs('''transformers''' , level='''WARNING''' ) as cm: BertTokenizer.from_pretrained(_lowerCamelCase ) self.assertTrue( cm.records[0].message.startswith( '''The tokenizer class you load from this checkpoint is not the same type as the class this function''' ''' is called from.''' ) ) SCREAMING_SNAKE_CASE_ = '''bert-base-cased''' with self.assertLogs('''transformers''' , level='''WARNING''' ) as cm: BertJapaneseTokenizer.from_pretrained(_lowerCamelCase ) self.assertTrue( cm.records[0].message.startswith( '''The tokenizer class you load from this checkpoint is not the same type as the class this function''' ''' is called from.''' ) )
369
__UpperCAmelCase = [ (10_00, "M"), (9_00, "CM"), (5_00, "D"), (4_00, "CD"), (1_00, "C"), (90, "XC"), (50, "L"), (40, "XL"), (10, "X"), (9, "IX"), (5, "V"), (4, "IV"), (1, "I"), ] def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 1_00, '''D''': 5_00, '''M''': 10_00} SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 while place < len(__lowerCamelCase ): if (place + 1 < len(__lowerCamelCase )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = [] for arabic, roman in ROMAN: ((SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_)) = divmod(__lowerCamelCase, __lowerCamelCase ) result.append(roman * factor ) if number == 0: break return "".join(__lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
257
0
"""simple docstring""" from manim import * class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : Any = Rectangle(height=0.5 , width=0.5 ) UpperCAmelCase : Optional[Any] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) UpperCAmelCase : List[str] = Rectangle(height=0.25 , width=0.25 ) UpperCAmelCase : List[str] = [mem.copy() for i in range(6 )] UpperCAmelCase : List[Any] = [mem.copy() for i in range(6 )] UpperCAmelCase : Union[str, Any] = VGroup(*_SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0 ) UpperCAmelCase : Union[str, Any] = VGroup(*_SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0 ) UpperCAmelCase : List[Any] = VGroup(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0 ) UpperCAmelCase : List[Any] = Text("""CPU""" , font_size=24 ) UpperCAmelCase : str = Group(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0.5 , aligned_edge=_SCREAMING_SNAKE_CASE ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[Any] = [mem.copy() for i in range(4 )] UpperCAmelCase : int = VGroup(*_SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0 ) UpperCAmelCase : Optional[Any] = Text("""GPU""" , font_size=24 ) UpperCAmelCase : Tuple = Group(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0.5 , aligned_edge=_SCREAMING_SNAKE_CASE ) gpu.move_to([-1, -1, 0] ) self.add(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[Any] = [mem.copy() for i in range(6 )] UpperCAmelCase : Optional[Any] = VGroup(*_SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0 ) UpperCAmelCase : List[str] = Text("""Model""" , font_size=24 ) UpperCAmelCase : Any = Group(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0.5 , aligned_edge=_SCREAMING_SNAKE_CASE ) model.move_to([3, -1.0, 0] ) self.add(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[int] = [] UpperCAmelCase : Optional[int] = [] for i, rect in enumerate(_SCREAMING_SNAKE_CASE ): UpperCAmelCase : Optional[Any] = fill.copy().set_fill(_SCREAMING_SNAKE_CASE , opacity=0.8 ) target.move_to(_SCREAMING_SNAKE_CASE ) model_arr.append(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : str = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(_SCREAMING_SNAKE_CASE , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(_SCREAMING_SNAKE_CASE ) self.add(*_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE ) UpperCAmelCase : int = [meta_mem.copy() for i in range(6 )] UpperCAmelCase : Optional[Any] = [meta_mem.copy() for i in range(6 )] UpperCAmelCase : Union[str, Any] = VGroup(*_SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0 ) UpperCAmelCase : Optional[int] = VGroup(*_SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0 ) UpperCAmelCase : str = VGroup(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0 ) UpperCAmelCase : int = Text("""Disk""" , font_size=24 ) UpperCAmelCase : Optional[Any] = Group(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0.5 , aligned_edge=_SCREAMING_SNAKE_CASE ) disk.move_to([-4, -1.25, 0] ) self.add(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) UpperCAmelCase : Tuple = MarkupText( F"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : Tuple = MarkupText( F"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , ) blue_text.next_to(_SCREAMING_SNAKE_CASE , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Dict = MarkupText( F"Now watch as an input is passed through the model\nand how the memory is utilized and handled." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_SCREAMING_SNAKE_CASE ) ) UpperCAmelCase : Tuple = Square(0.3 ) input.set_fill(_SCREAMING_SNAKE_CASE , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , _SCREAMING_SNAKE_CASE , buff=0.5 ) self.play(Write(_SCREAMING_SNAKE_CASE ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=_SCREAMING_SNAKE_CASE , buff=0.02 ) self.play(MoveToTarget(_SCREAMING_SNAKE_CASE ) ) self.play(FadeOut(_SCREAMING_SNAKE_CASE ) ) UpperCAmelCase : List[Any] = Arrow(start=_SCREAMING_SNAKE_CASE , end=_SCREAMING_SNAKE_CASE , color=_SCREAMING_SNAKE_CASE , buff=0.5 ) a.next_to(model_arr[0].get_left() , _SCREAMING_SNAKE_CASE , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) UpperCAmelCase : Any = MarkupText( F"As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_SCREAMING_SNAKE_CASE , run_time=3 ) ) UpperCAmelCase : Tuple = {"""run_time""": 1, """fade_in""": True, """fade_out""": True, """buff""": 0.02} self.play( Write(_SCREAMING_SNAKE_CASE ) , Circumscribe(model_arr[0] , color=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) , Circumscribe(model_cpu_arr[0] , color=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) , Circumscribe(gpu_rect[0] , color=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) UpperCAmelCase : Optional[int] = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , _SCREAMING_SNAKE_CASE , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) UpperCAmelCase : Any = AnimationGroup( FadeOut(_SCREAMING_SNAKE_CASE , run_time=0.5 ) , MoveToTarget(_SCREAMING_SNAKE_CASE , run_time=0.5 ) , FadeIn(_SCREAMING_SNAKE_CASE , run_time=0.5 ) , lag_ratio=0.2 ) self.play(_SCREAMING_SNAKE_CASE ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: UpperCAmelCase : Tuple = 0.7 self.play( Circumscribe(model_arr[i] , **_SCREAMING_SNAKE_CASE ) , Circumscribe(cpu_left_col_base[i] , **_SCREAMING_SNAKE_CASE ) , Circumscribe(cpu_left_col_base[i + 1] , color=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) , Circumscribe(gpu_rect[0] , color=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) , Circumscribe(model_arr[i + 1] , color=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) , Circumscribe(cpu_left_col_base[-1] , color=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) , Circumscribe(gpu_rect[0] , color=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) UpperCAmelCase : Optional[Any] = a_c UpperCAmelCase : str = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(_SCREAMING_SNAKE_CASE ) , FadeOut(_SCREAMING_SNAKE_CASE , run_time=0.5 ) , ) UpperCAmelCase : Optional[int] = MarkupText(F"Inference on a model too large for GPU memory\nis successfully completed." , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(_SCREAMING_SNAKE_CASE , run_time=3 ) , MoveToTarget(_SCREAMING_SNAKE_CASE ) ) self.wait()
109
"""simple docstring""" from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable A: List[str] = {"configuration_dpt": ["DPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DPTConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Tuple = ["DPTFeatureExtractor"] A: int = ["DPTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Optional[Any] = [ "DPT_PRETRAINED_MODEL_ARCHIVE_LIST", "DPTForDepthEstimation", "DPTForSemanticSegmentation", "DPTModel", "DPTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys A: str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
109
1
'''simple docstring''' from collections.abc import Sequence def _A ( _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" return sum(c * (x**i) for i, c in enumerate(_lowerCAmelCase ) ) def _A ( _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" __lowercase =0.0 for coeff in reversed(_lowerCAmelCase ): __lowercase =result * x + coeff return result if __name__ == "__main__": lowerCamelCase = (0.0, 0.0, 5.0, 9.3, 7.0) lowerCamelCase = 1_0.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
48
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """microsoft/wavlm-base""": """https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json""", # See all WavLM models at https://huggingface.co/models?filter=wavlm } class _UpperCamelCase ( A ): '''simple docstring''' lowerCAmelCase__ = """wavlm""" def __init__( self : List[str] , _lowerCAmelCase : List[Any]=3_2 , _lowerCAmelCase : int=7_6_8 , _lowerCAmelCase : Any=1_2 , _lowerCAmelCase : Union[str, Any]=1_2 , _lowerCAmelCase : List[Any]=3_0_7_2 , _lowerCAmelCase : Dict="gelu" , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : Optional[Any]=0.1 , _lowerCAmelCase : List[Any]=0.0 , _lowerCAmelCase : str=0.1 , _lowerCAmelCase : Dict=0.1 , _lowerCAmelCase : List[Any]=0.02 , _lowerCAmelCase : Dict=1e-5 , _lowerCAmelCase : List[Any]="group" , _lowerCAmelCase : Optional[Any]="gelu" , _lowerCAmelCase : Dict=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , _lowerCAmelCase : Any=(5, 2, 2, 2, 2, 2, 2) , _lowerCAmelCase : Optional[Any]=(1_0, 3, 3, 3, 3, 2, 2) , _lowerCAmelCase : Optional[int]=False , _lowerCAmelCase : int=1_2_8 , _lowerCAmelCase : Tuple=1_6 , _lowerCAmelCase : Optional[int]=3_2_0 , _lowerCAmelCase : Union[str, Any]=8_0_0 , _lowerCAmelCase : Optional[Any]=False , _lowerCAmelCase : Union[str, Any]=True , _lowerCAmelCase : Any=0.05 , _lowerCAmelCase : List[Any]=1_0 , _lowerCAmelCase : Any=2 , _lowerCAmelCase : List[Any]=0.0 , _lowerCAmelCase : Union[str, Any]=1_0 , _lowerCAmelCase : List[Any]=3_2_0 , _lowerCAmelCase : int=2 , _lowerCAmelCase : Dict=0.1 , _lowerCAmelCase : Optional[int]=1_0_0 , _lowerCAmelCase : Tuple=2_5_6 , _lowerCAmelCase : Union[str, Any]=2_5_6 , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : Tuple="mean" , _lowerCAmelCase : Any=False , _lowerCAmelCase : Union[str, Any]=False , _lowerCAmelCase : Any=2_5_6 , _lowerCAmelCase : Tuple=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , _lowerCAmelCase : Dict=(5, 3, 3, 1, 1) , _lowerCAmelCase : Dict=(1, 2, 3, 1, 1) , _lowerCAmelCase : int=5_1_2 , _lowerCAmelCase : Optional[int]=8_0 , _lowerCAmelCase : Any=0 , _lowerCAmelCase : int=1 , _lowerCAmelCase : Tuple=2 , _lowerCAmelCase : List[str]=False , _lowerCAmelCase : Any=3 , _lowerCAmelCase : List[Any]=2 , _lowerCAmelCase : List[Any]=3 , _lowerCAmelCase : List[str]=None , **_lowerCAmelCase : List[str] , ): '''simple docstring''' super().__init__(**_lowerCAmelCase , pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase) __lowercase =hidden_size __lowercase =feat_extract_norm __lowercase =feat_extract_activation __lowercase =list(_lowerCAmelCase) __lowercase =list(_lowerCAmelCase) __lowercase =list(_lowerCAmelCase) __lowercase =conv_bias __lowercase =num_buckets __lowercase =max_bucket_distance __lowercase =num_conv_pos_embeddings __lowercase =num_conv_pos_embedding_groups __lowercase =len(self.conv_dim) __lowercase =num_hidden_layers __lowercase =intermediate_size __lowercase =hidden_act __lowercase =num_attention_heads __lowercase =hidden_dropout __lowercase =attention_dropout __lowercase =activation_dropout __lowercase =feat_proj_dropout __lowercase =final_dropout __lowercase =layerdrop __lowercase =layer_norm_eps __lowercase =initializer_range __lowercase =num_ctc_classes __lowercase =vocab_size __lowercase =do_stable_layer_norm __lowercase =use_weighted_layer_sum __lowercase =classifier_proj_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' f""" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel)}`.""") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __lowercase =apply_spec_augment __lowercase =mask_time_prob __lowercase =mask_time_length __lowercase =mask_time_min_masks __lowercase =mask_feature_prob __lowercase =mask_feature_length # parameters for pretraining with codevector quantized representations __lowercase =num_codevectors_per_group __lowercase =num_codevector_groups __lowercase =contrastive_logits_temperature __lowercase =num_negatives __lowercase =codevector_dim __lowercase =proj_codevector_dim __lowercase =diversity_loss_weight # ctc loss __lowercase =ctc_loss_reduction __lowercase =ctc_zero_infinity # adapter __lowercase =add_adapter __lowercase =adapter_kernel_size __lowercase =adapter_stride __lowercase =num_adapter_layers __lowercase =output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. __lowercase =classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __lowercase =list(_lowerCAmelCase) __lowercase =list(_lowerCAmelCase) __lowercase =list(_lowerCAmelCase) __lowercase =xvector_output_dim @property def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1)
48
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowercase = { "configuration_tapas": ["TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP", "TapasConfig"], "tokenization_tapas": ["TapasTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ "TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TapasForMaskedLM", "TapasForQuestionAnswering", "TapasForSequenceClassification", "TapasModel", "TapasPreTrainedModel", "load_tf_weights_in_tapas", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ "TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TFTapasForMaskedLM", "TFTapasForQuestionAnswering", "TFTapasForSequenceClassification", "TFTapasModel", "TFTapasPreTrainedModel", ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys lowercase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
178
import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) lowercase = "\\n Text data.\n Second line of data." lowercase = "file" @pytest.fixture(scope='session') def __UpperCAmelCase ( a_): snake_case_ = tmp_path_factory.mktemp('data') / (FILE_PATH + '.zstd') snake_case_ = bytes(a_ , 'utf-8') with zstd.open(a_ , 'wb') as f: f.write(a_) return path @pytest.fixture def __UpperCAmelCase ( a_): with open(os.path.join(tmpfs.local_root_dir , a_) , 'w') as f: f.write(a_) return FILE_PATH @pytest.mark.parametrize('compression_format' , ['gzip', 'xz', 'zstd']) def __UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ , a_): snake_case_ = {'gzip': gz_file, 'xz': xz_file, 'zstd': zstd_path} snake_case_ = input_paths[compression_format] snake_case_ = tmp_path / 'cache' snake_case_ = DownloadConfig(cache_dir=a_ , extract_compressed_file=a_) snake_case_ = cached_path(a_ , download_config=a_) with open(a_) as f: snake_case_ = f.read() with open(a_) as f: snake_case_ = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize('default_extracted' , [True, False]) @pytest.mark.parametrize('default_cache_dir' , [True, False]) def __UpperCAmelCase ( a_ , a_ , a_ , a_ , a_): snake_case_ = 'custom_cache' snake_case_ = 'custom_extracted_dir' snake_case_ = tmp_path / 'custom_extracted_path' if default_extracted: snake_case_ = ('downloads' if default_cache_dir else custom_cache_dir, 'extracted') else: monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_DIR' , a_) monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_PATH' , str(a_)) snake_case_ = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) snake_case_ = xz_file snake_case_ = ( DownloadConfig(extract_compressed_file=a_) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=a_) ) snake_case_ = cached_path(a_ , download_config=a_) assert Path(a_).parent.parts[-2:] == expected def __UpperCAmelCase ( a_): # absolute path snake_case_ = str(Path(a_).resolve()) assert cached_path(a_) == text_file # relative path snake_case_ = str(Path(a_).resolve().relative_to(Path(os.getcwd()))) assert cached_path(a_) == text_file def __UpperCAmelCase ( a_): # absolute path snake_case_ = str(tmp_path.resolve() / '__missing_file__.txt') with pytest.raises(a_): cached_path(a_) # relative path snake_case_ = './__missing_file__.txt' with pytest.raises(a_): cached_path(a_) def __UpperCAmelCase ( a_): snake_case_ = get_from_cache(f'''tmp://{tmpfs_file}''') with open(a_) as f: snake_case_ = f.read() assert output_file_content == FILE_CONTENT @patch('datasets.config.HF_DATASETS_OFFLINE' , a_) def __UpperCAmelCase ( ): with pytest.raises(a_): cached_path('https://huggingface.co') @patch('datasets.config.HF_DATASETS_OFFLINE' , a_) def __UpperCAmelCase ( a_): snake_case_ = tmp_path_factory.mktemp('data') / 'file.html' with pytest.raises(a_): http_get('https://huggingface.co' , temp_file=a_) with pytest.raises(a_): http_head('https://huggingface.co') @patch('datasets.config.HF_DATASETS_OFFLINE' , a_) def __UpperCAmelCase ( a_): snake_case_ = tmp_path_factory.mktemp('data') / 'file.html' with pytest.raises(a_): ftp_get('ftp://huggingface.co' , temp_file=a_) with pytest.raises(a_): ftp_head('ftp://huggingface.co') @patch('datasets.config.HF_DATASETS_OFFLINE' , a_) def __UpperCAmelCase ( a_): snake_case_ = tmp_path_factory.mktemp('data') / 'file.html' with pytest.raises(a_): fsspec_get('s3://huggingface.co' , temp_file=a_) with pytest.raises(a_): fsspec_head('s3://huggingface.co')
178
1
import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging __magic_name__ = logging.get_logger(__name__) # pylint: disable=invalid-name class lowercase ( A__ ): '''simple docstring''' def __init__( self , _snake_case , _snake_case=768 ) -> List[Any]: """simple docstring""" super().__init__(_snake_case ) UpperCAmelCase = proj_size UpperCAmelCase = CLIPVisionModel(_snake_case ) UpperCAmelCase = PaintByExampleMapper(_snake_case ) UpperCAmelCase = nn.LayerNorm(config.hidden_size ) UpperCAmelCase = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling UpperCAmelCase = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def snake_case_ ( self , _snake_case , _snake_case=False ) -> Optional[Any]: """simple docstring""" UpperCAmelCase = self.model(pixel_values=_snake_case ) UpperCAmelCase = clip_output.pooler_output UpperCAmelCase = self.mapper(latent_states[:, None] ) UpperCAmelCase = self.final_layer_norm(_snake_case ) UpperCAmelCase = self.proj_out(_snake_case ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class lowercase ( nn.Module ): '''simple docstring''' def __init__( self , _snake_case ) -> Tuple: """simple docstring""" super().__init__() UpperCAmelCase = (config.num_hidden_layers + 1) // 5 UpperCAmelCase = config.hidden_size UpperCAmelCase = 1 UpperCAmelCase = nn.ModuleList( [ BasicTransformerBlock(_snake_case , _snake_case , _snake_case , activation_fn='''gelu''' , attention_bias=_snake_case ) for _ in range(_snake_case ) ] ) def snake_case_ ( self , _snake_case ) -> Optional[Any]: """simple docstring""" for block in self.blocks: UpperCAmelCase = block(_snake_case ) return hidden_states
152
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys __magic_name__ = subprocess.check_output("git merge-base main HEAD".split()).decode("utf-8") __magic_name__ = ( subprocess.check_output(f'''git diff --diff-filter=d --name-only {fork_point_sha}'''.split()).decode("utf-8").split() ) __magic_name__ = "|".join(sys.argv[1:]) __magic_name__ = re.compile(rf'''^({joined_dirs}).*?\.py$''') __magic_name__ = [x for x in modified_files if regex.match(x)] print(" ".join(relevant_modified_files), end="")
152
1
'''simple docstring''' import unittest from transformers import DonutProcessor _lowerCamelCase : Any = 'naver-clova-ix/donut-base' class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def A (self : Optional[int] ): A = DonutProcessor.from_pretrained(_lowerCAmelCase ) def A (self : List[Any] ): A = { """name""": """John Doe""", """age""": """99""", """city""": """Atlanta""", """state""": """GA""", """zip""": """30301""", """phone""": """123-4567""", """nicknames""": [{"""nickname""": """Johnny"""}, {"""nickname""": """JD"""}], } A = ( """<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>""" """<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>""" """<s_nicknames><s_nickname>Johnny</s_nickname>""" """<sep/><s_nickname>JD</s_nickname></s_nicknames>""" ) A = self.processor.tokenajson(_lowerCAmelCase ) self.assertDictEqual(_lowerCAmelCase , _lowerCAmelCase )
258
'''simple docstring''' import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort _lowerCamelCase : List[Any] = logging.get_logger(__name__) _lowerCamelCase : Union[str, Any] = { 'tensor(bool)': np.bool_, 'tensor(int8)': np.inta, 'tensor(uint8)': np.uinta, 'tensor(int16)': np.intaa, 'tensor(uint16)': np.uintaa, 'tensor(int32)': np.intaa, 'tensor(uint32)': np.uintaa, 'tensor(int64)': np.intaa, 'tensor(uint64)': np.uintaa, 'tensor(float16)': np.floataa, 'tensor(float)': np.floataa, 'tensor(double)': np.floataa, } class __UpperCAmelCase : '''simple docstring''' def __init__(self : Union[str, Any] , _lowerCAmelCase : Optional[int]=None , **_lowerCAmelCase : Union[str, Any] ): logger.info("""`diffusers.OnnxRuntimeModel` is experimental and might change in the future.""" ) A = model A = kwargs.get("""model_save_dir""" , _lowerCAmelCase ) A = kwargs.get("""latest_model_name""" , _lowerCAmelCase ) def __call__(self : Tuple , **_lowerCAmelCase : Optional[Any] ): A = {k: np.array(_lowerCAmelCase ) for k, v in kwargs.items()} return self.model.run(_lowerCAmelCase , _lowerCAmelCase ) @staticmethod def A (_lowerCAmelCase : Union[str, Path] , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : Optional[Any]=None ): if provider is None: logger.info("""No onnxruntime provider specified, using CPUExecutionProvider""" ) A = """CPUExecutionProvider""" return ort.InferenceSession(_lowerCAmelCase , providers=[provider] , sess_options=_lowerCAmelCase ) def A (self : List[str] , _lowerCAmelCase : Union[str, Path] , _lowerCAmelCase : Optional[str] = None , **_lowerCAmelCase : List[str] ): A = file_name if file_name is not None else ONNX_WEIGHTS_NAME A = self.model_save_dir.joinpath(self.latest_model_name ) A = Path(_lowerCAmelCase ).joinpath(_lowerCAmelCase ) try: shutil.copyfile(_lowerCAmelCase , _lowerCAmelCase ) except shutil.SameFileError: pass # copy external weights (for models >2GB) A = self.model_save_dir.joinpath(_lowerCAmelCase ) if src_path.exists(): A = Path(_lowerCAmelCase ).joinpath(_lowerCAmelCase ) try: shutil.copyfile(_lowerCAmelCase , _lowerCAmelCase ) except shutil.SameFileError: pass def A (self : Tuple , _lowerCAmelCase : Union[str, os.PathLike] , **_lowerCAmelCase : str , ): if os.path.isfile(_lowerCAmelCase ): logger.error(F"""Provided path ({save_directory}) should be a directory, not a file""" ) return os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) # saving model weights/files self._save_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) @classmethod def A (cls : str , _lowerCAmelCase : Union[str, Path] , _lowerCAmelCase : Optional[Union[bool, str, None]] = None , _lowerCAmelCase : Optional[Union[str, None]] = None , _lowerCAmelCase : bool = False , _lowerCAmelCase : Optional[str] = None , _lowerCAmelCase : Optional[str] = None , _lowerCAmelCase : Optional[str] = None , _lowerCAmelCase : Optional["ort.SessionOptions"] = None , **_lowerCAmelCase : Optional[int] , ): A = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(_lowerCAmelCase ): A = OnnxRuntimeModel.load_model( os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , provider=_lowerCAmelCase , sess_options=_lowerCAmelCase ) A = Path(_lowerCAmelCase ) # load model from hub else: # download model A = hf_hub_download( repo_id=_lowerCAmelCase , filename=_lowerCAmelCase , use_auth_token=_lowerCAmelCase , revision=_lowerCAmelCase , cache_dir=_lowerCAmelCase , force_download=_lowerCAmelCase , ) A = Path(_lowerCAmelCase ).parent A = Path(_lowerCAmelCase ).name A = OnnxRuntimeModel.load_model(_lowerCAmelCase , provider=_lowerCAmelCase , sess_options=_lowerCAmelCase ) return cls(model=_lowerCAmelCase , **_lowerCAmelCase ) @classmethod def A (cls : str , _lowerCAmelCase : Union[str, Path] , _lowerCAmelCase : bool = True , _lowerCAmelCase : Optional[str] = None , _lowerCAmelCase : Optional[str] = None , **_lowerCAmelCase : str , ): A = None if len(str(_lowerCAmelCase ).split("""@""" ) ) == 2: A , A = model_id.split("""@""" ) return cls._from_pretrained( model_id=_lowerCAmelCase , revision=_lowerCAmelCase , cache_dir=_lowerCAmelCase , force_download=_lowerCAmelCase , use_auth_token=_lowerCAmelCase , **_lowerCAmelCase , )
258
1
'''simple docstring''' import argparse import logging import pickle from collections import Counter logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) UpperCAmelCase = logging.getLogger(__name__) if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser( description='Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)' ) parser.add_argument( '--data_file', type=str, default='data/dump.bert-base-uncased.pickle', help='The binarized dataset.' ) parser.add_argument( '--token_counts_dump', type=str, default='data/token_counts.bert-base-uncased.pickle', help='The dump file.' ) parser.add_argument('--vocab_size', default=3_0522, type=int) UpperCAmelCase = parser.parse_args() logger.info(F'''Loading data from {args.data_file}''') with open(args.data_file, 'rb') as fp: UpperCAmelCase = pickle.load(fp) logger.info('Counting occurrences for MLM.') UpperCAmelCase = Counter() for tk_ids in data: counter.update(tk_ids) UpperCAmelCase = [0] * args.vocab_size for k, v in counter.items(): UpperCAmelCase = v logger.info(F'''Dump to {args.token_counts_dump}''') with open(args.token_counts_dump, 'wb') as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
187
'''simple docstring''' class __snake_case( _lowerCAmelCase ): '''simple docstring''' pass class __snake_case( _lowerCAmelCase ): '''simple docstring''' pass class __snake_case: '''simple docstring''' def __init__( self ) -> int: lowerCAmelCase = [ [], [], [], ] def __snake_case ( self , A_ , A_ ) -> None: try: if len(self.queues[priority] ) >= 100: raise OverflowError("""Maximum queue size is 100""" ) self.queues[priority].append(A_ ) except IndexError: raise ValueError("""Valid priorities are 0, 1, and 2""" ) def __snake_case ( self ) -> int: for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError("""All queues are empty""" ) def __str__( self ) -> str: return "\n".join(f'Priority {i}: {q}' for i, q in enumerate(self.queues ) ) class __snake_case: '''simple docstring''' def __init__( self ) -> Dict: lowerCAmelCase = [] def __snake_case ( self , A_ ) -> None: if len(self.queue ) == 100: raise OverFlowError("""Maximum queue size is 100""" ) self.queue.append(A_ ) def __snake_case ( self ) -> int: if not self.queue: raise UnderFlowError("""The queue is empty""" ) else: lowerCAmelCase = min(self.queue ) self.queue.remove(A_ ) return data def __str__( self ) -> str: return str(self.queue ) def _snake_case ( ) -> Tuple: """simple docstring""" lowerCAmelCase = FixedPriorityQueue() fpq.enqueue(0 , 10 ) fpq.enqueue(1 , 70 ) fpq.enqueue(0 , 100 ) fpq.enqueue(2 , 1 ) fpq.enqueue(2 , 5 ) fpq.enqueue(1 , 7 ) fpq.enqueue(2 , 4 ) fpq.enqueue(1 , 64 ) fpq.enqueue(0 , 128 ) print(_SCREAMING_SNAKE_CASE ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(_SCREAMING_SNAKE_CASE ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def _snake_case ( ) -> Optional[Any]: """simple docstring""" lowerCAmelCase = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(100 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(128 ) print(_SCREAMING_SNAKE_CASE ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(_SCREAMING_SNAKE_CASE ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
187
1
"""simple docstring""" import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() a : Dict = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE ( _lowercase : str ) ->Optional[Any]: '''simple docstring''' a : int = SwinConfig.from_pretrained( "microsoft/swin-tiny-patch4-window7-224" , out_features=["stage1", "stage2", "stage3", "stage4"] ) a : Dict = MaskFormerConfig(backbone_config=_lowercase ) a : int = "huggingface/label-files" if "ade20k-full" in model_name: # this should be ok a : Union[str, Any] = 847 a : Dict = "maskformer-ade20k-full-id2label.json" elif "ade" in model_name: # this should be ok a : List[str] = 150 a : List[str] = "ade20k-id2label.json" elif "coco-stuff" in model_name: # this should be ok a : Dict = 171 a : Dict = "maskformer-coco-stuff-id2label.json" elif "coco" in model_name: # TODO a : Any = 133 a : str = "coco-panoptic-id2label.json" elif "cityscapes" in model_name: # this should be ok a : List[str] = 19 a : Dict = "cityscapes-id2label.json" elif "vistas" in model_name: # this should be ok a : List[Any] = 65 a : int = "mapillary-vistas-id2label.json" a : int = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type="dataset" ) , "r" ) ) a : Tuple = {int(_lowercase ): v for k, v in idalabel.items()} return config def _SCREAMING_SNAKE_CASE ( _lowercase : Optional[int] ) ->List[str]: '''simple docstring''' a : Union[str, Any] = [] # stem # fmt: off rename_keys.append(("backbone.patch_embed.proj.weight", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.patch_embed.proj.bias", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.patch_embed.norm.weight", "model.pixel_level_module.encoder.model.embeddings.norm.weight") ) rename_keys.append(("backbone.patch_embed.norm.bias", "model.pixel_level_module.encoder.model.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_index""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((F"""backbone.layers.{i}.downsample.reduction.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((F"""backbone.norm{i}.weight""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.weight""") ) rename_keys.append((F"""backbone.norm{i}.bias""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.bias""") ) # FPN rename_keys.append(("sem_seg_head.layer_4.weight", "model.pixel_level_module.decoder.fpn.stem.0.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.weight", "model.pixel_level_module.decoder.fpn.stem.1.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.bias", "model.pixel_level_module.decoder.fpn.stem.1.bias") ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((F"""sem_seg_head.adapter_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias""") ) rename_keys.append(("sem_seg_head.mask_features.weight", "model.pixel_level_module.decoder.mask_projection.weight") ) rename_keys.append(("sem_seg_head.mask_features.bias", "model.pixel_level_module.decoder.mask_projection.bias") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias""") ) # cross-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias""") ) # MLP 1 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc1.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc1.bias""") ) # MLP 2 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc2.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc2.bias""") ) # layernorm 1 (self-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias""") ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias""") ) # layernorm 3 (final layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias""") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.weight", "model.transformer_module.decoder.layernorm.weight") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.bias", "model.transformer_module.decoder.layernorm.bias") ) # heads on top rename_keys.append(("sem_seg_head.predictor.query_embed.weight", "model.transformer_module.queries_embedder.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.weight", "model.transformer_module.input_projection.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.bias", "model.transformer_module.input_projection.bias") ) rename_keys.append(("sem_seg_head.predictor.class_embed.weight", "class_predictor.weight") ) rename_keys.append(("sem_seg_head.predictor.class_embed.bias", "class_predictor.bias") ) for i in range(3 ): rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.weight""", F"""mask_embedder.{i}.0.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.bias""", F"""mask_embedder.{i}.0.bias""") ) # fmt: on return rename_keys def _SCREAMING_SNAKE_CASE ( _lowercase : List[str] , _lowercase : Dict , _lowercase : Union[str, Any] ) ->Optional[Any]: '''simple docstring''' a : str = dct.pop(_lowercase ) a : Dict = val def _SCREAMING_SNAKE_CASE ( _lowercase : str , _lowercase : Union[str, Any] ) ->List[Any]: '''simple docstring''' a : int = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): a : str = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) a : List[Any] = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.weight""" ) a : Optional[int] = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict a : Optional[int] = in_proj_weight[:dim, :] a : Dict = in_proj_bias[: dim] a : Optional[int] = in_proj_weight[ dim : dim * 2, : ] a : str = in_proj_bias[ dim : dim * 2 ] a : Union[str, Any] = in_proj_weight[ -dim :, : ] a : Dict = in_proj_bias[-dim :] # fmt: on def _SCREAMING_SNAKE_CASE ( _lowercase : List[str] , _lowercase : Optional[Any] ) ->Any: '''simple docstring''' a : Optional[int] = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) a : int = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight""" ) a : List[str] = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict a : List[str] = in_proj_weight[: hidden_size, :] a : Optional[int] = in_proj_bias[:config.hidden_size] a : Dict = in_proj_weight[hidden_size : hidden_size * 2, :] a : int = in_proj_bias[hidden_size : hidden_size * 2] a : List[Any] = in_proj_weight[-hidden_size :, :] a : Optional[int] = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) a : Optional[Any] = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight""" ) a : Union[str, Any] = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict a : str = in_proj_weight[: hidden_size, :] a : List[Any] = in_proj_bias[:config.hidden_size] a : Dict = in_proj_weight[hidden_size : hidden_size * 2, :] a : Optional[Any] = in_proj_bias[hidden_size : hidden_size * 2] a : Union[str, Any] = in_proj_weight[-hidden_size :, :] a : str = in_proj_bias[-hidden_size :] # fmt: on def _SCREAMING_SNAKE_CASE ( ) ->torch.Tensor: '''simple docstring''' a : Tuple = "http://images.cocodataset.org/val2017/000000039769.jpg" a : Dict = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ) return im @torch.no_grad() def _SCREAMING_SNAKE_CASE ( _lowercase : str , _lowercase : str , _lowercase : str , _lowercase : bool = False ) ->List[Any]: '''simple docstring''' a : List[Any] = get_maskformer_config(_lowercase ) # load original state_dict with open(_lowercase , "rb" ) as f: a : Union[str, Any] = pickle.load(_lowercase ) a : Tuple = data["model"] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys a : str = create_rename_keys(_lowercase ) for src, dest in rename_keys: rename_key(_lowercase , _lowercase , _lowercase ) read_in_swin_q_k_v(_lowercase , config.backbone_config ) read_in_decoder_q_k_v(_lowercase , _lowercase ) # update to torch tensors for key, value in state_dict.items(): a : Dict = torch.from_numpy(_lowercase ) # load 🤗 model a : Optional[int] = MaskFormerForInstanceSegmentation(_lowercase ) model.eval() for name, param in model.named_parameters(): print(_lowercase , param.shape ) a, a : Union[str, Any] = model.load_state_dict(_lowercase , strict=_lowercase ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(_lowercase ) == 0, F"""Unexpected keys: {unexpected_keys}""" # verify results a : Dict = prepare_img() if "vistas" in model_name: a : Union[str, Any] = 65 elif "cityscapes" in model_name: a : List[Any] = 6_5535 else: a : Dict = 255 a : Optional[int] = True if "ade" in model_name else False a : List[Any] = MaskFormerImageProcessor(ignore_index=_lowercase , reduce_labels=_lowercase ) a : List[str] = image_processor(_lowercase , return_tensors="pt" ) a : Union[str, Any] = model(**_lowercase ) print("Logits:" , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": a : int = torch.tensor( [[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , _lowercase , atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F"""Saving model and image processor to {pytorch_dump_folder_path}""" ) Path(_lowercase ).mkdir(exist_ok=_lowercase ) model.save_pretrained(_lowercase ) image_processor.save_pretrained(_lowercase ) if push_to_hub: print("Pushing model and image processor to the hub..." ) model.push_to_hub(F"""nielsr/{model_name}""" ) image_processor.push_to_hub(F"""nielsr/{model_name}""" ) if __name__ == "__main__": a : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''maskformer-swin-tiny-ade''', type=str, help=('''Name of the MaskFormer model you\'d like to convert''',), ) parser.add_argument( '''--checkpoint_path''', default='''/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl''', type=str, help='''Path to the original state dict (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) a : str = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
105
"""simple docstring""" def lowercase ( __snake_case : Optional[int] ): lowercase_ : int = 0 lowercase_ : Optional[Any] = len(__snake_case ) for i in range(n - 1 ): for j in range(i + 1 , __snake_case ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def lowercase ( __snake_case : str ): if len(__snake_case ) <= 1: return arr, 0 lowercase_ : Optional[Any] = len(__snake_case ) // 2 lowercase_ : List[Any] = arr[0:mid] lowercase_ : Union[str, Any] = arr[mid:] lowercase_ , lowercase_ : Tuple = count_inversions_recursive(__snake_case ) lowercase_ , lowercase_ : List[Any] = count_inversions_recursive(__snake_case ) lowercase_ , lowercase_ : List[Any] = _count_cross_inversions(__snake_case , __snake_case ) lowercase_ : List[Any] = inversion_p + inversions_q + cross_inversions return c, num_inversions def lowercase ( __snake_case : str , __snake_case : Optional[int] ): lowercase_ : Optional[Any] = [] lowercase_ : Any = 0 while i < len(__snake_case ) and j < len(__snake_case ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(__snake_case ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(__snake_case ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def lowercase ( ): lowercase_ : Union[str, Any] = [1_0, 2, 1, 5, 5, 2, 1_1] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) lowercase_ : int = count_inversions_bf(__snake_case ) lowercase_ , lowercase_ : Dict = count_inversions_recursive(__snake_case ) assert num_inversions_bf == num_inversions_recursive == 8 print('''number of inversions = ''' , __snake_case ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() lowercase_ : Dict = count_inversions_bf(__snake_case ) lowercase_ , lowercase_ : Dict = count_inversions_recursive(__snake_case ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , __snake_case ) # an empty list should also have zero inversions lowercase_ : List[Any] = [] lowercase_ : Any = count_inversions_bf(__snake_case ) lowercase_ , lowercase_ : List[str] = count_inversions_recursive(__snake_case ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , __snake_case ) if __name__ == "__main__": main()
33
0
import argparse from collections import defaultdict import yaml lowercase_ = 'docs/source/en/_toctree.yml' def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> int: lowercase__ = defaultdict(lowerCAmelCase__ ) lowercase__ = [] lowercase__ = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({'local': doc['local'], 'title': doc['title']} ) else: new_doc_list.append(lowerCAmelCase__ ) lowercase__ = new_doc_list lowercase__ = [key for key, value in counts.items() if value > 1] lowercase__ = [] for duplicate_key in duplicates: lowercase__ = list({doc['title'] for doc in doc_list if doc['local'] == duplicate_key} ) if len(lowerCAmelCase__ ) > 1: raise ValueError( F"""{duplicate_key} is present several times in the documentation table of content at """ '`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ' 'others.' ) # Only add this once new_doc.append({'local': duplicate_key, 'title': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if 'local' not in counts or counts[doc['local']] == 1] ) lowercase__ = sorted(lowerCAmelCase__ , key=lambda _SCREAMING_SNAKE_CASE : s["title"].lower() ) # "overview" gets special treatment and is always first if len(lowerCAmelCase__ ) > 1: raise ValueError('{doc_list} has two \'overview\' docs which is not allowed.' ) overview_doc.extend(lowerCAmelCase__ ) # Sort return overview_doc def __UpperCamelCase (_SCREAMING_SNAKE_CASE=False ) -> Union[str, Any]: with open(lowerCAmelCase__ , encoding='utf-8' ) as f: lowercase__ = yaml.safe_load(f.read() ) # Get to the API doc lowercase__ = 0 while content[api_idx]["title"] != "API": api_idx += 1 lowercase__ = content[api_idx]["""sections"""] # Then to the model doc lowercase__ = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 lowercase__ = api_doc[scheduler_idx]["""sections"""] lowercase__ = clean_doc_toc(lowerCAmelCase__ ) lowercase__ = False if new_scheduler_doc != scheduler_doc: lowercase__ = True if overwrite: lowercase__ = new_scheduler_doc if diff: if overwrite: lowercase__ = api_doc with open(lowerCAmelCase__ , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(lowerCAmelCase__ , allow_unicode=lowerCAmelCase__ ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE=False ) -> Dict: with open(lowerCAmelCase__ , encoding='utf-8' ) as f: lowercase__ = yaml.safe_load(f.read() ) # Get to the API doc lowercase__ = 0 while content[api_idx]["title"] != "API": api_idx += 1 lowercase__ = content[api_idx]["""sections"""] # Then to the model doc lowercase__ = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 lowercase__ = False lowercase__ = api_doc[pipeline_idx]["""sections"""] lowercase__ = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: lowercase__ = pipeline_doc["""section"""] lowercase__ = clean_doc_toc(lowerCAmelCase__ ) if overwrite: lowercase__ = new_sub_pipeline_doc new_pipeline_docs.append(lowerCAmelCase__ ) # sort overall pipeline doc lowercase__ = clean_doc_toc(lowerCAmelCase__ ) if new_pipeline_docs != pipeline_docs: lowercase__ = True if overwrite: lowercase__ = new_pipeline_docs if diff: if overwrite: lowercase__ = api_doc with open(lowerCAmelCase__ , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(lowerCAmelCase__ , allow_unicode=lowerCAmelCase__ ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") lowercase_ = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
366
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} lowercase_ = { """vocab_file""": { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json""", """allenai/longformer-large-4096""": ( """https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json""" ), """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json""" ), }, """merges_file""": { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt""", """allenai/longformer-large-4096""": ( """https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt""" ), """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt""" ), }, } lowercase_ = { """allenai/longformer-base-4096""": 4_096, """allenai/longformer-large-4096""": 4_096, """allenai/longformer-large-4096-finetuned-triviaqa""": 4_096, """allenai/longformer-base-4096-extra.pos.embd.only""": 4_096, """allenai/longformer-large-4096-extra.pos.embd.only""": 4_096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def __UpperCamelCase () -> Union[str, Any]: lowercase__ = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) lowercase__ = bs[:] lowercase__ = 0 for b in range(2**8 ): if b not in bs: bs.append(_SCREAMING_SNAKE_CASE ) cs.append(2**8 + n ) n += 1 lowercase__ = [chr(_SCREAMING_SNAKE_CASE ) for n in cs] return dict(zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: lowercase__ = set() lowercase__ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase__ = char return pairs class SCREAMING_SNAKE_CASE (UpperCAmelCase ): _UpperCamelCase : str = VOCAB_FILES_NAMES _UpperCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : Any = ['input_ids', 'attention_mask'] def __init__( self : Dict , a : Union[str, Any] , a : Optional[Any] , a : List[str]="replace" , a : Optional[int]="<s>" , a : List[str]="</s>" , a : List[Any]="</s>" , a : Union[str, Any]="<s>" , a : Any="<unk>" , a : Optional[int]="<pad>" , a : Optional[Any]="<mask>" , a : Tuple=False , **a : List[Any] , )-> Optional[int]: """simple docstring""" lowercase__ = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else bos_token lowercase__ = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else eos_token lowercase__ = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else sep_token lowercase__ = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else cls_token lowercase__ = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else unk_token lowercase__ = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowercase__ = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else mask_token super().__init__( errors=a , bos_token=a , eos_token=a , unk_token=a , sep_token=a , cls_token=a , pad_token=a , mask_token=a , add_prefix_space=a , **a , ) with open(a , encoding='utf-8' ) as vocab_handle: lowercase__ = json.load(a ) lowercase__ = {v: k for k, v in self.encoder.items()} lowercase__ = errors # how to handle errors in decoding lowercase__ = bytes_to_unicode() lowercase__ = {v: k for k, v in self.byte_encoder.items()} with open(a , encoding='utf-8' ) as merges_handle: lowercase__ = merges_handle.read().split('\n' )[1:-1] lowercase__ = [tuple(merge.split() ) for merge in bpe_merges] lowercase__ = dict(zip(a , range(len(a ) ) ) ) lowercase__ = {} lowercase__ = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowercase__ = re.compile(R'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property def SCREAMING_SNAKE_CASE_ ( self : int )-> Any: """simple docstring""" return len(self.encoder ) def SCREAMING_SNAKE_CASE_ ( self : Dict )-> Optional[int]: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , a : List[Any] )-> Dict: """simple docstring""" if token in self.cache: return self.cache[token] lowercase__ = tuple(a ) lowercase__ = get_pairs(a ) if not pairs: return token while True: lowercase__ = min(a , key=lambda a : self.bpe_ranks.get(a , float('inf' ) ) ) if bigram not in self.bpe_ranks: break lowercase__ , lowercase__ = bigram lowercase__ = [] lowercase__ = 0 while i < len(a ): try: lowercase__ = word.index(a , a ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowercase__ = j if word[i] == first and i < len(a ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowercase__ = tuple(a ) lowercase__ = new_word if len(a ) == 1: break else: lowercase__ = get_pairs(a ) lowercase__ = ' '.join(a ) lowercase__ = word return word def SCREAMING_SNAKE_CASE_ ( self : List[Any] , a : str )-> Optional[Any]: """simple docstring""" lowercase__ = [] for token in re.findall(self.pat , a ): lowercase__ = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(a ).split(' ' ) ) return bpe_tokens def SCREAMING_SNAKE_CASE_ ( self : Tuple , a : List[Any] )-> Optional[int]: """simple docstring""" return self.encoder.get(a , self.encoder.get(self.unk_token ) ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , a : Optional[Any] )-> Union[str, Any]: """simple docstring""" return self.decoder.get(a ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , a : Optional[int] )-> Dict: """simple docstring""" lowercase__ = ''.join(a ) lowercase__ = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def SCREAMING_SNAKE_CASE_ ( self : Any , a : str , a : Optional[str] = None )-> Tuple[str]: """simple docstring""" if not os.path.isdir(a ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase__ = os.path.join( a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) lowercase__ = os.path.join( a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(a , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=a , ensure_ascii=a ) + '\n' ) lowercase__ = 0 with open(a , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda a : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ' Please check that the tokenizer is not corrupted!' ) lowercase__ = token_index writer.write(' '.join(a ) + '\n' ) index += 1 return vocab_file, merge_file def SCREAMING_SNAKE_CASE_ ( self : List[Any] , a : List[int] , a : Optional[List[int]] = None )-> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase__ = [self.cls_token_id] lowercase__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE_ ( self : Tuple , a : List[int] , a : Optional[List[int]] = None , a : bool = False )-> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a , token_ids_a=a , already_has_special_tokens=a ) if token_ids_a is None: return [1] + ([0] * len(a )) + [1] return [1] + ([0] * len(a )) + [1, 1] + ([0] * len(a )) + [1] def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , a : List[int] , a : Optional[List[int]] = None )-> List[int]: """simple docstring""" lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def SCREAMING_SNAKE_CASE_ ( self : Any , a : Dict , a : Dict=False , **a : Union[str, Any] )-> Optional[int]: """simple docstring""" lowercase__ = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(a ) > 0 and not text[0].isspace()): lowercase__ = ' ' + text return (text, kwargs)
269
0
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCAmelCase__ : int = logging.get_logger(__name__) lowerCAmelCase__ : Tuple = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''ctc_proj''', '''mask_emb''': '''masked_spec_embed''', } lowerCAmelCase__ : List[Any] = [ '''ctc_proj''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def UpperCamelCase__ ( A__ , A__ , A__ , A__ , A__ , A__ ) -> int: for attribute in key.split('.' ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models snake_case__ : List[Any] = 'lm_head' snake_case__ : Tuple = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) if weight_type is not None: snake_case__ : int = getattr(lowerCAmelCase_ , lowerCAmelCase_ ).shape else: snake_case__ : List[Any] = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": snake_case__ : Optional[Any] = value elif weight_type == "weight_g": snake_case__ : str = value elif weight_type == "weight_v": snake_case__ : Optional[int] = value elif weight_type == "bias": snake_case__ : Any = value else: snake_case__ : Tuple = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def UpperCamelCase__ ( A__ , A__ , A__ ) -> Any: snake_case__ : List[Any] = [] snake_case__ : Dict = fairseq_model.state_dict() snake_case__ : Union[str, Any] = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): snake_case__ : Tuple = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , hf_model.config.feat_extract_norm == 'group' , ) snake_case__ : Union[str, Any] = True else: for key, mapped_key in MAPPING.items(): snake_case__ : List[str] = 'unispeech.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: snake_case__ : int = True if "*" in mapped_key: snake_case__ : Dict = name.split(lowerCAmelCase_ )[0].split('.' )[-2] snake_case__ : int = mapped_key.replace('*' , lowerCAmelCase_ ) if "weight_g" in name: snake_case__ : Any = 'weight_g' elif "weight_v" in name: snake_case__ : List[Any] = 'weight_v' elif "bias" in name: snake_case__ : Union[str, Any] = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj snake_case__ : int = 'weight' else: snake_case__ : List[str] = None set_recursively(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) continue if not is_used: unused_weights.append(lowerCAmelCase_ ) logger.warning(F"""Unused weights: {unused_weights}""" ) def UpperCamelCase__ ( A__ , A__ , A__ , A__ , A__ ) -> Any: snake_case__ : int = full_name.split('conv_layers.' )[-1] snake_case__ : Tuple = name.split('.' ) snake_case__ : Optional[Any] = int(items[0] ) snake_case__ : List[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) snake_case__ : int = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) snake_case__ : Optional[Any] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) snake_case__ : List[Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) snake_case__ : Optional[Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowerCAmelCase_ ) @torch.no_grad() def UpperCamelCase__ ( A__ , A__ , A__=None , A__=None , A__=True ) -> Dict: if config_path is not None: snake_case__ : List[str] = UniSpeechConfig.from_pretrained(lowerCAmelCase_ ) else: snake_case__ : Tuple = UniSpeechConfig() if is_finetuned: if dict_path: snake_case__ : Optional[Any] = Dictionary.load_from_json(lowerCAmelCase_ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq snake_case__ : Any = target_dict.pad_index snake_case__ : Optional[Any] = target_dict.bos_index snake_case__ : Optional[int] = target_dict.eos_index snake_case__ : List[Any] = len(target_dict.symbols ) snake_case__ : Tuple = os.path.join(lowerCAmelCase_ , 'vocab.json' ) if not os.path.isdir(lowerCAmelCase_ ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(lowerCAmelCase_ ) ) return os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) snake_case__ : List[str] = target_dict.indices # fairseq has the <pad> and <s> switched snake_case__ : List[Any] = 42 snake_case__ : Any = 43 with open(lowerCAmelCase_ , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(lowerCAmelCase_ , lowerCAmelCase_ ) snake_case__ : Optional[Any] = WavaVecaPhonemeCTCTokenizer( lowerCAmelCase_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=lowerCAmelCase_ , ) snake_case__ : List[Any] = True if config.feat_extract_norm == 'layer' else False snake_case__ : List[str] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , ) snake_case__ : Dict = WavaVecaProcessor(feature_extractor=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ ) processor.save_pretrained(lowerCAmelCase_ ) snake_case__ : List[str] = UniSpeechForCTC(lowerCAmelCase_ ) else: snake_case__ : int = UniSpeechForPreTraining(lowerCAmelCase_ ) if is_finetuned: snake_case__ : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] ), 'w2v_path': checkpoint_path} ) else: snake_case__ : int = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) snake_case__ : Optional[Any] = model[0].eval() recursively_load_weights(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) hf_unispeech.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": lowerCAmelCase__ : Dict = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) lowerCAmelCase__ : List[Any] = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
143
'''simple docstring''' import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=1024 , lowerCAmelCase_=1024 , lowerCAmelCase_=False , **lowerCAmelCase_ ) -> List[Any]: _a : str = AutoTokenizer.from_pretrained(lowerCAmelCase_ ) _a : List[Any] = SeqaSeqDataset(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , type_path='train' , **lowerCAmelCase_ ) _a : List[str] = tok.pad_token_id def get_lens(lowerCAmelCase_ ): _a : Dict = tqdm( DataLoader(lowerCAmelCase_ , batch_size=512 , num_workers=8 , shuffle=lowerCAmelCase_ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) _a : Union[str, Any] = [] for batch in dl: _a : Optional[Any] = batch['input_ids'].ne(lowerCAmelCase_ ).sum(1 ).tolist() _a : Optional[Any] = batch['labels'].ne(lowerCAmelCase_ ).sum(1 ).tolist() if consider_target: for src, tgt in zip(lowerCAmelCase_ , lowerCAmelCase_ ): max_lens.append(max(lowerCAmelCase_ , lowerCAmelCase_ ) ) else: max_lens.extend(lowerCAmelCase_ ) return max_lens _a : str = get_lens(lowerCAmelCase_ ) _a : Optional[int] = SeqaSeqDataset(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , type_path='val' , **lowerCAmelCase_ ) _a : Dict = get_lens(lowerCAmelCase_ ) pickle_save(lowerCAmelCase_ , train_ds.len_file ) pickle_save(lowerCAmelCase_ , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
89
0
import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors _SCREAMING_SNAKE_CASE : Union[str, Any] = logging.getLogger(__name__) class A__ ( snake_case__ ): """simple docstring""" __magic_name__ = 'sequence-classification' def __init__( self , __snake_case ): if type(UpperCAmelCase_ ) == dict: snake_case = Namespace(**UpperCAmelCase_ ) snake_case = glue_output_modes[hparams.task] snake_case = glue_tasks_num_labels[hparams.task] super().__init__(UpperCAmelCase_ , UpperCAmelCase_ , self.mode ) def a_ ( self , **__snake_case ): return self.model(**UpperCAmelCase_ ) def a_ ( self , __snake_case , __snake_case ): snake_case = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: snake_case = batch[2] if self.config.model_type in ["bert", "xlnet", "albert"] else None snake_case = self(**UpperCAmelCase_ ) snake_case = outputs[0] snake_case = self.trainer.lr_schedulers[0]["scheduler"] snake_case = {"loss": loss, "rate": lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def a_ ( self ): snake_case = self.hparams snake_case = processors[args.task]() snake_case = processor.get_labels() for mode in ["train", "dev"]: snake_case = self._feature_file(UpperCAmelCase_ ) if os.path.exists(UpperCAmelCase_ ) and not args.overwrite_cache: logger.info('''Loading features from cached file %s''' , UpperCAmelCase_ ) else: logger.info('''Creating features from dataset file at %s''' , args.data_dir ) snake_case = ( processor.get_dev_examples(args.data_dir ) if mode == "dev" else processor.get_train_examples(args.data_dir ) ) snake_case = convert_examples_to_features( UpperCAmelCase_ , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info('''Saving features into cached file %s''' , UpperCAmelCase_ ) torch.save(UpperCAmelCase_ , UpperCAmelCase_ ) def a_ ( self , __snake_case , __snake_case , __snake_case = False ): snake_case = "dev" if mode == "test" else mode snake_case = self._feature_file(UpperCAmelCase_ ) logger.info('''Loading features from cached file %s''' , UpperCAmelCase_ ) snake_case = torch.load(UpperCAmelCase_ ) snake_case = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) snake_case = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) snake_case = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": snake_case = torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": snake_case = torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) , batch_size=UpperCAmelCase_ , shuffle=UpperCAmelCase_ , ) def a_ ( self , __snake_case , __snake_case ): snake_case = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: snake_case = batch[2] if self.config.model_type in ["bert", "xlnet", "albert"] else None snake_case = self(**UpperCAmelCase_ ) snake_case = outputs[:2] snake_case = logits.detach().cpu().numpy() snake_case = inputs["labels"].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def a_ ( self , __snake_case ): snake_case = torch.stack([x['''val_loss'''] for x in outputs] ).mean().detach().cpu().item() snake_case = np.concatenate([x['''pred'''] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": snake_case = np.argmax(UpperCAmelCase_ , axis=1 ) elif self.hparams.glue_output_mode == "regression": snake_case = np.squeeze(UpperCAmelCase_ ) snake_case = np.concatenate([x['''target'''] for x in outputs] , axis=0 ) snake_case = [[] for _ in range(out_label_ids.shape[0] )] snake_case = [[] for _ in range(out_label_ids.shape[0] )] snake_case = {**{"val_loss": val_loss_mean}, **compute_metrics(self.hparams.task , UpperCAmelCase_ , UpperCAmelCase_ )} snake_case = dict(results.items() ) snake_case = results return ret, preds_list, out_label_list def a_ ( self , __snake_case ): snake_case = self._eval_end(UpperCAmelCase_ ) snake_case = ret["log"] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def a_ ( self , __snake_case ): snake_case = self._eval_end(UpperCAmelCase_ ) snake_case = ret["log"] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def a_ ( __snake_case , __snake_case ): BaseTransformer.add_model_specific_args(UpperCAmelCase_ , UpperCAmelCase_ ) parser.add_argument( '''--max_seq_length''' , default=1_2_8 , type=UpperCAmelCase_ , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--task''' , default='''''' , type=UpperCAmelCase_ , required=UpperCAmelCase_ , help='''The GLUE task to run''' , ) parser.add_argument( '''--gpus''' , default=0 , type=UpperCAmelCase_ , help='''The number of GPUs allocated for this, it is by default 0 meaning none''' , ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) return parser def UpperCAmelCase__ (): """simple docstring""" snake_case = argparse.ArgumentParser() add_generic_args(_UpperCAmelCase ,os.getcwd() ) snake_case = GLUETransformer.add_model_specific_args(_UpperCAmelCase ,os.getcwd() ) snake_case = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: snake_case = os.path.join( '''./results''' ,F'''{args.task}_{time.strftime("%Y%m%d_%H%M%S" )}''' ,) os.makedirs(args.output_dir ) snake_case = GLUETransformer(_UpperCAmelCase ) snake_case = generic_train(_UpperCAmelCase ,_UpperCAmelCase ) # Optionally, predict on dev set and write to output_dir if args.do_predict: snake_case = sorted(glob.glob(os.path.join(args.output_dir ,'''checkpoint-epoch=*.ckpt''' ) ,recursive=_UpperCAmelCase ) ) snake_case = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(_UpperCAmelCase ) if __name__ == "__main__": main()
365
import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def UpperCAmelCase__ (UpperCamelCase_ ): """simple docstring""" snake_case = [] embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight''', F'''stage{idx}.patch_embed.proj.weight''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias''', F'''stage{idx}.patch_embed.proj.bias''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight''', F'''stage{idx}.patch_embed.norm.weight''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias''', F'''stage{idx}.patch_embed.norm.bias''', ) ) return embed def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ): """simple docstring""" snake_case = [] attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_q.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_q.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_k.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_k.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_v.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_v.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj.bias''', ) ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight''', F'''stage{idx}.blocks.{cnt}.norm1.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias''', F'''stage{idx}.blocks.{cnt}.norm1.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight''', F'''stage{idx}.blocks.{cnt}.norm2.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias''', F'''stage{idx}.blocks.{cnt}.norm2.bias''') ) return attention_weights def UpperCAmelCase__ (UpperCamelCase_ ): """simple docstring""" snake_case = [] token.append((F'''cvt.encoder.stages.{idx}.cls_token''', '''stage2.cls_token''') ) return token def UpperCAmelCase__ (): """simple docstring""" snake_case = [] head.append(('''layernorm.weight''', '''norm.weight''') ) head.append(('''layernorm.bias''', '''norm.bias''') ) head.append(('''classifier.weight''', '''head.weight''') ) head.append(('''classifier.bias''', '''head.bias''') ) return head def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ): """simple docstring""" snake_case = '''imagenet-1k-id2label.json''' snake_case = 10_00 snake_case = '''huggingface/label-files''' snake_case = num_labels snake_case = json.load(open(cached_download(hf_hub_url(UpperCamelCase_ ,UpperCamelCase_ ,repo_type='''dataset''' ) ) ,'''r''' ) ) snake_case = {int(UpperCamelCase_ ): v for k, v in idalabel.items()} snake_case = idalabel snake_case = {v: k for k, v in idalabel.items()} snake_case = snake_case = CvtConfig(num_labels=UpperCamelCase_ ,idalabel=UpperCamelCase_ ,labelaid=UpperCamelCase_ ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('''/''' ,1 )[-1][4:6] == "13": snake_case = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('''/''' ,1 )[-1][4:6] == "21": snake_case = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: snake_case = [2, 2, 20] snake_case = [3, 12, 16] snake_case = [1_92, 7_68, 10_24] snake_case = CvtForImageClassification(UpperCamelCase_ ) snake_case = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) snake_case = image_size snake_case = torch.load(UpperCamelCase_ ,map_location=torch.device('''cpu''' ) ) snake_case = OrderedDict() snake_case = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: snake_case = list_of_state_dict + cls_token(UpperCamelCase_ ) snake_case = list_of_state_dict + embeddings(UpperCamelCase_ ) for cnt in range(config.depth[idx] ): snake_case = list_of_state_dict + attention(UpperCamelCase_ ,UpperCamelCase_ ) snake_case = list_of_state_dict + final() for gg in list_of_state_dict: print(UpperCamelCase_ ) for i in range(len(UpperCamelCase_ ) ): snake_case = original_weights[list_of_state_dict[i][1]] model.load_state_dict(UpperCamelCase_ ) model.save_pretrained(UpperCamelCase_ ) image_processor.save_pretrained(UpperCamelCase_ ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Optional[int] = argparse.ArgumentParser() parser.add_argument( "--cvt_model", default="cvt-w24", type=str, help="Name of the cvt model you'd like to convert.", ) parser.add_argument( "--image_size", default=3_84, type=int, help="Input Image Size", ) parser.add_argument( "--cvt_file_name", default=R"cvtmodels\CvT-w24-384x384-IN-22k.pth", type=str, help="Input Image Size", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) _SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
213
0
'''simple docstring''' import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin a : Optional[Any] = get_tests_dir("""fixtures/test_sentencepiece_bpe.model""") class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = BartphoTokenizer lowercase = False lowercase = True def _lowercase( self ) -> Any: super().setUp() UpperCAmelCase : Any = ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] UpperCAmelCase : str = dict(zip(A , range(len(A ) ) ) ) UpperCAmelCase : Optional[Any] = {"""unk_token""": """<unk>"""} UpperCAmelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""monolingual_vocab_file"""] ) with open(self.monolingual_vocab_file , """w""" , encoding="""utf-8""" ) as fp: for token in vocab_tokens: fp.write(f'''{token} {vocab_tokens[token]}\n''' ) UpperCAmelCase : List[Any] = BartphoTokenizer(A , self.monolingual_vocab_file , **self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase( self , **A ) -> Union[str, Any]: kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname , **A ) def _lowercase( self , A ) -> List[Any]: UpperCAmelCase : Optional[int] = """This is a là test""" UpperCAmelCase : str = """This is a<unk><unk> test""" return input_text, output_text def _lowercase( self ) -> List[str]: UpperCAmelCase : Any = BartphoTokenizer(A , self.monolingual_vocab_file , **self.special_tokens_map ) UpperCAmelCase : Union[str, Any] = """This is a là test""" UpperCAmelCase : Any = """▁This ▁is ▁a ▁l à ▁t est""".split() UpperCAmelCase : str = tokenizer.tokenize(A ) self.assertListEqual(A , A ) UpperCAmelCase : Optional[int] = tokens + [tokenizer.unk_token] UpperCAmelCase : int = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , A )
265
'''simple docstring''' import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class UpperCamelCase_ : def __init__( self , A , A=13 , A=7 , A=True , A=True , A=True , A=True , A=99 , A=64 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.0_2 , A=3 , A=4 , A=None , ) -> Optional[int]: UpperCAmelCase : List[Any] = parent UpperCAmelCase : Optional[int] = batch_size UpperCAmelCase : Union[str, Any] = seq_length UpperCAmelCase : Optional[Any] = is_training UpperCAmelCase : Dict = use_input_mask UpperCAmelCase : str = use_token_type_ids UpperCAmelCase : List[Any] = use_labels UpperCAmelCase : List[Any] = vocab_size UpperCAmelCase : Dict = hidden_size UpperCAmelCase : Dict = num_hidden_layers UpperCAmelCase : Optional[int] = num_attention_heads UpperCAmelCase : int = intermediate_size UpperCAmelCase : List[str] = hidden_act UpperCAmelCase : List[str] = hidden_dropout_prob UpperCAmelCase : int = attention_probs_dropout_prob UpperCAmelCase : str = max_position_embeddings UpperCAmelCase : Optional[Any] = type_vocab_size UpperCAmelCase : List[str] = type_sequence_label_size UpperCAmelCase : int = initializer_range UpperCAmelCase : str = num_labels UpperCAmelCase : Optional[int] = num_choices UpperCAmelCase : Dict = scope UpperCAmelCase : Union[str, Any] = vocab_size - 1 def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Any = None if self.use_input_mask: UpperCAmelCase : int = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : List[str] = None if self.use_labels: UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase : Optional[int] = self.get_config() return config, input_ids, input_mask, token_labels def _lowercase( self ) -> Optional[Any]: return GPTNeoXConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] = self.prepare_config_and_inputs() UpperCAmelCase : Any = True return config, input_ids, input_mask, token_labels def _lowercase( self , A , A , A ) -> int: UpperCAmelCase : str = GPTNeoXModel(config=A ) model.to(A ) model.eval() UpperCAmelCase : List[str] = model(A , attention_mask=A ) UpperCAmelCase : List[str] = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase( self , A , A , A ) -> Optional[int]: UpperCAmelCase : str = True UpperCAmelCase : Optional[Any] = GPTNeoXModel(A ) model.to(A ) model.eval() UpperCAmelCase : List[Any] = model(A , attention_mask=A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase( self , A , A , A , A ) -> List[str]: UpperCAmelCase : Tuple = GPTNeoXForCausalLM(config=A ) model.to(A ) model.eval() UpperCAmelCase : str = model(A , attention_mask=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase( self , A , A , A , A ) -> Tuple: UpperCAmelCase : List[str] = self.num_labels UpperCAmelCase : Any = GPTNeoXForQuestionAnswering(A ) model.to(A ) model.eval() UpperCAmelCase : str = model(A , attention_mask=A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowercase( self , A , A , A , A ) -> int: UpperCAmelCase : Tuple = self.num_labels UpperCAmelCase : List[str] = GPTNeoXForSequenceClassification(A ) model.to(A ) model.eval() UpperCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : Tuple = model(A , attention_mask=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase( self , A , A , A , A ) -> str: UpperCAmelCase : List[Any] = self.num_labels UpperCAmelCase : Tuple = GPTNeoXForTokenClassification(A ) model.to(A ) model.eval() UpperCAmelCase : int = model(A , attention_mask=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowercase( self , A , A , A ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = True UpperCAmelCase : str = GPTNeoXForCausalLM(config=A ) model.to(A ) model.eval() # first forward pass UpperCAmelCase : List[str] = model(A , attention_mask=A , use_cache=A ) UpperCAmelCase : List[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCAmelCase : Optional[int] = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase : Any = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCAmelCase : str = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase : Any = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCAmelCase : Dict = model(A , attention_mask=A , output_hidden_states=A ) UpperCAmelCase : Any = output_from_no_past["""hidden_states"""][0] UpperCAmelCase : List[str] = model( A , attention_mask=A , past_key_values=A , output_hidden_states=A , )["""hidden_states"""][0] # select random slice UpperCAmelCase : Tuple = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase : List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCAmelCase : List[str] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A , A , atol=1e-3 ) ) def _lowercase( self ) -> int: UpperCAmelCase : Tuple = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[Any] = config_and_inputs UpperCAmelCase : Union[str, Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class UpperCamelCase_ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) lowercase = (GPTNeoXForCausalLM,) if is_torch_available() else () lowercase = ( { 'feature-extraction': GPTNeoXModel, 'question-answering': GPTNeoXForQuestionAnswering, 'text-classification': GPTNeoXForSequenceClassification, 'text-generation': GPTNeoXForCausalLM, 'token-classification': GPTNeoXForTokenClassification, 'zero-shot': GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) lowercase = False lowercase = False lowercase = False lowercase = False def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : str = GPTNeoXModelTester(self ) UpperCAmelCase : Optional[Any] = ConfigTester(self , config_class=A , hidden_size=64 , num_attention_heads=8 ) def _lowercase( self ) -> Optional[Any]: self.config_tester.run_common_tests() def _lowercase( self ) -> str: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(A , A , A ) def _lowercase( self ) -> str: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(A , A , A ) def _lowercase( self ) -> Optional[Any]: # This regression test was failing with PyTorch < 1.3 UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_decoder() UpperCAmelCase : Optional[Any] = None self.model_tester.create_and_check_model_as_decoder(A , A , A ) def _lowercase( self ) -> str: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(A , A , A ) def _lowercase( self ) -> int: UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*A ) def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A ) def _lowercase( self ) -> Any: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A ) @unittest.skip(reason="""Feed forward chunking is not implemented""" ) def _lowercase( self ) -> Optional[int]: pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def _lowercase( self , A ) -> str: UpperCAmelCase , UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : int = ids_tensor([1, 10] , config.vocab_size ) UpperCAmelCase : Optional[Any] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase : Dict = GPTNeoXModel(A ) original_model.to(A ) original_model.eval() UpperCAmelCase : List[str] = original_model(A ).last_hidden_state UpperCAmelCase : Any = original_model(A ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase : Any = {"""type""": scaling_type, """factor""": 1_0.0} UpperCAmelCase : str = GPTNeoXModel(A ) scaled_model.to(A ) scaled_model.eval() UpperCAmelCase : Optional[Any] = scaled_model(A ).last_hidden_state UpperCAmelCase : Optional[Any] = scaled_model(A ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(A , A , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(A , A , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(A , A , atol=1e-5 ) ) @require_torch class UpperCamelCase_ ( unittest.TestCase ): @slow def _lowercase( self ) -> List[Any]: UpperCAmelCase : str = AutoTokenizer.from_pretrained("""EleutherAI/pythia-410m-deduped""" ) for checkpointing in [True, False]: UpperCAmelCase : int = GPTNeoXForCausalLM.from_pretrained("""EleutherAI/pythia-410m-deduped""" ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(A ) UpperCAmelCase : List[Any] = tokenizer("""My favorite food is""" , return_tensors="""pt""" ).to(A ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 UpperCAmelCase : List[str] = """My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI'm not sure""" UpperCAmelCase : Union[str, Any] = model.generate(**A , do_sample=A , max_new_tokens=20 ) UpperCAmelCase : Tuple = tokenizer.batch_decode(A )[0] self.assertEqual(A , A )
265
1
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __init__( self: str , __A: Optional[Any] , __A: Optional[int]=7 , __A: Tuple=3 , __A: List[Any]=30 , __A: int=4_00 , __A: Optional[Any]=True , __A: Dict=None , __A: Optional[int]=True , __A: List[Any]=[0.5, 0.5, 0.5] , __A: Tuple=[0.5, 0.5, 0.5] , __A: int=True , __A: Optional[Any]=1 / 2_55 , __A: Optional[Any]=True , ) -> List[str]: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p _A = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 13_33} _A = parent _A = batch_size _A = num_channels _A = min_resolution _A = max_resolution _A = do_resize _A = size _A = do_normalize _A = image_mean _A = image_std _A = do_rescale _A = rescale_factor _A = do_pad def __A ( self: Union[str, Any] ) -> Optional[int]: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def __A ( self: Optional[int] , __A: Dict , __A: Dict=False ) -> Union[str, Any]: if not batched: _A = image_inputs[0] if isinstance(__A , Image.Image ): _A ,_A = image.size else: _A ,_A = image.shape[1], image.shape[2] if w < h: _A = int(self.size['''shortest_edge'''] * h / w ) _A = self.size['''shortest_edge'''] elif w > h: _A = self.size['''shortest_edge'''] _A = int(self.size['''shortest_edge'''] * w / h ) else: _A = self.size['''shortest_edge'''] _A = self.size['''shortest_edge'''] else: _A = [] for image in image_inputs: _A ,_A = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _A = max(__A , key=lambda __A : item[0] )[0] _A = max(__A , key=lambda __A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE ( snake_case , unittest.TestCase ): """simple docstring""" A_ = DetaImageProcessor if is_vision_available() else None def __A ( self: Tuple ) -> Dict: _A = DetaImageProcessingTester(self ) @property def __A ( self: List[str] ) -> Tuple: return self.image_processor_tester.prepare_image_processor_dict() def __A ( self: Any ) -> Tuple: _A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A , '''image_mean''' ) ) self.assertTrue(hasattr(__A , '''image_std''' ) ) self.assertTrue(hasattr(__A , '''do_normalize''' ) ) self.assertTrue(hasattr(__A , '''do_resize''' ) ) self.assertTrue(hasattr(__A , '''do_rescale''' ) ) self.assertTrue(hasattr(__A , '''do_pad''' ) ) self.assertTrue(hasattr(__A , '''size''' ) ) def __A ( self: Any ) -> Optional[Any]: _A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 13_33} ) self.assertEqual(image_processor.do_pad , __A ) def __A ( self: Dict ) -> int: pass def __A ( self: List[str] ) -> List[Any]: # Initialize image_processing _A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input _A = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _A ,_A = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _A ,_A = self.image_processor_tester.get_expected_values(__A , batched=__A ) _A = image_processing(__A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __A ( self: Optional[int] ) -> List[str]: # Initialize image_processing _A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A ) for image in image_inputs: self.assertIsInstance(__A , np.ndarray ) # Test not batched input _A = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _A ,_A = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _A = image_processing(__A , return_tensors='''pt''' ).pixel_values _A ,_A = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __A ( self: Union[str, Any] ) -> int: # Initialize image_processing _A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A ) for image in image_inputs: self.assertIsInstance(__A , torch.Tensor ) # Test not batched input _A = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _A ,_A = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _A = image_processing(__A , return_tensors='''pt''' ).pixel_values _A ,_A = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def __A ( self: Union[str, Any] ) -> Dict: # prepare image and target _A = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: _A = json.loads(f.read() ) _A = {'''image_id''': 3_97_69, '''annotations''': target} # encode them _A = DetaImageProcessor() _A = image_processing(images=__A , annotations=__A , return_tensors='''pt''' ) # verify pixel values _A = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , __A ) _A = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area _A = torch.tensor([5_887.9_600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __A ) ) # verify boxes _A = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __A ) _A = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __A , atol=1e-3 ) ) # verify image_id _A = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __A ) ) # verify is_crowd _A = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __A ) ) # verify class_labels _A = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __A ) ) # verify orig_size _A = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __A ) ) # verify size _A = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __A ) ) @slow def __A ( self: Optional[int] ) -> List[Any]: # prepare image, target and masks_path _A = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: _A = json.loads(f.read() ) _A = {'''file_name''': '''000000039769.png''', '''image_id''': 3_97_69, '''segments_info''': target} _A = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them _A = DetaImageProcessor(format='''coco_panoptic''' ) _A = image_processing(images=__A , annotations=__A , masks_path=__A , return_tensors='''pt''' ) # verify pixel values _A = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , __A ) _A = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area _A = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5_879.6_562, 7_634.1_147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __A ) ) # verify boxes _A = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __A ) _A = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __A , atol=1e-3 ) ) # verify image_id _A = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __A ) ) # verify is_crowd _A = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __A ) ) # verify class_labels _A = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __A ) ) # verify masks _A = 82_28_73 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , __A ) # verify orig_size _A = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __A ) ) # verify size _A = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __A ) )
75
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 650, "eval_accuracy": 0.7, "eval_loss": 0.6}, }, { "framework": "pytorch", "script": "run_ddp.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 600, "eval_accuracy": 0.7, "eval_loss": 0.6}, }, { "framework": "tensorflow", "script": "run_tf_dist.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 600, "eval_accuracy": 0.6, "eval_loss": 0.7}, }, ] ) class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __A ( self: Any ) -> Optional[Any]: if self.framework == "pytorch": subprocess.run( f"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding='''utf-8''' , check=__A , ) assert hasattr(self , '''env''' ) def __A ( self: Any , __A: Optional[int] ) -> Union[str, Any]: _A = f"""{self.env.base_job_name}-{instance_count}-{"ddp" if "ddp" in self.script else "smd"}""" # distributed data settings _A = {'''smdistributed''': {'''dataparallel''': {'''enabled''': True}}} if self.script != '''run_ddp.py''' else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=__A , instance_count=__A , instance_type=self.instance_type , debugger_hook_config=__A , hyperparameters={**self.env.distributed_hyperparameters, '''model_name_or_path''': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=__A , py_version='''py36''' , ) def __A ( self: Optional[int] , __A: Optional[int] ) -> List[Any]: TrainingJobAnalytics(__A ).export_csv(f"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(2,)] ) def __A ( self: Dict , __A: Tuple ) -> Union[str, Any]: # create estimator _A = self.create_estimator(__A ) # run training estimator.fit() # result dataframe _A = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis _A = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] ) _A = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping _A = ( Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''' , 99_99_99 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy ) assert all(t <= self.results['''eval_loss'''] for t in eval_loss ) # dump tests result into json file to share in PR with open(f"""{estimator.latest_training_job.name}.json""" , '''w''' ) as outfile: json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , __A )
75
1
'''simple docstring''' import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class _a : '''simple docstring''' def __init__( self, A, A=13, A=2, A=24, A=16, A=True, A=True, A=32, A=5, A=4, A=37, A="gelu", A=0.1, A=0.1, A=10, A=0.02, A=None, A=2, A=2, ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = parent SCREAMING_SNAKE_CASE : Union[str, Any] = batch_size SCREAMING_SNAKE_CASE : Tuple = patch_size SCREAMING_SNAKE_CASE : int = max_length SCREAMING_SNAKE_CASE : Tuple = num_mel_bins SCREAMING_SNAKE_CASE : Union[str, Any] = is_training SCREAMING_SNAKE_CASE : Any = use_labels SCREAMING_SNAKE_CASE : Optional[Any] = hidden_size SCREAMING_SNAKE_CASE : str = num_hidden_layers SCREAMING_SNAKE_CASE : str = num_attention_heads SCREAMING_SNAKE_CASE : Tuple = intermediate_size SCREAMING_SNAKE_CASE : Any = hidden_act SCREAMING_SNAKE_CASE : Optional[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : str = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : List[Any] = type_sequence_label_size SCREAMING_SNAKE_CASE : str = initializer_range SCREAMING_SNAKE_CASE : Dict = scope SCREAMING_SNAKE_CASE : int = frequency_stride SCREAMING_SNAKE_CASE : Optional[int] = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) SCREAMING_SNAKE_CASE : Optional[Any] = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 SCREAMING_SNAKE_CASE : Optional[Any] = (self.max_length - self.patch_size) // self.time_stride + 1 SCREAMING_SNAKE_CASE : Optional[Any] = frequency_out_dimension * time_out_dimension SCREAMING_SNAKE_CASE : int = num_patches + 2 def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) SCREAMING_SNAKE_CASE : Any = None if self.use_labels: SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size], self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : Optional[int] = self.get_config() return config, input_values, labels def UpperCamelCase_ ( self ): '''simple docstring''' return ASTConfig( patch_size=self.patch_size, max_length=self.max_length, num_mel_bins=self.num_mel_bins, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=A, initializer_range=self.initializer_range, frequency_stride=self.frequency_stride, time_stride=self.time_stride, ) def UpperCamelCase_ ( self, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = ASTModel(config=A ) model.to(A ) model.eval() SCREAMING_SNAKE_CASE : Any = model(A ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) : Any = config_and_inputs SCREAMING_SNAKE_CASE : List[Any] = {'input_values': input_values} return config, inputs_dict @require_torch class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' A : List[str] = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) A : Union[str, Any] = ( {'''audio-classification''': ASTForAudioClassification, '''feature-extraction''': ASTModel} if is_torch_available() else {} ) A : Union[str, Any] = False A : Union[str, Any] = False A : Optional[int] = False A : List[str] = False def UpperCamelCase_ ( self, A, A, A, A, A ): '''simple docstring''' if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = ASTModelTester(self ) SCREAMING_SNAKE_CASE : Dict = ConfigTester(self, config_class=A, has_text_modality=A, hidden_size=37 ) def UpperCamelCase_ ( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='AST does not use inputs_embeds' ) def UpperCamelCase_ ( self ): '''simple docstring''' pass def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(A ) self.assertIsInstance(model.get_input_embeddings(), (nn.Module) ) SCREAMING_SNAKE_CASE : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A, nn.Linear ) ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : str = model_class(A ) SCREAMING_SNAKE_CASE : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : Optional[Any] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : Any = ['input_values'] self.assertListEqual(arg_names[:1], A ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : Optional[int] = ASTModel.from_pretrained(A ) self.assertIsNotNone(A ) def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = hf_hub_download( repo_id='nielsr/audio-spectogram-transformer-checkpoint' ,filename='sample_audio.flac' ,repo_type='dataset' ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = torchaudio.load(__UpperCamelCase ) return audio, sampling_rate @require_torch @require_torchaudio class _a ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self ): '''simple docstring''' return ( ASTFeatureExtractor.from_pretrained('MIT/ast-finetuned-audioset-10-10-0.4593' ) if is_torchaudio_available() else None ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.default_feature_extractor SCREAMING_SNAKE_CASE : Dict = ASTForAudioClassification.from_pretrained('MIT/ast-finetuned-audioset-10-10-0.4593' ).to(A ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.default_feature_extractor SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = prepare_audio() SCREAMING_SNAKE_CASE : List[Any] = audio.squeeze().numpy() SCREAMING_SNAKE_CASE : Any = feature_extractor(A, sampling_rate=A, return_tensors='pt' ).to(A ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : str = model(**A ) # verify the logits SCREAMING_SNAKE_CASE : Optional[int] = torch.Size((1, 527) ) self.assertEqual(outputs.logits.shape, A ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([-0.87_60, -7.00_42, -8.66_02] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3], A, atol=1E-4 ) )
251
'''simple docstring''' import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class _a ( unittest.TestCase ): '''simple docstring''' A : List[Any] = inspect.getfile(accelerate.test_utils ) A : int = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_cli.py'''] ) A : List[str] = ['''accelerate''', '''launch'''] A : List[Any] = Path.home() / '''.cache/huggingface/accelerate''' A : Any = '''default_config.yaml''' A : Dict = config_folder / config_file A : Union[str, Any] = config_folder / '''_default_config.yaml''' A : int = Path('''tests/test_configs''' ) @classmethod def UpperCamelCase_ ( cls ): '''simple docstring''' if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path ) @classmethod def UpperCamelCase_ ( cls ): '''simple docstring''' if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path], env=os.environ.copy() ) def UpperCamelCase_ ( self ): '''simple docstring''' for config in sorted(self.test_config_path.glob('**/*.yaml' ) ): with self.subTest(config_file=A ): execute_subprocess_async( self.base_cmd + ['--config_file', str(A ), self.test_file_path], env=os.environ.copy() ) def UpperCamelCase_ ( self ): '''simple docstring''' execute_subprocess_async(['accelerate', 'test'], env=os.environ.copy() ) class _a ( unittest.TestCase ): '''simple docstring''' A : Union[str, Any] = '''test-tpu''' A : List[str] = '''us-central1-a''' A : List[str] = '''ls''' A : List[str] = ['''accelerate''', '''tpu-config'''] A : List[str] = '''cd /usr/share''' A : Optional[int] = '''tests/test_samples/test_command_file.sh''' A : Optional[int] = '''Running gcloud compute tpus tpu-vm ssh''' def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = run_command( self.cmd + ['--command', self.command, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug'], return_stdout=A, ) self.assertIn( F"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all", A, ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = run_command( self.cmd + [ '--config_file', 'tests/test_configs/0_12_0.yaml', '--command', self.command, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug', ], return_stdout=A, ) self.assertIn( F"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all", A, ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--debug'], return_stdout=A ) self.assertIn( F"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all", A, ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--command', self.command, '--debug'], return_stdout=A, ) self.assertIn( F"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all", A, ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = run_command( self.cmd + [ '--config_file', 'tests/test_configs/latest.yaml', '--command', self.command, '--command', 'echo "Hello World"', '--debug', ], return_stdout=A, ) self.assertIn( F"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo \"Hello World\" --worker all", A, ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--command_file', self.command_file, '--debug'], return_stdout=A, ) self.assertIn( F"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all", A, ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = run_command( self.cmd + [ '--config_file', 'tests/test_configs/0_12_0.yaml', '--command_file', self.command_file, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug', ], return_stdout=A, ) self.assertIn( F"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all", A, ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--install_accelerate', '--debug'], return_stdout=A, ) self.assertIn( F"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo \"hello world\"; echo \"this is a second command\" --worker all", A, ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = run_command( self.cmd + [ '--config_file', 'tests/test_configs/latest.yaml', '--install_accelerate', '--accelerate_version', '12.0.0', '--debug', ], return_stdout=A, ) self.assertIn( F"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo \"hello world\"; echo \"this is a second command\" --worker all", A, )
251
1
import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[int] ) -> List[Any]: # Initialise PyTorch model UpperCAmelCase_ = LxmertConfig.from_json_file(__UpperCamelCase ) print(f'Building PyTorch model from configuration: {config}' ) UpperCAmelCase_ = LxmertForPreTraining(__UpperCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , __UpperCamelCase ) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _lowerCamelCase = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
361
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] ) -> Union[str, Any]: UpperCAmelCase_ = len(__UpperCamelCase ) while cur > 1: # Find the maximum number in arr UpperCAmelCase_ = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi UpperCAmelCase_ = arr[mi::-1] + arr[mi + 1 : len(__UpperCamelCase )] # Reverse whole list UpperCAmelCase_ = arr[cur - 1 :: -1] + arr[cur : len(__UpperCamelCase )] cur -= 1 return arr if __name__ == "__main__": _lowerCamelCase = input('Enter numbers separated by a comma:\n').strip() _lowerCamelCase = [int(item) for item in user_input.split(',')] print(pancake_sort(unsorted))
177
0
import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint _UpperCAmelCase : List[str] ={ '169M': 12, '430M': 24, '1B5': 24, '3B': 32, '7B': 32, '14B': 40, } _UpperCAmelCase : Tuple ={ '169M': 768, '430M': 1024, '1B5': 2048, '3B': 2560, '7B': 4096, '14B': 5120, } def lowerCAmelCase ( lowerCAmelCase_ )-> Optional[Any]: lowerCAmelCase_ : int = list(state_dict.keys() ) for name in state_dict_keys: lowerCAmelCase_ : Optional[int] = state_dict.pop(lowerCAmelCase_ ) # emb -> embedding if name.startswith('''emb.''' ): lowerCAmelCase_ : Optional[Any] = name.replace('''emb.''' , '''embeddings.''' ) # ln_0 -> pre_ln (only present at block 0) if name.startswith('''blocks.0.ln0''' ): lowerCAmelCase_ : Optional[Any] = name.replace('''blocks.0.ln0''' , '''blocks.0.pre_ln''' ) # att -> attention lowerCAmelCase_ : Optional[Any] = re.sub(r'''blocks\.(\d+)\.att''' , r'''blocks.\1.attention''' , lowerCAmelCase_ ) # ffn -> feed_forward lowerCAmelCase_ : Any = re.sub(r'''blocks\.(\d+)\.ffn''' , r'''blocks.\1.feed_forward''' , lowerCAmelCase_ ) # time_mix_k -> time_mix_key and reshape if name.endswith('''.time_mix_k''' ): lowerCAmelCase_ : Any = name.replace('''.time_mix_k''' , '''.time_mix_key''' ) # time_mix_v -> time_mix_value and reshape if name.endswith('''.time_mix_v''' ): lowerCAmelCase_ : Optional[int] = name.replace('''.time_mix_v''' , '''.time_mix_value''' ) # time_mix_r -> time_mix_key and reshape if name.endswith('''.time_mix_r''' ): lowerCAmelCase_ : List[str] = name.replace('''.time_mix_r''' , '''.time_mix_receptance''' ) if name != "head.weight": lowerCAmelCase_ : Any = 'rwkv.' + name lowerCAmelCase_ : Dict = weight return state_dict def lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=False , lowerCAmelCase_=None )-> str: if tokenizer_file is None: print('''No `--tokenizer_file` provided, we will use the default tokenizer.''' ) lowerCAmelCase_ : Optional[Any] = 50_277 lowerCAmelCase_ : Union[str, Any] = AutoTokenizer.from_pretrained('''EleutherAI/gpt-neox-20b''' ) else: lowerCAmelCase_ : Union[str, Any] = PreTrainedTokenizerFast(tokenizer_file=lowerCAmelCase_ ) lowerCAmelCase_ : Optional[Any] = len(lowerCAmelCase_ ) tokenizer.save_pretrained(lowerCAmelCase_ ) # 2. Build the config lowerCAmelCase_ : List[Any] = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: lowerCAmelCase_ : str = candidate break if size is None: raise ValueError('''Could not infer the size, please provide it with the `--size` argument.''' ) if size not in possible_sizes: raise ValueError(f"""`size` should be one of {possible_sizes}, got {size}.""" ) lowerCAmelCase_ : str = RwkvConfig( vocab_size=lowerCAmelCase_ , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(lowerCAmelCase_ ) # 3. Download model file then convert state_dict lowerCAmelCase_ : List[Any] = hf_hub_download(lowerCAmelCase_ , lowerCAmelCase_ ) lowerCAmelCase_ : int = torch.load(lowerCAmelCase_ , map_location='''cpu''' ) lowerCAmelCase_ : Optional[Any] = convert_state_dict(lowerCAmelCase_ ) # 4. Split in shards and save lowerCAmelCase_ : Dict = shard_checkpoint(lowerCAmelCase_ ) for shard_file, shard in shards.items(): torch.save(lowerCAmelCase_ , os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) ) if index is not None: lowerCAmelCase_ : Any = os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) # Save the index as well with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as f: lowerCAmelCase_ : int = json.dumps(lowerCAmelCase_ , indent=2 , sort_keys=lowerCAmelCase_ ) + '\n' f.write(lowerCAmelCase_ ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( '''Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model.''' ) lowerCAmelCase_ : List[Any] = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: lowerCAmelCase_ : List[str] = torch.load(os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError('''Please provide a `model_name` to push the model to the Hub.''' ) lowerCAmelCase_ : Union[str, Any] = AutoModelForCausalLM.from_pretrained(lowerCAmelCase_ ) model.push_to_hub(lowerCAmelCase_ , max_shard_size='''2GB''' ) tokenizer.push_to_hub(lowerCAmelCase_ ) if __name__ == "__main__": _UpperCAmelCase : Optional[int] =argparse.ArgumentParser() # Required parameters parser.add_argument( """--repo_id""", default=None, type=str, required=True, help="""Repo ID from which to pull the checkpoint.""" ) parser.add_argument( """--checkpoint_file""", default=None, type=str, required=True, help="""Name of the checkpoint file in the repo.""" ) parser.add_argument( """--output_dir""", default=None, type=str, required=True, help="""Where to save the converted model.""" ) parser.add_argument( """--tokenizer_file""", default=None, type=str, help="""Path to the tokenizer file to use (if not provided, only the model is converted).""", ) parser.add_argument( """--size""", default=None, type=str, help="""Size of the model. Will be inferred from the `checkpoint_file` if not passed.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Push to the Hub the converted model.""", ) parser.add_argument( """--model_name""", default=None, type=str, help="""Name of the pushed model on the Hub, including the username / organization.""", ) _UpperCAmelCase : Optional[int] =parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
262
from jiwer import compute_measures import datasets lowerCAmelCase : Tuple = '\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n' lowerCAmelCase : List[Any] = '\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n' lowerCAmelCase : Dict = '\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = ["this is the prediction", "there is an other sample"]\n >>> references = ["this is the reference", "there is another one"]\n >>> wer = datasets.load_metric("wer")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class _A ( datasets.Metric): def UpperCAmelCase ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/jitsi/jiwer/'] , reference_urls=[ 'https://en.wikipedia.org/wiki/Word_error_rate', ] , ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=False ): """simple docstring""" if concatenate_texts: return compute_measures(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )["wer"] else: SCREAMING_SNAKE_CASE_ : str = 0 SCREAMING_SNAKE_CASE_ : Union[str, Any] = 0 for prediction, reference in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : str = compute_measures(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
253
0
"""simple docstring""" from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract UpperCAmelCase = logging.get_logger(__name__) def lowercase ( a__ : int , a__ : int , a__ : Optional[Any] ) -> List[Any]: return [ int(1000 * (box[0] / width) ), int(1000 * (box[1] / height) ), int(1000 * (box[2] / width) ), int(1000 * (box[3] / height) ), ] def lowercase ( a__ : str , a__ : Union[str, Any] , a__ : str ) -> Tuple: _UpperCamelCase = to_pil_image(a__ ) _UpperCamelCase , _UpperCamelCase = pil_image.size _UpperCamelCase = pytesseract.image_to_data(a__ , lang=a__ , output_type='''dict''' , config=a__ ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates _UpperCamelCase = [idx for idx, word in enumerate(a__ ) if not word.strip()] _UpperCamelCase = [word for idx, word in enumerate(a__ ) if idx not in irrelevant_indices] _UpperCamelCase = [coord for idx, coord in enumerate(a__ ) if idx not in irrelevant_indices] _UpperCamelCase = [coord for idx, coord in enumerate(a__ ) if idx not in irrelevant_indices] _UpperCamelCase = [coord for idx, coord in enumerate(a__ ) if idx not in irrelevant_indices] _UpperCamelCase = [coord for idx, coord in enumerate(a__ ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format _UpperCamelCase = [] for x, y, w, h in zip(a__ , a__ , a__ , a__ ): _UpperCamelCase = [x, y, x + w, y + h] actual_boxes.append(a__ ) # finally, normalize the bounding boxes _UpperCamelCase = [] for box in actual_boxes: normalized_boxes.append(normalize_box(a__ , a__ , a__ ) ) assert len(a__ ) == len(a__ ), "Not as many words as there are bounding boxes" return words, normalized_boxes class UpperCAmelCase_ ( __a): snake_case__ = ["""pixel_values"""] def __init__( self : Optional[Any] , __UpperCamelCase : bool = True , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : PILImageResampling = PILImageResampling.BILINEAR , __UpperCamelCase : bool = True , __UpperCamelCase : float = 1 / 255 , __UpperCamelCase : bool = True , __UpperCamelCase : Union[float, Iterable[float]] = None , __UpperCamelCase : Union[float, Iterable[float]] = None , __UpperCamelCase : bool = True , __UpperCamelCase : Optional[str] = None , __UpperCamelCase : Optional[str] = "" , **__UpperCamelCase : str , ) -> Dict: super().__init__(**a__ ) _UpperCamelCase = size if size is not None else {'''height''': 224, '''width''': 224} _UpperCamelCase = get_size_dict(a__ ) _UpperCamelCase = do_resize _UpperCamelCase = size _UpperCamelCase = resample _UpperCamelCase = do_rescale _UpperCamelCase = rescale_value _UpperCamelCase = do_normalize _UpperCamelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCamelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD _UpperCamelCase = apply_ocr _UpperCamelCase = ocr_lang _UpperCamelCase = tesseract_config def _UpperCamelCase ( self : Union[str, Any] , __UpperCamelCase : np.ndarray , __UpperCamelCase : Dict[str, int] , __UpperCamelCase : PILImageResampling = PILImageResampling.BILINEAR , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : List[str] , ) -> int: _UpperCamelCase = get_size_dict(a__ ) if "height" not in size or "width" not in size: raise ValueError(F'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' ) _UpperCamelCase = (size['''height'''], size['''width''']) return resize(a__ , size=a__ , resample=a__ , data_format=a__ , **a__ ) def _UpperCamelCase ( self : Dict , __UpperCamelCase : np.ndarray , __UpperCamelCase : Union[int, float] , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : int , ) -> Any: return rescale(a__ , scale=a__ , data_format=a__ , **a__ ) def _UpperCamelCase ( self : Optional[int] , __UpperCamelCase : np.ndarray , __UpperCamelCase : Union[float, Iterable[float]] , __UpperCamelCase : Union[float, Iterable[float]] , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : List[str] , ) -> str: return normalize(a__ , mean=a__ , std=a__ , data_format=a__ , **a__ ) def _UpperCamelCase ( self : List[Any] , __UpperCamelCase : ImageInput , __UpperCamelCase : bool = None , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : str=None , __UpperCamelCase : bool = None , __UpperCamelCase : float = None , __UpperCamelCase : bool = None , __UpperCamelCase : Union[float, Iterable[float]] = None , __UpperCamelCase : Union[float, Iterable[float]] = None , __UpperCamelCase : bool = None , __UpperCamelCase : Optional[str] = None , __UpperCamelCase : Optional[str] = None , __UpperCamelCase : Optional[Union[str, TensorType]] = None , __UpperCamelCase : ChannelDimension = ChannelDimension.FIRST , **__UpperCamelCase : Dict , ) -> List[Any]: _UpperCamelCase = do_resize if do_resize is not None else self.do_resize _UpperCamelCase = size if size is not None else self.size _UpperCamelCase = get_size_dict(a__ ) _UpperCamelCase = resample if resample is not None else self.resample _UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCamelCase = image_mean if image_mean is not None else self.image_mean _UpperCamelCase = image_std if image_std is not None else self.image_std _UpperCamelCase = apply_ocr if apply_ocr is not None else self.apply_ocr _UpperCamelCase = ocr_lang if ocr_lang is not None else self.ocr_lang _UpperCamelCase = tesseract_config if tesseract_config is not None else self.tesseract_config _UpperCamelCase = make_list_of_images(a__ ) if not valid_images(a__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''If do_normalize is True, image_mean and image_std must be specified.''' ) # All transformations expect numpy arrays. _UpperCamelCase = [to_numpy_array(a__ ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , '''pytesseract''' ) _UpperCamelCase = [] _UpperCamelCase = [] for image in images: _UpperCamelCase , _UpperCamelCase = apply_tesseract(a__ , a__ , a__ ) words_batch.append(a__ ) boxes_batch.append(a__ ) if do_resize: _UpperCamelCase = [self.resize(image=a__ , size=a__ , resample=a__ ) for image in images] if do_rescale: _UpperCamelCase = [self.rescale(image=a__ , scale=a__ ) for image in images] if do_normalize: _UpperCamelCase = [self.normalize(image=a__ , mean=a__ , std=a__ ) for image in images] _UpperCamelCase = [to_channel_dimension_format(a__ , a__ ) for image in images] _UpperCamelCase = BatchFeature(data={'''pixel_values''': images} , tensor_type=a__ ) if apply_ocr: _UpperCamelCase = words_batch _UpperCamelCase = boxes_batch return data
359
"""simple docstring""" def lowercase ( a__ : Tuple , a__ : str ) -> Tuple: return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def lowercase ( a__ : Optional[int] , a__ : List[str]=0 ) -> Optional[Any]: return sorted(a__ , key=lambda a__ : x[column] ) def lowercase ( a__ : Optional[int] , a__ : Optional[int] , a__ : Tuple=float('''inf''' ) ) -> int: for i in range(points_counts - 1 ): for j in range(i + 1 , a__ ): _UpperCamelCase = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: _UpperCamelCase = current_dis return min_dis def lowercase ( a__ : Union[str, Any] , a__ : Optional[Any] , a__ : Optional[Any]=float('''inf''' ) ) -> str: for i in range(min(6 , points_counts - 1 ) , a__ ): for j in range(max(0 , i - 6 ) , a__ ): _UpperCamelCase = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: _UpperCamelCase = current_dis return min_dis def lowercase ( a__ : int , a__ : str , a__ : Any ) -> str: # base case if points_counts <= 3: return dis_between_closest_pair(a__ , a__ ) # recursion _UpperCamelCase = points_counts // 2 _UpperCamelCase = closest_pair_of_points_sqr( a__ , points_sorted_on_y[:mid] , a__ ) _UpperCamelCase = closest_pair_of_points_sqr( a__ , points_sorted_on_y[mid:] , points_counts - mid ) _UpperCamelCase = min(a__ , a__ ) _UpperCamelCase = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(a__ ) _UpperCamelCase = dis_between_closest_in_strip( a__ , len(a__ ) , a__ ) return min(a__ , a__ ) def lowercase ( a__ : Dict , a__ : List[Any] ) -> Optional[Any]: _UpperCamelCase = column_based_sort(a__ , column=0 ) _UpperCamelCase = column_based_sort(a__ , column=1 ) return ( closest_pair_of_points_sqr( a__ , a__ , a__ ) ) ** 0.5 if __name__ == "__main__": UpperCAmelCase = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)] print("""Distance:""", closest_pair_of_points(points, len(points)))
54
0
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class __A ( unittest.TestCase ): '''simple docstring''' def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCamelCase__ = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__lowerCAmelCase ) lowerCamelCase__ = -1 lowerCamelCase__ = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCAmelCase ) lowerCamelCase__ = model.generate(__lowerCAmelCase , max_new_tokens=1_0 , do_sample=__lowerCAmelCase ) lowerCamelCase__ = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: lowerCamelCase__ = TextStreamer(__lowerCAmelCase ) model.generate(__lowerCAmelCase , max_new_tokens=1_0 , do_sample=__lowerCAmelCase , streamer=__lowerCAmelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowerCamelCase__ = cs.out[:-1] self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCamelCase__ = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__lowerCAmelCase ) lowerCamelCase__ = -1 lowerCamelCase__ = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCAmelCase ) lowerCamelCase__ = model.generate(__lowerCAmelCase , max_new_tokens=1_0 , do_sample=__lowerCAmelCase ) lowerCamelCase__ = tokenizer.decode(greedy_ids[0] ) lowerCamelCase__ = TextIteratorStreamer(__lowerCAmelCase ) lowerCamelCase__ = {'''input_ids''': input_ids, '''max_new_tokens''': 1_0, '''do_sample''': False, '''streamer''': streamer} lowerCamelCase__ = Thread(target=model.generate , kwargs=__lowerCAmelCase ) thread.start() lowerCamelCase__ = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCamelCase__ = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__lowerCAmelCase ) lowerCamelCase__ = -1 lowerCamelCase__ = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCAmelCase ) lowerCamelCase__ = model.generate(__lowerCAmelCase , max_new_tokens=1_0 , do_sample=__lowerCAmelCase ) lowerCamelCase__ = greedy_ids[:, input_ids.shape[1] :] lowerCamelCase__ = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: lowerCamelCase__ = TextStreamer(__lowerCAmelCase , skip_prompt=__lowerCAmelCase ) model.generate(__lowerCAmelCase , max_new_tokens=1_0 , do_sample=__lowerCAmelCase , streamer=__lowerCAmelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowerCamelCase__ = cs.out[:-1] self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = AutoTokenizer.from_pretrained('''distilgpt2''' ) lowerCamelCase__ = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(__lowerCAmelCase ) lowerCamelCase__ = -1 lowerCamelCase__ = torch.ones((1, 5) , device=__lowerCAmelCase ).long() * model.config.bos_token_id with CaptureStdout() as cs: lowerCamelCase__ = TextStreamer(__lowerCAmelCase , skip_special_tokens=__lowerCAmelCase ) model.generate(__lowerCAmelCase , max_new_tokens=1 , do_sample=__lowerCAmelCase , streamer=__lowerCAmelCase ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token lowerCamelCase__ = cs.out[:-1] # Remove the final "\n" lowerCamelCase__ = tokenizer(__lowerCAmelCase , return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCamelCase__ = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__lowerCAmelCase ) lowerCamelCase__ = -1 lowerCamelCase__ = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCAmelCase ) lowerCamelCase__ = TextIteratorStreamer(__lowerCAmelCase , timeout=0.001 ) lowerCamelCase__ = {'''input_ids''': input_ids, '''max_new_tokens''': 1_0, '''do_sample''': False, '''streamer''': streamer} lowerCamelCase__ = Thread(target=model.generate , kwargs=__lowerCAmelCase ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(__lowerCAmelCase ): lowerCamelCase__ = '''''' for new_text in streamer: streamer_text += new_text
209
def lowerCAmelCase__(__snake_case ) -> str: '''simple docstring''' return "".join(chr(ord(__snake_case ) - 32 ) if '''a''' <= char <= '''z''' else char for char in word ) if __name__ == "__main__": from doctest import testmod testmod()
209
1
"""simple docstring""" from pathlib import Path import fire def lowercase_ ( _lowerCamelCase: str , _lowerCamelCase: str , _lowerCamelCase: int ) -> str: '''simple docstring''' __lowerCamelCase : List[Any] = Path(_lowerCamelCase ) __lowerCamelCase : Union[str, Any] = Path(_lowerCamelCase ) dest_dir.mkdir(exist_ok=_lowerCamelCase ) for path in src_dir.iterdir(): __lowerCamelCase : Optional[Any] = [x.rstrip() for x in list(path.open().readlines() )][:n] __lowerCamelCase : Union[str, Any] = dest_dir.joinpath(path.name ) print(_lowerCamelCase ) dest_path.open("w" ).write("\n".join(_lowerCamelCase ) ) if __name__ == "__main__": fire.Fire(minify)
64
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _snake_case ( a__ , unittest.TestCase ): snake_case__ = DiTPipeline snake_case__ = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS snake_case__ = PipelineTesterMixin.required_optional_params - { "latents", "num_images_per_prompt", "callback", "callback_steps", } snake_case__ = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS snake_case__ = False def lowerCamelCase__ ( self : Tuple ): torch.manual_seed(0 ) __lowerCamelCase : Optional[Any] = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=UpperCAmelCase , activation_fn="gelu-approximate" , num_embeds_ada_norm=1000 , norm_type="ada_norm_zero" , norm_elementwise_affine=UpperCAmelCase , ) __lowerCamelCase : List[str] = AutoencoderKL() __lowerCamelCase : List[Any] = DDIMScheduler() __lowerCamelCase : Optional[Any] = {"transformer": transformer.eval(), "vae": vae.eval(), "scheduler": scheduler} return components def lowerCamelCase__ ( self : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Union[str, Any]=0 ): if str(UpperCAmelCase ).startswith("mps" ): __lowerCamelCase : List[str] = torch.manual_seed(UpperCAmelCase ) else: __lowerCamelCase : List[str] = torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase ) __lowerCamelCase : str = { "class_labels": [1], "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def lowerCamelCase__ ( self : Optional[Any] ): __lowerCamelCase : Dict = "cpu" __lowerCamelCase : int = self.get_dummy_components() __lowerCamelCase : Optional[Any] = self.pipeline_class(**UpperCAmelCase ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) __lowerCamelCase : Optional[int] = self.get_dummy_inputs(UpperCAmelCase ) __lowerCamelCase : List[Any] = pipe(**UpperCAmelCase ).images __lowerCamelCase : Optional[int] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) __lowerCamelCase : Optional[int] = np.array([0.2_9_4_6, 0.6_6_0_1, 0.4_3_2_9, 0.3_2_9_6, 0.4_1_4_4, 0.5_3_1_9, 0.7_2_7_3, 0.5_0_1_3, 0.4_4_5_7] ) __lowerCamelCase : Optional[int] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCAmelCase , 1E-3 ) def lowerCamelCase__ ( self : Any ): self._test_inference_batch_single_identical(relax_max_difference=UpperCAmelCase , expected_max_diff=1E-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def lowerCamelCase__ ( self : List[str] ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @require_torch_gpu @slow class _snake_case ( unittest.TestCase ): def lowerCamelCase__ ( self : Any ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ ( self : List[str] ): __lowerCamelCase : Optional[int] = torch.manual_seed(0 ) __lowerCamelCase : str = DiTPipeline.from_pretrained("facebook/DiT-XL-2-256" ) pipe.to("cuda" ) __lowerCamelCase : Tuple = ["vase", "umbrella", "white shark", "white wolf"] __lowerCamelCase : Optional[int] = pipe.get_label_ids(UpperCAmelCase ) __lowerCamelCase : Optional[Any] = pipe(UpperCAmelCase , generator=UpperCAmelCase , num_inference_steps=40 , output_type="np" ).images for word, image in zip(UpperCAmelCase , UpperCAmelCase ): __lowerCamelCase : Dict = load_numpy( F"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy""" ) assert np.abs((expected_image - image).max() ) < 1E-2 def lowerCamelCase__ ( self : str ): __lowerCamelCase : Tuple = DiTPipeline.from_pretrained("facebook/DiT-XL-2-512" ) __lowerCamelCase : Any = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("cuda" ) __lowerCamelCase : Union[str, Any] = ["vase", "umbrella"] __lowerCamelCase : int = pipe.get_label_ids(UpperCAmelCase ) __lowerCamelCase : Dict = torch.manual_seed(0 ) __lowerCamelCase : Dict = pipe(UpperCAmelCase , generator=UpperCAmelCase , num_inference_steps=25 , output_type="np" ).images for word, image in zip(UpperCAmelCase , UpperCAmelCase ): __lowerCamelCase : Union[str, Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" F"""/dit/{word}_512.npy""" ) assert np.abs((expected_image - image).max() ) < 1E-1
64
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available _lowerCamelCase ={"tokenization_herbert": ["HerbertTokenizer"]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase =["HerbertTokenizerFast"] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys _lowerCamelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
334
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase =logging.get_logger() @dataclass class a_ : """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) def _lowerCAmelCase ( self : Any ,snake_case : Any ,snake_case : Tensor ,snake_case : Tensor ): SCREAMING_SNAKE_CASE =len(list(m.modules() ) ) == 1 or isinstance(snake_case ,nn.Convad ) or isinstance(snake_case ,nn.BatchNormad ) if has_not_submodules: self.traced.append(snake_case ) def __call__( self : int ,snake_case : Tensor ): for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(snake_case ) [x.remove() for x in self.handles] return self @property def _lowerCAmelCase ( self : Tuple ): # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda snake_case : len(list(x.state_dict().keys() ) ) > 0 ,self.traced ) ) @dataclass class a_ : """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = 42 __UpperCAmelCase = 0 __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) def __call__( self : int ,snake_case : Tensor ): SCREAMING_SNAKE_CASE =Tracker(self.dest )(snake_case ).parametrized SCREAMING_SNAKE_CASE =Tracker(self.src )(snake_case ).parametrized SCREAMING_SNAKE_CASE =list(filter(lambda snake_case : type(snake_case ) not in self.src_skip ,snake_case ) ) SCREAMING_SNAKE_CASE =list(filter(lambda snake_case : type(snake_case ) not in self.dest_skip ,snake_case ) ) if len(snake_case ) != len(snake_case ): raise Exception( f'Numbers of operations are different. Source module has {len(snake_case )} operations while' f' destination module has {len(snake_case )}.' ) for dest_m, src_m in zip(snake_case ,snake_case ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f'Transfered from={src_m} to={dest_m}' ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ = True ): """simple docstring""" print(F'Converting {name}...' ) with torch.no_grad(): SCREAMING_SNAKE_CASE =timm.create_model(lowerCAmelCase_, pretrained=lowerCAmelCase_ ).eval() SCREAMING_SNAKE_CASE =ResNetForImageClassification(lowerCAmelCase_ ).eval() SCREAMING_SNAKE_CASE =ModuleTransfer(src=lowerCAmelCase_, dest=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =torch.randn((1, 3, 224, 224) ) module_transfer(lowerCAmelCase_ ) assert torch.allclose(from_model(lowerCAmelCase_ ), our_model(lowerCAmelCase_ ).logits ), "The model logits don't match the original one." SCREAMING_SNAKE_CASE =F'resnet{"-".join(name.split("resnet" ) )}' print(lowerCAmelCase_ ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name, commit_message='Add model', use_temp_dir=lowerCAmelCase_, ) # we can use the convnext one SCREAMING_SNAKE_CASE =AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name, commit_message='Add image processor', use_temp_dir=lowerCAmelCase_, ) print(F'Pushed {checkpoint_name}' ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ = None, lowerCAmelCase_ = True ): """simple docstring""" SCREAMING_SNAKE_CASE ='imagenet-1k-id2label.json' SCREAMING_SNAKE_CASE =1000 SCREAMING_SNAKE_CASE =(1, num_labels) SCREAMING_SNAKE_CASE ='huggingface/label-files' SCREAMING_SNAKE_CASE =num_labels SCREAMING_SNAKE_CASE =json.load(open(hf_hub_download(lowerCAmelCase_, lowerCAmelCase_, repo_type='dataset' ), 'r' ) ) SCREAMING_SNAKE_CASE ={int(lowerCAmelCase_ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE =idalabel SCREAMING_SNAKE_CASE ={v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE =partial(lowerCAmelCase_, num_labels=lowerCAmelCase_, idalabel=lowerCAmelCase_, labelaid=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE ={ 'resnet18': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2], hidden_sizes=[64, 128, 256, 512], layer_type='basic' ), 'resnet26': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2], hidden_sizes=[256, 512, 1024, 2048], layer_type='bottleneck' ), 'resnet34': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3], hidden_sizes=[64, 128, 256, 512], layer_type='basic' ), 'resnet50': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3], hidden_sizes=[256, 512, 1024, 2048], layer_type='bottleneck' ), 'resnet101': ImageNetPreTrainedConfig( depths=[3, 4, 23, 3], hidden_sizes=[256, 512, 1024, 2048], layer_type='bottleneck' ), 'resnet152': ImageNetPreTrainedConfig( depths=[3, 8, 36, 3], hidden_sizes=[256, 512, 1024, 2048], layer_type='bottleneck' ), } if model_name: convert_weight_and_push(lowerCAmelCase_, names_to_config[model_name], lowerCAmelCase_, lowerCAmelCase_ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) return config, expected_shape if __name__ == "__main__": _lowerCamelCase =argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default=None, type=str, help=( "The name of the model you wish to convert, it must be one of the supported resnet* architecture," " currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=Path, required=True, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=True, type=bool, required=False, help="If True, push model and image processor to the hub.", ) _lowerCamelCase =parser.parse_args() _lowerCamelCase =args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
334
1
"""simple docstring""" import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu _lowerCAmelCase :List[Any] = get_tests_dir() + '/test_data/fsmt/fsmt_val_data.json' with io.open(filename, 'r', encoding='utf-8') as f: _lowerCAmelCase :Dict = json.load(f) @require_torch class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self , A ) -> str: return FSMTTokenizer.from_pretrained(A ) def __lowerCAmelCase ( self , A ) -> Tuple: _UpperCAmelCase : Optional[Any] = FSMTForConditionalGeneration.from_pretrained(A ).to(A ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['''en-ru''', 26.0], ['''ru-en''', 22.0], ['''en-de''', 22.0], ['''de-en''', 29.0], ] ) @slow def __lowerCAmelCase ( self , A , A ) -> int: # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality _UpperCAmelCase : Optional[int] = f'facebook/wmt19-{pair}' _UpperCAmelCase : Union[str, Any] = self.get_tokenizer(A ) _UpperCAmelCase : List[Any] = self.get_model(A ) _UpperCAmelCase : Optional[Any] = bleu_data[pair]['''src'''] _UpperCAmelCase : List[str] = bleu_data[pair]['''tgt'''] _UpperCAmelCase : Union[str, Any] = tokenizer(A , return_tensors='''pt''' , truncation=A , padding='''longest''' ).to(A ) _UpperCAmelCase : Any = model.generate( input_ids=batch.input_ids , num_beams=8 , ) _UpperCAmelCase : Union[str, Any] = tokenizer.batch_decode( A , skip_special_tokens=A , clean_up_tokenization_spaces=A ) _UpperCAmelCase : List[Any] = calculate_bleu(A , A ) print(A ) self.assertGreaterEqual(scores['''bleu'''] , A )
68
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase :int = logging.get_logger(__name__) _lowerCAmelCase :Union[str, Any] = { 'xlm-mlm-en-2048': 'https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json', 'xlm-mlm-ende-1024': 'https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json', 'xlm-mlm-enfr-1024': 'https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json', 'xlm-mlm-enro-1024': 'https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json', 'xlm-mlm-tlm-xnli15-1024': 'https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json', 'xlm-mlm-xnli15-1024': 'https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json', 'xlm-clm-enfr-1024': 'https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json', 'xlm-clm-ende-1024': 'https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json', 'xlm-mlm-17-1280': 'https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json', 'xlm-mlm-100-1280': 'https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json', } class _UpperCAmelCase ( a ): '''simple docstring''' a__ ='''xlm''' a__ ={ '''hidden_size''': '''emb_dim''', '''num_attention_heads''': '''n_heads''', '''num_hidden_layers''': '''n_layers''', '''n_words''': '''vocab_size''', # For backward compatibility } def __init__( self , A=3_0_1_4_5 , A=2_0_4_8 , A=1_2 , A=1_6 , A=0.1 , A=0.1 , A=True , A=False , A=False , A=False , A=1 , A=True , A=5_1_2 , A=2_0_4_8**-0.5 , A=1E-12 , A=0.02 , A=0 , A=1 , A=2 , A=3 , A=5 , A=True , A="first" , A=True , A=None , A=True , A=0.1 , A=5 , A=5 , A=0 , A=0 , A=2 , A=0 , **A , ) -> Tuple: _UpperCAmelCase : Dict = vocab_size _UpperCAmelCase : Tuple = emb_dim _UpperCAmelCase : Optional[Any] = n_layers _UpperCAmelCase : Optional[Any] = n_heads _UpperCAmelCase : Dict = dropout _UpperCAmelCase : int = attention_dropout _UpperCAmelCase : Optional[Any] = gelu_activation _UpperCAmelCase : str = sinusoidal_embeddings _UpperCAmelCase : Any = causal _UpperCAmelCase : Optional[int] = asm _UpperCAmelCase : List[str] = n_langs _UpperCAmelCase : int = use_lang_emb _UpperCAmelCase : Any = layer_norm_eps _UpperCAmelCase : Any = bos_index _UpperCAmelCase : Optional[Any] = eos_index _UpperCAmelCase : List[str] = pad_index _UpperCAmelCase : Optional[int] = unk_index _UpperCAmelCase : Dict = mask_index _UpperCAmelCase : Any = is_encoder _UpperCAmelCase : Optional[Any] = max_position_embeddings _UpperCAmelCase : List[Any] = embed_init_std _UpperCAmelCase : Union[str, Any] = init_std _UpperCAmelCase : List[str] = summary_type _UpperCAmelCase : Dict = summary_use_proj _UpperCAmelCase : str = summary_activation _UpperCAmelCase : Union[str, Any] = summary_proj_to_labels _UpperCAmelCase : Tuple = summary_first_dropout _UpperCAmelCase : List[str] = start_n_top _UpperCAmelCase : Tuple = end_n_top _UpperCAmelCase : List[str] = mask_token_id _UpperCAmelCase : Optional[int] = lang_id if "n_words" in kwargs: _UpperCAmelCase : Tuple = kwargs['''n_words'''] super().__init__(pad_token_id=A , bos_token_id=A , **A ) class _UpperCAmelCase ( a ): '''simple docstring''' @property def __lowerCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _UpperCAmelCase : Tuple = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: _UpperCAmelCase : Dict = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
68
1
def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=False ) -> Tuple: '''simple docstring''' if isinstance(lowercase__ , lowercase__ ) and isinstance(lowercase__ , lowercase__ ): UpperCamelCase = len(set_a.intersection(lowercase__ ) ) if alternative_union: UpperCamelCase = len(lowercase__ ) + len(lowercase__ ) else: UpperCamelCase = len(set_a.union(lowercase__ ) ) return intersection / union if isinstance(lowercase__ , (list, tuple) ) and isinstance(lowercase__ , (list, tuple) ): UpperCamelCase = [element for element in set_a if element in set_b] if alternative_union: UpperCamelCase = len(lowercase__ ) + len(lowercase__ ) return len(lowercase__ ) / union else: UpperCamelCase = set_a + [element for element in set_b if element not in set_a] return len(lowercase__ ) / len(lowercase__ ) return len(lowercase__ ) / len(lowercase__ ) return None if __name__ == "__main__": _SCREAMING_SNAKE_CASE = {"""a""", """b""", """c""", """d""", """e"""} _SCREAMING_SNAKE_CASE = {"""c""", """d""", """e""", """f""", """h""", """i"""} print(jaccard_similarity(set_a, set_b))
343
from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class __lowercase (_UpperCAmelCase ): _UpperCamelCase = 42 _UpperCamelCase = 42 _UpperCamelCase = None class __lowercase (_UpperCAmelCase , _UpperCAmelCase ): _UpperCamelCase = 2 @register_to_config def __init__( self , A_ = 0.02 , A_ = 100 , A_ = 1.007 , A_ = 80 , A_ = 0.05 , A_ = 50 , ) ->int: '''simple docstring''' __lowerCAmelCase : Optional[int] = sigma_max # setable values __lowerCAmelCase : int = None __lowerCAmelCase : np.IntTensor = None __lowerCAmelCase : torch.FloatTensor = None # sigma(t_i) def UpperCamelCase__ ( self , A_ , A_ = None ) ->torch.FloatTensor: '''simple docstring''' return sample def UpperCamelCase__ ( self , A_ , A_ = None ) ->List[str]: '''simple docstring''' __lowerCAmelCase : str = num_inference_steps __lowerCAmelCase : Dict = np.arange(0 , self.num_inference_steps )[::-1].copy() __lowerCAmelCase : Optional[Any] = torch.from_numpy(A_ ).to(A_ ) __lowerCAmelCase : Tuple = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] __lowerCAmelCase : Optional[int] = torch.tensor(A_ , dtype=torch.floataa , device=A_ ) def UpperCamelCase__ ( self , A_ , A_ , A_ = None ) ->Tuple[torch.FloatTensor, float]: '''simple docstring''' if self.config.s_min <= sigma <= self.config.s_max: __lowerCAmelCase : List[str] = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 ) else: __lowerCAmelCase : List[str] = 0 # sample eps ~ N(0, S_noise^2 * I) __lowerCAmelCase : int = self.config.s_noise * randn_tensor(sample.shape , generator=A_ ).to(sample.device ) __lowerCAmelCase : str = sigma + gamma * sigma __lowerCAmelCase : Any = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def UpperCamelCase__ ( self , A_ , A_ , A_ , A_ , A_ = True , ) ->Union[KarrasVeOutput, Tuple]: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = sample_hat + sigma_hat * model_output __lowerCAmelCase : int = (sample_hat - pred_original_sample) / sigma_hat __lowerCAmelCase : Tuple = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=A_ , derivative=A_ , pred_original_sample=A_ ) def UpperCamelCase__ ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ = True , ) ->Union[KarrasVeOutput, Tuple]: '''simple docstring''' __lowerCAmelCase : str = sample_prev + sigma_prev * model_output __lowerCAmelCase : List[Any] = (sample_prev - pred_original_sample) / sigma_prev __lowerCAmelCase : Any = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=A_ , derivative=A_ , pred_original_sample=A_ ) def UpperCamelCase__ ( self , A_ , A_ , A_ ) ->Any: '''simple docstring''' raise NotImplementedError()
275
0
"""simple docstring""" import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE_ : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece_bpe.model') class a ( _lowerCamelCase, unittest.TestCase ): """simple docstring""" UpperCAmelCase = BartphoTokenizer UpperCAmelCase = False UpperCAmelCase = True def UpperCamelCase ( self: Optional[Any] ): """simple docstring""" super().setUp() A__ = ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] A__ = dict(zip(UpperCamelCase , range(len(UpperCamelCase ) ) ) ) A__ = {"""unk_token""": """<unk>"""} A__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""monolingual_vocab_file"""] ) with open(self.monolingual_vocab_file , """w""" , encoding="""utf-8""" ) as fp: for token in vocab_tokens: fp.write(f"""{token} {vocab_tokens[token]}\n""" ) A__ = BartphoTokenizer(UpperCamelCase , self.monolingual_vocab_file , **self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase ( self: Dict , **UpperCamelCase: Tuple ): """simple docstring""" kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase ) def UpperCamelCase ( self: Union[str, Any] , UpperCamelCase: Tuple ): """simple docstring""" A__ = """This is a là test""" A__ = """This is a<unk><unk> test""" return input_text, output_text def UpperCamelCase ( self: Union[str, Any] ): """simple docstring""" A__ = BartphoTokenizer(UpperCamelCase , self.monolingual_vocab_file , **self.special_tokens_map ) A__ = """This is a là test""" A__ = """▁This ▁is ▁a ▁l à ▁t est""".split() A__ = tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) A__ = tokens + [tokenizer.unk_token] A__ = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase ) , UpperCamelCase )
69
"""simple docstring""" from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline SCREAMING_SNAKE_CASE_ : Tuple = logging.get_logger(__name__) @add_end_docstrings(_lowerCamelCase ) class a ( _lowerCamelCase ): """simple docstring""" def __init__( self: Any , **UpperCamelCase: int ): """simple docstring""" super().__init__(**UpperCamelCase ) if self.framework != "pt": raise ValueError(f"""The {self.__class__} is only available in PyTorch.""" ) # No specific FOR_XXX available yet def __call__( self: Tuple , UpperCamelCase: Union[np.ndarray, bytes, str] , **UpperCamelCase: Tuple ): """simple docstring""" return super().__call__(UpperCamelCase , **UpperCamelCase ) def UpperCamelCase ( self: Tuple , **UpperCamelCase: Union[str, Any] ): """simple docstring""" A__ = {} if "candidate_labels" in kwargs: A__ = kwargs["""candidate_labels"""] if "hypothesis_template" in kwargs: A__ = kwargs["""hypothesis_template"""] return preprocess_params, {}, {} def UpperCamelCase ( self: Optional[int] , UpperCamelCase: Tuple , UpperCamelCase: Tuple=None , UpperCamelCase: Optional[Any]="This is a sound of {}." ): """simple docstring""" if isinstance(UpperCamelCase , UpperCamelCase ): if audio.startswith("""http://""" ) or audio.startswith("""https://""" ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png A__ = requests.get(UpperCamelCase ).content else: with open(UpperCamelCase , """rb""" ) as f: A__ = f.read() if isinstance(UpperCamelCase , UpperCamelCase ): A__ = ffmpeg_read(UpperCamelCase , self.feature_extractor.sampling_rate ) if not isinstance(UpperCamelCase , np.ndarray ): raise ValueError("""We expect a numpy ndarray as input""" ) if len(audio.shape ) != 1: raise ValueError("""We expect a single channel audio input for ZeroShotAudioClassificationPipeline""" ) A__ = self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors="""pt""" ) A__ = candidate_labels A__ = [hypothesis_template.format(UpperCamelCase ) for x in candidate_labels] A__ = self.tokenizer(UpperCamelCase , return_tensors=self.framework , padding=UpperCamelCase ) A__ = [text_inputs] return inputs def UpperCamelCase ( self: Any , UpperCamelCase: Union[str, Any] ): """simple docstring""" A__ = model_inputs.pop("""candidate_labels""" ) A__ = model_inputs.pop("""text_inputs""" ) if isinstance(text_inputs[0] , UpperCamelCase ): A__ = text_inputs[0] else: # Batching case. A__ = text_inputs[0][0] A__ = self.model(**UpperCamelCase , **UpperCamelCase ) A__ = { """candidate_labels""": candidate_labels, """logits""": outputs.logits_per_audio, } return model_outputs def UpperCamelCase ( self: Any , UpperCamelCase: Optional[int] ): """simple docstring""" A__ = model_outputs.pop("""candidate_labels""" ) A__ = model_outputs["""logits"""][0] if self.framework == "pt": A__ = logits.softmax(dim=0 ) A__ = probs.tolist() else: raise ValueError("""`tf` framework not supported.""" ) A__ = [ {"""score""": score, """label""": candidate_label} for score, candidate_label in sorted(zip(UpperCamelCase , UpperCamelCase ) , key=lambda UpperCamelCase : -x[0] ) ] return result
69
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer lowercase_ = logging.get_logger(__name__) lowercase_ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} lowercase_ = { "vocab_file": { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/vocab.json", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/vocab.json", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/vocab.json", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json", "roberta-large-openai-detector": ( "https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json" ), }, "merges_file": { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/merges.txt", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/merges.txt", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/merges.txt", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt", "roberta-large-openai-detector": ( "https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt" ), }, "tokenizer_file": { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/tokenizer.json", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/tokenizer.json", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json", "roberta-base-openai-detector": ( "https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json" ), "roberta-large-openai-detector": ( "https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json" ), }, } lowercase_ = { "roberta-base": 512, "roberta-large": 512, "roberta-large-mnli": 512, "distilroberta-base": 512, "roberta-base-openai-detector": 512, "roberta-large-openai-detector": 512, } class __A ( A ): '''simple docstring''' __lowerCamelCase : List[Any] = VOCAB_FILES_NAMES __lowerCamelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : str = ['input_ids', 'attention_mask'] __lowerCamelCase : Union[str, Any] = RobertaTokenizer def __init__(self , A=None , A=None , A=None , A="replace" , A="<s>" , A="</s>" , A="</s>" , A="<s>" , A="<unk>" , A="<pad>" , A="<mask>" , A=False , A=True , **A , ) -> List[str]: """simple docstring""" super().__init__( A , A , tokenizer_file=A , errors=A , bos_token=A , eos_token=A , sep_token=A , cls_token=A , unk_token=A , pad_token=A , mask_token=A , add_prefix_space=A , trim_offsets=A , **A , ) _a = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , A ) != add_prefix_space: _a = getattr(A , pre_tok_state.pop('''type''' ) ) _a = add_prefix_space _a = pre_tok_class(**A ) _a = add_prefix_space _a = '''post_processor''' _a = getattr(self.backend_tokenizer , A , A ) if tokenizer_component_instance: _a = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _a = tuple(state['''sep'''] ) if "cls" in state: _a = tuple(state['''cls'''] ) _a = False if state.get('''add_prefix_space''' , A ) != add_prefix_space: _a = add_prefix_space _a = True if state.get('''trim_offsets''' , A ) != trim_offsets: _a = trim_offsets _a = True if changes_to_apply: _a = getattr(A , state.pop('''type''' ) ) _a = component_class(**A ) setattr(self.backend_tokenizer , A , A ) @property def a__ (self ) -> str: """simple docstring""" if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def a__ (self , A ) -> Optional[Any]: """simple docstring""" _a = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else value _a = value def a__ (self , *A , **A ) -> BatchEncoding: """simple docstring""" _a = kwargs.get('''is_split_into_words''' , A ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*A , **A ) def a__ (self , *A , **A ) -> BatchEncoding: """simple docstring""" _a = kwargs.get('''is_split_into_words''' , A ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*A , **A ) def a__ (self , A , A = None ) -> Tuple[str]: """simple docstring""" _a = self._tokenizer.model.save(A , name=A ) return tuple(A ) def a__ (self , A , A=None ) -> List[str]: """simple docstring""" _a = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def a__ (self , A , A = None ) -> List[int]: """simple docstring""" _a = [self.sep_token_id] _a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
211
'''simple docstring''' # DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class __A : '''simple docstring''' __lowerCamelCase : CommonSchedulerState # setable values __lowerCamelCase : jnp.ndarray __lowerCamelCase : jnp.ndarray __lowerCamelCase : Optional[int] = None @classmethod def a__ (cls , A , A , A ) -> str: """simple docstring""" return cls(common=A , init_noise_sigma=A , timesteps=A ) @dataclass class __A ( A ): '''simple docstring''' __lowerCamelCase : DDPMSchedulerState class __A ( A , A ): '''simple docstring''' __lowerCamelCase : Dict = [e.name for e in FlaxKarrasDiffusionSchedulers] __lowerCamelCase : jnp.dtype @property def a__ (self ) -> List[str]: """simple docstring""" return True @register_to_config def __init__(self , A = 1_000 , A = 0.0001 , A = 0.02 , A = "linear" , A = None , A = "fixed_small" , A = True , A = "epsilon" , A = jnp.floataa , ) -> Union[str, Any]: """simple docstring""" _a = dtype def a__ (self , A = None ) -> DDPMSchedulerState: """simple docstring""" if common is None: _a = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution _a = jnp.array(1.0 , dtype=self.dtype ) _a = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=A , init_noise_sigma=A , timesteps=A , ) def a__ (self , A , A , A = None ) -> jnp.ndarray: """simple docstring""" return sample def a__ (self , A , A , A = () ) -> DDPMSchedulerState: """simple docstring""" _a = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 _a = (jnp.arange(0 , A ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=A , timesteps=A , ) def a__ (self , A , A , A=None , A=None ) -> int: """simple docstring""" _a = state.common.alphas_cumprod[t] _a = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample _a = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: _a = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": _a = jnp.clip(A , a_min=1E-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": _a = jnp.log(jnp.clip(A , a_min=1E-20 ) ) elif variance_type == "fixed_large": _a = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log _a = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": _a = variance _a = state.common.betas[t] _a = (predicted_variance + 1) / 2 _a = frac * max_log + (1 - frac) * min_log return variance def a__ (self , A , A , A , A , A = None , A = True , ) -> Union[FlaxDDPMSchedulerOutput, Tuple]: """simple docstring""" _a = timestep if key is None: _a = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: _a , _a = jnp.split(A , sample.shape[1] , axis=1 ) else: _a = None # 1. compute alphas, betas _a = state.common.alphas_cumprod[t] _a = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) _a = 1 - alpha_prod_t _a = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": _a = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": _a = model_output elif self.config.prediction_type == "v_prediction": _a = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` ''' ''' for the FlaxDDPMScheduler.''' ) # 3. Clip "predicted x_0" if self.config.clip_sample: _a = jnp.clip(A , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _a = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t _a = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _a = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): _a = jax.random.split(A , num=1 ) _a = jax.random.normal(A , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(A , A , predicted_variance=A ) ** 0.5) * noise _a = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) _a = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=A , state=A ) def a__ (self , A , A , A , A , ) -> jnp.ndarray: """simple docstring""" return add_noise_common(state.common , A , A , A ) def a__ (self , A , A , A , A , ) -> jnp.ndarray: """simple docstring""" return get_velocity_common(state.common , A , A , A ) def __len__(self ) -> Tuple: """simple docstring""" return self.config.num_train_timesteps
211
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowercase__ = { 'configuration_convnext': ['CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvNextConfig', 'ConvNextOnnxConfig'] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = ['ConvNextFeatureExtractor'] lowercase__ = ['ConvNextImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ 'CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvNextForImageClassification', 'ConvNextModel', 'ConvNextPreTrainedModel', 'ConvNextBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ 'TFConvNextForImageClassification', 'TFConvNextModel', 'TFConvNextPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
362
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """philschmid/bart-large-cnn-samsum""" lowerCamelCase__ = ( """This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, """ """and returns a summary of the text.""" ) lowerCamelCase__ = """summarizer""" lowerCamelCase__ = AutoTokenizer lowerCamelCase__ = AutoModelForSeqaSeqLM lowerCamelCase__ = ["""text"""] lowerCamelCase__ = ["""text"""] def A_ ( self , lowercase ): return self.pre_processor(lowercase , return_tensors='pt' , truncation=lowercase ) def A_ ( self , lowercase ): return self.model.generate(**lowercase )[0] def A_ ( self , lowercase ): return self.pre_processor.decode(lowercase , skip_special_tokens=lowercase , clean_up_tokenization_spaces=lowercase )
12
0
'''simple docstring''' import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def _SCREAMING_SNAKE_CASE () -> Union[str, Any]: """simple docstring""" lowercase__ = '''https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png''' lowercase__ = Image.open(requests.get(A , stream=A ).raw ).convert('''RGB''' ) return image def _SCREAMING_SNAKE_CASE (A ) -> Tuple: """simple docstring""" lowercase__ = [] # fmt: off # vision encoder rename_keys.append(('''visual_encoder.cls_token''', '''vision_model.embeddings.class_embedding''') ) rename_keys.append(('''visual_encoder.pos_embed''', '''vision_model.embeddings.position_embedding''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.weight''', '''vision_model.embeddings.patch_embedding.weight''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.bias''', '''vision_model.embeddings.patch_embedding.bias''') ) rename_keys.append(('''ln_vision.weight''', '''vision_model.post_layernorm.weight''') ) rename_keys.append(('''ln_vision.bias''', '''vision_model.post_layernorm.bias''') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f"visual_encoder.blocks.{i}.norm1.weight", f"vision_model.encoder.layers.{i}.layer_norm1.weight") ) rename_keys.append((f"visual_encoder.blocks.{i}.norm1.bias", f"vision_model.encoder.layers.{i}.layer_norm1.bias") ) rename_keys.append((f"visual_encoder.blocks.{i}.norm2.weight", f"vision_model.encoder.layers.{i}.layer_norm2.weight") ) rename_keys.append((f"visual_encoder.blocks.{i}.norm2.bias", f"vision_model.encoder.layers.{i}.layer_norm2.bias") ) rename_keys.append((f"visual_encoder.blocks.{i}.attn.qkv.weight", f"vision_model.encoder.layers.{i}.self_attn.qkv.weight") ) rename_keys.append((f"visual_encoder.blocks.{i}.attn.proj.weight", f"vision_model.encoder.layers.{i}.self_attn.projection.weight",) ) rename_keys.append((f"visual_encoder.blocks.{i}.attn.proj.bias", f"vision_model.encoder.layers.{i}.self_attn.projection.bias") ) rename_keys.append((f"visual_encoder.blocks.{i}.mlp.fc1.weight", f"vision_model.encoder.layers.{i}.mlp.fc1.weight") ) rename_keys.append((f"visual_encoder.blocks.{i}.mlp.fc1.bias", f"vision_model.encoder.layers.{i}.mlp.fc1.bias") ) rename_keys.append((f"visual_encoder.blocks.{i}.mlp.fc2.weight", f"vision_model.encoder.layers.{i}.mlp.fc2.weight") ) rename_keys.append((f"visual_encoder.blocks.{i}.mlp.fc2.bias", f"vision_model.encoder.layers.{i}.mlp.fc2.bias") ) # QFormer rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.weight''', '''qformer.layernorm.weight''') ) rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.bias''', '''qformer.layernorm.bias''') ) # fmt: on return rename_keys def _SCREAMING_SNAKE_CASE (A , A , A ) -> Union[str, Any]: """simple docstring""" lowercase__ = dct.pop(A ) lowercase__ = val def _SCREAMING_SNAKE_CASE (A , A ) -> int: """simple docstring""" for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases lowercase__ = state_dict.pop(f"visual_encoder.blocks.{i}.attn.q_bias" ) lowercase__ = state_dict.pop(f"visual_encoder.blocks.{i}.attn.v_bias" ) # next, set bias in the state dict lowercase__ = torch.cat((q_bias, torch.zeros_like(A , requires_grad=A ), v_bias) ) lowercase__ = qkv_bias def _SCREAMING_SNAKE_CASE (A , A ) -> List[str]: """simple docstring""" lowercase__ = 364 if '''coco''' in model_name else 224 lowercase__ = BlipaVisionConfig(image_size=A ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: lowercase__ = OPTConfig.from_pretrained('''facebook/opt-2.7b''' , eos_token_id=A ).to_dict() elif "opt-6.7b" in model_name: lowercase__ = OPTConfig.from_pretrained('''facebook/opt-6.7b''' , eos_token_id=A ).to_dict() elif "t5-xl" in model_name: lowercase__ = TaConfig.from_pretrained('''google/flan-t5-xl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: lowercase__ = TaConfig.from_pretrained('''google/flan-t5-xxl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() lowercase__ = BlipaConfig(vision_config=A , text_config=A ) return config, image_size @torch.no_grad() def _SCREAMING_SNAKE_CASE (A , A=None , A=False ) -> int: """simple docstring""" lowercase__ = ( AutoTokenizer.from_pretrained('''facebook/opt-2.7b''' ) if '''opt''' in model_name else AutoTokenizer.from_pretrained('''google/flan-t5-xl''' ) ) lowercase__ = tokenizer('''\n''' , add_special_tokens=A ).input_ids[0] lowercase__ ,lowercase__ = get_blipa_config(A , eos_token_id=A ) lowercase__ = BlipaForConditionalGeneration(A ).eval() lowercase__ = { '''blip2-opt-2.7b''': ('''blip2_opt''', '''pretrain_opt2.7b'''), '''blip2-opt-6.7b''': ('''blip2_opt''', '''pretrain_opt6.7b'''), '''blip2-opt-2.7b-coco''': ('''blip2_opt''', '''caption_coco_opt2.7b'''), '''blip2-opt-6.7b-coco''': ('''blip2_opt''', '''caption_coco_opt6.7b'''), '''blip2-flan-t5-xl''': ('''blip2_t5''', '''pretrain_flant5xl'''), '''blip2-flan-t5-xl-coco''': ('''blip2_t5''', '''caption_coco_flant5xl'''), '''blip2-flan-t5-xxl''': ('''blip2_t5''', '''pretrain_flant5xxl'''), } lowercase__ ,lowercase__ = model_name_to_original[model_name] # load original model print('''Loading original model...''' ) lowercase__ = '''cuda''' if torch.cuda.is_available() else '''cpu''' lowercase__ ,lowercase__ ,lowercase__ = load_model_and_preprocess( name=A , model_type=A , is_eval=A , device=A ) original_model.eval() print('''Done!''' ) # update state dict keys lowercase__ = original_model.state_dict() lowercase__ = create_rename_keys(A ) for src, dest in rename_keys: rename_key(A , A , A ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): lowercase__ = state_dict.pop(A ) if key.startswith('''Qformer.bert''' ): lowercase__ = key.replace('''Qformer.bert''' , '''qformer''' ) if "attention.self" in key: lowercase__ = key.replace('''self''' , '''attention''' ) if "opt_proj" in key: lowercase__ = key.replace('''opt_proj''' , '''language_projection''' ) if "t5_proj" in key: lowercase__ = key.replace('''t5_proj''' , '''language_projection''' ) if key.startswith('''opt''' ): lowercase__ = key.replace('''opt''' , '''language''' ) if key.startswith('''t5''' ): lowercase__ = key.replace('''t5''' , '''language''' ) lowercase__ = val # read in qv biases read_in_q_v_bias(A , A ) lowercase__ ,lowercase__ = hf_model.load_state_dict(A , strict=A ) assert len(A ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] lowercase__ = load_demo_image() lowercase__ = vis_processors['''eval'''](A ).unsqueeze(0 ).to(A ) lowercase__ = tokenizer(['''\n'''] , return_tensors='''pt''' ).input_ids.to(A ) # create processor lowercase__ = BlipImageProcessor( size={'''height''': image_size, '''width''': image_size} , image_mean=A , image_std=A ) lowercase__ = BlipaProcessor(image_processor=A , tokenizer=A ) lowercase__ = processor(images=A , return_tensors='''pt''' ).pixel_values.to(A ) # make sure processor creates exact same pixel values assert torch.allclose(A , A ) original_model.to(A ) hf_model.to(A ) with torch.no_grad(): if "opt" in model_name: lowercase__ = original_model({'''image''': original_pixel_values, '''text_input''': ['''''']} ).logits lowercase__ = hf_model(A , A ).logits else: lowercase__ = original_model( {'''image''': original_pixel_values, '''text_input''': ['''\n'''], '''text_output''': ['''\n''']} ).logits lowercase__ = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -100 ) lowercase__ = hf_model(A , A , labels=A ).logits assert original_logits.shape == logits.shape print('''First values of original logits:''' , original_logits[0, :3, :3] ) print('''First values of HF logits:''' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": lowercase__ = torch.tensor( [[-41.5_850, -4.4_440, -8.9_922], [-47.4_322, -5.9_143, -1.7_340]] , device=A ) assert torch.allclose(logits[0, :3, :3] , A , atol=1E-4 ) elif model_name == "blip2-flan-t5-xl-coco": lowercase__ = torch.tensor( [[-57.0_109, -9.8_967, -12.6_280], [-68.6_578, -12.7_191, -10.5_065]] , device=A ) else: # cast to same type lowercase__ = logits.dtype assert torch.allclose(original_logits.to(A ) , A , atol=1E-2 ) print('''Looks ok!''' ) print('''Generating a caption...''' ) lowercase__ = '''''' lowercase__ = tokenizer(A , return_tensors='''pt''' ).input_ids.to(A ) lowercase__ = original_model.generate({'''image''': original_pixel_values} ) lowercase__ = hf_model.generate( A , A , do_sample=A , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('''Original generation:''' , A ) lowercase__ = input_ids.shape[1] lowercase__ = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=A ) lowercase__ = [text.strip() for text in output_text] print('''HF generation:''' , A ) if pytorch_dump_folder_path is not None: processor.save_pretrained(A ) hf_model.save_pretrained(A ) if push_to_hub: processor.push_to_hub(f"nielsr/{model_name}" ) hf_model.push_to_hub(f"nielsr/{model_name}" ) if __name__ == "__main__": lowerCamelCase : List[Any] = argparse.ArgumentParser() lowerCamelCase : Optional[int] = [ 'blip2-opt-2.7b', 'blip2-opt-6.7b', 'blip2-opt-2.7b-coco', 'blip2-opt-6.7b-coco', 'blip2-flan-t5-xl', 'blip2-flan-t5-xl-coco', 'blip2-flan-t5-xxl', ] parser.add_argument( '--model_name', default='blip2-opt-2.7b', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) lowerCamelCase : List[Any] = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
2
from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def A_ ( a , a , a = 1 / sqrt(2 ) ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = tau * frequency / samplerate SCREAMING_SNAKE_CASE_ : List[Any] = sin(a ) SCREAMING_SNAKE_CASE_ : List[str] = cos(a ) SCREAMING_SNAKE_CASE_ : Tuple = _sin / (2 * q_factor) SCREAMING_SNAKE_CASE_ : List[Any] = (1 - _cos) / 2 SCREAMING_SNAKE_CASE_ : Union[str, Any] = 1 - _cos SCREAMING_SNAKE_CASE_ : Union[str, Any] = 1 + alpha SCREAMING_SNAKE_CASE_ : List[str] = -2 * _cos SCREAMING_SNAKE_CASE_ : Any = 1 - alpha SCREAMING_SNAKE_CASE_ : Optional[int] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def A_ ( a , a , a = 1 / sqrt(2 ) ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = tau * frequency / samplerate SCREAMING_SNAKE_CASE_ : List[str] = sin(a ) SCREAMING_SNAKE_CASE_ : Tuple = cos(a ) SCREAMING_SNAKE_CASE_ : Any = _sin / (2 * q_factor) SCREAMING_SNAKE_CASE_ : int = (1 + _cos) / 2 SCREAMING_SNAKE_CASE_ : Optional[Any] = -1 - _cos SCREAMING_SNAKE_CASE_ : Tuple = 1 + alpha SCREAMING_SNAKE_CASE_ : Optional[int] = -2 * _cos SCREAMING_SNAKE_CASE_ : Any = 1 - alpha SCREAMING_SNAKE_CASE_ : str = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def A_ ( a , a , a = 1 / sqrt(2 ) ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = tau * frequency / samplerate SCREAMING_SNAKE_CASE_ : Optional[Any] = sin(a ) SCREAMING_SNAKE_CASE_ : Any = cos(a ) SCREAMING_SNAKE_CASE_ : Tuple = _sin / (2 * q_factor) SCREAMING_SNAKE_CASE_ : Union[str, Any] = _sin / 2 SCREAMING_SNAKE_CASE_ : Tuple = 0 SCREAMING_SNAKE_CASE_ : Optional[Any] = -ba SCREAMING_SNAKE_CASE_ : int = 1 + alpha SCREAMING_SNAKE_CASE_ : Union[str, Any] = -2 * _cos SCREAMING_SNAKE_CASE_ : int = 1 - alpha SCREAMING_SNAKE_CASE_ : Dict = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def A_ ( a , a , a = 1 / sqrt(2 ) ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = tau * frequency / samplerate SCREAMING_SNAKE_CASE_ : Any = sin(a ) SCREAMING_SNAKE_CASE_ : Any = cos(a ) SCREAMING_SNAKE_CASE_ : int = _sin / (2 * q_factor) SCREAMING_SNAKE_CASE_ : List[str] = 1 - alpha SCREAMING_SNAKE_CASE_ : Optional[int] = -2 * _cos SCREAMING_SNAKE_CASE_ : Dict = 1 + alpha SCREAMING_SNAKE_CASE_ : List[str] = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def A_ ( a , a , a , a = 1 / sqrt(2 ) , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = tau * frequency / samplerate SCREAMING_SNAKE_CASE_ : Dict = sin(a ) SCREAMING_SNAKE_CASE_ : Optional[Any] = cos(a ) SCREAMING_SNAKE_CASE_ : Tuple = _sin / (2 * q_factor) SCREAMING_SNAKE_CASE_ : Union[str, Any] = 1_0 ** (gain_db / 4_0) SCREAMING_SNAKE_CASE_ : Tuple = 1 + alpha * big_a SCREAMING_SNAKE_CASE_ : Dict = -2 * _cos SCREAMING_SNAKE_CASE_ : Optional[Any] = 1 - alpha * big_a SCREAMING_SNAKE_CASE_ : str = 1 + alpha / big_a SCREAMING_SNAKE_CASE_ : Tuple = -2 * _cos SCREAMING_SNAKE_CASE_ : Union[str, Any] = 1 - alpha / big_a SCREAMING_SNAKE_CASE_ : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def A_ ( a , a , a , a = 1 / sqrt(2 ) , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = tau * frequency / samplerate SCREAMING_SNAKE_CASE_ : Any = sin(a ) SCREAMING_SNAKE_CASE_ : Optional[Any] = cos(a ) SCREAMING_SNAKE_CASE_ : str = _sin / (2 * q_factor) SCREAMING_SNAKE_CASE_ : Optional[int] = 1_0 ** (gain_db / 4_0) SCREAMING_SNAKE_CASE_ : Optional[Any] = (big_a + 1) - (big_a - 1) * _cos SCREAMING_SNAKE_CASE_ : str = (big_a + 1) + (big_a - 1) * _cos SCREAMING_SNAKE_CASE_ : Optional[int] = (big_a - 1) - (big_a + 1) * _cos SCREAMING_SNAKE_CASE_ : Any = (big_a - 1) + (big_a + 1) * _cos SCREAMING_SNAKE_CASE_ : List[Any] = 2 * sqrt(a ) * alpha SCREAMING_SNAKE_CASE_ : Union[str, Any] = big_a * (pmc + aaa) SCREAMING_SNAKE_CASE_ : int = 2 * big_a * mpc SCREAMING_SNAKE_CASE_ : Dict = big_a * (pmc - aaa) SCREAMING_SNAKE_CASE_ : int = ppmc + aaa SCREAMING_SNAKE_CASE_ : Any = -2 * pmpc SCREAMING_SNAKE_CASE_ : Any = ppmc - aaa SCREAMING_SNAKE_CASE_ : Optional[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def A_ ( a , a , a , a = 1 / sqrt(2 ) , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = tau * frequency / samplerate SCREAMING_SNAKE_CASE_ : int = sin(a ) SCREAMING_SNAKE_CASE_ : Any = cos(a ) SCREAMING_SNAKE_CASE_ : List[str] = _sin / (2 * q_factor) SCREAMING_SNAKE_CASE_ : Dict = 1_0 ** (gain_db / 4_0) SCREAMING_SNAKE_CASE_ : List[str] = (big_a + 1) - (big_a - 1) * _cos SCREAMING_SNAKE_CASE_ : List[str] = (big_a + 1) + (big_a - 1) * _cos SCREAMING_SNAKE_CASE_ : int = (big_a - 1) - (big_a + 1) * _cos SCREAMING_SNAKE_CASE_ : List[str] = (big_a - 1) + (big_a + 1) * _cos SCREAMING_SNAKE_CASE_ : Any = 2 * sqrt(a ) * alpha SCREAMING_SNAKE_CASE_ : List[Any] = big_a * (ppmc + aaa) SCREAMING_SNAKE_CASE_ : Optional[Any] = -2 * big_a * pmpc SCREAMING_SNAKE_CASE_ : int = big_a * (ppmc - aaa) SCREAMING_SNAKE_CASE_ : Union[str, Any] = pmc + aaa SCREAMING_SNAKE_CASE_ : List[str] = 2 * mpc SCREAMING_SNAKE_CASE_ : Any = pmc - aaa SCREAMING_SNAKE_CASE_ : Any = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
253
0
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) SCREAMING_SNAKE_CASE__ = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", f"""encoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (f"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", f"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.weight""", f"""encoder.layers.{i}.fc1.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.bias""", f"""encoder.layers.{i}.fc1.bias""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.weight""", f"""encoder.layers.{i}.fc2.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.bias""", f"""encoder.layers.{i}.fc2.bias""")) rename_keys.append( (f"""transformer.encoder.layers.{i}.norm1.weight""", f"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm1.bias""", f"""encoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.weight""", f"""encoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.bias""", f"""encoder.layers.{i}.final_layer_norm.bias""")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", f"""decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", f"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( f"""transformer.decoder.layers.{i}.cross_attn.out_proj.weight""", f"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( f"""transformer.decoder.layers.{i}.cross_attn.out_proj.bias""", f"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.weight""", f"""decoder.layers.{i}.fc1.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.bias""", f"""decoder.layers.{i}.fc1.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.weight""", f"""decoder.layers.{i}.fc2.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.bias""", f"""decoder.layers.{i}.fc2.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm1.weight""", f"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm1.bias""", f"""decoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.weight""", f"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.bias""", f"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.weight""", f"""decoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.bias""", f"""decoder.layers.{i}.final_layer_norm.bias""")) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_qcontent_proj.weight""", f"""decoder.layers.{i}.sa_qcontent_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_kcontent_proj.weight""", f"""decoder.layers.{i}.sa_kcontent_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_qpos_proj.weight""", f"""decoder.layers.{i}.sa_qpos_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_kpos_proj.weight""", f"""decoder.layers.{i}.sa_kpos_proj.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.sa_v_proj.weight""", f"""decoder.layers.{i}.sa_v_proj.weight""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_qcontent_proj.weight""", f"""decoder.layers.{i}.ca_qcontent_proj.weight""") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_kcontent_proj.weight""", f"""decoder.layers.{i}.ca_kcontent_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_kpos_proj.weight""", f"""decoder.layers.{i}.ca_kpos_proj.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.ca_v_proj.weight""", f"""decoder.layers.{i}.ca_v_proj.weight""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight""", f"""decoder.layers.{i}.ca_qpos_sine_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_qcontent_proj.bias""", f"""decoder.layers.{i}.sa_qcontent_proj.bias""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_kcontent_proj.bias""", f"""decoder.layers.{i}.sa_kcontent_proj.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.sa_qpos_proj.bias""", f"""decoder.layers.{i}.sa_qpos_proj.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.sa_kpos_proj.bias""", f"""decoder.layers.{i}.sa_kpos_proj.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.sa_v_proj.bias""", f"""decoder.layers.{i}.sa_v_proj.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_qcontent_proj.bias""", f"""decoder.layers.{i}.ca_qcontent_proj.bias""") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_kcontent_proj.bias""", f"""decoder.layers.{i}.ca_kcontent_proj.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.ca_kpos_proj.bias""", f"""decoder.layers.{i}.ca_kpos_proj.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.ca_v_proj.bias""", f"""decoder.layers.{i}.ca_v_proj.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias""", f"""decoder.layers.{i}.ca_qpos_sine_proj.bias""") ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ("transformer.decoder.ref_point_head.layers.0.weight", "decoder.ref_point_head.layers.0.weight"), ("transformer.decoder.ref_point_head.layers.0.bias", "decoder.ref_point_head.layers.0.bias"), ("transformer.decoder.ref_point_head.layers.1.weight", "decoder.ref_point_head.layers.1.weight"), ("transformer.decoder.ref_point_head.layers.1.bias", "decoder.ref_point_head.layers.1.bias"), ("transformer.decoder.query_scale.layers.0.weight", "decoder.query_scale.layers.0.weight"), ("transformer.decoder.query_scale.layers.0.bias", "decoder.query_scale.layers.0.bias"), ("transformer.decoder.query_scale.layers.1.weight", "decoder.query_scale.layers.1.weight"), ("transformer.decoder.query_scale.layers.1.bias", "decoder.query_scale.layers.1.bias"), ("transformer.decoder.layers.0.ca_qpos_proj.weight", "decoder.layers.0.ca_qpos_proj.weight"), ("transformer.decoder.layers.0.ca_qpos_proj.bias", "decoder.layers.0.ca_qpos_proj.bias"), ] ) def lowerCAmelCase__ ( _UpperCamelCase : List[str] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : int ) -> str: """simple docstring""" snake_case = state_dict.pop(_UpperCamelCase ) snake_case = val def lowerCAmelCase__ ( _UpperCamelCase : Tuple ) -> List[Any]: """simple docstring""" snake_case = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: snake_case = key.replace('backbone.0.body' , 'backbone.conv_encoder.model' ) snake_case = value else: snake_case = value return new_state_dict def lowerCAmelCase__ ( _UpperCamelCase : Tuple , _UpperCamelCase : List[Any]=False ) -> Optional[Any]: """simple docstring""" snake_case = '' if is_panoptic: snake_case = 'conditional_detr.' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) snake_case = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) snake_case = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict snake_case = in_proj_weight[:2_5_6, :] snake_case = in_proj_bias[:2_5_6] snake_case = in_proj_weight[2_5_6:5_1_2, :] snake_case = in_proj_bias[2_5_6:5_1_2] snake_case = in_proj_weight[-2_5_6:, :] snake_case = in_proj_bias[-2_5_6:] def lowerCAmelCase__ ( ) -> Optional[int]: """simple docstring""" snake_case = 'http://images.cocodataset.org/val2017/000000039769.jpg' snake_case = Image.open(requests.get(_UpperCamelCase , stream=_UpperCamelCase ).raw ) return im @torch.no_grad() def lowerCAmelCase__ ( _UpperCamelCase : Optional[Any] , _UpperCamelCase : int ) -> List[str]: """simple docstring""" snake_case = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: snake_case = 'resnet101' if "dc5" in model_name: snake_case = True snake_case = 'panoptic' in model_name if is_panoptic: snake_case = 2_5_0 else: snake_case = 9_1 snake_case = 'huggingface/label-files' snake_case = 'coco-detection-id2label.json' snake_case = json.load(open(hf_hub_download(_UpperCamelCase , _UpperCamelCase , repo_type='dataset' ) , 'r' ) ) snake_case = {int(_UpperCamelCase ): v for k, v in idalabel.items()} snake_case = idalabel snake_case = {v: k for k, v in idalabel.items()} # load image processor snake_case = 'coco_panoptic' if is_panoptic else 'coco_detection' snake_case = ConditionalDetrImageProcessor(format=_UpperCamelCase ) # prepare image snake_case = prepare_img() snake_case = image_processor(images=_UpperCamelCase , return_tensors='pt' ) snake_case = encoding['pixel_values'] logger.info(f"""Converting model {model_name}...""" ) # load original model from torch hub snake_case = torch.hub.load('DeppMeng/ConditionalDETR' , _UpperCamelCase , pretrained=_UpperCamelCase ).eval() snake_case = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: snake_case = 'conditional_detr.' + src rename_key(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) snake_case = rename_backbone_keys(_UpperCamelCase ) # query, key and value matrices need special treatment read_in_q_k_v(_UpperCamelCase , is_panoptic=_UpperCamelCase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them snake_case = 'conditional_detr.model.' if is_panoptic else 'model.' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('conditional_detr' ) and not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ) ): snake_case = state_dict.pop(_UpperCamelCase ) snake_case = val elif "class_labels_classifier" in key or "bbox_predictor" in key: snake_case = state_dict.pop(_UpperCamelCase ) snake_case = val elif key.startswith('bbox_attention' ) or key.startswith('mask_head' ): continue else: snake_case = state_dict.pop(_UpperCamelCase ) snake_case = val else: if not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ): snake_case = state_dict.pop(_UpperCamelCase ) snake_case = val # finally, create HuggingFace model and load state dict snake_case = ConditionalDetrForSegmentation(_UpperCamelCase ) if is_panoptic else ConditionalDetrForObjectDetection(_UpperCamelCase ) model.load_state_dict(_UpperCamelCase ) model.eval() model.push_to_hub(repo_id=_UpperCamelCase , organization='DepuMeng' , commit_message='Add model' ) # verify our conversion snake_case = conditional_detr(_UpperCamelCase ) snake_case = model(_UpperCamelCase ) assert torch.allclose(outputs.logits , original_outputs['pred_logits'] , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs['pred_boxes'] , atol=1e-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['pred_masks'] , atol=1e-4 ) # Save model and image processor logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(_UpperCamelCase ).mkdir(exist_ok=_UpperCamelCase ) model.save_pretrained(_UpperCamelCase ) image_processor.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument( "--model_name", default="conditional_detr_resnet50", type=str, help="Name of the CONDITIONAL_DETR model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
149
"""simple docstring""" import os import sys import unittest SCREAMING_SNAKE_CASE__ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path SCREAMING_SNAKE_CASE__ = os.path.join(git_repo_path, "src", "transformers") SCREAMING_SNAKE_CASE__ = "\n{0} = None\n" SCREAMING_SNAKE_CASE__ = "\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n" SCREAMING_SNAKE_CASE__ = "\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n" class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def snake_case ( self ): """simple docstring""" snake_case = find_backend(' _import_structure["models.albert"].append("AlbertTokenizerFast")' ) self.assertIsNone(lowerCAmelCase ) snake_case = find_backend(' if not is_tokenizers_available():' ) self.assertEqual(lowerCAmelCase , 'tokenizers' ) snake_case = find_backend(' if not is_tensorflow_text_available():' ) self.assertEqual(lowerCAmelCase , 'tensorflow_text' ) snake_case = find_backend(' if not (is_sentencepiece_available() and is_tokenizers_available()):' ) self.assertEqual(lowerCAmelCase , 'sentencepiece_and_tokenizers' ) snake_case = find_backend( ' if not (is_sentencepiece_available() and is_tensorflow_text_available()):' ) self.assertEqual(lowerCAmelCase , 'sentencepiece_and_tensorflow_text' ) snake_case = find_backend( ' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):' ) self.assertEqual(lowerCAmelCase , 'sentencepiece_and_tokenizers_and_vision' ) def snake_case ( self ): """simple docstring""" snake_case = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('torch' , lowerCAmelCase ) self.assertIn('tensorflow_text' , lowerCAmelCase ) self.assertIn('sentencepiece_and_tokenizers' , lowerCAmelCase ) # Likewise, we can't assert on the exact content of a key self.assertIn('BertModel' , objects['torch'] ) self.assertIn('TFBertModel' , objects['tf'] ) self.assertIn('FlaxBertModel' , objects['flax'] ) self.assertIn('BertModel' , objects['torch'] ) self.assertIn('TFBertTokenizer' , objects['tensorflow_text'] ) self.assertIn('convert_slow_tokenizer' , objects['sentencepiece_and_tokenizers'] ) def snake_case ( self ): """simple docstring""" snake_case = create_dummy_object('CONSTANT' , '\'torch\'' ) self.assertEqual(lowerCAmelCase , '\nCONSTANT = None\n' ) snake_case = create_dummy_object('function' , '\'torch\'' ) self.assertEqual( lowerCAmelCase , '\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n' ) snake_case = '\nclass FakeClass(metaclass=DummyObject):\n _backends = \'torch\'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, \'torch\')\n' snake_case = create_dummy_object('FakeClass' , '\'torch\'' ) self.assertEqual(lowerCAmelCase , lowerCAmelCase ) def snake_case ( self ): """simple docstring""" snake_case = '# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, ["torch"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = ["torch"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, ["torch"])\n' snake_case = create_dummy_files({'torch': ['CONSTANT', 'function', 'FakeClass']} ) self.assertEqual(dummy_files['torch'] , lowerCAmelCase )
149
1
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece_no_bos.model') @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( a , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = PegasusTokenizer lowerCAmelCase__ = PegasusTokenizerFast lowerCAmelCase__ = True lowerCAmelCase__ = True def UpperCAmelCase__ ( self : List[str] ) -> str: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing __SCREAMING_SNAKE_CASE = PegasusTokenizer(__SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCAmelCase__ ( self : Any ) -> str: """simple docstring""" return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def UpperCAmelCase__ ( self : Tuple , **__SCREAMING_SNAKE_CASE : Tuple ) -> PegasusTokenizer: """simple docstring""" return PegasusTokenizer.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : List[str] , __SCREAMING_SNAKE_CASE : Tuple ) -> Tuple: """simple docstring""" return ("This is a test", "This is a test") def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = """</s>""" __SCREAMING_SNAKE_CASE = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Optional[int] ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """</s>""" ) self.assertEqual(vocab_keys[-1] , """v""" ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 1_103 ) def UpperCAmelCase__ ( self : Dict ) -> Optional[int]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_103 ) def UpperCAmelCase__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) __SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(self.tmpdirname ) __SCREAMING_SNAKE_CASE = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) __SCREAMING_SNAKE_CASE = rust_tokenizer([raw_input_str] , return_tensors=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ).input_ids[0] __SCREAMING_SNAKE_CASE = py_tokenizer([raw_input_str] , return_tensors=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ).input_ids[0] self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Any ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word __SCREAMING_SNAKE_CASE = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" __SCREAMING_SNAKE_CASE = [2, 413, 615, 114, 3, 1_971, 113, 1_679, 10_710, 107, 1] __SCREAMING_SNAKE_CASE = tokenizer([raw_input_str] , return_tensors=__SCREAMING_SNAKE_CASE ).input_ids[0] self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 96_103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1_024 __SCREAMING_SNAKE_CASE = """To ensure a smooth flow of bank resolutions.""" __SCREAMING_SNAKE_CASE = [413, 615, 114, 2_291, 1_971, 113, 1_679, 10_710, 107, 1] __SCREAMING_SNAKE_CASE = tokenizer([raw_input_str] , return_tensors=__SCREAMING_SNAKE_CASE ).input_ids[0] self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def UpperCAmelCase__ ( self : int ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = ["""This is going to be way too long.""" * 150, """short example"""] __SCREAMING_SNAKE_CASE = ["""not super long but more than 5 tokens""", """tiny"""] __SCREAMING_SNAKE_CASE = self._large_tokenizer(__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ) __SCREAMING_SNAKE_CASE = self._large_tokenizer( text_target=__SCREAMING_SNAKE_CASE , max_length=5 , padding=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 1_024) assert batch.attention_mask.shape == (2, 1_024) assert targets["input_ids"].shape == (2, 5) assert len(__SCREAMING_SNAKE_CASE ) == 2 # input_ids, attention_mask. @slow def UpperCAmelCase__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = {"""input_ids""": [[38_979, 143, 18_485, 606, 130, 26_669, 87_686, 121, 54_189, 1_129, 111, 26_669, 87_686, 121, 9_114, 14_787, 121, 13_249, 158, 592, 956, 121, 14_621, 31_576, 143, 62_613, 108, 9_688, 930, 43_430, 11_562, 62_613, 304, 108, 11_443, 897, 108, 9_314, 17_415, 63_399, 108, 11_443, 7_614, 18_316, 118, 4_284, 7_148, 12_430, 143, 1_400, 25_703, 158, 111, 4_284, 7_148, 11_772, 143, 21_297, 1_064, 158, 122, 204, 3_506, 1_754, 1_133, 14_787, 1_581, 115, 33_224, 4_482, 111, 1_355, 110, 29_173, 317, 50_833, 108, 20_147, 94_665, 111, 77_198, 107, 1], [110, 62_613, 117, 638, 112, 1_133, 121, 20_098, 1_355, 79_050, 13_872, 135, 1_596, 53_541, 1_352, 141, 13_039, 5_542, 124, 302, 518, 111, 268, 2_956, 115, 149, 4_427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1_235, 2_799, 18_289, 17_780, 204, 109, 9_474, 1_296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__SCREAMING_SNAKE_CASE , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( a , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = PegasusTokenizer lowerCAmelCase__ = PegasusTokenizerFast lowerCAmelCase__ = True lowerCAmelCase__ = True def UpperCAmelCase__ ( self : Any ) -> Optional[int]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing __SCREAMING_SNAKE_CASE = PegasusTokenizer(__SCREAMING_SNAKE_CASE , offset=0 , mask_token_sent=__SCREAMING_SNAKE_CASE , mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCAmelCase__ ( self : Dict ) -> Tuple: """simple docstring""" return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def UpperCAmelCase__ ( self : str , **__SCREAMING_SNAKE_CASE : int ) -> PegasusTokenizer: """simple docstring""" return PegasusTokenizer.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Any , __SCREAMING_SNAKE_CASE : str ) -> Optional[int]: """simple docstring""" return ("This is a test", "This is a test") def UpperCAmelCase__ ( self : Tuple ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) __SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(self.tmpdirname ) __SCREAMING_SNAKE_CASE = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) __SCREAMING_SNAKE_CASE = rust_tokenizer([raw_input_str] , return_tensors=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ).input_ids[0] __SCREAMING_SNAKE_CASE = py_tokenizer([raw_input_str] , return_tensors=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ).input_ids[0] self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @require_torch def UpperCAmelCase__ ( self : int ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = ["""This is going to be way too long.""" * 1_000, """short example"""] __SCREAMING_SNAKE_CASE = ["""not super long but more than 5 tokens""", """tiny"""] __SCREAMING_SNAKE_CASE = self._large_tokenizer(__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ) __SCREAMING_SNAKE_CASE = self._large_tokenizer( text_target=__SCREAMING_SNAKE_CASE , max_length=5 , padding=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 4_096) assert batch.attention_mask.shape == (2, 4_096) assert targets["input_ids"].shape == (2, 5) assert len(__SCREAMING_SNAKE_CASE ) == 2 # input_ids, attention_mask. def UpperCAmelCase__ ( self : List[Any] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) __SCREAMING_SNAKE_CASE = self._large_tokenizer(__SCREAMING_SNAKE_CASE ).input_ids self.assertListEqual( __SCREAMING_SNAKE_CASE , [182, 117, 142, 587, 4_211, 120, 117, 263, 112, 804, 109, 856, 25_016, 3_137, 464, 109, 26_955, 3_137, 1] , )
267
'''simple docstring''' import numpy as np def a__ ( a__ , a__ , a__ = 1E-1_2 , a__ = 1_00 , ): """simple docstring""" assert np.shape(a__ )[0] == np.shape(a__ )[1] # Ensure proper dimensionality. assert np.shape(a__ )[0] == np.shape(a__ )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(a__ ) == np.iscomplexobj(a__ ) __SCREAMING_SNAKE_CASE = np.iscomplexobj(a__ ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(a__ , input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 1E1_2 while not convergence: # Multiple matrix by the vector. __SCREAMING_SNAKE_CASE = np.dot(a__ , a__ ) # Normalize the resulting output vector. __SCREAMING_SNAKE_CASE = w / np.linalg.norm(a__ ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) __SCREAMING_SNAKE_CASE = vector.conj().T if is_complex else vector.T __SCREAMING_SNAKE_CASE = np.dot(a__ , np.dot(a__ , a__ ) ) # Check convergence. __SCREAMING_SNAKE_CASE = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = lambda_ if is_complex: __SCREAMING_SNAKE_CASE = np.real(lambda_ ) return lambda_, vector def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) __SCREAMING_SNAKE_CASE = np.array([41, 4, 20] ) __SCREAMING_SNAKE_CASE = real_input_matrix.astype(np.complexaaa ) __SCREAMING_SNAKE_CASE = np.triu(1J * complex_input_matrix , 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T __SCREAMING_SNAKE_CASE = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": __SCREAMING_SNAKE_CASE = real_input_matrix __SCREAMING_SNAKE_CASE = real_vector elif problem_type == "complex": __SCREAMING_SNAKE_CASE = complex_input_matrix __SCREAMING_SNAKE_CASE = complex_vector # Our implementation. __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = power_iteration(a__ , a__ ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = np.linalg.eigh(a__ ) # Last eigenvalue is the maximum one. __SCREAMING_SNAKE_CASE = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. __SCREAMING_SNAKE_CASE = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(a__ ) - np.abs(a__ ) ) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
267
1
"""simple docstring""" def _lowerCamelCase( a , a , a , a , a ): if index == number_of_items: return 0 __a = 0 __a = 0 __a = knapsack(a , a , a , a , index + 1 ) if weights[index] <= max_weight: __a = values[index] + knapsack( a , a , a , max_weight - weights[index] , index + 1 ) return max(a , a ) if __name__ == "__main__": import doctest doctest.testmod()
366
"""simple docstring""" import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE__:Tuple = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__:List[Any] = {"""vocab_file""": """vocab.txt"""} SCREAMING_SNAKE_CASE__:Optional[int] = { """vocab_file""": { """openbmb/cpm-ant-10b""": """https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt""", }, } SCREAMING_SNAKE_CASE__:Tuple = { """openbmb/cpm-ant-10b""": 1024, } def _lowerCamelCase( a ): __a = collections.OrderedDict() with open(a , "r" , encoding="utf-8" ) as reader: __a = reader.readlines() for index, token in enumerate(a ): __a = token.rstrip("\n" ) __a = index return vocab class snake_case__ ( snake_case_ ): def __init__( self , lowerCamelCase , lowerCamelCase="<unk>" , lowerCamelCase=200 ): __a = vocab __a = unk_token __a = max_input_chars_per_word def a__ ( self , lowerCamelCase ): __a = list(lowerCamelCase ) if len(lowerCamelCase ) > self.max_input_chars_per_word: return [self.unk_token] __a = 0 __a = [] while start < len(lowerCamelCase ): __a = len(lowerCamelCase ) __a = None while start < end: __a = "".join(chars[start:end] ) if substr in self.vocab: __a = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(lowerCamelCase ) __a = end return sub_tokens class snake_case__ ( snake_case_ ): _snake_case : Optional[int] = VOCAB_FILES_NAMES _snake_case : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _snake_case : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : int = ["""input_ids""", """attention_mask"""] _snake_case : int = False def __init__( self , lowerCamelCase , lowerCamelCase="<d>" , lowerCamelCase="</d>" , lowerCamelCase="<s>" , lowerCamelCase="</s>" , lowerCamelCase="<pad>" , lowerCamelCase="<unk>" , lowerCamelCase="</n>" , lowerCamelCase="</_>" , lowerCamelCase="left" , **lowerCamelCase , ): requires_backends(self , ["jieba"] ) super().__init__( bod_token=lowerCamelCase , eod_token=lowerCamelCase , bos_token=lowerCamelCase , eos_token=lowerCamelCase , pad_token=lowerCamelCase , unk_token=lowerCamelCase , line_token=lowerCamelCase , space_token=lowerCamelCase , padding_side=lowerCamelCase , **lowerCamelCase , ) __a = bod_token __a = eod_token __a = load_vocab(lowerCamelCase ) __a = self.encoder[space_token] __a = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] __a = collections.OrderedDict(sorted(self.encoder.items() , key=lambda lowerCamelCase : x[1] ) ) __a = {v: k for k, v in self.encoder.items()} __a = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def a__ ( self ): return self.encoder[self.bod_token] @property def a__ ( self ): return self.encoder[self.eod_token] @property def a__ ( self ): return self.encoder["\n"] @property def a__ ( self ): return len(self.encoder ) def a__ ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def a__ ( self , lowerCamelCase ): __a = [] for x in jieba.cut(lowerCamelCase , cut_all=lowerCamelCase ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(lowerCamelCase ) ) return output_tokens def a__ ( self , lowerCamelCase , **lowerCamelCase ): __a = [i for i in token_ids if i >= 0] __a = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(lowerCamelCase , **lowerCamelCase ) def a__ ( self , lowerCamelCase ): return token in self.encoder def a__ ( self , lowerCamelCase ): return "".join(lowerCamelCase ) def a__ ( self , lowerCamelCase ): return self.encoder.get(lowerCamelCase , self.encoder.get(self.unk_token ) ) def a__ ( self , lowerCamelCase ): return self.decoder.get(lowerCamelCase , self.unk_token ) def a__ ( self , lowerCamelCase , lowerCamelCase = None ): if os.path.isdir(lowerCamelCase ): __a = os.path.join( lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) else: __a = (filename_prefix + "-" if filename_prefix else "") + save_directory __a = 0 if " " in self.encoder: __a = self.encoder[" "] del self.encoder[" "] if "\n" in self.encoder: __a = self.encoder["\n"] del self.encoder["\n"] __a = collections.OrderedDict(sorted(self.encoder.items() , key=lambda lowerCamelCase : x[1] ) ) with open(lowerCamelCase , "w" , encoding="utf-8" ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( F"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." " Please check that the vocabulary is not corrupted!" ) __a = token_index writer.write(token + "\n" ) index += 1 return (vocab_file,) def a__ ( self , lowerCamelCase , lowerCamelCase = None ): if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def a__ ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase , token_ids_a=lowerCamelCase , already_has_special_tokens=lowerCamelCase ) if token_ids_a is not None: return [1] + ([0] * len(lowerCamelCase )) + [1] + ([0] * len(lowerCamelCase )) return [1] + ([0] * len(lowerCamelCase ))
268
0
"""simple docstring""" import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging _A = { """cola""": 2, """mnli""": 3, """mrpc""": 2, """sst-2""": 2, """sts-b""": 1, """qqp""": 2, """qnli""": 2, """rte""": 2, """wnli""": 2, } logging.set_verbosity_info() def a__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=None ) -> Tuple: UpperCAmelCase__ : int = XLNetConfig.from_json_file(lowerCAmelCase ) UpperCAmelCase__ : List[Any] = finetuning_task.lower() if finetuning_task is not None else '''''' if finetuning_task in GLUE_TASKS_NUM_LABELS: print(F"""Building PyTorch XLNetForSequenceClassification model from configuration: {config}""" ) UpperCAmelCase__ : Union[str, Any] = finetuning_task UpperCAmelCase__ : List[Any] = GLUE_TASKS_NUM_LABELS[finetuning_task] UpperCAmelCase__ : Dict = XLNetForSequenceClassification(lowerCAmelCase ) elif "squad" in finetuning_task: UpperCAmelCase__ : List[Any] = finetuning_task UpperCAmelCase__ : Optional[int] = XLNetForQuestionAnswering(lowerCAmelCase ) else: UpperCAmelCase__ : Any = XLNetLMHeadModel(lowerCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Save pytorch-model UpperCAmelCase__ : List[Any] = os.path.join(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase__ : Any = os.path.join(lowerCAmelCase , lowerCAmelCase ) print(F"""Save PyTorch model to {os.path.abspath(lowerCAmelCase )}""" ) torch.save(model.state_dict() , lowerCAmelCase ) print(F"""Save configuration file to {os.path.abspath(lowerCAmelCase )}""" ) with open(lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _A = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--xlnet_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained XLNet model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the folder to store the PyTorch model or dataset/vocab.""", ) parser.add_argument( """--finetuning_task""", default=None, type=str, help="""Name of a task on which the XLNet TensorFlow model was fine-tuned""", ) _A = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
171
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) lowercase_ = logging.get_logger(__name__) # pylint: disable=invalid-name lowercase_ = """ Examples: ```py >>> import torch >>> import numpy as np >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline >>> from transformers import pipeline >>> from diffusers.utils import load_image >>> def make_hint(image, depth_estimator): ... image = depth_estimator(image)[\"depth\"] ... image = np.array(image) ... image = image[:, :, None] ... image = np.concatenate([image, image, image], axis=2) ... detected_map = torch.from_numpy(image).float() / 255.0 ... hint = detected_map.permute(2, 0, 1) ... return hint >>> depth_estimator = pipeline(\"depth-estimation\") >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16 ... ) >>> pipe_prior = pipe_prior.to(\"cuda\") >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-controlnet-depth\", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to(\"cuda\") >>> img = load_image( ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\" ... \"/kandinsky/cat.png\" ... ).resize((768, 768)) >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to(\"cuda\") >>> prompt = \"A robot, 4k photo\" >>> negative_prior_prompt = \"lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature\" >>> generator = torch.Generator(device=\"cuda\").manual_seed(43) >>> image_emb, zero_image_emb = pipe_prior( ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator ... ).to_tuple() >>> images = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... hint=hint, ... num_inference_steps=50, ... generator=generator, ... height=768, ... width=768, ... ).images >>> images[0].save(\"robot_cat.png\") ``` """ def a__ ( snake_case , snake_case , snake_case=8 ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 __SCREAMING_SNAKE_CASE : Optional[int] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" def __init__( self : int , _A : UNetaDConditionModel , _A : DDPMScheduler , _A : VQModel , ): """simple docstring""" super().__init__() self.register_modules( unet=_A , scheduler=_A , movq=_A , ) __SCREAMING_SNAKE_CASE : Optional[Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def UpperCAmelCase__ ( self : Union[str, Any] , _A : Dict , _A : Optional[Any] , _A : Tuple , _A : List[Any] , _A : Optional[Any] , _A : List[Any] ): """simple docstring""" if latents is None: __SCREAMING_SNAKE_CASE : Optional[Any] = randn_tensor(_A , generator=_A , device=_A , dtype=_A ) else: if latents.shape != shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) __SCREAMING_SNAKE_CASE : Tuple = latents.to(_A ) __SCREAMING_SNAKE_CASE : Union[str, Any] = latents * scheduler.init_noise_sigma return latents def UpperCAmelCase__ ( self : Tuple , _A : List[str]=0 ): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) __SCREAMING_SNAKE_CASE : List[Any] = torch.device(F'''cuda:{gpu_id}''' ) __SCREAMING_SNAKE_CASE : Dict = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_A , _A ) def UpperCAmelCase__ ( self : int , _A : Tuple=0 ): """simple docstring""" if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0''' ): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' ) __SCREAMING_SNAKE_CASE : str = torch.device(F'''cuda:{gpu_id}''' ) if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=_A ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) __SCREAMING_SNAKE_CASE : Optional[Any] = None for cpu_offloaded_model in [self.unet, self.movq]: __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Dict = cpu_offload_with_hook(_A , _A , prev_module_hook=_A ) # We'll offload the last model manually. __SCREAMING_SNAKE_CASE : Optional[int] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" if not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(_A , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_A ) def __call__( self : Dict , _A : Union[torch.FloatTensor, List[torch.FloatTensor]] , _A : Union[torch.FloatTensor, List[torch.FloatTensor]] , _A : torch.FloatTensor , _A : int = 512 , _A : int = 512 , _A : int = 100 , _A : float = 4.0 , _A : int = 1 , _A : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _A : Optional[torch.FloatTensor] = None , _A : Optional[str] = "pil" , _A : bool = True , ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = self._execution_device __SCREAMING_SNAKE_CASE : Optional[Any] = guidance_scale > 1.0 if isinstance(_A , _A ): __SCREAMING_SNAKE_CASE : Optional[Any] = torch.cat(_A , dim=0 ) if isinstance(_A , _A ): __SCREAMING_SNAKE_CASE : List[Any] = torch.cat(_A , dim=0 ) if isinstance(_A , _A ): __SCREAMING_SNAKE_CASE : List[str] = torch.cat(_A , dim=0 ) __SCREAMING_SNAKE_CASE : List[Any] = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: __SCREAMING_SNAKE_CASE : Dict = image_embeds.repeat_interleave(_A , dim=0 ) __SCREAMING_SNAKE_CASE : Any = negative_image_embeds.repeat_interleave(_A , dim=0 ) __SCREAMING_SNAKE_CASE : Union[str, Any] = hint.repeat_interleave(_A , dim=0 ) __SCREAMING_SNAKE_CASE : int = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=_A ) __SCREAMING_SNAKE_CASE : Optional[int] = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=_A ) self.scheduler.set_timesteps(_A , device=_A ) __SCREAMING_SNAKE_CASE : Optional[int] = self.scheduler.timesteps __SCREAMING_SNAKE_CASE : Tuple = self.movq.config.latent_channels __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Dict = downscale_height_and_width(_A , _A , self.movq_scale_factor ) # create initial latent __SCREAMING_SNAKE_CASE : Tuple = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , _A , _A , _A , self.scheduler , ) for i, t in enumerate(self.progress_bar(_A ) ): # expand the latents if we are doing classifier free guidance __SCREAMING_SNAKE_CASE : str = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __SCREAMING_SNAKE_CASE : Dict = {'''image_embeds''': image_embeds, '''hint''': hint} __SCREAMING_SNAKE_CASE : Union[str, Any] = self.unet( sample=_A , timestep=_A , encoder_hidden_states=_A , added_cond_kwargs=_A , return_dict=_A , )[0] if do_classifier_free_guidance: __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : str = noise_pred.split(latents.shape[1] , dim=1 ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Dict = noise_pred.chunk(2 ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Optional[Any] = variance_pred.chunk(2 ) __SCREAMING_SNAKE_CASE : List[Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) __SCREAMING_SNAKE_CASE : Tuple = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , '''variance_type''' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : List[str] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 __SCREAMING_SNAKE_CASE : Any = self.scheduler.step( _A , _A , _A , generator=_A , )[0] # post-processing __SCREAMING_SNAKE_CASE : Any = self.movq.decode(_A , force_not_quantize=_A )['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' ) if output_type in ["np", "pil"]: __SCREAMING_SNAKE_CASE : str = image * 0.5 + 0.5 __SCREAMING_SNAKE_CASE : Tuple = image.clamp(0 , 1 ) __SCREAMING_SNAKE_CASE : Dict = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __SCREAMING_SNAKE_CASE : List[str] = self.numpy_to_pil(_A ) if not return_dict: return (image,) return ImagePipelineOutput(images=_A )
303
0
"""simple docstring""" from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def UpperCAmelCase ( ): """simple docstring""" A__ = [randint(-1_000 , 1_000 ) for i in range(10 )] A__ = randint(-5_000 , 5_000 ) return (arr, r) __lowerCamelCase = make_dataset() def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" for triplet in permutations(UpperCamelCase__ , 3 ): if sum(UpperCamelCase__ ) == target: return tuple(sorted(UpperCamelCase__ ) ) return (0, 0, 0) def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" arr.sort() A__ = len(UpperCamelCase__ ) for i in range(n - 1 ): A__ = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def UpperCAmelCase ( ): """simple docstring""" A__ = "\nfrom __main__ import dataset, triplet_sum1, triplet_sum2\n" A__ = "\ntriplet_sum1(*dataset)\n" A__ = "\ntriplet_sum2(*dataset)\n" A__ = repeat(setup=UpperCamelCase__ , stmt=UpperCamelCase__ , repeat=5 , number=10_000 ) A__ = repeat(setup=UpperCamelCase__ , stmt=UpperCamelCase__ , repeat=5 , number=10_000 ) return (min(UpperCamelCase__ ), min(UpperCamelCase__ )) if __name__ == "__main__": from doctest import testmod testmod() __lowerCamelCase = solution_times() print(F'''The time for naive implementation is {times[0]}.''') print(F'''The time for optimized implementation is {times[1]}.''')
370
"""simple docstring""" def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError('iterations must be defined as integers' ) if not isinstance(UpperCamelCase__ , UpperCamelCase__ ) or not number >= 1: raise ValueError( 'starting number must be\n and integer and be more than 0' ) if not iterations >= 1: raise ValueError('Iterations must be done more than 0 times to play FizzBuzz' ) A__ = '' while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(UpperCamelCase__ ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
154
0
"""simple docstring""" # Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() _UpperCAmelCase = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model _UpperCAmelCase = { # fairseq: """wmt19-ru-en""": {"""length_penalty""": 1.1}, """wmt19-en-ru""": {"""length_penalty""": 1.1_5}, """wmt19-en-de""": {"""length_penalty""": 1.0}, """wmt19-de-en""": {"""length_penalty""": 1.1}, # allenai: """wmt16-en-de-dist-12-1""": {"""length_penalty""": 0.6}, """wmt16-en-de-dist-6-1""": {"""length_penalty""": 0.6}, """wmt16-en-de-12-1""": {"""length_penalty""": 0.8}, """wmt19-de-en-6-6-base""": {"""length_penalty""": 0.6}, """wmt19-de-en-6-6-big""": {"""length_penalty""": 0.6}, } # this remaps the different models to their organization names _UpperCAmelCase = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: _UpperCAmelCase = """facebook""" for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: _UpperCAmelCase = """allenai""" def __magic_name__ ( lowercase ): # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} SCREAMING_SNAKE_CASE_: Optional[Any] =dict((re.sub(R"""@@$""" , """""" , lowercase ), v) if k.endswith("""@@""" ) else (re.sub(R"""$""" , """</w>""" , lowercase ), v) for k, v in d.items() ) SCREAMING_SNAKE_CASE_: Union[str, Any] ="""<s> <pad> </s> <unk>""".split() # restore the special tokens for k in keep_keys: del da[f'''{k}</w>'''] SCREAMING_SNAKE_CASE_: Any =d[k] # restore return da def __magic_name__ ( lowercase , lowercase ): # prep assert os.path.exists(lowercase ) os.makedirs(lowercase , exist_ok=lowercase ) print(f'''Writing results to {pytorch_dump_folder_path}''' ) # handle various types of models SCREAMING_SNAKE_CASE_: List[Any] =basename(lowercase ) SCREAMING_SNAKE_CASE_: Dict =dirname(lowercase ) SCREAMING_SNAKE_CASE_: List[Any] =fairseq.model_parallel.models.transformer.ModelParallelTransformerModel SCREAMING_SNAKE_CASE_: Tuple =cls.hub_models() SCREAMING_SNAKE_CASE_: Dict ={"""bpe""": """fastbpe""", """tokenizer""": """moses"""} SCREAMING_SNAKE_CASE_: Optional[Any] =""".""" # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(f'''using checkpoint {checkpoint_file}''' ) SCREAMING_SNAKE_CASE_: Optional[Any] =hub_utils.from_pretrained( lowercase , lowercase , lowercase , archive_map=lowercase , **lowercase ) SCREAMING_SNAKE_CASE_: Dict =vars(chkpt["""args"""]["""model"""] ) SCREAMING_SNAKE_CASE_: str =args["""source_lang"""] SCREAMING_SNAKE_CASE_: str =args["""target_lang"""] SCREAMING_SNAKE_CASE_: List[Any] =dirname(lowercase ) SCREAMING_SNAKE_CASE_: Union[str, Any] =basename(lowercase ) # dicts SCREAMING_SNAKE_CASE_: str =os.path.join(lowercase , f'''dict.{src_lang}.txt''' ) SCREAMING_SNAKE_CASE_: Optional[Any] =os.path.join(lowercase , f'''dict.{tgt_lang}.txt''' ) SCREAMING_SNAKE_CASE_: Tuple =Dictionary.load(lowercase ) SCREAMING_SNAKE_CASE_: Optional[Any] =rewrite_dict_keys(src_dict.indices ) SCREAMING_SNAKE_CASE_: Optional[int] =len(lowercase ) SCREAMING_SNAKE_CASE_: List[Any] =os.path.join(lowercase , """vocab-src.json""" ) print(f'''Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records''' ) with open(lowercase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowercase , ensure_ascii=lowercase , indent=lowercase ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab SCREAMING_SNAKE_CASE_: Optional[Any] =True for k in src_vocab.keys(): if not k.islower(): SCREAMING_SNAKE_CASE_: Union[str, Any] =False break SCREAMING_SNAKE_CASE_: Any =Dictionary.load(lowercase ) SCREAMING_SNAKE_CASE_: Union[str, Any] =rewrite_dict_keys(tgt_dict.indices ) SCREAMING_SNAKE_CASE_: Tuple =len(lowercase ) SCREAMING_SNAKE_CASE_: Optional[int] =os.path.join(lowercase , """vocab-tgt.json""" ) print(f'''Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records''' ) with open(lowercase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowercase , ensure_ascii=lowercase , indent=lowercase ) ) # merges_file (bpecodes) SCREAMING_SNAKE_CASE_: Optional[int] =os.path.join(lowercase , VOCAB_FILES_NAMES["""merges_file"""] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" SCREAMING_SNAKE_CASE_: Tuple =os.path.join(lowercase , lowercase ) if os.path.exists(lowercase ): break with open(lowercase , encoding="""utf-8""" ) as fin: SCREAMING_SNAKE_CASE_: List[Any] =fin.read() SCREAMING_SNAKE_CASE_: int =re.sub(R""" \d+$""" , """""" , lowercase , 0 , re.M ) # remove frequency number print(f'''Generating {merges_file}''' ) with open(lowercase , """w""" , encoding="""utf-8""" ) as fout: fout.write(lowercase ) # model config SCREAMING_SNAKE_CASE_: Optional[int] =os.path.join(lowercase , """config.json""" ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", f'''need to extend tokenizer to support bpe={args["bpe"]}''' assert args["tokenizer"] == "moses", f'''need to extend tokenizer to support bpe={args["tokenizer"]}''' SCREAMING_SNAKE_CASE_: Union[str, Any] ={ """architectures""": ["""FSMTForConditionalGeneration"""], """model_type""": """fsmt""", """activation_dropout""": args["""activation_dropout"""], """activation_function""": """relu""", """attention_dropout""": args["""attention_dropout"""], """d_model""": args["""decoder_embed_dim"""], """dropout""": args["""dropout"""], """init_std""": 0.02, """max_position_embeddings""": args["""max_source_positions"""], """num_hidden_layers""": args["""encoder_layers"""], """src_vocab_size""": src_vocab_size, """tgt_vocab_size""": tgt_vocab_size, """langs""": [src_lang, tgt_lang], """encoder_attention_heads""": args["""encoder_attention_heads"""], """encoder_ffn_dim""": args["""encoder_ffn_embed_dim"""], """encoder_layerdrop""": args["""encoder_layerdrop"""], """encoder_layers""": args["""encoder_layers"""], """decoder_attention_heads""": args["""decoder_attention_heads"""], """decoder_ffn_dim""": args["""decoder_ffn_embed_dim"""], """decoder_layerdrop""": args["""decoder_layerdrop"""], """decoder_layers""": args["""decoder_layers"""], """bos_token_id""": 0, """pad_token_id""": 1, """eos_token_id""": 2, """is_encoder_decoder""": True, """scale_embedding""": not args["""no_scale_embedding"""], """tie_word_embeddings""": args["""share_all_embeddings"""], } # good hparam defaults to start with SCREAMING_SNAKE_CASE_: Dict =5 SCREAMING_SNAKE_CASE_: int =False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: SCREAMING_SNAKE_CASE_: Any =best_score_hparams[model_dir]["""length_penalty"""] else: SCREAMING_SNAKE_CASE_: Tuple =1.0 print(f'''Generating {fsmt_model_config_file}''' ) with open(lowercase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowercase , ensure_ascii=lowercase , indent=lowercase ) ) # tokenizer config SCREAMING_SNAKE_CASE_: Optional[Any] =os.path.join(lowercase , lowercase ) SCREAMING_SNAKE_CASE_: Tuple ={ """langs""": [src_lang, tgt_lang], """model_max_length""": 1024, """do_lower_case""": do_lower_case, } print(f'''Generating {fsmt_tokenizer_config_file}''' ) with open(lowercase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowercase , ensure_ascii=lowercase , indent=lowercase ) ) # model SCREAMING_SNAKE_CASE_: Optional[int] =chkpt["""models"""][0] SCREAMING_SNAKE_CASE_: Optional[int] =model.state_dict() # rename keys to start with 'model.' SCREAMING_SNAKE_CASE_: Dict =OrderedDict(("""model.""" + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys SCREAMING_SNAKE_CASE_: int =[ """model.model""", """model.encoder.version""", """model.decoder.version""", """model.encoder_embed_tokens.weight""", """model.decoder_embed_tokens.weight""", """model.encoder.embed_positions._float_tensor""", """model.decoder.embed_positions._float_tensor""", ] for k in ignore_keys: model_state_dict.pop(lowercase , lowercase ) SCREAMING_SNAKE_CASE_: Optional[int] =FSMTConfig.from_pretrained(lowercase ) SCREAMING_SNAKE_CASE_: Dict =FSMTForConditionalGeneration(lowercase ) # check that it loads ok model_new.load_state_dict(lowercase , strict=lowercase ) # save SCREAMING_SNAKE_CASE_: Dict =os.path.join(lowercase , lowercase ) print(f'''Generating {pytorch_weights_dump_path}''' ) torch.save(lowercase , lowercase ) print("""Conversion is done!""" ) print("""\nLast step is to upload the files to s3""" ) print(f'''cd {data_root}''' ) print(f'''transformers-cli upload {model_dir}''' ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--fsmt_checkpoint_path""", default=None, type=str, required=True, help=( """Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,""" """ bpecodes, etc.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) _UpperCAmelCase = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
173
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { """facebook/vit-mae-base""": """https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json""", # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class a ( UpperCAmelCase__ ): UpperCamelCase : Dict = 'vit_mae' def __init__( self : int , lowerCAmelCase : int=768 , lowerCAmelCase : List[str]=12 , lowerCAmelCase : Any=12 , lowerCAmelCase : Union[str, Any]=3072 , lowerCAmelCase : Any="gelu" , lowerCAmelCase : str=0.0 , lowerCAmelCase : Any=0.0 , lowerCAmelCase : List[Any]=0.0_2 , lowerCAmelCase : int=1E-12 , lowerCAmelCase : Optional[Any]=224 , lowerCAmelCase : Optional[Any]=16 , lowerCAmelCase : Any=3 , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : Any=16 , lowerCAmelCase : str=512 , lowerCAmelCase : int=8 , lowerCAmelCase : Union[str, Any]=2048 , lowerCAmelCase : Tuple=0.7_5 , lowerCAmelCase : str=False , **lowerCAmelCase : Tuple , ) -> List[Any]: '''simple docstring''' super().__init__(**lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] =hidden_size SCREAMING_SNAKE_CASE_: Optional[int] =num_hidden_layers SCREAMING_SNAKE_CASE_: Optional[int] =num_attention_heads SCREAMING_SNAKE_CASE_: Optional[Any] =intermediate_size SCREAMING_SNAKE_CASE_: Union[str, Any] =hidden_act SCREAMING_SNAKE_CASE_: Tuple =hidden_dropout_prob SCREAMING_SNAKE_CASE_: List[str] =attention_probs_dropout_prob SCREAMING_SNAKE_CASE_: List[Any] =initializer_range SCREAMING_SNAKE_CASE_: int =layer_norm_eps SCREAMING_SNAKE_CASE_: List[str] =image_size SCREAMING_SNAKE_CASE_: Dict =patch_size SCREAMING_SNAKE_CASE_: str =num_channels SCREAMING_SNAKE_CASE_: List[str] =qkv_bias SCREAMING_SNAKE_CASE_: List[str] =decoder_num_attention_heads SCREAMING_SNAKE_CASE_: Any =decoder_hidden_size SCREAMING_SNAKE_CASE_: Optional[Any] =decoder_num_hidden_layers SCREAMING_SNAKE_CASE_: str =decoder_intermediate_size SCREAMING_SNAKE_CASE_: Union[str, Any] =mask_ratio SCREAMING_SNAKE_CASE_: List[str] =norm_pix_loss
173
1
from __future__ import annotations def __snake_case ( __UpperCamelCase : int = 4 ): """simple docstring""" A_ = abs(__UpperCamelCase ) or 4 return [[1 + x + y * row_size for x in range(__UpperCamelCase )] for y in range(__UpperCamelCase )] def __snake_case ( __UpperCamelCase : list[list[int]] ): """simple docstring""" return reverse_row(transpose(__UpperCamelCase ) ) # OR.. transpose(reverse_column(matrix)) def __snake_case ( __UpperCamelCase : list[list[int]] ): """simple docstring""" return reverse_row(reverse_column(__UpperCamelCase ) ) # OR.. reverse_column(reverse_row(matrix)) def __snake_case ( __UpperCamelCase : list[list[int]] ): """simple docstring""" return reverse_column(transpose(__UpperCamelCase ) ) # OR.. transpose(reverse_row(matrix)) def __snake_case ( __UpperCamelCase : list[list[int]] ): """simple docstring""" A_ = [list(__UpperCamelCase ) for x in zip(*__UpperCamelCase )] return matrix def __snake_case ( __UpperCamelCase : list[list[int]] ): """simple docstring""" A_ = matrix[::-1] return matrix def __snake_case ( __UpperCamelCase : list[list[int]] ): """simple docstring""" A_ = [x[::-1] for x in matrix] return matrix def __snake_case ( __UpperCamelCase : list[list[int]] ): """simple docstring""" for i in matrix: print(*__UpperCamelCase ) if __name__ == "__main__": __a :Any = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 90 counterclockwise:\n') print_matrix(rotate_aa(matrix)) __a :Any = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 180:\n') print_matrix(rotate_aaa(matrix)) __a :Any = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 270 counterclockwise:\n') print_matrix(rotate_aaa(matrix))
329
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor __a :Optional[Any] = logging.get_logger(__name__) class _a ( snake_case_ ): """simple docstring""" def __init__( self : List[str] , *UpperCAmelCase : int , **UpperCAmelCase : Optional[int] ): warnings.warn( "The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use VideoMAEImageProcessor instead." , UpperCAmelCase , ) super().__init__(*UpperCAmelCase , **UpperCAmelCase )
329
1
"""simple docstring""" import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand _snake_case = ( '4S 3H 2C 7S 5H', '9D 8H 2C 6S 7H', '2D 6D 9D TH 7D', 'TC 8C 2S JH 6C', 'JH 8S TH AH QH', 'TS KS 5S 9S AC', 'KD 6S 9D TH AD', 'KS 8D 4D 9S 4S', # pair '8C 4S KH JS 4D', # pair 'QH 8H KD JH 8S', # pair 'KC 4H KS 2H 8D', # pair 'KD 4S KC 3H 8S', # pair 'AH 8S AS KC JH', # pair '3H 4C 4H 3S 2H', # 2 pairs '5S 5D 2C KH KH', # 2 pairs '3C KH 5D 5S KH', # 2 pairs 'AS 3C KH AD KH', # 2 pairs '7C 7S 3S 7H 5S', # 3 of a kind '7C 7S KH 2H 7H', # 3 of a kind 'AC KH QH AH AS', # 3 of a kind '2H 4D 3C AS 5S', # straight (low ace) '3C 5C 4C 2C 6H', # straight '6S 8S 7S 5H 9H', # straight 'JS QS 9H TS KH', # straight 'QC KH TS JS AH', # straight (high ace) '8C 9C 5C 3C TC', # flush '3S 8S 9S 5S KS', # flush '4C 5C 9C 8C KC', # flush 'JH 8H AH KH QH', # flush '3D 2H 3H 2C 2D', # full house '2H 2C 3S 3H 3D', # full house 'KH KC 3S 3H 3D', # full house 'JC 6H JS JD JH', # 4 of a kind 'JC 7H JS JD JH', # 4 of a kind 'JC KH JS JD JH', # 4 of a kind '2S AS 4S 5S 3S', # straight flush (low ace) '2D 6D 3D 4D 5D', # straight flush '5C 6C 3C 7C 4C', # straight flush 'JH 9H TH KH QH', # straight flush 'JH AH TH KH QH', # royal flush (high ace straight flush) ) _snake_case = ( ('2H 3H 4H 5H 6H', 'KS AS TS QS JS', 'Loss'), ('2H 3H 4H 5H 6H', 'AS AD AC AH JD', 'Win'), ('AS AH 2H AD AC', 'JS JD JC JH 3D', 'Win'), ('2S AH 2H AS AC', 'JS JD JC JH AD', 'Loss'), ('2S AH 2H AS AC', '2H 3H 5H 6H 7H', 'Win'), ('AS 3S 4S 8S 2S', '2H 3H 5H 6H 7H', 'Win'), ('2H 3H 5H 6H 7H', '2S 3H 4H 5S 6C', 'Win'), ('2S 3H 4H 5S 6C', '3D 4C 5H 6H 2S', 'Tie'), ('2S 3H 4H 5S 6C', 'AH AC 5H 6H AS', 'Win'), ('2S 2H 4H 5S 4C', 'AH AC 5H 6H AS', 'Loss'), ('2S 2H 4H 5S 4C', 'AH AC 5H 6H 7S', 'Win'), ('6S AD 7H 4S AS', 'AH AC 5H 6H 7S', 'Loss'), ('2S AH 4H 5S KC', 'AH AC 5H 6H 7S', 'Loss'), ('2S 3H 6H 7S 9C', '7H 3C TH 6H 9S', 'Loss'), ('4S 5H 6H TS AC', '3S 5H 6H TS AC', 'Win'), ('2S AH 4H 5S 6C', 'AD 4C 5H 6H 2C', 'Tie'), ('AS AH 3H AD AC', 'AS AH 2H AD AC', 'Win'), ('AH AC 5H 5C QS', 'AH AC 5H 5C KS', 'Loss'), ('AH AC 5H 5C QS', 'KH KC 5H 5C QS', 'Win'), ('7C 7S KH 2H 7H', '3C 3S AH 2H 3H', 'Win'), ('3C 3S AH 2H 3H', '7C 7S KH 2H 7H', 'Loss'), ('6H 5H 4H 3H 2H', '5H 4H 3H 2H AH', 'Win'), ('5H 4H 3H 2H AH', '5H 4H 3H 2H AH', 'Tie'), ('5H 4H 3H 2H AH', '6H 5H 4H 3H 2H', 'Loss'), ('AH AD KS KC AC', 'AH KD KH AC KC', 'Win'), ('2H 4D 3C AS 5S', '2H 4D 3C 6S 5S', 'Loss'), ('2H 3S 3C 3H 2S', '3S 3C 2S 2H 2D', 'Win'), ('4D 6D 5D 2D JH', '3S 8S 3H TC KH', 'Loss'), ('4S 6C 8S 3S 7S', 'AD KS 2D 7D 7C', 'Loss'), ('6S 4C 7H 8C 3H', '5H JC AH 9D 9C', 'Loss'), ('9D 9H JH TC QH', '3C 2S JS 5C 7H', 'Win'), ('2H TC 8S AD 9S', '4H TS 7H 2C 5C', 'Win'), ('9D 3S 2C 7S 7C', 'JC TD 3C TC 9H', 'Loss'), ) _snake_case = ( ('2H 3H 4H 5H 6H', True), ('AS AH 2H AD AC', False), ('2H 3H 5H 6H 7H', True), ('KS AS TS QS JS', True), ('8H 9H QS JS TH', False), ('AS 3S 4S 8S 2S', True), ) _snake_case = ( ('2H 3H 4H 5H 6H', True), ('AS AH 2H AD AC', False), ('2H 3H 5H 6H 7H', False), ('KS AS TS QS JS', True), ('8H 9H QS JS TH', True), ) _snake_case = ( ('2H 4D 3C AS 5S', True, [5, 4, 3, 2, 14]), ('2H 5D 3C AS 5S', False, [14, 5, 5, 3, 2]), ('JH QD KC AS TS', False, [14, 13, 12, 11, 10]), ('9D 3S 2C 7S 7C', False, [9, 7, 7, 3, 2]), ) _snake_case = ( ('JH AH TH KH QH', 0), ('JH 9H TH KH QH', 0), ('JC KH JS JD JH', 7), ('KH KC 3S 3H 3D', 6), ('8C 9C 5C 3C TC', 0), ('JS QS 9H TS KH', 0), ('7C 7S KH 2H 7H', 3), ('3C KH 5D 5S KH', 2), ('QH 8H KD JH 8S', 1), ('2D 6D 9D TH 7D', 0), ) _snake_case = ( ('JH AH TH KH QH', 23), ('JH 9H TH KH QH', 22), ('JC KH JS JD JH', 21), ('KH KC 3S 3H 3D', 20), ('8C 9C 5C 3C TC', 19), ('JS QS 9H TS KH', 18), ('7C 7S KH 2H 7H', 17), ('3C KH 5D 5S KH', 16), ('QH 8H KD JH 8S', 15), ('2D 6D 9D TH 7D', 14), ) def lowerCAmelCase__ ( ): '''simple docstring''' _a , _a : Any = randrange(len(UpperCamelCase__ ) ), randrange(len(UpperCamelCase__ ) ) _a : Any = ["""Loss""", """Tie""", """Win"""][(play >= oppo) + (play > oppo)] _a , _a : List[str] = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def lowerCAmelCase__ ( UpperCamelCase__ = 1_0_0 ): '''simple docstring''' return (generate_random_hand() for _ in range(UpperCamelCase__ )) @pytest.mark.parametrize("""hand, expected""" , UpperCamelCase__ ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' assert PokerHand(UpperCamelCase__ )._is_flush() == expected @pytest.mark.parametrize("""hand, expected""" , UpperCamelCase__ ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' assert PokerHand(UpperCamelCase__ )._is_straight() == expected @pytest.mark.parametrize("""hand, expected, card_values""" , UpperCamelCase__ ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : List[Any] = PokerHand(UpperCamelCase__ ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize("""hand, expected""" , UpperCamelCase__ ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' assert PokerHand(UpperCamelCase__ )._is_same_kind() == expected @pytest.mark.parametrize("""hand, expected""" , UpperCamelCase__ ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' assert PokerHand(UpperCamelCase__ )._hand_type == expected @pytest.mark.parametrize("""hand, other, expected""" , UpperCamelCase__ ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' assert PokerHand(UpperCamelCase__ ).compare_with(PokerHand(UpperCamelCase__ ) ) == expected @pytest.mark.parametrize("""hand, other, expected""" , generate_random_hands() ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' assert PokerHand(UpperCamelCase__ ).compare_with(PokerHand(UpperCamelCase__ ) ) == expected def lowerCAmelCase__ ( ): '''simple docstring''' _a : Dict = [PokerHand(UpperCamelCase__ ) for hand in SORTED_HANDS] _a : Tuple = poker_hands.copy() shuffle(UpperCamelCase__ ) _a : Union[str, Any] = chain(sorted(UpperCamelCase__ ) ) for index, hand in enumerate(UpperCamelCase__ ): assert hand == poker_hands[index] def lowerCAmelCase__ ( ): '''simple docstring''' # Test that five high straights are compared correctly. _a : Optional[Any] = [PokerHand("""2D AC 3H 4H 5S""" ), PokerHand("""2S 3H 4H 5S 6C""" )] pokerhands.sort(reverse=UpperCamelCase__ ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def lowerCAmelCase__ ( ): '''simple docstring''' # Multiple calls to five_high_straight function should still return True # and shouldn't mutate the list in every call other than the first. _a : List[Any] = PokerHand("""2C 4S AS 3D 5C""" ) _a : List[Any] = True _a : List[Any] = [5, 4, 3, 2, 1_4] for _ in range(1_0 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def lowerCAmelCase__ ( ): '''simple docstring''' # Problem number 54 from Project Euler # Testing from poker_hands.txt file _a : str = 0 _a : List[Any] = os.path.abspath(os.path.dirname(UpperCamelCase__ ) ) _a : Any = os.path.join(UpperCamelCase__ , """poker_hands.txt""" ) with open(UpperCamelCase__ ) as file_hand: for line in file_hand: _a : Optional[int] = line[:1_4].strip() _a : Dict = line[1_5:].strip() _a , _a : int = PokerHand(UpperCamelCase__ ), PokerHand(UpperCamelCase__ ) _a : Optional[int] = player.compare_with(UpperCamelCase__ ) if output == "Win": answer += 1 assert answer == 3_7_6
294
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _snake_case = { 'configuration_transfo_xl': ['TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TransfoXLConfig'], 'tokenization_transfo_xl': ['TransfoXLCorpus', 'TransfoXLTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ 'TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'AdaptiveEmbedding', 'TransfoXLForSequenceClassification', 'TransfoXLLMHeadModel', 'TransfoXLModel', 'TransfoXLPreTrainedModel', 'load_tf_weights_in_transfo_xl', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ 'TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFAdaptiveEmbedding', 'TFTransfoXLForSequenceClassification', 'TFTransfoXLLMHeadModel', 'TFTransfoXLMainLayer', 'TFTransfoXLModel', 'TFTransfoXLPreTrainedModel', ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
294
1
import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ , unittest.TestCase): _UpperCamelCase:int = CpmAntTokenizer _UpperCamelCase:str = False def _snake_case ( self )-> Dict: super().setUp() lowerCamelCase_ =[ """<d>""", """</d>""", """<s>""", """</s>""", """</_>""", """<unk>""", """<pad>""", """</n>""", """我""", """是""", """C""", """P""", """M""", """A""", """n""", """t""", ] lowerCamelCase_ =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) @tooslow def _snake_case ( self )-> str: lowerCamelCase_ =CpmAntTokenizer.from_pretrained("""openbmb/cpm-ant-10b""" ) lowerCamelCase_ ="""今天天气真好!""" lowerCamelCase_ =["""今天""", """天气""", """真""", """好""", """!"""] lowerCamelCase_ =tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCamelCase_ ="""今天天气真好!""" lowerCamelCase_ =[tokenizer.bos_token] + tokens lowerCamelCase_ =[6, 9802, 1_4962, 2082, 831, 244] self.assertListEqual(tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) lowerCamelCase_ =tokenizer.decode(_SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
368
import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() __A : List[Any] = logging.get_logger(__name__) __A : List[Any] = [ ['attention', 'attn'], ['encoder_attention', 'encoder_attn'], ['q_lin', 'q_proj'], ['k_lin', 'k_proj'], ['v_lin', 'v_proj'], ['out_lin', 'out_proj'], ['norm_embeddings', 'layernorm_embedding'], ['position_embeddings', 'embed_positions'], ['embeddings', 'embed_tokens'], ['ffn.lin', 'fc'], ] def __UpperCamelCase ( _A : Optional[int] ) ->List[str]: """simple docstring""" if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: lowerCamelCase_ =k.replace(_A , _A ) if k.startswith("""encoder""" ): lowerCamelCase_ =k.replace(""".attn""" , """.self_attn""" ) lowerCamelCase_ =k.replace("""norm1""" , """self_attn_layer_norm""" ) lowerCamelCase_ =k.replace("""norm2""" , """final_layer_norm""" ) elif k.startswith("""decoder""" ): lowerCamelCase_ =k.replace("""norm1""" , """self_attn_layer_norm""" ) lowerCamelCase_ =k.replace("""norm2""" , """encoder_attn_layer_norm""" ) lowerCamelCase_ =k.replace("""norm3""" , """final_layer_norm""" ) return k def __UpperCamelCase ( _A : Union[str, Any] ) ->Optional[int]: """simple docstring""" lowerCamelCase_ =[ """model.encoder.layernorm_embedding.weight""", """model.encoder.layernorm_embedding.bias""", """model.decoder.layernorm_embedding.weight""", """model.decoder.layernorm_embedding.bias""", ] for k in keys: lowerCamelCase_ =sd.pop(_A ) lowerCamelCase_ =k.replace("""layernorm_embedding""" , """layer_norm""" ) assert new_k not in sd lowerCamelCase_ =v __A : Any = ['START'] @torch.no_grad() def __UpperCamelCase ( _A : List[Any] , _A : Union[str, Any] , _A : List[str] ) ->List[str]: """simple docstring""" lowerCamelCase_ =torch.load(_A , map_location="""cpu""" ) lowerCamelCase_ =model["""model"""] lowerCamelCase_ =BlenderbotConfig.from_json_file(_A ) lowerCamelCase_ =BlenderbotForConditionalGeneration(_A ) lowerCamelCase_ =m.model.state_dict().keys() lowerCamelCase_ =[] lowerCamelCase_ ={} for k, v in sd.items(): if k in IGNORE_KEYS: continue lowerCamelCase_ =rename_state_dict_key(_A ) if new_k not in valid_keys: failures.append([k, new_k] ) else: lowerCamelCase_ =v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(_A ) m.model.load_state_dict(_A , strict=_A ) m.half() m.save_pretrained(_A ) if __name__ == "__main__": __A : Any = argparse.ArgumentParser() # Required parameters parser.add_argument('--src_path', type=str, help='like blenderbot-model.bin') parser.add_argument('--save_dir', default='hf_blenderbot', type=str, help='Where to save converted model.') parser.add_argument( '--hf_config_json', default='blenderbot-3b-config.json', type=str, help='Path to config to use' ) __A : str = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
49
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL A_ : Tuple = logging.get_logger(__name__) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any: '''simple docstring''' __UpperCAmelCase = b.T __UpperCAmelCase = np.sum(np.square(SCREAMING_SNAKE_CASE ) , axis=1 ) __UpperCAmelCase = np.sum(np.square(SCREAMING_SNAKE_CASE ) , axis=0 ) __UpperCAmelCase = np.matmul(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __UpperCAmelCase = aa[:, None] - 2 * ab + ba[None, :] return d def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' __UpperCAmelCase = x.reshape(-1 , 3 ) __UpperCAmelCase = squared_euclidean_distance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return np.argmin(SCREAMING_SNAKE_CASE , axis=1 ) class A_ ( _a ): '''simple docstring''' a__ = ["pixel_values"] def __init__(self , lowercase__ = None , lowercase__ = True , lowercase__ = None , lowercase__ = PILImageResampling.BILINEAR , lowercase__ = True , lowercase__ = True , **lowercase__ , ) -> None: super().__init__(**lowercase__ ) __UpperCAmelCase = size if size is not None else {'''height''': 256, '''width''': 256} __UpperCAmelCase = get_size_dict(lowercase__ ) __UpperCAmelCase = np.array(lowercase__ ) if clusters is not None else None __UpperCAmelCase = do_resize __UpperCAmelCase = size __UpperCAmelCase = resample __UpperCAmelCase = do_normalize __UpperCAmelCase = do_color_quantize def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ = PILImageResampling.BILINEAR , lowercase__ = None , **lowercase__ , ) -> np.ndarray: __UpperCAmelCase = get_size_dict(lowercase__ ) if "height" not in size or "width" not in size: raise ValueError(F'''Size dictionary must contain both height and width keys. Got {size.keys()}''' ) return resize( lowercase__ , size=(size['''height'''], size['''width''']) , resample=lowercase__ , data_format=lowercase__ , **lowercase__ ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ = None , ) -> np.ndarray: __UpperCAmelCase = rescale(image=lowercase__ , scale=1 / 127.5 , data_format=lowercase__ ) __UpperCAmelCase = image - 1 return image def lowerCAmelCase_ (self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = ChannelDimension.FIRST , **lowercase__ , ) -> PIL.Image.Image: __UpperCAmelCase = do_resize if do_resize is not None else self.do_resize __UpperCAmelCase = size if size is not None else self.size __UpperCAmelCase = get_size_dict(lowercase__ ) __UpperCAmelCase = resample if resample is not None else self.resample __UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize __UpperCAmelCase = do_color_quantize if do_color_quantize is not None else self.do_color_quantize __UpperCAmelCase = clusters if clusters is not None else self.clusters __UpperCAmelCase = np.array(lowercase__ ) __UpperCAmelCase = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_color_quantize and clusters is None: raise ValueError('''Clusters must be specified if do_color_quantize is True.''' ) # All transformations expect numpy arrays. __UpperCAmelCase = [to_numpy_array(lowercase__ ) for image in images] if do_resize: __UpperCAmelCase = [self.resize(image=lowercase__ , size=lowercase__ , resample=lowercase__ ) for image in images] if do_normalize: __UpperCAmelCase = [self.normalize(image=lowercase__ ) for image in images] if do_color_quantize: __UpperCAmelCase = [to_channel_dimension_format(lowercase__ , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) __UpperCAmelCase = np.array(lowercase__ ) __UpperCAmelCase = color_quantize(lowercase__ , lowercase__ ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) __UpperCAmelCase = images.shape[0] __UpperCAmelCase = images.reshape(lowercase__ , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. __UpperCAmelCase = list(lowercase__ ) else: __UpperCAmelCase = [to_channel_dimension_format(lowercase__ , lowercase__ ) for image in images] __UpperCAmelCase = {'''input_ids''': images} return BatchFeature(data=lowercase__ , tensor_type=lowercase__ )
333
import doctest from collections import deque import numpy as np class A_ : '''simple docstring''' def __init__(self ) -> None: __UpperCAmelCase = [2, 1, 2, -1] __UpperCAmelCase = [1, 2, 3, 4] def lowerCAmelCase_ (self ) -> list[float]: __UpperCAmelCase = len(self.first_signal ) __UpperCAmelCase = len(self.second_signal ) __UpperCAmelCase = max(lowercase__ , lowercase__ ) # create a zero matrix of max_length x max_length __UpperCAmelCase = [[0] * max_length for i in range(lowercase__ )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(lowercase__ ): __UpperCAmelCase = deque(self.second_signal ) rotated_signal.rotate(lowercase__ ) for j, item in enumerate(lowercase__ ): matrix[i][j] += item # multiply the matrix with the first signal __UpperCAmelCase = np.matmul(np.transpose(lowercase__ ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(lowercase__ , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
333
1
import math def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(__lowerCamelCase ) def A__ ( __lowerCamelCase = 1 / 1_23_45 ): SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 3 while True: SCREAMING_SNAKE_CASE_ = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = int(__lowerCamelCase ) total_partitions += 1 if check_partition_perfect(__lowerCamelCase ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(__lowerCamelCase ) integer += 1 if __name__ == "__main__": print(F"""{solution() = }""")
257
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer __UpperCAmelCase = ["bert-base-uncased", "bert-base-cased"] __UpperCAmelCase = "hf-internal-testing/tiny-bert-tf-only" if is_tf_available(): class UpperCamelCase__ ( tf.keras.Model ): """simple docstring""" def __init__( self , _A ) -> int: super().__init__() SCREAMING_SNAKE_CASE_ = tokenizer SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained(_A ) SCREAMING_SNAKE_CASE_ = TFAutoModel.from_config(_A ) def _UpperCamelCase ( self , _A ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = self.tokenizer(_A ) SCREAMING_SNAKE_CASE_ = self.bert(**_A ) return out["pooler_output"] @require_tf @require_tensorflow_text class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def _UpperCamelCase ( self ) -> Optional[Any]: super().setUp() SCREAMING_SNAKE_CASE_ = [ BertTokenizer.from_pretrained(_A ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false SCREAMING_SNAKE_CASE_ = [TFBertTokenizer.from_pretrained(_A ) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(_A , use_fast_bert_tokenizer=_A ) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers ) == len(self.tf_tokenizers ) SCREAMING_SNAKE_CASE_ = [ '''This is a straightforward English test sentence.''', '''This one has some weird characters\rto\nsee\r\nif those\u00E9break things.''', '''Now we\'re going to add some Chinese: 一 二 三 一二三''', '''And some much more rare Chinese: 齉 堃 齉堃''', '''Je vais aussi écrire en français pour tester les accents''', '''Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ''', ] SCREAMING_SNAKE_CASE_ = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def _UpperCamelCase ( self ) -> str: for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in (self.test_sentences, self.paired_sentences): SCREAMING_SNAKE_CASE_ = tokenizer(_A , return_tensors='''tf''' , padding='''longest''' ) SCREAMING_SNAKE_CASE_ = tf_tokenizer(_A ) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) ) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa ) == tf_outputs[key] ) ) @slow def _UpperCamelCase ( self ) -> Dict: for tf_tokenizer in self.tf_tokenizers: SCREAMING_SNAKE_CASE_ = tf_tokenizer(self.paired_sentences ) SCREAMING_SNAKE_CASE_ = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa ) == separated_outputs[key] ) ) @slow def _UpperCamelCase ( self ) -> int: for tf_tokenizer in self.tf_tokenizers: SCREAMING_SNAKE_CASE_ = tf.function(_A ) for test_inputs in (self.test_sentences, self.paired_sentences): SCREAMING_SNAKE_CASE_ = tf.constant(_A ) SCREAMING_SNAKE_CASE_ = compiled_tokenizer(_A ) SCREAMING_SNAKE_CASE_ = tf_tokenizer(_A ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def _UpperCamelCase ( self ) -> List[str]: for tf_tokenizer in self.tf_tokenizers: SCREAMING_SNAKE_CASE_ = ModelToSave(tokenizer=_A ) SCREAMING_SNAKE_CASE_ = tf.convert_to_tensor(self.test_sentences ) SCREAMING_SNAKE_CASE_ = model(_A ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: SCREAMING_SNAKE_CASE_ = Path(_A ) / '''saved.model''' model.save(_A ) SCREAMING_SNAKE_CASE_ = tf.keras.models.load_model(_A ) SCREAMING_SNAKE_CASE_ = loaded_model(_A ) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ) , 1E-5 )
257
1
'''simple docstring''' from typing import Any def _A ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): _validation( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ) # Creates data structures and fill initial step lowercase__ = {} lowercase__ = {} for state in states_space: lowercase__ = observations_space[0] lowercase__ = ( initial_probabilities[state] * emission_probabilities[state][observation] ) lowercase__ = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(lowercase__ ) ): lowercase__ = observations_space[o] lowercase__ = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function lowercase__ = """""" lowercase__ = -1 for k_state in states_space: lowercase__ = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: lowercase__ = probability lowercase__ = k_state # Update probabilities and pointers dicts lowercase__ = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) lowercase__ = arg_max # The final observation lowercase__ = observations_space[len(lowercase__ ) - 1] # argmax for given final observation lowercase__ = """""" lowercase__ = -1 for k_state in states_space: lowercase__ = probabilities[(k_state, final_observation)] if probability > max_probability: lowercase__ = probability lowercase__ = k_state lowercase__ = arg_max # Process pointers backwards lowercase__ = last_state lowercase__ = [] for o in range(len(lowercase__ ) - 1 , -1 , -1 ): result.append(lowercase__ ) lowercase__ = pointers[previous, observations_space[o]] result.reverse() return result def _A ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): _validate_not_empty( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ) _validate_lists(lowercase__ , lowercase__ ) _validate_dicts( lowercase__ , lowercase__ , lowercase__ ) def _A ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError("""There's an empty parameter""" ) def _A ( lowercase__ , lowercase__ ): _validate_list(lowercase__ , """observations_space""" ) _validate_list(lowercase__ , """states_space""" ) def _A ( lowercase__ , lowercase__ ): if not isinstance(_object , lowercase__ ): lowercase__ = f'''{var_name} must be a list''' raise ValueError(lowercase__ ) else: for x in _object: if not isinstance(lowercase__ , lowercase__ ): lowercase__ = f'''{var_name} must be a list of strings''' raise ValueError(lowercase__ ) def _A ( lowercase__ , lowercase__ , lowercase__ , ): _validate_dict(lowercase__ , """initial_probabilities""" , lowercase__ ) _validate_nested_dict(lowercase__ , """transition_probabilities""" ) _validate_nested_dict(lowercase__ , """emission_probabilities""" ) def _A ( lowercase__ , lowercase__ ): _validate_dict(_object , lowercase__ , lowercase__ ) for x in _object.values(): _validate_dict(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) def _A ( lowercase__ , lowercase__ , lowercase__ , lowercase__ = False ): if not isinstance(_object , lowercase__ ): lowercase__ = f'''{var_name} must be a dict''' raise ValueError(lowercase__ ) if not all(isinstance(lowercase__ , lowercase__ ) for x in _object ): lowercase__ = f'''{var_name} all keys must be strings''' raise ValueError(lowercase__ ) if not all(isinstance(lowercase__ , lowercase__ ) for x in _object.values() ): lowercase__ = """nested dictionary """ if nested else """""" lowercase__ = f'''{var_name} {nested_text}all values must be {value_type.__name__}''' raise ValueError(lowercase__ ) if __name__ == "__main__": from doctest import testmod testmod()
164
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __A = { "configuration_blip": [ "BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlipConfig", "BlipTextConfig", "BlipVisionConfig", ], "processing_blip": ["BlipProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["BlipImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "BLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "BlipModel", "BlipPreTrainedModel", "BlipForConditionalGeneration", "BlipForQuestionAnswering", "BlipVisionModel", "BlipTextModel", "BlipForImageTextRetrieval", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFBlipModel", "TFBlipPreTrainedModel", "TFBlipForConditionalGeneration", "TFBlipForQuestionAnswering", "TFBlipVisionModel", "TFBlipTextModel", "TFBlipForImageTextRetrieval", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
164
1
"""simple docstring""" import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py __A = 'src/diffusers' # Matches is_xxx_available() __A = re.compile(r'is\_([a-z_]*)_available\(\)') # Matches from xxx import bla __A = re.compile(r'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') __A = '\n{0} = None\n' __A = '\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, {1})\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, {1})\n' __A = '\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n' def _lowerCamelCase(__UpperCamelCase ) -> List[str]: _lowerCAmelCase =_re_backend.findall(__UpperCamelCase ) if len(__UpperCamelCase ) == 0: return None return "_and_".join(__UpperCamelCase ) def _lowerCamelCase() -> int: with open(os.path.join(__UpperCamelCase , """__init__.py""" ) , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: _lowerCAmelCase =f.readlines() # Get to the point we do the actual imports for type checking _lowerCAmelCase =0 _lowerCAmelCase ={} # Go through the end of the file while line_index < len(__UpperCamelCase ): # If the line contains is_backend_available, we grab all objects associated with the `else` block _lowerCAmelCase =find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith("""else:""" ): line_index += 1 line_index += 1 _lowerCAmelCase =[] # Until we unindent, add backend objects to the list while line_index < len(__UpperCamelCase ) and len(lines[line_index] ) > 1: _lowerCAmelCase =lines[line_index] _lowerCAmelCase =_re_single_line_import.search(__UpperCamelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(__UpperCamelCase ) > 0: _lowerCAmelCase =objects else: line_index += 1 return backend_specific_objects def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> Optional[int]: if name.isupper(): return DUMMY_CONSTANT.format(__UpperCamelCase ) elif name.islower(): return DUMMY_FUNCTION.format(__UpperCamelCase , __UpperCamelCase ) else: return DUMMY_CLASS.format(__UpperCamelCase , __UpperCamelCase ) def _lowerCamelCase(__UpperCamelCase=None ) -> str: if backend_specific_objects is None: _lowerCAmelCase =read_init() # For special correspondence backend to module name as used in the function requires_modulename _lowerCAmelCase ={} for backend, objects in backend_specific_objects.items(): _lowerCAmelCase ="""[""" + """, """.join(F'''"{b}"''' for b in backend.split("""_and_""" ) ) + """]""" _lowerCAmelCase ="""# This file is autogenerated by the command `make fix-copies`, do not edit.\n""" dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(__UpperCamelCase , __UpperCamelCase ) for o in objects] ) _lowerCAmelCase =dummy_file return dummy_files def _lowerCamelCase(__UpperCamelCase=False ) -> int: _lowerCAmelCase =create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py _lowerCAmelCase ={"""torch""": """pt"""} # Locate actual dummy modules and read their content. _lowerCAmelCase =os.path.join(__UpperCamelCase , """utils""" ) _lowerCAmelCase ={ backend: os.path.join(__UpperCamelCase , F'''dummy_{short_names.get(__UpperCamelCase , __UpperCamelCase )}_objects.py''' ) for backend in dummy_files.keys() } _lowerCAmelCase ={} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(__UpperCamelCase ): with open(__UpperCamelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: _lowerCAmelCase =f.read() else: _lowerCAmelCase ="""""" for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( F'''Updating diffusers.utils.dummy_{short_names.get(__UpperCamelCase , __UpperCamelCase )}_objects.py as the main ''' """__init__ has new objects.""" ) with open(dummy_file_paths[backend] , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.write(dummy_files[backend] ) else: raise ValueError( """The main __init__ has objects that are not present in """ F'''diffusers.utils.dummy_{short_names.get(__UpperCamelCase , __UpperCamelCase )}_objects.py. Run `make fix-copies` ''' """to fix this.""" ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') __A = parser.parse_args() check_dummies(args.fix_and_overwrite)
341
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A = { 'configuration_swinv2': ['SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Swinv2Config'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ 'SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Swinv2ForImageClassification', 'Swinv2ForMaskedImageModeling', 'Swinv2Model', 'Swinv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
341
1
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging __SCREAMING_SNAKE_CASE :Dict = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE :Optional[int] = { '''bigscience/bloom''': '''https://huggingface.co/bigscience/bloom/resolve/main/config.json''', '''bigscience/bloom-560m''': '''https://huggingface.co/bigscience/bloom-560m/blob/main/config.json''', '''bigscience/bloom-1b1''': '''https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json''', '''bigscience/bloom-1b7''': '''https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json''', '''bigscience/bloom-3b''': '''https://huggingface.co/bigscience/bloom-3b/blob/main/config.json''', '''bigscience/bloom-7b1''': '''https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json''', } class A_ ( lowerCAmelCase_ ): _lowerCamelCase : str = """bloom""" _lowerCamelCase : Tuple = ["""past_key_values"""] _lowerCamelCase : int = { """num_hidden_layers""": """n_layer""", """num_attention_heads""": """n_head""", } def __init__( self : str , snake_case_ : Dict=2_5_0_8_8_0 , snake_case_ : int=6_4 , snake_case_ : Union[str, Any]=2 , snake_case_ : Optional[int]=8 , snake_case_ : Optional[Any]=1e-5 , snake_case_ : str=0.0_2 , snake_case_ : Tuple=True , snake_case_ : Tuple=1 , snake_case_ : List[str]=2 , snake_case_ : List[str]=False , snake_case_ : List[Any]=0.0 , snake_case_ : Tuple=0.0 , snake_case_ : Dict=1 , snake_case_ : Tuple=False , **snake_case_ : Any , ): _UpperCAmelCase = vocab_size # Backward compatibility with n_embed kwarg _UpperCAmelCase = kwargs.pop("n_embed" , snake_case_ ) _UpperCAmelCase = hidden_size if n_embed is None else n_embed _UpperCAmelCase = n_layer _UpperCAmelCase = n_head _UpperCAmelCase = layer_norm_epsilon _UpperCAmelCase = initializer_range _UpperCAmelCase = use_cache _UpperCAmelCase = pretraining_tp _UpperCAmelCase = apply_residual_connection_post_layernorm _UpperCAmelCase = hidden_dropout _UpperCAmelCase = attention_dropout _UpperCAmelCase = bos_token_id _UpperCAmelCase = eos_token_id _UpperCAmelCase = slow_but_exact super().__init__(bos_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_ ) class A_ ( lowerCAmelCase_ ): _lowerCamelCase : Dict = version.parse("""1.12""" ) def __init__( self : str , snake_case_ : PretrainedConfig , snake_case_ : str = "default" , snake_case_ : List[PatchingSpec] = None , snake_case_ : bool = False , ): super().__init__(snake_case_ , task=snake_case_ , patching_specs=snake_case_ , use_past=snake_case_ ) if not getattr(self._config , "pad_token_id" , snake_case_ ): # TODO: how to do that better? _UpperCAmelCase = 0 @property def lowercase ( self : Optional[int] ): _UpperCAmelCase = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(snake_case_ , direction="inputs" , inverted_values_shape=snake_case_ ) _UpperCAmelCase = {0: "batch", 1: "past_sequence + sequence"} else: _UpperCAmelCase = {0: "batch", 1: "sequence"} return common_inputs @property def lowercase ( self : List[Any] ): return self._config.n_layer @property def lowercase ( self : Optional[int] ): return self._config.n_head @property def lowercase ( self : List[Any] ): return 1e-3 def lowercase ( self : Optional[int] , snake_case_ : "PreTrainedTokenizer" , snake_case_ : int = -1 , snake_case_ : int = -1 , snake_case_ : bool = False , snake_case_ : Optional["TensorType"] = None , ): _UpperCAmelCase = super(snake_case_ , self ).generate_dummy_inputs( snake_case_ , batch_size=snake_case_ , seq_length=snake_case_ , is_pair=snake_case_ , framework=snake_case_ ) # We need to order the input in the way they appears in the forward() _UpperCAmelCase = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch _UpperCAmelCase , _UpperCAmelCase = common_inputs["input_ids"].shape # Not using the same length for past_key_values _UpperCAmelCase = seqlen + 2 _UpperCAmelCase = self._config.hidden_size // self.num_attention_heads _UpperCAmelCase = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) _UpperCAmelCase = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) _UpperCAmelCase = [ (torch.zeros(snake_case_ ), torch.zeros(snake_case_ )) for _ in range(self.num_layers ) ] _UpperCAmelCase = common_inputs["attention_mask"] if self.use_past: _UpperCAmelCase = ordered_inputs["attention_mask"].dtype _UpperCAmelCase = torch.cat( [ordered_inputs["attention_mask"], torch.ones(snake_case_ , snake_case_ , dtype=snake_case_ )] , dim=1 ) return ordered_inputs @property def lowercase ( self : Optional[Any] ): return 1_3
22
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available lowerCAmelCase__ = {'configuration_speech_encoder_decoder': ['SpeechEncoderDecoderConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['SpeechEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['FlaxSpeechEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
11
0
'''simple docstring''' import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore A__ : int = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" A__ : Optional[Any] = [file for file in filepaths if file != file.lower()] if upper_files: print(F"""{len(upper_files)} files contain uppercase characters:""") print('''\n'''.join(upper_files) + '''\n''') A__ : Optional[Any] = [file for file in filepaths if ''' ''' in file] if space_files: print(F"""{len(space_files)} files contain space characters:""") print('''\n'''.join(space_files) + '''\n''') A__ : Optional[Any] = [file for file in filepaths if '''-''' in file] if hyphen_files: print(F"""{len(hyphen_files)} files contain hyphen characters:""") print('''\n'''.join(hyphen_files) + '''\n''') A__ : List[str] = [file for file in filepaths if os.sep not in file] if nodir_files: print(F"""{len(nodir_files)} files are not in a directory:""") print('''\n'''.join(nodir_files) + '''\n''') A__ : List[Any] = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available A__ : int = { '''configuration_groupvit''': [ '''GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GroupViTConfig''', '''GroupViTOnnxConfig''', '''GroupViTTextConfig''', '''GroupViTVisionConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Tuple = [ '''GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GroupViTModel''', '''GroupViTPreTrainedModel''', '''GroupViTTextModel''', '''GroupViTVisionModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Optional[int] = [ '''TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFGroupViTModel''', '''TFGroupViTPreTrainedModel''', '''TFGroupViTTextModel''', '''TFGroupViTVisionModel''', ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys A__ : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
0
1
'''simple docstring''' import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class a ( _lowerCamelCase ): snake_case_ = (PNDMScheduler,) snake_case_ = (("num_inference_steps", 50),) def A_ ( self : Tuple , **lowercase_ : Tuple ): snake_case_ = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**lowercase_ ) return config def A_ ( self : Any , lowercase_ : Optional[int]=0 , **lowercase_ : int ): snake_case_ = dict(self.forward_default_kwargs ) snake_case_ = kwargs.pop('''num_inference_steps''' , lowercase_ ) snake_case_ = self.dummy_sample snake_case_ = 0.1 * sample snake_case_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: snake_case_ = self.get_scheduler_config(**lowercase_ ) snake_case_ = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals snake_case_ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_ ) snake_case_ = scheduler_class.from_pretrained(lowercase_ ) new_scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals snake_case_ = dummy_past_residuals[:] snake_case_ = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample snake_case_ = new_scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" snake_case_ = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample snake_case_ = new_scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def A_ ( self : Any ): pass def A_ ( self : Any , lowercase_ : Dict=0 , **lowercase_ : Optional[int] ): snake_case_ = dict(self.forward_default_kwargs ) snake_case_ = kwargs.pop('''num_inference_steps''' , lowercase_ ) snake_case_ = self.dummy_sample snake_case_ = 0.1 * sample snake_case_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: snake_case_ = self.get_scheduler_config() snake_case_ = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals (must be after setting timesteps) snake_case_ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_ ) snake_case_ = scheduler_class.from_pretrained(lowercase_ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowercase_ ) # copy over dummy past residual (must be after setting timesteps) snake_case_ = dummy_past_residuals[:] snake_case_ = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample snake_case_ = new_scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" snake_case_ = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample snake_case_ = new_scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def A_ ( self : Dict , **lowercase_ : str ): snake_case_ = self.scheduler_classes[0] snake_case_ = self.get_scheduler_config(**lowercase_ ) snake_case_ = scheduler_class(**lowercase_ ) snake_case_ = 10 snake_case_ = self.dummy_model() snake_case_ = self.dummy_sample_deter scheduler.set_timesteps(lowercase_ ) for i, t in enumerate(scheduler.prk_timesteps ): snake_case_ = model(lowercase_ , lowercase_ ) snake_case_ = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): snake_case_ = model(lowercase_ , lowercase_ ) snake_case_ = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ ).prev_sample return sample def A_ ( self : Dict ): snake_case_ = dict(self.forward_default_kwargs ) snake_case_ = kwargs.pop('''num_inference_steps''' , lowercase_ ) for scheduler_class in self.scheduler_classes: snake_case_ = self.get_scheduler_config() snake_case_ = scheduler_class(**lowercase_ ) snake_case_ = self.dummy_sample snake_case_ = 0.1 * sample if num_inference_steps is not None and hasattr(lowercase_ , '''set_timesteps''' ): scheduler.set_timesteps(lowercase_ ) elif num_inference_steps is not None and not hasattr(lowercase_ , '''set_timesteps''' ): snake_case_ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) snake_case_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] snake_case_ = dummy_past_residuals[:] snake_case_ = scheduler.step_prk(lowercase_ , 0 , lowercase_ , **lowercase_ ).prev_sample snake_case_ = scheduler.step_prk(lowercase_ , 1 , lowercase_ , **lowercase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) snake_case_ = scheduler.step_plms(lowercase_ , 0 , lowercase_ , **lowercase_ ).prev_sample snake_case_ = scheduler.step_plms(lowercase_ , 1 , lowercase_ , **lowercase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def A_ ( self : List[Any] ): for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=lowercase_ ) def A_ ( self : List[str] ): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowercase_ ) snake_case_ = self.scheduler_classes[0] snake_case_ = self.get_scheduler_config(steps_offset=1 ) snake_case_ = scheduler_class(**lowercase_ ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , ) def A_ ( self : Any ): for beta_start, beta_end in zip([0.0001, 0.001] , [0.002, 0.02] ): self.check_over_configs(beta_start=lowercase_ , beta_end=lowercase_ ) def A_ ( self : List[str] ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowercase_ ) def A_ ( self : str ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowercase_ ) def A_ ( self : str ): for t in [1, 5, 10]: self.check_over_forward(time_step=lowercase_ ) def A_ ( self : str ): for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=lowercase_ ) def A_ ( self : Any ): # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 snake_case_ = 27 for scheduler_class in self.scheduler_classes: snake_case_ = self.dummy_sample snake_case_ = 0.1 * sample snake_case_ = self.get_scheduler_config() snake_case_ = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): snake_case_ = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ ).prev_sample def A_ ( self : Tuple ): with self.assertRaises(lowercase_ ): snake_case_ = self.scheduler_classes[0] snake_case_ = self.get_scheduler_config() snake_case_ = scheduler_class(**lowercase_ ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def A_ ( self : str ): snake_case_ = self.full_loop() snake_case_ = torch.sum(torch.abs(lowercase_ ) ) snake_case_ = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 198.1318 ) < 1e-2 assert abs(result_mean.item() - 0.2580 ) < 1e-3 def A_ ( self : Any ): snake_case_ = self.full_loop(prediction_type='''v_prediction''' ) snake_case_ = torch.sum(torch.abs(lowercase_ ) ) snake_case_ = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 67.3986 ) < 1e-2 assert abs(result_mean.item() - 0.0878 ) < 1e-3 def A_ ( self : Optional[Any] ): # We specify different beta, so that the first alpha is 0.99 snake_case_ = self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.01 ) snake_case_ = torch.sum(torch.abs(lowercase_ ) ) snake_case_ = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 230.0399 ) < 1e-2 assert abs(result_mean.item() - 0.2995 ) < 1e-3 def A_ ( self : str ): # We specify different beta, so that the first alpha is 0.99 snake_case_ = self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.01 ) snake_case_ = torch.sum(torch.abs(lowercase_ ) ) snake_case_ = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 186.9482 ) < 1e-2 assert abs(result_mean.item() - 0.2434 ) < 1e-3
56
from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class a__ ( yaml.SafeLoader ): def __UpperCamelCase ( self : str,_A : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = [self.constructed_objects[key_node] for key_node, _ in node.value] SCREAMING_SNAKE_CASE_ : List[str] = [tuple(_A ) if isinstance(_A,_A ) else key for key in keys] SCREAMING_SNAKE_CASE_ : Optional[int] = Counter(_A ) SCREAMING_SNAKE_CASE_ : Tuple = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(F'Got duplicate yaml keys: {duplicate_keys}' ) def __UpperCamelCase ( self : Tuple,_A : Dict,_A : List[Any]=False ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = super().construct_mapping(_A,deep=_A ) self._check_no_duplicates_on_constructed_node(_A ) return mapping def _snake_case ( lowerCAmelCase : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: SCREAMING_SNAKE_CASE_ : List[Any] = full_content[1:].index("---" ) + 1 SCREAMING_SNAKE_CASE_ : int = "\n".join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(lowerCAmelCase ) class a__ ( A__ ): # class attributes A = {'train_eval_index'} # train-eval-index in the YAML metadata @classmethod def __UpperCamelCase ( cls : Any,_A : Path ): """simple docstring""" with open(_A,encoding="utf-8" ) as readme_file: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = _split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(_A ) else: return cls() def __UpperCamelCase ( self : Dict,_A : Path ): """simple docstring""" if path.exists(): with open(_A,encoding="utf-8" ) as readme_file: SCREAMING_SNAKE_CASE_ : int = readme_file.read() else: SCREAMING_SNAKE_CASE_ : Any = None SCREAMING_SNAKE_CASE_ : int = self._to_readme(_A ) with open(_A,"w",encoding="utf-8" ) as readme_file: readme_file.write(_A ) def __UpperCamelCase ( self : Optional[int],_A : Optional[str] = None ): """simple docstring""" if readme_content is not None: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = _split_yaml_from_readme(_A ) SCREAMING_SNAKE_CASE_ : Tuple = "---\n" + self.to_yaml_string() + "---\n" + content else: SCREAMING_SNAKE_CASE_ : Dict = "---\n" + self.to_yaml_string() + "---\n" return full_content @classmethod def __UpperCamelCase ( cls : Dict,_A : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = yaml.load(_A,Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields SCREAMING_SNAKE_CASE_ : Any = { (key.replace("-","_" ) if key.replace("-","_" ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**_A ) def __UpperCamelCase ( self : Dict ): """simple docstring""" return yaml.safe_dump( { (key.replace("_","-" ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() },sort_keys=_A,allow_unicode=_A,encoding="utf-8",).decode("utf-8" ) __lowerCamelCase : List[Any] = { '''image-classification''': [], '''translation''': [], '''image-segmentation''': [], '''fill-mask''': [], '''automatic-speech-recognition''': [], '''token-classification''': [], '''sentence-similarity''': [], '''audio-classification''': [], '''question-answering''': [], '''summarization''': [], '''zero-shot-classification''': [], '''table-to-text''': [], '''feature-extraction''': [], '''other''': [], '''multiple-choice''': [], '''text-classification''': [], '''text-to-image''': [], '''text2text-generation''': [], '''zero-shot-image-classification''': [], '''tabular-classification''': [], '''tabular-regression''': [], '''image-to-image''': [], '''tabular-to-text''': [], '''unconditional-image-generation''': [], '''text-retrieval''': [], '''text-to-speech''': [], '''object-detection''': [], '''audio-to-audio''': [], '''text-generation''': [], '''conversational''': [], '''table-question-answering''': [], '''visual-question-answering''': [], '''image-to-text''': [], '''reinforcement-learning''': [], '''voice-activity-detection''': [], '''time-series-forecasting''': [], '''document-question-answering''': [], } if __name__ == "__main__": from argparse import ArgumentParser __lowerCamelCase : List[Any] = ArgumentParser(usage='''Validate the yaml metadata block of a README.md file.''') ap.add_argument('''readme_filepath''') __lowerCamelCase : Dict = ap.parse_args() __lowerCamelCase : List[Any] = Path(args.readme_filepath) __lowerCamelCase : Optional[int] = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
18
0
'''simple docstring''' from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
89
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __A : Optional[Any] = logging.get_logger(__name__) def UpperCamelCase_ ( A__ : List[Any] , A__ : str=False ): '''simple docstring''' lowerCAmelCase_ : List[str] = OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith("""head""" ): lowerCAmelCase_ : str = """segformer.encoder.""" + key if key.startswith("""backbone""" ): lowerCAmelCase_ : str = key.replace("""backbone""" , """segformer.encoder""" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 lowerCAmelCase_ : List[str] = key[key.find("""patch_embed""" ) + len("""patch_embed""" )] lowerCAmelCase_ : List[Any] = key.replace(f'patch_embed{idx}' , f'patch_embeddings.{int(A__ )-1}' ) if "norm" in key: lowerCAmelCase_ : Any = key.replace("""norm""" , """layer_norm""" ) if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 lowerCAmelCase_ : Tuple = key[key.find("""segformer.encoder.layer_norm""" ) + len("""segformer.encoder.layer_norm""" )] lowerCAmelCase_ : int = key.replace(f'layer_norm{idx}' , f'layer_norm.{int(A__ )-1}' ) if "layer_norm1" in key: lowerCAmelCase_ : str = key.replace("""layer_norm1""" , """layer_norm_1""" ) if "layer_norm2" in key: lowerCAmelCase_ : Union[str, Any] = key.replace("""layer_norm2""" , """layer_norm_2""" ) if "block" in key: # replace for example block1 by block.0 lowerCAmelCase_ : Any = key[key.find("""block""" ) + len("""block""" )] lowerCAmelCase_ : str = key.replace(f'block{idx}' , f'block.{int(A__ )-1}' ) if "attn.q" in key: lowerCAmelCase_ : List[Any] = key.replace("""attn.q""" , """attention.self.query""" ) if "attn.proj" in key: lowerCAmelCase_ : Optional[int] = key.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in key: lowerCAmelCase_ : str = key.replace("""attn""" , """attention.self""" ) if "fc1" in key: lowerCAmelCase_ : Optional[Any] = key.replace("""fc1""" , """dense1""" ) if "fc2" in key: lowerCAmelCase_ : Optional[Any] = key.replace("""fc2""" , """dense2""" ) if "linear_pred" in key: lowerCAmelCase_ : List[Any] = key.replace("""linear_pred""" , """classifier""" ) if "linear_fuse" in key: lowerCAmelCase_ : Optional[Any] = key.replace("""linear_fuse.conv""" , """linear_fuse""" ) lowerCAmelCase_ : Any = key.replace("""linear_fuse.bn""" , """batch_norm""" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 lowerCAmelCase_ : str = key[key.find("""linear_c""" ) + len("""linear_c""" )] lowerCAmelCase_ : Dict = key.replace(f'linear_c{idx}' , f'linear_c.{int(A__ )-1}' ) if key.startswith("""head""" ): lowerCAmelCase_ : int = key.replace("""head""" , """classifier""" ) lowerCAmelCase_ : int = value return new_state_dict def UpperCamelCase_ ( A__ : int , A__ : Union[str, Any] ): '''simple docstring''' for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) lowerCAmelCase_ : int = state_dict.pop(f'segformer.encoder.block.{i}.{j}.attention.self.kv.weight' ) lowerCAmelCase_ : Optional[int] = state_dict.pop(f'segformer.encoder.block.{i}.{j}.attention.self.kv.bias' ) # next, add keys and values (in that order) to the state dict lowerCAmelCase_ : List[str] = kv_weight[ : config.hidden_sizes[i], : ] lowerCAmelCase_ : Optional[Any] = kv_bias[: config.hidden_sizes[i]] lowerCAmelCase_ : Union[str, Any] = kv_weight[ config.hidden_sizes[i] :, : ] lowerCAmelCase_ : str = kv_bias[ config.hidden_sizes[i] : ] def UpperCamelCase_ ( ): '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCAmelCase_ : Optional[Any] = Image.open(requests.get(A__ , stream=A__ ).raw ) return image @torch.no_grad() def UpperCamelCase_ ( A__ : Optional[Any] , A__ : List[Any] , A__ : Tuple ): '''simple docstring''' lowerCAmelCase_ : str = SegformerConfig() lowerCAmelCase_ : Optional[Any] = False # set attributes based on model_name lowerCAmelCase_ : int = """huggingface/label-files""" if "segformer" in model_name: lowerCAmelCase_ : Optional[int] = model_name[len("""segformer.""" ) : len("""segformer.""" ) + 2] if "ade" in model_name: lowerCAmelCase_ : List[Any] = 1_50 lowerCAmelCase_ : int = """ade20k-id2label.json""" lowerCAmelCase_ : Tuple = (1, 1_50, 1_28, 1_28) elif "city" in model_name: lowerCAmelCase_ : List[str] = 19 lowerCAmelCase_ : Dict = """cityscapes-id2label.json""" lowerCAmelCase_ : List[str] = (1, 19, 1_28, 1_28) else: raise ValueError(f'Model {model_name} not supported' ) elif "mit" in model_name: lowerCAmelCase_ : Dict = True lowerCAmelCase_ : Optional[int] = model_name[4:6] lowerCAmelCase_ : Union[str, Any] = 10_00 lowerCAmelCase_ : int = """imagenet-1k-id2label.json""" lowerCAmelCase_ : Optional[Any] = (1, 10_00) else: raise ValueError(f'Model {model_name} not supported' ) # set config attributes lowerCAmelCase_ : Optional[Any] = json.load(open(hf_hub_download(A__ , A__ , repo_type="""dataset""" ) , """r""" ) ) lowerCAmelCase_ : List[Any] = {int(A__ ): v for k, v in idalabel.items()} lowerCAmelCase_ : List[str] = idalabel lowerCAmelCase_ : List[Any] = {v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": lowerCAmelCase_ : Any = [64, 1_28, 3_20, 5_12] lowerCAmelCase_ : int = 2_56 elif size == "b2": lowerCAmelCase_ : Any = [64, 1_28, 3_20, 5_12] lowerCAmelCase_ : List[str] = 7_68 lowerCAmelCase_ : Any = [3, 4, 6, 3] elif size == "b3": lowerCAmelCase_ : List[str] = [64, 1_28, 3_20, 5_12] lowerCAmelCase_ : Union[str, Any] = 7_68 lowerCAmelCase_ : Union[str, Any] = [3, 4, 18, 3] elif size == "b4": lowerCAmelCase_ : Tuple = [64, 1_28, 3_20, 5_12] lowerCAmelCase_ : Tuple = 7_68 lowerCAmelCase_ : Tuple = [3, 8, 27, 3] elif size == "b5": lowerCAmelCase_ : Union[str, Any] = [64, 1_28, 3_20, 5_12] lowerCAmelCase_ : str = 7_68 lowerCAmelCase_ : Any = [3, 6, 40, 3] else: raise ValueError(f'Size {size} not supported' ) # load image processor (only resize + normalize) lowerCAmelCase_ : List[Any] = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=A__ , align=A__ , do_random_crop=A__ ) # prepare image lowerCAmelCase_ : Optional[Any] = prepare_img() lowerCAmelCase_ : Union[str, Any] = image_processor(images=A__ , return_tensors="""pt""" ).pixel_values logger.info(f'Converting model {model_name}...' ) # load original state dict if encoder_only: lowerCAmelCase_ : str = torch.load(A__ , map_location=torch.device("""cpu""" ) ) else: lowerCAmelCase_ : List[str] = torch.load(A__ , map_location=torch.device("""cpu""" ) )["""state_dict"""] # rename keys lowerCAmelCase_ : Dict = rename_keys(A__ , encoder_only=A__ ) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(A__ , A__ ) # create HuggingFace model and load state dict if encoder_only: lowerCAmelCase_ : Dict = False lowerCAmelCase_ : List[Any] = SegformerForImageClassification(A__ ) else: lowerCAmelCase_ : str = SegformerForSemanticSegmentation(A__ ) model.load_state_dict(A__ ) model.eval() # forward pass lowerCAmelCase_ : Tuple = model(A__ ) lowerCAmelCase_ : Union[str, Any] = outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": lowerCAmelCase_ : Tuple = torch.tensor( [ [[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]], [[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]], [[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]], ] ) elif model_name == "segformer.b1.512x512.ade.160k": lowerCAmelCase_ : List[Any] = torch.tensor( [ [[-7.5820, -8.7231, -8.3215], [-8.0600, -10.3529, -10.0304], [-7.5208, -9.4103, -9.6239]], [[-12.6918, -13.8994, -13.7137], [-13.3196, -15.7523, -15.4789], [-12.9343, -14.8757, -14.9689]], [[-11.1911, -11.9421, -11.3243], [-11.3342, -13.6839, -13.3581], [-10.3909, -12.1832, -12.4858]], ] ) elif model_name == "segformer.b2.512x512.ade.160k": lowerCAmelCase_ : List[Any] = torch.tensor( [ [[-11.8173, -14.3850, -16.3128], [-14.5648, -16.5804, -18.6568], [-14.7223, -15.7387, -18.4218]], [[-15.7290, -17.9171, -19.4423], [-18.3105, -19.9448, -21.4661], [-17.9296, -18.6497, -20.7910]], [[-15.0783, -17.0336, -18.2789], [-16.8771, -18.6870, -20.1612], [-16.2454, -17.1426, -19.5055]], ] ) elif model_name == "segformer.b3.512x512.ade.160k": lowerCAmelCase_ : List[Any] = torch.tensor( [ [[-9.0878, -10.2081, -10.1891], [-9.3144, -10.7941, -10.9843], [-9.2294, -10.3855, -10.5704]], [[-12.2316, -13.9068, -13.6102], [-12.9161, -14.3702, -14.3235], [-12.5233, -13.7174, -13.7932]], [[-14.6275, -15.2490, -14.9727], [-14.3400, -15.9687, -16.2827], [-14.1484, -15.4033, -15.8937]], ] ) elif model_name == "segformer.b4.512x512.ade.160k": lowerCAmelCase_ : List[str] = torch.tensor( [ [[-12.3144, -13.2447, -14.0802], [-13.3614, -14.5816, -15.6117], [-13.3340, -14.4433, -16.2219]], [[-19.2781, -20.4128, -20.7506], [-20.6153, -21.6566, -22.0998], [-19.9800, -21.0430, -22.1494]], [[-18.8739, -19.7804, -21.1834], [-20.1233, -21.6765, -23.2944], [-20.0315, -21.2641, -23.6944]], ] ) elif model_name == "segformer.b5.640x640.ade.160k": lowerCAmelCase_ : List[str] = torch.tensor( [ [[-9.5524, -12.0835, -11.7348], [-10.5229, -13.6446, -14.5662], [-9.5842, -12.8851, -13.9414]], [[-15.3432, -17.5323, -17.0818], [-16.3330, -18.9255, -19.2101], [-15.1340, -17.7848, -18.3971]], [[-12.6072, -14.9486, -14.6631], [-13.7629, -17.0907, -17.7745], [-12.7899, -16.1695, -17.1671]], ] ) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": lowerCAmelCase_ : Dict = torch.tensor( [ [[-11.9295, -13.4057, -14.8106], [-13.3431, -14.8179, -15.3781], [-14.2836, -15.5942, -16.1588]], [[-11.4906, -12.8067, -13.6564], [-13.1189, -14.0500, -14.1543], [-13.8748, -14.5136, -14.8789]], [[0.5374, 0.1067, -0.4742], [0.1141, -0.2255, -0.7099], [-0.3000, -0.5924, -1.3105]], ] ) elif model_name == "segformer.b0.512x1024.city.160k": lowerCAmelCase_ : List[Any] = torch.tensor( [ [[-7.8217, -9.8767, -10.1717], [-9.4438, -10.9058, -11.4047], [-9.7939, -12.3495, -12.1079]], [[-7.1514, -9.5336, -10.0860], [-9.7776, -11.6822, -11.8439], [-10.1411, -12.7655, -12.8972]], [[0.3021, 0.0805, -0.2310], [-0.0328, -0.1605, -0.2714], [-0.1408, -0.5477, -0.6976]], ] ) elif model_name == "segformer.b0.640x1280.city.160k": lowerCAmelCase_ : Dict = torch.tensor( [ [ [-1.13_72E01, -1.27_87E01, -1.34_77E01], [-1.25_36E01, -1.41_94E01, -1.44_09E01], [-1.32_17E01, -1.48_88E01, -1.53_27E01], ], [ [-1.47_91E01, -1.71_22E01, -1.82_77E01], [-1.71_63E01, -1.91_92E01, -1.95_33E01], [-1.78_97E01, -1.99_91E01, -2.03_15E01], ], [ [7.67_23E-01, 4.19_21E-01, -7.78_78E-02], [4.77_72E-01, 9.55_57E-03, -2.80_82E-01], [3.60_32E-01, -2.48_26E-01, -5.11_68E-01], ], ] ) elif model_name == "segformer.b0.768x768.city.160k": lowerCAmelCase_ : str = torch.tensor( [ [[-9.4959, -11.3087, -11.7479], [-11.0025, -12.6540, -12.3319], [-11.4064, -13.0487, -12.9905]], [[-9.8905, -11.3084, -12.0854], [-11.1726, -12.7698, -12.9583], [-11.5985, -13.3278, -14.1774]], [[0.2213, 0.0192, -0.2466], [-0.1731, -0.4213, -0.4874], [-0.3126, -0.6541, -1.1389]], ] ) elif model_name == "segformer.b1.1024x1024.city.160k": lowerCAmelCase_ : Optional[int] = torch.tensor( [ [[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]], [[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]], [[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]], ] ) elif model_name == "segformer.b2.1024x1024.city.160k": lowerCAmelCase_ : List[Any] = torch.tensor( [ [[-16.0976, -16.4856, -17.3962], [-16.6234, -19.0342, -19.7685], [-16.0900, -18.0661, -19.1180]], [[-18.4750, -18.8488, -19.5074], [-19.4030, -22.1570, -22.5977], [-19.1191, -20.8486, -22.3783]], [[-4.5178, -5.5037, -6.5109], [-5.0884, -7.2174, -8.0334], [-4.4156, -5.8117, -7.2970]], ] ) elif model_name == "segformer.b3.1024x1024.city.160k": lowerCAmelCase_ : int = torch.tensor( [ [[-14.2081, -14.4732, -14.1977], [-14.5867, -16.4423, -16.6356], [-13.4441, -14.9685, -16.8696]], [[-14.4576, -14.7073, -15.0451], [-15.0816, -17.6237, -17.9873], [-14.4213, -16.0199, -18.5992]], [[-4.7349, -4.9588, -5.0966], [-4.3210, -6.9325, -7.2591], [-3.4312, -4.7484, -7.1917]], ] ) elif model_name == "segformer.b4.1024x1024.city.160k": lowerCAmelCase_ : Union[str, Any] = torch.tensor( [ [[-11.7737, -11.9526, -11.3273], [-13.6692, -14.4574, -13.8878], [-13.8937, -14.6924, -15.9345]], [[-14.6706, -14.5330, -14.1306], [-16.1502, -16.8180, -16.4269], [-16.8338, -17.8939, -20.1746]], [[1.0491, 0.8289, 1.0310], [1.1044, 0.5219, 0.8055], [1.0899, 0.6926, 0.5590]], ] ) elif model_name == "segformer.b5.1024x1024.city.160k": lowerCAmelCase_ : List[Any] = torch.tensor( [ [[-12.5641, -13.4777, -13.0684], [-13.9587, -15.8983, -16.6557], [-13.3109, -15.7350, -16.3141]], [[-14.7074, -15.4352, -14.5944], [-16.6353, -18.1663, -18.6120], [-15.1702, -18.0329, -18.1547]], [[-1.7990, -2.0951, -1.7784], [-2.6397, -3.8245, -3.9686], [-1.5264, -2.8126, -2.9316]], ] ) else: lowerCAmelCase_ : Optional[Any] = logits.argmax(-1 ).item() print("""Predicted class:""" , model.config.idalabel[predicted_class_idx] ) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3] , A__ , atol=1E-2 ) # finally, save model and image processor logger.info(f'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(A__ ).mkdir(exist_ok=A__ ) model.save_pretrained(A__ ) image_processor.save_pretrained(A__ ) if __name__ == "__main__": __A : Tuple = argparse.ArgumentParser() parser.add_argument( "--model_name", default="segformer.b0.512x512.ade.160k", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original PyTorch checkpoint (.pth file)." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) __A : Tuple = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
89
1
import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class A : '''simple docstring''' def __init__(self : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str]=100 , _UpperCAmelCase : Union[str, Any]=13 , _UpperCAmelCase : Any=30 , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : Union[str, Any]=3 , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Any=32 , _UpperCAmelCase : Tuple=4 , _UpperCAmelCase : Union[str, Any]=4 , _UpperCAmelCase : List[Any]=37 , _UpperCAmelCase : List[str]="gelu" , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : Union[str, Any]=10 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : str=3 , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : Union[str, Any]=[0, 1, 2, 3] , ) -> Dict: """simple docstring""" lowercase__ = parent lowercase__ = 100 lowercase__ = batch_size lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = is_training lowercase__ = use_labels lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = scope lowercase__ = out_indices lowercase__ = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowercase__ = (image_size // patch_size) ** 2 lowercase__ = num_patches + 1 def lowerCamelCase__ (self : Tuple ) -> List[Any]: """simple docstring""" lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ = None lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) lowercase__ = self.get_config() return config, pixel_values, labels, pixel_labels def lowerCamelCase__ (self : Dict ) -> List[str]: """simple docstring""" return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def lowerCamelCase__ (self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int ) -> List[str]: """simple docstring""" lowercase__ = BeitModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__ (self : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str] ) -> Tuple: """simple docstring""" lowercase__ = BeitForMaskedImageModeling(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Dict , _UpperCAmelCase : Any , _UpperCAmelCase : str ) -> Optional[int]: """simple docstring""" lowercase__ = self.type_sequence_label_size lowercase__ = BeitForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase__ = 1 lowercase__ = BeitForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase__ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCamelCase__ (self : int , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict ) -> Optional[int]: """simple docstring""" lowercase__ = self.num_labels lowercase__ = BeitForSemanticSegmentation(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) lowercase__ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def lowerCamelCase__ (self : str ) -> Optional[Any]: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class A ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) A__ = ( { '''feature-extraction''': BeitModel, '''image-classification''': BeitForImageClassification, '''image-segmentation''': BeitForSemanticSegmentation, } if is_torch_available() else {} ) A__ = False A__ = False A__ = False def lowerCamelCase__ (self : List[str] ) -> int: """simple docstring""" lowercase__ = BeitModelTester(self ) lowercase__ = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37 ) def lowerCamelCase__ (self : Optional[int] ) -> Any: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""BEiT does not use inputs_embeds""" ) def lowerCamelCase__ (self : Union[str, Any] ) -> List[str]: """simple docstring""" pass @require_torch_multi_gpu @unittest.skip(reason="""BEiT has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def lowerCamelCase__ (self : Dict ) -> Optional[Any]: """simple docstring""" pass def lowerCamelCase__ (self : Dict ) -> int: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(_UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear ) ) def lowerCamelCase__ (self : Optional[int] ) -> int: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(_UpperCAmelCase ) lowercase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def lowerCamelCase__ (self : int ) -> Any: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] ) -> Optional[int]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_UpperCAmelCase ) def lowerCamelCase__ (self : Union[str, Any] ) -> str: """simple docstring""" if not self.model_tester.is_training: return lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(_UpperCAmelCase ), BeitForMaskedImageModeling]: continue lowercase__ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.train() lowercase__ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) lowercase__ = model(**_UpperCAmelCase ).loss loss.backward() def lowerCamelCase__ (self : str ) -> Any: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return lowercase__ = False lowercase__ = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(_UpperCAmelCase ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue lowercase__ = model_class(_UpperCAmelCase ) model.gradient_checkpointing_enable() model.to(_UpperCAmelCase ) model.train() lowercase__ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) lowercase__ = model(**_UpperCAmelCase ).loss loss.backward() def lowerCamelCase__ (self : str ) -> List[Any]: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = _config_zero_init(_UpperCAmelCase ) for model_class in self.all_model_classes: lowercase__ = model_class(config=_UpperCAmelCase ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @slow def lowerCamelCase__ (self : Optional[Any] ) -> Optional[Any]: """simple docstring""" for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = BeitModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def UpperCamelCase ( ) -> Optional[int]: """simple docstring""" lowercase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class A ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCamelCase__ (self : Dict ) -> Optional[int]: """simple docstring""" return BeitImageProcessor.from_pretrained("""microsoft/beit-base-patch16-224""" ) if is_vision_available() else None @slow def lowerCamelCase__ (self : str ) -> Tuple: """simple docstring""" lowercase__ = BeitForMaskedImageModeling.from_pretrained("""microsoft/beit-base-patch16-224-pt22k""" ).to(_UpperCAmelCase ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=_UpperCAmelCase , return_tensors="""pt""" ).pixel_values.to(_UpperCAmelCase ) # prepare bool_masked_pos lowercase__ = torch.ones((1, 196) , dtype=torch.bool ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): lowercase__ = model(pixel_values=_UpperCAmelCase , bool_masked_pos=_UpperCAmelCase ) lowercase__ = outputs.logits # verify the logits lowercase__ = torch.Size((1, 196, 8192) ) self.assertEqual(logits.shape , _UpperCAmelCase ) lowercase__ = torch.tensor( [[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , _UpperCAmelCase , atol=1E-2 ) ) @slow def lowerCamelCase__ (self : Any ) -> int: """simple docstring""" lowercase__ = BeitForImageClassification.from_pretrained("""microsoft/beit-base-patch16-224""" ).to(_UpperCAmelCase ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=_UpperCAmelCase , return_tensors="""pt""" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): lowercase__ = model(**_UpperCAmelCase ) lowercase__ = outputs.logits # verify the logits lowercase__ = torch.Size((1, 1000) ) self.assertEqual(logits.shape , _UpperCAmelCase ) lowercase__ = torch.tensor([-1.2_385, -1.0_987, -1.0_108] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(logits[0, :3] , _UpperCAmelCase , atol=1E-4 ) ) lowercase__ = 281 self.assertEqual(logits.argmax(-1 ).item() , _UpperCAmelCase ) @slow def lowerCamelCase__ (self : Dict ) -> Any: """simple docstring""" lowercase__ = BeitForImageClassification.from_pretrained("""microsoft/beit-large-patch16-224-pt22k-ft22k""" ).to( _UpperCAmelCase ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=_UpperCAmelCase , return_tensors="""pt""" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): lowercase__ = model(**_UpperCAmelCase ) lowercase__ = outputs.logits # verify the logits lowercase__ = torch.Size((1, 2_1841) ) self.assertEqual(logits.shape , _UpperCAmelCase ) lowercase__ = torch.tensor([1.6_881, -0.2_787, 0.5_901] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(logits[0, :3] , _UpperCAmelCase , atol=1E-4 ) ) lowercase__ = 2396 self.assertEqual(logits.argmax(-1 ).item() , _UpperCAmelCase ) @slow def lowerCamelCase__ (self : Optional[int] ) -> Optional[Any]: """simple docstring""" lowercase__ = BeitForSemanticSegmentation.from_pretrained("""microsoft/beit-base-finetuned-ade-640-640""" ) lowercase__ = model.to(_UpperCAmelCase ) lowercase__ = BeitImageProcessor(do_resize=_UpperCAmelCase , size=640 , do_center_crop=_UpperCAmelCase ) lowercase__ = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" ) lowercase__ = Image.open(ds[0]["""file"""] ) lowercase__ = image_processor(images=_UpperCAmelCase , return_tensors="""pt""" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): lowercase__ = model(**_UpperCAmelCase ) lowercase__ = outputs.logits # verify the logits lowercase__ = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape , _UpperCAmelCase ) lowercase__ = version.parse(PIL.__version__ ) < version.parse("""9.0.0""" ) if is_pillow_less_than_a: lowercase__ = torch.tensor( [ [[-4.9_225, -2.3_954, -3.0_522], [-2.8_822, -1.0_046, -1.7_561], [-2.9_549, -1.3_228, -2.1_347]], [[-5.8_168, -3.4_129, -4.0_778], [-3.8_651, -2.2_214, -3.0_277], [-3.8_356, -2.4_643, -3.3_535]], [[-0.0_078, 3.9_952, 4.0_754], [2.9_856, 4.6_944, 5.0_035], [3.2_413, 4.7_813, 4.9_969]], ] , device=_UpperCAmelCase , ) else: lowercase__ = torch.tensor( [ [[-4.8_960, -2.3_688, -3.0_355], [-2.8_478, -0.9_836, -1.7_418], [-2.9_449, -1.3_332, -2.1_456]], [[-5.8_081, -3.4_124, -4.1_006], [-3.8_561, -2.2_081, -3.0_323], [-3.8_365, -2.4_601, -3.3_669]], [[-0.0_309, 3.9_868, 4.0_540], [2.9_640, 4.6_877, 4.9_976], [3.2_081, 4.7_690, 4.9_942]], ] , device=_UpperCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _UpperCAmelCase , atol=1E-4 ) ) @slow def lowerCamelCase__ (self : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = BeitForSemanticSegmentation.from_pretrained("""microsoft/beit-base-finetuned-ade-640-640""" ) lowercase__ = model.to(_UpperCAmelCase ) lowercase__ = BeitImageProcessor(do_resize=_UpperCAmelCase , size=640 , do_center_crop=_UpperCAmelCase ) lowercase__ = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" ) lowercase__ = Image.open(ds[0]["""file"""] ) lowercase__ = image_processor(images=_UpperCAmelCase , return_tensors="""pt""" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): lowercase__ = model(**_UpperCAmelCase ) lowercase__ = outputs.logits.detach().cpu() lowercase__ = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase , target_sizes=[(500, 300)] ) lowercase__ = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , _UpperCAmelCase ) lowercase__ = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase ) lowercase__ = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape , _UpperCAmelCase )
305
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Union[str, Any] ) -> Any: """simple docstring""" lowercase__ = tempfile.mkdtemp() lowercase__ = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) lowercase__ = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48_145_466, 0.4_578_275, 0.40_821_073], """image_std""": [0.26_862_954, 0.26_130_258, 0.27_577_711], } lowercase__ = os.path.join(self.tmpdirname , _UpperCAmelCase ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : Dict , **_UpperCAmelCase : Any ) -> Optional[Any]: """simple docstring""" return BertTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Union[str, Any] , **_UpperCAmelCase : Any ) -> Dict: """simple docstring""" return BertTokenizerFast.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] , **_UpperCAmelCase : str ) -> Dict: """simple docstring""" return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] ) -> List[str]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCamelCase__ (self : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowercase__ = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCamelCase__ (self : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ = self.get_tokenizer() lowercase__ = self.get_rust_tokenizer() lowercase__ = self.get_image_processor() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) lowercase__ = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=_UpperCAmelCase ) lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) lowercase__ = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _UpperCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , _UpperCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _UpperCAmelCase ) self.assertIsInstance(processor_fast.image_processor , _UpperCAmelCase ) def lowerCamelCase__ (self : Any ) -> List[str]: """simple docstring""" lowercase__ = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase__ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowercase__ = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0 ) lowercase__ = AlignProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] ) -> Optional[Any]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = self.prepare_image_inputs() lowercase__ = image_processor(_UpperCAmelCase , return_tensors="""np""" ) lowercase__ = processor(images=_UpperCAmelCase , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCamelCase__ (self : Dict ) -> Optional[Any]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = """lower newer""" lowercase__ = processor(text=_UpperCAmelCase ) lowercase__ = tokenizer(_UpperCAmelCase , padding="""max_length""" , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCamelCase__ (self : List[Any] ) -> Tuple: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = """lower newer""" lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=_UpperCAmelCase , images=_UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(_UpperCAmelCase ): processor() def lowerCamelCase__ (self : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase__ = processor.batch_decode(_UpperCAmelCase ) lowercase__ = tokenizer.batch_decode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : List[str] ) -> Tuple: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = """lower newer""" lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=_UpperCAmelCase , images=_UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
305
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''bigcode/gpt_bigcode-santacoder''': '''https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json''', } class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : Optional[Any] = "gpt_bigcode" __snake_case : Optional[int] = ["past_key_values"] __snake_case : List[str] = { "hidden_size": "n_embd", "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self: List[Any] , UpperCAmelCase_: Union[str, Any]=50_257 , UpperCAmelCase_: Optional[int]=1_024 , UpperCAmelCase_: Tuple=768 , UpperCAmelCase_: Union[str, Any]=12 , UpperCAmelCase_: str=12 , UpperCAmelCase_: int=None , UpperCAmelCase_: Dict="gelu_pytorch_tanh" , UpperCAmelCase_: Union[str, Any]=0.1 , UpperCAmelCase_: Union[str, Any]=0.1 , UpperCAmelCase_: List[Any]=0.1 , UpperCAmelCase_: Optional[Any]=1E-5 , UpperCAmelCase_: int=0.02 , UpperCAmelCase_: Union[str, Any]=True , UpperCAmelCase_: Optional[Any]=True , UpperCAmelCase_: int=50_256 , UpperCAmelCase_: str=50_256 , UpperCAmelCase_: Optional[Any]=True , UpperCAmelCase_: List[str]=True , UpperCAmelCase_: int=True , **UpperCAmelCase_: Optional[int] , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = n_positions _SCREAMING_SNAKE_CASE = n_embd _SCREAMING_SNAKE_CASE = n_layer _SCREAMING_SNAKE_CASE = n_head _SCREAMING_SNAKE_CASE = n_inner _SCREAMING_SNAKE_CASE = activation_function _SCREAMING_SNAKE_CASE = resid_pdrop _SCREAMING_SNAKE_CASE = embd_pdrop _SCREAMING_SNAKE_CASE = attn_pdrop _SCREAMING_SNAKE_CASE = layer_norm_epsilon _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = scale_attn_weights _SCREAMING_SNAKE_CASE = use_cache _SCREAMING_SNAKE_CASE = attention_softmax_in_fpaa _SCREAMING_SNAKE_CASE = scale_attention_softmax_in_fpaa _SCREAMING_SNAKE_CASE = multi_query _SCREAMING_SNAKE_CASE = bos_token_id _SCREAMING_SNAKE_CASE = eos_token_id super().__init__(bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , **UpperCAmelCase_ )
125
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCamelCase = { '''configuration_layoutlmv3''': [ '''LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LayoutLMv3Config''', '''LayoutLMv3OnnxConfig''', ], '''processing_layoutlmv3''': ['''LayoutLMv3Processor'''], '''tokenization_layoutlmv3''': ['''LayoutLMv3Tokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''LayoutLMv3TokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LayoutLMv3ForQuestionAnswering''', '''LayoutLMv3ForSequenceClassification''', '''LayoutLMv3ForTokenClassification''', '''LayoutLMv3Model''', '''LayoutLMv3PreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFLayoutLMv3ForQuestionAnswering''', '''TFLayoutLMv3ForSequenceClassification''', '''TFLayoutLMv3ForTokenClassification''', '''TFLayoutLMv3Model''', '''TFLayoutLMv3PreTrainedModel''', ] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''LayoutLMv3FeatureExtractor'''] UpperCamelCase = ['''LayoutLMv3ImageProcessor'''] if TYPE_CHECKING: from .configuration_layoutlmva import ( LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig, LayoutLMvaOnnxConfig, ) from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_layoutlmva import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, TFLayoutLMvaPreTrainedModel, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor from .image_processing_layoutlmva import LayoutLMvaImageProcessor else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
125
1
"""simple docstring""" from __future__ import annotations _lowercase = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] _lowercase = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def _snake_case ( snake_case__ : list[float] ): A = [] A = len(snake_case__ ) for i in range(snake_case__ ): A = -1 for j in range(i + 1 , snake_case__ ): if arr[i] < arr[j]: A = arr[j] break result.append(snake_case__ ) return result def _snake_case ( snake_case__ : list[float] ): A = [] for i, outer in enumerate(snake_case__ ): A = -1 for inner in arr[i + 1 :]: if outer < inner: A = inner break result.append(snake_case__ ) return result def _snake_case ( snake_case__ : list[float] ): A = len(snake_case__ ) A = [] A = [-1] * arr_size for index in reversed(range(snake_case__ ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: A = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) _lowercase = ( '''from __main__ import arr, next_greatest_element_slow, ''' '''next_greatest_element_fast, next_greatest_element''' ) print( '''next_greatest_element_slow():''', timeit('''next_greatest_element_slow(arr)''', setup=setup), ) print( '''next_greatest_element_fast():''', timeit('''next_greatest_element_fast(arr)''', setup=setup), ) print( ''' next_greatest_element():''', timeit('''next_greatest_element(arr)''', setup=setup), )
74
'''simple docstring''' from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging a_ : int = logging.get_logger(__name__) class snake_case ( lowercase ): """simple docstring""" _lowerCamelCase = ["input_features", "attention_mask"] def __init__( self , UpperCamelCase=80 , UpperCamelCase=1_6000 , UpperCamelCase=80 , UpperCamelCase=0.0 , UpperCamelCase=True , UpperCamelCase=True , UpperCamelCase=True , **UpperCamelCase , ): """simple docstring""" super().__init__(feature_size=UpperCamelCase , sampling_rate=UpperCamelCase , padding_value=UpperCamelCase , **UpperCamelCase ) lowerCamelCase_ = num_mel_bins lowerCamelCase_ = do_ceptral_normalize lowerCamelCase_ = normalize_means lowerCamelCase_ = normalize_vars lowerCamelCase_ = True def snake_case ( self , UpperCamelCase , ): """simple docstring""" lowerCamelCase_ = waveform * (2**15) # Kaldi compliance: 16-bit signed integers lowerCamelCase_ = torch.from_numpy(UpperCamelCase ).unsqueeze(0 ) lowerCamelCase_ = ta_kaldi.fbank(UpperCamelCase , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def snake_case ( UpperCamelCase , UpperCamelCase , UpperCamelCase = True , UpperCamelCase = True , UpperCamelCase = 0.0 , ): """simple docstring""" # make sure we normalize float32 arrays if normalize_means: lowerCamelCase_ = x[:input_length].mean(axis=0 ) lowerCamelCase_ = np.subtract(UpperCamelCase , UpperCamelCase ) if normalize_vars: lowerCamelCase_ = x[:input_length].std(axis=0 ) lowerCamelCase_ = np.divide(UpperCamelCase , UpperCamelCase ) if input_length < x.shape[0]: lowerCamelCase_ = padding_value # make sure array is in float32 lowerCamelCase_ = x.astype(np.floataa ) return x def snake_case ( self , UpperCamelCase , UpperCamelCase = None ): """simple docstring""" lowerCamelCase_ = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(UpperCamelCase , UpperCamelCase , self.normalize_means , self.normalize_vars , self.padding_value ) for x, n in zip(UpperCamelCase , UpperCamelCase ) ] def __call__( self , UpperCamelCase , UpperCamelCase = False , UpperCamelCase = None , UpperCamelCase = False , UpperCamelCase = None , UpperCamelCase = None , UpperCamelCase = None , UpperCamelCase = None , **UpperCamelCase , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' f''' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with''' f''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) lowerCamelCase_ = isinstance(UpperCamelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) lowerCamelCase_ = is_batched_numpy or ( isinstance(UpperCamelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowerCamelCase_ = [np.asarray(UpperCamelCase , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(UpperCamelCase , np.ndarray ): lowerCamelCase_ = np.asarray(UpperCamelCase , dtype=np.floataa ) elif isinstance(UpperCamelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCamelCase_ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCamelCase_ = [raw_speech] # extract fbank features lowerCamelCase_ = [self._extract_fbank_features(UpperCamelCase ) for waveform in raw_speech] # convert into correct format for padding lowerCamelCase_ = BatchFeature({"input_features": features} ) lowerCamelCase_ = self.pad( UpperCamelCase , padding=UpperCamelCase , max_length=UpperCamelCase , truncation=UpperCamelCase , pad_to_multiple_of=UpperCamelCase , return_attention_mask=UpperCamelCase , **UpperCamelCase , ) # make sure list is in array format lowerCamelCase_ = padded_inputs.get("input_features" ) if isinstance(input_features[0] , UpperCamelCase ): lowerCamelCase_ = [np.asarray(UpperCamelCase , dtype=np.floataa ) for feature in input_features] lowerCamelCase_ = padded_inputs.get("attention_mask" ) if attention_mask is not None: lowerCamelCase_ = [np.asarray(UpperCamelCase , dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: lowerCamelCase_ = ( np.array(UpperCamelCase , dtype=np.intaa ) if self._get_padding_strategies(UpperCamelCase , max_length=UpperCamelCase ) is not PaddingStrategy.DO_NOT_PAD else None ) lowerCamelCase_ = self.normalize( padded_inputs["input_features"] , attention_mask=UpperCamelCase ) if return_tensors is not None: lowerCamelCase_ = padded_inputs.convert_to_tensors(UpperCamelCase ) return padded_inputs
55
0
'''simple docstring''' import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer _UpperCAmelCase : Optional[int] = flax_key_tuple[:-1] + ("""weight""",) _UpperCAmelCase : Tuple = torch.permute(lowerCAmelCase_ , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(lowerCAmelCase_ ): # linear layer _UpperCAmelCase : Optional[int] = flax_key_tuple[:-1] + ("""weight""",) _UpperCAmelCase : Tuple = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: _UpperCAmelCase : List[Any] = flax_key_tuple[:-1] + ("""weight""",) return flax_key_tuple, flax_tensor def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' if "metadata" in layer: _UpperCAmelCase : List[str] = layer.split("""metadata""" ) _UpperCAmelCase : int = """""".join(split_layer[0] )[:-1] _UpperCAmelCase : Any = [tuple(("""metadata""" + split_layer[1]).split("""/""" ) )] elif "kvstore" in layer: _UpperCAmelCase : Tuple = layer.split("""kvstore""" ) _UpperCAmelCase : List[str] = """""".join(split_layer[0] )[:-1] _UpperCAmelCase : Dict = [tuple(("""kvstore""" + split_layer[1]).split("""/""" ) )] else: _UpperCAmelCase : str = layer.split("""/""" ) _UpperCAmelCase : Optional[int] = """/""".join(split_layer[:-1] ) _UpperCAmelCase : int = (split_layer[-1],) if "kvstore/path" in layer: _UpperCAmelCase : Union[str, Any] = F'''{switch_checkpoint_path}/{checkpoint_info[layer]}''' elif "kvstore/driver" in layer: _UpperCAmelCase : Any = """file""" else: _UpperCAmelCase : Optional[int] = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Tuple: '''simple docstring''' _UpperCAmelCase : Optional[Any] = rename_keys(lowerCAmelCase_ ) _UpperCAmelCase : Tuple = {} for k, v in current_block.items(): _UpperCAmelCase : List[str] = v _UpperCAmelCase : Optional[int] = new_current_block torch.save(lowerCAmelCase_ , lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = WEIGHTS_NAME )-> Any: '''simple docstring''' _UpperCAmelCase : List[str] = convert_file_size_to_int(lowerCAmelCase_ ) _UpperCAmelCase : Optional[Any] = [] _UpperCAmelCase : str = {} _UpperCAmelCase : Optional[int] = 0 _UpperCAmelCase : List[Any] = 0 os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) with gfile.GFile(switch_checkpoint_path + """/checkpoint""" , """rb""" ) as fp: _UpperCAmelCase : List[str] = serialization.msgpack_restore(fp.read() )["""optimizer"""]["""target"""] _UpperCAmelCase : Dict = flatten_dict(lowerCAmelCase_ , sep="""/""" ) _UpperCAmelCase : List[str] = {} for layer in checkpoint_info.keys(): _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : int = get_key_and_tensorstore_dict( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if curr_real_layer_name in all_layers: _UpperCAmelCase : str = content else: _UpperCAmelCase : Any = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file _UpperCAmelCase : str = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() _UpperCAmelCase : List[str] = torch.tensor(lowerCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts _UpperCAmelCase ,_UpperCAmelCase : List[Any] = rename_base_flax_keys(tuple(key.split("""/""" ) ) , lowerCAmelCase_ ) _UpperCAmelCase : Optional[int] = """/""".join(lowerCAmelCase_ ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: _UpperCAmelCase : List[str] = os.path.join( lowerCAmelCase_ , weights_name.replace(""".bin""" , F'''-{len(lowerCAmelCase_ )+1:05d}-of-???.bin''' ) ) rename_and_save_block(lowerCAmelCase_ , lowerCAmelCase_ ) sharded_state_dicts.append(current_block.keys() ) del current_block _UpperCAmelCase : List[Any] = {} _UpperCAmelCase : Dict = 0 _UpperCAmelCase : Tuple = raw_weights.to(getattr(lowerCAmelCase_ , lowerCAmelCase_ ) ) current_block_size += weight_size total_size += weight_size # Add the last block _UpperCAmelCase : Tuple = os.path.join(lowerCAmelCase_ , weights_name.replace(""".bin""" , F'''-{len(lowerCAmelCase_ )+1:05d}-of-???.bin''' ) ) rename_and_save_block(lowerCAmelCase_ , lowerCAmelCase_ ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(lowerCAmelCase_ ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index _UpperCAmelCase : List[str] = {} _UpperCAmelCase : str = {} for idx, shard in enumerate(lowerCAmelCase_ ): _UpperCAmelCase : Optional[int] = weights_name.replace( """.bin""" , F'''-{idx+1:05d}-of-{len(lowerCAmelCase_ ):05d}.bin''' ) # len(sharded_state_dicts):05d} _UpperCAmelCase : Optional[int] = os.path.join(lowerCAmelCase_ , weights_name.replace(""".bin""" , F'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(lowerCAmelCase_ , os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) ) _UpperCAmelCase : Optional[int] = shard for key in shard: _UpperCAmelCase : List[Any] = shard_file # Add the metadata _UpperCAmelCase : str = {"""total_size""": total_size} _UpperCAmelCase : Tuple = {"""metadata""": metadata, """weight_map""": weight_map} with open(os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) , """w""" , encoding="""utf-8""" ) as f: _UpperCAmelCase : Tuple = json.dumps(lowerCAmelCase_ , indent=2 , sort_keys=lowerCAmelCase_ ) + """\n""" f.write(lowerCAmelCase_ ) return metadata, index if __name__ == "__main__": A_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--switch_t5x_checkpoint_path""", default="""/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600""", type=str, required=False, help="""Path to a directory containing a folder per layer. Follows the original Google format.""", ) parser.add_argument("""--max_shard_size""", default="""10GB""", required=False, help="""Max shard size""") parser.add_argument("""--dtype""", default="""bfloat16""", type=str, required=False, help="""dtype of the saved model""") parser.add_argument( """--pytorch_dump_folder_path""", default="""/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted""", type=str, required=False, help="""Path to the output pytorch model.""", ) A_ : str = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def snake_case_ ( )-> Tuple: '''simple docstring''' from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer _UpperCAmelCase : Tuple = SwitchTransformersConfig.from_pretrained("""google/switch-base-8""" ) config.save_pretrained("""/home/arthur_huggingface_co/transformers/switch_converted""" ) _UpperCAmelCase : int = SwitchTransformersForConditionalGeneration.from_pretrained( """/home/arthur_huggingface_co/transformers/switch_converted""" , device_map="""auto""" ) _UpperCAmelCase : Dict = TaTokenizer.from_pretrained("""t5-small""" ) _UpperCAmelCase : int = """A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.""" _UpperCAmelCase : List[str] = tokenizer(lowerCAmelCase_ , return_tensors="""pt""" ).input_ids _UpperCAmelCase : Any = model.generate(lowerCAmelCase_ , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
349
'''simple docstring''' from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class lowercase ( _lowerCamelCase ): """simple docstring""" def __init__( self ,a_ ,a_ = None ,a_ = None ,a_ = True ,a_ = None ,a_ = False ,a_ = None ,a_ = True ,a_ = "arrow" ,**a_ ,) -> str: super().__init__( split=a_ ,features=a_ ,cache_dir=a_ ,keep_in_memory=a_ ,streaming=a_ ,**a_ ,) _UpperCAmelCase : Any = load_from_cache_file _UpperCAmelCase : Optional[int] = file_format _UpperCAmelCase : int = Spark( df=a_ ,features=a_ ,cache_dir=a_ ,working_dir=a_ ,**a_ ,) def _snake_case ( self ) -> int: if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) _UpperCAmelCase : str = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=a_ ,file_format=self._file_format ,) return self.builder.as_dataset(split=self.split )
349
1
'''simple docstring''' import os import string import sys _A : Optional[Any] =1 << 8 _A : Union[str, Any] ={ '''tab''': ord('''\t'''), '''newline''': ord('''\r'''), '''esc''': 27, '''up''': 65 + ARROW_KEY_FLAG, '''down''': 66 + ARROW_KEY_FLAG, '''right''': 67 + ARROW_KEY_FLAG, '''left''': 68 + ARROW_KEY_FLAG, '''mod_int''': 91, '''undefined''': sys.maxsize, '''interrupt''': 3, '''insert''': 50, '''delete''': 51, '''pg_up''': 53, '''pg_down''': 54, } _A : Optional[Any] =KEYMAP['''up'''] _A : Optional[Any] =KEYMAP['''left'''] if sys.platform == "win32": _A : List[str] =[] _A : Union[str, Any] ={ b'''\xe0H''': KEYMAP['''up'''] - ARROW_KEY_FLAG, b'''\x00H''': KEYMAP['''up'''] - ARROW_KEY_FLAG, b'''\xe0P''': KEYMAP['''down'''] - ARROW_KEY_FLAG, b'''\x00P''': KEYMAP['''down'''] - ARROW_KEY_FLAG, b'''\xe0M''': KEYMAP['''right'''] - ARROW_KEY_FLAG, b'''\x00M''': KEYMAP['''right'''] - ARROW_KEY_FLAG, b'''\xe0K''': KEYMAP['''left'''] - ARROW_KEY_FLAG, b'''\x00K''': KEYMAP['''left'''] - ARROW_KEY_FLAG, } for i in range(10): _A : List[str] =ord(str(i)) def SCREAMING_SNAKE_CASE_ () -> int: if os.name == "nt": import msvcrt lowerCamelCase__ : str = """mbcs""" # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(UpperCamelCase ) == 0: # Read the keystroke lowerCamelCase__ : List[Any] = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): lowerCamelCase__ : Optional[int] = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: lowerCamelCase__ : Tuple = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP["""mod_int"""] ) ) WIN_CH_BUFFER.append(UpperCamelCase ) if ord(UpperCamelCase ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) lowerCamelCase__ : str = chr(KEYMAP["""esc"""] ) except KeyError: lowerCamelCase__ : List[str] = cha[1] else: lowerCamelCase__ : Any = ch.decode(UpperCamelCase ) else: lowerCamelCase__ : str = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty lowerCamelCase__ : List[Any] = sys.stdin.fileno() lowerCamelCase__ : Any = termios.tcgetattr(UpperCamelCase ) try: tty.setraw(UpperCamelCase ) lowerCamelCase__ : Dict = sys.stdin.read(1 ) finally: termios.tcsetattr(UpperCamelCase , termios.TCSADRAIN , UpperCamelCase ) return ch def SCREAMING_SNAKE_CASE_ () -> Optional[int]: lowerCamelCase__ : Dict = get_raw_chars() if ord(UpperCamelCase ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(UpperCamelCase ) == KEYMAP["esc"]: lowerCamelCase__ : List[str] = get_raw_chars() if ord(UpperCamelCase ) == KEYMAP["mod_int"]: lowerCamelCase__ : str = get_raw_chars() if ord(UpperCamelCase ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(UpperCamelCase ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(UpperCamelCase ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
41
"""simple docstring""" from collections import defaultdict from math import ceil, sqrt def _snake_case ( UpperCamelCase : int = 1000000 , UpperCamelCase : int = 10 ): UpperCAmelCase : defaultdict = defaultdict(UpperCamelCase ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: UpperCAmelCase : str = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: UpperCAmelCase : Optional[Any] = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(UpperCamelCase , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(f"""{solution() = }""")
109
0
"""simple docstring""" def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 0 , __UpperCamelCase = 0 ) -> int: """simple docstring""" lowerCAmelCase_ : List[Any] = right or len(__UpperCamelCase ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(__UpperCamelCase , __UpperCamelCase , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
161
"""simple docstring""" import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = {"""vocab_file""": """vocab.txt"""} lowercase__ = { """vocab_file""": { """openbmb/cpm-ant-10b""": """https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt""", }, } lowercase__ = { """openbmb/cpm-ant-10b""": 1024, } def __lowerCamelCase ( __UpperCamelCase ) -> Dict: """simple docstring""" lowerCAmelCase_ : int = collections.OrderedDict() with open(__UpperCamelCase , "r" , encoding="utf-8" ) as reader: lowerCAmelCase_ : List[Any] = reader.readlines() for index, token in enumerate(__UpperCamelCase ): lowerCAmelCase_ : List[str] = token.rstrip("\n" ) lowerCAmelCase_ : str = index return vocab class __lowerCamelCase ( A__ ): '''simple docstring''' def __init__( self : Tuple , a_ : Dict , a_ : Optional[Any]="<unk>" , a_ : List[str]=2_00 ): lowerCAmelCase_ : int = vocab lowerCAmelCase_ : List[Any] = unk_token lowerCAmelCase_ : List[Any] = max_input_chars_per_word def lowerCamelCase ( self : Any , a_ : Optional[int] ): lowerCAmelCase_ : Optional[int] = list(a_ ) if len(a_ ) > self.max_input_chars_per_word: return [self.unk_token] lowerCAmelCase_ : Optional[int] = 0 lowerCAmelCase_ : Dict = [] while start < len(a_ ): lowerCAmelCase_ : Any = len(a_ ) lowerCAmelCase_ : Any = None while start < end: lowerCAmelCase_ : Union[str, Any] = "".join(chars[start:end] ) if substr in self.vocab: lowerCAmelCase_ : Any = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(a_ ) lowerCAmelCase_ : int = end return sub_tokens class __lowerCamelCase ( A__ ): '''simple docstring''' a_ : str = VOCAB_FILES_NAMES a_ : int = PRETRAINED_VOCAB_FILES_MAP a_ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : List[Any] = ["""input_ids""", """attention_mask"""] a_ : Union[str, Any] = False def __init__( self : Union[str, Any] , a_ : List[str] , a_ : Dict="<d>" , a_ : Tuple="</d>" , a_ : Tuple="<s>" , a_ : int="</s>" , a_ : Tuple="<pad>" , a_ : Dict="<unk>" , a_ : Any="</n>" , a_ : Optional[int]="</_>" , a_ : List[Any]="left" , **a_ : List[Any] , ): requires_backends(self , ["jieba"] ) super().__init__( bod_token=a_ , eod_token=a_ , bos_token=a_ , eos_token=a_ , pad_token=a_ , unk_token=a_ , line_token=a_ , space_token=a_ , padding_side=a_ , **a_ , ) lowerCAmelCase_ : Optional[Any] = bod_token lowerCAmelCase_ : Union[str, Any] = eod_token lowerCAmelCase_ : Optional[Any] = load_vocab(a_ ) lowerCAmelCase_ : List[str] = self.encoder[space_token] lowerCAmelCase_ : int = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] lowerCAmelCase_ : Tuple = collections.OrderedDict(sorted(self.encoder.items() , key=lambda a_ : x[1] ) ) lowerCAmelCase_ : Any = {v: k for k, v in self.encoder.items()} lowerCAmelCase_ : str = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def lowerCamelCase ( self : List[Any] ): return self.encoder[self.bod_token] @property def lowerCamelCase ( self : List[str] ): return self.encoder[self.eod_token] @property def lowerCamelCase ( self : int ): return self.encoder["\n"] @property def lowerCamelCase ( self : Tuple ): return len(self.encoder ) def lowerCamelCase ( self : Optional[int] ): return dict(self.encoder , **self.added_tokens_encoder ) def lowerCamelCase ( self : Optional[int] , a_ : Any ): lowerCAmelCase_ : Optional[int] = [] for x in jieba.cut(a_ , cut_all=a_ ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(a_ ) ) return output_tokens def lowerCamelCase ( self : Optional[Any] , a_ : List[str] , **a_ : Tuple ): lowerCAmelCase_ : List[Any] = [i for i in token_ids if i >= 0] lowerCAmelCase_ : List[Any] = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(a_ , **a_ ) def lowerCamelCase ( self : Optional[Any] , a_ : Union[str, Any] ): return token in self.encoder def lowerCamelCase ( self : List[Any] , a_ : List[str] ): return "".join(a_ ) def lowerCamelCase ( self : Union[str, Any] , a_ : str ): return self.encoder.get(a_ , self.encoder.get(self.unk_token ) ) def lowerCamelCase ( self : Union[str, Any] , a_ : int ): return self.decoder.get(a_ , self.unk_token ) def lowerCamelCase ( self : List[str] , a_ : str , a_ : Optional[str] = None ): if os.path.isdir(a_ ): lowerCAmelCase_ : Union[str, Any] = os.path.join( a_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) else: lowerCAmelCase_ : Tuple = (filename_prefix + "-" if filename_prefix else "") + save_directory lowerCAmelCase_ : str = 0 if " " in self.encoder: lowerCAmelCase_ : Optional[int] = self.encoder[" "] del self.encoder[" "] if "\n" in self.encoder: lowerCAmelCase_ : Optional[int] = self.encoder["\n"] del self.encoder["\n"] lowerCAmelCase_ : int = collections.OrderedDict(sorted(self.encoder.items() , key=lambda a_ : x[1] ) ) with open(a_ , "w" , encoding="utf-8" ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( f'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' " Please check that the vocabulary is not corrupted!" ) lowerCAmelCase_ : List[Any] = token_index writer.write(token + "\n" ) index += 1 return (vocab_file,) def lowerCamelCase ( self : int , a_ : List[int] , a_ : List[int] = None ): if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def lowerCamelCase ( self : List[str] , a_ : List[int] , a_ : Optional[List[int]] = None , a_ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a_ , token_ids_a=a_ , already_has_special_tokens=a_ ) if token_ids_a is not None: return [1] + ([0] * len(a_ )) + [1] + ([0] * len(a_ )) return [1] + ([0] * len(a_ ))
161
1
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { 'Helsinki-NLP/opus-mt-en-de': 'https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json', # See all Marian models at https://huggingface.co/models?filter=marian } class __A( _a ): """simple docstring""" SCREAMING_SNAKE_CASE__ = """marian""" SCREAMING_SNAKE_CASE__ = ["""past_key_values"""] SCREAMING_SNAKE_CASE__ = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__(self , SCREAMING_SNAKE_CASE_=5_81_01 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=10_24 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=40_96 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=40_96 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=10_24 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=5_81_00 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=5_81_00 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=True , **SCREAMING_SNAKE_CASE_ , ): UpperCamelCase__ = vocab_size UpperCamelCase__ = decoder_vocab_size or vocab_size UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = d_model UpperCamelCase__ = encoder_ffn_dim UpperCamelCase__ = encoder_layers UpperCamelCase__ = encoder_attention_heads UpperCamelCase__ = decoder_ffn_dim UpperCamelCase__ = decoder_layers UpperCamelCase__ = decoder_attention_heads UpperCamelCase__ = dropout UpperCamelCase__ = attention_dropout UpperCamelCase__ = activation_dropout UpperCamelCase__ = activation_function UpperCamelCase__ = init_std UpperCamelCase__ = encoder_layerdrop UpperCamelCase__ = decoder_layerdrop UpperCamelCase__ = use_cache UpperCamelCase__ = encoder_layers UpperCamelCase__ = scale_embedding # scale factor will be sqrt(d_model) if True UpperCamelCase__ = share_encoder_decoder_embeddings super().__init__( pad_token_id=lowercase__ , eos_token_id=lowercase__ , is_encoder_decoder=lowercase__ , decoder_start_token_id=lowercase__ , forced_eos_token_id=lowercase__ , **lowercase__ , ) class __A( _a ): """simple docstring""" @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def UpperCAmelCase_ (self ): if self.task in ["default", "seq2seq-lm"]: UpperCamelCase__ = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: UpperCamelCase__ = {0: """batch"""} UpperCamelCase__ = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: UpperCamelCase__ = {0: """batch""", 1: """decoder_sequence"""} UpperCamelCase__ = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(lowercase__ , direction="""inputs""" ) elif self.task == "causal-lm": # TODO: figure this case out. UpperCamelCase__ = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: UpperCamelCase__ , UpperCamelCase__ = self.num_layers for i in range(lowercase__ ): UpperCamelCase__ = {0: """batch""", 2: """past_sequence + sequence"""} UpperCamelCase__ = {0: """batch""", 2: """past_sequence + sequence"""} else: UpperCamelCase__ = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ("""decoder_input_ids""", {0: """batch""", 1: """decoder_sequence"""}), ("""decoder_attention_mask""", {0: """batch""", 1: """decoder_sequence"""}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def UpperCAmelCase_ (self ): if self.task in ["default", "seq2seq-lm"]: UpperCamelCase__ = super().outputs else: UpperCamelCase__ = super(lowercase__ , self ).outputs if self.use_past: UpperCamelCase__ , UpperCamelCase__ = self.num_layers for i in range(lowercase__ ): UpperCamelCase__ = {0: """batch""", 2: """past_sequence + sequence"""} UpperCamelCase__ = {0: """batch""", 2: """past_sequence + sequence"""} return common_outputs def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = -1 , SCREAMING_SNAKE_CASE_ = -1 , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = None , ): UpperCamelCase__ = self._generate_dummy_inputs_for_encoder_and_decoder( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) # Generate decoder inputs UpperCamelCase__ = seq_length if not self.use_past else 1 UpperCamelCase__ = self._generate_dummy_inputs_for_encoder_and_decoder( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) UpperCamelCase__ = {F"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} UpperCamelCase__ = dict(**lowercase__ , **lowercase__ ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch UpperCamelCase__ , UpperCamelCase__ = common_inputs["""input_ids"""].shape UpperCamelCase__ = common_inputs["""decoder_input_ids"""].shape[1] UpperCamelCase__ , UpperCamelCase__ = self.num_attention_heads UpperCamelCase__ = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCamelCase__ = decoder_seq_length + 3 UpperCamelCase__ = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) UpperCamelCase__ = torch.cat( [common_inputs["""decoder_attention_mask"""], torch.ones(lowercase__ , lowercase__ )] , dim=1 ) UpperCamelCase__ = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered UpperCamelCase__ , UpperCamelCase__ = self.num_layers UpperCamelCase__ = min(lowercase__ , lowercase__ ) UpperCamelCase__ = max(lowercase__ , lowercase__ ) - min_num_layers UpperCamelCase__ = """encoder""" if num_encoder_layers > num_decoder_layers else """decoder""" for _ in range(lowercase__ ): common_inputs["past_key_values"].append( ( torch.zeros(lowercase__ ), torch.zeros(lowercase__ ), torch.zeros(lowercase__ ), torch.zeros(lowercase__ ), ) ) # TODO: test this. UpperCamelCase__ = encoder_shape if remaining_side_name == """encoder""" else decoder_shape for _ in range(lowercase__ , lowercase__ ): common_inputs["past_key_values"].append((torch.zeros(lowercase__ ), torch.zeros(lowercase__ )) ) return common_inputs def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = -1 , SCREAMING_SNAKE_CASE_ = -1 , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = None , ): UpperCamelCase__ = self._generate_dummy_inputs_for_encoder_and_decoder( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch UpperCamelCase__ , UpperCamelCase__ = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values UpperCamelCase__ = seqlen + 2 UpperCamelCase__ , UpperCamelCase__ = self.num_layers UpperCamelCase__ , UpperCamelCase__ = self.num_attention_heads UpperCamelCase__ = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCamelCase__ = common_inputs["""attention_mask"""].dtype UpperCamelCase__ = torch.cat( [common_inputs["""attention_mask"""], torch.ones(lowercase__ , lowercase__ , dtype=lowercase__ )] , dim=1 ) UpperCamelCase__ = [ (torch.zeros(lowercase__ ), torch.zeros(lowercase__ )) for _ in range(lowercase__ ) ] return common_inputs def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = -1 , SCREAMING_SNAKE_CASE_ = -1 , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = None , ): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCamelCase__ = compute_effective_axis_dimension( lowercase__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCamelCase__ = tokenizer.num_special_tokens_to_add(lowercase__ ) UpperCamelCase__ = compute_effective_axis_dimension( lowercase__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowercase__ ) # Generate dummy inputs according to compute batch and sequence UpperCamelCase__ = [""" """.join([tokenizer.unk_token] ) * seq_length] * batch_size UpperCamelCase__ = dict(tokenizer(lowercase__ , return_tensors=lowercase__ ) ) return common_inputs def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = -1 , SCREAMING_SNAKE_CASE_ = -1 , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = None , ): if self.task in ["default", "seq2seq-lm"]: UpperCamelCase__ = self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowercase__ , batch_size=lowercase__ , seq_length=lowercase__ , is_pair=lowercase__ , framework=lowercase__ ) else: UpperCamelCase__ = self._generate_dummy_inputs_for_causal_lm( lowercase__ , batch_size=lowercase__ , seq_length=lowercase__ , is_pair=lowercase__ , framework=lowercase__ ) return common_inputs def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): if self.task in ["default", "seq2seq-lm"]: UpperCamelCase__ = super()._flatten_past_key_values_(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) else: UpperCamelCase__ = super(lowercase__ , self )._flatten_past_key_values_( lowercase__ , lowercase__ , lowercase__ , lowercase__ ) @property def UpperCAmelCase_ (self ): return 1E-4
244
import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore A_ : Optional[Any] = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" A_ : Optional[Any] = [file for file in filepaths if file != file.lower()] if upper_files: print(F"""{len(upper_files)} files contain uppercase characters:""") print('\n'.join(upper_files) + '\n') A_ : Tuple = [file for file in filepaths if ' ' in file] if space_files: print(F"""{len(space_files)} files contain space characters:""") print('\n'.join(space_files) + '\n') A_ : str = [file for file in filepaths if '-' in file] if hyphen_files: print(F"""{len(hyphen_files)} files contain hyphen characters:""") print('\n'.join(hyphen_files) + '\n') A_ : Optional[Any] = [file for file in filepaths if os.sep not in file] if nodir_files: print(F"""{len(nodir_files)} files are not in a directory:""") print('\n'.join(nodir_files) + '\n') A_ : Union[str, Any] = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
333
0
import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class A ( A_ , unittest.TestCase ): UpperCamelCase_ : str =ConsistencyModelPipeline UpperCamelCase_ : List[Any] =UNCONDITIONAL_IMAGE_GENERATION_PARAMS UpperCamelCase_ : Optional[Any] =UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt UpperCamelCase_ : Union[str, Any] =frozenset( [ '''num_inference_steps''', '''generator''', '''latents''', '''output_type''', '''return_dict''', '''callback''', '''callback_steps''', ] ) @property def _A (self ): __lowercase= UNetaDModel.from_pretrained( 'diffusers/consistency-models-test' , subfolder='test_unet' , ) return unet @property def _A (self ): __lowercase= UNetaDModel.from_pretrained( 'diffusers/consistency-models-test' , subfolder='test_unet_class_cond' , ) return unet def _A (self , lowerCAmelCase=False ): if class_cond: __lowercase= self.dummy_cond_unet else: __lowercase= self.dummy_uncond_unet # Default to CM multistep sampler __lowercase= CMStochasticIterativeScheduler( num_train_timesteps=4_0 , sigma_min=0.0_02 , sigma_max=80.0 , ) __lowercase= { 'unet': unet, 'scheduler': scheduler, } return components def _A (self , lowerCAmelCase , lowerCAmelCase=0 ): if str(lowerCAmelCase ).startswith('mps' ): __lowercase= torch.manual_seed(lowerCAmelCase ) else: __lowercase= torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase ) __lowercase= { 'batch_size': 1, 'num_inference_steps': None, 'timesteps': [2_2, 0], 'generator': generator, 'output_type': 'np', } return inputs def _A (self ): __lowercase= 'cpu' # ensure determinism for the device-dependent torch.Generator __lowercase= self.get_dummy_components() __lowercase= ConsistencyModelPipeline(**lowerCAmelCase ) __lowercase= pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) __lowercase= self.get_dummy_inputs(lowerCAmelCase ) __lowercase= pipe(**lowerCAmelCase ).images assert image.shape == (1, 3_2, 3_2, 3) __lowercase= image[0, -3:, -3:, -1] __lowercase= np.array([0.35_72, 0.62_73, 0.40_31, 0.39_61, 0.43_21, 0.57_30, 0.52_66, 0.47_80, 0.50_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def _A (self ): __lowercase= 'cpu' # ensure determinism for the device-dependent torch.Generator __lowercase= self.get_dummy_components(class_cond=lowerCAmelCase ) __lowercase= ConsistencyModelPipeline(**lowerCAmelCase ) __lowercase= pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) __lowercase= self.get_dummy_inputs(lowerCAmelCase ) __lowercase= 0 __lowercase= pipe(**lowerCAmelCase ).images assert image.shape == (1, 3_2, 3_2, 3) __lowercase= image[0, -3:, -3:, -1] __lowercase= np.array([0.35_72, 0.62_73, 0.40_31, 0.39_61, 0.43_21, 0.57_30, 0.52_66, 0.47_80, 0.50_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def _A (self ): __lowercase= 'cpu' # ensure determinism for the device-dependent torch.Generator __lowercase= self.get_dummy_components() __lowercase= ConsistencyModelPipeline(**lowerCAmelCase ) __lowercase= pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) __lowercase= self.get_dummy_inputs(lowerCAmelCase ) __lowercase= 1 __lowercase= None __lowercase= pipe(**lowerCAmelCase ).images assert image.shape == (1, 3_2, 3_2, 3) __lowercase= image[0, -3:, -3:, -1] __lowercase= np.array([0.50_04, 0.50_04, 0.49_94, 0.50_08, 0.49_76, 0.50_18, 0.49_90, 0.49_82, 0.49_87] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def _A (self ): __lowercase= 'cpu' # ensure determinism for the device-dependent torch.Generator __lowercase= self.get_dummy_components(class_cond=lowerCAmelCase ) __lowercase= ConsistencyModelPipeline(**lowerCAmelCase ) __lowercase= pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) __lowercase= self.get_dummy_inputs(lowerCAmelCase ) __lowercase= 1 __lowercase= None __lowercase= 0 __lowercase= pipe(**lowerCAmelCase ).images assert image.shape == (1, 3_2, 3_2, 3) __lowercase= image[0, -3:, -3:, -1] __lowercase= np.array([0.50_04, 0.50_04, 0.49_94, 0.50_08, 0.49_76, 0.50_18, 0.49_90, 0.49_82, 0.49_87] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @slow @require_torch_gpu class A ( unittest.TestCase ): def _A (self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _A (self , lowerCAmelCase=0 , lowerCAmelCase=False , lowerCAmelCase="cpu" , lowerCAmelCase=torch.floataa , lowerCAmelCase=(1, 3, 6_4, 6_4) ): __lowercase= torch.manual_seed(lowerCAmelCase ) __lowercase= { 'num_inference_steps': None, 'timesteps': [2_2, 0], 'class_labels': 0, 'generator': generator, 'output_type': 'np', } if get_fixed_latents: __lowercase= self.get_fixed_latents(seed=lowerCAmelCase , device=lowerCAmelCase , dtype=lowerCAmelCase , shape=lowerCAmelCase ) __lowercase= latents return inputs def _A (self , lowerCAmelCase=0 , lowerCAmelCase="cpu" , lowerCAmelCase=torch.floataa , lowerCAmelCase=(1, 3, 6_4, 6_4) ): if type(lowerCAmelCase ) == str: __lowercase= torch.device(lowerCAmelCase ) __lowercase= torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase ) __lowercase= randn_tensor(lowerCAmelCase , generator=lowerCAmelCase , device=lowerCAmelCase , dtype=lowerCAmelCase ) return latents def _A (self ): __lowercase= UNetaDModel.from_pretrained('diffusers/consistency_models' , subfolder='diffusers_cd_imagenet64_l2' ) __lowercase= CMStochasticIterativeScheduler( num_train_timesteps=4_0 , sigma_min=0.0_02 , sigma_max=80.0 , ) __lowercase= ConsistencyModelPipeline(unet=lowerCAmelCase , scheduler=lowerCAmelCase ) pipe.to(torch_device=lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) __lowercase= self.get_inputs() __lowercase= pipe(**lowerCAmelCase ).images assert image.shape == (1, 6_4, 6_4, 3) __lowercase= image[0, -3:, -3:, -1] __lowercase= np.array([0.08_88, 0.08_81, 0.06_66, 0.04_79, 0.02_92, 0.01_95, 0.02_01, 0.01_63, 0.02_54] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def _A (self ): __lowercase= UNetaDModel.from_pretrained('diffusers/consistency_models' , subfolder='diffusers_cd_imagenet64_l2' ) __lowercase= CMStochasticIterativeScheduler( num_train_timesteps=4_0 , sigma_min=0.0_02 , sigma_max=80.0 , ) __lowercase= ConsistencyModelPipeline(unet=lowerCAmelCase , scheduler=lowerCAmelCase ) pipe.to(torch_device=lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) __lowercase= self.get_inputs() __lowercase= 1 __lowercase= None __lowercase= pipe(**lowerCAmelCase ).images assert image.shape == (1, 6_4, 6_4, 3) __lowercase= image[0, -3:, -3:, -1] __lowercase= np.array([0.03_40, 0.01_52, 0.00_63, 0.02_67, 0.02_21, 0.01_07, 0.04_16, 0.01_86, 0.02_17] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 @require_torch_a def _A (self ): __lowercase= UNetaDModel.from_pretrained('diffusers/consistency_models' , subfolder='diffusers_cd_imagenet64_l2' ) __lowercase= CMStochasticIterativeScheduler( num_train_timesteps=4_0 , sigma_min=0.0_02 , sigma_max=80.0 , ) __lowercase= ConsistencyModelPipeline(unet=lowerCAmelCase , scheduler=lowerCAmelCase ) pipe.to(torch_device=lowerCAmelCase , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) __lowercase= self.get_inputs(get_fixed_latents=lowerCAmelCase , device=lowerCAmelCase ) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=lowerCAmelCase , enable_math=lowerCAmelCase , enable_mem_efficient=lowerCAmelCase ): __lowercase= pipe(**lowerCAmelCase ).images assert image.shape == (1, 6_4, 6_4, 3) __lowercase= image[0, -3:, -3:, -1] __lowercase= np.array([0.18_75, 0.14_28, 0.12_89, 0.21_51, 0.20_92, 0.14_77, 0.18_77, 0.16_41, 0.13_53] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @require_torch_a def _A (self ): __lowercase= UNetaDModel.from_pretrained('diffusers/consistency_models' , subfolder='diffusers_cd_imagenet64_l2' ) __lowercase= CMStochasticIterativeScheduler( num_train_timesteps=4_0 , sigma_min=0.0_02 , sigma_max=80.0 , ) __lowercase= ConsistencyModelPipeline(unet=lowerCAmelCase , scheduler=lowerCAmelCase ) pipe.to(torch_device=lowerCAmelCase , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) __lowercase= self.get_inputs(get_fixed_latents=lowerCAmelCase , device=lowerCAmelCase ) __lowercase= 1 __lowercase= None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=lowerCAmelCase , enable_math=lowerCAmelCase , enable_mem_efficient=lowerCAmelCase ): __lowercase= pipe(**lowerCAmelCase ).images assert image.shape == (1, 6_4, 6_4, 3) __lowercase= image[0, -3:, -3:, -1] __lowercase= np.array([0.16_63, 0.19_48, 0.22_75, 0.16_80, 0.12_04, 0.12_45, 0.18_58, 0.13_38, 0.20_95] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
304
def _lowerCamelCase( lowercase__ = 1_0_0_0 ) -> int: '''simple docstring''' __lowercase= 2**power __lowercase= str(lowercase__ ) __lowercase= list(lowercase__ ) __lowercase= 0 for i in list_num: sum_of_num += int(lowercase__ ) return sum_of_num if __name__ == "__main__": lowerCAmelCase = int(input('''Enter the power of 2: ''').strip()) print('''2 ^ ''', power, ''' = ''', 2**power) lowerCAmelCase = solution(power) print('''Sum of the digits is: ''', result)
304
1