code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser UpperCAmelCase : Tuple = logging.getLogger(__name__) torch.set_grad_enabled(False) UpperCAmelCase : Dict = "cuda" if torch.cuda.is_available() else "cpu" def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase=1_00 , __lowerCAmelCase=" " ) -> List[str]: '''simple docstring''' lowercase_ = text.split(UpperCamelCase__ ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(UpperCamelCase__ ) , UpperCamelCase__ )] def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> dict: '''simple docstring''' lowercase_ , lowercase_ = [], [] for title, text in zip(documents["""title"""] , documents["""text"""] ): if text is not None: for passage in split_text(UpperCamelCase__ ): titles.append(title if title is not None else """""" ) texts.append(UpperCamelCase__ ) return {"title": titles, "text": texts} def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> dict: '''simple docstring''' lowercase_ = ctx_tokenizer( documents["""title"""] , documents["""text"""] , truncation=UpperCamelCase__ , padding="""longest""" , return_tensors="""pt""" )["""input_ids"""] lowercase_ = ctx_encoder(input_ids.to(device=UpperCamelCase__ ) , return_dict=UpperCamelCase__ ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) -> Union[str, Any]: '''simple docstring''' logger.info("""Step 1 - Create the dataset""" ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way lowercase_ = load_dataset( """csv""" , data_files=[rag_example_args.csv_path] , split="""train""" , delimiter="""\t""" , column_names=["""title""", """text"""] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words lowercase_ = dataset.map(UpperCamelCase__ , batched=UpperCamelCase__ , num_proc=processing_args.num_proc ) # And compute the embeddings lowercase_ = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=UpperCamelCase__ ) lowercase_ = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) lowercase_ = Features( {"""text""": Value("""string""" ), """title""": Value("""string""" ), """embeddings""": Sequence(Value("""float32""" ) )} ) # optional, save as float32 instead of float64 to save space lowercase_ = dataset.map( partial(UpperCamelCase__ , ctx_encoder=UpperCamelCase__ , ctx_tokenizer=UpperCamelCase__ ) , batched=UpperCamelCase__ , batch_size=processing_args.batch_size , features=UpperCamelCase__ , ) # And finally save your dataset lowercase_ = os.path.join(rag_example_args.output_dir , """my_knowledge_dataset""" ) dataset.save_to_disk(UpperCamelCase__ ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info("""Step 2 - Index the dataset""" ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search lowercase_ = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index("""embeddings""" , custom_index=UpperCamelCase__ ) # And save the index lowercase_ = os.path.join(rag_example_args.output_dir , """my_knowledge_dataset_hnsw_index.faiss""" ) dataset.get_index("""embeddings""" ).save(UpperCamelCase__ ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class SCREAMING_SNAKE_CASE__ : lowercase__ = field( default=str(Path(__UpperCAmelCase ).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset.csv" ) , metadata={"help": "Path to a tab-separated csv file with columns \'title\' and \'text\'"} , ) lowercase__ = field( default=__UpperCAmelCase , metadata={"help": "Question that is passed as input to RAG. Default is \'What does Moses\' rod turn into ?\'."} , ) lowercase__ = field( default="facebook/rag-sequence-nq" , metadata={"help": "The RAG model to use. Either \'facebook/rag-sequence-nq\' or \'facebook/rag-token-nq\'"} , ) lowercase__ = field( default="facebook/dpr-ctx_encoder-multiset-base" , metadata={ "help": ( "The DPR context encoder model to use. Either \'facebook/dpr-ctx_encoder-single-nq-base\' or" " \'facebook/dpr-ctx_encoder-multiset-base\'" ) } , ) lowercase__ = field( default=str(Path(__UpperCAmelCase ).parent / "test_run" / "dummy-kb" ) , metadata={"help": "Path to a directory where the dataset passages and the index will be saved"} , ) @dataclass class SCREAMING_SNAKE_CASE__ : lowercase__ = field( default=__UpperCAmelCase , metadata={ "help": "The number of processes to use to split the documents into passages. Default is single process." } , ) lowercase__ = field( default=16 , metadata={ "help": "The batch size to use when computing the passages embeddings using the DPR context encoder." } , ) @dataclass class SCREAMING_SNAKE_CASE__ : lowercase__ = field( default=768 , metadata={"help": "The dimension of the embeddings to pass to the HNSW Faiss index."} , ) lowercase__ = field( default=128 , metadata={ "help": ( "The number of bi-directional links created for every new element during the HNSW index construction." ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) UpperCAmelCase : Dict = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : str = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: UpperCAmelCase : List[Any] = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
136
from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class __lowerCAmelCase : """simple docstring""" snake_case_ = 42 # [batch_size x 3] snake_case_ = 42 # [batch_size x 3] snake_case_ = 42 # [batch_size x 3] snake_case_ = 42 # [batch_size x 3] snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def lowercase_ ( self ) -> torch.Tensor: '''simple docstring''' __lowerCamelCase = torch.arange(self.height * self.width ) __lowerCamelCase = torch.stack( [ pixel_indices % self.width, torch.div(lowerCamelCase__ , self.width , rounding_mode='trunc' ), ] , axis=1 , ) return coords @property def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase , *__lowerCamelCase = self.shape __lowerCamelCase = int(np.prod(lowerCamelCase__ ) ) __lowerCamelCase = self.get_image_coords() __lowerCamelCase = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) __lowerCamelCase = self.get_camera_rays(lowerCamelCase__ ) __lowerCamelCase = rays.view(lowerCamelCase__ , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def lowercase_ ( self , lowerCamelCase__ ) -> torch.Tensor: '''simple docstring''' __lowerCamelCase , *__lowerCamelCase , __lowerCamelCase = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] __lowerCamelCase = coords.view(lowerCamelCase__ , -1 , 2 ) __lowerCamelCase = self.resolution() __lowerCamelCase = self.fov() __lowerCamelCase = (flat.float() / (res - 1)) * 2 - 1 __lowerCamelCase = fracs * torch.tan(fov / 2 ) __lowerCamelCase = fracs.view(lowerCamelCase__ , -1 , 2 ) __lowerCamelCase = ( self.z.view(lowerCamelCase__ , 1 , 3 ) + self.x.view(lowerCamelCase__ , 1 , 3 ) * fracs[:, :, :1] + self.y.view(lowerCamelCase__ , 1 , 3 ) * fracs[:, :, 1:] ) __lowerCamelCase = directions / directions.norm(dim=-1 , keepdim=lowerCamelCase__ ) __lowerCamelCase = torch.stack( [ torch.broadcast_to(self.origin.view(lowerCamelCase__ , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(lowerCamelCase__ , *lowerCamelCase__ , 2 , 3 ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> "DifferentiableProjectiveCamera": '''simple docstring''' assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=lowerCamelCase__ , height=lowerCamelCase__ , x_fov=self.x_fov , y_fov=self.y_fov , ) def lowerCamelCase_ ( UpperCamelCase__ : int ) -> DifferentiableProjectiveCamera: """simple docstring""" __lowerCamelCase = [] __lowerCamelCase = [] __lowerCamelCase = [] __lowerCamelCase = [] for theta in np.linspace(0 , 2 * np.pi , num=20 ): __lowerCamelCase = np.array([np.sin(UpperCamelCase__ ), np.cos(UpperCamelCase__ ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) __lowerCamelCase = -z * 4 __lowerCamelCase = np.array([np.cos(UpperCamelCase__ ), -np.sin(UpperCamelCase__ ), 0.0] ) __lowerCamelCase = np.cross(UpperCamelCase__ , UpperCamelCase__ ) origins.append(UpperCamelCase__ ) xs.append(UpperCamelCase__ ) ys.append(UpperCamelCase__ ) zs.append(UpperCamelCase__ ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(UpperCamelCase__ , axis=0 ) ).float() , x=torch.from_numpy(np.stack(UpperCamelCase__ , axis=0 ) ).float() , y=torch.from_numpy(np.stack(UpperCamelCase__ , axis=0 ) ).float() , z=torch.from_numpy(np.stack(UpperCamelCase__ , axis=0 ) ).float() , width=UpperCamelCase__ , height=UpperCamelCase__ , x_fov=0.7 , y_fov=0.7 , shape=(1, len(UpperCamelCase__ )) , )
90
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = '''▁''' __snake_case = {'''vocab_file''': '''sentencepiece.bpe.model''', '''monolingual_vocab_file''': '''dict.txt'''} __snake_case = { '''vocab_file''': { '''vinai/bartpho-syllable''': '''https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model''', }, '''monolingual_vocab_file''': { '''vinai/bartpho-syllable''': '''https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt''', }, } __snake_case = {'''vinai/bartpho-syllable''': 10_24} class __snake_case ( A__ ): __lowerCamelCase : Union[str, Any] = VOCAB_FILES_NAMES __lowerCamelCase : Dict = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : List[str] = ["input_ids", "attention_mask"] def __init__( self , snake_case__ , snake_case__ , snake_case__="<s>" , snake_case__="</s>" , snake_case__="</s>" , snake_case__="<s>" , snake_case__="<unk>" , snake_case__="<pad>" , snake_case__="<mask>" , snake_case__ = None , **snake_case__ , ) -> None: '''simple docstring''' UpperCAmelCase : Dict =AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else mask_token UpperCAmelCase : Optional[int] ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__A , eos_token=__A , unk_token=__A , sep_token=__A , cls_token=__A , pad_token=__A , mask_token=__A , sp_model_kwargs=self.sp_model_kwargs , **__A , ) UpperCAmelCase : Any =vocab_file UpperCAmelCase : Optional[int] =monolingual_vocab_file UpperCAmelCase : List[str] =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__A ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility UpperCAmelCase : Tuple ={} UpperCAmelCase : List[str] =0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(__A ) not in self.fairseq_tokens_to_ids: UpperCAmelCase : List[str] =cnt cnt += 1 with open(__A , '''r''' , encoding='''utf-8''' ) as f: for line in f.readlines(): UpperCAmelCase : int =line.strip().split()[0] UpperCAmelCase : int =len(self.fairseq_tokens_to_ids ) if str(__A ) not in self.fairseq_tokens_to_ids: UpperCAmelCase : Union[str, Any] =len(self.fairseq_tokens_to_ids ) UpperCAmelCase : List[str] ={v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) -> Any: '''simple docstring''' UpperCAmelCase : Optional[Any] =self.__dict__.copy() UpperCAmelCase : str =None UpperCAmelCase : str =self.sp_model.serialized_model_proto() return state def __setstate__( self , snake_case__ ) -> Any: '''simple docstring''' UpperCAmelCase : Optional[int] =d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCAmelCase : int ={} UpperCAmelCase : Tuple =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase : Tuple =[self.cls_token_id] UpperCAmelCase : Any =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None , snake_case__ = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__A , token_ids_a=__A , already_has_special_tokens=__A ) if token_ids_a is None: return [1] + ([0] * len(__A )) + [1] return [1] + ([0] * len(__A )) + [1, 1] + ([0] * len(__A )) + [1] def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None ) -> List[int]: '''simple docstring''' UpperCAmelCase : Optional[int] =[self.sep_token_id] UpperCAmelCase : List[Any] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' return len(self.fairseq_ids_to_tokens ) def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : str ={self.convert_ids_to_tokens(__A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase__ ( self , snake_case__ ) -> List[str]: '''simple docstring''' return self.sp_model.encode(__A , out_type=__A ) def UpperCAmelCase__ ( self , snake_case__ ) -> int: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def UpperCAmelCase__ ( self , snake_case__ ) -> List[str]: '''simple docstring''' return self.fairseq_ids_to_tokens[index] def UpperCAmelCase__ ( self , snake_case__ ) -> List[Any]: '''simple docstring''' UpperCAmelCase : int ="""""".join(__A ).replace(__A , ''' ''' ).strip() return out_string def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(__A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase : List[Any] =os.path.join( __A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase : Tuple =os.path.join( __A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''monolingual_vocab_file'''] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __A ) elif not os.path.isfile(self.vocab_file ): with open(__A , '''wb''' ) as fi: UpperCAmelCase : int =self.sp_model.serialized_model_proto() fi.write(__A ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( __A ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , __A ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(__A , '''w''' , encoding='''utf-8''' ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(f'''{str(__A )} \n''' ) return out_vocab_file, out_monolingual_vocab_file
351
import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib __snake_case = threading.Lock() __snake_case = None __snake_case = { '''debug''': logging.DEBUG, '''info''': logging.INFO, '''warning''': logging.WARNING, '''error''': logging.ERROR, '''critical''': logging.CRITICAL, } __snake_case = logging.WARNING __snake_case = True def lowerCAmelCase_ ( )-> List[str]: '''simple docstring''' UpperCAmelCase : Optional[int] =os.getenv('''TRANSFORMERS_VERBOSITY''' , __lowerCAmelCase ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f'''Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, ''' f'''has to be one of: { ', '.join(log_levels.keys() ) }''' ) return _default_log_level def lowerCAmelCase_ ( )-> str: '''simple docstring''' return __name__.split('''.''' )[0] def lowerCAmelCase_ ( )-> logging.Logger: '''simple docstring''' return logging.getLogger(_get_library_name() ) def lowerCAmelCase_ ( )-> None: '''simple docstring''' global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return UpperCAmelCase : Union[str, Any] =logging.StreamHandler() # Set sys.stderr as stream. UpperCAmelCase : str =sys.stderr.flush # Apply our default configuration to the library root logger. UpperCAmelCase : List[Any] =_get_library_root_logger() library_root_logger.addHandler(_default_handler ) library_root_logger.setLevel(_get_default_logging_level() ) UpperCAmelCase : Optional[int] =False def lowerCAmelCase_ ( )-> None: '''simple docstring''' global _default_handler with _lock: if not _default_handler: return UpperCAmelCase : str =_get_library_root_logger() library_root_logger.removeHandler(_default_handler ) library_root_logger.setLevel(logging.NOTSET ) UpperCAmelCase : Optional[Any] =None def lowerCAmelCase_ ( )-> Tuple: '''simple docstring''' return log_levels def lowerCAmelCase_ ( __lowerCAmelCase = None )-> logging.Logger: '''simple docstring''' if name is None: UpperCAmelCase : int =_get_library_name() _configure_library_root_logger() return logging.getLogger(__lowerCAmelCase ) def lowerCAmelCase_ ( )-> int: '''simple docstring''' _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def lowerCAmelCase_ ( __lowerCAmelCase )-> None: '''simple docstring''' _configure_library_root_logger() _get_library_root_logger().setLevel(__lowerCAmelCase ) def lowerCAmelCase_ ( )-> Optional[int]: '''simple docstring''' return set_verbosity(__lowerCAmelCase ) def lowerCAmelCase_ ( )-> Tuple: '''simple docstring''' return set_verbosity(__lowerCAmelCase ) def lowerCAmelCase_ ( )-> Any: '''simple docstring''' return set_verbosity(__lowerCAmelCase ) def lowerCAmelCase_ ( )-> Dict: '''simple docstring''' return set_verbosity(__lowerCAmelCase ) def lowerCAmelCase_ ( )-> None: '''simple docstring''' _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler ) def lowerCAmelCase_ ( )-> None: '''simple docstring''' _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler ) def lowerCAmelCase_ ( __lowerCAmelCase )-> None: '''simple docstring''' _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(__lowerCAmelCase ) def lowerCAmelCase_ ( __lowerCAmelCase )-> None: '''simple docstring''' _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(__lowerCAmelCase ) def lowerCAmelCase_ ( )-> None: '''simple docstring''' _configure_library_root_logger() UpperCAmelCase : int =False def lowerCAmelCase_ ( )-> None: '''simple docstring''' _configure_library_root_logger() UpperCAmelCase : Tuple =True def lowerCAmelCase_ ( )-> None: '''simple docstring''' UpperCAmelCase : List[Any] =_get_library_root_logger().handlers for handler in handlers: UpperCAmelCase : str =logging.Formatter('''[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s''' ) handler.setFormatter(__lowerCAmelCase ) def lowerCAmelCase_ ( )-> None: '''simple docstring''' UpperCAmelCase : int =_get_library_root_logger().handlers for handler in handlers: handler.setFormatter(__lowerCAmelCase ) def lowerCAmelCase_ ( self , *__lowerCAmelCase , **__lowerCAmelCase )-> Union[str, Any]: '''simple docstring''' UpperCAmelCase : Optional[Any] =os.getenv('''TRANSFORMERS_NO_ADVISORY_WARNINGS''' , __lowerCAmelCase ) if no_advisory_warnings: return self.warning(*__lowerCAmelCase , **__lowerCAmelCase ) __snake_case = warning_advice @functools.lru_cache(__lowerCAmelCase ) def lowerCAmelCase_ ( self , *__lowerCAmelCase , **__lowerCAmelCase )-> Optional[int]: '''simple docstring''' self.warning(*__lowerCAmelCase , **__lowerCAmelCase ) __snake_case = warning_once class __snake_case : def __init__( self , *snake_case__ , **snake_case__ ) -> Dict: # pylint: disable=unused-argument '''simple docstring''' UpperCAmelCase : Any =args[0] if args else None def __iter__( self ) -> List[Any]: '''simple docstring''' return iter(self._iterator ) def __getattr__( self , snake_case__ ) -> str: '''simple docstring''' def empty_fn(*snake_case__ , **snake_case__ ): # pylint: disable=unused-argument return return empty_fn def __enter__( self ) -> int: '''simple docstring''' return self def __exit__( self , snake_case__ , snake_case__ , snake_case__ ) -> List[Any]: '''simple docstring''' return class __snake_case : def __call__( self , *snake_case__ , **snake_case__ ) -> Tuple: '''simple docstring''' if _tqdm_active: return tqdm_lib.tqdm(*snake_case__ , **snake_case__ ) else: return EmptyTqdm(*snake_case__ , **snake_case__ ) def UpperCAmelCase__ ( self , *snake_case__ , **snake_case__ ) -> Any: '''simple docstring''' UpperCAmelCase : Union[str, Any] =None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*snake_case__ , **snake_case__ ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' if _tqdm_active: return tqdm_lib.tqdm.get_lock() __snake_case = _tqdm_cls() def lowerCAmelCase_ ( )-> bool: '''simple docstring''' global _tqdm_active return bool(_tqdm_active ) def lowerCAmelCase_ ( )-> Optional[Any]: '''simple docstring''' global _tqdm_active UpperCAmelCase : Dict =True hf_hub_utils.enable_progress_bars() def lowerCAmelCase_ ( )-> Optional[Any]: '''simple docstring''' global _tqdm_active UpperCAmelCase : List[str] =False hf_hub_utils.disable_progress_bars()
78
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer __A : Tuple = logging.get_logger(__name__) __A : Union[str, Any] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} __A : Tuple = { '''vocab_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt''' ), '''google/realm-orqa-nq-openqa''': '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-nq-reader''': '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt''', '''google/realm-orqa-wq-openqa''': '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-wq-reader''': '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt''', }, '''tokenizer_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-openqa''': ( '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-reader''': ( '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-openqa''': ( '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-reader''': ( '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json''' ), }, } __A : Optional[int] = { '''google/realm-cc-news-pretrained-embedder''': 512, '''google/realm-cc-news-pretrained-encoder''': 512, '''google/realm-cc-news-pretrained-scorer''': 512, '''google/realm-cc-news-pretrained-openqa''': 512, '''google/realm-orqa-nq-openqa''': 512, '''google/realm-orqa-nq-reader''': 512, '''google/realm-orqa-wq-openqa''': 512, '''google/realm-orqa-wq-reader''': 512, } __A : Optional[int] = { '''google/realm-cc-news-pretrained-embedder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-encoder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-scorer''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-reader''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-reader''': {'''do_lower_case''': True}, } class _UpperCAmelCase ( _A ): SCREAMING_SNAKE_CASE_ : List[Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : List[Any] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : Any = PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : Any = RealmTokenizer def __init__( self : str , A : Optional[int]=None , A : int=None , A : Union[str, Any]=True , A : str="[UNK]" , A : Dict="[SEP]" , A : Dict="[PAD]" , A : List[str]="[CLS]" , A : List[str]="[MASK]" , A : Dict=True , A : Union[str, Any]=None , **A : int , ) -> Optional[Any]: super().__init__( A , tokenizer_file=A , do_lower_case=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , tokenize_chinese_chars=A , strip_accents=A , **A , ) lowercase_ : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , A ) != do_lower_case or normalizer_state.get('''strip_accents''' , A ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , A ) != tokenize_chinese_chars ): lowercase_ : Tuple = getattr(A , normalizer_state.pop('''type''' ) ) lowercase_ : Optional[Any] = do_lower_case lowercase_ : Optional[Any] = strip_accents lowercase_ : Optional[Any] = tokenize_chinese_chars lowercase_ : int = normalizer_class(**A ) lowercase_ : Tuple = do_lower_case def A ( self : Union[str, Any] , A : int , **A : Dict ) -> List[Any]: lowercase_ : Optional[Any] = PaddingStrategy.MAX_LENGTH lowercase_ : Tuple = text lowercase_ : List[str] = kwargs.pop('''text_pair''' , A ) lowercase_ : Optional[int] = kwargs.pop('''return_tensors''' , A ) lowercase_ : List[Any] = { '''input_ids''': [], '''attention_mask''': [], '''token_type_ids''': [], } for idx, candidate_text in enumerate(A ): if batch_text_pair is not None: lowercase_ : List[str] = batch_text_pair[idx] else: lowercase_ : Optional[int] = None lowercase_ : Optional[Any] = super().__call__(A , A , return_tensors=A , **A ) lowercase_ : Tuple = encoded_candidates.get('''input_ids''' ) lowercase_ : List[Any] = encoded_candidates.get('''attention_mask''' ) lowercase_ : Dict = encoded_candidates.get('''token_type_ids''' ) if encoded_input_ids is not None: output_data["input_ids"].append(A ) if encoded_attention_mask is not None: output_data["attention_mask"].append(A ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(A ) lowercase_ : List[str] = {key: item for key, item in output_data.items() if len(A ) != 0} return BatchEncoding(A , tensor_type=A ) def A ( self : Any , A : Union[str, Any] , A : Optional[int]=None ) -> List[str]: lowercase_ : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A ( self : List[str] , A : List[int] , A : Optional[List[int]] = None ) -> List[int]: lowercase_ : List[Any] = [self.sep_token_id] lowercase_ : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A ( self : List[Any] , A : str , A : Optional[str] = None ) -> Tuple[str]: lowercase_ : Optional[int] = self._tokenizer.model.save(A , name=A ) return tuple(A )
33
"""simple docstring""" def lowercase ( __snake_case : int = 1_0_0_0 ): lowercase_ , lowercase_ : str = 1, 1 lowercase_ : List[str] = 2 while True: lowercase_ : Tuple = 0 lowercase_ : List[Any] = fa + fa lowercase_ , lowercase_ : Optional[int] = fa, f index += 1 for _ in str(__snake_case ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
33
1
"""simple docstring""" import datasets from .evaluate import evaluate __A : List[Any] = '\\n@article{hendrycks2021cuad,\n title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review},\n author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},\n journal={arXiv preprint arXiv:2103.06268},\n year={2021}\n}\n' __A : Dict = '\nThis metric wrap the official scoring script for version 1 of the Contract\nUnderstanding Atticus Dataset (CUAD).\nContract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510\ncommercial legal contracts that have been manually labeled to identify 41 categories of important\nclauses that lawyers look for when reviewing contracts in connection with corporate transactions.\n' __A : str = '\nComputes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': list of possible texts for the answer, as a list of strings\n depending on a threshold on the confidence probability of each prediction.\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the CUAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\n \'aupr\': Area Under the Precision-Recall curve\n \'prec_at_80_recall\': Precision at 80% recall\n \'prec_at_90_recall\': Precision at 90% recall\nExamples:\n >>> predictions = [{\'prediction_text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\'], \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]\n >>> references = [{\'answers\': {\'answer_start\': [143, 49], \'text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\']}, \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]\n >>> cuad_metric = datasets.load_metric("cuad")\n >>> results = cuad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0, \'aupr\': 0.0, \'prec_at_80_recall\': 1.0, \'prec_at_90_recall\': 1.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCamelCase ( datasets.Metric ): def SCREAMING_SNAKE_CASE__ (self : Union[str, Any]): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": { "id": datasets.Value("string"), "prediction_text": datasets.features.Sequence(datasets.Value("string")), }, "references": { "id": datasets.Value("string"), "answers": datasets.features.Sequence( { "text": datasets.Value("string"), "answer_start": datasets.Value("int32"), }), }, }) , codebase_urls=["https://www.atticusprojectai.org/cuad"] , reference_urls=["https://www.atticusprojectai.org/cuad"] , ) def SCREAMING_SNAKE_CASE__ (self : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple): A = {prediction["id"]: prediction["prediction_text"] for prediction in predictions} A = [ { "paragraphs": [ { "qas": [ { "answers": [{"text": answer_text} for answer_text in ref["answers"]["text"]], "id": ref["id"], } for ref in references ] } ] } ] A = evaluate(dataset=__SCREAMING_SNAKE_CASE , predictions=__SCREAMING_SNAKE_CASE) return score
370
"""simple docstring""" # This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests __A : Any = open # noqa: we just need to have a builtin inside this module to test it properly
57
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowercase = logging.get_logger(__name__) _lowercase = { '''shi-labs/dinat-mini-in1k-224''': '''https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json''', # See all Dinat models at https://huggingface.co/models?filter=dinat } class lowerCAmelCase_ ( _lowercase , _lowercase ): '''simple docstring''' _lowerCamelCase: Union[str, Any] = '''dinat''' _lowerCamelCase: str = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : Union[str, Any] ,A_ : Optional[int]=4 ,A_ : Union[str, Any]=3 ,A_ : List[str]=64 ,A_ : List[str]=[3, 4, 6, 5] ,A_ : Any=[2, 4, 8, 16] ,A_ : List[Any]=7 ,A_ : Tuple=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]] ,A_ : str=3.0 ,A_ : List[Any]=True ,A_ : Any=0.0 ,A_ : str=0.0 ,A_ : Union[str, Any]=0.1 ,A_ : int="gelu" ,A_ : List[str]=0.02 ,A_ : Optional[Any]=1e-5 ,A_ : Dict=0.0 ,A_ : int=None ,A_ : Optional[Any]=None ,**A_ : Tuple ,) -> Union[str, Any]: super().__init__(**A_ ) A = patch_size A = num_channels A = embed_dim A = depths A = len(A_ ) A = num_heads A = kernel_size A = dilations A = mlp_ratio A = qkv_bias A = hidden_dropout_prob A = attention_probs_dropout_prob A = drop_path_rate A = hidden_act A = layer_norm_eps A = initializer_range # we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model A = int(embed_dim * 2 ** (len(A_ ) - 1) ) A = layer_scale_init_value A = ['stem'] + [F'stage{idx}' for idx in range(1 ,len(A_ ) + 1 )] A , A = get_aligned_output_features_output_indices( out_features=A_ ,out_indices=A_ ,stage_names=self.stage_names )
74
"""simple docstring""" import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging A: str = logging.get_logger(__name__) A: List[Any] = {"vocab_file": "vocab.txt"} A: List[str] = { "vocab_file": { "facebook/esm2_t6_8M_UR50D": "https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt", "facebook/esm2_t12_35M_UR50D": "https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt", }, } A: Dict = { "facebook/esm2_t6_8M_UR50D": 1_0_2_4, "facebook/esm2_t12_35M_UR50D": 1_0_2_4, } def _snake_case ( UpperCamelCase : int ): with open(UpperCamelCase , """r""" ) as f: UpperCAmelCase : int = f.read().splitlines() return [l.strip() for l in lines] class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): __lowerCAmelCase : Union[str, Any] = VOCAB_FILES_NAMES __lowerCAmelCase : Dict = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase : str = ['input_ids', 'attention_mask'] def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="<unk>" , _SCREAMING_SNAKE_CASE="<cls>" , _SCREAMING_SNAKE_CASE="<pad>" , _SCREAMING_SNAKE_CASE="<mask>" , _SCREAMING_SNAKE_CASE="<eos>" , **_SCREAMING_SNAKE_CASE , ) -> Any: '''simple docstring''' super().__init__(**_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[Any] = load_vocab_file(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[Any] = dict(enumerate(self.all_tokens ) ) UpperCAmelCase : List[str] = {tok: ind for ind, tok in enumerate(self.all_tokens )} UpperCAmelCase : Any = unk_token UpperCAmelCase : str = cls_token UpperCAmelCase : int = pad_token UpperCAmelCase : Tuple = mask_token UpperCAmelCase : str = eos_token UpperCAmelCase : List[str] = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' return self._id_to_token.get(_SCREAMING_SNAKE_CASE , self.unk_token ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' return self._token_to_id.get(_SCREAMING_SNAKE_CASE , self._token_to_id.get(self.unk_token ) ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[Any]: '''simple docstring''' return text.split() def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE=False ) -> Union[str, Any]: '''simple docstring''' return len(self._id_to_token ) def SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' return {token: i for i, token in enumerate(self.all_tokens )} def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' return self._token_to_id.get(_SCREAMING_SNAKE_CASE , self._token_to_id.get(self.unk_token ) ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' return self._id_to_token.get(_SCREAMING_SNAKE_CASE , self.unk_token ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[int]: '''simple docstring''' UpperCAmelCase : Optional[Any] = [self.cls_token_id] UpperCAmelCase : Tuple = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError("""Cannot tokenize multiple sequences when EOS token is not set!""" ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] UpperCAmelCase : str = [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] if token_ids_a is not None: mask += [0] * len(_SCREAMING_SNAKE_CASE ) + [1] return mask def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : Optional[int] = os.path.join(_SCREAMING_SNAKE_CASE , (filename_prefix + """-""" if filename_prefix else """""") + """vocab.txt""" ) with open(_SCREAMING_SNAKE_CASE , """w""" ) as f: f.write("""\n""".join(self.all_tokens ) ) return (vocab_file,) @property def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' return self.get_vocab_size(with_added_tokens=_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = False ) -> int: '''simple docstring''' return super()._add_tokens(_SCREAMING_SNAKE_CASE , special_tokens=_SCREAMING_SNAKE_CASE )
109
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _lowercase : Tuple = { 'configuration_clip': [ 'CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CLIPConfig', 'CLIPOnnxConfig', 'CLIPTextConfig', 'CLIPVisionConfig', ], 'processing_clip': ['CLIPProcessor'], 'tokenization_clip': ['CLIPTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[Any] = ['CLIPTokenizerFast'] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[Any] = ['CLIPFeatureExtractor'] _lowercase : Any = ['CLIPImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[Any] = [ 'CLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'CLIPModel', 'CLIPPreTrainedModel', 'CLIPTextModel', 'CLIPTextModelWithProjection', 'CLIPVisionModel', 'CLIPVisionModelWithProjection', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : int = [ 'TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFCLIPModel', 'TFCLIPPreTrainedModel', 'TFCLIPTextModel', 'TFCLIPVisionModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Tuple = [ 'FlaxCLIPModel', 'FlaxCLIPPreTrainedModel', 'FlaxCLIPTextModel', 'FlaxCLIPTextPreTrainedModel', 'FlaxCLIPVisionModel', 'FlaxCLIPVisionPreTrainedModel', ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys _lowercase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
86
"""simple docstring""" from __future__ import annotations import bisect def lowercase__ ( snake_case_ :list[int] , snake_case_ :int , snake_case_ :int = 0 , snake_case_ :int = -1 ): if hi < 0: __UpperCAmelCase = len(snake_case_ ) while lo < hi: __UpperCAmelCase = lo + (hi - lo) // 2 if sorted_collection[mid] < item: __UpperCAmelCase = mid + 1 else: __UpperCAmelCase = mid return lo def lowercase__ ( snake_case_ :list[int] , snake_case_ :int , snake_case_ :int = 0 , snake_case_ :int = -1 ): if hi < 0: __UpperCAmelCase = len(snake_case_ ) while lo < hi: __UpperCAmelCase = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: __UpperCAmelCase = mid + 1 else: __UpperCAmelCase = mid return lo def lowercase__ ( snake_case_ :list[int] , snake_case_ :int , snake_case_ :int = 0 , snake_case_ :int = -1 ): sorted_collection.insert(bisect_left(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) , snake_case_ ) def lowercase__ ( snake_case_ :list[int] , snake_case_ :int , snake_case_ :int = 0 , snake_case_ :int = -1 ): sorted_collection.insert(bisect_right(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) , snake_case_ ) def lowercase__ ( snake_case_ :list[int] , snake_case_ :int ): __UpperCAmelCase = 0 __UpperCAmelCase = len(snake_case_ ) - 1 while left <= right: __UpperCAmelCase = left + (right - left) // 2 __UpperCAmelCase = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: __UpperCAmelCase = midpoint - 1 else: __UpperCAmelCase = midpoint + 1 return None def lowercase__ ( snake_case_ :list[int] , snake_case_ :int ): __UpperCAmelCase = bisect.bisect_left(snake_case_ , snake_case_ ) if index != len(snake_case_ ) and sorted_collection[index] == item: return index return None def lowercase__ ( snake_case_ :list[int] , snake_case_ :int , snake_case_ :int , snake_case_ :int ): if right < left: return None __UpperCAmelCase = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(snake_case_ , snake_case_ , snake_case_ , midpoint - 1 ) else: return binary_search_by_recursion(snake_case_ , snake_case_ , midpoint + 1 , snake_case_ ) if __name__ == "__main__": _lowercase : Optional[Any] = input('Enter numbers separated by comma:\n').strip() _lowercase : Optional[int] = sorted(int(item) for item in user_input.split(',')) _lowercase : Optional[Any] = int(input('Enter a single number to be found in the list:\n')) _lowercase : int = binary_search(collection, target) if result is None: print(f"""{target} was not found in {collection}.""") else: print(f"""{target} was found at position {result} in {collection}.""")
86
1
from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
306
import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__=None ) -> Optional[int]: """simple docstring""" assert torch_layer.weight.shape == weight.shape, F'{torch_layer} layer.weight does not match' _SCREAMING_SNAKE_CASE = nn.Parameter(snake_case__ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, F'{torch_layer} layer.bias does not match' _SCREAMING_SNAKE_CASE = nn.Parameter(snake_case__ ) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = np.asarray(weights[0] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[1] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.self_attention.value ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.output.dense ,torch.tensor(snake_case__ ).view(-1 ,snake_case__ ).contiguous().transpose(0 ,1 ) ,) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE = np.asarray(weights[0] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[1] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[2] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.self_attention.key ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.self_attention.value ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.output.dense ,torch.tensor(snake_case__ ).view(-1 ,snake_case__ ).contiguous().transpose(0 ,1 ) ,) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = weights[0][0][0] _SCREAMING_SNAKE_CASE = np.asarray(layer_norm_a[0] ) _SCREAMING_SNAKE_CASE = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm ,torch.tensor(snake_case__ ) ,torch.tensor(snake_case__ ) ,) # lsh weights + output _SCREAMING_SNAKE_CASE = weights[0][1] if len(snake_case__ ) < 4: set_layer_weights_in_torch_lsh(snake_case__ ,torch_block.attention ,snake_case__ ) else: set_layer_weights_in_torch_local(snake_case__ ,torch_block.attention ,snake_case__ ) # intermediate weighs _SCREAMING_SNAKE_CASE = weights[2][0][1][2] # Chunked Feed Forward if len(snake_case__ ) == 4: _SCREAMING_SNAKE_CASE = intermediate_weights[2] # layernorm 2 _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[0][0] ) _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm ,torch.tensor(snake_case__ ) ,torch.tensor(snake_case__ ) ,) # intermediate dense _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[1][0] ) _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense ,torch.tensor(snake_case__ ).transpose(0 ,1 ).contiguous() ,torch.tensor(snake_case__ ) ,) # intermediate out _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[4][0] ) _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense ,torch.tensor(snake_case__ ).transpose(0 ,1 ).contiguous() ,torch.tensor(snake_case__ ) ,) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = torch_model.reformer # word embeds _SCREAMING_SNAKE_CASE = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings ,torch.tensor(snake_case__ ) ,) if isinstance(weights[3] ,snake_case__ ): _SCREAMING_SNAKE_CASE = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): _SCREAMING_SNAKE_CASE = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), F'{position_embeddings[emb_idx]} emb does not match' _SCREAMING_SNAKE_CASE = nn.Parameter(torch.tensor(snake_case__ ) ) _SCREAMING_SNAKE_CASE = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( snake_case__ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): _SCREAMING_SNAKE_CASE = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(snake_case__ ,snake_case__ ,snake_case__ ) # output layer norm _SCREAMING_SNAKE_CASE = np.asarray(weights[7][0] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm ,torch.tensor(snake_case__ ) ,torch.tensor(snake_case__ ) ,) # output embeddings _SCREAMING_SNAKE_CASE = np.asarray(weights[9][0] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder ,torch.tensor(snake_case__ ).transpose(0 ,1 ).contiguous() ,torch.tensor(snake_case__ ) ,) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE = ReformerConfig.from_json_file(snake_case__ ) print(F'Building PyTorch model from configuration: {config}' ) _SCREAMING_SNAKE_CASE = ReformerModelWithLMHead(snake_case__ ) with open(snake_case__ ,"""rb""" ) as f: _SCREAMING_SNAKE_CASE = pickle.load(snake_case__ )["""weights"""] set_model_weights_in_torch(snake_case__ ,snake_case__ ,config.hidden_size ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() ,snake_case__ ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--trax_model_pkl_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained Reformer model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) UpperCamelCase = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
306
1
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __UpperCamelCase : Any = logging.get_logger(__name__) __UpperCamelCase : Tuple = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "ctc_proj", "mask_emb": "masked_spec_embed", } __UpperCamelCase : Optional[Any] = [ "ctc_proj", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] ): for attribute in key.split('.' ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models lowerCAmelCase = 'lm_head' lowerCAmelCase = getattr(lowerCamelCase__ , lowerCamelCase__ ) if weight_type is not None: lowerCAmelCase = getattr(lowerCamelCase__ , lowerCamelCase__ ).shape else: lowerCAmelCase = hf_pointer.shape assert hf_shape == value.shape, ( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": lowerCAmelCase = value elif weight_type == "weight_g": lowerCAmelCase = value elif weight_type == "weight_v": lowerCAmelCase = value elif weight_type == "bias": lowerCAmelCase = value else: lowerCAmelCase = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] ): lowerCAmelCase = [] lowerCAmelCase = fairseq_model.state_dict() lowerCAmelCase = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): lowerCAmelCase = False if "conv_layers" in name: load_conv_layer( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , hf_model.config.feat_extract_norm == 'group' , ) lowerCAmelCase = True else: for key, mapped_key in MAPPING.items(): lowerCAmelCase = 'unispeech.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: lowerCAmelCase = True if "*" in mapped_key: lowerCAmelCase = name.split(lowerCamelCase__ )[0].split('.' )[-2] lowerCAmelCase = mapped_key.replace('*' , lowerCamelCase__ ) if "weight_g" in name: lowerCAmelCase = 'weight_g' elif "weight_v" in name: lowerCAmelCase = 'weight_v' elif "bias" in name: lowerCAmelCase = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj lowerCAmelCase = 'weight' else: lowerCAmelCase = None set_recursively(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) continue if not is_used: unused_weights.append(lowerCamelCase__ ) logger.warning(F'Unused weights: {unused_weights}' ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str ): lowerCAmelCase = full_name.split('conv_layers.' )[-1] lowerCAmelCase = name.split('.' ) lowerCAmelCase = int(items[0] ) lowerCAmelCase = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) lowerCAmelCase = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) lowerCAmelCase = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) lowerCAmelCase = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) lowerCAmelCase = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(lowerCamelCase__ ) @torch.no_grad() def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any]=None , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : Union[str, Any]=True ): if config_path is not None: lowerCAmelCase = UniSpeechConfig.from_pretrained(lowerCamelCase__ ) else: lowerCAmelCase = UniSpeechConfig() if is_finetuned: if dict_path: lowerCAmelCase = Dictionary.load_from_json(lowerCamelCase__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowerCAmelCase = target_dict.pad_index lowerCAmelCase = target_dict.bos_index lowerCAmelCase = target_dict.eos_index lowerCAmelCase = len(target_dict.symbols ) lowerCAmelCase = os.path.join(lowerCamelCase__ , 'vocab.json' ) if not os.path.isdir(lowerCamelCase__ ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(lowerCamelCase__ ) ) return os.makedirs(lowerCamelCase__ , exist_ok=lowerCamelCase__ ) lowerCAmelCase = target_dict.indices # fairseq has the <pad> and <s> switched lowerCAmelCase = 42 lowerCAmelCase = 43 with open(lowerCamelCase__ , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(lowerCamelCase__ , lowerCamelCase__ ) lowerCAmelCase = WavaVecaPhonemeCTCTokenizer( lowerCamelCase__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=lowerCamelCase__ , ) lowerCAmelCase = True if config.feat_extract_norm == 'layer' else False lowerCAmelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , ) lowerCAmelCase = WavaVecaProcessor(feature_extractor=lowerCamelCase__ , tokenizer=lowerCamelCase__ ) processor.save_pretrained(lowerCamelCase__ ) lowerCAmelCase = UniSpeechForCTC(lowerCamelCase__ ) else: lowerCAmelCase = UniSpeechForPreTraining(lowerCamelCase__ ) if is_finetuned: lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] ), 'w2v_path': checkpoint_path} ) else: lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) lowerCAmelCase = model[0].eval() recursively_load_weights(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) hf_unispeech.save_pretrained(lowerCamelCase__ ) if __name__ == "__main__": __UpperCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) __UpperCamelCase : Dict = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
350
"""simple docstring""" from __future__ import annotations def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : list[str] | None = None ): lowerCAmelCase = word_bank or [] # create a table lowerCAmelCase = len(_UpperCAmelCase ) + 1 lowerCAmelCase = [] for _ in range(_UpperCAmelCase ): table.append([] ) # seed value lowerCAmelCase = [[]] # because empty string has empty combination # iterate through the indices for i in range(_UpperCAmelCase ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(_UpperCAmelCase )] == word: lowerCAmelCase = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(_UpperCAmelCase )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(_UpperCAmelCase )]: combination.reverse() return table[len(_UpperCAmelCase )] if __name__ == "__main__": print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa'''])) print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t'''])) print( all_construct( '''hexagonosaurus''', ['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''], ) )
309
0
"""simple docstring""" import math class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Union[str, Any] ,A_ : Optional[int]=0 ) -> List[str]: # a graph with Node 0,1,...,N-1 A = n A = [ [math.inf for j in range(0 ,A_ )] for i in range(0 ,A_ ) ] # adjacency matrix for weight A = [ [math.inf for j in range(0 ,A_ )] for i in range(0 ,A_ ) ] # dp[i][j] stores minimum distance from i to j def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : List[str] ,A_ : Any ,A_ : Any ) -> Optional[Any]: A = w def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: for k in range(0 ,self.n ): for i in range(0 ,self.n ): for j in range(0 ,self.n ): A = min(self.dp[i][j] ,self.dp[i][k] + self.dp[k][j] ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : List[Any] ,A_ : Any ) -> Optional[Any]: return self.dp[u][v] if __name__ == "__main__": _lowercase = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
74
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { '''bigcode/gpt_bigcode-santacoder''': '''https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json''', } class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: List[str] = '''gpt_bigcode''' _lowerCamelCase: List[Any] = ['''past_key_values'''] _lowerCamelCase: int = { '''hidden_size''': '''n_embd''', '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Optional[int] ,A_ : Dict=5_0257 ,A_ : Union[str, Any]=1024 ,A_ : str=768 ,A_ : Any=12 ,A_ : Any=12 ,A_ : Optional[int]=None ,A_ : Any="gelu_pytorch_tanh" ,A_ : List[str]=0.1 ,A_ : Optional[int]=0.1 ,A_ : List[str]=0.1 ,A_ : Tuple=1e-5 ,A_ : Optional[int]=0.02 ,A_ : List[str]=True ,A_ : Optional[Any]=True ,A_ : List[Any]=5_0256 ,A_ : Union[str, Any]=5_0256 ,A_ : int=True ,A_ : Optional[Any]=True ,A_ : Dict=True ,**A_ : Union[str, Any] ,) -> Union[str, Any]: A = vocab_size A = n_positions A = n_embd A = n_layer A = n_head A = n_inner A = activation_function A = resid_pdrop A = embd_pdrop A = attn_pdrop A = layer_norm_epsilon A = initializer_range A = scale_attn_weights A = use_cache A = attention_softmax_in_fpaa A = scale_attention_softmax_in_fpaa A = multi_query A = bos_token_id A = eos_token_id super().__init__(bos_token_id=A_ ,eos_token_id=A_ ,**A_ )
74
1
'''simple docstring''' import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class _snake_case ( lowercase_ ): def __init__( self , a__ , a__ , a__ , a__ , ) -> str: '''simple docstring''' super().__init__() snake_case_ = value_function snake_case_ = unet snake_case_ = scheduler snake_case_ = env snake_case_ = env.get_dataset() snake_case_ = {} for key in self.data.keys(): try: snake_case_ = self.data[key].mean() except: # noqa: E722 pass snake_case_ = {} for key in self.data.keys(): try: snake_case_ = self.data[key].std() except: # noqa: E722 pass snake_case_ = env.observation_space.shape[0] snake_case_ = env.action_space.shape[0] def lowerCAmelCase__ ( self , a__ , a__ ) -> Union[str, Any]: '''simple docstring''' return (x_in - self.means[key]) / self.stds[key] def lowerCAmelCase__ ( self , a__ , a__ ) -> str: '''simple docstring''' return x_in * self.stds[key] + self.means[key] def lowerCAmelCase__ ( self , a__ ) -> Any: '''simple docstring''' if type(a__ ) is dict: return {k: self.to_torch(a__ ) for k, v in x_in.items()} elif torch.is_tensor(a__ ): return x_in.to(self.unet.device ) return torch.tensor(a__ , device=self.unet.device ) def lowerCAmelCase__ ( self , a__ , a__ , a__ ) -> Dict: '''simple docstring''' for key, val in cond.items(): snake_case_ = val.clone() return x_in def lowerCAmelCase__ ( self , a__ , a__ , a__ , a__ ) -> str: '''simple docstring''' snake_case_ = x.shape[0] snake_case_ = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model snake_case_ = torch.full((batch_size,) , a__ , device=self.unet.device , dtype=torch.long ) for _ in range(a__ ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models snake_case_ = self.value_function(x.permute(0 , 2 , 1 ) , a__ ).sample snake_case_ = torch.autograd.grad([y.sum()] , [x] )[0] snake_case_ = self.scheduler._get_variance(a__ ) snake_case_ = torch.exp(0.5 * posterior_variance ) snake_case_ = model_std * grad snake_case_ = 0 snake_case_ = x.detach() snake_case_ = x + scale * grad snake_case_ = self.reset_xa(a__ , a__ , self.action_dim ) snake_case_ = self.unet(x.permute(0 , 2 , 1 ) , a__ ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg snake_case_ = self.scheduler.step(a__ , a__ , a__ , predict_epsilon=a__ )["prev_sample"] # apply conditions to the trajectory (set the initial state) snake_case_ = self.reset_xa(a__ , a__ , self.action_dim ) snake_case_ = self.to_torch(a__ ) return x, y def __call__( self , a__ , a__=64 , a__=32 , a__=2 , a__=0.1 ) -> Optional[Any]: '''simple docstring''' snake_case_ = self.normalize(a__ , "observations" ) snake_case_ = obs[None].repeat(a__ , axis=0 ) snake_case_ = {0: self.to_torch(a__ )} snake_case_ = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) snake_case_ = randn_tensor(a__ , device=self.unet.device ) snake_case_ = self.reset_xa(a__ , a__ , self.action_dim ) snake_case_ = self.to_torch(a__ ) # run the diffusion process snake_case_ , snake_case_ = self.run_diffusion(a__ , a__ , a__ , a__ ) # sort output trajectories by value snake_case_ = y.argsort(0 , descending=a__ ).squeeze() snake_case_ = x[sorted_idx] snake_case_ = sorted_values[:, :, : self.action_dim] snake_case_ = actions.detach().cpu().numpy() snake_case_ = self.de_normalize(a__ , key="actions" ) # select the action with the highest value if y is not None: snake_case_ = 0 else: # if we didn't run value guiding, select a random action snake_case_ = np.random.randint(0 , a__ ) snake_case_ = denorm_actions[selected_index, 0] return denorm_actions
92
'''simple docstring''' from __future__ import annotations from scipy.special import comb # type: ignore class _snake_case : def __init__( self , a__ ) -> Union[str, Any]: '''simple docstring''' snake_case_ = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. snake_case_ = len(a__ ) - 1 def lowerCAmelCase__ ( self , a__ ) -> list[float]: '''simple docstring''' assert 0 <= t <= 1, "Time t must be between 0 and 1." snake_case_ = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , a__ ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(a__ ) , 5 ) == 1 return output_values def lowerCAmelCase__ ( self , a__ ) -> tuple[float, float]: '''simple docstring''' assert 0 <= t <= 1, "Time t must be between 0 and 1." snake_case_ = self.basis_function(a__ ) snake_case_ = 0.0 snake_case_ = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def lowerCAmelCase__ ( self , a__ = 0.0_1 ) -> Any: '''simple docstring''' from matplotlib import pyplot as plt # type: ignore snake_case_ = [] # x coordinates of points to plot snake_case_ = [] # y coordinates of points to plot snake_case_ = 0.0 while t <= 1: snake_case_ = self.bezier_curve_function(a__ ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size snake_case_ = [i[0] for i in self.list_of_points] snake_case_ = [i[1] for i in self.list_of_points] plt.plot( a__ , a__ , color="blue" , label="Curve of Degree " + str(self.degree ) , ) plt.scatter(a__ , a__ , color="red" , label="Control Points" ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
92
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _A ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): snake_case__ : Union[str, Any] = StableDiffusionXLImgaImgPipeline snake_case__ : Tuple = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width'} snake_case__ : Optional[Any] = PipelineTesterMixin.required_optional_params - {'latents'} snake_case__ : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS snake_case__ : Optional[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS snake_case__ : int = IMAGE_TO_IMAGE_IMAGE_PARAMS def A__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , attention_head_dim=(2, 4) , use_linear_projection=__lowerCAmelCase , addition_embed_type="""text_time""" , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , ) lowercase = EulerDiscreteScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , steps_offset=1 , beta_schedule="""scaled_linear""" , timestep_spacing="""leading""" , ) torch.manual_seed(0 ) lowercase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowercase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=32 , ) lowercase = CLIPTextModel(__lowerCAmelCase ) lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" , local_files_only=__lowerCAmelCase ) lowercase = CLIPTextModelWithProjection(__lowerCAmelCase ) lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" , local_files_only=__lowerCAmelCase ) lowercase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """text_encoder_2""": text_encoder_a, """tokenizer_2""": tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def A__ ( self , __lowerCAmelCase , __lowerCAmelCase=0 ): """simple docstring""" lowercase = floats_tensor((1, 3, 32, 32) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase ) lowercase = image / 2 + 0.5 if str(__lowerCAmelCase ).startswith("""mps""" ): lowercase = torch.manual_seed(__lowerCAmelCase ) else: lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase ) lowercase = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 5.0, """output_type""": """numpy""", """strength""": 0.7_5, } return inputs def A__ ( self ): """simple docstring""" lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.get_dummy_components() lowercase = StableDiffusionXLImgaImgPipeline(**__lowerCAmelCase ) lowercase = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = self.get_dummy_inputs(__lowerCAmelCase ) lowercase = sd_pipe(**__lowerCAmelCase ).images lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase = np.array([0.4_6_5_6, 0.4_8_4_0, 0.4_4_3_9, 0.6_6_9_8, 0.5_5_7_4, 0.4_5_2_4, 0.5_7_9_9, 0.5_9_4_3, 0.5_1_6_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def A__ ( self ): """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def A__ ( self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def A__ ( self ): """simple docstring""" pass def A__ ( self ): """simple docstring""" lowercase = self.get_dummy_components() lowercase = StableDiffusionXLImgaImgPipeline(**__lowerCAmelCase ) lowercase = sd_pipe.to(__lowerCAmelCase ) lowercase = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) # forward without prompt embeds lowercase = self.get_dummy_inputs(__lowerCAmelCase ) lowercase = 3 * ["""this is a negative prompt"""] lowercase = negative_prompt lowercase = 3 * [inputs["""prompt"""]] lowercase = sd_pipe(**__lowerCAmelCase ) lowercase = output.images[0, -3:, -3:, -1] # forward with prompt embeds lowercase = self.get_dummy_inputs(__lowerCAmelCase ) lowercase = 3 * ["""this is a negative prompt"""] lowercase = 3 * [inputs.pop("""prompt""" )] ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) = sd_pipe.encode_prompt(__lowerCAmelCase , negative_prompt=__lowerCAmelCase ) lowercase = sd_pipe( **__lowerCAmelCase , prompt_embeds=__lowerCAmelCase , negative_prompt_embeds=__lowerCAmelCase , pooled_prompt_embeds=__lowerCAmelCase , negative_pooled_prompt_embeds=__lowerCAmelCase , ) lowercase = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @slow @require_torch_gpu class _A ( unittest.TestCase ): def A__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self , __lowerCAmelCase , __lowerCAmelCase="cpu" , __lowerCAmelCase=torch.floataa , __lowerCAmelCase=0 ): """simple docstring""" lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase ) lowercase = np.random.RandomState(__lowerCAmelCase ).standard_normal((1, 4, 64, 64) ) lowercase = torch.from_numpy(__lowerCAmelCase ).to(device=__lowerCAmelCase , dtype=__lowerCAmelCase ) lowercase = { """prompt""": """a photograph of an astronaut riding a horse""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def A__ ( self ): """simple docstring""" lowercase = DiffusionPipeline.from_pretrained("""stabilityai/stable-diffusion-2-base""" ) pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = self.get_inputs(__lowerCAmelCase ) lowercase = pipe(**__lowerCAmelCase ).images lowercase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) lowercase = np.array([0.4_9_4_9_3, 0.4_7_8_9_6, 0.4_0_7_9_8, 0.5_4_2_1_4, 0.5_3_2_1_2, 0.4_8_2_0_2, 0.4_7_6_5_6, 0.4_6_3_2_9, 0.4_8_5_0_6] ) assert np.abs(image_slice - expected_slice ).max() < 7E-3
197
'''simple docstring''' from __future__ import annotations from collections.abc import Generator def _A () -> Generator[int, None, None]: '''simple docstring''' _a = {} _a = 2 while True: _a = factor_map.pop(lowerCAmelCase__ , lowerCAmelCase__ ) if factor: _a = factor + prime while x in factor_map: x += factor _a = factor else: _a = prime yield prime prime += 1 def _A (lowerCAmelCase__ :float = 1E10 ) -> int: '''simple docstring''' _a = sieve() _a = 1 while True: _a = next(lowerCAmelCase__ ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(lowerCAmelCase__ ) n += 2 if __name__ == "__main__": print(solution())
168
0
from ..utils import DummyObject, requires_backends class _a ( metaclass=_lowercase ): UpperCamelCase = ['''torch''', '''scipy'''] def __init__( self : Union[str, Any], *lowerCAmelCase__ : Any, **lowerCAmelCase__ : Tuple ) -> Optional[Any]: '''simple docstring''' requires_backends(self, ['''torch''', '''scipy'''] ) @classmethod def snake_case ( cls : Tuple, *lowerCAmelCase__ : Optional[int], **lowerCAmelCase__ : Optional[int] ) -> str: '''simple docstring''' requires_backends(cls, ['''torch''', '''scipy'''] ) @classmethod def snake_case ( cls : List[str], *lowerCAmelCase__ : List[Any], **lowerCAmelCase__ : Any ) -> List[str]: '''simple docstring''' requires_backends(cls, ['''torch''', '''scipy'''] )
360
"""simple docstring""" import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( """The `inpainting.py` script is outdated. Please use directly `from diffusers import""" """ StableDiffusionInpaintPipeline` instead.""" )
128
0
'''simple docstring''' import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _UpperCamelCase = 16 _UpperCamelCase = 32 def lowercase_ ( lowerCAmelCase__ : Accelerator , lowerCAmelCase__ : int = 16 ): """simple docstring""" __UpperCAmelCase : Optional[int] = AutoTokenizer.from_pretrained("""bert-base-cased""" ) __UpperCAmelCase : List[Any] = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(lowerCAmelCase__ : List[Any] ): # max_length=None => use the model max length (it's actually the default) __UpperCAmelCase : List[str] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __UpperCAmelCase : Optional[Any] = datasets.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __UpperCAmelCase : Optional[int] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowerCAmelCase__ : Optional[int] ): # On TPU it's best to pad everything to the same length or training will be very slow. __UpperCAmelCase : Optional[int] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __UpperCAmelCase : int = 16 elif accelerator.mixed_precision != "no": __UpperCAmelCase : Tuple = 8 else: __UpperCAmelCase : str = None return tokenizer.pad( lowerCAmelCase__ , padding="""longest""" , max_length=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_tensors="""pt""" , ) # Instantiate dataloaders. __UpperCAmelCase : Dict = DataLoader( tokenized_datasets["""train"""] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) __UpperCAmelCase : Union[str, Any] = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders _UpperCamelCase = mocked_dataloaders # noqa: F811 def lowercase_ ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict ): """simple docstring""" if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , lowerCAmelCase__ ) == "1": __UpperCAmelCase : Optional[Any] = 2 # Initialize accelerator __UpperCAmelCase : Dict = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __UpperCAmelCase : Any = config["""lr"""] __UpperCAmelCase : str = int(config["""num_epochs"""] ) __UpperCAmelCase : Optional[Any] = int(config["""seed"""] ) __UpperCAmelCase : Union[str, Any] = int(config["""batch_size"""] ) __UpperCAmelCase : Optional[int] = evaluate.load("""glue""" , """mrpc""" ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=lowerCAmelCase__ ) def inner_training_loop(lowerCAmelCase__ : str ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(lowerCAmelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __UpperCAmelCase : Union[str, Any] = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=lowerCAmelCase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __UpperCAmelCase : Tuple = model.to(accelerator.device ) # Instantiate optimizer __UpperCAmelCase : str = AdamW(params=model.parameters() , lr=lowerCAmelCase__ ) __UpperCAmelCase , __UpperCAmelCase : Optional[int] = get_dataloaders(lowerCAmelCase__ , lowerCAmelCase__ ) # Instantiate scheduler __UpperCAmelCase : Tuple = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase__ , num_warmup_steps=100 , num_training_steps=(len(lowerCAmelCase__ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : str = accelerator.prepare( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Now we train the model for epoch in range(lowerCAmelCase__ ): model.train() for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __UpperCAmelCase : List[str] = model(**lowerCAmelCase__ ) __UpperCAmelCase : List[str] = outputs.loss accelerator.backward(lowerCAmelCase__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __UpperCAmelCase : int = model(**lowerCAmelCase__ ) __UpperCAmelCase : str = outputs.logits.argmax(dim=-1 ) __UpperCAmelCase , __UpperCAmelCase : Dict = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=lowerCAmelCase__ , references=lowerCAmelCase__ , ) __UpperCAmelCase : Optional[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'epoch {epoch}:' , lowerCAmelCase__ ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def lowercase_ ( ): """simple docstring""" __UpperCAmelCase : Tuple = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=lowerCAmelCase__ , default=lowerCAmelCase__ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) __UpperCAmelCase : List[str] = parser.parse_args() __UpperCAmelCase : int = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": main()
254
'''simple docstring''' import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: _UpperCamelCase = None _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} _UpperCamelCase = { '''vocab_file''': { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/spiece.model''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/spiece.model''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/spiece.model''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/spiece.model''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/spiece.model''', }, '''tokenizer_file''': { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/tokenizer.json''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/tokenizer.json''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/tokenizer.json''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/tokenizer.json''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/tokenizer.json''', }, } # TODO(PVP) - this should be removed in Transformers v5 _UpperCamelCase = { '''t5-small''': 512, '''t5-base''': 512, '''t5-large''': 512, '''t5-3b''': 512, '''t5-11b''': 512, } class _A ( __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Union[str, Any] = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : str = ["input_ids", "attention_mask"] _SCREAMING_SNAKE_CASE : Optional[Any] = TaTokenizer _SCREAMING_SNAKE_CASE : List[int] = [] def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="</s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase=100 , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> List[Any]: '''simple docstring''' # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: __UpperCAmelCase : List[Any] = [f'<extra_id_{i}>' for i in range(__UpperCAmelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens __UpperCAmelCase : Any = len(set(filter(lambda __UpperCAmelCase : bool("""extra_id_""" in str(__UpperCAmelCase ) ) , __UpperCAmelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( f'Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are' """ provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids""" """ tokens""" ) super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , extra_ids=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , **__UpperCAmelCase , ) __UpperCAmelCase : Optional[int] = vocab_file __UpperCAmelCase : Any = False if not self.vocab_file else True __UpperCAmelCase : Optional[int] = extra_ids @staticmethod def __A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: __UpperCAmelCase : int = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( """This tokenizer was incorrectly instantiated with a model max length of""" f' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this' """ behavior is kept to avoid breaking backwards compatibility when padding/encoding with""" """ `truncation is True`.\n- Be aware that you SHOULD NOT rely on""" f' {pretrained_model_name_or_path} automatically truncating your input to' f' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences' f' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with' """ `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please""" """ instantiate this tokenizer with `model_max_length` set to your preferred value.""" , __UpperCAmelCase , ) return max_model_length def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(__UpperCAmelCase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __UpperCAmelCase : Any = os.path.join( __UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ): copyfile(self.vocab_file , __UpperCAmelCase ) logger.info(f'Copy vocab file to {out_vocab_file}' ) return (out_vocab_file,) def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: '''simple docstring''' __UpperCAmelCase : str = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: __UpperCAmelCase : Optional[Any] = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def __A ( self ) -> Any: '''simple docstring''' return list( set(filter(lambda __UpperCAmelCase : bool(re.search(r"""<extra_id_\d+>""" , __UpperCAmelCase ) ) is not None , self.additional_special_tokens ) ) ) def __A ( self ) -> Optional[int]: '''simple docstring''' return [self.convert_tokens_to_ids(__UpperCAmelCase ) for token in self.get_sentinel_tokens()]
254
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) __UpperCamelCase = {'''configuration_vit''': ['''VIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTConfig''', '''ViTOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ['''ViTFeatureExtractor'''] __UpperCamelCase = ['''ViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ '''VIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTForImageClassification''', '''ViTForMaskedImageModeling''', '''ViTModel''', '''ViTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ '''TFViTForImageClassification''', '''TFViTModel''', '''TFViTPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ '''FlaxViTForImageClassification''', '''FlaxViTModel''', '''FlaxViTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys __UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
370
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} # See all MVP models at https://huggingface.co/models?filter=mvp __UpperCamelCase = { '''vocab_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json''', }, '''added_tokens.json''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json''', }, '''merges_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json''', }, } __UpperCamelCase = { '''RUCAIBox/mvp''': 1024, } class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE_ = MvpTokenizer def __init__( self, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__="replace", lowerCAmelCase__="<s>", lowerCAmelCase__="</s>", lowerCAmelCase__="</s>", lowerCAmelCase__="<s>", lowerCAmelCase__="<unk>", lowerCAmelCase__="<pad>", lowerCAmelCase__="<mask>", lowerCAmelCase__=False, lowerCAmelCase__=True, **lowerCAmelCase__, ) -> Union[str, Any]: super().__init__( lowerCAmelCase__, lowerCAmelCase__, tokenizer_file=lowerCAmelCase__, errors=lowerCAmelCase__, bos_token=lowerCAmelCase__, eos_token=lowerCAmelCase__, sep_token=lowerCAmelCase__, cls_token=lowerCAmelCase__, unk_token=lowerCAmelCase__, pad_token=lowerCAmelCase__, mask_token=lowerCAmelCase__, add_prefix_space=lowerCAmelCase__, trim_offsets=lowerCAmelCase__, **lowerCAmelCase__, ) snake_case_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get('add_prefix_space', lowerCAmelCase__) != add_prefix_space: snake_case_ = getattr(lowerCAmelCase__, pre_tok_state.pop('type')) snake_case_ = add_prefix_space snake_case_ = pre_tok_class(**lowerCAmelCase__) snake_case_ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` snake_case_ = 'post_processor' snake_case_ = getattr(self.backend_tokenizer, lowerCAmelCase__, lowerCAmelCase__) if tokenizer_component_instance: snake_case_ = json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: snake_case_ = tuple(state['sep']) if "cls" in state: snake_case_ = tuple(state['cls']) snake_case_ = False if state.get('add_prefix_space', lowerCAmelCase__) != add_prefix_space: snake_case_ = add_prefix_space snake_case_ = True if state.get('trim_offsets', lowerCAmelCase__) != trim_offsets: snake_case_ = trim_offsets snake_case_ = True if changes_to_apply: snake_case_ = getattr(lowerCAmelCase__, state.pop('type')) snake_case_ = component_class(**lowerCAmelCase__) setattr(self.backend_tokenizer, lowerCAmelCase__, lowerCAmelCase__) @property def a_ ( self) -> str: if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.') return None return str(self._mask_token) @mask_token.setter def a_ ( self, lowerCAmelCase__) -> Any: snake_case_ = AddedToken(lowerCAmelCase__, lstrip=lowerCAmelCase__, rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__, lowerCAmelCase__) else value snake_case_ = value def a_ ( self, *lowerCAmelCase__, **lowerCAmelCase__) -> BatchEncoding: snake_case_ = kwargs.get('is_split_into_words', lowerCAmelCase__) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' 'to use it with pretokenized inputs.') return super()._batch_encode_plus(*lowerCAmelCase__, **lowerCAmelCase__) def a_ ( self, *lowerCAmelCase__, **lowerCAmelCase__) -> BatchEncoding: snake_case_ = kwargs.get('is_split_into_words', lowerCAmelCase__) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' 'to use it with pretokenized inputs.') return super()._encode_plus(*lowerCAmelCase__, **lowerCAmelCase__) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> Tuple[str]: snake_case_ = self._tokenizer.model.save(lowerCAmelCase__, name=lowerCAmelCase__) return tuple(lowerCAmelCase__) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__=None) -> str: snake_case_ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
312
0
"""simple docstring""" from collections import defaultdict def _snake_case ( _snake_case : int ) -> int: '''simple docstring''' _A = 1 _A = True for v in tree[start]: if v not in visited: ret += dfs(_snake_case ) if ret % 2 == 0: cuts.append(_snake_case ) return ret def _snake_case ( ) -> str: '''simple docstring''' dfs(1 ) if __name__ == "__main__": a , a = 10, 9 a = defaultdict(list) a = {} a = [] a = 0 a = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
315
"""simple docstring""" import warnings from ...utils import logging from .image_processing_imagegpt import ImageGPTImageProcessor a = logging.get_logger(__name__) class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : Any , *_UpperCAmelCase : List[str] , **_UpperCAmelCase : Union[str, Any] ): warnings.warn( 'The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use ImageGPTImageProcessor instead.' , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
315
1
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline __A = logging.get_logger(__name__) # pylint: disable=invalid-name class _snake_case ( a__ ): def __init__( self : int , UpperCAmelCase : List[Any] , UpperCAmelCase : str ): super().__init__() self.register_modules(unet=UpperCAmelCase , scheduler=UpperCAmelCase ) @torch.no_grad() def __call__( self : List[str] , UpperCAmelCase : int = 1 , UpperCAmelCase : int = 100 , UpperCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCAmelCase : Optional[float] = None , UpperCAmelCase : bool = True , ): if audio_length_in_s is None: __lowerCamelCase : Optional[Any] = self.unet.config.sample_size / self.unet.config.sample_rate __lowerCamelCase : List[Any] = audio_length_in_s * self.unet.config.sample_rate __lowerCamelCase : Tuple = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( F"""{audio_length_in_s} is too small. Make sure it's bigger or equal to""" F""" {3 * down_scale_factor / self.unet.config.sample_rate}.""" ) __lowerCamelCase : List[str] = int(UpperCAmelCase ) if sample_size % down_scale_factor != 0: __lowerCamelCase : Any = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( F"""{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled""" F""" by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising""" " process." ) __lowerCamelCase : Optional[int] = int(UpperCAmelCase ) __lowerCamelCase : str = next(iter(self.unet.parameters() ) ).dtype __lowerCamelCase : Tuple = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(UpperCAmelCase , UpperCAmelCase ) and len(UpperCAmelCase ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(UpperCAmelCase )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) __lowerCamelCase : List[str] = randn_tensor(UpperCAmelCase , generator=UpperCAmelCase , device=self.device , dtype=UpperCAmelCase ) # set step values self.scheduler.set_timesteps(UpperCAmelCase , device=audio.device ) __lowerCamelCase : Tuple = self.scheduler.timesteps.to(UpperCAmelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output __lowerCamelCase : Tuple = self.unet(UpperCAmelCase , UpperCAmelCase ).sample # 2. compute previous image: x_t -> t_t-1 __lowerCamelCase : Union[str, Any] = self.scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ).prev_sample __lowerCamelCase : Tuple = audio.clamp(-1 , 1 ).float().cpu().numpy() __lowerCamelCase : Union[str, Any] = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=UpperCAmelCase )
64
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _snake_case ( a__ , unittest.TestCase ): snake_case__ = DiTPipeline snake_case__ = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS snake_case__ = PipelineTesterMixin.required_optional_params - { "latents", "num_images_per_prompt", "callback", "callback_steps", } snake_case__ = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS snake_case__ = False def lowerCamelCase__ ( self : Tuple ): torch.manual_seed(0 ) __lowerCamelCase : Optional[Any] = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=UpperCAmelCase , activation_fn="gelu-approximate" , num_embeds_ada_norm=1000 , norm_type="ada_norm_zero" , norm_elementwise_affine=UpperCAmelCase , ) __lowerCamelCase : List[str] = AutoencoderKL() __lowerCamelCase : List[Any] = DDIMScheduler() __lowerCamelCase : Optional[Any] = {"transformer": transformer.eval(), "vae": vae.eval(), "scheduler": scheduler} return components def lowerCamelCase__ ( self : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Union[str, Any]=0 ): if str(UpperCAmelCase ).startswith("mps" ): __lowerCamelCase : List[str] = torch.manual_seed(UpperCAmelCase ) else: __lowerCamelCase : List[str] = torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase ) __lowerCamelCase : str = { "class_labels": [1], "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def lowerCamelCase__ ( self : Optional[Any] ): __lowerCamelCase : Dict = "cpu" __lowerCamelCase : int = self.get_dummy_components() __lowerCamelCase : Optional[Any] = self.pipeline_class(**UpperCAmelCase ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) __lowerCamelCase : Optional[int] = self.get_dummy_inputs(UpperCAmelCase ) __lowerCamelCase : List[Any] = pipe(**UpperCAmelCase ).images __lowerCamelCase : Optional[int] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) __lowerCamelCase : Optional[int] = np.array([0.2_9_4_6, 0.6_6_0_1, 0.4_3_2_9, 0.3_2_9_6, 0.4_1_4_4, 0.5_3_1_9, 0.7_2_7_3, 0.5_0_1_3, 0.4_4_5_7] ) __lowerCamelCase : Optional[int] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCAmelCase , 1E-3 ) def lowerCamelCase__ ( self : Any ): self._test_inference_batch_single_identical(relax_max_difference=UpperCAmelCase , expected_max_diff=1E-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def lowerCamelCase__ ( self : List[str] ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @require_torch_gpu @slow class _snake_case ( unittest.TestCase ): def lowerCamelCase__ ( self : Any ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ ( self : List[str] ): __lowerCamelCase : Optional[int] = torch.manual_seed(0 ) __lowerCamelCase : str = DiTPipeline.from_pretrained("facebook/DiT-XL-2-256" ) pipe.to("cuda" ) __lowerCamelCase : Tuple = ["vase", "umbrella", "white shark", "white wolf"] __lowerCamelCase : Optional[int] = pipe.get_label_ids(UpperCAmelCase ) __lowerCamelCase : Optional[Any] = pipe(UpperCAmelCase , generator=UpperCAmelCase , num_inference_steps=40 , output_type="np" ).images for word, image in zip(UpperCAmelCase , UpperCAmelCase ): __lowerCamelCase : Dict = load_numpy( F"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy""" ) assert np.abs((expected_image - image).max() ) < 1E-2 def lowerCamelCase__ ( self : str ): __lowerCamelCase : Tuple = DiTPipeline.from_pretrained("facebook/DiT-XL-2-512" ) __lowerCamelCase : Any = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("cuda" ) __lowerCamelCase : Union[str, Any] = ["vase", "umbrella"] __lowerCamelCase : int = pipe.get_label_ids(UpperCAmelCase ) __lowerCamelCase : Dict = torch.manual_seed(0 ) __lowerCamelCase : Dict = pipe(UpperCAmelCase , generator=UpperCAmelCase , num_inference_steps=25 , output_type="np" ).images for word, image in zip(UpperCAmelCase , UpperCAmelCase ): __lowerCamelCase : Union[str, Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" F"""/dit/{word}_512.npy""" ) assert np.abs((expected_image - image).max() ) < 1E-1
64
1
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'EleutherAI/gpt-neo-1.3B': 'https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json', # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : int = 'gpt_neo' UpperCAmelCase__ : Union[str, Any] = ['past_key_values'] UpperCAmelCase__ : int = {'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'} def __init__( self: List[Any] , UpperCamelCase_: Union[str, Any]=5_02_57 , UpperCamelCase_: Any=20_48 , UpperCamelCase_: Optional[Any]=20_48 , UpperCamelCase_: Any=24 , UpperCamelCase_: int=[[["global", "local"], 12]] , UpperCamelCase_: Optional[int]=16 , UpperCamelCase_: str=None , UpperCamelCase_: Any=2_56 , UpperCamelCase_: List[str]="gelu_new" , UpperCamelCase_: Union[str, Any]=0.0 , UpperCamelCase_: Optional[Any]=0.0 , UpperCamelCase_: Union[str, Any]=0.0 , UpperCamelCase_: Dict=0.1 , UpperCamelCase_: List[Any]=1E-5 , UpperCamelCase_: Optional[Any]=0.02 , UpperCamelCase_: int=True , UpperCamelCase_: Optional[Any]=5_02_56 , UpperCamelCase_: Dict=5_02_56 , **UpperCamelCase_: int , ): __lowerCamelCase = vocab_size __lowerCamelCase = max_position_embeddings __lowerCamelCase = hidden_size __lowerCamelCase = num_layers __lowerCamelCase = num_heads __lowerCamelCase = intermediate_size __lowerCamelCase = window_size __lowerCamelCase = activation_function __lowerCamelCase = resid_dropout __lowerCamelCase = embed_dropout __lowerCamelCase = attention_dropout __lowerCamelCase = classifier_dropout __lowerCamelCase = layer_norm_epsilon __lowerCamelCase = initializer_range __lowerCamelCase = use_cache __lowerCamelCase = bos_token_id __lowerCamelCase = eos_token_id __lowerCamelCase = attention_types __lowerCamelCase = self.expand_attention_types_params(UpperCamelCase_ ) if len(self.attention_layers ) != self.num_layers: raise ValueError( """Configuration for convolutional module is incorrect. """ """It is required that `len(config.attention_layers)` == `config.num_layers` """ F'but is `len(config.attention_layers) = {len(self.attention_layers )}`, ' F'`config.num_layers = {self.num_layers}`. ' """`config.attention_layers` is prepared using `config.attention_types`. """ """Please verify the value of `config.attention_types` argument.""" ) super().__init__(bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ ) @staticmethod def lowerCAmelCase__ ( UpperCamelCase_: Tuple ): __lowerCamelCase = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def lowerCamelCase__ ( A__ : int , A__ : Optional[Any] , A__ : Optional[int] , A__ : List[Any] ): '''simple docstring''' import torch __lowerCamelCase = input.size() __lowerCamelCase = len(A__ ) __lowerCamelCase = shape[dimension] __lowerCamelCase = torch.arange(0 , A__ , A__ ) __lowerCamelCase = torch.div(sizedim - size , A__ , rounding_mode="""floor""" ) + 1 __lowerCamelCase = torch.arange(A__ ) + low_indices[:min_length][:, None] __lowerCamelCase = [slice(A__ )] * rank __lowerCamelCase = indices __lowerCamelCase = input[s] __lowerCamelCase = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(A__ ) def lowerCamelCase__ ( A__ : Optional[int] , A__ : List[str] ): '''simple docstring''' import torch __lowerCamelCase = torch.arange(1 , A__ ) __lowerCamelCase = torch.remainder(A__ , A__ ) __lowerCamelCase = remainders == 0 __lowerCamelCase = candidates[divisor_indices] __lowerCamelCase = torch.max(A__ ) return largest_divisor, torch.div(A__ , A__ , rounding_mode="""floor""" ) class lowerCamelCase__( __lowerCamelCase): @property def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(UpperCamelCase_ , direction="""inputs""" ) __lowerCamelCase = {0: """batch""", 1: """past_sequence + sequence"""} else: __lowerCamelCase = {0: """batch""", 1: """sequence"""} return common_inputs @property def lowerCAmelCase__ ( self: Dict ): return self._config.num_heads def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: PreTrainedTokenizer , UpperCamelCase_: int = -1 , UpperCamelCase_: int = -1 , UpperCamelCase_: bool = False , UpperCamelCase_: Optional[TensorType] = None , ): __lowerCamelCase = super(UpperCamelCase_ , self ).generate_dummy_inputs( UpperCamelCase_ , batch_size=UpperCamelCase_ , seq_length=UpperCamelCase_ , is_pair=UpperCamelCase_ , framework=UpperCamelCase_ ) # We need to order the input in the way they appears in the forward() __lowerCamelCase = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __lowerCamelCase, __lowerCamelCase = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values __lowerCamelCase = seqlen + 2 __lowerCamelCase = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __lowerCamelCase = [ (torch.zeros(UpperCamelCase_ ), torch.zeros(UpperCamelCase_ )) for _ in range(self.num_layers ) ] __lowerCamelCase = common_inputs["""attention_mask"""] if self.use_past: __lowerCamelCase = ordered_inputs["""attention_mask"""].dtype __lowerCamelCase = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(UpperCamelCase_ , UpperCamelCase_ , dtype=UpperCamelCase_ )] , dim=1 ) return ordered_inputs @property def lowerCAmelCase__ ( self: Optional[Any] ): return 13
12
from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput UpperCAmelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase): @register_to_config def __init__( self: Optional[Any] , UpperCamelCase_: bool , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: Optional[int] = None ): super().__init__() __lowerCamelCase = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" __lowerCamelCase = torch.zeros(UpperCamelCase_ , UpperCamelCase_ ) else: __lowerCamelCase = None __lowerCamelCase = torch.nn.Parameter(UpperCamelCase_ ) class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : VQModel UpperCAmelCase__ : CLIPTextModel UpperCAmelCase__ : CLIPTokenizer UpperCAmelCase__ : TransformeraDModel UpperCAmelCase__ : LearnedClassifierFreeSamplingEmbeddings UpperCAmelCase__ : VQDiffusionScheduler def __init__( self: str , UpperCamelCase_: VQModel , UpperCamelCase_: CLIPTextModel , UpperCamelCase_: CLIPTokenizer , UpperCamelCase_: TransformeraDModel , UpperCamelCase_: VQDiffusionScheduler , UpperCamelCase_: LearnedClassifierFreeSamplingEmbeddings , ): super().__init__() self.register_modules( vqvae=UpperCamelCase_ , transformer=UpperCamelCase_ , text_encoder=UpperCamelCase_ , tokenizer=UpperCamelCase_ , scheduler=UpperCamelCase_ , learned_classifier_free_sampling_embeddings=UpperCamelCase_ , ) def lowerCAmelCase__ ( self: str , UpperCamelCase_: Any , UpperCamelCase_: List[Any] , UpperCamelCase_: Any ): __lowerCamelCase = len(UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else 1 # get prompt text embeddings __lowerCamelCase = self.tokenizer( UpperCamelCase_ , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) __lowerCamelCase = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __lowerCamelCase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" F' {self.tokenizer.model_max_length} tokens: {removed_text}' ) __lowerCamelCase = text_input_ids[:, : self.tokenizer.model_max_length] __lowerCamelCase = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 __lowerCamelCase = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=UpperCamelCase_ ) # duplicate text embeddings for each generation per prompt __lowerCamelCase = prompt_embeds.repeat_interleave(UpperCamelCase_ , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: __lowerCamelCase = self.learned_classifier_free_sampling_embeddings.embeddings __lowerCamelCase = negative_prompt_embeds.unsqueeze(0 ).repeat(UpperCamelCase_ , 1 , 1 ) else: __lowerCamelCase = [""""""] * batch_size __lowerCamelCase = text_input_ids.shape[-1] __lowerCamelCase = self.tokenizer( UpperCamelCase_ , padding="""max_length""" , max_length=UpperCamelCase_ , truncation=UpperCamelCase_ , return_tensors="""pt""" , ) __lowerCamelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings __lowerCamelCase = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=UpperCamelCase_ ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __lowerCamelCase = negative_prompt_embeds.shape[1] __lowerCamelCase = negative_prompt_embeds.repeat(1 , UpperCamelCase_ , 1 ) __lowerCamelCase = negative_prompt_embeds.view(batch_size * num_images_per_prompt , UpperCamelCase_ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __lowerCamelCase = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self: Tuple , UpperCamelCase_: Union[str, List[str]] , UpperCamelCase_: int = 1_00 , UpperCamelCase_: float = 5.0 , UpperCamelCase_: float = 1.0 , UpperCamelCase_: int = 1 , UpperCamelCase_: Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_: Optional[torch.FloatTensor] = None , UpperCamelCase_: Optional[str] = "pil" , UpperCamelCase_: bool = True , UpperCamelCase_: Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCamelCase_: int = 1 , ): if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = 1 elif isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = len(UpperCamelCase_ ) else: raise ValueError(F'`prompt` has to be of type `str` or `list` but is {type(UpperCamelCase_ )}' ) __lowerCamelCase = batch_size * num_images_per_prompt __lowerCamelCase = guidance_scale > 1.0 __lowerCamelCase = self._encode_prompt(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(UpperCamelCase_ , UpperCamelCase_ ) or callback_steps <= 0) ): raise ValueError( F'`callback_steps` has to be a positive integer but is {callback_steps} of type' F' {type(UpperCamelCase_ )}.' ) # get the initial completely masked latents unless the user supplied it __lowerCamelCase = (batch_size, self.transformer.num_latent_pixels) if latents is None: __lowerCamelCase = self.transformer.num_vector_embeds - 1 __lowerCamelCase = torch.full(UpperCamelCase_ , UpperCamelCase_ ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( """Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,""" F' {self.transformer.num_vector_embeds - 1} (inclusive).' ) __lowerCamelCase = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(UpperCamelCase_ , device=self.device ) __lowerCamelCase = self.scheduler.timesteps.to(self.device ) __lowerCamelCase = latents for i, t in enumerate(self.progress_bar(UpperCamelCase_ ) ): # expand the sample if we are doing classifier free guidance __lowerCamelCase = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` __lowerCamelCase = self.transformer(UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , timestep=UpperCamelCase_ ).sample if do_classifier_free_guidance: __lowerCamelCase, __lowerCamelCase = model_output.chunk(2 ) __lowerCamelCase = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(UpperCamelCase_ , dim=1 , keepdim=UpperCamelCase_ ) __lowerCamelCase = self.truncate(UpperCamelCase_ , UpperCamelCase_ ) # remove `log(0)`'s (`-inf`s) __lowerCamelCase = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 __lowerCamelCase = self.scheduler.step(UpperCamelCase_ , timestep=UpperCamelCase_ , sample=UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = self.vqvae.config.vq_embed_dim __lowerCamelCase = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) __lowerCamelCase = self.vqvae.quantize.get_codebook_entry(UpperCamelCase_ , shape=UpperCamelCase_ ) __lowerCamelCase = self.vqvae.decode(UpperCamelCase_ , force_not_quantize=UpperCamelCase_ ).sample __lowerCamelCase = (image / 2 + 0.5).clamp(0 , 1 ) __lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __lowerCamelCase = self.numpy_to_pil(UpperCamelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase_ ) def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: torch.FloatTensor , UpperCamelCase_: float ): __lowerCamelCase, __lowerCamelCase = torch.sort(UpperCamelCase_ , 1 , descending=UpperCamelCase_ ) __lowerCamelCase = torch.exp(UpperCamelCase_ ) __lowerCamelCase = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out __lowerCamelCase = torch.full_like(keep_mask[:, 0:1, :] , UpperCamelCase_ ) __lowerCamelCase = torch.cat((all_true, keep_mask) , dim=1 ) __lowerCamelCase = keep_mask[:, :-1, :] __lowerCamelCase = keep_mask.gather(1 , indices.argsort(1 ) ) __lowerCamelCase = log_p_x_0.clone() __lowerCamelCase = -torch.inf # -inf = log(0) return rv
12
1
import colorsys from PIL import Image # type: ignore def UpperCamelCase__( UpperCamelCase__ : float , UpperCamelCase__ : float , UpperCamelCase__ : int ): A__ = x A__ = y for step in range(lowercase__ ): # noqa: B007 A__ = a * a - b * b + x A__ = 2 * a * b + y A__ = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def UpperCamelCase__( UpperCamelCase__ : float ): if distance == 1: return (0, 0, 0) else: return (2_55, 2_55, 2_55) def UpperCamelCase__( UpperCamelCase__ : float ): if distance == 1: return (0, 0, 0) else: return tuple(round(i * 2_55 ) for i in colorsys.hsv_to_rgb(lowercase__ , 1 , 1 ) ) def UpperCamelCase__( UpperCamelCase__ : int = 8_00 , UpperCamelCase__ : int = 6_00 , UpperCamelCase__ : float = -0.6 , UpperCamelCase__ : float = 0 , UpperCamelCase__ : float = 3.2 , UpperCamelCase__ : int = 50 , UpperCamelCase__ : bool = True , ): A__ = Image.new('''RGB''' , (image_width, image_height) ) A__ = img.load() # loop through the image-coordinates for image_x in range(lowercase__ ): for image_y in range(lowercase__ ): # determine the figure-coordinates based on the image-coordinates A__ = figure_width / image_width * image_height A__ = figure_center_x + (image_x / image_width - 0.5) * figure_width A__ = figure_center_y + (image_y / image_height - 0.5) * figure_height A__ = get_distance(lowercase__ , lowercase__ , lowercase__ ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: A__ = get_color_coded_rgb(lowercase__ ) else: A__ = get_black_and_white_rgb(lowercase__ ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure a__: List[Any] = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
351
# Algorithm for the pigeonhole sorting def UpperCamelCase__( UpperCamelCase__ : int )->str: A__ = min(UpperCamelCase__ ) # min() finds the minimum value A__ = max(UpperCamelCase__ ) # max() finds the maximum value A__ = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size A__ = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(UpperCamelCase__ , UpperCamelCase__ ), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. A__ = 0 for count in range(UpperCamelCase__ ): while holes[count] > 0: holes[count] -= 1 A__ = count + min_val i += 1 def UpperCamelCase__( )->Tuple: A__ = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(UpperCamelCase__ ) print('''Sorted order is:''' , ''' '''.join(UpperCamelCase__ ) ) if __name__ == "__main__": main()
39
0
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("""TEST_SAGEMAKER""" , """False""" ) ) is not True , reason="""Skipping test because should only be run when releasing minor transformers version""" , ) @pytest.mark.usefixtures("""sm_env""" ) @parameterized_class( [ { """framework""": """pytorch""", """script""": """run_glue.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.p3.16xlarge""", """results""": {"""train_runtime""": 6_50, """eval_accuracy""": 0.7, """eval_loss""": 0.6}, }, { """framework""": """pytorch""", """script""": """run_ddp.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.p3.16xlarge""", """results""": {"""train_runtime""": 6_00, """eval_accuracy""": 0.7, """eval_loss""": 0.6}, }, { """framework""": """tensorflow""", """script""": """run_tf_dist.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.p3.16xlarge""", """results""": {"""train_runtime""": 6_00, """eval_accuracy""": 0.6, """eval_loss""": 0.7}, }, ] ) class __snake_case ( unittest.TestCase ): """simple docstring""" def UpperCamelCase__( self ): '''simple docstring''' if self.framework == "pytorch": subprocess.run( F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding='''utf-8''' , check=__lowerCamelCase , ) assert hasattr(self , '''env''' ) def UpperCamelCase__( self , __lowerCamelCase ): '''simple docstring''' __A : Dict = F"""{self.env.base_job_name}-{instance_count}-{'ddp' if 'ddp' in self.script else 'smd'}""" # distributed data settings __A : Any = {'''smdistributed''': {'''dataparallel''': {'''enabled''': True}}} if self.script != '''run_ddp.py''' else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=__lowerCamelCase , instance_count=__lowerCamelCase , instance_type=self.instance_type , debugger_hook_config=__lowerCamelCase , hyperparameters={**self.env.distributed_hyperparameters, '''model_name_or_path''': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=__lowerCamelCase , py_version='''py36''' , ) def UpperCamelCase__( self , __lowerCamelCase ): '''simple docstring''' TrainingJobAnalytics(__lowerCamelCase ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(2,)] ) def UpperCamelCase__( self , __lowerCamelCase ): '''simple docstring''' __A : List[str] = self.create_estimator(__lowerCamelCase ) # run training estimator.fit() # result dataframe __A : Any = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis __A : Optional[Any] = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] ) __A : Tuple = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping __A : Union[str, Any] = ( Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''' , 99_9999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy ) assert all(t <= self.results['''eval_loss'''] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"""{estimator.latest_training_job.name}.json""" , '''w''' ) as outfile: json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , __lowerCamelCase )
179
"""simple docstring""" import logging from transformers.configuration_utils import PretrainedConfig a_ = logging.getLogger(__name__) class __snake_case ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = """masked_bert""" def __init__( self , __lowerCamelCase=3_0522 , __lowerCamelCase=768 , __lowerCamelCase=12 , __lowerCamelCase=12 , __lowerCamelCase=3072 , __lowerCamelCase="gelu" , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=512 , __lowerCamelCase=2 , __lowerCamelCase=0.0_2 , __lowerCamelCase=1e-1_2 , __lowerCamelCase=0 , __lowerCamelCase="topK" , __lowerCamelCase="constant" , __lowerCamelCase=0.0 , **__lowerCamelCase , ): '''simple docstring''' super().__init__(pad_token_id=__lowerCamelCase , **__lowerCamelCase ) __A : Dict = vocab_size __A : Union[str, Any] = hidden_size __A : Tuple = num_hidden_layers __A : Tuple = num_attention_heads __A : Optional[Any] = hidden_act __A : List[str] = intermediate_size __A : Any = hidden_dropout_prob __A : Optional[Any] = attention_probs_dropout_prob __A : Any = max_position_embeddings __A : str = type_vocab_size __A : List[Any] = initializer_range __A : str = layer_norm_eps __A : Optional[int] = pruning_method __A : str = mask_init __A : Any = mask_scale
179
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : List[str] = { "configuration_bigbird_pegasus": [ "BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP", "BigBirdPegasusConfig", "BigBirdPegasusOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ "BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST", "BigBirdPegasusForCausalLM", "BigBirdPegasusForConditionalGeneration", "BigBirdPegasusForQuestionAnswering", "BigBirdPegasusForSequenceClassification", "BigBirdPegasusModel", "BigBirdPegasusPreTrainedModel", ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
368
'''simple docstring''' import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __snake_case : """simple docstring""" def __init__( self : Optional[Any] , lowerCamelCase : Tuple , lowerCamelCase : Tuple=13 , lowerCamelCase : Dict=30 , lowerCamelCase : Dict=2 , lowerCamelCase : Optional[int]=3 , lowerCamelCase : List[Any]=True , lowerCamelCase : Any=True , lowerCamelCase : str=32 , lowerCamelCase : Any=5 , lowerCamelCase : int=4 , lowerCamelCase : List[str]=37 , lowerCamelCase : Any="gelu" , lowerCamelCase : Optional[Any]=0.1 , lowerCamelCase : List[str]=0.1 , lowerCamelCase : str=10 , lowerCamelCase : Optional[Any]=0.02 , lowerCamelCase : List[str]=3 , lowerCamelCase : Union[str, Any]=0.6 , lowerCamelCase : List[Any]=None , ) -> Optional[int]: lowerCAmelCase_ : Optional[Any] = parent lowerCAmelCase_ : Optional[int] = batch_size lowerCAmelCase_ : int = image_size lowerCAmelCase_ : List[Any] = patch_size lowerCAmelCase_ : int = num_channels lowerCAmelCase_ : Any = is_training lowerCAmelCase_ : Tuple = use_labels lowerCAmelCase_ : Optional[Any] = hidden_size lowerCAmelCase_ : List[Any] = num_hidden_layers lowerCAmelCase_ : Optional[Any] = num_attention_heads lowerCAmelCase_ : Dict = intermediate_size lowerCAmelCase_ : Union[str, Any] = hidden_act lowerCAmelCase_ : Union[str, Any] = hidden_dropout_prob lowerCAmelCase_ : Any = attention_probs_dropout_prob lowerCAmelCase_ : List[Any] = type_sequence_label_size lowerCAmelCase_ : Dict = initializer_range lowerCAmelCase_ : List[str] = mask_ratio lowerCAmelCase_ : Tuple = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) lowerCAmelCase_ : Union[str, Any] = (image_size // patch_size) ** 2 lowerCAmelCase_ : Any = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def __lowercase ( self : Optional[int] ) -> str: lowerCAmelCase_ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase_ : Optional[int] = None if self.use_labels: lowerCAmelCase_ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase_ : str = self.get_config() return config, pixel_values, labels def __lowercase ( self : Optional[int] ) -> Optional[int]: return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCamelCase , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def __lowercase ( self : Any , lowerCamelCase : Any , lowerCamelCase : Union[str, Any] , lowerCamelCase : Dict ) -> Tuple: lowerCAmelCase_ : Tuple = ViTMAEModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowerCAmelCase_ : Dict = model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowercase ( self : List[str] , lowerCamelCase : Union[str, Any] , lowerCamelCase : List[str] , lowerCamelCase : Union[str, Any] ) -> Dict: lowerCAmelCase_ : Tuple = ViTMAEForPreTraining(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowerCAmelCase_ : List[str] = model(lowerCamelCase ) lowerCAmelCase_ : int = (self.image_size // self.patch_size) ** 2 lowerCAmelCase_ : int = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images lowerCAmelCase_ : List[Any] = 1 lowerCAmelCase_ : List[str] = ViTMAEForPreTraining(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowerCAmelCase_ : Optional[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase_ : Tuple = model(lowerCamelCase ) lowerCAmelCase_ : List[Any] = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def __lowercase ( self : Optional[int] ) -> str: lowerCAmelCase_ : Any = self.prepare_config_and_inputs() lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ : List[Any] = config_and_inputs lowerCAmelCase_ : Any = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __snake_case ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,unittest.TestCase): """simple docstring""" lowercase = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () lowercase = {'feature-extraction': ViTMAEModel} if is_torch_available() else {} lowercase = False lowercase = False lowercase = False lowercase = False def __lowercase ( self : Optional[Any] ) -> List[Any]: lowerCAmelCase_ : Optional[int] = ViTMAEModelTester(self ) lowerCAmelCase_ : Optional[int] = ConfigTester(self , config_class=lowerCamelCase , has_text_modality=lowerCamelCase , hidden_size=37 ) def __lowercase ( self : Dict ) -> Tuple: self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMAE does not use inputs_embeds""" ) def __lowercase ( self : Optional[int] ) -> Optional[int]: pass def __lowercase ( self : List[str] ) -> Tuple: lowerCAmelCase_, lowerCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : List[str] = model_class(lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCAmelCase_ : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase , nn.Linear ) ) def __lowercase ( self : Optional[Any] ) -> Any: lowerCAmelCase_, lowerCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : Optional[int] = model_class(lowerCamelCase ) lowerCAmelCase_ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase_ : Any = [*signature.parameters.keys()] lowerCAmelCase_ : Optional[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCamelCase ) def __lowercase ( self : Tuple ) -> str: lowerCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def __lowercase ( self : Optional[int] ) -> str: lowerCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCamelCase ) def __lowercase ( self : Optional[int] , lowerCamelCase : Dict , lowerCamelCase : List[Any] , lowerCamelCase : Optional[Any] ) -> str: # make masks reproducible np.random.seed(2 ) lowerCAmelCase_ : Tuple = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) lowerCAmelCase_ : Optional[int] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) lowerCAmelCase_ : Optional[Any] = torch.from_numpy(lowerCamelCase ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument lowerCAmelCase_ : int = pt_noise super().check_pt_tf_models(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def __lowercase ( self : int ) -> Dict: lowerCAmelCase_, lowerCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : Optional[int] = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): lowerCAmelCase_ : Any = model(**self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) lowerCAmelCase_ : Any = outputs[0].cpu().numpy() lowerCAmelCase_ : List[str] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCamelCase ) lowerCAmelCase_ : int = model_class.from_pretrained(lowerCamelCase ) model.to(lowerCamelCase ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): lowerCAmelCase_ : str = model(**self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) # Make sure we don't have nans lowerCAmelCase_ : Optional[Any] = after_outputs[0].cpu().numpy() lowerCAmelCase_ : str = 0 lowerCAmelCase_ : List[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCamelCase , 1E-5 ) @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def __lowercase ( self : Optional[int] ) -> List[Any]: pass @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def __lowercase ( self : Union[str, Any] ) -> str: pass @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def __lowercase ( self : Optional[Any] ) -> Union[str, Any]: pass @unittest.skip(reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load""" ) def __lowercase ( self : Tuple ) -> Optional[Any]: pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def __lowercase ( self : List[Any] ) -> str: pass @slow def __lowercase ( self : List[str] ) -> List[Any]: for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ : List[Any] = ViTMAEModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def UpperCamelCase_ ( ): '''simple docstring''' lowerCAmelCase_ : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __snake_case ( unittest.TestCase): """simple docstring""" @cached_property def __lowercase ( self : Union[str, Any] ) -> Union[str, Any]: return ViTImageProcessor.from_pretrained("""facebook/vit-mae-base""" ) if is_vision_available() else None @slow def __lowercase ( self : int ) -> List[Any]: # make random mask reproducible across the PT and TF model np.random.seed(2 ) lowerCAmelCase_ : Dict = ViTMAEForPreTraining.from_pretrained("""facebook/vit-mae-base""" ).to(lowerCamelCase ) lowerCAmelCase_ : Union[str, Any] = self.default_image_processor lowerCAmelCase_ : Union[str, Any] = prepare_img() lowerCAmelCase_ : Dict = image_processor(images=lowerCamelCase , return_tensors="""pt""" ).to(lowerCamelCase ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) lowerCAmelCase_ : Optional[int] = ViTMAEConfig() lowerCAmelCase_ : Optional[Any] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) lowerCAmelCase_ : Optional[int] = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): lowerCAmelCase_ : str = model(**lowerCamelCase , noise=torch.from_numpy(lowerCamelCase ).to(device=lowerCamelCase ) ) # verify the logits lowerCAmelCase_ : str = torch.Size((1, 1_96, 7_68) ) self.assertEqual(outputs.logits.shape , lowerCamelCase ) lowerCAmelCase_ : str = torch.tensor( [[-0.0_548, -1.7_023, -0.9_325], [0.3_721, -0.5_670, -0.2_233], [0.8_235, -1.3_878, -0.3_524]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(lowerCamelCase ) , atol=1E-4 ) )
89
0
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def __UpperCamelCase ( _A : Dict ) ->Optional[int]: """simple docstring""" if is_torch_version("""<""" , """2.0.0""" ) or not hasattr(_A , """_dynamo""" ): return False return isinstance(_A , torch._dynamo.eval_frame.OptimizedModule ) def __UpperCamelCase ( _A : str , _A : bool = True ) ->Tuple: """simple docstring""" lowerCamelCase_ =(torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) lowerCamelCase_ =is_compiled_module(_A ) if is_compiled: lowerCamelCase_ =model lowerCamelCase_ =model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(_A , _A ): lowerCamelCase_ =model.module if not keep_fpaa_wrapper: lowerCamelCase_ =getattr(_A , """forward""" ) lowerCamelCase_ =model.__dict__.pop("""_original_forward""" , _A ) if original_forward is not None: while hasattr(_A , """__wrapped__""" ): lowerCamelCase_ =forward.__wrapped__ if forward == original_forward: break lowerCamelCase_ =forward if getattr(_A , """_converted_to_transformer_engine""" , _A ): convert_model(_A , to_transformer_engine=_A ) if is_compiled: lowerCamelCase_ =model lowerCamelCase_ =compiled_model return model def __UpperCamelCase ( ) ->List[str]: """simple docstring""" PartialState().wait_for_everyone() def __UpperCamelCase ( _A : Optional[Any] , _A : str ) ->Optional[int]: """simple docstring""" if PartialState().distributed_type == DistributedType.TPU: xm.save(_A , _A ) elif PartialState().local_process_index == 0: torch.save(_A , _A ) @contextmanager def __UpperCamelCase ( **_A : Optional[Any] ) ->int: """simple docstring""" for key, value in kwargs.items(): lowerCamelCase_ =str(_A ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def __UpperCamelCase ( _A : Optional[Any] ) ->Dict: """simple docstring""" if not hasattr(_A , """__qualname__""" ) and not hasattr(_A , """__name__""" ): lowerCamelCase_ =getattr(_A , """__class__""" , _A ) if hasattr(_A , """__qualname__""" ): return obj.__qualname__ if hasattr(_A , """__name__""" ): return obj.__name__ return str(_A ) def __UpperCamelCase ( _A : Dict , _A : Any ) ->Optional[int]: """simple docstring""" for key, value in source.items(): if isinstance(_A , _A ): lowerCamelCase_ =destination.setdefault(_A , {} ) merge_dicts(_A , _A ) else: lowerCamelCase_ =value return destination def __UpperCamelCase ( _A : int = None ) ->bool: """simple docstring""" if port is None: lowerCamelCase_ =29500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(("""localhost""", port) ) == 0
154
from __future__ import annotations from random import choice def __UpperCamelCase ( _A : str ) ->int: """simple docstring""" return choice(_A ) def __UpperCamelCase ( _A : list[int] , _A : int ) ->int: """simple docstring""" lowerCamelCase_ =random_pivot(_A ) # partition based on pivot # linear time lowerCamelCase_ =[e for e in lst if e < pivot] lowerCamelCase_ =[e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(_A ) == k - 1: return pivot # pivot is in elements bigger than k elif len(_A ) < k - 1: return kth_number(_A , k - len(_A ) - 1 ) # pivot is in elements smaller than k else: return kth_number(_A , _A ) if __name__ == "__main__": import doctest doctest.testmod()
154
1
from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'linear': get_linear_schedule_with_warmup, 'cosine': get_cosine_schedule_with_warmup, 'cosine_w_restarts': get_cosine_with_hard_restarts_schedule_with_warmup, 'polynomial': get_polynomial_decay_schedule_with_warmup, 'constant': get_constant_schedule, 'constant_w_warmup': get_constant_schedule_with_warmup, } class lowercase__ ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self, __magic_name__=None, __magic_name__=None, *__magic_name__, **__magic_name__ ) -> str: """simple docstring""" super().__init__(*__lowercase, **__lowercase ) if config is None: assert isinstance(self.model, __lowercase ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" f" {self.model.__class__}" ) UpperCamelCase__ : List[str] = self.model.config else: UpperCamelCase__ : Optional[int] = config UpperCamelCase__ : str = data_args UpperCamelCase__ : List[Any] = self.config.tgt_vocab_size if isinstance(self.config, __lowercase ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( f"The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for" ''' padding..''' ) if self.args.label_smoothing == 0: UpperCamelCase__ : Any = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss UpperCamelCase__ : Optional[Any] = label_smoothed_nll_loss def UpperCamelCase__ ( self, __magic_name__ ) -> Optional[int]: """simple docstring""" if self.optimizer is None: UpperCamelCase__ : Any = ['''bias''', '''LayerNorm.weight'''] UpperCamelCase__ : List[str] = [ { '''params''': [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], '''weight_decay''': self.args.weight_decay, }, { '''params''': [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], '''weight_decay''': 0.0, }, ] UpperCamelCase__ : int = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: UpperCamelCase__ : Any = Adafactor UpperCamelCase__ : Dict = {'''scale_parameter''': False, '''relative_step''': False} else: UpperCamelCase__ : int = AdamW UpperCamelCase__ : Dict = { '''betas''': (self.args.adam_betaa, self.args.adam_betaa), '''eps''': self.args.adam_epsilon, } UpperCamelCase__ : int = self.args.learning_rate if self.sharded_ddp: UpperCamelCase__ : Any = OSS( params=__lowercase, optim=__lowercase, **__lowercase, ) else: UpperCamelCase__ : str = optimizer_cls(__lowercase, **__lowercase ) if self.lr_scheduler is None: UpperCamelCase__ : List[str] = self._get_lr_scheduler(__lowercase ) else: # ignoring --lr_scheduler logger.warning('''scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.''' ) def UpperCamelCase__ ( self, __magic_name__ ) -> Tuple: """simple docstring""" UpperCamelCase__ : Dict = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": UpperCamelCase__ : List[str] = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": UpperCamelCase__ : List[Any] = schedule_func(self.optimizer, num_warmup_steps=self.args.warmup_steps ) else: UpperCamelCase__ : str = schedule_func( self.optimizer, num_warmup_steps=self.args.warmup_steps, num_training_steps=__lowercase ) return scheduler def UpperCamelCase__ ( self ) -> Optional[torch.utils.data.Sampler]: """simple docstring""" if isinstance(self.train_dataset, torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size, distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED), ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def UpperCamelCase__ ( self, __magic_name__, __magic_name__, __magic_name__ ) -> Any: """simple docstring""" if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token UpperCamelCase__ : str = model(**__lowercase, use_cache=__lowercase )[0] UpperCamelCase__ : Any = self.loss_fn(logits.view(-1, logits.shape[-1] ), labels.view(-1 ) ) else: # compute usual loss via models UpperCamelCase__ : Optional[int] = model(**__lowercase, labels=__lowercase, use_cache=__lowercase )[:2] else: # compute label smoothed loss UpperCamelCase__ : List[str] = model(**__lowercase, use_cache=__lowercase )[0] UpperCamelCase__ : Optional[int] = torch.nn.functional.log_softmax(__lowercase, dim=-1 ) UpperCamelCase__ : List[str] = self.loss_fn(__lowercase, __lowercase, self.args.label_smoothing, ignore_index=self.config.pad_token_id ) return loss, logits def UpperCamelCase__ ( self, __magic_name__, __magic_name__ ) -> int: """simple docstring""" UpperCamelCase__ : Optional[Any] = inputs.pop('''labels''' ) UpperCamelCase__ : int = self._compute_loss(__lowercase, __lowercase, __lowercase ) return loss def UpperCamelCase__ ( self, __magic_name__, __magic_name__, __magic_name__, __magic_name__ = None, ) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: """simple docstring""" UpperCamelCase__ : List[str] = self._prepare_inputs(__lowercase ) UpperCamelCase__ : str = { '''max_length''': self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, '''num_beams''': self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: UpperCamelCase__ : Dict = self.model.generate( inputs['''input_ids'''], attention_mask=inputs['''attention_mask'''], **__lowercase, ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: UpperCamelCase__ : Any = self._pad_tensors_to_max_len(__lowercase, gen_kwargs['''max_length'''] ) UpperCamelCase__ : str = inputs.pop('''labels''' ) with torch.no_grad(): # compute loss on predict data UpperCamelCase__ : Optional[Any] = self._compute_loss(__lowercase, __lowercase, __lowercase ) UpperCamelCase__ : List[Any] = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) UpperCamelCase__ : str = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: UpperCamelCase__ : Any = self._pad_tensors_to_max_len(__lowercase, gen_kwargs['''max_length'''] ) return (loss, logits, labels) def UpperCamelCase__ ( self, __magic_name__, __magic_name__ ) -> Tuple: """simple docstring""" # If PAD token is not defined at least EOS token has to be defined UpperCamelCase__ : List[Any] = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( '''Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be''' f" padded to `max_length`={max_length}" ) UpperCamelCase__ : Optional[Any] = pad_token_id * torch.ones( (tensor.shape[0], max_length), dtype=tensor.dtype, device=tensor.device ) UpperCamelCase__ : List[Any] = tensor return padded_tensor
367
def lowerCAmelCase_ ( __UpperCAmelCase: int ) -> list[int]: if length <= 0 or not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise ValueError('''Length must be a positive integer.''' ) return [n * (2 * n - 1) for n in range(__UpperCAmelCase )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
247
0
def SCREAMING_SNAKE_CASE__ ( __a ): if not isinstance(__a , __a ): raise TypeError('only integers accepted as input' ) else: snake_case_ : Any = str(abs(__a ) ) snake_case_ : List[Any] = [list(__a ) for char in range(len(__a ) )] for index in range(len(__a ) ): num_transpositions[index].pop(__a ) return max( int(''.join(list(__a ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("""doctest""").testmod()
327
import numpy as np import torch from torch.utils.data import Dataset from utils import logger class SCREAMING_SNAKE_CASE_ ( snake_case_ ): def __init__( self : Union[str, Any] , _A : Any , _A : Dict ) -> Union[str, Any]: """simple docstring""" snake_case_ : str = params snake_case_ : int = np.array(_A ) snake_case_ : Optional[int] = np.array([len(_A ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self : Tuple , _A : Optional[int] ) -> str: """simple docstring""" return (self.token_ids[index], self.lengths[index]) def __len__( self : List[str] ) -> str: """simple docstring""" return len(self.lengths ) def UpperCAmelCase_ ( self : Dict ) -> str: """simple docstring""" assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def UpperCAmelCase_ ( self : Any ) -> Optional[Any]: """simple docstring""" snake_case_ : Dict = self.params.max_model_input_size snake_case_ : Tuple = self.lengths > max_len logger.info(F"""Splitting {sum(_A )} too long sequences.""" ) def divide_chunks(_A : Union[str, Any] , _A : Dict ): return [l[i : i + n] for i in range(0 , len(_A ) , _A )] snake_case_ : Dict = [] snake_case_ : Union[str, Any] = [] if self.params.mlm: snake_case_ ,snake_case_ : Optional[int] = self.params.special_tok_ids['cls_token'], self.params.special_tok_ids['sep_token'] else: snake_case_ ,snake_case_ : Any = self.params.special_tok_ids['bos_token'], self.params.special_tok_ids['eos_token'] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: snake_case_ : List[Any] = [] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: snake_case_ : Optional[int] = np.insert(_A , 0 , _A ) if sub_s[-1] != sep_id: snake_case_ : Optional[Any] = np.insert(_A , len(_A ) , _A ) assert len(_A ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(_A ) new_tok_ids.extend(_A ) new_lengths.extend([len(_A ) for l in sub_seqs] ) snake_case_ : Tuple = np.array(_A ) snake_case_ : int = np.array(_A ) def UpperCAmelCase_ ( self : List[str] ) -> List[str]: """simple docstring""" snake_case_ : Tuple = len(self ) snake_case_ : int = self.lengths > 11 snake_case_ : Dict = self.token_ids[indices] snake_case_ : int = self.lengths[indices] snake_case_ : List[Any] = len(self ) logger.info(F"""Remove {init_size - new_size} too short (<=11 tokens) sequences.""" ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> int: """simple docstring""" if "unk_token" not in self.params.special_tok_ids: return else: snake_case_ : Optional[Any] = self.params.special_tok_ids['unk_token'] snake_case_ : Dict = len(self ) snake_case_ : str = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) snake_case_ : Any = (unk_occs / self.lengths) < 0.5 snake_case_ : List[Any] = self.token_ids[indices] snake_case_ : int = self.lengths[indices] snake_case_ : Tuple = len(self ) logger.info(F"""Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).""" ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Any: """simple docstring""" if not self.params.is_master: return logger.info(F"""{len(self )} sequences""" ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def UpperCAmelCase_ ( self : Optional[int] , _A : Union[str, Any] ) -> List[Any]: """simple docstring""" snake_case_ : Any = [t[0] for t in batch] snake_case_ : int = [t[1] for t in batch] assert len(_A ) == len(_A ) # Max for paddings snake_case_ : str = max(_A ) # Pad token ids if self.params.mlm: snake_case_ : int = self.params.special_tok_ids['pad_token'] else: snake_case_ : Dict = self.params.special_tok_ids['unk_token'] snake_case_ : Dict = [list(t.astype(_A ) ) + [pad_idx] * (max_seq_len_ - len(_A )) for t in token_ids] assert len(tk_ ) == len(_A ) assert all(len(_A ) == max_seq_len_ for t in tk_ ) snake_case_ : Any = torch.tensor(tk_ ) # (bs, max_seq_len_) snake_case_ : Optional[Any] = torch.tensor(_A ) # (bs) return tk_t, lg_t
327
1
"""simple docstring""" import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort lowerCAmelCase : List[str] = logging.get_logger(__name__) lowerCAmelCase : str = { """tensor(bool)""": np.bool_, """tensor(int8)""": np.inta, """tensor(uint8)""": np.uinta, """tensor(int16)""": np.intaa, """tensor(uint16)""": np.uintaa, """tensor(int32)""": np.intaa, """tensor(uint32)""": np.uintaa, """tensor(int64)""": np.intaa, """tensor(uint64)""": np.uintaa, """tensor(float16)""": np.floataa, """tensor(float)""": np.floataa, """tensor(double)""": np.floataa, } class __magic_name__ : '''simple docstring''' def __init__( self , _a=None , **_a ): """simple docstring""" logger.info("""`diffusers.OnnxRuntimeModel` is experimental and might change in the future.""" ) lowerCamelCase = model lowerCamelCase = kwargs.get("""model_save_dir""" , _a ) lowerCamelCase = kwargs.get("""latest_model_name""" , _a ) def __call__( self , **_a ): """simple docstring""" lowerCamelCase = {k: np.array(_a ) for k, v in kwargs.items()} return self.model.run(_a , _a ) @staticmethod def _lowerCAmelCase ( _a , _a=None , _a=None ): """simple docstring""" if provider is None: logger.info("""No onnxruntime provider specified, using CPUExecutionProvider""" ) lowerCamelCase = """CPUExecutionProvider""" return ort.InferenceSession(_a , providers=[provider] , sess_options=_a ) def _lowerCAmelCase ( self , _a , _a = None , **_a ): """simple docstring""" lowerCamelCase = file_name if file_name is not None else ONNX_WEIGHTS_NAME lowerCamelCase = self.model_save_dir.joinpath(self.latest_model_name ) lowerCamelCase = Path(_a ).joinpath(_a ) try: shutil.copyfile(_a , _a ) except shutil.SameFileError: pass # copy external weights (for models >2GB) lowerCamelCase = self.model_save_dir.joinpath(_a ) if src_path.exists(): lowerCamelCase = Path(_a ).joinpath(_a ) try: shutil.copyfile(_a , _a ) except shutil.SameFileError: pass def _lowerCAmelCase ( self , _a , **_a , ): """simple docstring""" if os.path.isfile(_a ): logger.error(f'Provided path ({save_directory}) should be a directory, not a file' ) return os.makedirs(_a , exist_ok=_a ) # saving model weights/files self._save_pretrained(_a , **_a ) @classmethod def _lowerCAmelCase ( cls , _a , _a = None , _a = None , _a = False , _a = None , _a = None , _a = None , _a = None , **_a , ): """simple docstring""" lowerCamelCase = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(_a ): lowerCamelCase = OnnxRuntimeModel.load_model( os.path.join(_a , _a ) , provider=_a , sess_options=_a ) lowerCamelCase = Path(_a ) # load model from hub else: # download model lowerCamelCase = hf_hub_download( repo_id=_a , filename=_a , use_auth_token=_a , revision=_a , cache_dir=_a , force_download=_a , ) lowerCamelCase = Path(_a ).parent lowerCamelCase = Path(_a ).name lowerCamelCase = OnnxRuntimeModel.load_model(_a , provider=_a , sess_options=_a ) return cls(model=_a , **_a ) @classmethod def _lowerCAmelCase ( cls , _a , _a = True , _a = None , _a = None , **_a , ): """simple docstring""" lowerCamelCase = None if len(str(_a ).split("""@""" ) ) == 2: lowerCamelCase , lowerCamelCase = model_id.split("""@""" ) return cls._from_pretrained( model_id=_a , revision=_a , cache_dir=_a , force_download=_a , use_auth_token=_a , **_a , )
360
"""simple docstring""" import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class __magic_name__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = (KDPMaDiscreteScheduler,) __UpperCamelCase = 10 def _lowerCAmelCase ( self , **_a ): """simple docstring""" lowerCamelCase = { """num_train_timesteps""": 1_100, """beta_start""": 0.0_001, """beta_end""": 0.02, """beta_schedule""": """linear""", } config.update(**_a ) return config def _lowerCAmelCase ( self ): """simple docstring""" for timesteps in [10, 50, 100, 1_000]: self.check_over_configs(num_train_timesteps=_a ) def _lowerCAmelCase ( self ): """simple docstring""" for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ): self.check_over_configs(beta_start=_a , beta_end=_a ) def _lowerCAmelCase ( self ): """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_a ) def _lowerCAmelCase ( self ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_a ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = self.scheduler_classes[0] lowerCamelCase = self.get_scheduler_config(prediction_type="""v_prediction""" ) lowerCamelCase = scheduler_class(**_a ) scheduler.set_timesteps(self.num_inference_steps ) lowerCamelCase = self.dummy_model() lowerCamelCase = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCamelCase = sample.to(_a ) for i, t in enumerate(scheduler.timesteps ): lowerCamelCase = scheduler.scale_model_input(_a , _a ) lowerCamelCase = model(_a , _a ) lowerCamelCase = scheduler.step(_a , _a , _a ) lowerCamelCase = output.prev_sample lowerCamelCase = torch.sum(torch.abs(_a ) ) lowerCamelCase = torch.mean(torch.abs(_a ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6_9_3_4e-0_7 ) < 1e-2 assert abs(result_mean.item() - 6.1_1_1_2e-1_0 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 4.6_9_3_4_2_8_6_5_0_1_7_0_9_7_2e-0_7 ) < 1e-2 assert abs(result_mean.item() - 0.0_002 ) < 1e-3 def _lowerCAmelCase ( self ): """simple docstring""" if torch_device == "mps": return lowerCamelCase = self.scheduler_classes[0] lowerCamelCase = self.get_scheduler_config() lowerCamelCase = scheduler_class(**_a ) scheduler.set_timesteps(self.num_inference_steps ) lowerCamelCase = self.dummy_model() lowerCamelCase = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCamelCase = sample.to(_a ) for i, t in enumerate(scheduler.timesteps ): lowerCamelCase = scheduler.scale_model_input(_a , _a ) lowerCamelCase = model(_a , _a ) lowerCamelCase = scheduler.step(_a , _a , _a ) lowerCamelCase = output.prev_sample lowerCamelCase = torch.sum(torch.abs(_a ) ) lowerCamelCase = torch.mean(torch.abs(_a ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.4_125 ) < 1e-2 assert abs(result_mean.item() - 0.0_266 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 20.4_125 ) < 1e-2 assert abs(result_mean.item() - 0.0_266 ) < 1e-3 def _lowerCAmelCase ( self ): """simple docstring""" if torch_device == "mps": return lowerCamelCase = self.scheduler_classes[0] lowerCamelCase = self.get_scheduler_config() lowerCamelCase = scheduler_class(**_a ) scheduler.set_timesteps(self.num_inference_steps , device=_a ) lowerCamelCase = self.dummy_model() lowerCamelCase = self.dummy_sample_deter.to(_a ) * scheduler.init_noise_sigma for t in scheduler.timesteps: lowerCamelCase = scheduler.scale_model_input(_a , _a ) lowerCamelCase = model(_a , _a ) lowerCamelCase = scheduler.step(_a , _a , _a ) lowerCamelCase = output.prev_sample lowerCamelCase = torch.sum(torch.abs(_a ) ) lowerCamelCase = torch.mean(torch.abs(_a ) ) if str(_a ).startswith("""cpu""" ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.4_125 ) < 1e-2 assert abs(result_mean.item() - 0.0_266 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 20.4_125 ) < 1e-2 assert abs(result_mean.item() - 0.0_266 ) < 1e-3
168
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self ): """simple docstring""" lowerCamelCase : str = tempfile.mkdtemp() # fmt: off lowerCamelCase : Any = ["", "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on lowerCamelCase : List[Any] = dict(zip(__A , range(len(__A ) ) ) ) lowerCamelCase : List[Any] = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""] lowerCamelCase : Optional[Any] = {"unk_token": "<unk>"} lowerCamelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowerCamelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__A ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(__A ) ) lowerCamelCase : str = { "do_resize": True, "size": 20, "do_center_crop": True, "crop_size": 18, "do_normalize": True, "image_mean": [0.48145466, 0.4578275, 0.40821073], "image_std": [0.26862954, 0.26130258, 0.27577711], } lowerCamelCase : str = os.path.join(self.tmpdirname , __A ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(__A , __A ) def _snake_case ( self , **__A ): """simple docstring""" return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token="!" , **__A ) def _snake_case ( self , **__A ): """simple docstring""" return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token="!" , **__A ) def _snake_case ( self , **__A ): """simple docstring""" return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **__A ) def _snake_case ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : Dict = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCamelCase : Tuple = [Image.fromarray(np.moveaxis(__A , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case ( self ): """simple docstring""" lowerCamelCase : List[Any] = self.get_tokenizer() lowerCamelCase : Optional[Any] = self.get_rust_tokenizer() lowerCamelCase : Tuple = self.get_image_processor() lowerCamelCase : List[Any] = OwlViTProcessor(tokenizer=__A , image_processor=__A ) processor_slow.save_pretrained(self.tmpdirname ) lowerCamelCase : Optional[Any] = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=__A ) lowerCamelCase : Optional[int] = OwlViTProcessor(tokenizer=__A , image_processor=__A ) processor_fast.save_pretrained(self.tmpdirname ) lowerCamelCase : Tuple = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __A ) self.assertIsInstance(processor_fast.tokenizer , __A ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __A ) self.assertIsInstance(processor_fast.image_processor , __A ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : Optional[Any] = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase : int = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) lowerCamelCase : List[str] = self.get_image_processor(do_normalize=__A ) lowerCamelCase : Optional[int] = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__A ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __A ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __A ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : List[Any] = self.get_image_processor() lowerCamelCase : Optional[int] = self.get_tokenizer() lowerCamelCase : Dict = OwlViTProcessor(tokenizer=__A , image_processor=__A ) lowerCamelCase : Tuple = self.prepare_image_inputs() lowerCamelCase : int = image_processor(__A , return_tensors="np" ) lowerCamelCase : Union[str, Any] = processor(images=__A , return_tensors="np" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : Union[str, Any] = self.get_image_processor() lowerCamelCase : Dict = self.get_tokenizer() lowerCamelCase : Union[str, Any] = OwlViTProcessor(tokenizer=__A , image_processor=__A ) lowerCamelCase : Tuple = "lower newer" lowerCamelCase : Union[str, Any] = processor(text=__A , return_tensors="np" ) lowerCamelCase : List[Any] = tokenizer(__A , return_tensors="np" ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : Any = self.get_image_processor() lowerCamelCase : Any = self.get_tokenizer() lowerCamelCase : int = OwlViTProcessor(tokenizer=__A , image_processor=__A ) lowerCamelCase : Optional[Any] = "lower newer" lowerCamelCase : Dict = self.prepare_image_inputs() lowerCamelCase : Any = processor(text=__A , images=__A ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(__A ): processor() def _snake_case ( self ): """simple docstring""" lowerCamelCase : Any = "google/owlvit-base-patch32" lowerCamelCase : List[Any] = OwlViTProcessor.from_pretrained(__A ) lowerCamelCase : Tuple = ["cat", "nasa badge"] lowerCamelCase : str = processor(text=__A ) lowerCamelCase : Union[str, Any] = 16 self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] ) self.assertEqual(inputs["input_ids"].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(__A ): processor() def _snake_case ( self ): """simple docstring""" lowerCamelCase : str = "google/owlvit-base-patch32" lowerCamelCase : Optional[int] = OwlViTProcessor.from_pretrained(__A ) lowerCamelCase : Dict = [["cat", "nasa badge"], ["person"]] lowerCamelCase : int = processor(text=__A ) lowerCamelCase : Tuple = 16 lowerCamelCase : Any = len(__A ) lowerCamelCase : Optional[Any] = max([len(__A ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] ) self.assertEqual(inputs["input_ids"].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(__A ): processor() def _snake_case ( self ): """simple docstring""" lowerCamelCase : Dict = "google/owlvit-base-patch32" lowerCamelCase : Tuple = OwlViTProcessor.from_pretrained(__A ) lowerCamelCase : List[Any] = ["cat", "nasa badge"] lowerCamelCase : Optional[Any] = processor(text=__A ) lowerCamelCase : int = 16 lowerCamelCase : List[str] = inputs["input_ids"] lowerCamelCase : int = [ [4_9406, 2368, 4_9407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_9406, 6841, 1_1301, 4_9407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] ) self.assertEqual(inputs["input_ids"].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : Any = self.get_image_processor() lowerCamelCase : List[str] = self.get_tokenizer() lowerCamelCase : str = OwlViTProcessor(tokenizer=__A , image_processor=__A ) lowerCamelCase : Dict = self.prepare_image_inputs() lowerCamelCase : Union[str, Any] = self.prepare_image_inputs() lowerCamelCase : Any = processor(images=__A , query_images=__A ) self.assertListEqual(list(inputs.keys() ) , ["query_pixel_values", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(__A ): processor() def _snake_case ( self ): """simple docstring""" lowerCamelCase : Optional[Any] = self.get_image_processor() lowerCamelCase : Optional[int] = self.get_tokenizer() lowerCamelCase : Dict = OwlViTProcessor(tokenizer=__A , image_processor=__A ) lowerCamelCase : Optional[int] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase : List[Any] = processor.batch_decode(__A ) lowerCamelCase : Union[str, Any] = tokenizer.batch_decode(__A ) self.assertListEqual(__A , __A )
283
import math from typing import Callable, List, Optional, Union import numpy as np import PIL import torch from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=[] ): '''simple docstring''' lowerCamelCase : Optional[Any] = size[0] - overlap_pixels * 2 lowerCamelCase : int = size[1] - overlap_pixels * 2 for letter in ["l", "r"]: if letter in remove_borders: size_x += overlap_pixels for letter in ["t", "b"]: if letter in remove_borders: size_y += overlap_pixels lowerCamelCase : Tuple = np.ones((size_y, size_x) , dtype=np.uinta ) * 255 lowerCamelCase : List[Any] = np.pad(SCREAMING_SNAKE_CASE_ , mode="linear_ramp" , pad_width=SCREAMING_SNAKE_CASE_ , end_values=0 ) if "l" in remove_borders: lowerCamelCase : Optional[Any] = mask[:, overlap_pixels : mask.shape[1]] if "r" in remove_borders: lowerCamelCase : List[Any] = mask[:, 0 : mask.shape[1] - overlap_pixels] if "t" in remove_borders: lowerCamelCase : List[Any] = mask[overlap_pixels : mask.shape[0], :] if "b" in remove_borders: lowerCamelCase : Tuple = mask[0 : mask.shape[0] - overlap_pixels, :] return mask def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' return max(SCREAMING_SNAKE_CASE_ , min(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' return ( clamp(rect[0] , min[0] , max[0] ), clamp(rect[1] , min[1] , max[1] ), clamp(rect[2] , min[0] , max[0] ), clamp(rect[3] , min[1] , max[1] ), ) def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : Optional[Any] = list(SCREAMING_SNAKE_CASE_ ) rect[0] -= overlap rect[1] -= overlap rect[2] += overlap rect[3] += overlap lowerCamelCase : Any = clamp_rect(SCREAMING_SNAKE_CASE_ , [0, 0] , [image_size[0], image_size[1]] ) return rect def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : Dict = Image.new("RGB" , (tile.size[0] + original_slice, tile.size[1]) ) result.paste( original_image.resize((tile.size[0], tile.size[1]) , Image.BICUBIC ).crop( (slice_x, 0, slice_x + original_slice, tile.size[1]) ) , (0, 0) , ) result.paste(SCREAMING_SNAKE_CASE_ , (original_slice, 0) ) return result def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : Union[str, Any] = (original_image_slice * 4, 0, tile.size[0], tile.size[1]) lowerCamelCase : int = tile.crop(SCREAMING_SNAKE_CASE_ ) return tile def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : int = n % d return n - divisor class UpperCAmelCase_ ( UpperCamelCase ): '''simple docstring''' def __init__( self , __A , __A , __A , __A , __A , __A , __A = 350 , ): """simple docstring""" super().__init__( vae=__A , text_encoder=__A , tokenizer=__A , unet=__A , low_res_scheduler=__A , scheduler=__A , max_noise_level=__A , ) def _snake_case ( self , __A , __A , __A , __A , __A , __A , __A , **__A ): """simple docstring""" torch.manual_seed(0 ) lowerCamelCase : Tuple = ( min(image.size[0] - (tile_size + original_image_slice) , x * tile_size ), min(image.size[1] - (tile_size + original_image_slice) , y * tile_size ), min(image.size[0] , (x + 1) * tile_size ), min(image.size[1] , (y + 1) * tile_size ), ) lowerCamelCase : Union[str, Any] = add_overlap_rect(__A , __A , image.size ) lowerCamelCase : List[str] = image.crop(__A ) lowerCamelCase : Optional[int] = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0] lowerCamelCase : int = translated_slice_x - (original_image_slice / 2) lowerCamelCase : Optional[Any] = max(0 , __A ) lowerCamelCase : Tuple = squeeze_tile(__A , __A , __A , __A ) lowerCamelCase : Dict = to_input.size lowerCamelCase : Optional[int] = to_input.resize((tile_size, tile_size) , Image.BICUBIC ) lowerCamelCase : Dict = super(__A , self ).__call__(image=__A , **__A ).images[0] lowerCamelCase : Tuple = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4) , Image.BICUBIC ) lowerCamelCase : Optional[Any] = unsqueeze_tile(__A , __A ) lowerCamelCase : Optional[Any] = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4) , Image.BICUBIC ) lowerCamelCase : int = [] if x == 0: remove_borders.append("l" ) elif crop_rect[2] == image.size[0]: remove_borders.append("r" ) if y == 0: remove_borders.append("t" ) elif crop_rect[3] == image.size[1]: remove_borders.append("b" ) lowerCamelCase : int = Image.fromarray( make_transparency_mask( (upscaled_tile.size[0], upscaled_tile.size[1]) , tile_border * 4 , remove_borders=__A ) , mode="L" , ) final_image.paste( __A , (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4) , __A ) @torch.no_grad() def __call__( self , __A , __A , __A = 75 , __A = 9.0 , __A = 50 , __A = None , __A = 1 , __A = 0.0 , __A = None , __A = None , __A = None , __A = 1 , __A = 128 , __A = 32 , __A = 32 , ): """simple docstring""" lowerCamelCase : Dict = Image.new("RGB" , (image.size[0] * 4, image.size[1] * 4) ) lowerCamelCase : Union[str, Any] = math.ceil(image.size[0] / tile_size ) lowerCamelCase : Dict = math.ceil(image.size[1] / tile_size ) lowerCamelCase : str = tcx * tcy lowerCamelCase : int = 0 for y in range(__A ): for x in range(__A ): self._process_tile( __A , __A , __A , __A , __A , __A , __A , prompt=__A , num_inference_steps=__A , guidance_scale=__A , noise_level=__A , negative_prompt=__A , num_images_per_prompt=__A , eta=__A , generator=__A , latents=__A , ) current_count += 1 if callback is not None: callback({"progress": current_count / total_tile_count, "image": final_image} ) return final_image def lowercase_( ): '''simple docstring''' lowerCamelCase : Dict = "stabilityai/stable-diffusion-x4-upscaler" lowerCamelCase : Union[str, Any] = StableDiffusionTiledUpscalePipeline.from_pretrained(SCREAMING_SNAKE_CASE_ , revision="fp16" , torch_dtype=torch.floataa ) lowerCamelCase : Optional[Any] = pipe.to("cuda" ) lowerCamelCase : List[str] = Image.open("../../docs/source/imgs/diffusers_library.jpg" ) def callback(SCREAMING_SNAKE_CASE_ ): print(f"""progress: {obj['progress']:.4f}""" ) obj["image"].save("diffusers_library_progress.jpg" ) lowerCamelCase : int = pipe(image=SCREAMING_SNAKE_CASE_ , prompt="Black font, white background, vector" , noise_level=40 , callback=SCREAMING_SNAKE_CASE_ ) final_image.save("diffusers_library.jpg" ) if __name__ == "__main__": main()
283
1
class lowerCamelCase_ : '''simple docstring''' def __init__( self : Tuple ) -> Optional[int]: A : List[Any] = {} def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> None: print(self.vertex ) for i in self.vertex: print(__lowerCamelCase , " -> " , " -> ".join([str(__lowerCamelCase ) for j in self.vertex[i]] ) ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : int ) -> None: # check if vertex is already present, if from_vertex in self.vertex: self.vertex[from_vertex].append(__lowerCamelCase ) else: # else make a new vertex A : List[str] = [to_vertex] def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> None: # visited array for storing already visited nodes A : str = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(__lowerCamelCase , __lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , __lowerCamelCase : int , __lowerCamelCase : list ) -> None: # mark start vertex as visited A : List[Any] = True print(__lowerCamelCase , end=" " ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print("""DFS:""") g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
256
from collections import deque from .hash_table import HashTable class lowerCamelCase_ ( _A ): '''simple docstring''' def __init__( self : Optional[int] , *__lowerCamelCase : int , **__lowerCamelCase : Tuple ) -> Optional[Any]: super().__init__(*__lowerCamelCase , **__lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : List[Any] ) -> Optional[int]: A : Any = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(__lowerCamelCase ) A : int = self.values[key] def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Optional[int]: return ( sum(self.charge_factor - len(__lowerCamelCase ) for slot in self.values ) / self.size_table * self.charge_factor ) def SCREAMING_SNAKE_CASE__ ( self : Dict , __lowerCamelCase : int , __lowerCamelCase : Tuple=None ) -> List[str]: if not ( len(self.values[key] ) == self.charge_factor and self.values.count(__lowerCamelCase ) == 0 ): return key return super()._collision_resolution(__lowerCamelCase , __lowerCamelCase )
256
1
'''simple docstring''' from math import ceil def _UpperCamelCase ( __A , __A ) -> Tuple: '''simple docstring''' UpperCamelCase__ = list(range(0 , __A ) ) UpperCamelCase__ = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check UpperCamelCase__ = [] for i in device_map_blocks: if device_map_blocks.count(__A ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(__A ) # Missing blocks UpperCamelCase__ = [i for i in blocks if i not in device_map_blocks] UpperCamelCase__ = [i for i in device_map_blocks if i not in blocks] if len(__A ) != 0: raise ValueError( "Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device." " These attention blocks were specified more than once: " + str(__A ) ) if len(__A ) != 0: raise ValueError( "There are attention blocks for this model that are not specified in the device_map. Add these attention " "blocks to a device on the device_map: " + str(__A ) ) if len(__A ) != 0: raise ValueError( "The device_map contains more attention blocks than this model has. Remove these from the device_map:" + str(__A ) ) def _UpperCamelCase ( __A , __A ) -> int: '''simple docstring''' UpperCamelCase__ = list(range(__A ) ) UpperCamelCase__ = int(ceil(n_layers / len(__A ) ) ) UpperCamelCase__ = [layers[i : i + n_blocks] for i in range(0 , __A , __A )] return dict(zip(__A , __A ) )
80
import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def __SCREAMING_SNAKE_CASE (*SCREAMING_SNAKE_CASE__ ): if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = list(SCREAMING_SNAKE_CASE__ ) for i in range(len(SCREAMING_SNAKE_CASE__ ) ): snake_case_ = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = [ '''CUDA out of memory.''', # CUDA OOM '''cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.''', # CUDNN SNAFU '''DefaultCPUAllocator: can\'t allocate memory''', # CPU OOM ] if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = 128 ): if function is None: return functools.partial(SCREAMING_SNAKE_CASE__ , starting_batch_size=SCREAMING_SNAKE_CASE__ ) snake_case_ = starting_batch_size def decorator(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() snake_case_ = list(inspect.signature(SCREAMING_SNAKE_CASE__ ).parameters.keys() ) # Guard against user error if len(SCREAMING_SNAKE_CASE__ ) < (len(SCREAMING_SNAKE_CASE__ ) + 1): snake_case_ = ''', '''.join([F'''{arg}={value}''' for arg, value in zip(params[1:] , args[1:] )] ) raise TypeError( F'''Batch size was passed into `{function.__name__}` as the first argument when called.''' F'''Remove this as the decorator already does so: `{function.__name__}({arg_str})`''' ) while True: if batch_size == 0: raise RuntimeError('''No executable batch size found, reached zero.''' ) try: return function(SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) except Exception as e: if should_reduce_batch_size(SCREAMING_SNAKE_CASE__ ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
8
0
from collections.abc import Callable def UpperCamelCase ( __magic_name__ : Callable[[float], float] , __magic_name__ : float , __magic_name__ : float ) -> float: """simple docstring""" lowercase__ = a lowercase__ = b if function(__magic_name__ ) == 0: # one of the a or b is a root for the function return a elif function(__magic_name__ ) == 0: return b elif ( function(__magic_name__ ) * function(__magic_name__ ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError("""could not find root in given interval.""" ) else: lowercase__ = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(__magic_name__ ) == 0: return mid elif function(__magic_name__ ) * function(__magic_name__ ) < 0: lowercase__ = mid else: lowercase__ = mid lowercase__ = start + (end - start) / 2.0 return mid def UpperCamelCase ( __magic_name__ : float ) -> float: """simple docstring""" return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1_0_0_0)) import doctest doctest.testmod()
363
import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class A : '''simple docstring''' def __init__(self : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Any=13 , _UpperCAmelCase : int=64 , _UpperCAmelCase : Any=2 , _UpperCAmelCase : str=3 , _UpperCAmelCase : str=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Optional[int]=32 , _UpperCAmelCase : Tuple=5 , _UpperCAmelCase : Tuple=4 , _UpperCAmelCase : Union[str, Any]=37 , _UpperCAmelCase : Tuple="gelu" , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : Any=10 , _UpperCAmelCase : str=0.02 , _UpperCAmelCase : Any=[1, 16, 4, 4] , _UpperCAmelCase : str=None , ) -> int: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = is_training lowercase__ = use_labels lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = scope lowercase__ = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size lowercase__ = (self.image_size // 32) ** 2 lowercase__ = num_patches + 1 def lowerCamelCase__ (self : Any ) -> Optional[int]: """simple docstring""" lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ = self.get_config() return config, pixel_values, labels def lowerCamelCase__ (self : int ) -> Tuple: """simple docstring""" lowercase__ = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, """hidden_sizes""": [4, 8, 16, 32], """num_groups""": 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=_UpperCAmelCase , ) def lowerCamelCase__ (self : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : Tuple , _UpperCAmelCase : Dict ) -> Optional[Any]: """simple docstring""" lowercase__ = ViTHybridModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : int ) -> List[Any]: """simple docstring""" lowercase__ = self.type_sequence_label_size lowercase__ = ViTHybridForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCamelCase__ (self : int ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class A ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () A__ = ( {'''feature-extraction''': ViTHybridModel, '''image-classification''': ViTHybridForImageClassification} if is_torch_available() else {} ) A__ = False A__ = False A__ = False def lowerCamelCase__ (self : Any ) -> Any: """simple docstring""" lowercase__ = ViTHybridModelTester(self ) lowercase__ = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37 ) def lowerCamelCase__ (self : Dict ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def lowerCamelCase__ (self : List[str] ) -> Any: """simple docstring""" pass def lowerCamelCase__ (self : Dict ) -> Union[str, Any]: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(_UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear ) ) def lowerCamelCase__ (self : Dict ) -> Optional[Any]: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(_UpperCAmelCase ) lowercase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def lowerCamelCase__ (self : Optional[Any] ) -> Dict: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowerCamelCase__ (self : Tuple ) -> Optional[Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) def lowerCamelCase__ (self : Dict ) -> Any: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = _config_zero_init(_UpperCAmelCase ) for model_class in self.all_model_classes: lowercase__ = model_class(config=_UpperCAmelCase ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": lowercase__ = [f'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @slow def lowerCamelCase__ (self : Dict ) -> List[Any]: """simple docstring""" for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = ViTHybridModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def UpperCamelCase ( ) -> Optional[int]: """simple docstring""" lowercase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class A ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCamelCase__ (self : Optional[int] ) -> Union[str, Any]: """simple docstring""" return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowerCamelCase__ (self : List[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( _UpperCAmelCase ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=_UpperCAmelCase , return_tensors="""pt""" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): lowercase__ = model(**_UpperCAmelCase ) # verify the logits lowercase__ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) lowercase__ = torch.tensor([-1.9_090, -0.4_993, -0.2_389] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1E-4 ) ) @slow @require_accelerate def lowerCamelCase__ (self : Any ) -> Optional[int]: """simple docstring""" lowercase__ = ViTHybridImageProcessor.from_pretrained("""google/vit-hybrid-base-bit-384""" ) lowercase__ = ViTHybridForImageClassification.from_pretrained("""google/vit-hybrid-base-bit-384""" , device_map="""auto""" ) lowercase__ = prepare_img() lowercase__ = image_processor(images=_UpperCAmelCase , return_tensors="""pt""" ) lowercase__ = model(**_UpperCAmelCase ) lowercase__ = outputs.logits # model predicts one of the 1000 ImageNet classes lowercase__ = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , """tabby, tabby cat""" )
146
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { """xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/config.json""", """xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/config.json""", """xlm-roberta-large-finetuned-conll02-dutch""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll02-spanish""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-english""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-german""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json""" ), } class A__ ( __magic_name__ ): lowercase = 'xlm-roberta' def __init__( self : int , a : List[str]=30_522 , a : str=768 , a : str=12 , a : str=12 , a : str=3_072 , a : Tuple="gelu" , a : str=0.1 , a : Union[str, Any]=0.1 , a : Any=512 , a : int=2 , a : Any=0.0_2 , a : List[Any]=1E-12 , a : Union[str, Any]=1 , a : Dict=0 , a : Any=2 , a : str="absolute" , a : Union[str, Any]=True , a : int=None , **a : List[Any] , ): '''simple docstring''' super().__init__(pad_token_id=a , bos_token_id=a , eos_token_id=a , **a ) lowerCAmelCase__ : str = vocab_size lowerCAmelCase__ : Any = hidden_size lowerCAmelCase__ : Union[str, Any] = num_hidden_layers lowerCAmelCase__ : Dict = num_attention_heads lowerCAmelCase__ : str = hidden_act lowerCAmelCase__ : Union[str, Any] = intermediate_size lowerCAmelCase__ : Dict = hidden_dropout_prob lowerCAmelCase__ : int = attention_probs_dropout_prob lowerCAmelCase__ : int = max_position_embeddings lowerCAmelCase__ : List[Any] = type_vocab_size lowerCAmelCase__ : int = initializer_range lowerCAmelCase__ : str = layer_norm_eps lowerCAmelCase__ : Any = position_embedding_type lowerCAmelCase__ : List[Any] = use_cache lowerCAmelCase__ : str = classifier_dropout class A__ ( __magic_name__ ): @property def _lowerCamelCase ( self : Dict ): '''simple docstring''' if self.task == "multiple-choice": lowerCAmelCase__ : Any = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase__ : Any = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
212
import json import os import unittest from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors @require_tokenizers class A__ ( __magic_name__ , unittest.TestCase ): lowercase = MvpTokenizer lowercase = MvpTokenizerFast lowercase = True lowercase = filter_roberta_detectors def _lowerCamelCase ( self : int ): '''simple docstring''' super().setUp() lowerCAmelCase__ : Dict = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] lowerCAmelCase__ : Any = dict(zip(a , range(len(a ) ) ) ) lowerCAmelCase__ : Union[str, Any] = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] lowerCAmelCase__ : Any = {'unk_token': '<unk>'} lowerCAmelCase__ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowerCAmelCase__ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(a ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(a ) ) def _lowerCamelCase ( self : str , **a : Tuple ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **a ) def _lowerCamelCase ( self : Dict , **a : Optional[int] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **a ) def _lowerCamelCase ( self : Tuple , a : Dict ): '''simple docstring''' return "lower newer", "lower newer" @cached_property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' return MvpTokenizer.from_pretrained('RUCAIBox/mvp' ) @cached_property def _lowerCamelCase ( self : Dict ): '''simple docstring''' return MvpTokenizerFast.from_pretrained('RUCAIBox/mvp' ) @require_torch def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : List[Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] lowerCAmelCase__ : List[Any] = [0, 250, 251, 17_818, 13, 39_186, 1_938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCAmelCase__ : int = tokenizer(a , max_length=len(a ) , padding=a , return_tensors='pt' ) self.assertIsInstance(a , a ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) lowerCAmelCase__ : List[Any] = batch.input_ids.tolist()[0] self.assertListEqual(a , a ) # Test that special tokens are reset @require_torch def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : List[Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCAmelCase__ : Any = tokenizer(a , padding=a , return_tensors='pt' ) # check if input_ids are returned and no labels self.assertIn('input_ids' , a ) self.assertIn('attention_mask' , a ) self.assertNotIn('labels' , a ) self.assertNotIn('decoder_attention_mask' , a ) @require_torch def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = [ 'Summary of the text.', 'Another summary.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCAmelCase__ : Tuple = tokenizer(text_target=a , max_length=32 , padding='max_length' , return_tensors='pt' ) self.assertEqual(32 , targets['input_ids'].shape[1] ) @require_torch def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCAmelCase__ : str = tokenizer( ['I am a small frog' * 1_024, 'I am a small frog'] , padding=a , truncation=a , return_tensors='pt' ) self.assertIsInstance(a , a ) self.assertEqual(batch.input_ids.shape , (2, 1_024) ) @require_torch def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = ['A long paragraph for summarization.'] lowerCAmelCase__ : Any = [ 'Summary of the text.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCAmelCase__ : List[Any] = tokenizer(a , text_target=a , return_tensors='pt' ) lowerCAmelCase__ : Optional[int] = inputs['input_ids'] lowerCAmelCase__ : str = inputs['labels'] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) def _lowerCamelCase ( self : Any ): '''simple docstring''' pass def _lowerCamelCase ( self : Tuple ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowerCAmelCase__ : str = self.rust_tokenizer_class.from_pretrained(a , **a ) lowerCAmelCase__ : List[str] = self.tokenizer_class.from_pretrained(a , **a ) lowerCAmelCase__ : Optional[int] = 'A, <mask> AllenNLP sentence.' lowerCAmelCase__ : int = tokenizer_r.encode_plus(a , add_special_tokens=a , return_token_type_ids=a ) lowerCAmelCase__ : Optional[int] = tokenizer_p.encode_plus(a , add_special_tokens=a , return_token_type_ids=a ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) lowerCAmelCase__ : List[Any] = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) lowerCAmelCase__ : Dict = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( a , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( a , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
212
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase__ = { '''configuration_blenderbot''': [ '''BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BlenderbotConfig''', '''BlenderbotOnnxConfig''', ], '''tokenization_blenderbot''': ['''BlenderbotTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''BlenderbotTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BlenderbotForCausalLM''', '''BlenderbotForConditionalGeneration''', '''BlenderbotModel''', '''BlenderbotPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''TFBlenderbotForConditionalGeneration''', '''TFBlenderbotModel''', '''TFBlenderbotPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''FlaxBlenderbotForConditionalGeneration''', '''FlaxBlenderbotModel''', '''FlaxBlenderbotPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
354
"""simple docstring""" import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __snake_case ( _lowercase , unittest.TestCase): # TODO: is there an appropriate internal test set? snake_case__ : List[str] = "ssube/stable-diffusion-x4-upscaler-onnx" def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __lowerCAmelCase : int=0 ): """simple docstring""" _lowerCamelCase : Tuple = floats_tensor((1, 3, 1_2_8, 1_2_8) , rng=random.Random(__lowerCAmelCase ) ) _lowerCamelCase : Union[str, Any] = torch.manual_seed(__lowerCAmelCase ) _lowerCamelCase : Tuple = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" _lowerCamelCase : Union[str, Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = self.get_dummy_inputs() _lowerCamelCase : Any = pipe(**__lowerCAmelCase ).images _lowerCamelCase : Dict = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 5_1_2, 5_1_2, 3) _lowerCamelCase : str = np.array( [0.6_97_47_82, 0.68_90_20_93, 0.70_13_58_85, 0.7_58_36_18, 0.7_80_45_45, 0.7_85_49_12, 0.78_66_74_26, 0.78_74_38_63, 0.78_07_02_23] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" _lowerCamelCase : Optional[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) _lowerCamelCase : List[str] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _lowerCamelCase : int = self.get_dummy_inputs() _lowerCamelCase : Optional[Any] = pipe(**__lowerCAmelCase ).images _lowerCamelCase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) _lowerCamelCase : Optional[int] = np.array( [0.6_89_88_92, 0.59_24_05_56, 0.52_49_95_27, 0.58_86_62_15, 0.52_25_82_35, 0.52_57_27_15, 0.62_41_44_73, 0.6_17_43_87, 0.6_21_49_64] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" _lowerCamelCase : Optional[int] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) _lowerCamelCase : Optional[int] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _lowerCamelCase : Tuple = self.get_dummy_inputs() _lowerCamelCase : str = pipe(**__lowerCAmelCase ).images _lowerCamelCase : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) _lowerCamelCase : str = np.array( [0.7_65_92_78, 0.76_43_76_64, 0.75_57_91_07, 0.7_69_11_16, 0.77_66_69_86, 0.7_72_76_72, 0.7_75_86_64, 0.7_81_22_26, 0.76_94_25_15] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" _lowerCamelCase : Any = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) _lowerCamelCase : Union[str, Any] = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = self.get_dummy_inputs() _lowerCamelCase : Tuple = pipe(**__lowerCAmelCase ).images _lowerCamelCase : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) _lowerCamelCase : Union[str, Any] = np.array( [0.6_97_47_82, 0.68_90_20_93, 0.70_13_58_85, 0.7_58_36_18, 0.7_80_45_45, 0.7_85_49_12, 0.78_66_74_26, 0.78_74_38_63, 0.78_07_02_23] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" _lowerCamelCase : Dict = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) _lowerCamelCase : int = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = self.get_dummy_inputs() _lowerCamelCase : List[Any] = pipe(**__lowerCAmelCase ).images _lowerCamelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) _lowerCamelCase : Optional[int] = np.array( [0.77_42_44_96, 0.77_36_01, 0.7_64_52_88, 0.7_76_95_98, 0.7_77_27_39, 0.7_73_86_88, 0.78_18_72_33, 0.77_87_95_84, 0.76_70_43] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class __snake_case ( unittest.TestCase): @property def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" _lowerCamelCase : Optional[int] = ort.SessionOptions() _lowerCamelCase : List[str] = False return options def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" _lowerCamelCase : Optional[int] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) _lowerCamelCase : Any = init_image.resize((1_2_8, 1_2_8) ) # using the PNDM scheduler by default _lowerCamelCase : List[str] = OnnxStableDiffusionUpscalePipeline.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _lowerCamelCase : int = '''A fantasy landscape, trending on artstation''' _lowerCamelCase : List[Any] = torch.manual_seed(0 ) _lowerCamelCase : List[str] = pipe( prompt=__lowerCAmelCase , image=__lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=1_0 , generator=__lowerCAmelCase , output_type='''np''' , ) _lowerCamelCase : List[Any] = output.images _lowerCamelCase : List[Any] = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) _lowerCamelCase : str = np.array([0.48_83, 0.49_47, 0.49_80, 0.49_75, 0.49_82, 0.49_80, 0.50_00, 0.50_06, 0.49_72] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" _lowerCamelCase : Union[str, Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) _lowerCamelCase : int = init_image.resize((1_2_8, 1_2_8) ) _lowerCamelCase : str = LMSDiscreteScheduler.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' , subfolder='''scheduler''' ) _lowerCamelCase : Dict = OnnxStableDiffusionUpscalePipeline.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' , scheduler=__lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = '''A fantasy landscape, trending on artstation''' _lowerCamelCase : int = torch.manual_seed(0 ) _lowerCamelCase : List[str] = pipe( prompt=__lowerCAmelCase , image=__lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=2_0 , generator=__lowerCAmelCase , output_type='''np''' , ) _lowerCamelCase : Union[str, Any] = output.images _lowerCamelCase : Optional[Any] = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) _lowerCamelCase : str = np.array( [0.50_17_37_53, 0.50_22_33_56, 0.50_20_39, 0.50_23_30_36, 0.5_02_37_25, 0.5_02_26_01, 0.5_01_87_58, 0.50_23_40_85, 0.50_24_15_66] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
175
0
import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __a = logging.get_logger(__name__) __a = { 'vocab_file': 'vocab.txt', 'merges_file': 'bpe.codes', } __a = { 'vocab_file': { 'vinai/phobert-base': 'https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt', 'vinai/phobert-large': 'https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt', }, 'merges_file': { 'vinai/phobert-base': 'https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes', 'vinai/phobert-large': 'https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes', }, } __a = { 'vinai/phobert-base': 2_5_6, 'vinai/phobert-large': 2_5_6, } def a ( snake_case__: List[str] ): '''simple docstring''' lowercase_ = set() lowercase_ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase_ = char lowercase_ = set(snake_case__ ) return pairs class lowercase__( UpperCAmelCase ): """simple docstring""" a :Optional[Any] = VOCAB_FILES_NAMES a :List[str] = PRETRAINED_VOCAB_FILES_MAP a :Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : int , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Union[str, Any]="<s>" , SCREAMING_SNAKE_CASE_ : Union[str, Any]="</s>" , SCREAMING_SNAKE_CASE_ : List[Any]="</s>" , SCREAMING_SNAKE_CASE_ : Optional[Any]="<s>" , SCREAMING_SNAKE_CASE_ : List[str]="<unk>" , SCREAMING_SNAKE_CASE_ : List[Any]="<pad>" , SCREAMING_SNAKE_CASE_ : List[Any]="<mask>" , **SCREAMING_SNAKE_CASE_ : Optional[Any] , ) -> Union[str, Any]: super().__init__( bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) lowercase_ = vocab_file lowercase_ = merges_file lowercase_ = {} lowercase_ = 0 lowercase_ = 1 lowercase_ = 2 lowercase_ = 3 self.add_from_file(SCREAMING_SNAKE_CASE_ ) lowercase_ = {v: k for k, v in self.encoder.items()} with open(SCREAMING_SNAKE_CASE_ , encoding='''utf-8''' ) as merges_handle: lowercase_ = merges_handle.read().split('''\n''' )[:-1] lowercase_ = [tuple(merge.split()[:-1] ) for merge in merges] lowercase_ = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) lowercase_ = {} def _lowercase ( self : Any , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase_ = [self.cls_token_id] lowercase_ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE_ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE_ , token_ids_a=SCREAMING_SNAKE_CASE_ , already_has_special_tokens=SCREAMING_SNAKE_CASE_ ) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] def _lowercase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ) -> List[int]: lowercase_ = [self.sep_token_id] lowercase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _lowercase ( self : Any ) -> Any: return len(self.encoder ) def _lowercase ( self : Any ) -> Dict: return dict(self.encoder , **self.added_tokens_encoder ) def _lowercase ( self : Dict , SCREAMING_SNAKE_CASE_ : Any ) -> Any: if token in self.cache: return self.cache[token] lowercase_ = tuple(SCREAMING_SNAKE_CASE_ ) lowercase_ = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) lowercase_ = get_pairs(SCREAMING_SNAKE_CASE_ ) if not pairs: return token while True: lowercase_ = min(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_ : self.bpe_ranks.get(SCREAMING_SNAKE_CASE_ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break lowercase_ , lowercase_ = bigram lowercase_ = [] lowercase_ = 0 while i < len(SCREAMING_SNAKE_CASE_ ): try: lowercase_ = word.index(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowercase_ = j if word[i] == first and i < len(SCREAMING_SNAKE_CASE_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowercase_ = tuple(SCREAMING_SNAKE_CASE_ ) lowercase_ = new_word if len(SCREAMING_SNAKE_CASE_ ) == 1: break else: lowercase_ = get_pairs(SCREAMING_SNAKE_CASE_ ) lowercase_ = '''@@ '''.join(SCREAMING_SNAKE_CASE_ ) lowercase_ = word[:-4] lowercase_ = word return word def _lowercase ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Dict ) -> int: lowercase_ = [] lowercase_ = re.findall(R'''\S+\n?''' , SCREAMING_SNAKE_CASE_ ) for token in words: split_tokens.extend(list(self.bpe(SCREAMING_SNAKE_CASE_ ).split(''' ''' ) ) ) return split_tokens def _lowercase ( self : List[str] , SCREAMING_SNAKE_CASE_ : List[Any] ) -> Union[str, Any]: return self.encoder.get(SCREAMING_SNAKE_CASE_ , self.encoder.get(self.unk_token ) ) def _lowercase ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> List[Any]: return self.decoder.get(SCREAMING_SNAKE_CASE_ , self.unk_token ) def _lowercase ( self : Any , SCREAMING_SNAKE_CASE_ : Any ) -> Tuple: lowercase_ = ''' '''.join(SCREAMING_SNAKE_CASE_ ).replace('''@@ ''' , '''''' ).strip() return out_string def _lowercase ( self : List[str] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase_ = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase_ = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE_ ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE_ ) if os.path.abspath(self.merges_file ) != os.path.abspath(SCREAMING_SNAKE_CASE_ ): copyfile(self.merges_file , SCREAMING_SNAKE_CASE_ ) return out_vocab_file, out_merge_file def _lowercase ( self : List[str] , SCREAMING_SNAKE_CASE_ : List[str] ) -> Dict: if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): try: with open(SCREAMING_SNAKE_CASE_ , '''r''' , encoding='''utf-8''' ) as fd: self.add_from_file(SCREAMING_SNAKE_CASE_ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(f'''Incorrect encoding detected in {f}, please rebuild the dataset''' ) return lowercase_ = f.readlines() for lineTmp in lines: lowercase_ = lineTmp.strip() lowercase_ = line.rfind(''' ''' ) if idx == -1: raise ValueError('''Incorrect dictionary format, expected \'<token> <cnt>\'''' ) lowercase_ = line[:idx] lowercase_ = len(self.encoder )
30
'''simple docstring''' from __future__ import annotations __lowerCAmelCase = [-1_0, -5, 0, 5, 5.1, 1_1, 1_3, 2_1, 3, 4, -2_1, -1_0, -5, -1, 0] __lowerCAmelCase = [-5, 0, 5, 5.1, 1_1, 1_3, 2_1, -1, 4, -1, -1_0, -5, -1, 0, -1] def UpperCAmelCase_ (__a : list[float] ): """simple docstring""" _a : Optional[int] = [] _a : int = len(__a ) for i in range(__a ): _a : float = -1 for j in range(i + 1 , __a ): if arr[i] < arr[j]: _a : Any = arr[j] break result.append(__a ) return result def UpperCAmelCase_ (__a : list[float] ): """simple docstring""" _a : Tuple = [] for i, outer in enumerate(__a ): _a : float = -1 for inner in arr[i + 1 :]: if outer < inner: _a : Dict = inner break result.append(__a ) return result def UpperCAmelCase_ (__a : list[float] ): """simple docstring""" _a : int = len(__a ) _a : list[float] = [] _a : list[float] = [-1] * arr_size for index in reversed(range(__a ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: _a : Dict = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) __lowerCAmelCase = ( """from __main__ import arr, next_greatest_element_slow, """ """next_greatest_element_fast, next_greatest_element""" ) print( """next_greatest_element_slow():""", timeit("""next_greatest_element_slow(arr)""", setup=setup), ) print( """next_greatest_element_fast():""", timeit("""next_greatest_element_fast(arr)""", setup=setup), ) print( """ next_greatest_element():""", timeit("""next_greatest_element(arr)""", setup=setup), )
271
0
import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowercase ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): # FIXME: add fast tests pass @nightly @require_onnxruntime @require_torch_gpu class lowercase ( unittest.TestCase ): @property def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase = ort.SessionOptions() UpperCamelCase = False return options def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo.png' ) UpperCamelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo_mask.png' ) UpperCamelCase = OnnxStableDiffusionInpaintPipeline.from_pretrained( 'runwayml/stable-diffusion-inpainting' , revision='onnx' , safety_checker=A_ , feature_extractor=A_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=A_ ) UpperCamelCase = 'A red cat sitting on a park bench' UpperCamelCase = np.random.RandomState(0 ) UpperCamelCase = pipe( prompt=A_ , image=A_ , mask_image=A_ , guidance_scale=7.5 , num_inference_steps=10 , generator=A_ , output_type='np' , ) UpperCamelCase = output.images UpperCamelCase = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) UpperCamelCase = np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo.png' ) UpperCamelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo_mask.png' ) UpperCamelCase = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-inpainting' , subfolder='scheduler' , revision='onnx' ) UpperCamelCase = OnnxStableDiffusionInpaintPipeline.from_pretrained( 'runwayml/stable-diffusion-inpainting' , revision='onnx' , scheduler=A_ , safety_checker=A_ , feature_extractor=A_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=A_ ) UpperCamelCase = 'A red cat sitting on a park bench' UpperCamelCase = np.random.RandomState(0 ) UpperCamelCase = pipe( prompt=A_ , image=A_ , mask_image=A_ , guidance_scale=7.5 , num_inference_steps=20 , generator=A_ , output_type='np' , ) UpperCamelCase = output.images UpperCamelCase = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) UpperCamelCase = np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
110
from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowercase : def __init__( self , A_ , A_=13 , A_=30 , A_=2 , A_=3 , A_=True , A_=True , A_=32 , A_=2 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=10 , A_=0.02 , A_=3 , A_=0.6 , A_=None , ) -> str: """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = image_size UpperCamelCase = patch_size UpperCamelCase = num_channels UpperCamelCase = is_training UpperCamelCase = use_labels UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = mask_ratio UpperCamelCase = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) UpperCamelCase = (image_size // patch_size) ** 2 UpperCamelCase = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def __UpperCamelCase ( self ) -> int: """simple docstring""" UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase = self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self ) -> Any: """simple docstring""" return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A_ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def __UpperCamelCase ( self , A_ , A_ , A_ ) -> Dict: """simple docstring""" UpperCamelCase = TFViTMAEModel(config=A_ ) UpperCamelCase = model(A_ , training=A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self , A_ , A_ , A_ ) -> Tuple: """simple docstring""" UpperCamelCase = TFViTMAEForPreTraining(A_ ) UpperCamelCase = model(A_ , training=A_ ) # expected sequence length = num_patches UpperCamelCase = (self.image_size // self.patch_size) ** 2 UpperCamelCase = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images UpperCamelCase = 1 UpperCamelCase = TFViTMAEForPreTraining(A_ ) UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase = model(A_ , training=A_ ) UpperCamelCase = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def __UpperCamelCase ( self ) -> Any: """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() ((UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase)) = config_and_inputs UpperCamelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): __lowercase : Union[str, Any] = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () __lowercase : Optional[int] = {"feature-extraction": TFViTMAEModel} if is_tf_available() else {} __lowercase : Optional[Any] = False __lowercase : Optional[Any] = False __lowercase : Dict = False __lowercase : List[str] = False def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase = TFViTMAEModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=A_ , has_text_modality=A_ , hidden_size=37 ) def __UpperCamelCase ( self ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='ViTMAE does not use inputs_embeds' ) def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" pass def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(A_ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A_ , tf.keras.layers.Layer ) ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(A_ ) UpperCamelCase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , A_ ) def __UpperCamelCase ( self ) -> str: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def __UpperCamelCase ( self ) -> str: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*A_ ) def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" # make the mask reproducible np.random.seed(2 ) UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = int((config.image_size // config.patch_size) ** 2 ) UpperCamelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: UpperCamelCase = model_class(A_ ) UpperCamelCase = self._prepare_for_class(A_ , A_ ) UpperCamelCase = model(A_ , noise=A_ ) UpperCamelCase = copy.deepcopy(self._prepare_for_class(A_ , A_ ) ) UpperCamelCase = model(**A_ , noise=A_ ) UpperCamelCase = outputs_dict[0].numpy() UpperCamelCase = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1e-6 ) def __UpperCamelCase ( self ) -> int: """simple docstring""" # make the mask reproducible np.random.seed(2 ) UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = int((config.image_size // config.patch_size) ** 2 ) UpperCamelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(A_ ): UpperCamelCase = {} for k, v in inputs_dict.items(): if tf.is_tensor(A_ ): UpperCamelCase = v.numpy() else: UpperCamelCase = np.array(A_ ) return inputs_np_dict for model_class in self.all_model_classes: UpperCamelCase = model_class(A_ ) UpperCamelCase = self._prepare_for_class(A_ , A_ ) UpperCamelCase = prepare_numpy_arrays(A_ ) UpperCamelCase = model(A_ , noise=A_ ) UpperCamelCase = model(**A_ , noise=A_ ) self.assert_outputs_same(A_ , A_ ) def __UpperCamelCase ( self , A_ , A_ , A_ ) -> List[Any]: """simple docstring""" # make masks reproducible np.random.seed(2 ) UpperCamelCase = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) UpperCamelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) UpperCamelCase = tf.constant(A_ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument UpperCamelCase = tf_noise super().check_pt_tf_models(A_ , A_ , A_ ) def __UpperCamelCase ( self ) -> Dict: """simple docstring""" # make mask reproducible np.random.seed(2 ) UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(A_ ) if module_member_name.endswith('MainLayer' ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len('MainLayer' )] == model_class.__name__[: -len('Model' )] for module_member in (getattr(A_ , A_ ),) if isinstance(A_ , A_ ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(A_ , '_keras_serializable' , A_ ) } UpperCamelCase = int((config.image_size // config.patch_size) ** 2 ) UpperCamelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) UpperCamelCase = tf.convert_to_tensor(A_ ) inputs_dict.update({'noise': noise} ) for main_layer_class in tf_main_layer_classes: UpperCamelCase = main_layer_class(A_ ) UpperCamelCase = { name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } UpperCamelCase = tf.keras.Model(A_ , outputs=main_layer(A_ ) ) UpperCamelCase = model(A_ ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase = os.path.join(A_ , 'keras_model.h5' ) model.save(A_ ) UpperCamelCase = tf.keras.models.load_model( A_ , custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(A_ , tf.keras.Model ) UpperCamelCase = model(A_ ) self.assert_outputs_same(A_ , A_ ) @slow def __UpperCamelCase ( self ) -> int: """simple docstring""" # make mask reproducible np.random.seed(2 ) UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = int((config.image_size // config.patch_size) ** 2 ) UpperCamelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: UpperCamelCase = model_class(A_ ) UpperCamelCase = self._prepare_for_class(A_ , A_ ) UpperCamelCase = model(A_ , noise=A_ ) if model_class.__name__ == "TFViTMAEModel": UpperCamelCase = outputs.last_hidden_state.numpy() UpperCamelCase = 0 else: UpperCamelCase = outputs.logits.numpy() UpperCamelCase = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(A_ , saved_model=A_ ) UpperCamelCase = model_class.from_pretrained(A_ ) UpperCamelCase = model(A_ , noise=A_ ) if model_class.__name__ == "TFViTMAEModel": UpperCamelCase = after_outputs['last_hidden_state'].numpy() UpperCamelCase = 0 else: UpperCamelCase = after_outputs['logits'].numpy() UpperCamelCase = 0 UpperCamelCase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(A_ , 1e-5 ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" # make mask reproducible np.random.seed(2 ) UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = int((config.image_size // config.patch_size) ** 2 ) UpperCamelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: UpperCamelCase = model_class(A_ ) UpperCamelCase = self._prepare_for_class(A_ , A_ ) UpperCamelCase = model(A_ , noise=A_ ) UpperCamelCase = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(A_ ) UpperCamelCase = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config UpperCamelCase = model_class.from_config(model.config ) UpperCamelCase = new_model(A_ ) # Build model new_model.set_weights(model.get_weights() ) UpperCamelCase = new_model(A_ , noise=A_ ) self.assert_outputs_same(A_ , A_ ) @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" pass @unittest.skip(reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load' ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" pass @slow def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = TFViTMAEModel.from_pretrained('google/vit-base-patch16-224' ) self.assertIsNotNone(A_ ) def A ( ) -> Optional[int]: '''simple docstring''' UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class lowercase ( unittest.TestCase ): @cached_property def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" return ViTImageProcessor.from_pretrained('facebook/vit-mae-base' ) if is_vision_available() else None @slow def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" # make random mask reproducible across the PT and TF model np.random.seed(2 ) UpperCamelCase = TFViTMAEForPreTraining.from_pretrained('facebook/vit-mae-base' ) UpperCamelCase = self.default_image_processor UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=A_ , return_tensors='tf' ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) UpperCamelCase = ViTMAEConfig() UpperCamelCase = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) UpperCamelCase = np.random.uniform(size=(1, num_patches) ) # forward pass UpperCamelCase = model(**A_ , noise=A_ ) # verify the logits UpperCamelCase = tf.convert_to_tensor([1, 196, 768] ) self.assertEqual(outputs.logits.shape , A_ ) UpperCamelCase = tf.convert_to_tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] , A_ , atol=1e-4 )
110
1
import string def _a ( lowerCamelCase ): for key in range(len(string.ascii_uppercase ) ): lowerCamelCase : Optional[int] = """""" for symbol in message: if symbol in string.ascii_uppercase: lowerCamelCase : str = string.ascii_uppercase.find(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : List[str] = num - key if num < 0: lowerCamelCase : List[Any] = num + len(string.ascii_uppercase ) lowerCamelCase : List[Any] = translated + string.ascii_uppercase[num] else: lowerCamelCase : Optional[Any] = translated + symbol print(F'''Decryption using Key #{key}: {translated}''' ) def _a ( ): lowerCamelCase : List[str] = input("""Encrypted message: """ ) lowerCamelCase : str = message.upper() decrypt(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
287
from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
68
0
'''simple docstring''' __lowerCamelCase = { "joule": 1.0, "kilojoule": 1000, "megajoule": 100_0000, "gigajoule": 10_0000_0000, "wattsecond": 1.0, "watthour": 3600, "kilowatthour": 360_0000, "newtonmeter": 1.0, "calorie_nutr": 4186.8, "kilocalorie_nutr": 418_6800.00, "electronvolt": 1.6_0217_6634e-19, "britishthermalunit_it": 1055.0_5585, "footpound": 1.355818, } def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> float: if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: A_ = ( F'''Incorrect \'from_type\' or \'to_type\' value: {from_type!r}, {to_type!r}\n''' F'''Valid values are: {", ".join(UpperCAmelCase__ )}''' ) raise ValueError(UpperCAmelCase__ ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
101
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCamelCase = { '''configuration_blenderbot''': [ '''BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BlenderbotConfig''', '''BlenderbotOnnxConfig''', ], '''tokenization_blenderbot''': ['''BlenderbotTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ['''BlenderbotTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ '''BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BlenderbotForCausalLM''', '''BlenderbotForConditionalGeneration''', '''BlenderbotModel''', '''BlenderbotPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ '''TFBlenderbotForConditionalGeneration''', '''TFBlenderbotModel''', '''TFBlenderbotPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ '''FlaxBlenderbotForConditionalGeneration''', '''FlaxBlenderbotModel''', '''FlaxBlenderbotPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
101
1
'''simple docstring''' class __magic_name__ : def __init__( self : int , lowercase_ : list ): lowercase_ : List[Any] = set_counts lowercase_ : Optional[int] = max(lowercase_ ) lowercase_ : List[Any] = len(lowercase_ ) lowercase_ : Any = [1] * num_sets lowercase_ : Tuple = list(range(lowercase_ ) ) def SCREAMING_SNAKE_CASE_ ( self : int , lowercase_ : int , lowercase_ : int ): lowercase_ : Dict = self.get_parent(lowercase_ ) lowercase_ : Tuple = self.get_parent(lowercase_ ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] lowercase_ : Dict = 0 lowercase_ : int = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 lowercase_ : List[str] = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] lowercase_ : Dict = 0 lowercase_ : int = src_parent lowercase_ : Any = self.set_counts[src_parent] lowercase_ : int = max(self.max_set , lowercase_ ) return True def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : int ): if self.parents[disj_set] == disj_set: return disj_set lowercase_ : Dict = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
239
'''simple docstring''' import math import unittest def lowerCamelCase ( UpperCAmelCase__ : int ) -> bool: assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(UpperCAmelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class __magic_name__ ( unittest.TestCase): def SCREAMING_SNAKE_CASE_ ( self : Dict ): self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(11 ) ) self.assertTrue(is_prime(13 ) ) self.assertTrue(is_prime(17 ) ) self.assertTrue(is_prime(19 ) ) self.assertTrue(is_prime(23 ) ) self.assertTrue(is_prime(29 ) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): with self.assertRaises(lowercase_ ): is_prime(-19 ) self.assertFalse( is_prime(0 ) , """Zero doesn't have any positive factors, primes must have exactly two.""" , ) self.assertFalse( is_prime(1 ) , """One only has 1 positive factor, primes must have exactly two.""" , ) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
239
1
"""simple docstring""" import numpy as np class _lowerCAmelCase : """simple docstring""" def __init__( self ): '''simple docstring''' lowerCAmelCase__ :int = (0, 0) lowerCAmelCase__ :Optional[Any] = None lowerCAmelCase__ :Union[str, Any] = 0 lowerCAmelCase__ :int = 0 lowerCAmelCase__ :Union[str, Any] = 0 def __eq__( self , __UpperCAmelCase ): '''simple docstring''' return self.position == cell.position def snake_case ( self ): '''simple docstring''' print(self.position ) class _lowerCAmelCase : """simple docstring""" def __init__( self , __UpperCAmelCase=(5, 5) ): '''simple docstring''' lowerCAmelCase__ :Tuple = np.zeros(__UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = world_size[0] lowerCAmelCase__ :Any = world_size[1] def snake_case ( self ): '''simple docstring''' print(self.w ) def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Any = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] lowerCAmelCase__ :int = cell.position[0] lowerCAmelCase__ :Optional[int] = cell.position[1] lowerCAmelCase__ :int = [] for n in neughbour_cord: lowerCAmelCase__ :Tuple = current_x + n[0] lowerCAmelCase__ :Dict = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: lowerCAmelCase__ :Dict = Cell() lowerCAmelCase__ :List[str] = (x, y) lowerCAmelCase__ :List[str] = cell neighbours.append(__UpperCAmelCase ) return neighbours def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Optional[Any]: """simple docstring""" lowerCAmelCase__ :Any = [] lowerCAmelCase__ :Any = [] _open.append(_SCREAMING_SNAKE_CASE ) while _open: lowerCAmelCase__ :List[Any] = np.argmin([n.f for n in _open] ) lowerCAmelCase__ :Tuple = _open[min_f] _closed.append(_open.pop(_SCREAMING_SNAKE_CASE ) ) if current == goal: break for n in world.get_neigbours(_SCREAMING_SNAKE_CASE ): for c in _closed: if c == n: continue lowerCAmelCase__ :List[str] = current.g + 1 lowerCAmelCase__ , lowerCAmelCase__ :Union[str, Any] = n.position lowerCAmelCase__ , lowerCAmelCase__ :int = goal.position lowerCAmelCase__ :str = (ya - ya) ** 2 + (xa - xa) ** 2 lowerCAmelCase__ :List[str] = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :List[Any] = [] while current.parent is not None: path.append(current.position ) lowerCAmelCase__ :Any = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": __A = Gridworld() # Start position and goal __A = Cell() __A = (0, 0) __A = Cell() __A = (4, 4) print(F'''path from {start.position} to {goal.position}''') __A = astar(world, start, goal) # Just for visual reasons. for i in s: __A = 1 print(world.w)
254
"""simple docstring""" import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class _lowerCAmelCase ( a ): """simple docstring""" def __init__( self , __UpperCAmelCase = "▁" , __UpperCAmelCase = True , __UpperCAmelCase = "<unk>" , __UpperCAmelCase = "</s>" , __UpperCAmelCase = "<pad>" , ): '''simple docstring''' lowerCAmelCase__ :Tuple = { 'pad': {'id': 0, 'token': pad_token}, 'eos': {'id': 1, 'token': eos_token}, 'unk': {'id': 2, 'token': unk_token}, } lowerCAmelCase__ :Optional[int] = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): lowerCAmelCase__ :Any = token_dict['token'] lowerCAmelCase__ :int = Tokenizer(Unigram() ) lowerCAmelCase__ :Tuple = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(' {2,}' ) , ' ' ), normalizers.Lowercase(), ] ) lowerCAmelCase__ :Any = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase ), pre_tokenizers.Digits(individual_digits=__UpperCAmelCase ), pre_tokenizers.Punctuation(), ] ) lowerCAmelCase__ :List[str] = decoders.Metaspace(replacement=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase ) lowerCAmelCase__ :Tuple = TemplateProcessing( single=F"$A {self.special_tokens['eos']['token']}" , special_tokens=[(self.special_tokens['eos']['token'], self.special_tokens['eos']['id'])] , ) lowerCAmelCase__ :Optional[int] = { 'model': 'SentencePieceUnigram', 'replacement': replacement, 'add_prefix_space': add_prefix_space, } super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase = 8_0_0_0 , __UpperCAmelCase = True , ): '''simple docstring''' lowerCAmelCase__ :int = trainers.UnigramTrainer( vocab_size=__UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=__UpperCAmelCase , ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ): lowerCAmelCase__ :int = [files] self._tokenizer.train(__UpperCAmelCase , trainer=__UpperCAmelCase ) self.add_unk_id() def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase = 8_0_0_0 , __UpperCAmelCase = True , ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = trainers.UnigramTrainer( vocab_size=__UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=__UpperCAmelCase , ) self._tokenizer.train_from_iterator(__UpperCAmelCase , trainer=__UpperCAmelCase ) self.add_unk_id() def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = json.loads(self._tokenizer.to_str() ) lowerCAmelCase__ :List[str] = self.special_tokens['unk']['id'] lowerCAmelCase__ :Union[str, Any] = Tokenizer.from_str(json.dumps(__UpperCAmelCase ) )
254
1
"""simple docstring""" import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class lowerCamelCase ( _snake_case ): '''simple docstring''' _A : Any = (UniPCMultistepScheduler,) _A : Dict = (("""num_inference_steps""", 2_5),) def lowerCAmelCase_ ( self: int , **snake_case: str ) -> Dict: snake_case_ :Optional[int] = { 'num_train_timesteps': 1_000, 'beta_start': 0.0_0_0_1, 'beta_end': 0.0_2, 'beta_schedule': 'linear', 'solver_order': 2, 'solver_type': 'bh2', } config.update(**lowercase_ ) return config def lowerCAmelCase_ ( self: List[str] , snake_case: Tuple=0 , **snake_case: int ) -> Optional[int]: snake_case_ :Optional[int] = dict(self.forward_default_kwargs ) snake_case_ :str = kwargs.pop("""num_inference_steps""" , lowercase_ ) snake_case_ :Union[str, Any] = self.dummy_sample snake_case_ :str = 0.1 * sample snake_case_ :Tuple = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: snake_case_ :Tuple = self.get_scheduler_config(**lowercase_ ) snake_case_ :Optional[int] = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals snake_case_ :str = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_ ) snake_case_ :List[str] = scheduler_class.from_pretrained(lowercase_ ) new_scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals snake_case_ :int = dummy_past_residuals[: new_scheduler.config.solver_order] snake_case_ :List[str] = sample, sample for t in range(lowercase_ , time_step + scheduler.config.solver_order + 1 ): snake_case_ :List[Any] = scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample snake_case_ :Tuple = new_scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCAmelCase_ ( self: int , snake_case: Union[str, Any]=0 , **snake_case: str ) -> int: snake_case_ :int = dict(self.forward_default_kwargs ) snake_case_ :Union[str, Any] = kwargs.pop("""num_inference_steps""" , lowercase_ ) snake_case_ :List[str] = self.dummy_sample snake_case_ :Any = 0.1 * sample snake_case_ :List[Any] = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: snake_case_ :List[Any] = self.get_scheduler_config() snake_case_ :str = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals (must be after setting timesteps) snake_case_ :List[str] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_ ) snake_case_ :Tuple = scheduler_class.from_pretrained(lowercase_ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowercase_ ) # copy over dummy past residual (must be after setting timesteps) snake_case_ :Any = dummy_past_residuals[: new_scheduler.config.solver_order] snake_case_ :int = scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample snake_case_ :Optional[Any] = new_scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCAmelCase_ ( self: Dict , snake_case: Tuple=None , **snake_case: Optional[Any] ) -> int: if scheduler is None: snake_case_ :int = self.scheduler_classes[0] snake_case_ :Optional[Any] = self.get_scheduler_config(**lowercase_ ) snake_case_ :str = scheduler_class(**lowercase_ ) snake_case_ :Any = self.scheduler_classes[0] snake_case_ :Tuple = self.get_scheduler_config(**lowercase_ ) snake_case_ :Tuple = scheduler_class(**lowercase_ ) snake_case_ :List[Any] = 10 snake_case_ :str = self.dummy_model() snake_case_ :Optional[Any] = self.dummy_sample_deter scheduler.set_timesteps(lowercase_ ) for i, t in enumerate(scheduler.timesteps ): snake_case_ :int = model(lowercase_ , lowercase_ ) snake_case_ :Any = scheduler.step(lowercase_ , lowercase_ , lowercase_ ).prev_sample return sample def lowerCAmelCase_ ( self: List[Any] ) -> Optional[int]: snake_case_ :Any = dict(self.forward_default_kwargs ) snake_case_ :Dict = kwargs.pop("""num_inference_steps""" , lowercase_ ) for scheduler_class in self.scheduler_classes: snake_case_ :Tuple = self.get_scheduler_config() snake_case_ :Optional[Any] = scheduler_class(**lowercase_ ) snake_case_ :Optional[int] = self.dummy_sample snake_case_ :List[Any] = 0.1 * sample if num_inference_steps is not None and hasattr(lowercase_ , """set_timesteps""" ): scheduler.set_timesteps(lowercase_ ) elif num_inference_steps is not None and not hasattr(lowercase_ , """set_timesteps""" ): snake_case_ :str = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) snake_case_ :Tuple = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] snake_case_ :str = dummy_past_residuals[: scheduler.config.solver_order] snake_case_ :Dict = scheduler.timesteps[5] snake_case_ :Optional[Any] = scheduler.timesteps[6] snake_case_ :Tuple = scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample snake_case_ :str = scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowerCAmelCase_ ( self: List[Any] ) -> Optional[int]: # make sure that iterating over schedulers with same config names gives same results # for defaults snake_case_ :List[Any] = UniPCMultistepScheduler(**self.get_scheduler_config() ) snake_case_ :Optional[Any] = self.full_loop(scheduler=lowercase_ ) snake_case_ :int = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3 snake_case_ :Dict = DPMSolverSinglestepScheduler.from_config(scheduler.config ) snake_case_ :Any = DEISMultistepScheduler.from_config(scheduler.config ) snake_case_ :int = DPMSolverMultistepScheduler.from_config(scheduler.config ) snake_case_ :Union[str, Any] = UniPCMultistepScheduler.from_config(scheduler.config ) snake_case_ :Optional[int] = self.full_loop(scheduler=lowercase_ ) snake_case_ :Tuple = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3 def lowerCAmelCase_ ( self: List[str] ) -> Union[str, Any]: for timesteps in [25, 50, 100, 999, 1_000]: self.check_over_configs(num_train_timesteps=lowercase_ ) def lowerCAmelCase_ ( self: Dict ) -> Optional[Any]: self.check_over_configs(thresholding=lowercase_ ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=lowercase_ , prediction_type=lowercase_ , sample_max_value=lowercase_ , solver_order=lowercase_ , solver_type=lowercase_ , ) def lowerCAmelCase_ ( self: Union[str, Any] ) -> Tuple: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowercase_ ) def lowerCAmelCase_ ( self: Optional[int] ) -> Optional[Any]: for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=lowercase_ , solver_type=lowercase_ , prediction_type=lowercase_ , ) snake_case_ :Optional[int] = self.full_loop( solver_order=lowercase_ , solver_type=lowercase_ , prediction_type=lowercase_ , ) assert not torch.isnan(lowercase_ ).any(), "Samples have nan numbers" def lowerCAmelCase_ ( self: Optional[int] ) -> Tuple: self.check_over_configs(lower_order_final=lowercase_ ) self.check_over_configs(lower_order_final=lowercase_ ) def lowerCAmelCase_ ( self: Tuple ) -> Union[str, Any]: for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1_000]: self.check_over_forward(num_inference_steps=lowercase_ , time_step=0 ) def lowerCAmelCase_ ( self: Dict ) -> Union[str, Any]: snake_case_ :str = self.full_loop() snake_case_ :Any = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3 def lowerCAmelCase_ ( self: Dict ) -> int: snake_case_ :Optional[Any] = self.full_loop(prediction_type="""v_prediction""" ) snake_case_ :Optional[int] = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_mean.item() - 0.1_0_1_4 ) < 1E-3 def lowerCAmelCase_ ( self: List[str] ) -> List[Any]: snake_case_ :Optional[Any] = self.scheduler_classes[0] snake_case_ :List[Any] = self.get_scheduler_config(thresholding=lowercase_ , dynamic_thresholding_ratio=0 ) snake_case_ :Optional[Any] = scheduler_class(**lowercase_ ) snake_case_ :int = 10 snake_case_ :Optional[int] = self.dummy_model() snake_case_ :Any = self.dummy_sample_deter.half() scheduler.set_timesteps(lowercase_ ) for i, t in enumerate(scheduler.timesteps ): snake_case_ :Union[str, Any] = model(lowercase_ , lowercase_ ) snake_case_ :Optional[int] = scheduler.step(lowercase_ , lowercase_ , lowercase_ ).prev_sample assert sample.dtype == torch.floataa def lowerCAmelCase_ ( self: int , **snake_case: Any ) -> Any: for scheduler_class in self.scheduler_classes: snake_case_ :str = self.get_scheduler_config(**lowercase_ ) snake_case_ :Any = scheduler_class(**lowercase_ ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
66
'''simple docstring''' import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class A_ : '''simple docstring''' UpperCAmelCase_ : Optional[Union[str, Path]] = None UpperCAmelCase_ : bool = False UpperCAmelCase_ : bool = False UpperCAmelCase_ : bool = False UpperCAmelCase_ : Optional[Dict] = None UpperCAmelCase_ : Optional[str] = None UpperCAmelCase_ : bool = False UpperCAmelCase_ : bool = False UpperCAmelCase_ : bool = False UpperCAmelCase_ : bool = True UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : int = 1 UpperCAmelCase_ : Optional[Union[str, bool]] = None UpperCAmelCase_ : bool = False UpperCAmelCase_ : Optional[Dict] = None UpperCAmelCase_ : Optional[str] = None def UpperCAmelCase_ ( self : Tuple ) -> "DownloadConfig": return self.__class__(**{k: copy.deepcopy(lowercase_ ) for k, v in self.__dict__.items()} )
151
0
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowercase : str = logging.get_logger(__name__) lowercase : Any = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} lowercase : List[Any] = { """vocab_file""": { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json""", """allenai/longformer-large-4096""": ( """https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json""" ), """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json""" ), }, """merges_file""": { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt""", """allenai/longformer-large-4096""": ( """https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt""" ), """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt""" ), }, } lowercase : List[str] = { """allenai/longformer-base-4096""": 4_0_9_6, """allenai/longformer-large-4096""": 4_0_9_6, """allenai/longformer-large-4096-finetuned-triviaqa""": 4_0_9_6, """allenai/longformer-base-4096-extra.pos.embd.only""": 4_0_9_6, """allenai/longformer-large-4096-extra.pos.embd.only""": 4_0_9_6, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def A_ ( ) -> Dict: a__ : int = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) a__ : Dict = bs[:] a__ : str = 0 for b in range(2**8 ): if b not in bs: bs.append(A__ ) cs.append(2**8 + n ) n += 1 a__ : int = [chr(A__ ) for n in cs] return dict(zip(A__ , A__ ) ) def A_ ( A__ ) -> Union[str, Any]: a__ : Any = set() a__ : List[str] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) a__ : Optional[Any] = char return pairs class A__ ( __UpperCAmelCase ): """simple docstring""" __A : List[Any] = VOCAB_FILES_NAMES __A : Tuple = PRETRAINED_VOCAB_FILES_MAP __A : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A : List[Any] = ['''input_ids''', '''attention_mask'''] def __init__( self , lowercase , lowercase , lowercase="replace" , lowercase="<s>" , lowercase="</s>" , lowercase="</s>" , lowercase="<s>" , lowercase="<unk>" , lowercase="<pad>" , lowercase="<mask>" , lowercase=False , **lowercase , ) -> Union[str, Any]: '''simple docstring''' a__ : Dict = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase) if isinstance(lowercase , lowercase) else bos_token a__ : int = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase) if isinstance(lowercase , lowercase) else eos_token a__ : int = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase) if isinstance(lowercase , lowercase) else sep_token a__ : Tuple = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase) if isinstance(lowercase , lowercase) else cls_token a__ : List[Any] = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase) if isinstance(lowercase , lowercase) else unk_token a__ : List[str] = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase) if isinstance(lowercase , lowercase) else pad_token # Mask token behave like a normal word, i.e. include the space before it a__ : Dict = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase) if isinstance(lowercase , lowercase) else mask_token super().__init__( errors=lowercase , bos_token=lowercase , eos_token=lowercase , unk_token=lowercase , sep_token=lowercase , cls_token=lowercase , pad_token=lowercase , mask_token=lowercase , add_prefix_space=lowercase , **lowercase , ) with open(lowercase , encoding='utf-8') as vocab_handle: a__ : int = json.load(lowercase) a__ : List[str] = {v: k for k, v in self.encoder.items()} a__ : List[Any] = errors # how to handle errors in decoding a__ : Tuple = bytes_to_unicode() a__ : str = {v: k for k, v in self.byte_encoder.items()} with open(lowercase , encoding='utf-8') as merges_handle: a__ : List[str] = merges_handle.read().split('\n')[1:-1] a__ : List[str] = [tuple(merge.split()) for merge in bpe_merges] a__ : Optional[int] = dict(zip(lowercase , range(len(lowercase)))) a__ : List[str] = {} a__ : List[Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions a__ : Optional[int] = re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+') @property def __lowercase ( self) -> List[str]: '''simple docstring''' return len(self.encoder) def __lowercase ( self) -> List[str]: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder) def __lowercase ( self , lowercase) -> Optional[Any]: '''simple docstring''' if token in self.cache: return self.cache[token] a__ : Any = tuple(lowercase) a__ : Union[str, Any] = get_pairs(lowercase) if not pairs: return token while True: a__ : Union[str, Any] = min(lowercase , key=lambda lowercase: self.bpe_ranks.get(lowercase , float('inf'))) if bigram not in self.bpe_ranks: break a__ , a__ : str = bigram a__ : Union[str, Any] = [] a__ : List[str] = 0 while i < len(lowercase): try: a__ : Optional[int] = word.index(lowercase , lowercase) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) a__ : Dict = j if word[i] == first and i < len(lowercase) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 a__ : Dict = tuple(lowercase) a__ : List[str] = new_word if len(lowercase) == 1: break else: a__ : int = get_pairs(lowercase) a__ : Union[str, Any] = ' '.join(lowercase) a__ : Optional[int] = word return word def __lowercase ( self , lowercase) -> Tuple: '''simple docstring''' a__ : Union[str, Any] = [] for token in re.findall(self.pat , lowercase): a__ : Union[str, Any] = ''.join( self.byte_encoder[b] for b in token.encode('utf-8')) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowercase).split(' ')) return bpe_tokens def __lowercase ( self , lowercase) -> List[Any]: '''simple docstring''' return self.encoder.get(lowercase , self.encoder.get(self.unk_token)) def __lowercase ( self , lowercase) -> Union[str, Any]: '''simple docstring''' return self.decoder.get(lowercase) def __lowercase ( self , lowercase) -> Dict: '''simple docstring''' a__ : int = ''.join(lowercase) a__ : Union[str, Any] = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8' , errors=self.errors) return text def __lowercase ( self , lowercase , lowercase = None) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowercase): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return a__ : str = os.path.join( lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) a__ : Optional[Any] = os.path.join( lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file']) with open(lowercase , 'w' , encoding='utf-8') as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowercase , ensure_ascii=lowercase) + '\n') a__ : str = 0 with open(lowercase , 'w' , encoding='utf-8') as writer: writer.write('#version: 0.2\n') for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowercase: kv[1]): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ' Please check that the tokenizer is not corrupted!') a__ : Dict = token_index writer.write(' '.join(lowercase) + '\n') index += 1 return vocab_file, merge_file def __lowercase ( self , lowercase , lowercase = None) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] a__ : Dict = [self.cls_token_id] a__ : Optional[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __lowercase ( self , lowercase , lowercase = None , lowercase = False) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase , token_ids_a=lowercase , already_has_special_tokens=lowercase) if token_ids_a is None: return [1] + ([0] * len(lowercase)) + [1] return [1] + ([0] * len(lowercase)) + [1, 1] + ([0] * len(lowercase)) + [1] def __lowercase ( self , lowercase , lowercase = None) -> List[int]: '''simple docstring''' a__ : Dict = [self.sep_token_id] a__ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def __lowercase ( self , lowercase , lowercase=False , **lowercase) -> Union[str, Any]: '''simple docstring''' a__ : Tuple = kwargs.pop('add_prefix_space' , self.add_prefix_space) if (is_split_into_words or add_prefix_space) and (len(lowercase) > 0 and not text[0].isspace()): a__ : List[str] = ' ' + text return (text, kwargs)
225
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def A_ ( A__ ) -> Optional[int]: if is_torch_version('<' , '2.0.0' ) or not hasattr(A__ , '_dynamo' ): return False return isinstance(A__ , torch._dynamo.eval_frame.OptimizedModule ) def A_ ( A__ , A__ = True ) -> int: a__ : Optional[Any] = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) a__ : Union[str, Any] = is_compiled_module(A__ ) if is_compiled: a__ : List[str] = model a__ : Dict = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(A__ , A__ ): a__ : str = model.module if not keep_fpaa_wrapper: a__ : Union[str, Any] = getattr(A__ , 'forward' ) a__ : List[Any] = model.__dict__.pop('_original_forward' , A__ ) if original_forward is not None: while hasattr(A__ , '__wrapped__' ): a__ : int = forward.__wrapped__ if forward == original_forward: break a__ : List[Any] = forward if getattr(A__ , '_converted_to_transformer_engine' , A__ ): convert_model(A__ , to_transformer_engine=A__ ) if is_compiled: a__ : List[str] = model a__ : Any = compiled_model return model def A_ ( ) -> int: PartialState().wait_for_everyone() def A_ ( A__ , A__ ) -> Dict: if PartialState().distributed_type == DistributedType.TPU: xm.save(A__ , A__ ) elif PartialState().local_process_index == 0: torch.save(A__ , A__ ) @contextmanager def A_ ( **A__ ) -> Any: for key, value in kwargs.items(): a__ : Optional[int] = str(A__ ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def A_ ( A__ ) -> List[str]: if not hasattr(A__ , '__qualname__' ) and not hasattr(A__ , '__name__' ): a__ : Dict = getattr(A__ , '__class__' , A__ ) if hasattr(A__ , '__qualname__' ): return obj.__qualname__ if hasattr(A__ , '__name__' ): return obj.__name__ return str(A__ ) def A_ ( A__ , A__ ) -> Dict: for key, value in source.items(): if isinstance(A__ , A__ ): a__ : Optional[Any] = destination.setdefault(A__ , {} ) merge_dicts(A__ , A__ ) else: a__ : Optional[int] = value return destination def A_ ( A__ = None ) -> bool: if port is None: a__ : List[Any] = 2_9500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(('localhost', port) ) == 0
225
1
from __future__ import annotations def UpperCamelCase_( lowerCamelCase_ ) -> bool: if len(lowerCamelCase_ ) < 2: raise ValueError('Monogons and Digons are not polygons in the Euclidean space' ) if any(i <= 0 for i in nums ): raise ValueError('All values must be greater than 0' ) _lowercase : Tuple = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
21
def UpperCamelCase_( lowerCamelCase_ ) -> int: if not numbers: return 0 if not isinstance(lowerCamelCase_ , (list, tuple) ) or not all( isinstance(lowerCamelCase_ , lowerCamelCase_ ) for number in numbers ): raise ValueError('numbers must be an iterable of integers' ) _lowercase : int = numbers[0] for i in range(1 , len(lowerCamelCase_ ) ): # update the maximum and minimum subarray products _lowercase : Union[str, Any] = numbers[i] if number < 0: _lowercase , _lowercase : Any = min_till_now, max_till_now _lowercase : Union[str, Any] = max(lowerCamelCase_ , max_till_now * number ) _lowercase : Union[str, Any] = min(lowerCamelCase_ , min_till_now * number ) # update the maximum product found till now _lowercase : Optional[Any] = max(lowerCamelCase_ , lowerCamelCase_ ) return max_prod
21
1
from collections import defaultdict class _UpperCAmelCase : """simple docstring""" def __init__( self : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Dict ) -> Optional[int]: __lowerCAmelCase = total # total no of tasks (N) # DP table will have a dimension of (2^M)*N # initially all values are set to -1 __lowerCAmelCase = [ [-1 for i in range(total + 1 )] for j in range(2 ** len(lowerCAmelCase_ ) ) ] __lowerCAmelCase = defaultdict(lowerCAmelCase_ ) # stores the list of persons for each task # final_mask is used to check if all persons are included by setting all bits # to 1 __lowerCAmelCase = (1 << len(lowerCAmelCase_ )) - 1 def lowercase ( self : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] ) -> Optional[Any]: # if mask == self.finalmask all persons are distributed tasks, return 1 if mask == self.final_mask: return 1 # if not everyone gets the task and no more tasks are available, return 0 if task_no > self.total_tasks: return 0 # if case already considered if self.dp[mask][task_no] != -1: return self.dp[mask][task_no] # Number of ways when we don't this task in the arrangement __lowerCAmelCase = self.count_ways_until(lowerCAmelCase_ , task_no + 1 ) # now assign the tasks one by one to all possible persons and recursively # assign for the remaining tasks. if task_no in self.task: for p in self.task[task_no]: # if p is already given a task if mask & (1 << p): continue # assign this task to p and change the mask value. And recursively # assign tasks with the new mask value. total_ways_util += self.count_ways_until(mask | (1 << p) , task_no + 1 ) # save the value. __lowerCAmelCase = total_ways_util return self.dp[mask][task_no] def lowercase ( self : int , lowerCAmelCase_ : Optional[int] ) -> Any: # Store the list of persons for each task for i in range(len(lowerCAmelCase_ ) ): for j in task_performed[i]: self.task[j].append(lowerCAmelCase_ ) # call the function to fill the DP table, final answer is stored in dp[0][1] return self.count_ways_until(0 , 1 ) if __name__ == "__main__": _snake_case : int = 5 # total no of tasks (the value of N) # the list of tasks that can be done by M persons. _snake_case : Optional[Any] = [[1, 3, 4], [1, 2, 5], [3, 4]] print( AssignmentUsingBitmask(task_performed, total_tasks).count_no_of_ways( task_performed ) )
207
from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean _snake_case : Dict = 0 _snake_case : Dict = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _snake_case : List[str] = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right _snake_case : Tuple = tuple[int, int] class _UpperCAmelCase : """simple docstring""" def __init__( self : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Node | None , ) -> None: __lowerCAmelCase = pos_x __lowerCAmelCase = pos_y __lowerCAmelCase = (pos_y, pos_x) __lowerCAmelCase = goal_x __lowerCAmelCase = goal_y __lowerCAmelCase = g_cost __lowerCAmelCase = parent __lowerCAmelCase = self.calculate_heuristic() __lowerCAmelCase = self.g_cost + self.h_cost def lowercase ( self : Any ) -> float: __lowerCAmelCase = self.pos_x - self.goal_x __lowerCAmelCase = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(lowerCAmelCase_ ) + abs(lowerCAmelCase_ ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self : Union[str, Any] , lowerCAmelCase_ : Node ) -> bool: return self.f_cost < other.f_cost class _UpperCAmelCase : """simple docstring""" def __init__( self : List[str] , lowerCAmelCase_ : TPosition , lowerCAmelCase_ : TPosition ) -> Tuple: __lowerCAmelCase = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , lowerCAmelCase_ ) __lowerCAmelCase = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9_9_9_9 , lowerCAmelCase_ ) __lowerCAmelCase = [self.start] __lowerCAmelCase = [] __lowerCAmelCase = False def lowercase ( self : str ) -> list[TPosition]: while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() __lowerCAmelCase = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(lowerCAmelCase_ ) self.closed_nodes.append(lowerCAmelCase_ ) __lowerCAmelCase = self.get_successors(lowerCAmelCase_ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(lowerCAmelCase_ ) else: # retrieve the best current path __lowerCAmelCase = self.open_nodes.pop(self.open_nodes.index(lowerCAmelCase_ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(lowerCAmelCase_ ) else: self.open_nodes.append(lowerCAmelCase_ ) return [self.start.pos] def lowercase ( self : Optional[Any] , lowerCAmelCase_ : Node ) -> list[Node]: __lowerCAmelCase = [] for action in delta: __lowerCAmelCase = parent.pos_x + action[1] __lowerCAmelCase = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(lowerCAmelCase_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( lowerCAmelCase_ , lowerCAmelCase_ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , lowerCAmelCase_ , ) ) return successors def lowercase ( self : Tuple , lowerCAmelCase_ : Node | None ) -> list[TPosition]: __lowerCAmelCase = node __lowerCAmelCase = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __lowerCAmelCase = current_node.parent path.reverse() return path class _UpperCAmelCase : """simple docstring""" def __init__( self : int , lowerCAmelCase_ : TPosition , lowerCAmelCase_ : TPosition ) -> None: __lowerCAmelCase = AStar(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = AStar(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = False def lowercase ( self : Dict ) -> list[TPosition]: while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() __lowerCAmelCase = self.fwd_astar.open_nodes.pop(0 ) __lowerCAmelCase = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( lowerCAmelCase_ , lowerCAmelCase_ ) self.fwd_astar.closed_nodes.append(lowerCAmelCase_ ) self.bwd_astar.closed_nodes.append(lowerCAmelCase_ ) __lowerCAmelCase = current_bwd_node __lowerCAmelCase = current_fwd_node __lowerCAmelCase = { self.fwd_astar: self.fwd_astar.get_successors(lowerCAmelCase_ ), self.bwd_astar: self.bwd_astar.get_successors(lowerCAmelCase_ ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(lowerCAmelCase_ ) else: # retrieve the best current path __lowerCAmelCase = astar.open_nodes.pop( astar.open_nodes.index(lowerCAmelCase_ ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(lowerCAmelCase_ ) else: astar.open_nodes.append(lowerCAmelCase_ ) return [self.fwd_astar.start.pos] def lowercase ( self : Dict , lowerCAmelCase_ : Node , lowerCAmelCase_ : Node ) -> list[TPosition]: __lowerCAmelCase = self.fwd_astar.retrace_path(lowerCAmelCase_ ) __lowerCAmelCase = self.bwd_astar.retrace_path(lowerCAmelCase_ ) bwd_path.pop() bwd_path.reverse() __lowerCAmelCase = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] _snake_case : List[Any] = (0, 0) _snake_case : Union[str, Any] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) _snake_case : int = time.time() _snake_case : Optional[int] = AStar(init, goal) _snake_case : int = a_star.search() _snake_case : Union[str, Any] = time.time() - start_time print(F"""AStar execution time = {end_time:f} seconds""") _snake_case : Any = time.time() _snake_case : Dict = BidirectionalAStar(init, goal) _snake_case : Optional[int] = time.time() - bd_start_time print(F"""BidirectionalAStar execution time = {bd_end_time:f} seconds""")
207
1
'''simple docstring''' import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowerCamelCase ( lowerCAmelCase : List[str] , lowerCAmelCase : int , lowerCAmelCase : Dict , lowerCAmelCase : List[Any] , lowerCAmelCase : Dict ): """simple docstring""" with open(lowerCAmelCase ) as metadata_file: __magic_name__ : Optional[Any] = json.load(lowerCAmelCase ) __magic_name__ : Any = LukeConfig(use_entity_aware_attention=lowerCAmelCase , **metadata['model_config'] ) # Load in the weights from the checkpoint_path __magic_name__ : List[Any] = torch.load(lowerCAmelCase , map_location='cpu' )['module'] # Load the entity vocab file __magic_name__ : Tuple = load_original_entity_vocab(lowerCAmelCase ) # add an entry for [MASK2] __magic_name__ : Any = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 __magic_name__ : str = XLMRobertaTokenizer.from_pretrained(metadata['model_config']['bert_model_name'] ) # Add special tokens to the token vocabulary for downstream tasks __magic_name__ : Any = AddedToken('<ent>' , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) __magic_name__ : List[str] = AddedToken('<ent2>' , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) tokenizer.add_special_tokens({'additional_special_tokens': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f'Saving tokenizer to {pytorch_dump_folder_path}' ) tokenizer.save_pretrained(lowerCAmelCase ) with open(os.path.join(lowerCAmelCase , 'tokenizer_config.json' ) , 'r' ) as f: __magic_name__ : Dict = json.load(lowerCAmelCase ) __magic_name__ : Dict = 'MLukeTokenizer' with open(os.path.join(lowerCAmelCase , 'tokenizer_config.json' ) , 'w' ) as f: json.dump(lowerCAmelCase , lowerCAmelCase ) with open(os.path.join(lowerCAmelCase , MLukeTokenizer.vocab_files_names['entity_vocab_file'] ) , 'w' ) as f: json.dump(lowerCAmelCase , lowerCAmelCase ) __magic_name__ : Optional[Any] = MLukeTokenizer.from_pretrained(lowerCAmelCase ) # Initialize the embeddings of the special tokens __magic_name__ : str = tokenizer.convert_tokens_to_ids(['@'] )[0] __magic_name__ : Optional[Any] = tokenizer.convert_tokens_to_ids(['#'] )[0] __magic_name__ : str = state_dict['embeddings.word_embeddings.weight'] __magic_name__ : Optional[Any] = word_emb[ent_init_index].unsqueeze(0 ) __magic_name__ : int = word_emb[enta_init_index].unsqueeze(0 ) __magic_name__ : str = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: __magic_name__ : int = state_dict[bias_name] __magic_name__ : Optional[int] = decoder_bias[ent_init_index].unsqueeze(0 ) __magic_name__ : Optional[Any] = decoder_bias[enta_init_index].unsqueeze(0 ) __magic_name__ : Optional[Any] = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: __magic_name__ : List[str] = f'encoder.layer.{layer_index}.attention.self.' __magic_name__ : Optional[int] = state_dict[prefix + matrix_name] __magic_name__ : Union[str, Any] = state_dict[prefix + matrix_name] __magic_name__ : Optional[Any] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks __magic_name__ : int = state_dict['entity_embeddings.entity_embeddings.weight'] __magic_name__ : List[Any] = entity_emb[entity_vocab['[MASK]']].unsqueeze(0 ) __magic_name__ : Union[str, Any] = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' __magic_name__ : int = state_dict['entity_predictions.bias'] __magic_name__ : int = entity_prediction_bias[entity_vocab['[MASK]']].unsqueeze(0 ) __magic_name__ : Union[str, Any] = torch.cat([entity_prediction_bias, entity_mask_bias] ) __magic_name__ : Union[str, Any] = LukeForMaskedLM(config=lowerCAmelCase ).eval() state_dict.pop('entity_predictions.decoder.weight' ) state_dict.pop('lm_head.decoder.weight' ) state_dict.pop('lm_head.decoder.bias' ) __magic_name__ : Optional[Any] = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('lm_head' ) or key.startswith('entity_predictions' )): __magic_name__ : Tuple = state_dict[key] else: __magic_name__ : int = state_dict[key] __magic_name__ , __magic_name__ : Optional[int] = model.load_state_dict(lowerCAmelCase , strict=lowerCAmelCase ) if set(lowerCAmelCase ) != {"luke.embeddings.position_ids"}: raise ValueError(f'Unexpected unexpected_keys: {unexpected_keys}' ) if set(lowerCAmelCase ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f'Unexpected missing_keys: {missing_keys}' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs __magic_name__ : Union[str, Any] = MLukeTokenizer.from_pretrained(lowerCAmelCase , task='entity_classification' ) __magic_name__ : Optional[int] = 'ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).' __magic_name__ : Dict = (0, 9) __magic_name__ : Union[str, Any] = tokenizer(lowerCAmelCase , entity_spans=[span] , return_tensors='pt' ) __magic_name__ : Optional[int] = model(**lowerCAmelCase ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base __magic_name__ : Optional[int] = torch.Size((1, 33, 768) ) __magic_name__ : Dict = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f'Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCAmelCase , atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base __magic_name__ : Tuple = torch.Size((1, 1, 768) ) __magic_name__ : str = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f'Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is' f' {expected_shape}' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , lowerCAmelCase , atol=1e-4 ): raise ValueError # Verify masked word/entity prediction __magic_name__ : Dict = MLukeTokenizer.from_pretrained(lowerCAmelCase ) __magic_name__ : List[str] = 'Tokyo is the capital of <mask>.' __magic_name__ : Union[str, Any] = (24, 30) __magic_name__ : Optional[int] = tokenizer(lowerCAmelCase , entity_spans=[span] , return_tensors='pt' ) __magic_name__ : Dict = model(**lowerCAmelCase ) __magic_name__ : List[Any] = encoding['input_ids'][0].tolist() __magic_name__ : Optional[Any] = input_ids.index(tokenizer.convert_tokens_to_ids('<mask>' ) ) __magic_name__ : str = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(lowerCAmelCase ) __magic_name__ : Optional[Any] = outputs.entity_logits[0][0].argmax().item() __magic_name__ : List[Any] = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('en:' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('Saving PyTorch model to {}'.format(lowerCAmelCase ) ) model.save_pretrained(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : Tuple ): """simple docstring""" __magic_name__ : List[str] = ['[MASK]', '[PAD]', '[UNK]'] __magic_name__ : Any = [json.loads(lowerCAmelCase ) for line in open(lowerCAmelCase )] __magic_name__ : str = {} for entry in data: __magic_name__ : int = entry['id'] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: __magic_name__ : str = entity_id break __magic_name__ : Union[str, Any] = f'{language}:{entity_name}' __magic_name__ : Optional[int] = entity_id return new_mapping if __name__ == "__main__": lowerCAmelCase :Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) lowerCAmelCase :List[Any] = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
331
"""simple docstring""" from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class snake_case__ ( snake_case_, snake_case_ ): @register_to_config def __init__( self , lowerCamelCase = 768 , ): super().__init__() __a = nn.Parameter(torch.zeros(1 , lowerCamelCase ) ) __a = nn.Parameter(torch.ones(1 , lowerCamelCase ) ) def a__ ( self , lowerCamelCase = None , lowerCamelCase = None , ): __a = nn.Parameter(self.mean.to(lowerCamelCase ).to(lowerCamelCase ) ) __a = nn.Parameter(self.std.to(lowerCamelCase ).to(lowerCamelCase ) ) return self def a__ ( self , lowerCamelCase ): __a = (embeds - self.mean) * 1.0 / self.std return embeds def a__ ( self , lowerCamelCase ): __a = (embeds * self.std) + self.mean return embeds
261
0
"""simple docstring""" import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE__ : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=99 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE="last" , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=0 , ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : Optional[int] = parent UpperCAmelCase : List[str] = batch_size UpperCAmelCase : str = seq_length UpperCAmelCase : List[Any] = is_training UpperCAmelCase : Optional[int] = use_input_lengths UpperCAmelCase : List[Any] = use_token_type_ids UpperCAmelCase : List[Any] = use_labels UpperCAmelCase : List[Any] = gelu_activation UpperCAmelCase : Union[str, Any] = sinusoidal_embeddings UpperCAmelCase : List[Any] = causal UpperCAmelCase : List[Any] = asm UpperCAmelCase : Union[str, Any] = n_langs UpperCAmelCase : Optional[int] = vocab_size UpperCAmelCase : Dict = n_special UpperCAmelCase : List[str] = hidden_size UpperCAmelCase : str = num_hidden_layers UpperCAmelCase : Tuple = num_attention_heads UpperCAmelCase : Union[str, Any] = hidden_dropout_prob UpperCAmelCase : Tuple = attention_probs_dropout_prob UpperCAmelCase : Any = max_position_embeddings UpperCAmelCase : Optional[Any] = type_sequence_label_size UpperCAmelCase : Optional[int] = initializer_range UpperCAmelCase : List[Any] = num_labels UpperCAmelCase : Any = num_choices UpperCAmelCase : Any = summary_type UpperCAmelCase : Union[str, Any] = use_proj UpperCAmelCase : int = scope UpperCAmelCase : Optional[Any] = bos_token_id def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : str = None if self.use_input_lengths: UpperCAmelCase : str = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length UpperCAmelCase : int = None if self.use_token_type_ids: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) UpperCAmelCase : Any = None UpperCAmelCase : Optional[Any] = None UpperCAmelCase : List[str] = None if self.use_labels: UpperCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase : Any = ids_tensor([self.batch_size] , 2 ).float() UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase : int = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> Any: '''simple docstring''' UpperCAmelCase : Union[str, Any] = XLMModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCAmelCase : int = model(_SCREAMING_SNAKE_CASE , lengths=_SCREAMING_SNAKE_CASE , langs=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[Any] = model(_SCREAMING_SNAKE_CASE , langs=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : int = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> Dict: '''simple docstring''' UpperCAmelCase : Dict = XLMWithLMHeadModel(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCAmelCase : str = model(_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> str: '''simple docstring''' UpperCAmelCase : List[Any] = XLMForQuestionAnsweringSimple(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCAmelCase : Optional[int] = model(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[int] = model(_SCREAMING_SNAKE_CASE , start_positions=_SCREAMING_SNAKE_CASE , end_positions=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Tuple = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : Tuple = XLMForQuestionAnswering(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCAmelCase : int = model(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Any = model( _SCREAMING_SNAKE_CASE , start_positions=_SCREAMING_SNAKE_CASE , end_positions=_SCREAMING_SNAKE_CASE , cls_index=_SCREAMING_SNAKE_CASE , is_impossible=_SCREAMING_SNAKE_CASE , p_mask=_SCREAMING_SNAKE_CASE , ) UpperCAmelCase : List[str] = model( _SCREAMING_SNAKE_CASE , start_positions=_SCREAMING_SNAKE_CASE , end_positions=_SCREAMING_SNAKE_CASE , cls_index=_SCREAMING_SNAKE_CASE , is_impossible=_SCREAMING_SNAKE_CASE , ) ((UpperCAmelCase) , ) : Optional[Any] = result_with_labels.to_tuple() UpperCAmelCase : Dict = model(_SCREAMING_SNAKE_CASE , start_positions=_SCREAMING_SNAKE_CASE , end_positions=_SCREAMING_SNAKE_CASE ) ((UpperCAmelCase) , ) : Dict = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : str = XLMForSequenceClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCAmelCase : List[str] = model(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : int = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> List[str]: '''simple docstring''' UpperCAmelCase : Dict = self.num_labels UpperCAmelCase : Any = XLMForTokenClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCAmelCase : Union[str, Any] = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : Optional[Any] = self.num_choices UpperCAmelCase : Tuple = XLMForMultipleChoice(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCAmelCase : Tuple = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase : Tuple = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase : Tuple = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase : Any = model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : Any = config_and_inputs UpperCAmelCase : Union[str, Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): __lowerCAmelCase : Union[str, Any] = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) __lowerCAmelCase : Optional[int] = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable __lowerCAmelCase : Dict = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> Dict: '''simple docstring''' UpperCAmelCase : Optional[int] = super()._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": UpperCAmelCase : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_SCREAMING_SNAKE_CASE ) return inputs_dict def SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase : Union[str, Any] = XLMModelTester(self ) UpperCAmelCase : Dict = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , emb_dim=37 ) def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=1 ) -> int: '''simple docstring''' self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertListEqual( [isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for iter_attentions in attentions] , [True] * len(_SCREAMING_SNAKE_CASE ) ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(_SCREAMING_SNAKE_CASE ): # adds PAD dummy token UpperCAmelCase : Optional[int] = min_length + idx + 1 UpperCAmelCase : Union[str, Any] = min_length + idx + 1 UpperCAmelCase : str = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(_SCREAMING_SNAKE_CASE ) ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=1 ) -> Union[str, Any]: '''simple docstring''' self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertListEqual( [isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for iter_hidden_states in hidden_states] , [True] * len(_SCREAMING_SNAKE_CASE ) , ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(_SCREAMING_SNAKE_CASE ): # adds PAD dummy token UpperCAmelCase : int = min_length + idx + 1 UpperCAmelCase : Optional[int] = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(_SCREAMING_SNAKE_CASE ) , ) pass @slow def SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : List[Any] = XLMModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : Any = XLMWithLMHeadModel.from_pretrained("""xlm-mlm-en-2048""" ) model.to(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[str] = torch.tensor([[14, 447]] , dtype=torch.long , device=_SCREAMING_SNAKE_CASE ) # the president UpperCAmelCase : Any = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference UpperCAmelCase : Optional[Any] = model.generate(_SCREAMING_SNAKE_CASE , do_sample=_SCREAMING_SNAKE_CASE ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , _SCREAMING_SNAKE_CASE )
76
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer A: int = logging.get_logger(__name__) A: Any = {"vocab_file": "vocab.txt"} A: Optional[int] = { "vocab_file": { "YituTech/conv-bert-base": "https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt", "YituTech/conv-bert-medium-small": ( "https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt" ), "YituTech/conv-bert-small": "https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt", } } A: Optional[int] = { "YituTech/conv-bert-base": 5_1_2, "YituTech/conv-bert-medium-small": 5_1_2, "YituTech/conv-bert-small": 5_1_2, } A: int = { "YituTech/conv-bert-base": {"do_lower_case": True}, "YituTech/conv-bert-medium-small": {"do_lower_case": True}, "YituTech/conv-bert-small": {"do_lower_case": True}, } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): __lowerCAmelCase : List[Any] = VOCAB_FILES_NAMES __lowerCAmelCase : Any = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : List[str] = PRETRAINED_INIT_CONFIGURATION __lowerCAmelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase : int = ConvBertTokenizer def __init__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE="[UNK]" , _SCREAMING_SNAKE_CASE="[SEP]" , _SCREAMING_SNAKE_CASE="[PAD]" , _SCREAMING_SNAKE_CASE="[CLS]" , _SCREAMING_SNAKE_CASE="[MASK]" , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE , ) -> Union[str, Any]: '''simple docstring''' super().__init__( _SCREAMING_SNAKE_CASE , tokenizer_file=_SCREAMING_SNAKE_CASE , do_lower_case=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , tokenize_chinese_chars=_SCREAMING_SNAKE_CASE , strip_accents=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) UpperCAmelCase : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , _SCREAMING_SNAKE_CASE ) != do_lower_case or normalizer_state.get("""strip_accents""" , _SCREAMING_SNAKE_CASE ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , _SCREAMING_SNAKE_CASE ) != tokenize_chinese_chars ): UpperCAmelCase : Dict = getattr(_SCREAMING_SNAKE_CASE , normalizer_state.pop("""type""" ) ) UpperCAmelCase : str = do_lower_case UpperCAmelCase : Optional[int] = strip_accents UpperCAmelCase : List[str] = tokenize_chinese_chars UpperCAmelCase : Dict = normalizer_class(**_SCREAMING_SNAKE_CASE ) UpperCAmelCase : int = do_lower_case def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> Tuple: '''simple docstring''' UpperCAmelCase : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[int]: '''simple docstring''' UpperCAmelCase : str = [self.sep_token_id] UpperCAmelCase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: '''simple docstring''' UpperCAmelCase : Dict = self._tokenizer.model.save(_SCREAMING_SNAKE_CASE , name=_SCREAMING_SNAKE_CASE ) return tuple(_SCREAMING_SNAKE_CASE )
76
1
import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate UpperCAmelCase_ : List[Any] = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow('''''', '''|''', '''|'''), datarow=DataRow('''''', '''|''', '''|'''), padding=1, with_header_hide=None, ) UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : Any = [] UpperCAmelCase_ : Any = {'''type''': '''section''', '''text''': {'''type''': '''plain_text''', '''text''': '''No failed tests! 🤗''', '''emoji''': True}} UpperCAmelCase_ : Optional[int] = [ { '''type''': '''header''', '''text''': { '''type''': '''plain_text''', '''text''': F'''🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results''', '''emoji''': True, }, } ] UpperCAmelCase_ : List[str] = 0 for log in Path().glob('''*.log'''): UpperCAmelCase_ : Optional[int] = 0 with open(log, '''r''') as f: for line in f: UpperCAmelCase_ : Optional[int] = json.loads(line) if line.get('''nodeid''', '''''') != "": UpperCAmelCase_ : List[str] = line['''nodeid'''] if line.get('''duration''', None) is not None: UpperCAmelCase_ : Optional[int] = F'''{line["duration"]:.4f}''' if line.get('''outcome''', '''''') == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split('''_''')[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) UpperCAmelCase_ : Optional[Any] = [] log.unlink() UpperCAmelCase_ : Optional[int] = '''''' UpperCAmelCase_ : Dict = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += F"*{name[1:]}: {num_failed} failed test*\n" else: message += F"*{name[1:]}: {num_failed} failed tests*\n" UpperCAmelCase_ : Tuple = [] UpperCAmelCase_ : Tuple = {} for test in failed_tests: UpperCAmelCase_ : Optional[Any] = test[0].split('''::''') UpperCAmelCase_ : str = data[0].split('''/''')[-1] if data[0] not in filesafailed: UpperCAmelCase_ : str = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) UpperCAmelCase_ : List[Any] = [test[0] for test in failed_table] UpperCAmelCase_ : Tuple = list(set(files)) # Count number of instances in failed_tests UpperCAmelCase_ : Tuple = [] for file in individual_files: table.append([file, len(filesafailed[file])]) UpperCAmelCase_ : Dict = tabulate( table, headers=['''Test Location''', '''Num Failed'''], tablefmt=hf_table_format, stralign='''right''', ) message += F"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 30_00: UpperCAmelCase_ : str = '''Too many failed tests, please see the full report in the Action results.''' UpperCAmelCase_ : str = len(err) + 10 UpperCAmelCase_ : Optional[Any] = message[: 30_00 - offset] + F'''\n...\n```\n{err}''' print(F'''### {message}''') else: UpperCAmelCase_ : Any = '''No failed tests! 🤗''' print(F'''## {message}''') payload.append(no_error_payload) if os.environ.get('''TEST_TYPE''', '''''') != "": from slack_sdk import WebClient UpperCAmelCase_ : List[str] = WebClient(token=os.environ['''SLACK_API_TOKEN''']) if message != "No failed tests! 🤗": UpperCAmelCase_ : Tuple = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': message, }, } payload.append(md_report) UpperCAmelCase_ : Dict = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': '''*For more details:*''', }, '''accessory''': { '''type''': '''button''', '''text''': { '''type''': '''plain_text''', '''text''': '''Check Action results''', '''emoji''': True, }, '''url''': F'''https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } payload.append(action_button) UpperCAmelCase_ : str = { '''type''': '''context''', '''elements''': [ { '''type''': '''plain_text''', '''text''': F'''Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}''', } ], } payload.append(date_report) UpperCAmelCase_ : Any = client.chat_postMessage(channel='''#accelerate-ci-daily''', text=message, blocks=payload) UpperCAmelCase_ : Any = response.data['''ts'''] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name UpperCAmelCase_ : int = '''''' for i, row in enumerate(test_failures): if row[0] != test_class: UpperCAmelCase_ : Optional[Any] = row[0] else: UpperCAmelCase_ : List[Any] = '''''' UpperCAmelCase_ : Tuple = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': F'''Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```''', }, } client.chat_postMessage( channel='''#accelerate-ci-daily''', thread_ts=ts, blocks=[payload], )
38
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def _a ( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase ): for param, grad_param in zip(model_a.parameters(), model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad, grad_param.grad ) is False ), F'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad, grad_param.grad ) is True ), F'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})''' def _a ( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=True ): model.train() lowerCamelCase : Dict = model(lowerCamelCase ) lowerCamelCase : Any = F.mse_loss(lowerCamelCase, target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(lowerCamelCase ) def _a ( lowerCamelCase, lowerCamelCase=False ): set_seed(42 ) lowerCamelCase : Tuple = RegressionModel() lowerCamelCase : Any = deepcopy(lowerCamelCase ) lowerCamelCase : Any = RegressionDataset(length=80 ) lowerCamelCase : Dict = DataLoader(lowerCamelCase, batch_size=16 ) model.to(accelerator.device ) if sched: lowerCamelCase : int = AdamW(params=model.parameters(), lr=1e-3 ) lowerCamelCase : Optional[Any] = AdamW(params=ddp_model.parameters(), lr=1e-3 ) lowerCamelCase : str = LambdaLR(lowerCamelCase, lr_lambda=lambda lowerCamelCase : epoch**0.6_5 ) lowerCamelCase : Tuple = LambdaLR(lowerCamelCase, lr_lambda=lambda lowerCamelCase : epoch**0.6_5 ) # Make a copy of `model` if sched: lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase : Optional[int] = accelerator.prepare(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase ) else: lowerCamelCase , lowerCamelCase : List[Any] = accelerator.prepare(lowerCamelCase, lowerCamelCase ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def _a ( lowerCamelCase ): # Test when on a single CPU or GPU that the context manager does nothing lowerCamelCase , lowerCamelCase , lowerCamelCase : List[Any] = get_training_setup(lowerCamelCase ) # Use a single batch lowerCamelCase , lowerCamelCase : Union[str, Any] = next(iter(lowerCamelCase ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model lowerCamelCase , lowerCamelCase : Optional[Any] = accelerator.gather((ddp_input, ddp_target) ) lowerCamelCase , lowerCamelCase : int = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(lowerCamelCase ): step_model(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase ) else: # Sync grads step_model(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase ) for param, ddp_param in zip(model.parameters(), ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad, ddp_param.grad ), F'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) lowerCamelCase : List[Any] = ddp_input[torch.randperm(len(lowerCamelCase ) )] def _a ( lowerCamelCase ): # Test on distributed setup that context manager behaves properly lowerCamelCase , lowerCamelCase , lowerCamelCase : int = get_training_setup(lowerCamelCase ) # Use a single batch lowerCamelCase , lowerCamelCase : Union[str, Any] = next(iter(lowerCamelCase ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model lowerCamelCase , lowerCamelCase : Any = accelerator.gather((ddp_input, ddp_target) ) lowerCamelCase , lowerCamelCase : str = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(lowerCamelCase ): step_model(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase ) else: # Sync grads step_model(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters(), ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad, ddp_param.grad ) is False ), F'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad, ddp_param.grad ) is True ), F'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) lowerCamelCase : Optional[Any] = ddp_input[torch.randperm(len(lowerCamelCase ) )] def _a ( lowerCamelCase=False, lowerCamelCase=False ): lowerCamelCase : Any = Accelerator( split_batches=lowerCamelCase, dispatch_batches=lowerCamelCase, gradient_accumulation_steps=2 ) # Test that context manager behaves properly lowerCamelCase , lowerCamelCase , lowerCamelCase : Any = get_training_setup(lowerCamelCase ) for iteration, batch in enumerate(lowerCamelCase ): lowerCamelCase , lowerCamelCase : Union[str, Any] = batch.values() # Gather the distributed inputs and targs for the base model lowerCamelCase , lowerCamelCase : str = accelerator.gather((ddp_input, ddp_target) ) lowerCamelCase , lowerCamelCase : Tuple = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase ) # Do "gradient accumulation" (noop) with accelerator.accumulate(lowerCamelCase ): step_model(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters(), ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(lowerCamelCase ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad, ddp_param.grad ) is True ), F'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' else: # Grads should not be in sync assert ( torch.allclose(param.grad, ddp_param.grad ) is False ), F'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) lowerCamelCase : Any = ddp_input[torch.randperm(len(lowerCamelCase ) )] GradientState._reset_state() def _a ( lowerCamelCase=False, lowerCamelCase=False ): lowerCamelCase : List[Any] = Accelerator( split_batches=lowerCamelCase, dispatch_batches=lowerCamelCase, gradient_accumulation_steps=2 ) # Test that context manager behaves properly lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase : List[Any] = get_training_setup(lowerCamelCase, lowerCamelCase ) for iteration, batch in enumerate(lowerCamelCase ): lowerCamelCase , lowerCamelCase : Union[str, Any] = batch.values() # Gather the distributed inputs and targs for the base model lowerCamelCase , lowerCamelCase : Optional[Any] = accelerator.gather((ddp_input, ddp_target) ) lowerCamelCase , lowerCamelCase : Tuple = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(lowerCamelCase )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(lowerCamelCase ): step_model(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), F'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n''' lowerCamelCase : Union[str, Any] = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(lowerCamelCase )) if accelerator.num_processes > 1: check_model_parameters(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase ) # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) GradientState._reset_state() def _a ( ): lowerCamelCase : int = Accelerator() lowerCamelCase : Optional[Any] = RegressionDataset(length=80 ) lowerCamelCase : List[str] = DataLoader(lowerCamelCase, batch_size=16 ) lowerCamelCase : int = RegressionDataset(length=96 ) lowerCamelCase : Optional[int] = DataLoader(lowerCamelCase, batch_size=16 ) lowerCamelCase , lowerCamelCase : Optional[Any] = accelerator.prepare(lowerCamelCase, lowerCamelCase ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(lowerCamelCase ): assert id(accelerator.gradient_state.active_dataloader ) == id(lowerCamelCase ) if iteration < len(lowerCamelCase ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(lowerCamelCase ): assert id(accelerator.gradient_state.active_dataloader ) == id(lowerCamelCase ) if batch_num < len(lowerCamelCase ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def _a ( ): lowerCamelCase : List[Any] = Accelerator() lowerCamelCase : int = accelerator.state if state.local_process_index == 0: print("""**Test `accumulate` gradient accumulation with dataloader break**""" ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("""**Test NOOP `no_sync` context manager**""" ) test_noop_sync(lowerCamelCase ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("""**Test Distributed `no_sync` context manager**""" ) test_distributed_sync(lowerCamelCase ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation, """, F'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''', ) test_gradient_accumulation(lowerCamelCase, lowerCamelCase ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("""<""", """2.0""" ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation with optimizer and scheduler, """, """`split_batches=False`, `dispatch_batches=False`**""", ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation with optimizer and scheduler, """, F'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''', ) test_gradient_accumulation_with_opt_and_scheduler(lowerCamelCase, lowerCamelCase ) def _a ( lowerCamelCase ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
287
0
"""simple docstring""" import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = '''https://openaipublic.azureedge.net/jukebox/models/''' lowerCAmelCase__ = { '''jukebox-1b-lyrics''': [ '''5b/vqvae.pth.tar''', '''5b/prior_level_0.pth.tar''', '''5b/prior_level_1.pth.tar''', '''1b_lyrics/prior_level_2.pth.tar''', ], '''jukebox-5b-lyrics''': [ '''5b/vqvae.pth.tar''', '''5b/prior_level_0.pth.tar''', '''5b/prior_level_1.pth.tar''', '''5b_lyrics/prior_level_2.pth.tar''', ], } def a__ ( SCREAMING_SNAKE_CASE : str ): '''simple docstring''' if key.endswith(".model.1.bias" ) and len(key.split("." ) ) > 1_0: lowerCAmelCase : Union[str, Any] = key.replace(".model.1.bias" , ".conv1d_1.bias" ) elif key.endswith(".model.1.weight" ) and len(key.split("." ) ) > 1_0: lowerCAmelCase : Optional[int] = key.replace(".model.1.weight" , ".conv1d_1.weight" ) elif key.endswith(".model.3.bias" ) and len(key.split("." ) ) > 1_0: lowerCAmelCase : Tuple = key.replace(".model.3.bias" , ".conv1d_2.bias" ) elif key.endswith(".model.3.weight" ) and len(key.split("." ) ) > 1_0: lowerCAmelCase : Union[str, Any] = key.replace(".model.3.weight" , ".conv1d_2.weight" ) if "conditioner_blocks.0." in key: lowerCAmelCase : int = key.replace("conditioner_blocks.0" , "conditioner_blocks" ) if "prime_prior" in key: lowerCAmelCase : Dict = key.replace("prime_prior" , "encoder" ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: lowerCAmelCase : Any = key.replace(".emb." , "." ) if key.endswith("k" ): # replace vqvae.X.k with vqvae.X.codebook return key.replace(".k" , ".codebook" ) if "y_emb." in key: return key.replace("y_emb." , "metadata_embedding." ) if "x_emb.emb." in key: lowerCAmelCase : List[str] = key.replace("0.x_emb.emb" , "embed_tokens" ) if "prime_state_ln" in key: return key.replace("prime_state_ln" , "encoder.final_layer_norm" ) if ".ln" in key: return key.replace(".ln" , ".layer_norm" ) if "_ln" in key: return key.replace("_ln" , "_layer_norm" ) if "prime_state_proj" in key: return key.replace("prime_state_proj" , "encoder.proj_in" ) if "prime_x_out" in key: return key.replace("prime_x_out" , "encoder.lm_head" ) if "prior.x_out" in key: return key.replace("x_out" , "fc_proj_out" ) if "x_emb" in key: return key.replace("x_emb" , "embed_tokens" ) return key def a__ ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' lowerCAmelCase : int = {} import re lowerCAmelCase : Any = re.compile(r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" ) lowerCAmelCase : Optional[Any] = re.compile( r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) lowerCAmelCase : Union[str, Any] = re.compile(r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" ) lowerCAmelCase : Union[str, Any] = re.compile(r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" ) lowerCAmelCase : List[str] = re.compile( r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) lowerCAmelCase : int = re.compile(r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" ) lowerCAmelCase : List[str] = re.compile(r"conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)" ) lowerCAmelCase : List[str] = re.compile( r"conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) lowerCAmelCase : Union[str, Any] = re.compile(r"conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)" ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(SCREAMING_SNAKE_CASE ): lowerCAmelCase : List[str] = re_encoder_block_conv_in.match(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Tuple = regex_match.groups() lowerCAmelCase : Optional[int] = int(groups[2] ) * 2 + int(groups[3] ) lowerCAmelCase : List[Any] = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}""" lowerCAmelCase : Optional[Any] = re_encoder_block_conv_in.sub(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) elif re_encoder_block_resnet.fullmatch(SCREAMING_SNAKE_CASE ): lowerCAmelCase : Union[str, Any] = re_encoder_block_resnet.match(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Any = regex_match.groups() lowerCAmelCase : int = int(groups[2] ) * 2 + int(groups[3] ) lowerCAmelCase : List[Any] = {"1": 1, "3": 2}[groups[-2]] lowerCAmelCase : Dict = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.""" lowerCAmelCase : Union[str, Any] = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" lowerCAmelCase : Tuple = prefix + resnet_block lowerCAmelCase : Tuple = re_encoder_block_resnet.sub(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) elif re_encoder_block_proj_out.fullmatch(SCREAMING_SNAKE_CASE ): lowerCAmelCase : Optional[Any] = re_encoder_block_proj_out.match(SCREAMING_SNAKE_CASE ) lowerCAmelCase : int = regex_match.groups() lowerCAmelCase : List[Any] = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}""" lowerCAmelCase : int = re_encoder_block_proj_out.sub(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(SCREAMING_SNAKE_CASE ): lowerCAmelCase : Dict = re_decoder_block_conv_out.match(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Tuple = regex_match.groups() lowerCAmelCase : Tuple = int(groups[2] ) * 2 + int(groups[3] ) - 2 lowerCAmelCase : List[Any] = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}""" lowerCAmelCase : Optional[int] = re_decoder_block_conv_out.sub(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) elif re_decoder_block_resnet.fullmatch(SCREAMING_SNAKE_CASE ): lowerCAmelCase : Any = re_decoder_block_resnet.match(SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[str] = regex_match.groups() lowerCAmelCase : List[str] = int(groups[2] ) * 2 + int(groups[3] ) - 2 lowerCAmelCase : List[Any] = {"1": 1, "3": 2}[groups[-2]] lowerCAmelCase : Optional[Any] = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.""" lowerCAmelCase : Dict = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" lowerCAmelCase : List[Any] = prefix + resnet_block lowerCAmelCase : Optional[int] = re_decoder_block_resnet.sub(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) elif re_decoder_block_proj_in.fullmatch(SCREAMING_SNAKE_CASE ): lowerCAmelCase : int = re_decoder_block_proj_in.match(SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[str] = regex_match.groups() lowerCAmelCase : List[str] = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}""" lowerCAmelCase : Optional[int] = re_decoder_block_proj_in.sub(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(SCREAMING_SNAKE_CASE ): lowerCAmelCase : Optional[Any] = re_prior_cond_conv_out.match(SCREAMING_SNAKE_CASE ) lowerCAmelCase : str = regex_match.groups() lowerCAmelCase : List[str] = int(groups[1] ) * 2 + int(groups[2] ) - 2 lowerCAmelCase : Union[str, Any] = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}""" lowerCAmelCase : str = re_prior_cond_conv_out.sub(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) elif re_prior_cond_resnet.fullmatch(SCREAMING_SNAKE_CASE ): lowerCAmelCase : Union[str, Any] = re_prior_cond_resnet.match(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Any = regex_match.groups() lowerCAmelCase : Optional[int] = int(groups[1] ) * 2 + int(groups[2] ) - 2 lowerCAmelCase : int = {"1": 1, "3": 2}[groups[-2]] lowerCAmelCase : Any = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.""" lowerCAmelCase : Tuple = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" lowerCAmelCase : Optional[int] = prefix + resnet_block lowerCAmelCase : Tuple = re_prior_cond_resnet.sub(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) elif re_prior_cond_proj_in.fullmatch(SCREAMING_SNAKE_CASE ): lowerCAmelCase : Optional[Any] = re_prior_cond_proj_in.match(SCREAMING_SNAKE_CASE ) lowerCAmelCase : int = regex_match.groups() lowerCAmelCase : str = f"""conditioner_blocks.upsampler.proj_in.{groups[-1]}""" lowerCAmelCase : int = re_prior_cond_proj_in.sub(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # keep original key else: lowerCAmelCase : Union[str, Any] = original_key lowerCAmelCase : Any = replace_key(SCREAMING_SNAKE_CASE ) if f"""{key_prefix}.{key}""" not in model_state_dict or key is None: print(f"""failed converting {original_key} to {key}, does not match""" ) # handle missmatched shape elif value.shape != model_state_dict[f"""{key_prefix}.{key}"""].shape: lowerCAmelCase : Dict = model_state_dict[f"""{key_prefix}.{key}"""] print(f"""{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match""" ) lowerCAmelCase : Dict = original_key lowerCAmelCase : Union[str, Any] = original_key lowerCAmelCase : Any = value return new_dict @torch.no_grad() def a__ ( SCREAMING_SNAKE_CASE : str=None , SCREAMING_SNAKE_CASE : Union[str, Any]=None ): '''simple docstring''' for file in MODEL_MAPPING[model_name]: if not os.path.isfile(f"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""" ): lowerCAmelCase : Any = requests.get(f"""{PREFIX}{file}""" , allow_redirects=SCREAMING_SNAKE_CASE ) os.makedirs(f"""{pytorch_dump_folder_path}/""" , exist_ok=SCREAMING_SNAKE_CASE ) open(f"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""" , "wb" ).write(r.content ) lowerCAmelCase : Optional[Any] = MODEL_MAPPING[model_name.split("/" )[-1]] lowerCAmelCase : Optional[Any] = JukeboxConfig.from_pretrained(SCREAMING_SNAKE_CASE ) lowerCAmelCase : str = JukeboxModel(SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[str] = [] lowerCAmelCase : Tuple = {} for i, dict_name in enumerate(SCREAMING_SNAKE_CASE ): lowerCAmelCase : List[Any] = torch.load(f"""{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}""" )["model"] lowerCAmelCase : List[str] = {} for k in old_dic.keys(): if k.endswith(".b" ): lowerCAmelCase : Tuple = old_dic[k] elif k.endswith(".w" ): lowerCAmelCase : Tuple = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: lowerCAmelCase : int = old_dic[k] else: lowerCAmelCase : List[Any] = old_dic[k] lowerCAmelCase : Tuple = "vqvae" if i == 0 else f"""priors.{3 - i}""" lowerCAmelCase : Any = fix_jukebox_keys(SCREAMING_SNAKE_CASE , model.state_dict() , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) weight_dict.append(SCREAMING_SNAKE_CASE ) lowerCAmelCase : int = weight_dict.pop(0 ) model.vqvae.load_state_dict(SCREAMING_SNAKE_CASE ) for i in range(len(SCREAMING_SNAKE_CASE ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE ) with open(f"""{pytorch_dump_folder_path}/mapping.json""" , "w" ) as txtfile: json.dump(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(SCREAMING_SNAKE_CASE ) return weight_dict if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''jukebox-5b-lyrics''', type=str, help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''jukebox-5b-lyrics-converted''', type=str, help='''Path to the output PyTorch model directory.''', ) lowerCAmelCase__ = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
133
"""simple docstring""" import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def a__ ( SCREAMING_SNAKE_CASE : str ): # picklable for multiprocessing '''simple docstring''' return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def a__ ( ): '''simple docstring''' with parallel_backend("spark" ): assert ParallelBackendConfig.backend_name == "spark" lowerCAmelCase : List[str] = [1, 2, 3] with pytest.raises(SCREAMING_SNAKE_CASE ): with parallel_backend("unsupported backend" ): map_nested(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , num_proc=2 ) with pytest.raises(SCREAMING_SNAKE_CASE ): with parallel_backend("unsupported backend" ): map_nested(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize("num_proc" , [2, -1] ) def a__ ( SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' lowerCAmelCase : Tuple = [1, 2] lowerCAmelCase : int = {"a": 1, "b": 2} lowerCAmelCase : List[str] = {"a": [1, 2], "b": [3, 4]} lowerCAmelCase : Dict = {"a": {"1": 1}, "b": 2} lowerCAmelCase : Tuple = {"a": 1, "b": 2, "c": 3, "d": 4} lowerCAmelCase : Any = [2, 3] lowerCAmelCase : Any = {"a": 2, "b": 3} lowerCAmelCase : Optional[int] = {"a": [2, 3], "b": [4, 5]} lowerCAmelCase : Optional[int] = {"a": {"1": 2}, "b": 3} lowerCAmelCase : str = {"a": 2, "b": 3, "c": 4, "d": 5} with parallel_backend("spark" ): assert map_nested(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , num_proc=SCREAMING_SNAKE_CASE ) == expected_map_nested_sa assert map_nested(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , num_proc=SCREAMING_SNAKE_CASE ) == expected_map_nested_sa assert map_nested(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , num_proc=SCREAMING_SNAKE_CASE ) == expected_map_nested_sa assert map_nested(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , num_proc=SCREAMING_SNAKE_CASE ) == expected_map_nested_sa assert map_nested(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , num_proc=SCREAMING_SNAKE_CASE ) == expected_map_nested_sa
133
1
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCAmelCase__ : List[str] =logging.get_logger(__name__) lowerCAmelCase__ : str ={'''tokenizer_file''': '''tokenizer.json'''} lowerCAmelCase__ : Dict ={ '''tokenizer_file''': { '''bigscience/tokenizer''': '''https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json''', '''bigscience/bloom-560m''': '''https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json''', '''bigscience/bloom-1b1''': '''https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json''', '''bigscience/bloom-1b7''': '''https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json''', '''bigscience/bloom-3b''': '''https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json''', '''bigscience/bloom-7b1''': '''https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json''', '''bigscience/bloom''': '''https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json''', }, } class UpperCAmelCase_ ( UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ : Any = VOCAB_FILES_NAMES UpperCamelCase__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ : Tuple = ['''input_ids''', '''attention_mask'''] UpperCamelCase__ : List[Any] = None def __init__( self , _A=None , _A=None , _A=None , _A="<unk>" , _A="<s>" , _A="</s>" , _A="<pad>" , _A=False , _A=False , **_A , ): '''simple docstring''' super().__init__( _A , _A , tokenizer_file=_A , unk_token=_A , bos_token=_A , eos_token=_A , pad_token=_A , add_prefix_space=_A , clean_up_tokenization_spaces=_A , **_A , ) __SCREAMING_SNAKE_CASE = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , _A ) != add_prefix_space: __SCREAMING_SNAKE_CASE = getattr(_A , pre_tok_state.pop('type' ) ) __SCREAMING_SNAKE_CASE = add_prefix_space __SCREAMING_SNAKE_CASE = pre_tok_class(**_A ) __SCREAMING_SNAKE_CASE = add_prefix_space def _A ( self , *_A , **_A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = kwargs.get('is_split_into_words' , _A ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with""" ' pretokenized inputs.' ) return super()._batch_encode_plus(*_A , **_A ) def _A ( self , *_A , **_A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = kwargs.get('is_split_into_words' , _A ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with""" ' pretokenized inputs.' ) return super()._encode_plus(*_A , **_A ) def _A ( self , _A , _A = None ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self._tokenizer.model.save(_A , name=_A ) return tuple(_A ) def _A ( self , _A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_A , add_special_tokens=_A ) + [self.eos_token_id] ) if len(_A ) > self.model_max_length: __SCREAMING_SNAKE_CASE = input_ids[-self.model_max_length :] return input_ids
257
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL lowerCAmelCase__ : List[Any] =logging.get_logger(__name__) def __lowercase ( a__ , a__ , a__ , a__ ) -> Tuple[int, int]: def constraint_to_multiple_of(a__ , a__ , a__=0 , a__=None ): __SCREAMING_SNAKE_CASE = round(val / multiple ) * multiple if max_val is not None and x > max_val: __SCREAMING_SNAKE_CASE = math.floor(val / multiple ) * multiple if x < min_val: __SCREAMING_SNAKE_CASE = math.ceil(val / multiple ) * multiple return x __SCREAMING_SNAKE_CASE = (output_size, output_size) if isinstance(a__ , a__ ) else output_size __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = get_image_size(a__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = output_size # determine new height and width __SCREAMING_SNAKE_CASE = output_height / input_height __SCREAMING_SNAKE_CASE = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width __SCREAMING_SNAKE_CASE = scale_width else: # fit height __SCREAMING_SNAKE_CASE = scale_height __SCREAMING_SNAKE_CASE = constraint_to_multiple_of(scale_height * input_height , multiple=a__ ) __SCREAMING_SNAKE_CASE = constraint_to_multiple_of(scale_width * input_width , multiple=a__ ) return (new_height, new_width) class UpperCAmelCase_ ( UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ : List[str] = ['''pixel_values'''] def __init__( self , _A = True , _A = None , _A = PILImageResampling.BILINEAR , _A = False , _A = 1 , _A = True , _A = 1 / 255 , _A = True , _A = None , _A = None , **_A , ): '''simple docstring''' super().__init__(**_A ) __SCREAMING_SNAKE_CASE = size if size is not None else {'height': 384, 'width': 384} __SCREAMING_SNAKE_CASE = get_size_dict(_A ) __SCREAMING_SNAKE_CASE = do_resize __SCREAMING_SNAKE_CASE = size __SCREAMING_SNAKE_CASE = keep_aspect_ratio __SCREAMING_SNAKE_CASE = ensure_multiple_of __SCREAMING_SNAKE_CASE = resample __SCREAMING_SNAKE_CASE = do_rescale __SCREAMING_SNAKE_CASE = rescale_factor __SCREAMING_SNAKE_CASE = do_normalize __SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __SCREAMING_SNAKE_CASE = image_std if image_std is not None else IMAGENET_STANDARD_STD def _A ( self , _A , _A , _A = False , _A = 1 , _A = PILImageResampling.BICUBIC , _A = None , **_A , ): '''simple docstring''' __SCREAMING_SNAKE_CASE = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) __SCREAMING_SNAKE_CASE = get_resize_output_image_size( _A , output_size=(size['height'], size['width']) , keep_aspect_ratio=_A , multiple=_A , ) return resize(_A , size=_A , resample=_A , data_format=_A , **_A ) def _A ( self , _A , _A , _A = None , **_A , ): '''simple docstring''' return rescale(_A , scale=_A , data_format=_A , **_A ) def _A ( self , _A , _A , _A , _A = None , **_A , ): '''simple docstring''' return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def _A ( self , _A , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = ChannelDimension.FIRST , **_A , ): '''simple docstring''' __SCREAMING_SNAKE_CASE = do_resize if do_resize is not None else self.do_resize __SCREAMING_SNAKE_CASE = size if size is not None else self.size __SCREAMING_SNAKE_CASE = get_size_dict(_A ) __SCREAMING_SNAKE_CASE = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio __SCREAMING_SNAKE_CASE = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of __SCREAMING_SNAKE_CASE = resample if resample is not None else self.resample __SCREAMING_SNAKE_CASE = do_rescale if do_rescale is not None else self.do_rescale __SCREAMING_SNAKE_CASE = rescale_factor if rescale_factor is not None else self.rescale_factor __SCREAMING_SNAKE_CASE = do_normalize if do_normalize is not None else self.do_normalize __SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else self.image_mean __SCREAMING_SNAKE_CASE = image_std if image_std is not None else self.image_std __SCREAMING_SNAKE_CASE = make_list_of_images(_A ) if not valid_images(_A ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. __SCREAMING_SNAKE_CASE = [to_numpy_array(_A ) for image in images] if do_resize: __SCREAMING_SNAKE_CASE = [self.resize(image=_A , size=_A , resample=_A ) for image in images] if do_rescale: __SCREAMING_SNAKE_CASE = [self.rescale(image=_A , scale=_A ) for image in images] if do_normalize: __SCREAMING_SNAKE_CASE = [self.normalize(image=_A , mean=_A , std=_A ) for image in images] __SCREAMING_SNAKE_CASE = [to_channel_dimension_format(_A , _A ) for image in images] __SCREAMING_SNAKE_CASE = {'pixel_values': images} return BatchFeature(data=_A , tensor_type=_A ) def _A ( self , _A , _A = None ): '''simple docstring''' __SCREAMING_SNAKE_CASE = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_A ) != len(_A ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(_A ): __SCREAMING_SNAKE_CASE = target_sizes.numpy() __SCREAMING_SNAKE_CASE = [] for idx in range(len(_A ) ): __SCREAMING_SNAKE_CASE = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='bilinear' , align_corners=_A ) __SCREAMING_SNAKE_CASE = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_A ) else: __SCREAMING_SNAKE_CASE = logits.argmax(dim=1 ) __SCREAMING_SNAKE_CASE = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
257
1
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = {'configuration_mmbt': ['MMBTConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['MMBTForClassification', 'MMBTModel', 'ModalEmbeddings'] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
50
import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def __lowercase ( lowerCamelCase : str , lowerCamelCase : Tuple , lowerCamelCase : Optional[int] , lowerCamelCase : str=None , lowerCamelCase : Dict=None , lowerCamelCase : Optional[int]=None , lowerCamelCase : Dict=None , lowerCamelCase : Optional[int]=None , ): if attention_mask is None: UpperCamelCase_ : int = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: UpperCamelCase_ : Dict = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: UpperCamelCase_ : Optional[Any] = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=lowerCamelCase ) if decoder_head_mask is None: UpperCamelCase_ : int = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=lowerCamelCase ) if cross_attn_head_mask is None: UpperCamelCase_ : Tuple = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=lowerCamelCase ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class _lowercase : def __init__( self : Union[str, Any] , snake_case : str , snake_case : str=1_3 , snake_case : Optional[int]=7 , snake_case : int=True , snake_case : str=False , snake_case : str=9_9 , snake_case : int=1_6 , snake_case : str=2 , snake_case : Dict=4 , snake_case : Tuple=4 , snake_case : List[Any]="relu" , snake_case : str=0.1 , snake_case : Any=0.1 , snake_case : List[str]=0.0 , snake_case : int=0.0 , snake_case : Any=2_0 , snake_case : Union[str, Any]=2 , snake_case : Tuple=1 , snake_case : Optional[int]=0 , ) -> int: """simple docstring""" UpperCamelCase_ : Tuple = parent UpperCamelCase_ : Optional[Any] = batch_size UpperCamelCase_ : Tuple = seq_length UpperCamelCase_ : Dict = is_training UpperCamelCase_ : Tuple = use_labels UpperCamelCase_ : Tuple = vocab_size UpperCamelCase_ : List[str] = hidden_size UpperCamelCase_ : List[str] = num_hidden_layers UpperCamelCase_ : Tuple = num_attention_heads UpperCamelCase_ : Dict = intermediate_size UpperCamelCase_ : Dict = hidden_act UpperCamelCase_ : int = hidden_dropout_prob UpperCamelCase_ : str = attention_probs_dropout_prob UpperCamelCase_ : List[Any] = encoder_layerdrop UpperCamelCase_ : Any = decoder_layerdrop UpperCamelCase_ : Tuple = max_position_embeddings UpperCamelCase_ : Dict = eos_token_id UpperCamelCase_ : int = pad_token_id UpperCamelCase_ : str = bos_token_id def SCREAMING_SNAKE_CASE__ ( self : str ) -> Optional[int]: """simple docstring""" UpperCamelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_ : Any = self.eos_token_id # Eos Token UpperCamelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input UpperCamelCase_ : str = input_ids.clamp(self.pad_token_id + 1 ) UpperCamelCase_ : List[Any] = decoder_input_ids.clamp(self.pad_token_id + 1 ) UpperCamelCase_ : str = self.get_config() UpperCamelCase_ : Any = prepare_mam_aaa_inputs_dict(snake_case , snake_case , snake_case ) return config, inputs_dict def SCREAMING_SNAKE_CASE__ ( self : str ) -> int: """simple docstring""" return MaMaaaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> List[str]: """simple docstring""" UpperCamelCase_, UpperCamelCase_ : List[str] = self.prepare_config_and_inputs() return config, inputs_dict def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , snake_case : List[Any] , snake_case : Optional[int] ) -> Dict: """simple docstring""" UpperCamelCase_ : str = MaMaaaModel(config=snake_case ).get_decoder().to(snake_case ).eval() UpperCamelCase_ : str = inputs_dict['input_ids'] UpperCamelCase_ : Any = inputs_dict['attention_mask'] UpperCamelCase_ : Optional[int] = inputs_dict['head_mask'] # first forward pass UpperCamelCase_ : int = model(snake_case , attention_mask=snake_case , head_mask=snake_case , use_cache=snake_case ) UpperCamelCase_, UpperCamelCase_ : int = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids UpperCamelCase_ : int = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase_ : Optional[int] = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and UpperCamelCase_ : Tuple = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCamelCase_ : Optional[Any] = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) UpperCamelCase_ : Union[str, Any] = model(snake_case , attention_mask=snake_case )['last_hidden_state'] UpperCamelCase_ : int = model(snake_case , attention_mask=snake_case , past_key_values=snake_case )[ 'last_hidden_state' ] # select random slice UpperCamelCase_ : List[str] = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCamelCase_ : Tuple = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCamelCase_ : List[str] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case , snake_case , atol=1e-2 ) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , snake_case : int , snake_case : str ) -> Dict: """simple docstring""" UpperCamelCase_ : Tuple = MaMaaaModel(config=snake_case ).to(snake_case ).eval() UpperCamelCase_ : List[str] = model(**snake_case ) UpperCamelCase_ : List[Any] = outputs.encoder_last_hidden_state UpperCamelCase_ : Optional[int] = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase_ : Optional[int] = model.get_encoder() encoder.save_pretrained(snake_case ) UpperCamelCase_ : Tuple = MaMaaaEncoder.from_pretrained(snake_case ).to(snake_case ) UpperCamelCase_ : Optional[Any] = encoder(inputs_dict['input_ids'] , attention_mask=inputs_dict['attention_mask'] )[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase_ : int = model.get_decoder() decoder.save_pretrained(snake_case ) UpperCamelCase_ : int = MaMaaaDecoder.from_pretrained(snake_case ).to(snake_case ) UpperCamelCase_ : int = decoder( input_ids=inputs_dict['decoder_input_ids'] , attention_mask=inputs_dict['decoder_attention_mask'] , encoder_hidden_states=snake_case , encoder_attention_mask=inputs_dict['attention_mask'] , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class _lowercase ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): lowercase = ( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) lowercase = (MaMaaaForConditionalGeneration,) if is_torch_available() else () lowercase = ( { 'conversational': MaMaaaForConditionalGeneration, 'feature-extraction': MaMaaaModel, 'summarization': MaMaaaForConditionalGeneration, 'text2text-generation': MaMaaaForConditionalGeneration, 'translation': MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) lowercase = True lowercase = True lowercase = False lowercase = False def SCREAMING_SNAKE_CASE__ ( self : List[Any] , snake_case : Union[str, Any] , snake_case : List[Any] , snake_case : str , snake_case : str , snake_case : Dict ) -> List[Any]: """simple docstring""" if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Optional[int]: """simple docstring""" UpperCamelCase_ : Tuple = MaMaaaModelTester(self ) UpperCamelCase_ : Optional[Any] = ConfigTester(self , config_class=snake_case ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_, UpperCamelCase_ : str = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: UpperCamelCase_ : int = model_class(snake_case ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(snake_case ) UpperCamelCase_, UpperCamelCase_ : str = model_class.from_pretrained(snake_case , output_loading_info=snake_case ) self.assertEqual(info['missing_keys'] , [] ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" UpperCamelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*snake_case ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> List[str]: """simple docstring""" UpperCamelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*snake_case ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Tuple: """simple docstring""" UpperCamelCase_, UpperCamelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): UpperCamelCase_ : Optional[Any] = model_class(snake_case ) model.to(snake_case ) model.eval() UpperCamelCase_ : List[Any] = copy.deepcopy(self._prepare_for_class(snake_case , snake_case ) ) if not self.is_encoder_decoder: UpperCamelCase_ : List[Any] = inputs['input_ids'] del inputs["input_ids"] else: UpperCamelCase_ : str = inputs['input_ids'] UpperCamelCase_ : List[str] = inputs.get('decoder_input_ids' , snake_case ) del inputs["input_ids"] inputs.pop('decoder_input_ids' , snake_case ) UpperCamelCase_ : List[str] = model.get_input_embeddings() if not self.is_encoder_decoder: UpperCamelCase_ : Tuple = wte(snake_case ) else: UpperCamelCase_ : Optional[int] = wte(snake_case ) UpperCamelCase_ : Optional[int] = wte(snake_case ) with torch.no_grad(): model(**snake_case )[0] def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" UpperCamelCase_, UpperCamelCase_ : int = self.model_tester.prepare_config_and_inputs() UpperCamelCase_ : str = input_dict['input_ids'] UpperCamelCase_ : int = input_ids.ne(1 ).to(snake_case ) UpperCamelCase_ : Dict = MaMaaaForConditionalGeneration(snake_case ).eval().to(snake_case ) if torch_device == "cuda": model.half() model.generate(snake_case , attention_mask=snake_case ) model.generate(num_beams=4 , do_sample=snake_case , early_stopping=snake_case , num_return_sequences=3 ) def __lowercase ( lowerCamelCase : List[Any] ): return torch.tensor(lowerCamelCase , dtype=torch.long , device=lowerCamelCase ) a_ = 1E-4 @require_torch @require_sentencepiece @require_tokenizers @slow class _lowercase ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> int: """simple docstring""" return MaMaaaTokenizer.from_pretrained('facebook/m2m100_418M' ) def SCREAMING_SNAKE_CASE__ ( self : str ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ : Union[str, Any] = MaMaaaModel.from_pretrained('facebook/m2m100_418M' ).to(snake_case ) UpperCamelCase_ : str = _long_tensor([[1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8, 2]] ) UpperCamelCase_ : Dict = _long_tensor([[2, 1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8]] ) UpperCamelCase_ : Optional[int] = prepare_mam_aaa_inputs_dict(model.config , snake_case , snake_case ) with torch.no_grad(): UpperCamelCase_ : Any = model(**snake_case )[0] UpperCamelCase_ : Tuple = torch.Size((1, 1_1, 1_0_2_4) ) self.assertEqual(output.shape , snake_case ) # change to expected output here UpperCamelCase_ : Dict = torch.tensor( [[-0.7780, -0.1676, 0.1038], [-6.7556, -1.3992, 0.0567], [-7.5383, -0.5920, -0.2779]] , device=snake_case ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case , atol=snake_case ) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> str: """simple docstring""" UpperCamelCase_ : List[str] = MaMaaaForConditionalGeneration.from_pretrained('facebook/m2m100_418M' ).to(snake_case ) # change to intended input UpperCamelCase_ : Tuple = _long_tensor([[1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8, 2]] ) UpperCamelCase_ : Union[str, Any] = _long_tensor([[2, 1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8]] ) UpperCamelCase_ : Dict = prepare_mam_aaa_inputs_dict(model.config , snake_case , snake_case ) with torch.no_grad(): UpperCamelCase_ : Dict = model(**snake_case )[0] UpperCamelCase_ : Union[str, Any] = torch.Size((1, 1_1, model.config.vocab_size) ) self.assertEqual(output.shape , snake_case ) # change to expected output here UpperCamelCase_ : Any = torch.tensor( [[-1.0448, -1.0411, 3.7992], [-3.2191, -3.2386, -1.3451], [-3.6210, -3.5993, 0.4925]] , device=snake_case ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case , atol=snake_case ) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> int: """simple docstring""" UpperCamelCase_ : str = MaMaaaForConditionalGeneration.from_pretrained('facebook/m2m100_418M' ).to(snake_case ) UpperCamelCase_ : Optional[int] = MaMaaaTokenizer.from_pretrained('facebook/m2m100_418M' , src_lang='fr' , tgt_lang='en' ) UpperCamelCase_ : Union[str, Any] = [ 'L\'affaire NSA souligne l\'absence totale de débat sur le renseignement', 'Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.', 'Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent' ' Fabius convoque l\'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de' ' l\'ampleur de la surveillance américaine sur l\'ensemble des communications en France.', ] # The below article tests that we don't add any hypotheses outside of the top n_beams UpperCamelCase_ : Optional[Any] = tokenizer(snake_case , padding=snake_case , return_tensors='pt' ) UpperCamelCase_ : Dict = model.generate( input_ids=dct['input_ids'].to(snake_case ) , attention_mask=dct['attention_mask'].to(snake_case ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id('en' ) , ) UpperCamelCase_ : Optional[int] = [ 'The NSA case highlights the total absence of intelligence debate', 'I think there are two levels of response from the French government.', 'When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S.' ' Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all' ' communications in France.', ] UpperCamelCase_ : List[str] = tokenizer.batch_decode( hypotheses_batch.tolist() , clean_up_tokenization_spaces=snake_case , skip_special_tokens=snake_case ) assert generated == expected_en
50
1
'''simple docstring''' import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging A__ : Optional[Any] = logging.get_logger(__name__) A__ : Dict = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} # See all BART models at https://huggingface.co/models?filter=bart A__ : Dict = { 'vocab_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/vocab.json', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/vocab.json', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json', }, 'merges_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/merges.txt', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/merges.txt', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt', }, } A__ : List[str] = { 'facebook/bart-base': 1024, 'facebook/bart-large': 1024, 'facebook/bart-large-mnli': 1024, 'facebook/bart-large-cnn': 1024, 'facebook/bart-large-xsum': 1024, 'yjernite/bart_eli5': 1024, } @lru_cache() def UpperCAmelCase__ ( ) -> int: __lowerCamelCase : int = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) __lowerCamelCase : Dict = bs[:] __lowerCamelCase : Dict = 0 for b in range(2**8 ): if b not in bs: bs.append(__UpperCAmelCase ) cs.append(2**8 + n ) n += 1 __lowerCamelCase : int = [chr(__UpperCAmelCase ) for n in cs] return dict(zip(__UpperCAmelCase , __UpperCAmelCase ) ) def UpperCAmelCase__ ( UpperCAmelCase_ : str ) -> Optional[int]: __lowerCamelCase : Optional[Any] = set() __lowerCamelCase : Optional[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __lowerCamelCase : int = char return pairs class UpperCAmelCase_ (_SCREAMING_SNAKE_CASE ): """simple docstring""" lowerCamelCase : Union[str, Any] = VOCAB_FILES_NAMES lowerCamelCase : str = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Tuple = ['input_ids', 'attention_mask'] def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_="replace" , SCREAMING_SNAKE_CASE_="<s>" , SCREAMING_SNAKE_CASE_="</s>" , SCREAMING_SNAKE_CASE_="</s>" , SCREAMING_SNAKE_CASE_="<s>" , SCREAMING_SNAKE_CASE_="<unk>" , SCREAMING_SNAKE_CASE_="<pad>" , SCREAMING_SNAKE_CASE_="<mask>" , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_ , ) -> Tuple: __lowerCamelCase : Optional[Any] = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else bos_token __lowerCamelCase : int = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else eos_token __lowerCamelCase : Union[str, Any] = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else sep_token __lowerCamelCase : Tuple = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else cls_token __lowerCamelCase : Optional[int] = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else unk_token __lowerCamelCase : Any = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __lowerCamelCase : Optional[int] = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else mask_token super().__init__( errors=_lowerCAmelCase , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase , **_lowerCAmelCase , ) with open(_lowerCAmelCase , encoding='utf-8' ) as vocab_handle: __lowerCamelCase : Union[str, Any] = json.load(_lowerCAmelCase ) __lowerCamelCase : Dict = {v: k for k, v in self.encoder.items()} __lowerCamelCase : Any = errors # how to handle errors in decoding __lowerCamelCase : Optional[int] = bytes_to_unicode() __lowerCamelCase : int = {v: k for k, v in self.byte_encoder.items()} with open(_lowerCAmelCase , encoding='utf-8' ) as merges_handle: __lowerCamelCase : Union[str, Any] = merges_handle.read().split('\n' )[1:-1] __lowerCamelCase : Optional[int] = [tuple(merge.split() ) for merge in bpe_merges] __lowerCamelCase : int = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) ) __lowerCamelCase : Optional[int] = {} __lowerCamelCase : List[Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __lowerCamelCase : List[Any] = re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property def lowercase_ ( self ) -> Optional[int]: return len(self.encoder ) def lowercase_ ( self ) -> List[Any]: return dict(self.encoder , **self.added_tokens_encoder ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> str: if token in self.cache: return self.cache[token] __lowerCamelCase : List[Any] = tuple(_lowerCAmelCase ) __lowerCamelCase : List[Any] = get_pairs(_lowerCAmelCase ) if not pairs: return token while True: __lowerCamelCase : Optional[Any] = min(_lowerCAmelCase , key=lambda SCREAMING_SNAKE_CASE_ : self.bpe_ranks.get(_lowerCAmelCase , float('inf' ) ) ) if bigram not in self.bpe_ranks: break __lowerCamelCase , __lowerCamelCase : Any = bigram __lowerCamelCase : int = [] __lowerCamelCase : Optional[int] = 0 while i < len(_lowerCAmelCase ): try: __lowerCamelCase : Union[str, Any] = word.index(_lowerCAmelCase , _lowerCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __lowerCamelCase : List[Any] = j if word[i] == first and i < len(_lowerCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __lowerCamelCase : Dict = tuple(_lowerCAmelCase ) __lowerCamelCase : Union[str, Any] = new_word if len(_lowerCAmelCase ) == 1: break else: __lowerCamelCase : Tuple = get_pairs(_lowerCAmelCase ) __lowerCamelCase : Optional[Any] = ' '.join(_lowerCAmelCase ) __lowerCamelCase : Tuple = word return word def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: __lowerCamelCase : Union[str, Any] = [] for token in re.findall(self.pat , _lowerCAmelCase ): __lowerCamelCase : List[str] = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_lowerCAmelCase ).split(' ' ) ) return bpe_tokens def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> int: return self.encoder.get(_lowerCAmelCase , self.encoder.get(self.unk_token ) ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: return self.decoder.get(_lowerCAmelCase ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> str: __lowerCamelCase : Any = ''.join(_lowerCAmelCase ) __lowerCamelCase : Union[str, Any] = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> Any: if not os.path.isdir(_lowerCAmelCase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __lowerCamelCase : Union[str, Any] = os.path.join( _lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) __lowerCamelCase : Any = os.path.join( _lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(_lowerCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_lowerCAmelCase , ensure_ascii=_lowerCAmelCase ) + '\n' ) __lowerCamelCase : Union[str, Any] = 0 with open(_lowerCAmelCase , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda SCREAMING_SNAKE_CASE_ : kv[1] ): if index != token_index: logger.warning( f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ' Please check that the tokenizer is not corrupted!' ) __lowerCamelCase : List[str] = token_index writer.write(' '.join(_lowerCAmelCase ) + '\n' ) index += 1 return vocab_file, merge_file def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> Optional[Any]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowerCamelCase : Any = [self.cls_token_id] __lowerCamelCase : str = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False ) -> Any: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCAmelCase , token_ids_a=_lowerCAmelCase , already_has_special_tokens=_lowerCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(_lowerCAmelCase )) + [1] return [1] + ([0] * len(_lowerCAmelCase )) + [1, 1] + ([0] * len(_lowerCAmelCase )) + [1] def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> int: __lowerCamelCase : Union[str, Any] = [self.sep_token_id] __lowerCamelCase : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_ ) -> List[str]: __lowerCamelCase : List[str] = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_lowerCAmelCase ) > 0 and not text[0].isspace()): __lowerCamelCase : Any = ' ' + text return (text, kwargs)
185
def UpperCAmelCase_ ( __UpperCAmelCase : int , __UpperCAmelCase : int ) -> int: return number | (1 << position) def UpperCAmelCase_ ( __UpperCAmelCase : int , __UpperCAmelCase : int ) -> int: return number & ~(1 << position) def UpperCAmelCase_ ( __UpperCAmelCase : int , __UpperCAmelCase : int ) -> int: return number ^ (1 << position) def UpperCAmelCase_ ( __UpperCAmelCase : int , __UpperCAmelCase : int ) -> bool: return ((number >> position) & 1) == 1 def UpperCAmelCase_ ( __UpperCAmelCase : int , __UpperCAmelCase : int ) -> int: return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
225
0
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/text-classification/requirements.txt''') __A =logging.getLogger(__name__) @dataclass class _SCREAMING_SNAKE_CASE : lowerCAmelCase__ = field( default=1_28 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) lowerCAmelCase__ = field( default=snake_case_ , metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) } , ) lowerCAmelCase__ = field( default=snake_case_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) lowerCAmelCase__ = field( default=snake_case_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) lowerCAmelCase__ = field( default=snake_case_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of prediction examples to this ' 'value if set.' ) } , ) @dataclass class _SCREAMING_SNAKE_CASE : lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'Evaluation language. Also train language if `train_language` is set to None.'} ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'Train language if it is different from the evaluation language.'} ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()'} , ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) lowerCAmelCase__ = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) lowerCAmelCase__ = field( default=snake_case_ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def lowerCamelCase_ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowerCamelCase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_xnli" , lowerCamelCase__ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowerCamelCase_ = training_args.get_process_log_level() logger.setLevel(lowerCamelCase__ ) datasets.utils.logging.set_verbosity(lowerCamelCase__ ) transformers.utils.logging.set_verbosity(lowerCamelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. lowerCamelCase_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCamelCase_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # Downloading and loading xnli dataset from the hub. if training_args.do_train: if model_args.train_language is None: lowerCamelCase_ = load_dataset( "xnli" , model_args.language , split="train" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: lowerCamelCase_ = load_dataset( "xnli" , model_args.train_language , split="train" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase_ = train_dataset.features["label"].names if training_args.do_eval: lowerCamelCase_ = load_dataset( "xnli" , model_args.language , split="validation" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase_ = eval_dataset.features["label"].names if training_args.do_predict: lowerCamelCase_ = load_dataset( "xnli" , model_args.language , split="test" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase_ = predict_dataset.features["label"].names # Labels lowerCamelCase_ = len(lowerCamelCase__ ) # Load pretrained model and tokenizer # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase_ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowerCamelCase__ , idalabel={str(lowerCamelCase__ ): label for i, label in enumerate(lowerCamelCase__ )} , labelaid={label: i for i, label in enumerate(lowerCamelCase__ )} , finetuning_task="xnli" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase_ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , do_lower_case=model_args.do_lower_case , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase_ = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=lowerCamelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # Preprocessing the datasets # Padding strategy if data_args.pad_to_max_length: lowerCamelCase_ = "max_length" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch lowerCamelCase_ = False def preprocess_function(lowerCamelCase__ ): # Tokenize the texts return tokenizer( examples["premise"] , examples["hypothesis"] , padding=lowerCamelCase__ , max_length=data_args.max_seq_length , truncation=lowerCamelCase__ , ) if training_args.do_train: if data_args.max_train_samples is not None: lowerCamelCase_ = min(len(lowerCamelCase__ ) , data_args.max_train_samples ) lowerCamelCase_ = train_dataset.select(range(lowerCamelCase__ ) ) with training_args.main_process_first(desc="train dataset map pre-processing" ): lowerCamelCase_ = train_dataset.map( lowerCamelCase__ , batched=lowerCamelCase__ , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on train dataset" , ) # Log a few random samples from the training set: for index in random.sample(range(len(lowerCamelCase__ ) ) , 3 ): logger.info(F'Sample {index} of the training set: {train_dataset[index]}.' ) if training_args.do_eval: if data_args.max_eval_samples is not None: lowerCamelCase_ = min(len(lowerCamelCase__ ) , data_args.max_eval_samples ) lowerCamelCase_ = eval_dataset.select(range(lowerCamelCase__ ) ) with training_args.main_process_first(desc="validation dataset map pre-processing" ): lowerCamelCase_ = eval_dataset.map( lowerCamelCase__ , batched=lowerCamelCase__ , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on validation dataset" , ) if training_args.do_predict: if data_args.max_predict_samples is not None: lowerCamelCase_ = min(len(lowerCamelCase__ ) , data_args.max_predict_samples ) lowerCamelCase_ = predict_dataset.select(range(lowerCamelCase__ ) ) with training_args.main_process_first(desc="prediction dataset map pre-processing" ): lowerCamelCase_ = predict_dataset.map( lowerCamelCase__ , batched=lowerCamelCase__ , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on prediction dataset" , ) # Get the metric function lowerCamelCase_ = evaluate.load("xnli" ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowerCamelCase__ ): lowerCamelCase_ = p.predictions[0] if isinstance(p.predictions , lowerCamelCase__ ) else p.predictions lowerCamelCase_ = np.argmax(lowerCamelCase__ , axis=1 ) return metric.compute(predictions=lowerCamelCase__ , references=p.label_ids ) # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: lowerCamelCase_ = default_data_collator elif training_args.fpaa: lowerCamelCase_ = DataCollatorWithPadding(lowerCamelCase__ , pad_to_multiple_of=8 ) else: lowerCamelCase_ = None # Initialize our Trainer lowerCamelCase_ = Trainer( model=lowerCamelCase__ , args=lowerCamelCase__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=lowerCamelCase__ , tokenizer=lowerCamelCase__ , data_collator=lowerCamelCase__ , ) # Training if training_args.do_train: lowerCamelCase_ = None if training_args.resume_from_checkpoint is not None: lowerCamelCase_ = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCamelCase_ = last_checkpoint lowerCamelCase_ = trainer.train(resume_from_checkpoint=lowerCamelCase__ ) lowerCamelCase_ = train_result.metrics lowerCamelCase_ = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCamelCase__ ) ) lowerCamelCase_ = min(lowerCamelCase__ , len(lowerCamelCase__ ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("train" , lowerCamelCase__ ) trainer.save_metrics("train" , lowerCamelCase__ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) lowerCamelCase_ = trainer.evaluate(eval_dataset=lowerCamelCase__ ) lowerCamelCase_ = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCamelCase__ ) lowerCamelCase_ = min(lowerCamelCase__ , len(lowerCamelCase__ ) ) trainer.log_metrics("eval" , lowerCamelCase__ ) trainer.save_metrics("eval" , lowerCamelCase__ ) # Prediction if training_args.do_predict: logger.info("*** Predict ***" ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = trainer.predict(lowerCamelCase__ , metric_key_prefix="predict" ) lowerCamelCase_ = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(lowerCamelCase__ ) ) lowerCamelCase_ = min(lowerCamelCase__ , len(lowerCamelCase__ ) ) trainer.log_metrics("predict" , lowerCamelCase__ ) trainer.save_metrics("predict" , lowerCamelCase__ ) lowerCamelCase_ = np.argmax(lowerCamelCase__ , axis=1 ) lowerCamelCase_ = os.path.join(training_args.output_dir , "predictions.txt" ) if trainer.is_world_process_zero(): with open(lowerCamelCase__ , "w" ) as writer: writer.write("index\tprediction\n" ) for index, item in enumerate(lowerCamelCase__ ): lowerCamelCase_ = label_list[item] writer.write(F'{index}\t{item}\n' ) if __name__ == "__main__": main()
47
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__=False ): lowerCamelCase_ = OmegaConf.load(lowerCamelCase__ ) if display: print(yaml.dump(OmegaConf.to_container(lowerCamelCase__ ) ) ) return config def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=None ): if conf_path is None: lowerCamelCase_ = "./model_checkpoints/vqgan_only.yaml" lowerCamelCase_ = load_config(lowerCamelCase__ , display=lowerCamelCase__ ) lowerCamelCase_ = VQModel(**config.model.params ) if ckpt_path is None: lowerCamelCase_ = "./model_checkpoints/vqgan_only.pt" lowerCamelCase_ = torch.load(lowerCamelCase__ , map_location=lowerCamelCase__ ) if ".ckpt" in ckpt_path: lowerCamelCase_ = sd["state_dict"] model.load_state_dict(lowerCamelCase__ , strict=lowerCamelCase__ ) model.to(lowerCamelCase__ ) del sd return model def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = model.encode(lowerCamelCase__ ) print(F'VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}' ) lowerCamelCase_ = model.decode(lowerCamelCase__ ) return xrec def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__=False ): lowerCamelCase_ , lowerCamelCase_ = string.rsplit("." , 1 ) if reload: lowerCamelCase_ = importlib.import_module(lowerCamelCase__ ) importlib.reload(lowerCamelCase__ ) return getattr(importlib.import_module(lowerCamelCase__ , package=lowerCamelCase__ ) , cls ) def lowerCamelCase_ ( lowerCamelCase__ ): if "target" not in config: raise KeyError("Expected key `target` to instantiate." ) return get_obj_from_str(config["target"] )(**config.get("params" , {} ) ) def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=True , lowerCamelCase__=True ): lowerCamelCase_ = instantiate_from_config(lowerCamelCase__ ) if sd is not None: model.load_state_dict(lowerCamelCase__ ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): # load the specified checkpoint if ckpt: lowerCamelCase_ = torch.load(lowerCamelCase__ , map_location="cpu" ) lowerCamelCase_ = pl_sd["global_step"] print(F'loaded model from global step {global_step}.' ) else: lowerCamelCase_ = {"state_dict": None} lowerCamelCase_ = None lowerCamelCase_ = load_model_from_config(config.model , pl_sd["state_dict"] , gpu=lowerCamelCase__ , eval_mode=lowerCamelCase__ )["model"] return model, global_step
47
1
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass _lowerCamelCase : List[Any] = (3, 9, -11, 0, 7, 5, 1, -1) _lowerCamelCase : int = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class SCREAMING_SNAKE_CASE__ : '''simple docstring''' _UpperCAmelCase : int _UpperCAmelCase : Node | None class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self : Optional[int] , lowercase : Iterable[int] ): '''simple docstring''' _snake_case = None for i in sorted(lowercase , reverse=lowercase ): _snake_case = Node(lowercase , self.head ) def __iter__( self : List[str] ): '''simple docstring''' _snake_case = self.head while node: yield node.data _snake_case = node.next_node def __len__( self : List[str] ): '''simple docstring''' return sum(1 for _ in self ) def __str__( self : str ): '''simple docstring''' return " -> ".join([str(lowercase ) for node in self] ) def a_ ( __lowercase : SortedLinkedList , __lowercase : SortedLinkedList ) -> SortedLinkedList: return SortedLinkedList(list(__lowercase ) + list(__lowercase ) ) if __name__ == "__main__": import doctest doctest.testmod() _lowerCamelCase : str = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
282
from __future__ import annotations from typing import Any class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self : Tuple , lowercase : int , lowercase : int , lowercase : float = 0 ): '''simple docstring''' _snake_case , _snake_case = row, column _snake_case = [[default_value for c in range(lowercase )] for r in range(lowercase )] def __str__( self : int ): '''simple docstring''' _snake_case = f'''Matrix consist of {self.row} rows and {self.column} columns\n''' # Make string identifier _snake_case = 0 for row_vector in self.array: for obj in row_vector: _snake_case = max(lowercase , len(str(lowercase ) ) ) _snake_case = f'''%{max_element_length}s''' # Make string and return def single_line(lowercase : list[float] ) -> str: nonlocal string_format_identifier _snake_case = '[' line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(lowercase ) for row_vector in self.array ) return s def __repr__( self : Dict ): '''simple docstring''' return str(self ) def A ( self : str , lowercase : tuple[int, int] ): '''simple docstring''' if not (isinstance(lowercase , (list, tuple) ) and len(lowercase ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self : Dict , lowercase : tuple[int, int] ): '''simple docstring''' assert self.validate_indicies(lowercase ) return self.array[loc[0]][loc[1]] def __setitem__( self : str , lowercase : tuple[int, int] , lowercase : float ): '''simple docstring''' assert self.validate_indicies(lowercase ) _snake_case = value def __add__( self : str , lowercase : Matrix ): '''simple docstring''' assert isinstance(lowercase , lowercase ) assert self.row == another.row and self.column == another.column # Add _snake_case = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): _snake_case = self[r, c] + another[r, c] return result def __neg__( self : Tuple ): '''simple docstring''' _snake_case = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): _snake_case = -self[r, c] return result def __sub__( self : List[str] , lowercase : Matrix ): '''simple docstring''' return self + (-another) def __mul__( self : Dict , lowercase : int | float | Matrix ): '''simple docstring''' if isinstance(lowercase , (int, float) ): # Scalar multiplication _snake_case = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): _snake_case = self[r, c] * another return result elif isinstance(lowercase , lowercase ): # Matrix multiplication assert self.column == another.row _snake_case = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: _snake_case = f'''Unsupported type given for another ({type(lowercase )})''' raise TypeError(lowercase ) def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): _snake_case = self[r, c] return result def A ( self : List[Any] , lowercase : Matrix , lowercase : Matrix ): '''simple docstring''' assert isinstance(lowercase , lowercase ) and isinstance(lowercase , lowercase ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate _snake_case = v.transpose() _snake_case = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def a_ ( ) -> None: # a^(-1) _snake_case = Matrix(3 , 3 , 0 ) for i in range(3 ): _snake_case = 1 print(f'''a^(-1) is {ainv}''' ) # u, v _snake_case = Matrix(3 , 1 , 0 ) _snake_case , _snake_case , _snake_case = 1, 2, -3 _snake_case = Matrix(3 , 1 , 0 ) _snake_case , _snake_case , _snake_case = 4, -2, 5 print(f'''u is {u}''' ) print(f'''v is {v}''' ) print(f'''uv^T is {u * v.transpose()}''' ) # Sherman Morrison print(f'''(a + uv^T)^(-1) is {ainv.sherman_morrison(__lowercase , __lowercase )}''' ) def a_ ( ) -> None: import doctest doctest.testmod() testa()
282
1
'''simple docstring''' import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _SCREAMING_SNAKE_CASE = 16 _SCREAMING_SNAKE_CASE = 32 def __lowerCamelCase ( __lowerCAmelCase : Accelerator , __lowerCAmelCase : int = 16 ) -> List[Any]: snake_case = AutoTokenizer.from_pretrained("""bert-base-cased""" ) snake_case = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(__lowerCAmelCase : Optional[Any] ): # max_length=None => use the model max length (it's actually the default) snake_case = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__lowerCAmelCase , max_length=__lowerCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): snake_case = datasets.map( __lowerCAmelCase , batched=__lowerCAmelCase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library snake_case = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(__lowerCAmelCase : Optional[int] ): # On TPU it's best to pad everything to the same length or training will be very slow. snake_case = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": snake_case = 16 elif accelerator.mixed_precision != "no": snake_case = 8 else: snake_case = None return tokenizer.pad( __lowerCAmelCase , padding="""longest""" , max_length=__lowerCAmelCase , pad_to_multiple_of=__lowerCAmelCase , return_tensors="""pt""" , ) # Instantiate dataloaders. snake_case = DataLoader( tokenized_datasets["""train"""] , shuffle=__lowerCAmelCase , collate_fn=__lowerCAmelCase , batch_size=__lowerCAmelCase , drop_last=__lowerCAmelCase ) snake_case = DataLoader( tokenized_datasets["""validation"""] , shuffle=__lowerCAmelCase , collate_fn=__lowerCAmelCase , batch_size=__lowerCAmelCase , drop_last=(accelerator.mixed_precision == """fp8""") , ) return train_dataloader, eval_dataloader def __lowerCamelCase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple ) -> Optional[Any]: # Initialize accelerator snake_case = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs snake_case = config["""lr"""] snake_case = int(config["""num_epochs"""] ) snake_case = int(config["""seed"""] ) snake_case = int(config["""batch_size"""] ) snake_case = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation snake_case = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: snake_case = batch_size // MAX_GPU_BATCH_SIZE snake_case = MAX_GPU_BATCH_SIZE set_seed(__lowerCAmelCase ) snake_case , snake_case = get_dataloaders(__lowerCAmelCase , __lowerCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) snake_case = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=__lowerCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). snake_case = model.to(accelerator.device ) # Instantiate optimizer snake_case = AdamW(params=model.parameters() , lr=__lowerCAmelCase ) # Instantiate scheduler snake_case = get_linear_schedule_with_warmup( optimizer=__lowerCAmelCase , num_warmup_steps=1_00 , num_training_steps=(len(__lowerCAmelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. snake_case , snake_case , snake_case , snake_case , snake_case = accelerator.prepare( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Now we train the model for epoch in range(__lowerCAmelCase ): model.train() for step, batch in enumerate(__lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) snake_case = model(**__lowerCAmelCase ) snake_case = outputs.loss snake_case = loss / gradient_accumulation_steps accelerator.backward(__lowerCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): snake_case = model(**__lowerCAmelCase ) snake_case = outputs.logits.argmax(dim=-1 ) snake_case , snake_case = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=__lowerCAmelCase , references=__lowerCAmelCase , ) snake_case = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , __lowerCAmelCase ) def __lowerCamelCase ( ) -> Dict: snake_case = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=__lowerCAmelCase , default=__lowerCAmelCase , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) snake_case = parser.parse_args() snake_case = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(__lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": main()
3
'''simple docstring''' import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 _SCREAMING_SNAKE_CASE = get_tests_dir("fixtures") class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : List[Any] )-> List[Any]: # A mock response for an HTTP head request to emulate server down snake_case = mock.Mock() snake_case = 5_00 snake_case = {} snake_case = HTTPError snake_case = {} # Download this model to make sure it's in the cache. snake_case = ViTImageProcessor.from_pretrained("""hf-internal-testing/tiny-random-vit""" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("""requests.Session.request""" , return_value=__snake_case ) as mock_head: snake_case = ViTImageProcessor.from_pretrained("""hf-internal-testing/tiny-random-vit""" ) # This check we did call the fake head request mock_head.assert_called() def lowerCAmelCase ( self : Tuple )-> Optional[Any]: # This test is for deprecated behavior and can be removed in v5 snake_case = ViTImageProcessor.from_pretrained( """https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json""" ) def lowerCAmelCase ( self : Union[str, Any] )-> str: with self.assertRaises(__snake_case ): # config is in subfolder, the following should not work without specifying the subfolder snake_case = AutoImageProcessor.from_pretrained("""hf-internal-testing/stable-diffusion-all-variants""" ) snake_case = AutoImageProcessor.from_pretrained( """hf-internal-testing/stable-diffusion-all-variants""" , subfolder="""feature_extractor""" ) self.assertIsNotNone(__snake_case ) @is_staging_test class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @classmethod def lowerCAmelCase ( cls : Optional[int] )-> Dict: snake_case = TOKEN HfFolder.save_token(__snake_case ) @classmethod def lowerCAmelCase ( cls : List[Any] )-> str: try: delete_repo(token=cls._token , repo_id="""test-image-processor""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-image-processor-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-image-processor""" ) except HTTPError: pass def lowerCAmelCase ( self : Optional[Any] )-> Union[str, Any]: snake_case = ViTImageProcessor.from_pretrained(__snake_case ) image_processor.push_to_hub("""test-image-processor""" , use_auth_token=self._token ) snake_case = ViTImageProcessor.from_pretrained(f'''{USER}/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(__snake_case , getattr(__snake_case , __snake_case ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-image-processor""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( __snake_case , repo_id="""test-image-processor""" , push_to_hub=__snake_case , use_auth_token=self._token ) snake_case = ViTImageProcessor.from_pretrained(f'''{USER}/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(__snake_case , getattr(__snake_case , __snake_case ) ) def lowerCAmelCase ( self : List[Any] )-> int: snake_case = ViTImageProcessor.from_pretrained(__snake_case ) image_processor.push_to_hub("""valid_org/test-image-processor""" , use_auth_token=self._token ) snake_case = ViTImageProcessor.from_pretrained("""valid_org/test-image-processor""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(__snake_case , getattr(__snake_case , __snake_case ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-image-processor""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( __snake_case , repo_id="""valid_org/test-image-processor-org""" , push_to_hub=__snake_case , use_auth_token=self._token ) snake_case = ViTImageProcessor.from_pretrained("""valid_org/test-image-processor-org""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(__snake_case , getattr(__snake_case , __snake_case ) ) def lowerCAmelCase ( self : str )-> Tuple: CustomImageProcessor.register_for_auto_class() snake_case = CustomImageProcessor.from_pretrained(__snake_case ) image_processor.push_to_hub("""test-dynamic-image-processor""" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {"""AutoImageProcessor""": """custom_image_processing.CustomImageProcessor"""} , ) snake_case = AutoImageProcessor.from_pretrained( f'''{USER}/test-dynamic-image-processor''' , trust_remote_code=__snake_case ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , """CustomImageProcessor""" )
3
1
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : str = 100_0000 ): '''simple docstring''' _UpperCAmelCase = 1 _UpperCAmelCase = 1 _UpperCAmelCase = {1: 1} for inputa in range(2 , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 0 _UpperCAmelCase = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: _UpperCAmelCase = (3 * number) + 1 counter += 1 if inputa not in counters: _UpperCAmelCase = counter if counter > pre_counter: _UpperCAmelCase = inputa _UpperCAmelCase = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
260
import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 SCREAMING_SNAKE_CASE_ = get_tests_dir("""fixtures/dummy-config.json""") class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = 0 def SCREAMING_SNAKE_CASE__ ( self : Any ) -> str: '''simple docstring''' self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec("""transformers.models.auto""" ) ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained("""bert-base-uncased""" ) self.assertIsInstance(lowerCamelCase__ ,lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : int ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ ,lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ ,lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = AutoConfig.for_model("""roberta""" ) self.assertIsInstance(lowerCamelCase__ ,lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : int ) -> int: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. SCREAMING_SNAKE_CASE = os.path.join(lowerCamelCase__ ,"""fake-roberta""" ) os.makedirs(lowerCamelCase__ ,exist_ok=lowerCamelCase__ ) with open(os.path.join(lowerCamelCase__ ,"""config.json""" ) ,"""w""" ) as f: f.write(json.dumps({} ) ) SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertEqual(type(lowerCamelCase__ ) ,lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> str: '''simple docstring''' try: AutoConfig.register("""custom""" ,lowerCamelCase__ ) # Wrong model type will raise an error with self.assertRaises(lowerCamelCase__ ): AutoConfig.register("""model""" ,lowerCamelCase__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCamelCase__ ): AutoConfig.register("""bert""" ,lowerCamelCase__ ) # Now that the config is registered, it can be used as any other config with the auto-API SCREAMING_SNAKE_CASE = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ ,lowerCamelCase__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def SCREAMING_SNAKE_CASE__ ( self : str ) -> Dict: '''simple docstring''' with self.assertRaisesRegex( lowerCamelCase__ ,"""bert-base is not a local folder and is not a valid model identifier""" ): SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained("""bert-base""" ) def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> str: '''simple docstring''' with self.assertRaisesRegex( lowerCamelCase__ ,R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(lowerCamelCase__ ,revision="""aaaaaa""" ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> List[Any]: '''simple docstring''' with self.assertRaisesRegex( lowerCamelCase__ ,"""hf-internal-testing/no-config-test-repo does not appear to have a file named config.json.""" ,): SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained("""hf-internal-testing/no-config-test-repo""" ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' with self.assertRaises(lowerCamelCase__ ): SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowerCamelCase__ ): SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" ,trust_remote_code=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" ,trust_remote_code=lowerCamelCase__ ) self.assertEqual(config.__class__.__name__ ,"""NewModelConfig""" ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(lowerCamelCase__ ,trust_remote_code=lowerCamelCase__ ) self.assertEqual(reloaded_config.__class__.__name__ ,"""NewModelConfig""" ) def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' __snake_case : Union[str, Any] = "new-model" try: AutoConfig.register("""new-model""" ,lowerCamelCase__ ) # If remote code is not set, the default is to use local SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" ) self.assertEqual(config.__class__.__name__ ,"""NewModelConfigLocal""" ) # If remote code is disabled, we load the local one. SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" ,trust_remote_code=lowerCamelCase__ ) self.assertEqual(config.__class__.__name__ ,"""NewModelConfigLocal""" ) # If remote is enabled, we load from the Hub SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" ,trust_remote_code=lowerCamelCase__ ) self.assertEqual(config.__class__.__name__ ,"""NewModelConfig""" ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
296
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = """▁""" _UpperCamelCase = {"""vocab_file""": """sentencepiece.bpe.model""", """monolingual_vocab_file""": """dict.txt"""} _UpperCamelCase = { """vocab_file""": { """vinai/bartpho-syllable""": """https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model""", }, """monolingual_vocab_file""": { """vinai/bartpho-syllable""": """https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt""", }, } _UpperCamelCase = {"""vinai/bartpho-syllable""": 1024} class lowerCamelCase__ ( snake_case ): SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE = ['''input_ids''', '''attention_mask'''] def __init__( self ,A ,A ,A="<s>" ,A="</s>" ,A="</s>" ,A="<s>" ,A="<unk>" ,A="<pad>" ,A="<mask>" ,A = None ,**A ,): # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else mask_token UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A ,eos_token=A ,unk_token=A ,sep_token=A ,cls_token=A ,pad_token=A ,mask_token=A ,sp_model_kwargs=self.sp_model_kwargs ,**A ,) UpperCAmelCase = vocab_file UpperCAmelCase = monolingual_vocab_file UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(A ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility UpperCAmelCase = {} UpperCAmelCase = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(A ) not in self.fairseq_tokens_to_ids: UpperCAmelCase = cnt cnt += 1 with open(A ,"""r""" ,encoding="""utf-8""" ) as f: for line in f.readlines(): UpperCAmelCase = line.strip().split()[0] UpperCAmelCase = len(self.fairseq_tokens_to_ids ) if str(A ) not in self.fairseq_tokens_to_ids: UpperCAmelCase = len(self.fairseq_tokens_to_ids ) UpperCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): UpperCAmelCase = self.__dict__.copy() UpperCAmelCase = None UpperCAmelCase = self.sp_model.serialized_model_proto() return state def __setstate__( self ,A ): UpperCAmelCase = d # for backward compatibility if not hasattr(self ,"""sp_model_kwargs""" ): UpperCAmelCase = {} UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _UpperCamelCase ( self ,A ,A = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase = [self.cls_token_id] UpperCAmelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _UpperCamelCase ( self ,A ,A = None ,A = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A ,token_ids_a=A ,already_has_special_tokens=A ) if token_ids_a is None: return [1] + ([0] * len(A )) + [1] return [1] + ([0] * len(A )) + [1, 1] + ([0] * len(A )) + [1] def _UpperCamelCase ( self ,A ,A = None ): UpperCAmelCase = [self.sep_token_id] UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _UpperCamelCase ( self ): return len(self.fairseq_ids_to_tokens ) def _UpperCamelCase ( self ): UpperCAmelCase = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _UpperCamelCase ( self ,A ): return self.sp_model.encode(A ,out_type=A ) def _UpperCamelCase ( self ,A ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def _UpperCamelCase ( self ,A ): return self.fairseq_ids_to_tokens[index] def _UpperCamelCase ( self ,A ): UpperCAmelCase = """""".join(A ).replace(A ,""" """ ).strip() return out_string def _UpperCamelCase ( self ,A ,A = None ): if not os.path.isdir(A ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase = os.path.join( A ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCAmelCase = os.path.join( A ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""monolingual_vocab_file"""] ,) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,A ) elif not os.path.isfile(self.vocab_file ): with open(A ,"""wb""" ) as fi: UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(A ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( A ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file ,A ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(A ,"""w""" ,encoding="""utf-8""" ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(F'''{str(A )} \n''' ) return out_vocab_file, out_monolingual_vocab_file
357
"""simple docstring""" _UpperCamelCase = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] _UpperCamelCase = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] _UpperCamelCase = { 0: """Sunday""", 1: """Monday""", 2: """Tuesday""", 3: """Wednesday""", 4: """Thursday""", 5: """Friday""", 6: """Saturday""", } def _a ( _snake_case , _snake_case , _snake_case ): """simple docstring""" assert len(str(_snake_case ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: UpperCAmelCase = year // 100 UpperCAmelCase = (5 * (century % 4) + 2) % 7 UpperCAmelCase = year % 100 UpperCAmelCase = centurian % 12 UpperCAmelCase = ( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 UpperCAmelCase = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 400) == 0) else DOOMSDAY_LEAP[month - 1] ) UpperCAmelCase = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
234
0
"""simple docstring""" import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler SCREAMING_SNAKE_CASE__ = 16 SCREAMING_SNAKE_CASE__ = 32 def lowerCAmelCase__ ( _UpperCamelCase : Accelerator , _UpperCamelCase : int = 1_6 , _UpperCamelCase : str = "bert-base-cased" ) -> Any: """simple docstring""" snake_case = AutoTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) snake_case = load_dataset('glue' , 'mrpc' ) def tokenize_function(_UpperCamelCase : int ): # max_length=None => use the model max length (it's actually the default) snake_case = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=__SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset snake_case = datasets.map( __SCREAMING_SNAKE_CASE , batched=__SCREAMING_SNAKE_CASE , remove_columns=['idx', 'sentence1', 'sentence2'] , load_from_cache_file=__SCREAMING_SNAKE_CASE ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library snake_case = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(_UpperCamelCase : int ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__SCREAMING_SNAKE_CASE , padding='max_length' , max_length=1_2_8 , return_tensors='pt' ) return tokenizer.pad(__SCREAMING_SNAKE_CASE , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. snake_case = DataLoader( tokenized_datasets['train'] , shuffle=__SCREAMING_SNAKE_CASE , collate_fn=__SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE ) snake_case = DataLoader( tokenized_datasets['validation'] , shuffle=__SCREAMING_SNAKE_CASE , collate_fn=__SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE ) return train_dataloader, eval_dataloader def lowerCAmelCase__ ( _UpperCamelCase : Optional[int] , _UpperCamelCase : int , _UpperCamelCase : List[str] , _UpperCamelCase : int ) -> Tuple: """simple docstring""" model.eval() snake_case = 0 for step, batch in enumerate(__SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): snake_case = model(**__SCREAMING_SNAKE_CASE ) snake_case = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times snake_case = accelerator.gather( (predictions, batch['labels']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(__SCREAMING_SNAKE_CASE ) - 1: snake_case = predictions[: len(eval_dataloader.dataset ) - samples_seen] snake_case = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=__SCREAMING_SNAKE_CASE , references=__SCREAMING_SNAKE_CASE , ) snake_case = metric.compute() return eval_metric["accuracy"] def lowerCAmelCase__ ( _UpperCamelCase : Optional[int] , _UpperCamelCase : Optional[Any] ) -> Dict: """simple docstring""" snake_case = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs snake_case = config['lr'] snake_case = int(config['num_epochs'] ) snake_case = int(config['seed'] ) snake_case = int(config['batch_size'] ) snake_case = args.model_name_or_path set_seed(__SCREAMING_SNAKE_CASE ) snake_case = get_dataloaders(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) snake_case = AutoModelForSequenceClassification.from_pretrained(__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE ) # Instantiate optimizer snake_case = ( AdamW if accelerator.state.deepspeed_plugin is None or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) snake_case = optimizer_cls(params=model.parameters() , lr=__SCREAMING_SNAKE_CASE ) if accelerator.state.deepspeed_plugin is not None: snake_case = accelerator.state.deepspeed_plugin.deepspeed_config[ 'gradient_accumulation_steps' ] else: snake_case = 1 snake_case = (len(__SCREAMING_SNAKE_CASE ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): snake_case = get_linear_schedule_with_warmup( optimizer=__SCREAMING_SNAKE_CASE , num_warmup_steps=0 , num_training_steps=__SCREAMING_SNAKE_CASE , ) else: snake_case = DummyScheduler(__SCREAMING_SNAKE_CASE , total_num_steps=__SCREAMING_SNAKE_CASE , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. snake_case = accelerator.prepare( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # We need to keep track of how many total steps we have iterated over snake_case = 0 # We also need to keep track of the stating epoch so files are named properly snake_case = 0 snake_case = evaluate.load('glue' , 'mrpc' ) snake_case = num_epochs if args.partial_train_epoch is not None: snake_case = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) snake_case = args.resume_from_checkpoint.split('epoch_' )[1] snake_case = '' for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break snake_case = int(__SCREAMING_SNAKE_CASE ) + 1 snake_case = evaluation_loop(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) accelerator.print('resumed checkpoint performance:' , __SCREAMING_SNAKE_CASE ) accelerator.print('resumed checkpoint\'s scheduler\'s lr:' , lr_scheduler.get_lr()[0] ) accelerator.print('resumed optimizers\'s lr:' , optimizer.param_groups[0]['lr'] ) with open(os.path.join(args.output_dir , f"""state_{starting_epoch-1}.json""" ) , 'r' ) as f: snake_case = json.load(__SCREAMING_SNAKE_CASE ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model snake_case = {} for epoch in range(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): model.train() for step, batch in enumerate(__SCREAMING_SNAKE_CASE ): snake_case = model(**__SCREAMING_SNAKE_CASE ) snake_case = outputs.loss snake_case = loss / gradient_accumulation_steps accelerator.backward(__SCREAMING_SNAKE_CASE ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 snake_case = f"""epoch_{epoch}""" snake_case = os.path.join(args.output_dir , __SCREAMING_SNAKE_CASE ) accelerator.save_state(__SCREAMING_SNAKE_CASE ) snake_case = evaluation_loop(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) snake_case = accuracy snake_case = lr_scheduler.get_lr()[0] snake_case = optimizer.param_groups[0]['lr'] snake_case = epoch snake_case = overall_step accelerator.print(f"""epoch {epoch}:""" , __SCREAMING_SNAKE_CASE ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , f"""state_{epoch}.json""" ) , 'w' ) as f: json.dump(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def lowerCAmelCase__ ( ) -> List[Any]: """simple docstring""" snake_case = argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' ) parser.add_argument( '--model_name_or_path' , type=__SCREAMING_SNAKE_CASE , default='bert-base-cased' , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=__SCREAMING_SNAKE_CASE , ) parser.add_argument( '--output_dir' , type=__SCREAMING_SNAKE_CASE , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--resume_from_checkpoint' , type=__SCREAMING_SNAKE_CASE , default=__SCREAMING_SNAKE_CASE , help='If the training should continue from a checkpoint folder.' , ) parser.add_argument( '--partial_train_epoch' , type=__SCREAMING_SNAKE_CASE , default=__SCREAMING_SNAKE_CASE , help='If passed, the training will stop after this number of epochs.' , ) parser.add_argument( '--num_epochs' , type=__SCREAMING_SNAKE_CASE , default=2 , help='Number of train epochs.' , ) snake_case = parser.parse_args() snake_case = {'lr': 2e-5, 'num_epochs': args.num_epochs, 'seed': 4_2, 'batch_size': 1_6} training_function(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
150
"""simple docstring""" from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class UpperCamelCase ( yaml.SafeLoader ): def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[int]: '''simple docstring''' lowercase_ : str = [self.constructed_objects[key_node] for key_node, _ in node.value] lowercase_ : str = [tuple(__UpperCamelCase ) if isinstance(__UpperCamelCase ,__UpperCamelCase ) else key for key in keys] lowercase_ : List[Any] = Counter(__UpperCamelCase ) lowercase_ : str = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(f'''Got duplicate yaml keys: {duplicate_keys}''' ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase=False ) -> List[Any]: '''simple docstring''' lowercase_ : Optional[int] = super().construct_mapping(__UpperCamelCase ,deep=__UpperCamelCase ) self._check_no_duplicates_on_constructed_node(__UpperCamelCase ) return mapping def lowercase__( __SCREAMING_SNAKE_CASE : str ): lowercase_ : Tuple = list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: lowercase_ : Dict = full_content[1:].index('---' ) + 1 lowercase_ : Optional[int] = '\n'.join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(__SCREAMING_SNAKE_CASE ) class UpperCamelCase ( lowercase_ ): # class attributes lowercase = {'train_eval_index'} # train-eval-index in the YAML metadata @classmethod def _UpperCAmelCase ( cls ,__UpperCamelCase ) -> "DatasetMetadata": '''simple docstring''' with open(__UpperCamelCase ,encoding='utf-8' ) as readme_file: lowercase_ , lowercase_ : Optional[int] = _split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(__UpperCamelCase ) else: return cls() def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[Any]: '''simple docstring''' if path.exists(): with open(__UpperCamelCase ,encoding='utf-8' ) as readme_file: lowercase_ : Dict = readme_file.read() else: lowercase_ : int = None lowercase_ : Any = self._to_readme(__UpperCamelCase ) with open(__UpperCamelCase ,'w' ,encoding='utf-8' ) as readme_file: readme_file.write(__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase = None ) -> str: '''simple docstring''' if readme_content is not None: lowercase_ , lowercase_ : Optional[Any] = _split_yaml_from_readme(__UpperCamelCase ) lowercase_ : Optional[Any] = '---\n' + self.to_yaml_string() + '---\n' + content else: lowercase_ : Tuple = '---\n' + self.to_yaml_string() + '---\n' return full_content @classmethod def _UpperCAmelCase ( cls ,__UpperCamelCase ) -> "DatasetMetadata": '''simple docstring''' lowercase_ : List[str] = yaml.load(__UpperCamelCase ,Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields lowercase_ : Dict = { (key.replace('-' ,'_' ) if key.replace('-' ,'_' ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**__UpperCamelCase ) def _UpperCAmelCase ( self ) -> str: '''simple docstring''' return yaml.safe_dump( { (key.replace('_' ,'-' ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() } ,sort_keys=__UpperCamelCase ,allow_unicode=__UpperCamelCase ,encoding='utf-8' ,).decode('utf-8' ) __SCREAMING_SNAKE_CASE ={ "image-classification": [], "translation": [], "image-segmentation": [], "fill-mask": [], "automatic-speech-recognition": [], "token-classification": [], "sentence-similarity": [], "audio-classification": [], "question-answering": [], "summarization": [], "zero-shot-classification": [], "table-to-text": [], "feature-extraction": [], "other": [], "multiple-choice": [], "text-classification": [], "text-to-image": [], "text2text-generation": [], "zero-shot-image-classification": [], "tabular-classification": [], "tabular-regression": [], "image-to-image": [], "tabular-to-text": [], "unconditional-image-generation": [], "text-retrieval": [], "text-to-speech": [], "object-detection": [], "audio-to-audio": [], "text-generation": [], "conversational": [], "table-question-answering": [], "visual-question-answering": [], "image-to-text": [], "reinforcement-learning": [], "voice-activity-detection": [], "time-series-forecasting": [], "document-question-answering": [], } if __name__ == "__main__": from argparse import ArgumentParser __SCREAMING_SNAKE_CASE =ArgumentParser(usage="Validate the yaml metadata block of a README.md file.") ap.add_argument("readme_filepath") __SCREAMING_SNAKE_CASE =ap.parse_args() __SCREAMING_SNAKE_CASE =Path(args.readme_filepath) __SCREAMING_SNAKE_CASE =DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
213
0
'''simple docstring''' from string import ascii_lowercase, ascii_uppercase def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): if not sentence: return "" _snake_case = dict(zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) return lower_to_upper.get(sentence[0] , sentence[0] ) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
270
'''simple docstring''' from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize("""repo_id""" , ["""canonical_dataset_name""", """org-name/dataset-name"""] ) @pytest.mark.parametrize("""path""" , ["""filename.csv""", """filename with blanks.csv"""] ) @pytest.mark.parametrize("""revision""" , [None, """v2"""] ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = hf_hub_url(repo_id=_SCREAMING_SNAKE_CASE , path=_SCREAMING_SNAKE_CASE , revision=_SCREAMING_SNAKE_CASE ) assert url == f"""https://huggingface.co/datasets/{repo_id}/resolve/{revision or "main"}/{quote(_SCREAMING_SNAKE_CASE )}"""
270
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __a = { "configuration_maskformer": ["MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "MaskFormerConfig"], "configuration_maskformer_swin": ["MaskFormerSwinConfig"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ["MaskFormerFeatureExtractor"] __a = ["MaskFormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ "MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "MaskFormerForInstanceSegmentation", "MaskFormerModel", "MaskFormerPreTrainedModel", ] __a = [ "MaskFormerSwinBackbone", "MaskFormerSwinModel", "MaskFormerSwinPreTrainedModel", ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()["__file__"], _import_structure)
35
'''simple docstring''' import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase_ ( _a , unittest.TestCase ): """simple docstring""" lowercase = GPTSanJapaneseTokenizer lowercase = False lowercase = {"do_clean_text": False, "add_prefix_space": False} def lowerCamelCase ( self : str ): super().setUp() # fmt: off snake_case__ : Optional[Any] = ["""こん""", """こんに""", """にちは""", """ばんは""", """世界,㔺界""", """、""", """。""", """<BR>""", """<SP>""", """<TAB>""", """<URL>""", """<EMAIL>""", """<TEL>""", """<DATE>""", """<PRICE>""", """<BLOCK>""", """<KIGOU>""", """<U2000U2BFF>""", """<|emoji1|>""", """<unk>""", """<|bagoftoken|>""", """<|endoftext|>"""] # fmt: on snake_case__ : int = {"""emoji""": {"""\ud83d\ude00""": """<|emoji1|>"""}, """emoji_inv""": {"""<|emoji1|>""": """\ud83d\ude00"""}} # 😀 snake_case__ : List[Any] = {"""unk_token""": """<unk>"""} snake_case__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) snake_case__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""emoji_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) with open(self.emoji_file , """w""" ) as emoji_writer: emoji_writer.write(json.dumps(snake_case_ ) ) def lowerCamelCase ( self : Any , **snake_case_ : Union[str, Any] ): kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **snake_case_ ) def lowerCamelCase ( self : Any , snake_case_ : str ): snake_case__ : Union[str, Any] = """こんにちは、世界。 \nこんばんは、㔺界。😀""" snake_case__ : List[str] = """こんにちは、世界。 \nこんばんは、世界。😀""" return input_text, output_text def lowerCamelCase ( self : Any , snake_case_ : Dict ): snake_case__ , snake_case__ : int = self.get_input_output_texts(snake_case_ ) snake_case__ : int = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) snake_case__ : List[str] = tokenizer.decode(snake_case_ , clean_up_tokenization_spaces=snake_case_ ) return text, ids def lowerCamelCase ( self : Optional[Any] ): pass # TODO add if relevant def lowerCamelCase ( self : Union[str, Any] ): pass # TODO add if relevant def lowerCamelCase ( self : List[str] ): pass # TODO add if relevant def lowerCamelCase ( self : Dict ): snake_case__ : Optional[Any] = self.get_tokenizer() # Testing tokenization snake_case__ : int = """こんにちは、世界。 こんばんは、㔺界。""" snake_case__ : Optional[int] = ["""こん""", """にちは""", """、""", """世界""", """。""", """<SP>""", """こん""", """ばんは""", """、""", """㔺界""", """。"""] snake_case__ : Dict = tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) # Testing conversion to ids without special tokens snake_case__ : Union[str, Any] = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] snake_case__ : List[Any] = tokenizer.convert_tokens_to_ids(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) # Testing conversion to ids with special tokens snake_case__ : Union[str, Any] = tokens + [tokenizer.unk_token] snake_case__ : Dict = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] snake_case__ : Any = tokenizer.convert_tokens_to_ids(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def lowerCamelCase ( self : Optional[Any] ): snake_case__ : Union[str, Any] = self.get_tokenizer() # Testing tokenization snake_case__ : Union[str, Any] = """こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。""" snake_case__ : Optional[int] = """こんにちは、、、、世界。こんばんは、、、、世界。""" snake_case__ : Any = tokenizer.encode(snake_case_ ) snake_case__ : int = tokenizer.decode(snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) @slow def lowerCamelCase ( self : Union[str, Any] ): snake_case__ : Optional[Any] = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization snake_case__ : Tuple = """こんにちは、世界。""" snake_case__ : Optional[Any] = """こんばんは、㔺界。😀""" snake_case__ : List[str] = """こんにちは、世界。こんばんは、世界。😀""" snake_case__ : Dict = tokenizer.encode(prefix_text + input_text ) snake_case__ : Dict = tokenizer.encode("""""" , prefix_text=prefix_text + input_text ) snake_case__ : int = tokenizer.encode(snake_case_ , prefix_text=snake_case_ ) snake_case__ : Optional[Any] = tokenizer.decode(snake_case_ ) snake_case__ : Union[str, Any] = tokenizer.decode(snake_case_ ) snake_case__ : str = tokenizer.decode(snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) @slow def lowerCamelCase ( self : Union[str, Any] ): snake_case__ : Optional[Any] = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization snake_case__ : Dict = """こんにちは、世界。""" snake_case__ : Optional[int] = """こんばんは、㔺界。😀""" snake_case__ : Any = len(tokenizer.encode(snake_case_ ) ) - 2 snake_case__ : Optional[int] = len(tokenizer.encode(snake_case_ ) ) - 2 snake_case__ : List[str] = [1] + [0] * (len_prefix + len_text + 1) snake_case__ : Optional[int] = [1] * (len_prefix + len_text + 1) + [0] snake_case__ : int = [1] + [1] * (len_prefix) + [0] * (len_text + 1) snake_case__ : Any = tokenizer(prefix_text + input_text ).token_type_ids snake_case__ : str = tokenizer("""""" , prefix_text=prefix_text + input_text ).token_type_ids snake_case__ : Optional[Any] = tokenizer(snake_case_ , prefix_text=snake_case_ ).token_type_ids self.assertListEqual(snake_case_ , snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) @slow def lowerCamelCase ( self : Optional[int] ): snake_case__ : Optional[Any] = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) snake_case__ : Union[str, Any] = tokenizer.encode("""あンいワ""" ) snake_case__ : int = tokenizer.encode("""""" , prefix_text="""あンいワ""" ) snake_case__ : Dict = tokenizer.encode("""いワ""" , prefix_text="""あン""" ) self.assertEqual(tokenizer.decode(snake_case_ ) , tokenizer.decode(snake_case_ ) ) self.assertEqual(tokenizer.decode(snake_case_ ) , tokenizer.decode(snake_case_ ) ) self.assertNotEqual(snake_case_ , snake_case_ ) self.assertNotEqual(snake_case_ , snake_case_ ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def lowerCamelCase ( self : Any ): snake_case__ : Optional[int] = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) snake_case__ : int = [["""武田信玄""", """は、"""], ["""織田信長""", """の配下の、"""]] snake_case__ : Optional[Any] = tokenizer(snake_case_ , padding=snake_case_ ) snake_case__ : Tuple = tokenizer.batch_encode_plus(snake_case_ , padding=snake_case_ ) # fmt: off snake_case__ : Optional[Any] = [[35_993, 8_640, 25_948, 35_998, 30_647, 35_675, 35_999, 35_999], [35_993, 10_382, 9_868, 35_998, 30_646, 9_459, 30_646, 35_675]] snake_case__ : Optional[Any] = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] snake_case__ : Optional[Any] = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , snake_case_ ) self.assertListEqual(x_token.token_type_ids , snake_case_ ) self.assertListEqual(x_token.attention_mask , snake_case_ ) self.assertListEqual(x_token_a.input_ids , snake_case_ ) self.assertListEqual(x_token_a.token_type_ids , snake_case_ ) self.assertListEqual(x_token_a.attention_mask , snake_case_ ) def lowerCamelCase ( self : Any ): # Intentionally convert some words to accommodate character fluctuations unique to Japanese pass def lowerCamelCase ( self : List[str] ): # tokenizer has no padding token pass
35
1
'''simple docstring''' import doctest from collections import deque import numpy as np class lowercase_ : """simple docstring""" def __init__( self : Any ): """simple docstring""" _SCREAMING_SNAKE_CASE = [2, 1, 2, -1] _SCREAMING_SNAKE_CASE = [1, 2, 3, 4] def lowerCAmelCase_ ( self : Dict ): """simple docstring""" _SCREAMING_SNAKE_CASE = len(self.first_signal ) _SCREAMING_SNAKE_CASE = len(self.second_signal ) _SCREAMING_SNAKE_CASE = max(__lowerCamelCase , __lowerCamelCase ) # create a zero matrix of max_length x max_length _SCREAMING_SNAKE_CASE = [[0] * max_length for i in range(__lowerCamelCase )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(__lowerCamelCase ): _SCREAMING_SNAKE_CASE = deque(self.second_signal ) rotated_signal.rotate(__lowerCamelCase ) for j, item in enumerate(__lowerCamelCase ): matrix[i][j] += item # multiply the matrix with the first signal _SCREAMING_SNAKE_CASE = np.matmul(np.transpose(__lowerCamelCase ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(__lowerCamelCase , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
361
'''simple docstring''' def SCREAMING_SNAKE_CASE_ ( __A : int ) -> int: if n == 1 or not isinstance(__A , __A ): return 0 elif n == 2: return 1 else: _SCREAMING_SNAKE_CASE = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def SCREAMING_SNAKE_CASE_ ( __A : int ) -> int: _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = 2 while digits < n: index += 1 _SCREAMING_SNAKE_CASE = len(str(fibonacci(__A ) ) ) return index def SCREAMING_SNAKE_CASE_ ( __A : int = 10_00 ) -> int: return fibonacci_digits_index(__A ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
111
0
"""simple docstring""" import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class _snake_case ( a__ , unittest.TestCase ): snake_case__ = TextToVideoSDPipeline snake_case__ = TEXT_TO_IMAGE_PARAMS snake_case__ = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. snake_case__ = frozenset( [ "num_inference_steps", "generator", "latents", "return_dict", "callback", "callback_steps", ] ) def lowerCamelCase__ ( self : str ): torch.manual_seed(0 ) __lowerCamelCase : Optional[int] = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "DownBlock3D") , up_block_types=("UpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D") , cross_attention_dim=32 , attention_head_dim=4 , ) __lowerCamelCase : Optional[int] = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="scaled_linear" , clip_sample=UpperCAmelCase , set_alpha_to_one=UpperCAmelCase , ) torch.manual_seed(0 ) __lowerCamelCase : Dict = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) __lowerCamelCase : List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="gelu" , projection_dim=512 , ) __lowerCamelCase : Dict = CLIPTextModel(UpperCAmelCase ) __lowerCamelCase : Tuple = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) __lowerCamelCase : Any = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def lowerCamelCase__ ( self : int , UpperCAmelCase : Any , UpperCAmelCase : Optional[int]=0 ): if str(UpperCAmelCase ).startswith("mps" ): __lowerCamelCase : Tuple = torch.manual_seed(UpperCAmelCase ) else: __lowerCamelCase : str = torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase ) __lowerCamelCase : Any = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """pt""", } return inputs def lowerCamelCase__ ( self : Tuple ): __lowerCamelCase : Tuple = """cpu""" # ensure determinism for the device-dependent torch.Generator __lowerCamelCase : List[str] = self.get_dummy_components() __lowerCamelCase : Tuple = TextToVideoSDPipeline(**UpperCAmelCase ) __lowerCamelCase : str = sd_pipe.to(UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase ) __lowerCamelCase : Any = self.get_dummy_inputs(UpperCAmelCase ) __lowerCamelCase : Union[str, Any] = """np""" __lowerCamelCase : Any = sd_pipe(**UpperCAmelCase ).frames __lowerCamelCase : str = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) __lowerCamelCase : Optional[Any] = np.array([1_5_8.0, 1_6_0.0, 1_5_3.0, 1_2_5.0, 1_0_0.0, 1_2_1.0, 1_1_1.0, 9_3.0, 1_1_3.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase__ ( self : Optional[Any] ): self._test_attention_slicing_forward_pass(test_mean_pixel_difference=UpperCAmelCase , expected_max_diff=3E-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def lowerCamelCase__ ( self : Tuple ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=UpperCAmelCase , expected_max_diff=1E-2 ) @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." ) def lowerCamelCase__ ( self : Dict ): pass @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." ) def lowerCamelCase__ ( self : List[str] ): pass @unittest.skip(reason="`num_images_per_prompt` argument is not supported for this pipeline." ) def lowerCamelCase__ ( self : List[Any] ): pass def lowerCamelCase__ ( self : Optional[int] ): return super().test_progress_bar() @slow @skip_mps class _snake_case ( unittest.TestCase ): def lowerCamelCase__ ( self : List[Any] ): __lowerCamelCase : Optional[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy" ) __lowerCamelCase : int = TextToVideoSDPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b" ) __lowerCamelCase : Any = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) __lowerCamelCase : Optional[int] = pipe.to("cuda" ) __lowerCamelCase : Optional[Any] = """Spiderman is surfing""" __lowerCamelCase : Tuple = torch.Generator(device="cpu" ).manual_seed(0 ) __lowerCamelCase : Tuple = pipe(UpperCAmelCase , generator=UpperCAmelCase , num_inference_steps=25 , output_type="pt" ).frames __lowerCamelCase : Optional[int] = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2 def lowerCamelCase__ ( self : Optional[int] ): __lowerCamelCase : Optional[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy" ) __lowerCamelCase : Any = TextToVideoSDPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b" ) __lowerCamelCase : Union[str, Any] = pipe.to("cuda" ) __lowerCamelCase : Optional[int] = """Spiderman is surfing""" __lowerCamelCase : Optional[int] = torch.Generator(device="cpu" ).manual_seed(0 ) __lowerCamelCase : List[str] = pipe(UpperCAmelCase , generator=UpperCAmelCase , num_inference_steps=2 , output_type="pt" ).frames __lowerCamelCase : Dict = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2
135
"""simple docstring""" import math def lowerCamelCase ( _UpperCamelCase : int ) -> list[int]: '''simple docstring''' __UpperCAmelCase : List[Any] = [] __UpperCAmelCase : Dict = 2 __UpperCAmelCase : Union[str, Any] = int(math.sqrt(_UpperCamelCase ) ) # Size of every segment __UpperCAmelCase : Tuple = [True] * (end + 1) __UpperCAmelCase : int = [] while start <= end: if temp[start] is True: in_prime.append(_UpperCamelCase ) for i in range(start * start , end + 1 , _UpperCamelCase ): __UpperCAmelCase : Dict = False start += 1 prime += in_prime __UpperCAmelCase : Optional[int] = end + 1 __UpperCAmelCase : Dict = min(2 * end , _UpperCamelCase ) while low <= n: __UpperCAmelCase : Union[str, Any] = [True] * (high - low + 1) for each in in_prime: __UpperCAmelCase : Dict = math.floor(low / each ) * each if t < low: t += each for j in range(_UpperCamelCase , high + 1 , _UpperCamelCase ): __UpperCAmelCase : Tuple = False for j in range(len(_UpperCamelCase ) ): if temp[j] is True: prime.append(j + low ) __UpperCAmelCase : Tuple = high + 1 __UpperCAmelCase : Optional[int] = min(high + end , _UpperCamelCase ) return prime print(sieve(10**6))
115
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase_ = { 'configuration_convbert': ['CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvBertConfig', 'ConvBertOnnxConfig'], 'tokenization_convbert': ['ConvBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['ConvBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvBertForMaskedLM', 'ConvBertForMultipleChoice', 'ConvBertForQuestionAnswering', 'ConvBertForSequenceClassification', 'ConvBertForTokenClassification', 'ConvBertLayer', 'ConvBertModel', 'ConvBertPreTrainedModel', 'load_tf_weights_in_convbert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFConvBertForMaskedLM', 'TFConvBertForMultipleChoice', 'TFConvBertForQuestionAnswering', 'TFConvBertForSequenceClassification', 'TFConvBertForTokenClassification', 'TFConvBertLayer', 'TFConvBertModel', 'TFConvBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
61
'''simple docstring''' def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : list[list[int]] ): '''simple docstring''' def update_area_of_max_square(SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 UpperCAmelCase__ = update_area_of_max_square(SCREAMING_SNAKE_CASE__ , col + 1 ) UpperCAmelCase__ = update_area_of_max_square(row + 1 , col + 1 ) UpperCAmelCase__ = update_area_of_max_square(row + 1 , SCREAMING_SNAKE_CASE__ ) if mat[row][col]: UpperCAmelCase__ = 1 + min([right, diagonal, down] ) UpperCAmelCase__ = max(largest_square_area[0] , SCREAMING_SNAKE_CASE__ ) return sub_problem_sol else: return 0 UpperCAmelCase__ = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : list[list[int]] ): '''simple docstring''' def update_area_of_max_square_using_dp_array( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : list[list[int]] ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] UpperCAmelCase__ = update_area_of_max_square_using_dp_array(SCREAMING_SNAKE_CASE__ , col + 1 , SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = update_area_of_max_square_using_dp_array(row + 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if mat[row][col]: UpperCAmelCase__ = 1 + min([right, diagonal, down] ) UpperCAmelCase__ = max(largest_square_area[0] , SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = sub_problem_sol return sub_problem_sol else: return 0 UpperCAmelCase__ = [0] UpperCAmelCase__ = [[-1] * cols for _ in range(SCREAMING_SNAKE_CASE__ )] update_area_of_max_square_using_dp_array(0 , 0 , SCREAMING_SNAKE_CASE__ ) return largest_square_area[0] def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : list[list[int]] ): '''simple docstring''' UpperCAmelCase__ = [[0] * (cols + 1) for _ in range(rows + 1 )] UpperCAmelCase__ = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): UpperCAmelCase__ = dp_array[row][col + 1] UpperCAmelCase__ = dp_array[row + 1][col + 1] UpperCAmelCase__ = dp_array[row + 1][col] if mat[row][col] == 1: UpperCAmelCase__ = 1 + min(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = max(dp_array[row][col] , SCREAMING_SNAKE_CASE__ ) else: UpperCAmelCase__ = 0 return largest_square_area def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : list[list[int]] ): '''simple docstring''' UpperCAmelCase__ = [0] * (cols + 1) UpperCAmelCase__ = [0] * (cols + 1) UpperCAmelCase__ = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): UpperCAmelCase__ = current_row[col + 1] UpperCAmelCase__ = next_row[col + 1] UpperCAmelCase__ = next_row[col] if mat[row][col] == 1: UpperCAmelCase__ = 1 + min(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = max(current_row[col] , SCREAMING_SNAKE_CASE__ ) else: UpperCAmelCase__ = 0 UpperCAmelCase__ = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
61
1
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class UpperCamelCase ( unittest.TestCase ): SCREAMING_SNAKE_CASE_ = ViTImageProcessor if is_vision_available() else None @property def a_ ( self) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def a_ ( self) -> Optional[Any]: snake_case_ = (3, 32, 128) snake_case_ = tempfile.mkdtemp() # fmt: off snake_case_ = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] # fmt: on snake_case_ = dict(zip(lowerCAmelCase__, range(len(lowerCAmelCase__)))) snake_case_ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file']) with open(self.vocab_file, 'w', encoding='utf-8') as fp: fp.write(json.dumps(lowerCAmelCase__) + '\n') snake_case_ = { 'do_normalize': False, 'do_resize': True, 'image_processor_type': 'ViTImageProcessor', 'resample': 3, 'size': {'height': 32, 'width': 128}, } snake_case_ = os.path.join(self.tmpdirname, lowerCAmelCase__) with open(self.image_processor_file, 'w', encoding='utf-8') as fp: json.dump(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self, **lowerCAmelCase__) -> Union[str, Any]: return MgpstrTokenizer.from_pretrained(self.tmpdirname, **lowerCAmelCase__) def a_ ( self, **lowerCAmelCase__) -> Union[str, Any]: return ViTImageProcessor.from_pretrained(self.tmpdirname, **lowerCAmelCase__) def a_ ( self) -> Tuple: shutil.rmtree(self.tmpdirname) def a_ ( self) -> Any: snake_case_ = np.random.randint(255, size=(3, 30, 400), dtype=np.uinta) snake_case_ = Image.fromarray(np.moveaxis(lowerCAmelCase__, 0, -1)) return image_input def a_ ( self) -> Dict: snake_case_ = self.get_tokenizer() snake_case_ = self.get_image_processor() snake_case_ = MgpstrProcessor(tokenizer=lowerCAmelCase__, image_processor=lowerCAmelCase__) processor.save_pretrained(self.tmpdirname) snake_case_ = MgpstrProcessor.from_pretrained(self.tmpdirname, use_fast=lowerCAmelCase__) self.assertEqual(processor.char_tokenizer.get_vocab(), tokenizer.get_vocab()) self.assertIsInstance(processor.char_tokenizer, lowerCAmelCase__) self.assertEqual(processor.image_processor.to_json_string(), image_processor.to_json_string()) self.assertIsInstance(processor.image_processor, lowerCAmelCase__) def a_ ( self) -> Optional[int]: snake_case_ = self.get_tokenizer() snake_case_ = self.get_image_processor() snake_case_ = MgpstrProcessor(tokenizer=lowerCAmelCase__, image_processor=lowerCAmelCase__) processor.save_pretrained(self.tmpdirname) snake_case_ = self.get_tokenizer(bos_token='(BOS)', eos_token='(EOS)') snake_case_ = self.get_image_processor(do_normalize=lowerCAmelCase__, padding_value=1.0) snake_case_ = MgpstrProcessor.from_pretrained( self.tmpdirname, bos_token='(BOS)', eos_token='(EOS)', do_normalize=lowerCAmelCase__, padding_value=1.0) self.assertEqual(processor.char_tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.char_tokenizer, lowerCAmelCase__) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor, lowerCAmelCase__) def a_ ( self) -> Any: snake_case_ = self.get_image_processor() snake_case_ = self.get_tokenizer() snake_case_ = MgpstrProcessor(tokenizer=lowerCAmelCase__, image_processor=lowerCAmelCase__) snake_case_ = self.prepare_image_inputs() snake_case_ = image_processor(lowerCAmelCase__, return_tensors='np') snake_case_ = processor(images=lowerCAmelCase__, return_tensors='np') for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum(), input_processor[key].sum(), delta=1e-2) def a_ ( self) -> str: snake_case_ = self.get_image_processor() snake_case_ = self.get_tokenizer() snake_case_ = MgpstrProcessor(tokenizer=lowerCAmelCase__, image_processor=lowerCAmelCase__) snake_case_ = 'test' snake_case_ = processor(text=lowerCAmelCase__) snake_case_ = tokenizer(lowerCAmelCase__) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key]) def a_ ( self) -> Tuple: snake_case_ = self.get_image_processor() snake_case_ = self.get_tokenizer() snake_case_ = MgpstrProcessor(tokenizer=lowerCAmelCase__, image_processor=lowerCAmelCase__) snake_case_ = 'test' snake_case_ = self.prepare_image_inputs() snake_case_ = processor(text=lowerCAmelCase__, images=lowerCAmelCase__) self.assertListEqual(list(inputs.keys()), ['pixel_values', 'labels']) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase__): processor() def a_ ( self) -> List[Any]: snake_case_ = self.get_image_processor() snake_case_ = self.get_tokenizer() snake_case_ = MgpstrProcessor(tokenizer=lowerCAmelCase__, image_processor=lowerCAmelCase__) snake_case_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] snake_case_ = processor.char_decode(lowerCAmelCase__) snake_case_ = tokenizer.batch_decode(lowerCAmelCase__) snake_case_ = [seq.replace(' ', '') for seq in decoded_tok] self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self) -> Optional[int]: snake_case_ = self.get_image_processor() snake_case_ = self.get_tokenizer() snake_case_ = MgpstrProcessor(tokenizer=lowerCAmelCase__, image_processor=lowerCAmelCase__) snake_case_ = None snake_case_ = self.prepare_image_inputs() snake_case_ = processor(text=lowerCAmelCase__, images=lowerCAmelCase__) self.assertListEqual(list(inputs.keys()), processor.model_input_names) def a_ ( self) -> List[Any]: snake_case_ = self.get_image_processor() snake_case_ = self.get_tokenizer() snake_case_ = MgpstrProcessor(tokenizer=lowerCAmelCase__, image_processor=lowerCAmelCase__) snake_case_ = torch.randn(1, 27, 38) snake_case_ = torch.randn(1, 27, 5_0257) snake_case_ = torch.randn(1, 27, 3_0522) snake_case_ = processor.batch_decode([char_input, bpe_input, wp_input]) self.assertListEqual(list(results.keys()), ['generated_text', 'scores', 'char_preds', 'bpe_preds', 'wp_preds'])
69
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file __A : Optional[int] = 'Run commands across TPU VMs for initial setup before running `accelerate launch`.' def __UpperCamelCase ( _A : Dict=None ) ->Dict: """simple docstring""" if subparsers is not None: lowerCamelCase_ =subparsers.add_parser("""tpu-config""" , description=_description ) else: lowerCamelCase_ =argparse.ArgumentParser("""Accelerate tpu-config command""" , description=_description ) # Core arguments lowerCamelCase_ =parser.add_argument_group( """Config Arguments""" , """Arguments that can be configured through `accelerate config`.""" ) config_args.add_argument( """--config_file""" , type=_A , default=_A , help="""Path to the config file to use for accelerate.""" , ) config_args.add_argument( """--tpu_name""" , default=_A , help="""The name of the TPU to use. If not specified, will use the TPU specified in the config file.""" , ) config_args.add_argument( """--tpu_zone""" , default=_A , help="""The zone of the TPU to use. If not specified, will use the zone specified in the config file.""" , ) lowerCamelCase_ =parser.add_argument_group("""TPU Arguments""" , """Arguments for options ran inside the TPU.""" ) pod_args.add_argument( """--use_alpha""" , action="""store_true""" , help="""Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.""" , ) pod_args.add_argument( """--command_file""" , default=_A , help="""The path to the file containing the commands to run on the pod on startup.""" , ) pod_args.add_argument( """--command""" , action="""append""" , nargs="""+""" , help="""A command to run on the pod. Can be passed multiple times.""" , ) pod_args.add_argument( """--install_accelerate""" , action="""store_true""" , help="""Whether to install accelerate on the pod. Defaults to False.""" , ) pod_args.add_argument( """--accelerate_version""" , default="""latest""" , help="""The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify 'dev' to install from GitHub.""" , ) pod_args.add_argument( """--debug""" , action="""store_true""" , help="""If set, will print the command that would be run instead of running it.""" ) if subparsers is not None: parser.set_defaults(func=_A ) return parser def __UpperCamelCase ( _A : Tuple ) ->Optional[Any]: """simple docstring""" lowerCamelCase_ =None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(_A ): lowerCamelCase_ =load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: lowerCamelCase_ =defaults.command_file if not args.command and defaults.commands is not None: lowerCamelCase_ =defaults.commands if not args.tpu_name: lowerCamelCase_ =defaults.tpu_name if not args.tpu_zone: lowerCamelCase_ =defaults.tpu_zone if args.accelerate_version == "dev": lowerCamelCase_ ="""git+https://github.com/huggingface/accelerate.git""" elif args.accelerate_version == "latest": lowerCamelCase_ ="""accelerate -U""" elif isinstance(parse(args.accelerate_version ) , _A ): lowerCamelCase_ =f'accelerate=={args.accelerate_version}' if not args.command_file and not args.command: raise ValueError("""You must specify either a command file or a command to run on the pod.""" ) if args.command_file: with open(args.command_file , """r""" ) as f: lowerCamelCase_ =[f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , _A ): lowerCamelCase_ =[line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate lowerCamelCase_ =["""cd /usr/share"""] if args.install_accelerate: new_cmd += [f'pip install {args.accelerate_version}'] new_cmd += args.command lowerCamelCase_ ="""; """.join(_A ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess lowerCamelCase_ =["""gcloud"""] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(f'Running {" ".join(_A )}' ) return subprocess.run(_A ) print("""Successfully setup pod.""" ) def __UpperCamelCase ( ) ->Optional[Any]: """simple docstring""" lowerCamelCase_ =tpu_command_parser() lowerCamelCase_ =parser.parse_args() tpu_command_launcher(_A )
154
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase : List[str] = logging.get_logger(__name__) _UpperCAmelCase : List[str] = { """facebook/wav2vec2-base-960h""": """https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json""", # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class lowercase ( lowercase_ ): __SCREAMING_SNAKE_CASE : Union[str, Any] = '''wav2vec2''' def __init__( self , snake_case=32 , snake_case=768 , snake_case=12 , snake_case=12 , snake_case=3072 , snake_case="gelu" , snake_case=0.1 , snake_case=0.1 , snake_case=0.1 , snake_case=0.0 , snake_case=0.0 , snake_case=0.1 , snake_case=0.1 , snake_case=0.02 , snake_case=1e-5 , snake_case="group" , snake_case="gelu" , snake_case=(512, 512, 512, 512, 512, 512, 512) , snake_case=(5, 2, 2, 2, 2, 2, 2) , snake_case=(10, 3, 3, 3, 3, 2, 2) , snake_case=False , snake_case=128 , snake_case=16 , snake_case=False , snake_case=True , snake_case=0.05 , snake_case=10 , snake_case=2 , snake_case=0.0 , snake_case=10 , snake_case=0 , snake_case=320 , snake_case=2 , snake_case=0.1 , snake_case=100 , snake_case=256 , snake_case=256 , snake_case=0.1 , snake_case="sum" , snake_case=False , snake_case=False , snake_case=256 , snake_case=(512, 512, 512, 512, 1500) , snake_case=(5, 3, 3, 1, 1) , snake_case=(1, 2, 3, 1, 1) , snake_case=512 , snake_case=0 , snake_case=1 , snake_case=2 , snake_case=False , snake_case=3 , snake_case=2 , snake_case=3 , snake_case=None , snake_case=None , **snake_case , ): super().__init__(**snake_case , pad_token_id=snake_case , bos_token_id=snake_case , eos_token_id=snake_case ) snake_case_ = hidden_size snake_case_ = feat_extract_norm snake_case_ = feat_extract_activation snake_case_ = list(snake_case ) snake_case_ = list(snake_case ) snake_case_ = list(snake_case ) snake_case_ = conv_bias snake_case_ = num_conv_pos_embeddings snake_case_ = num_conv_pos_embedding_groups snake_case_ = len(self.conv_dim ) snake_case_ = num_hidden_layers snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = num_attention_heads snake_case_ = hidden_dropout snake_case_ = attention_dropout snake_case_ = activation_dropout snake_case_ = feat_proj_dropout snake_case_ = final_dropout snake_case_ = layerdrop snake_case_ = layer_norm_eps snake_case_ = initializer_range snake_case_ = vocab_size snake_case_ = do_stable_layer_norm snake_case_ = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 snake_case_ = apply_spec_augment snake_case_ = mask_time_prob snake_case_ = mask_time_length snake_case_ = mask_time_min_masks snake_case_ = mask_feature_prob snake_case_ = mask_feature_length snake_case_ = mask_feature_min_masks # parameters for pretraining with codevector quantized representations snake_case_ = num_codevectors_per_group snake_case_ = num_codevector_groups snake_case_ = contrastive_logits_temperature snake_case_ = feat_quantizer_dropout snake_case_ = num_negatives snake_case_ = codevector_dim snake_case_ = proj_codevector_dim snake_case_ = diversity_loss_weight # ctc loss snake_case_ = ctc_loss_reduction snake_case_ = ctc_zero_infinity # adapter snake_case_ = add_adapter snake_case_ = adapter_kernel_size snake_case_ = adapter_stride snake_case_ = num_adapter_layers snake_case_ = output_hidden_size or hidden_size snake_case_ = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. snake_case_ = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. snake_case_ = list(snake_case ) snake_case_ = list(snake_case ) snake_case_ = list(snake_case ) snake_case_ = xvector_output_dim @property def a ( self ): return functools.reduce(operator.mul , self.conv_stride , 1 )
200
from __future__ import annotations def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' snake_case_ = [] create_all_state(1 , UpperCamelCase__ , UpperCamelCase__ , [] , UpperCamelCase__ ) return result def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ): '''simple docstring''' if level == 0: total_list.append(current_list[:] ) return for i in range(UpperCamelCase__ , total_number - level + 2 ): current_list.append(UpperCamelCase__ ) create_all_state(i + 1 , UpperCamelCase__ , level - 1 , UpperCamelCase__ , UpperCamelCase__ ) current_list.pop() def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' for i in total_list: print(*UpperCamelCase__ ) if __name__ == "__main__": _UpperCAmelCase : str = 4 _UpperCAmelCase : Tuple = 2 _UpperCAmelCase : Optional[int] = generate_all_combinations(n, k) print_all_state(total_list)
200
1
from __future__ import annotations from collections import Counter from random import random class UpperCAmelCase : '''simple docstring''' def __init__( self : Dict ): """simple docstring""" snake_case_ = {} def snake_case__ ( self : List[Any] , __lowercase : str ): """simple docstring""" snake_case_ = {} def snake_case__ ( self : int , __lowercase : str , __lowercase : str , __lowercase : float ): """simple docstring""" if nodea not in self.connections: self.add_node(__lowercase ) if nodea not in self.connections: self.add_node(__lowercase ) snake_case_ = probability def snake_case__ ( self : Optional[Any] ): """simple docstring""" return list(self.connections ) def snake_case__ ( self : Tuple , __lowercase : str ): """simple docstring""" snake_case_ = 0 snake_case_ = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def lowerCamelCase__ ( _A , _A , _A ): '''simple docstring''' snake_case_ = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(_A , _A , _A ) snake_case_ = Counter(graph.get_nodes() ) snake_case_ = start for _ in range(_A ): snake_case_ = graph.transition(_A ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
187
class UpperCAmelCase : '''simple docstring''' def __init__( self : Dict ): """simple docstring""" snake_case_ = {} # Mapping from char to TrieNode snake_case_ = False def snake_case__ ( self : Dict , __lowercase : list[str] ): """simple docstring""" for word in words: self.insert(__lowercase ) def snake_case__ ( self : List[str] , __lowercase : str ): """simple docstring""" snake_case_ = self for char in word: if char not in curr.nodes: snake_case_ = TrieNode() snake_case_ = curr.nodes[char] snake_case_ = True def snake_case__ ( self : List[Any] , __lowercase : str ): """simple docstring""" snake_case_ = self for char in word: if char not in curr.nodes: return False snake_case_ = curr.nodes[char] return curr.is_leaf def snake_case__ ( self : Optional[Any] , __lowercase : str ): """simple docstring""" def _delete(__lowercase : TrieNode , __lowercase : str , __lowercase : int ) -> bool: if index == len(__lowercase ): # If word does not exist if not curr.is_leaf: return False snake_case_ = False return len(curr.nodes ) == 0 snake_case_ = word[index] snake_case_ = curr.nodes.get(__lowercase ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted snake_case_ = _delete(__lowercase , __lowercase , index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self , __lowercase , 0 ) def lowerCamelCase__ ( _A , _A ): '''simple docstring''' if node.is_leaf: print(_A , end=" " ) for key, value in node.nodes.items(): print_words(_A , word + key ) def lowerCamelCase__ ( ): '''simple docstring''' snake_case_ = "banana bananas bandana band apple all beast".split() snake_case_ = TrieNode() root.insert_many(_A ) # print_words(root, "") assert all(root.find(_A ) for word in words ) assert root.find("banana" ) assert not root.find("bandanas" ) assert not root.find("apps" ) assert root.find("apple" ) assert root.find("all" ) root.delete("all" ) assert not root.find("all" ) root.delete("banana" ) assert not root.find("banana" ) assert root.find("bananas" ) return True def lowerCamelCase__ ( _A , _A ): '''simple docstring''' print(str(_A ) , "works!" if passes else "doesn't work :(" ) def lowerCamelCase__ ( ): '''simple docstring''' assert test_trie() def lowerCamelCase__ ( ): '''simple docstring''' print_results("Testing trie functionality" , test_trie() ) if __name__ == "__main__": main()
187
1
'''simple docstring''' from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class A__ ( A__ ): def __init__( self : Dict , _a : Optional[NestedDataStructureLike[PathLike]] = None , _a : Optional[NamedSplit] = None , _a : Optional[Features] = None , _a : str = None , _a : bool = False , _a : bool = False , _a : Optional[int] = None , **_a : Union[str, Any] , ) -> str: '''simple docstring''' _SCREAMING_SNAKE_CASE =path_or_paths _SCREAMING_SNAKE_CASE =split if split or isinstance(_a , _a ) else 'train' _SCREAMING_SNAKE_CASE =features _SCREAMING_SNAKE_CASE =cache_dir _SCREAMING_SNAKE_CASE =keep_in_memory _SCREAMING_SNAKE_CASE =streaming _SCREAMING_SNAKE_CASE =num_proc _SCREAMING_SNAKE_CASE =kwargs @abstractmethod def A ( self : Optional[int] ) -> Union[Dataset, DatasetDict, IterableDataset, IterableDatasetDict]: '''simple docstring''' pass class A__ ( A__ ): def __init__( self : Union[str, Any] , _a : Optional[Features] = None , _a : str = None , _a : bool = False , _a : bool = False , _a : Optional[int] = None , **_a : Tuple , ) -> Dict: '''simple docstring''' _SCREAMING_SNAKE_CASE =features _SCREAMING_SNAKE_CASE =cache_dir _SCREAMING_SNAKE_CASE =keep_in_memory _SCREAMING_SNAKE_CASE =streaming _SCREAMING_SNAKE_CASE =num_proc _SCREAMING_SNAKE_CASE =kwargs @abstractmethod def A ( self : List[str] ) -> Union[Dataset, IterableDataset]: '''simple docstring''' pass
114
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase : Tuple = { "configuration_blenderbot": [ "BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotConfig", "BlenderbotOnnxConfig", ], "tokenization_blenderbot": ["BlenderbotTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[int] = ["BlenderbotTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Tuple = [ "BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotForCausalLM", "BlenderbotForConditionalGeneration", "BlenderbotModel", "BlenderbotPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Tuple = [ "TFBlenderbotForConditionalGeneration", "TFBlenderbotModel", "TFBlenderbotPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : str = [ "FlaxBlenderbotForConditionalGeneration", "FlaxBlenderbotModel", "FlaxBlenderbotPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys lowerCamelCase : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
114
1
# Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def lowerCamelCase__ (_UpperCAmelCase): return 1 / (1 + np.exp(-z)) def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): return (-y * np.log(_UpperCAmelCase) - (1 - y) * np.log(1 - h)).mean() def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = np.dot(_UpperCAmelCase , _UpperCAmelCase) return np.sum(y * scores - np.log(1 + np.exp(_UpperCAmelCase))) def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=7_0000): SCREAMING_SNAKE_CASE = np.zeros(x.shape[1]) for iterations in range(_UpperCAmelCase): SCREAMING_SNAKE_CASE = np.dot(_UpperCAmelCase , _UpperCAmelCase) SCREAMING_SNAKE_CASE = sigmoid_function(_UpperCAmelCase) SCREAMING_SNAKE_CASE = np.dot(x.T , h - y) / y.size SCREAMING_SNAKE_CASE = theta - alpha * gradient # updating the weights SCREAMING_SNAKE_CASE = np.dot(_UpperCAmelCase , _UpperCAmelCase) SCREAMING_SNAKE_CASE = sigmoid_function(_UpperCAmelCase) SCREAMING_SNAKE_CASE = cost_function(_UpperCAmelCase , _UpperCAmelCase) if iterations % 100 == 0: print(F'''loss: {j} \t''') # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": a_ : Union[str, Any] = datasets.load_iris() a_ : List[str] = iris.data[:, :2] a_ : List[str] = (iris.target != 0) * 1 a_ : List[Any] = 0.1 a_ : List[Any] = logistic_reg(alpha, x, y, max_iterations=7_00_00) print('theta: ', theta) # printing the theta i.e our weights vector def lowerCamelCase__ (_UpperCAmelCase): return sigmoid_function( np.dot(_UpperCAmelCase , _UpperCAmelCase)) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='b', label='0') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='r', label='1') ((a_) , (a_)) : int = (x[:, 0].min(), x[:, 0].max()) ((a_) , (a_)) : List[str] = (x[:, 1].min(), x[:, 1].max()) ((a_) , (a_)) : Tuple = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) a_ : Optional[Any] = np.c_[xxa.ravel(), xxa.ravel()] a_ : str = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='black') plt.legend() plt.show()
137
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType a_ : List[Any] = logging.get_logger(__name__) a_ : str = { 'microsoft/deberta-v2-xlarge': 'https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json', 'microsoft/deberta-v2-xxlarge': 'https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json', 'microsoft/deberta-v2-xlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json' ), 'microsoft/deberta-v2-xxlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json' ), } class _snake_case ( A__ ): _lowercase : Any = '''deberta-v2''' def __init__( self , a=12_8100 , a=1536 , a=24 , a=24 , a=6144 , a="gelu" , a=0.1 , a=0.1 , a=512 , a=0 , a=0.02 , a=1E-7 , a=False , a=-1 , a=0 , a=True , a=None , a=0 , a="gelu" , **a , ) -> List[Any]: super().__init__(**a) SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = type_vocab_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = relative_attention SCREAMING_SNAKE_CASE = max_relative_positions SCREAMING_SNAKE_CASE = pad_token_id SCREAMING_SNAKE_CASE = position_biased_input # Backwards compatibility if type(a) == str: SCREAMING_SNAKE_CASE = [x.strip() for x in pos_att_type.lower().split('|')] SCREAMING_SNAKE_CASE = pos_att_type SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = kwargs.get('pooler_hidden_size' , a) SCREAMING_SNAKE_CASE = pooler_dropout SCREAMING_SNAKE_CASE = pooler_hidden_act class _snake_case ( A__ ): @property def SCREAMING_SNAKE_CASE__ ( self) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": SCREAMING_SNAKE_CASE = {0: 'batch', 1: 'choice', 2: 'sequence'} else: SCREAMING_SNAKE_CASE = {0: 'batch', 1: 'sequence'} if self._config.type_vocab_size > 0: return OrderedDict( [('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis)]) else: return OrderedDict([('input_ids', dynamic_axis), ('attention_mask', dynamic_axis)]) @property def SCREAMING_SNAKE_CASE__ ( self) -> int: return 12 def SCREAMING_SNAKE_CASE__ ( self , a , a = -1 , a = -1 , a = -1 , a = False , a = None , a = 3 , a = 40 , a = 40 , a = None , ) -> Mapping[str, Any]: SCREAMING_SNAKE_CASE = super().generate_dummy_inputs(preprocessor=a , framework=a) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
137
1
'''simple docstring''' def lowercase__( __UpperCamelCase: list[list[float]] ): """simple docstring""" SCREAMING_SNAKE_CASE : list[list[float]] = [] for data in source_data: for i, el in enumerate(__UpperCamelCase ): if len(__UpperCamelCase ) < i + 1: data_lists.append([] ) data_lists[i].append(float(__UpperCamelCase ) ) return data_lists def lowercase__( __UpperCamelCase: list[list[float]] ,__UpperCamelCase: list[int] ): """simple docstring""" SCREAMING_SNAKE_CASE : list[list[float]] = [] for dlist, weight in zip(__UpperCamelCase ,__UpperCamelCase ): SCREAMING_SNAKE_CASE : Optional[int] = min(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Any = max(__UpperCamelCase ) SCREAMING_SNAKE_CASE : list[float] = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: SCREAMING_SNAKE_CASE : List[Any] = f"Invalid weight of {weight:f} provided" raise ValueError(__UpperCamelCase ) score_lists.append(__UpperCamelCase ) return score_lists def lowercase__( __UpperCamelCase: list[list[float]] ): """simple docstring""" SCREAMING_SNAKE_CASE : list[float] = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(__UpperCamelCase ): SCREAMING_SNAKE_CASE : Any = final_scores[j] + ele return final_scores def lowercase__( __UpperCamelCase: list[list[float]] ,__UpperCamelCase: list[int] ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = get_data(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Dict = calculate_each_score(__UpperCamelCase ,__UpperCamelCase ) SCREAMING_SNAKE_CASE : Any = generate_final_scores(__UpperCamelCase ) # append scores to source data for i, ele in enumerate(__UpperCamelCase ): source_data[i].append(__UpperCamelCase ) return source_data
363
'''simple docstring''' import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class _a ( unittest.TestCase ): '''simple docstring''' def __init__( self, A, A=2, A=56, A=True, A=True, A=True, A=True, A=99, A=32, A=2, A=2, A=7, A="gelu_new", A=0.1, A=0.1, A=512, A=16, A=2, A=0.02, A=4, A="block_sparse", A=True, A=False, A=2, A=3, ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = parent SCREAMING_SNAKE_CASE : int = batch_size SCREAMING_SNAKE_CASE : List[str] = seq_length SCREAMING_SNAKE_CASE : Optional[Any] = is_training SCREAMING_SNAKE_CASE : Dict = use_attention_mask SCREAMING_SNAKE_CASE : List[Any] = use_token_type_ids SCREAMING_SNAKE_CASE : Optional[Any] = use_labels SCREAMING_SNAKE_CASE : Optional[Any] = vocab_size SCREAMING_SNAKE_CASE : int = hidden_size SCREAMING_SNAKE_CASE : Optional[int] = num_hidden_layers SCREAMING_SNAKE_CASE : List[str] = num_attention_heads SCREAMING_SNAKE_CASE : Dict = intermediate_size SCREAMING_SNAKE_CASE : Optional[int] = hidden_act SCREAMING_SNAKE_CASE : str = hidden_dropout_prob SCREAMING_SNAKE_CASE : Tuple = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Any = max_position_embeddings SCREAMING_SNAKE_CASE : List[Any] = type_vocab_size SCREAMING_SNAKE_CASE : Any = type_sequence_label_size SCREAMING_SNAKE_CASE : List[Any] = initializer_range SCREAMING_SNAKE_CASE : Optional[Any] = num_choices SCREAMING_SNAKE_CASE : int = rescale_embeddings SCREAMING_SNAKE_CASE : Any = attention_type SCREAMING_SNAKE_CASE : str = use_bias SCREAMING_SNAKE_CASE : Tuple = block_size SCREAMING_SNAKE_CASE : List[Any] = num_random_blocks def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) SCREAMING_SNAKE_CASE : Union[str, Any] = None if self.use_attention_mask: SCREAMING_SNAKE_CASE : Dict = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : Optional[Any] = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE : Any = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) SCREAMING_SNAKE_CASE : List[str] = BigBirdConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=A, initializer_range=self.initializer_range, attention_type=self.attention_type, block_size=self.block_size, num_random_blocks=self.num_random_blocks, use_bias=self.use_bias, rescale_embeddings=self.rescale_embeddings, ) return config, input_ids, token_type_ids, attention_mask def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = config_and_inputs SCREAMING_SNAKE_CASE : List[str] = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask, } return config, inputs_dict @require_flax class _a ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' A : str = ( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) A : List[Any] = False A : List[str] = False def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCamelCase_ ( self ): '''simple docstring''' super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCamelCase_ ( self ): '''simple docstring''' super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCamelCase_ ( self ): '''simple docstring''' super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCamelCase_ ( self ): '''simple docstring''' super().test_hidden_states_output() @slow def UpperCamelCase_ ( self ): '''simple docstring''' for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE : Optional[Any] = model_class_name.from_pretrained('google/bigbird-roberta-base' ) self.assertIsNotNone(A ) def UpperCamelCase_ ( self ): '''simple docstring''' if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): SCREAMING_SNAKE_CASE : Any = self._prepare_for_class(A, A ) SCREAMING_SNAKE_CASE : List[str] = model_class(A ) @jax.jit def model_jitted(A, A=None, **A ): return model(input_ids=A, attention_mask=A, **A ) with self.subTest('JIT Enabled' ): SCREAMING_SNAKE_CASE : List[str] = model_jitted(**A ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): SCREAMING_SNAKE_CASE : Optional[Any] = model_jitted(**A ).to_tuple() self.assertEqual(len(A ), len(A ) ) for jitted_output, output in zip(A, A ): self.assertEqual(jitted_output.shape, output.shape ) def UpperCamelCase_ ( self, A, A, A, A=1E-5, A="outputs", A=None ): '''simple docstring''' if name.startswith('outputs.attentions' ): return else: super().check_pt_flax_outputs(A, A, A, A, A, A )
246
0
from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. UpperCAmelCase = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. UpperCAmelCase = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. UpperCAmelCase = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1000)) def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase = len([g for position, g in enumerate(UpperCamelCase__ ) if g == main_target[position]] ) return (item, float(UpperCamelCase__ )) def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase = random.randint(0 , len(UpperCamelCase__ ) - 1 ) lowercase = parent_a[:random_slice] + parent_a[random_slice:] lowercase = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase = list(UpperCamelCase__ ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: lowercase = random.choice(UpperCamelCase__ ) return "".join(UpperCamelCase__ ) def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , ): lowercase = [] # Generate more children proportionally to the fitness score. lowercase = int(parent_a[1] * 100 ) + 1 lowercase = 10 if child_n >= 10 else child_n for _ in range(UpperCamelCase__ ): lowercase = population_score[random.randint(0 , UpperCamelCase__ )][0] lowercase , lowercase = crossover(parent_a[0] , UpperCamelCase__ ) # Append new string to the population list. pop.append(mutate(UpperCamelCase__ , UpperCamelCase__ ) ) pop.append(mutate(UpperCamelCase__ , UpperCamelCase__ ) ) return pop def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = True ): if N_POPULATION < N_SELECTED: lowercase = F'''{N_POPULATION} must be bigger than {N_SELECTED}''' raise ValueError(UpperCamelCase__ ) # Verify that the target contains no genes besides the ones inside genes variable. lowercase = sorted({c for c in target if c not in genes} ) if not_in_genes_list: lowercase = F'''{not_in_genes_list} is not in genes list, evolution cannot converge''' raise ValueError(UpperCamelCase__ ) # Generate random starting population. lowercase = [] for _ in range(UpperCamelCase__ ): population.append(''.join([random.choice(UpperCamelCase__ ) for i in range(len(UpperCamelCase__ ) )] ) ) # Just some logs to know what the algorithms is doing. lowercase , lowercase = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(UpperCamelCase__ ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. lowercase = [evaluate(UpperCamelCase__ , UpperCamelCase__ ) for item in population] # Check if there is a matching evolution. lowercase = sorted(UpperCamelCase__ , key=lambda __SCREAMING_SNAKE_CASE : x[1] , reverse=UpperCamelCase__ ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F'''\nGeneration: {generation}''' F'''\nTotal Population:{total_population}''' F'''\nBest score: {population_score[0][1]}''' F'''\nBest string: {population_score[0][0]}''' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. lowercase = population[: int(N_POPULATION / 3 )] population.clear() population.extend(UpperCamelCase__ ) # Normalize population score to be between 0 and 1. lowercase = [ (item, score / len(UpperCamelCase__ )) for item, score in population_score ] # This is selection for i in range(UpperCamelCase__ ): population.extend(select(population_score[int(UpperCamelCase__ )] , UpperCamelCase__ , UpperCamelCase__ ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(UpperCamelCase__ ) > N_POPULATION: break if __name__ == "__main__": UpperCAmelCase = ( '''This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!''' ) UpperCAmelCase = list( ''' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm''' '''nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\''' ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = basic(target_str, genes_list) print( F"""\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}""" )
195
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class __lowerCAmelCase : """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=13 , lowerCamelCase__=10 , lowerCamelCase__=3 , lowerCamelCase__=2 , lowerCamelCase__=2 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=32 , lowerCamelCase__=5 , lowerCamelCase__=4 , lowerCamelCase__=37 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=10 , lowerCamelCase__=0.02 , lowerCamelCase__="divided_space_time" , lowerCamelCase__=None , ) -> Any: '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = image_size __lowerCamelCase = num_channels __lowerCamelCase = patch_size __lowerCamelCase = num_frames __lowerCamelCase = is_training __lowerCamelCase = use_labels __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = attention_type __lowerCamelCase = initializer_range __lowerCamelCase = scope __lowerCamelCase = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token __lowerCamelCase = (image_size // patch_size) ** 2 __lowerCamelCase = (num_frames) * self.num_patches_per_frame + 1 def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) __lowerCamelCase = None if self.use_labels: __lowerCamelCase = ids_tensor([self.batch_size] , self.num_labels ) __lowerCamelCase = self.get_config() return config, pixel_values, labels def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) __lowerCamelCase = self.num_labels return config def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Tuple: '''simple docstring''' __lowerCamelCase = TimesformerModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = TimesformerForVideoClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model(lowerCamelCase__ ) # verify the logits shape __lowerCamelCase = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , lowerCamelCase__ ) def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = config_and_inputs __lowerCamelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () snake_case_ = ( {'''feature-extraction''': TimesformerModel, '''video-classification''': TimesformerForVideoClassification} if is_torch_available() else {} ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = TimesformerModelTester(self ) __lowerCamelCase = ConfigTester( self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ , hidden_size=37 ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=False ) -> int: '''simple docstring''' __lowerCamelCase = copy.deepcopy(lowerCamelCase__ ) if return_labels: if model_class in get_values(lowerCamelCase__ ): __lowerCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCamelCase__ ) return inputs_dict def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='TimeSformer does not use inputs_embeds' ) def lowercase_ ( self ) -> List[str]: '''simple docstring''' pass def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = model_class(lowerCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowerCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase__ , nn.Linear ) ) def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = model_class(lowerCamelCase__ ) __lowerCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase = [*signature.parameters.keys()] __lowerCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*lowerCamelCase__ ) @slow def lowercase_ ( self ) -> Dict: '''simple docstring''' for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase = TimesformerModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def lowercase_ ( self ) -> List[Any]: '''simple docstring''' if not self.has_attentions: pass else: __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase = True for model_class in self.all_model_classes: __lowerCamelCase = self.model_tester.seq_length __lowerCamelCase = self.model_tester.num_frames __lowerCamelCase = True __lowerCamelCase = False __lowerCamelCase = True __lowerCamelCase = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): __lowerCamelCase = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) __lowerCamelCase = outputs.attentions self.assertEqual(len(lowerCamelCase__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowerCamelCase = True __lowerCamelCase = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): __lowerCamelCase = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) __lowerCamelCase = outputs.attentions self.assertEqual(len(lowerCamelCase__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) __lowerCamelCase = len(lowerCamelCase__ ) # Check attention is always last and order is fine __lowerCamelCase = True __lowerCamelCase = True __lowerCamelCase = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): __lowerCamelCase = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) self.assertEqual(out_len + 1 , len(lowerCamelCase__ ) ) __lowerCamelCase = outputs.attentions self.assertEqual(len(lowerCamelCase__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def lowercase_ ( self ) -> Tuple: '''simple docstring''' def check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): __lowerCamelCase = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): __lowerCamelCase = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) __lowerCamelCase = outputs.hidden_states __lowerCamelCase = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(lowerCamelCase__ ) , lowerCamelCase__ ) __lowerCamelCase = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = True check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCamelCase = True check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def lowerCamelCase_ ( ) -> Any: """simple docstring""" __lowerCamelCase = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename='eating_spaghetti.npy' , repo_type='dataset' ) __lowerCamelCase = np.load(UpperCamelCase__ ) return list(UpperCamelCase__ ) @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase_ ( self ) -> List[Any]: '''simple docstring''' # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = TimesformerForVideoClassification.from_pretrained('facebook/timesformer-base-finetuned-k400' ).to( lowerCamelCase__ ) __lowerCamelCase = self.default_image_processor __lowerCamelCase = prepare_video() __lowerCamelCase = image_processor(video[:8] , return_tensors='pt' ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): __lowerCamelCase = model(**lowerCamelCase__ ) # verify the logits __lowerCamelCase = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , lowerCamelCase__ ) __lowerCamelCase = torch.tensor([-0.30_16, -0.77_13, -0.42_05] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase__ , atol=1e-4 ) )
90
0
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''huggingface/time-series-transformer-tourism-monthly''': ( '''https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json''' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class __snake_case ( snake_case_ ): __lowerCamelCase : Optional[int] = """time_series_transformer""" __lowerCamelCase : List[str] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__( self , snake_case__ = None , snake_case__ = None , snake_case__ = "student_t" , snake_case__ = "nll" , snake_case__ = 1 , snake_case__ = [1, 2, 3, 4, 5, 6, 7] , snake_case__ = "mean" , snake_case__ = 0 , snake_case__ = 0 , snake_case__ = 0 , snake_case__ = 0 , snake_case__ = None , snake_case__ = None , snake_case__ = 32 , snake_case__ = 32 , snake_case__ = 2 , snake_case__ = 2 , snake_case__ = 2 , snake_case__ = 2 , snake_case__ = True , snake_case__ = "gelu" , snake_case__ = 64 , snake_case__ = 0.1 , snake_case__ = 0.1 , snake_case__ = 0.1 , snake_case__ = 0.1 , snake_case__ = 0.1 , snake_case__ = 100 , snake_case__ = 0.02 , snake_case__=True , **snake_case__ , ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : Dict =prediction_length UpperCAmelCase : int =context_length or prediction_length UpperCAmelCase : str =distribution_output UpperCAmelCase : Union[str, Any] =loss UpperCAmelCase : Any =input_size UpperCAmelCase : List[Any] =num_time_features UpperCAmelCase : Any =lags_sequence UpperCAmelCase : Union[str, Any] =scaling UpperCAmelCase : Dict =num_dynamic_real_features UpperCAmelCase : str =num_static_real_features UpperCAmelCase : List[str] =num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(snake_case__ ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) UpperCAmelCase : int =cardinality else: UpperCAmelCase : List[Any] =[0] if embedding_dimension and num_static_categorical_features > 0: if len(snake_case__ ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) UpperCAmelCase : Union[str, Any] =embedding_dimension else: UpperCAmelCase : Optional[Any] =[min(50 , (cat + 1) // 2 ) for cat in self.cardinality] UpperCAmelCase : Union[str, Any] =num_parallel_samples # Transformer architecture configuration UpperCAmelCase : Optional[Any] =input_size * len(snake_case__ ) + self._number_of_features UpperCAmelCase : int =d_model UpperCAmelCase : Dict =encoder_attention_heads UpperCAmelCase : int =decoder_attention_heads UpperCAmelCase : Optional[Any] =encoder_ffn_dim UpperCAmelCase : int =decoder_ffn_dim UpperCAmelCase : Dict =encoder_layers UpperCAmelCase : Tuple =decoder_layers UpperCAmelCase : Optional[Any] =dropout UpperCAmelCase : int =attention_dropout UpperCAmelCase : Dict =activation_dropout UpperCAmelCase : Optional[int] =encoder_layerdrop UpperCAmelCase : int =decoder_layerdrop UpperCAmelCase : str =activation_function UpperCAmelCase : Optional[int] =init_std UpperCAmelCase : Tuple =use_cache super().__init__(is_encoder_decoder=snake_case__ , **snake_case__ ) @property def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
353
import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = {'''vocab_file''': '''vocab.json'''} __snake_case = { '''vocab_file''': { '''mgp-str''': '''https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json''', } } __snake_case = {'''mgp-str''': 27} class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : Union[str, Any] = VOCAB_FILES_NAMES __lowerCamelCase : int = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , snake_case__ , snake_case__="[GO]" , snake_case__="[GO]" , snake_case__="[s]" , snake_case__="[GO]" , **snake_case__ ) -> Any: '''simple docstring''' super().__init__( unk_token=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , pad_token=snake_case__ , **snake_case__ , ) with open(snake_case__ , encoding='''utf-8''' ) as vocab_handle: UpperCAmelCase : int =json.load(snake_case__ ) UpperCAmelCase : List[str] ={v: k for k, v in self.vocab.items()} @property def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' return len(self.vocab ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' return dict(self.vocab , **self.added_tokens_encoder ) def UpperCAmelCase__ ( self , snake_case__ ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : List[str] =[] for s in text: char_tokens.extend(snake_case__ ) return char_tokens def UpperCAmelCase__ ( self , snake_case__ ) -> Union[str, Any]: '''simple docstring''' return self.vocab.get(snake_case__ , self.vocab.get(self.unk_token ) ) def UpperCAmelCase__ ( self , snake_case__ ) -> Union[str, Any]: '''simple docstring''' return self.decoder.get(snake_case__ ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(snake_case__ ): logger.error('''Vocabulary path ({}) should be a directory'''.format(snake_case__ ) ) return UpperCAmelCase : List[Any] =os.path.join( snake_case__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) with open(snake_case__ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=snake_case__ , ensure_ascii=snake_case__ ) + '''\n''' ) return (vocab_file,)
78
0
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Optional[Any] ) -> Dict: '''simple docstring''' A__ = [] A__ = [] A__ = { "^": 3, "*": 2, "/": 2, "%": 2, "+": 1, "-": 1, } # Priority of each operator A__ = len(SCREAMING_SNAKE_CASE_ ) if (len(SCREAMING_SNAKE_CASE_ ) > 7) else 7 # Print table header for output print( "Symbol".center(8 ) , "Stack".center(SCREAMING_SNAKE_CASE_ ) , "Postfix".center(SCREAMING_SNAKE_CASE_ ) , sep=" | " , ) print("-" * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(SCREAMING_SNAKE_CASE_ ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(SCREAMING_SNAKE_CASE_ ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(SCREAMING_SNAKE_CASE_ ) == 0: stack.append(SCREAMING_SNAKE_CASE_ ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(SCREAMING_SNAKE_CASE_ ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(SCREAMING_SNAKE_CASE_ ) # push x to stack print( x.center(8 ) , ("".join(SCREAMING_SNAKE_CASE_ )).ljust(SCREAMING_SNAKE_CASE_ ) , ("".join(SCREAMING_SNAKE_CASE_ )).ljust(SCREAMING_SNAKE_CASE_ ) , sep=" | " , ) # Output in tabular format while len(SCREAMING_SNAKE_CASE_ ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( " ".center(8 ) , ("".join(SCREAMING_SNAKE_CASE_ )).ljust(SCREAMING_SNAKE_CASE_ ) , ("".join(SCREAMING_SNAKE_CASE_ )).ljust(SCREAMING_SNAKE_CASE_ ) , sep=" | " , ) # Output in tabular format return "".join(SCREAMING_SNAKE_CASE_ ) # return Postfix as str def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Tuple ) -> List[str]: '''simple docstring''' A__ = list(infix[::-1] ) # reverse the infix equation for i in range(len(SCREAMING_SNAKE_CASE_ ) ): if infix[i] == "(": A__ = ")" # change "(" to ")" elif infix[i] == ")": A__ = "(" # change ")" to "(" return (infix_2_postfix("".join(SCREAMING_SNAKE_CASE_ ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": lowerCAmelCase__ = input("""\nEnter an Infix Equation = """) # Input an Infix equation lowerCAmelCase__ = """""".join(Infix.split()) # Remove spaces from the input print("""\n\t""", Infix, """(Infix) -> """, infix_2_prefix(Infix), """(Prefix)""")
68
'''simple docstring''' import os from math import logaa def __lowerCamelCase ( __snake_case : str = "base_exp.txt" ) -> int: """simple docstring""" A__ : float =0 A__ : Optional[int] =0 for i, line in enumerate(open(os.path.join(os.path.dirname(__snake_case ), __snake_case ) ) ): A__ , A__ : Union[str, Any] =list(map(__snake_case, line.split(""",""" ) ) ) if x * logaa(__snake_case ) > largest: A__ : List[str] =x * logaa(__snake_case ) A__ : Any =i + 1 return result if __name__ == "__main__": print(solution())
134
0
from __future__ import annotations import os from typing import Any import requests A : Any = 'https://api.github.com' # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user A : List[str] = BASE_URL + '/user' # https://github.com/settings/tokens A : Optional[int] = os.environ.get('USER_TOKEN', '') def UpperCamelCase ( __magic_name__ : str ) -> dict[Any, Any]: """simple docstring""" lowercase__ = { """Authorization""": f'''token {auth_token}''', """Accept""": """application/vnd.github.v3+json""", } return requests.get(__magic_name__ , headers=__magic_name__ ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(F'{key}: {value}') else: raise ValueError('\'USER_TOKEN\' field cannot be empty.')
351
import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor A : List[Any] = logging.get_logger(__name__) class A ( UpperCAmelCase__ ): '''simple docstring''' def __init__(self : List[Any] , *_UpperCAmelCase : int , **_UpperCAmelCase : List[str] ) -> None: """simple docstring""" warnings.warn( """The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use CLIPImageProcessor instead.""" , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
146
0
"""simple docstring""" from __future__ import annotations def __lowerCamelCase ( a_ : list[float] , a_ : list[float] ) -> float: __SCREAMING_SNAKE_CASE :Any = sorted(numsa + numsa ) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :str = divmod(len(a_ ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase_ = [float(x) for x in input("Enter the elements of first array: ").split()] lowerCamelCase_ = [float(x) for x in input("Enter the elements of second array: ").split()] print(f'The median of two arrays is: {median_of_two_arrays(array_a, array_a)}')
191
"""simple docstring""" def __lowerCamelCase ( a_ : int , a_ : str ) -> Optional[int]: __SCREAMING_SNAKE_CASE :Optional[int] = [1] for i in range(2 , a_ ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" __SCREAMING_SNAKE_CASE :List[str] = [] __SCREAMING_SNAKE_CASE :Optional[Any] = list(range(a_ ) ) # Find permutation while factorials: __SCREAMING_SNAKE_CASE :Optional[int] = factorials.pop() __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :Dict = divmod(a_ , a_ ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
191
1
import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase__ : Tuple = logging.get_logger(__name__) lowerCamelCase__ : str = {'vocab_file': 'vocab.txt'} lowerCamelCase__ : Optional[Any] = { 'vocab_file': { 'openbmb/cpm-ant-10b': 'https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt', }, } lowerCamelCase__ : List[str] = { 'openbmb/cpm-ant-10b': 1_024, } def UpperCAmelCase_ ( __UpperCAmelCase : int ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = collections.OrderedDict() with open(__UpperCAmelCase , 'r' , encoding='utf-8' ) as reader: SCREAMING_SNAKE_CASE_ = reader.readlines() for index, token in enumerate(__UpperCAmelCase ): SCREAMING_SNAKE_CASE_ = token.rstrip('\n' ) SCREAMING_SNAKE_CASE_ = index return vocab class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Optional[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple="<unk>" , _lowerCAmelCase : Optional[Any]=200 ): SCREAMING_SNAKE_CASE_ = vocab SCREAMING_SNAKE_CASE_ = unk_token SCREAMING_SNAKE_CASE_ = max_input_chars_per_word def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = list(_lowerCAmelCase ) if len(_lowerCAmelCase ) > self.max_input_chars_per_word: return [self.unk_token] SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = [] while start < len(_lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = len(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = None while start < end: SCREAMING_SNAKE_CASE_ = ''.join(chars[start:end] ) if substr in self.vocab: SCREAMING_SNAKE_CASE_ = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = end return sub_tokens class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = ["input_ids", "attention_mask"] lowercase_ = False def __init__( self : Any , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int]="<d>" , _lowerCAmelCase : str="</d>" , _lowerCAmelCase : int="<s>" , _lowerCAmelCase : str="</s>" , _lowerCAmelCase : Any="<pad>" , _lowerCAmelCase : Any="<unk>" , _lowerCAmelCase : Optional[int]="</n>" , _lowerCAmelCase : str="</_>" , _lowerCAmelCase : Tuple="left" , **_lowerCAmelCase : Tuple , ): requires_backends(self , ['jieba'] ) super().__init__( bod_token=_lowerCAmelCase , eod_token=_lowerCAmelCase , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , line_token=_lowerCAmelCase , space_token=_lowerCAmelCase , padding_side=_lowerCAmelCase , **_lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ = bod_token SCREAMING_SNAKE_CASE_ = eod_token SCREAMING_SNAKE_CASE_ = load_vocab(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.encoder[space_token] SCREAMING_SNAKE_CASE_ = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] SCREAMING_SNAKE_CASE_ = collections.OrderedDict(sorted(self.encoder.items() , key=lambda _lowerCAmelCase : x[1] ) ) SCREAMING_SNAKE_CASE_ = {v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE_ = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def lowerCAmelCase_ ( self : Any ): return self.encoder[self.bod_token] @property def lowerCAmelCase_ ( self : List[str] ): return self.encoder[self.eod_token] @property def lowerCAmelCase_ ( self : List[str] ): return self.encoder["\n"] @property def lowerCAmelCase_ ( self : Any ): return len(self.encoder ) def lowerCAmelCase_ ( self : Union[str, Any] ): return dict(self.encoder , **self.added_tokens_encoder ) def lowerCAmelCase_ ( self : Tuple , _lowerCAmelCase : Tuple ): SCREAMING_SNAKE_CASE_ = [] for x in jieba.cut(_lowerCAmelCase , cut_all=_lowerCAmelCase ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(_lowerCAmelCase ) ) return output_tokens def lowerCAmelCase_ ( self : int , _lowerCAmelCase : str , **_lowerCAmelCase : Optional[Any] ): SCREAMING_SNAKE_CASE_ = [i for i in token_ids if i >= 0] SCREAMING_SNAKE_CASE_ = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[Any] , _lowerCAmelCase : Union[str, Any] ): return token in self.encoder def lowerCAmelCase_ ( self : int , _lowerCAmelCase : List[str] ): return "".join(_lowerCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : Optional[int] ): return self.encoder.get(_lowerCAmelCase , self.encoder.get(self.unk_token ) ) def lowerCAmelCase_ ( self : Any , _lowerCAmelCase : Optional[int] ): return self.decoder.get(_lowerCAmelCase , self.unk_token ) def lowerCAmelCase_ ( self : Any , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ): if os.path.isdir(_lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = os.path.join( _lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) else: SCREAMING_SNAKE_CASE_ = (filename_prefix + '-' if filename_prefix else '') + save_directory SCREAMING_SNAKE_CASE_ = 0 if " " in self.encoder: SCREAMING_SNAKE_CASE_ = self.encoder[' '] del self.encoder[" "] if "\n" in self.encoder: SCREAMING_SNAKE_CASE_ = self.encoder['\n'] del self.encoder["\n"] SCREAMING_SNAKE_CASE_ = collections.OrderedDict(sorted(self.encoder.items() , key=lambda _lowerCAmelCase : x[1] ) ) with open(_lowerCAmelCase , 'w' , encoding='utf-8' ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( F"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." ' Please check that the vocabulary is not corrupted!' ) SCREAMING_SNAKE_CASE_ = token_index writer.write(token + '\n' ) index += 1 return (vocab_file,) def lowerCAmelCase_ ( self : int , _lowerCAmelCase : List[int] , _lowerCAmelCase : List[int] = None ): if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def lowerCAmelCase_ ( self : List[str] , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None , _lowerCAmelCase : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCAmelCase , token_ids_a=_lowerCAmelCase , already_has_special_tokens=_lowerCAmelCase ) if token_ids_a is not None: return [1] + ([0] * len(_lowerCAmelCase )) + [1] + ([0] * len(_lowerCAmelCase )) return [1] + ([0] * len(_lowerCAmelCase ))
210
from abc import ABC, abstractmethod from argparse import ArgumentParser class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' @staticmethod @abstractmethod def lowerCAmelCase_ ( _lowerCAmelCase : ArgumentParser ): raise NotImplementedError() @abstractmethod def lowerCAmelCase_ ( self : Dict ): raise NotImplementedError()
210
1
'''simple docstring''' import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) class lowerCamelCase_ (snake_case__ ): '''simple docstring''' __UpperCamelCase: Optional[int] = ["input_features", "is_longer"] def __init__( self : str , A : int=64 , A : Dict=48000 , A : str=480 , A : List[Any]=10 , A : Optional[Any]=1024 , A : Tuple=0.0 , A : List[Any]=False , A : float = 0 , A : float = 14000 , A : int = None , A : str = "fusion" , A : str = "repeatpad" , **A : Dict , ): super().__init__( feature_size=A , sampling_rate=A , padding_value=A , return_attention_mask=A , **A , ) _UpperCAmelCase : Optional[Any] = top_db _UpperCAmelCase : Dict = truncation _UpperCAmelCase : List[Any] = padding _UpperCAmelCase : Optional[Any] = fft_window_size _UpperCAmelCase : Dict = (fft_window_size >> 1) + 1 _UpperCAmelCase : Any = hop_length _UpperCAmelCase : Tuple = max_length_s _UpperCAmelCase : str = max_length_s * sampling_rate _UpperCAmelCase : Any = sampling_rate _UpperCAmelCase : Optional[int] = frequency_min _UpperCAmelCase : str = frequency_max _UpperCAmelCase : Union[str, Any] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=A , min_frequency=A , max_frequency=A , sampling_rate=A , norm=A , mel_scale="htk" , ) _UpperCAmelCase : Tuple = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=A , min_frequency=A , max_frequency=A , sampling_rate=A , norm="slaney" , mel_scale="slaney" , ) def _A ( self : List[str] ): _UpperCAmelCase : Union[str, Any] = copy.deepcopy(self.__dict__ ) _UpperCAmelCase : Dict = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def _A ( self : Optional[Any] , A : np.array , A : Optional[np.array] = None ): _UpperCAmelCase : Dict = spectrogram( A , window_function(self.fft_window_size , "hann" ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=A , log_mel="dB" , ) return log_mel_spectrogram.T def _A ( self : str , A : str , A : List[str] , A : List[Any] ): _UpperCAmelCase : List[str] = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk _UpperCAmelCase : Optional[Any] = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk _UpperCAmelCase : Tuple = [0] # randomly choose index for each part _UpperCAmelCase : Dict = np.random.choice(ranges[0] ) _UpperCAmelCase : str = np.random.choice(ranges[1] ) _UpperCAmelCase : Tuple = np.random.choice(ranges[2] ) _UpperCAmelCase : str = mel[idx_front : idx_front + chunk_frames, :] _UpperCAmelCase : str = mel[idx_middle : idx_middle + chunk_frames, :] _UpperCAmelCase : List[Any] = mel[idx_back : idx_back + chunk_frames, :] _UpperCAmelCase : Dict = torch.tensor(mel[None, None, :] ) _UpperCAmelCase : Optional[Any] = torch.nn.functional.interpolate( A , size=[chunk_frames, 64] , mode="bilinear" , align_corners=A ) _UpperCAmelCase : List[str] = mel_shrink[0][0].numpy() _UpperCAmelCase : str = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def _A ( self : List[Any] , A : np.array , A : List[str] , A : Any , A : Optional[int] ): if waveform.shape[0] > max_length: if truncation == "rand_trunc": _UpperCAmelCase : int = True # random crop to max_length (for compatibility) -> this should be handled by self.pad _UpperCAmelCase : str = len(A ) - max_length _UpperCAmelCase : str = np.random.randint(0 , overflow + 1 ) _UpperCAmelCase : int = waveform[idx : idx + max_length] _UpperCAmelCase : Any = self._np_extract_fbank_features(A , self.mel_filters_slaney )[None, :] elif truncation == "fusion": _UpperCAmelCase : Tuple = self._np_extract_fbank_features(A , self.mel_filters ) _UpperCAmelCase : List[str] = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed _UpperCAmelCase : Optional[Any] = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. _UpperCAmelCase : Any = np.stack([mel, mel, mel, mel] , axis=0 ) _UpperCAmelCase : int = False else: _UpperCAmelCase : Tuple = self._random_mel_fusion(A , A , A ) _UpperCAmelCase : Any = True else: raise NotImplementedError(F"""data_truncating {truncation} not implemented""" ) else: _UpperCAmelCase : Optional[Any] = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": _UpperCAmelCase : str = int(max_length / len(A ) ) _UpperCAmelCase : Dict = np.stack(np.tile(A , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": _UpperCAmelCase : Dict = int(max_length / len(A ) ) _UpperCAmelCase : List[str] = np.stack(np.tile(A , A ) ) _UpperCAmelCase : Optional[Any] = np.pad(A , (0, max_length - waveform.shape[0]) , mode="constant" , constant_values=0 ) if truncation == "fusion": _UpperCAmelCase : str = self._np_extract_fbank_features(A , self.mel_filters ) _UpperCAmelCase : Optional[int] = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: _UpperCAmelCase : List[str] = self._np_extract_fbank_features(A , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : Union[str, Any] , A : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , A : str = None , A : Optional[str] = None , A : Optional[int] = None , A : Optional[int] = None , A : Optional[Union[str, TensorType]] = None , **A : List[str] , ): _UpperCAmelCase : int = truncation if truncation is not None else self.truncation _UpperCAmelCase : Optional[int] = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" F""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" F""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) _UpperCAmelCase : Any = isinstance(A , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" ) _UpperCAmelCase : Optional[Any] = is_batched_numpy or ( isinstance(A , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _UpperCAmelCase : int = [np.asarray(A , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(A , np.ndarray ): _UpperCAmelCase : List[str] = np.asarray(A , dtype=np.floataa ) elif isinstance(A , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _UpperCAmelCase : Any = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _UpperCAmelCase : List[str] = [np.asarray(A )] # convert to mel spectrogram, truncate and pad if needed. _UpperCAmelCase : Dict = [ self._get_input_mel(A , max_length if max_length else self.nb_max_samples , A , A ) for waveform in raw_speech ] _UpperCAmelCase : int = [] _UpperCAmelCase : Optional[Any] = [] for mel, longer in padded_inputs: input_mel.append(A ) is_longer.append(A ) if truncation == "fusion" and sum(A ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer _UpperCAmelCase : Union[str, Any] = np.random.randint(0 , len(A ) ) _UpperCAmelCase : Optional[Any] = True if isinstance(input_mel[0] , A ): _UpperCAmelCase : List[str] = [np.asarray(A , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool _UpperCAmelCase : Tuple = [[longer] for longer in is_longer] _UpperCAmelCase : Optional[Any] = {"input_features": input_mel, "is_longer": is_longer} _UpperCAmelCase : Tuple = BatchFeature(A ) if return_tensors is not None: _UpperCAmelCase : List[Any] = input_features.convert_to_tensors(A ) return input_features
31
"""simple docstring""" import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed __UpperCamelCase : List[str] = '''true''' def __SCREAMING_SNAKE_CASE ( A_ , A_=82 , A_=16 ): set_seed(42 ) lowerCAmelCase__ : Union[str, Any] = RegressionModel() lowerCAmelCase__ : Optional[int] = deepcopy(A_ ) lowerCAmelCase__ : Any = RegressionDataset(length=A_ ) lowerCAmelCase__ : List[str] = DataLoader(A_ , batch_size=A_ ) model.to(accelerator.device ) lowerCAmelCase__ ,lowerCAmelCase__ : Dict = accelerator.prepare(A_ , A_ ) return model, ddp_model, dataloader def __SCREAMING_SNAKE_CASE ( A_ , A_=False ): lowerCAmelCase__ : List[str] = AutoTokenizer.from_pretrained('''hf-internal-testing/mrpc-bert-base-cased''' ) lowerCAmelCase__ : List[str] = load_dataset('''glue''' , '''mrpc''' , split='''validation''' ) def tokenize_function(A_ ): lowerCAmelCase__ : Optional[Any] = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=A_ , max_length=A_ ) return outputs with accelerator.main_process_first(): lowerCAmelCase__ : Dict = dataset.map( A_ , batched=A_ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) lowerCAmelCase__ : int = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(A_ ): if use_longest: return tokenizer.pad(A_ , padding='''longest''' , return_tensors='''pt''' ) return tokenizer.pad(A_ , padding='''max_length''' , max_length=1_28 , return_tensors='''pt''' ) return DataLoader(A_ , shuffle=A_ , collate_fn=A_ , batch_size=16 ) def __SCREAMING_SNAKE_CASE ( A_ , A_ ): lowerCAmelCase__ : Union[str, Any] = Accelerator(dispatch_batches=A_ , split_batches=A_ ) lowerCAmelCase__ : str = get_dataloader(A_ , not dispatch_batches ) lowerCAmelCase__ : Optional[int] = AutoModelForSequenceClassification.from_pretrained( '''hf-internal-testing/mrpc-bert-base-cased''' , return_dict=A_ ) lowerCAmelCase__ ,lowerCAmelCase__ : Union[str, Any] = accelerator.prepare(A_ , A_ ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ ): lowerCAmelCase__ : Union[str, Any] = [] for batch in dataloader: lowerCAmelCase__ ,lowerCAmelCase__ : Optional[Any] = batch.values() with torch.no_grad(): lowerCAmelCase__ : List[str] = model(A_ ) lowerCAmelCase__ ,lowerCAmelCase__ : str = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) lowerCAmelCase__ ,lowerCAmelCase__ : int = [], [] for logit, targ in logits_and_targets: logits.append(A_ ) targs.append(A_ ) lowerCAmelCase__ ,lowerCAmelCase__ : List[str] = torch.cat(A_ ), torch.cat(A_ ) return logits, targs def __SCREAMING_SNAKE_CASE ( A_ , A_=82 , A_=False , A_=False , A_=16 ): lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : Union[str, Any] = get_basic_setup(A_ , A_ , A_ ) lowerCAmelCase__ ,lowerCAmelCase__ : Optional[int] = generate_predictions(A_ , A_ , A_ ) assert ( len(A_ ) == num_samples ), f'Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(A_ )}' def __SCREAMING_SNAKE_CASE ( A_ = False , A_ = False ): lowerCAmelCase__ : Optional[Any] = evaluate.load('''glue''' , '''mrpc''' ) lowerCAmelCase__ ,lowerCAmelCase__ : Optional[int] = get_mrpc_setup(A_ , A_ ) # First do baseline lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : Any = setup['''no'''] model.to(A_ ) model.eval() for batch in dataloader: batch.to(A_ ) with torch.inference_mode(): lowerCAmelCase__ : Optional[int] = model(**A_ ) lowerCAmelCase__ : Dict = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=A_ , references=batch['''labels'''] ) lowerCAmelCase__ : Dict = metric.compute() # Then do distributed lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : Optional[Any] = setup['''ddp'''] model.eval() for batch in dataloader: with torch.inference_mode(): lowerCAmelCase__ : Union[str, Any] = model(**A_ ) lowerCAmelCase__ : int = outputs.logits.argmax(dim=-1 ) lowerCAmelCase__ : int = batch['''labels'''] lowerCAmelCase__ ,lowerCAmelCase__ : int = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=A_ , references=A_ ) lowerCAmelCase__ : List[Any] = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), f'Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n' def __SCREAMING_SNAKE_CASE ( ): lowerCAmelCase__ : List[str] = Accelerator(split_batches=A_ , dispatch_batches=A_ ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('''**Testing gather_for_metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(f'With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`' ) test_mrpc(A_ , A_ ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test torch metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: lowerCAmelCase__ : Optional[Any] = Accelerator(split_batches=A_ , dispatch_batches=A_ ) if accelerator.is_local_main_process: print(f'With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99' ) test_torch_metrics(A_ , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test last batch is not dropped when perfectly divisible**''' ) lowerCAmelCase__ : List[str] = Accelerator() test_torch_metrics(A_ , 5_12 ) accelerator.state._reset_state() def __SCREAMING_SNAKE_CASE ( A_ ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
106
0
import os import pytest from transformers.dynamic_module_utils import get_imports SCREAMING_SNAKE_CASE__ = """ import os """ SCREAMING_SNAKE_CASE__ = """ def foo(): import os return False """ SCREAMING_SNAKE_CASE__ = """ def foo(): def bar(): if True: import os return False return bar() """ SCREAMING_SNAKE_CASE__ = """ import os try: import bar except ImportError: raise ValueError() """ SCREAMING_SNAKE_CASE__ = """ import os def foo(): try: import bar except ImportError: raise ValueError() """ SCREAMING_SNAKE_CASE__ = """ import os try: import bar except (ImportError, AttributeError): raise ValueError() """ SCREAMING_SNAKE_CASE__ = """ import os try: import bar except ImportError as e: raise ValueError() """ SCREAMING_SNAKE_CASE__ = """ import os try: import bar except: raise ValueError() """ SCREAMING_SNAKE_CASE__ = """ import os try: import bar import baz except ImportError: raise ValueError() """ SCREAMING_SNAKE_CASE__ = """ import os try: import bar import baz except ImportError: x = 1 raise ValueError() """ SCREAMING_SNAKE_CASE__ = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize("case" , __lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Dict , __lowerCamelCase: Any ): '''simple docstring''' lowercase_ = os.path.join(__lowerCamelCase , "test_file.py" ) with open(__lowerCamelCase , "w" ) as _tmp_file: _tmp_file.write(__lowerCamelCase ) lowercase_ = get_imports(__lowerCamelCase ) assert parsed_imports == ["os"]
367
import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def A__ ( self ) -> Any: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def A__ ( self ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) lowercase_ = UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("AttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "AttnUpBlock2D") , ) return model @property def A__ ( self ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) lowercase_ = UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , cross_attention_dim=10 , ) return model @property def A__ ( self ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) lowercase_ = AutoencoderKL( sample_size=(128, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("DownEncoderBlock2D", "DownEncoderBlock2D") , up_block_types=("UpDecoderBlock2D", "UpDecoderBlock2D") , ) lowercase_ = UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("AttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "AttnUpBlock2D") , ) return vqvae, unet @slow def A__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ = "cpu" # ensure determinism for the device-dependent torch.Generator lowercase_ = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) lowercase_ = DDPMScheduler() lowercase_ = AudioDiffusionPipeline(vqvae=UpperCAmelCase , unet=self.dummy_unet , mel=UpperCAmelCase , scheduler=UpperCAmelCase ) lowercase_ = pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowercase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(42 ) lowercase_ = pipe(generator=UpperCAmelCase , steps=4 ) lowercase_ = output.audios[0] lowercase_ = output.images[0] lowercase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(42 ) lowercase_ = pipe(generator=UpperCAmelCase , steps=4 , return_dict=UpperCAmelCase ) lowercase_ = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) lowercase_ = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] lowercase_ = np.frombuffer(image_from_tuple.tobytes() , dtype="uint8" )[:10] lowercase_ = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 lowercase_ = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) lowercase_ = DDIMScheduler() lowercase_ = self.dummy_vqvae_and_unet lowercase_ = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=UpperCAmelCase , scheduler=UpperCAmelCase ) lowercase_ = pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) np.random.seed(0 ) lowercase_ = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) lowercase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(42 ) lowercase_ = pipe(raw_audio=UpperCAmelCase , generator=UpperCAmelCase , start_step=5 , steps=10 ) lowercase_ = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) lowercase_ = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] lowercase_ = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 lowercase_ = self.dummy_unet_condition lowercase_ = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=UpperCAmelCase , mel=UpperCAmelCase , scheduler=UpperCAmelCase ) lowercase_ = pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) np.random.seed(0 ) lowercase_ = torch.rand((1, 1, 10) ) lowercase_ = pipe(generator=UpperCAmelCase , encoding=UpperCAmelCase ) lowercase_ = output.images[0] lowercase_ = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] lowercase_ = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def A__ ( self ) -> Optional[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = torch_device lowercase_ = DiffusionPipeline.from_pretrained("teticio/audio-diffusion-ddim-256" ) lowercase_ = pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowercase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(42 ) lowercase_ = pipe(generator=UpperCAmelCase ) lowercase_ = output.audios[0] lowercase_ = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] lowercase_ = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] lowercase_ = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
297
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) _SCREAMING_SNAKE_CASE : Tuple = {"configuration_beit": ["BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BeitConfig", "BeitOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : str = ["BeitFeatureExtractor"] _SCREAMING_SNAKE_CASE : Dict = ["BeitImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : List[Any] = [ "BEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "BeitForImageClassification", "BeitForMaskedImageModeling", "BeitForSemanticSegmentation", "BeitModel", "BeitPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Any = [ "FlaxBeitForImageClassification", "FlaxBeitForMaskedImageModeling", "FlaxBeitModel", "FlaxBeitPreTrainedModel", ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
85
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Dict = { "BridgeTower/bridgetower-base": "https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json", "BridgeTower/bridgetower-base-itm-mlm": ( "https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json" ), } class _snake_case ( lowercase_ ): lowerCAmelCase_ : Dict = "bridgetower_vision_model" def __init__( self , a__=768 , a__=12 , a__=3 , a__=16 , a__=288 , a__=1 , a__=1e-05 , a__=False , a__=True , a__=False , **a__ , ) -> int: '''simple docstring''' super().__init__(**a__ ) snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_channels snake_case_ = patch_size snake_case_ = image_size snake_case_ = initializer_factor snake_case_ = layer_norm_eps snake_case_ = stop_gradient snake_case_ = share_layernorm snake_case_ = remove_last_layer @classmethod def lowerCAmelCase__ ( cls , a__ , **a__ ) -> "PretrainedConfig": '''simple docstring''' snake_case_ , snake_case_ = cls.get_config_dict(a__ , **a__ ) if config_dict.get("model_type" ) == "bridgetower": snake_case_ = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(a__ , **a__ ) class _snake_case ( lowercase_ ): lowerCAmelCase_ : Any = "bridgetower_text_model" def __init__( self , a__=50_265 , a__=768 , a__=12 , a__=12 , a__=1 , a__=3_072 , a__="gelu" , a__=0.1 , a__=0.1 , a__=514 , a__=1 , a__=1e-05 , a__=1 , a__=0 , a__=2 , a__="absolute" , a__=True , **a__ , ) -> Optional[int]: '''simple docstring''' super().__init__(**a__ ) snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = hidden_act snake_case_ = initializer_factor snake_case_ = intermediate_size snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = layer_norm_eps snake_case_ = position_embedding_type snake_case_ = use_cache snake_case_ = pad_token_id snake_case_ = bos_token_id snake_case_ = eos_token_id @classmethod def lowerCAmelCase__ ( cls , a__ , **a__ ) -> "PretrainedConfig": '''simple docstring''' snake_case_ , snake_case_ = cls.get_config_dict(a__ , **a__ ) if config_dict.get("model_type" ) == "bridgetower": snake_case_ = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(a__ , **a__ ) class _snake_case ( lowercase_ ): lowerCAmelCase_ : Union[str, Any] = "bridgetower" def __init__( self , a__=True , a__="gelu" , a__=768 , a__=1 , a__=1e-05 , a__=False , a__="add" , a__=12 , a__=6 , a__=False , a__=False , a__=None , a__=None , **a__ , ) -> int: '''simple docstring''' snake_case_ = kwargs.pop("text_config_dict" , a__ ) snake_case_ = kwargs.pop("vision_config_dict" , a__ ) super().__init__(**a__ ) snake_case_ = share_cross_modal_transformer_layers snake_case_ = hidden_act snake_case_ = hidden_size snake_case_ = initializer_factor snake_case_ = layer_norm_eps snake_case_ = share_link_tower_layers snake_case_ = link_tower_type snake_case_ = num_attention_heads snake_case_ = num_hidden_layers snake_case_ = tie_word_embeddings snake_case_ = init_layernorm_from_vision_encoder if text_config is None: snake_case_ = {} logger.info("`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values." ) if vision_config is None: snake_case_ = {} logger.info("`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values." ) snake_case_ = BridgeTowerTextConfig(**a__ ) snake_case_ = BridgeTowerVisionConfig(**a__ ) @classmethod def lowerCAmelCase__ ( cls , a__ , a__ , **a__ ) -> List[Any]: '''simple docstring''' return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **a__ ) def lowerCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ = copy.deepcopy(self.__dict__ ) snake_case_ = self.text_config.to_dict() snake_case_ = self.vision_config.to_dict() snake_case_ = self.__class__.model_type return output
85
1
"""simple docstring""" from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig UpperCAmelCase : int = { 'susnato/ernie-m-base_pytorch': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json', 'susnato/ernie-m-large_pytorch': 'https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json', } class __lowerCAmelCase ( _UpperCamelCase): _lowercase : Dict = 'ernie_m' _lowercase : Dict[str, str] = {"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__( self , lowerCAmelCase__ = 2_5_0_0_0_2 , lowerCAmelCase__ = 7_6_8 , lowerCAmelCase__ = 1_2 , lowerCAmelCase__ = 1_2 , lowerCAmelCase__ = 3_0_7_2 , lowerCAmelCase__ = "gelu" , lowerCAmelCase__ = 0.1 , lowerCAmelCase__ = 0.1 , lowerCAmelCase__ = 5_1_4 , lowerCAmelCase__ = 0.02 , lowerCAmelCase__ = 1 , lowerCAmelCase__ = 1E-05 , lowerCAmelCase__=None , lowerCAmelCase__=False , lowerCAmelCase__=0.0 , **lowerCAmelCase__ , ) -> Union[str, Any]: '''simple docstring''' super().__init__(pad_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) a__ : List[str] =vocab_size a__ : List[str] =hidden_size a__ : List[Any] =num_hidden_layers a__ : Tuple =num_attention_heads a__ : Union[str, Any] =intermediate_size a__ : Any =hidden_act a__ : Any =hidden_dropout_prob a__ : int =attention_probs_dropout_prob a__ : str =max_position_embeddings a__ : Any =initializer_range a__ : Union[str, Any] =layer_norm_eps a__ : Union[str, Any] =classifier_dropout a__ : List[Any] =is_decoder a__ : int =act_dropout
368
from __future__ import annotations import math def _A ( SCREAMING_SNAKE_CASE : int ): """simple docstring""" if num <= 0: a__ : List[str] =f'''{num}: Invalid input, please enter a positive integer.''' raise ValueError(SCREAMING_SNAKE_CASE ) a__ : Union[str, Any] =[True] * (num + 1) a__ : Union[str, Any] =[] a__ : str =2 a__ : Any =int(math.sqrt(SCREAMING_SNAKE_CASE ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(SCREAMING_SNAKE_CASE ) # Set multiples of start be False for i in range(start * start , num + 1 , SCREAMING_SNAKE_CASE ): if sieve[i] is True: a__ : Optional[int] =False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(SCREAMING_SNAKE_CASE ) return prime if __name__ == "__main__": print(prime_sieve(int(input("""Enter a positive integer: """).strip())))
148
0
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ ): return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
151
"""simple docstring""" import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex __lowerCAmelCase : int =logging.getLogger(__name__) class _A : def __init__( self ): """simple docstring""" lowercase = False def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" if not self.initialized: lowercase = RagRetriever( __lowerCAmelCase , question_encoder_tokenizer=__lowerCAmelCase , generator_tokenizer=__lowerCAmelCase , index=__lowerCAmelCase , init_retrieval=__lowerCAmelCase , ) lowercase = True def A__ ( self ): """simple docstring""" self.retriever.index.init_index() def A__ ( self , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase , lowercase = self.retriever._main_retrieve(__lowerCAmelCase , __lowerCAmelCase ) return doc_ids, retrieved_doc_embeds class _A ( lowerCAmelCase ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None ): """simple docstring""" if index is not None and index.is_initialized() and len(__lowerCAmelCase ) > 0: raise ValueError( """When using Ray for distributed fine-tuning, """ """you'll need to provide the paths instead, """ """as the dataset and the index are loaded """ """separately. More info in examples/rag/use_own_knowledge_dataset.py """ ) super().__init__( __lowerCAmelCase , question_encoder_tokenizer=__lowerCAmelCase , generator_tokenizer=__lowerCAmelCase , index=__lowerCAmelCase , init_retrieval=__lowerCAmelCase , ) lowercase = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) for worker in self.retrieval_workers ] ) def A__ ( self ): """simple docstring""" logger.info("""initializing retrieval""" ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def A__ ( self , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. lowercase = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] lowercase , lowercase = ray.get(random_worker.retrieve.remote(__lowerCAmelCase , __lowerCAmelCase ) ) else: lowercase , lowercase = self._main_retrieve(__lowerCAmelCase , __lowerCAmelCase ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__lowerCAmelCase ) @classmethod def A__ ( cls , __lowerCAmelCase , __lowerCAmelCase=None , **__lowerCAmelCase ): """simple docstring""" return super(__lowerCAmelCase , cls ).get_tokenizers(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) @classmethod def A__ ( cls , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , **__lowerCAmelCase ): """simple docstring""" lowercase = kwargs.pop("""config""" , __lowerCAmelCase ) or RagConfig.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase ) lowercase = RagTokenizer.from_pretrained(__lowerCAmelCase , config=__lowerCAmelCase ) lowercase = rag_tokenizer.question_encoder lowercase = rag_tokenizer.generator if indexed_dataset is not None: lowercase = """custom""" lowercase = CustomHFIndex(config.retrieval_vector_size , __lowerCAmelCase ) else: lowercase = cls._build_index(__lowerCAmelCase ) return cls( __lowerCAmelCase , question_encoder_tokenizer=__lowerCAmelCase , generator_tokenizer=__lowerCAmelCase , retrieval_workers=__lowerCAmelCase , index=__lowerCAmelCase , )
197
0
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
357
"""simple docstring""" import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[str] ,_lowerCamelCase : Any ,_lowerCamelCase : Optional[Any] ) -> str: _lowerCAmelCase : str = AutoConfig.from_pretrained(_lowerCamelCase ) _lowerCAmelCase : int = FlaxAutoModelForSeqaSeqLM.from_config(config=_lowerCamelCase ) _lowerCAmelCase : Any = checkpoints.load_tax_checkpoint(_lowerCamelCase ) _lowerCAmelCase : Tuple = """wi_0""" in tax_model["""target"""]["""encoder"""]["""layers_0"""]["""mlp"""] if config.model_type == "t5": _lowerCAmelCase : Tuple = """SelfAttention""" if config.model_type == "longt5" and config.encoder_attention_type == "local": _lowerCAmelCase : Optional[Any] = """LocalSelfAttention""" elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _lowerCAmelCase : Union[str, Any] = """TransientGlobalSelfAttention""" else: raise ValueError( """Given config is expected to have `model_type='t5'`, or `model_type='longt5` with `encoder_attention_type`""" """ attribute with a value from ['local', 'transient-global].""" ) # Encoder for layer_index in range(config.num_layers ): _lowerCAmelCase : Tuple = f"layers_{str(_lowerCamelCase )}" # Self-Attention _lowerCAmelCase : List[str] = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""key"""]["""kernel"""] _lowerCAmelCase : str = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""out"""]["""kernel"""] _lowerCAmelCase : str = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""query"""]["""kernel"""] _lowerCAmelCase : Any = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""value"""]["""kernel"""] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _lowerCAmelCase : Dict = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""T5LayerNorm_0"""]["""scale"""] # Layer Normalization _lowerCAmelCase : Any = tax_model["""target"""]["""encoder"""][layer_name]["""pre_attention_layer_norm"""]["""scale"""] if split_mlp_wi: _lowerCAmelCase : List[str] = tax_model["""target"""]["""encoder"""][layer_name]["""mlp"""]["""wi_0"""]["""kernel"""] _lowerCAmelCase : int = tax_model["""target"""]["""encoder"""][layer_name]["""mlp"""]["""wi_1"""]["""kernel"""] else: _lowerCAmelCase : List[str] = tax_model["""target"""]["""encoder"""][layer_name]["""mlp"""]["""wi"""]["""kernel"""] _lowerCAmelCase : Tuple = tax_model["""target"""]["""encoder"""][layer_name]["""mlp"""]["""wo"""]["""kernel"""] # Layer Normalization _lowerCAmelCase : Tuple = tax_model["""target"""]["""encoder"""][layer_name]["""pre_mlp_layer_norm"""]["""scale"""] # Assigning _lowerCAmelCase : Any = flax_model.params["""encoder"""]["""block"""][str(_lowerCamelCase )]["""layer"""] _lowerCAmelCase : Any = tax_attention_key _lowerCAmelCase : str = tax_attention_out _lowerCAmelCase : Union[str, Any] = tax_attention_query _lowerCAmelCase : Optional[Any] = tax_attention_value _lowerCAmelCase : List[str] = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _lowerCAmelCase : Any = tax_global_layer_norm if split_mlp_wi: _lowerCAmelCase : Dict = tax_mlp_wi_a _lowerCAmelCase : List[Any] = tax_mlp_wi_a else: _lowerCAmelCase : List[str] = tax_mlp_wi _lowerCAmelCase : str = tax_mlp_wo _lowerCAmelCase : Optional[Any] = tax_mlp_layer_norm _lowerCAmelCase : Any = flax_model_encoder_layer_block # Only for layer 0: _lowerCAmelCase : Union[str, Any] = tax_model["""target"""]["""encoder"""]["""relpos_bias"""]["""rel_embedding"""].T _lowerCAmelCase : Optional[Any] = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _lowerCAmelCase : List[str] = tax_model["""target"""]["""encoder"""]["""side_relpos_bias"""]["""rel_embedding"""].T _lowerCAmelCase : Optional[int] = tax_encoder_global_rel_embedding # Assigning _lowerCAmelCase : Any = tax_model["""target"""]["""encoder"""]["""encoder_norm"""]["""scale"""] _lowerCAmelCase : Any = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): _lowerCAmelCase : Optional[int] = f"layers_{str(_lowerCamelCase )}" # Self-Attention _lowerCAmelCase : List[str] = tax_model["""target"""]["""decoder"""][layer_name]["""self_attention"""]["""key"""]["""kernel"""] _lowerCAmelCase : int = tax_model["""target"""]["""decoder"""][layer_name]["""self_attention"""]["""out"""]["""kernel"""] _lowerCAmelCase : List[Any] = tax_model["""target"""]["""decoder"""][layer_name]["""self_attention"""]["""query"""]["""kernel"""] _lowerCAmelCase : str = tax_model["""target"""]["""decoder"""][layer_name]["""self_attention"""]["""value"""]["""kernel"""] # Layer Normalization _lowerCAmelCase : Optional[Any] = tax_model["""target"""]["""decoder"""][layer_name]["""pre_self_attention_layer_norm"""][ """scale""" ] # Encoder-Decoder-Attention _lowerCAmelCase : List[Any] = tax_model["""target"""]["""decoder"""][layer_name]["""encoder_decoder_attention"""] _lowerCAmelCase : List[str] = tax_enc_dec_attention_module["""key"""]["""kernel"""] _lowerCAmelCase : List[Any] = tax_enc_dec_attention_module["""out"""]["""kernel"""] _lowerCAmelCase : List[str] = tax_enc_dec_attention_module["""query"""]["""kernel"""] _lowerCAmelCase : Dict = tax_enc_dec_attention_module["""value"""]["""kernel"""] # Layer Normalization _lowerCAmelCase : Any = tax_model["""target"""]["""decoder"""][layer_name]["""pre_cross_attention_layer_norm"""]["""scale"""] # MLP if split_mlp_wi: _lowerCAmelCase : Any = tax_model["""target"""]["""decoder"""][layer_name]["""mlp"""]["""wi_0"""]["""kernel"""] _lowerCAmelCase : List[str] = tax_model["""target"""]["""decoder"""][layer_name]["""mlp"""]["""wi_1"""]["""kernel"""] else: _lowerCAmelCase : Any = tax_model["""target"""]["""decoder"""][layer_name]["""mlp"""]["""wi"""]["""kernel"""] _lowerCAmelCase : Optional[int] = tax_model["""target"""]["""decoder"""][layer_name]["""mlp"""]["""wo"""]["""kernel"""] # Layer Normalization _lowerCAmelCase : Optional[int] = tax_model["""target"""]["""decoder"""][layer_name]["""pre_mlp_layer_norm"""]["""scale"""] # Assigning _lowerCAmelCase : str = flax_model.params["""decoder"""]["""block"""][str(_lowerCamelCase )]["""layer"""] _lowerCAmelCase : int = tax_attention_key _lowerCAmelCase : List[str] = tax_attention_out _lowerCAmelCase : Optional[Any] = tax_attention_query _lowerCAmelCase : Dict = tax_attention_value _lowerCAmelCase : str = tax_pre_attention_layer_norm _lowerCAmelCase : List[Any] = tax_enc_dec_attention_key _lowerCAmelCase : List[Any] = tax_enc_dec_attention_out _lowerCAmelCase : Tuple = tax_enc_dec_attention_query _lowerCAmelCase : Any = tax_enc_dec_attention_value _lowerCAmelCase : Dict = tax_cross_layer_norm if split_mlp_wi: _lowerCAmelCase : Dict = tax_mlp_wi_a _lowerCAmelCase : int = tax_mlp_wi_a else: _lowerCAmelCase : Optional[int] = tax_mlp_wi _lowerCAmelCase : Dict = tax_mlp_wo _lowerCAmelCase : List[Any] = txa_mlp_layer_norm _lowerCAmelCase : Optional[Any] = flax_model_decoder_layer_block # Decoder Normalization _lowerCAmelCase : Any = tax_model["""target"""]["""decoder"""]["""decoder_norm"""]["""scale"""] _lowerCAmelCase : List[str] = txa_decoder_norm # Only for layer 0: _lowerCAmelCase : Optional[int] = tax_model["""target"""]["""decoder"""]["""relpos_bias"""]["""rel_embedding"""].T _lowerCAmelCase : Union[str, Any] = tax_decoder_rel_embedding # Token Embeddings _lowerCAmelCase : Optional[int] = tax_model["""target"""]["""token_embedder"""]["""embedding"""] _lowerCAmelCase : Optional[int] = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: _lowerCAmelCase : Tuple = tax_model["""target"""]["""decoder"""]["""logits_dense"""]["""kernel"""] flax_model.save_pretrained(_lowerCamelCase ) print("""T5X Model was sucessfully converted!""" ) if __name__ == "__main__": _a : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--t5x_checkpoint_path', default=None, type=str, required=True, help='Path the T5X checkpoint.' ) parser.add_argument('--config_name', default=None, type=str, required=True, help='Config name of LongT5/T5 model.') parser.add_argument( '--flax_dump_folder_path', default=None, type=str, required=True, help='Path to the output FLAX model.' ) _a : List[str] = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
126
0
# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class A : __snake_case = 42 # setable values __snake_case = 42 __snake_case = 42 __snake_case = None @classmethod def SCREAMING_SNAKE_CASE__ ( cls, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" return cls(common=UpperCamelCase__, init_noise_sigma=UpperCamelCase__, timesteps=UpperCamelCase__ ) @dataclass class A ( __UpperCAmelCase ): __snake_case = 42 class A ( __UpperCAmelCase , __UpperCAmelCase ): __snake_case = [e.name for e in FlaxKarrasDiffusionSchedulers] __snake_case = 42 @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return True @register_to_config def __init__( self, UpperCamelCase__ = 1000, UpperCamelCase__ = 0.0_001, UpperCamelCase__ = 0.02, UpperCamelCase__ = "linear", UpperCamelCase__ = None, UpperCamelCase__ = "fixed_small", UpperCamelCase__ = True, UpperCamelCase__ = "epsilon", UpperCamelCase__ = jnp.floataa, ): """simple docstring""" lowerCAmelCase_ = dtype def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ = None ): """simple docstring""" if common is None: lowerCAmelCase_ = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution lowerCAmelCase_ = jnp.array(1.0, dtype=self.dtype ) lowerCAmelCase_ = jnp.arange(0, self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=UpperCamelCase__, init_noise_sigma=UpperCamelCase__, timesteps=UpperCamelCase__, ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ = None ): """simple docstring""" return sample def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ = () ): """simple docstring""" lowerCAmelCase_ = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 lowerCAmelCase_ = (jnp.arange(0, UpperCamelCase__ ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=UpperCamelCase__, timesteps=UpperCamelCase__, ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__=None, UpperCamelCase__=None ): """simple docstring""" lowerCAmelCase_ = state.common.alphas_cumprod[t] lowerCAmelCase_ = jnp.where(t > 0, state.common.alphas_cumprod[t - 1], jnp.array(1.0, dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample lowerCAmelCase_ = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: lowerCAmelCase_ = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": lowerCAmelCase_ = jnp.clip(UpperCamelCase__, a_min=1E-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": lowerCAmelCase_ = jnp.log(jnp.clip(UpperCamelCase__, a_min=1E-20 ) ) elif variance_type == "fixed_large": lowerCAmelCase_ = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log lowerCAmelCase_ = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": lowerCAmelCase_ = variance lowerCAmelCase_ = state.common.betas[t] lowerCAmelCase_ = (predicted_variance + 1) / 2 lowerCAmelCase_ = frac * max_log + (1 - frac) * min_log return variance def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ = None, UpperCamelCase__ = True, ): """simple docstring""" lowerCAmelCase_ = timestep if key is None: lowerCAmelCase_ = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: lowerCAmelCase_ = jnp.split(UpperCamelCase__, sample.shape[1], axis=1 ) else: lowerCAmelCase_ = None # 1. compute alphas, betas lowerCAmelCase_ = state.common.alphas_cumprod[t] lowerCAmelCase_ = jnp.where(t > 0, state.common.alphas_cumprod[t - 1], jnp.array(1.0, dtype=self.dtype ) ) lowerCAmelCase_ = 1 - alpha_prod_t lowerCAmelCase_ = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": lowerCAmelCase_ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": lowerCAmelCase_ = model_output elif self.config.prediction_type == "v_prediction": lowerCAmelCase_ = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` " ''' for the FlaxDDPMScheduler.''' ) # 3. Clip "predicted x_0" if self.config.clip_sample: lowerCAmelCase_ = jnp.clip(UpperCamelCase__, -1, 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCAmelCase_ = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t lowerCAmelCase_ = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCAmelCase_ = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): lowerCAmelCase_ = jax.random.split(UpperCamelCase__, num=1 ) lowerCAmelCase_ = jax.random.normal(UpperCamelCase__, shape=model_output.shape, dtype=self.dtype ) return (self._get_variance(UpperCamelCase__, UpperCamelCase__, predicted_variance=UpperCamelCase__ ) ** 0.5) * noise lowerCAmelCase_ = jnp.where(t > 0, random_variance(), jnp.zeros(model_output.shape, dtype=self.dtype ) ) lowerCAmelCase_ = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=UpperCamelCase__, state=UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, ): """simple docstring""" return add_noise_common(state.common, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, ): """simple docstring""" return get_velocity_common(state.common, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) def __len__( self ): """simple docstring""" return self.config.num_train_timesteps
278
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' __snake_case : Tuple = FlaxMTaForConditionalGeneration.from_pretrained("google/mt5-small" ) __snake_case : str = AutoTokenizer.from_pretrained("google/mt5-small" ) __snake_case : List[Any] = tokenizer("Hello there" , return_tensors="np" ).input_ids __snake_case : int = tokenizer("Hi I am" , return_tensors="np" ).input_ids __snake_case : Tuple = shift_tokens_right(UpperCAmelCase , model.config.pad_token_id , model.config.decoder_start_token_id ) __snake_case : Tuple = model(UpperCAmelCase , decoder_input_ids=UpperCAmelCase ).logits __snake_case : str = optax.softmax_cross_entropy(UpperCAmelCase , onehot(UpperCAmelCase , logits.shape[-1] ) ).mean() __snake_case : Any = -(labels.shape[-1] * loss.item()) __snake_case : List[str] = -84.9_127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
326
0
import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin __A = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right __A = 25_00_04 __A = 25_00_20 @require_sentencepiece @require_tokenizers class lowercase_ ( __lowercase , unittest.TestCase ): UpperCamelCase_ : Optional[int] = MBartTokenizer UpperCamelCase_ : Any = MBartTokenizerFast UpperCamelCase_ : int = True UpperCamelCase_ : int = True def UpperCamelCase_ ( self : Optional[int] ) -> Dict: super().setUp() # We have a SentencePiece fixture for testing _snake_case = MBartTokenizer(A__ , keep_accents=A__ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self : Optional[Any] ) -> Tuple: _snake_case = MBartTokenizer(A__ , keep_accents=A__ ) _snake_case = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(A__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(A__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) _snake_case = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( A__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) _snake_case = tokenizer.convert_tokens_to_ids(A__ ) self.assertListEqual( A__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) _snake_case = tokenizer.convert_ids_to_tokens(A__ ) self.assertListEqual( A__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def UpperCamelCase_ ( self : int ) -> Optional[int]: if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return _snake_case = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _snake_case = self.rust_tokenizer_class.from_pretrained(A__ , **A__ ) _snake_case = self.tokenizer_class.from_pretrained(A__ , **A__ ) _snake_case = tempfile.mkdtemp() _snake_case = tokenizer_r.save_pretrained(A__ ) _snake_case = tokenizer_p.save_pretrained(A__ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) _snake_case = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(A__ , A__ ) # Checks everything loads correctly in the same way _snake_case = tokenizer_r.from_pretrained(A__ ) _snake_case = tokenizer_p.from_pretrained(A__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A__ , A__ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(A__ ) # Save tokenizer rust, legacy_format=True _snake_case = tempfile.mkdtemp() _snake_case = tokenizer_r.save_pretrained(A__ , legacy_format=A__ ) _snake_case = tokenizer_p.save_pretrained(A__ ) # Checks it save with the same files self.assertSequenceEqual(A__ , A__ ) # Checks everything loads correctly in the same way _snake_case = tokenizer_r.from_pretrained(A__ ) _snake_case = tokenizer_p.from_pretrained(A__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A__ , A__ ) ) shutil.rmtree(A__ ) # Save tokenizer rust, legacy_format=False _snake_case = tempfile.mkdtemp() _snake_case = tokenizer_r.save_pretrained(A__ , legacy_format=A__ ) _snake_case = tokenizer_p.save_pretrained(A__ ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way _snake_case = tokenizer_r.from_pretrained(A__ ) _snake_case = tokenizer_p.from_pretrained(A__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A__ , A__ ) ) shutil.rmtree(A__ ) @require_torch @require_sentencepiece @require_tokenizers class lowercase_ ( unittest.TestCase ): UpperCamelCase_ : List[Any] = "facebook/mbart-large-en-ro" UpperCamelCase_ : str = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.", ] UpperCamelCase_ : List[str] = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei" " pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor" " face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] UpperCamelCase_ : str = [8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2, EN_CODE] @classmethod def UpperCamelCase_ ( cls : Optional[int] ) -> List[str]: _snake_case = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' ) _snake_case = 1 return cls def UpperCamelCase_ ( self : Union[str, Any] ) -> Tuple: self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 250001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 250004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 250020 ) def UpperCamelCase_ ( self : Tuple ) -> List[str]: _snake_case = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , A__ ) def UpperCamelCase_ ( self : Optional[Any] ) -> List[Any]: self.assertIn(A__ , self.tokenizer.all_special_ids ) _snake_case = [RO_CODE, 884, 9019, 96, 9, 916, 86792, 36, 18743, 15596, 5, 2] _snake_case = self.tokenizer.decode(A__ , skip_special_tokens=A__ ) _snake_case = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=A__ ) self.assertEqual(A__ , A__ ) self.assertNotIn(self.tokenizer.eos_token , A__ ) def UpperCamelCase_ ( self : List[Any] ) -> List[str]: _snake_case = ['''this is gunna be a long sentence ''' * 20] assert isinstance(src_text[0] , A__ ) _snake_case = 10 _snake_case = self.tokenizer(A__ , max_length=A__ , truncation=A__ ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , A__ ) self.assertEqual(len(A__ ) , A__ ) def UpperCamelCase_ ( self : int ) -> int: self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [250026, 250001] ) def UpperCamelCase_ ( self : Optional[int] ) -> str: _snake_case = tempfile.mkdtemp() _snake_case = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(A__ ) _snake_case = MBartTokenizer.from_pretrained(A__ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , A__ ) @require_torch def UpperCamelCase_ ( self : Tuple ) -> Union[str, Any]: _snake_case = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=A__ , return_tensors='''pt''' ) _snake_case = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def UpperCamelCase_ ( self : Tuple ) -> int: _snake_case = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=A__ , truncation=A__ , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) _snake_case = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) self.assertIsInstance(A__ , A__ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) _snake_case = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , A__ ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def UpperCamelCase_ ( self : List[str] ) -> str: _snake_case = self.tokenizer(self.src_text , padding=A__ , truncation=A__ , max_length=3 , return_tensors='''pt''' ) _snake_case = self.tokenizer( text_target=self.tgt_text , padding=A__ , truncation=A__ , max_length=10 , return_tensors='''pt''' ) _snake_case = targets['''input_ids'''] _snake_case = shift_tokens_right(A__ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def UpperCamelCase_ ( self : List[Any] ) -> int: _snake_case = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' ) self.assertEqual( nested_simplify(A__ ) , { # A, test, EOS, en_XX '''input_ids''': [[62, 3034, 2, 250004]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 250001, } , )
278
from ..utils import DummyObject, requires_backends class lowercase_ ( metaclass=__lowercase ): UpperCamelCase_ : Optional[int] = ["speech"] def __init__( self : str , *A__ : List[str] , **A__ : Tuple ) -> Optional[Any]: requires_backends(self , ['''speech'''] ) class lowercase_ ( metaclass=__lowercase ): UpperCamelCase_ : Optional[Any] = ["speech"] def __init__( self : Dict , *A__ : int , **A__ : int ) -> Tuple: requires_backends(self , ['''speech'''] )
278
1
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : List[Any] = { 'google/pix2struct-textcaps-base': ( 'https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json' ), } class __A (snake_case__): '''simple docstring''' __lowercase: List[Any] = """pix2struct_text_model""" __lowercase: List[str] = ["""past_key_values"""] __lowercase: Dict = { """hidden_size""": """hidden_size""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : str , UpperCAmelCase_ : Optional[int]=50_244 , UpperCAmelCase_ : List[str]=768 , UpperCAmelCase_ : Union[str, Any]=64 , UpperCAmelCase_ : Any=2_048 , UpperCAmelCase_ : List[str]=12 , UpperCAmelCase_ : Optional[Any]=12 , UpperCAmelCase_ : Optional[int]=32 , UpperCAmelCase_ : Optional[int]=128 , UpperCAmelCase_ : str=0.1 , UpperCAmelCase_ : Any=1E-6 , UpperCAmelCase_ : int=1.0 , UpperCAmelCase_ : str="gelu_new" , UpperCAmelCase_ : Optional[Any]=0 , UpperCAmelCase_ : Dict=False , UpperCAmelCase_ : List[Any]=0 , UpperCAmelCase_ : Dict=1 , UpperCAmelCase_ : str=False , UpperCAmelCase_ : int=True , **UpperCAmelCase_ : Dict , ) ->Union[str, Any]: """simple docstring""" snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = d_kv snake_case_ = d_ff snake_case_ = num_layers snake_case_ = num_heads snake_case_ = relative_attention_num_buckets snake_case_ = relative_attention_max_distance snake_case_ = dropout_rate snake_case_ = layer_norm_epsilon snake_case_ = initializer_factor snake_case_ = use_cache snake_case_ = eos_token_id snake_case_ = decoder_start_token_id # for backwards compatibility snake_case_ = dense_act_fn super().__init__( pad_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , decoder_start_token_id=UpperCAmelCase_ , tie_word_embeddings=UpperCAmelCase_ , is_decoder=UpperCAmelCase_ , **UpperCAmelCase_ , ) @classmethod def lowerCAmelCase ( cls : Optional[Any] , UpperCAmelCase_ : Union[str, os.PathLike] , **UpperCAmelCase_ : Union[str, Any] ) ->"PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(UpperCAmelCase_ ) snake_case_ , snake_case_ = cls.get_config_dict(UpperCAmelCase_ , **UpperCAmelCase_ ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get("""model_type""" ) == "pix2struct": snake_case_ = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(UpperCAmelCase_ , **UpperCAmelCase_ ) class __A (snake_case__): '''simple docstring''' __lowercase: Optional[Any] = """pix2struct_vision_model""" def __init__( self : Optional[int] , UpperCAmelCase_ : int=768 , UpperCAmelCase_ : Union[str, Any]=768 , UpperCAmelCase_ : List[Any]=2_048 , UpperCAmelCase_ : Tuple=64 , UpperCAmelCase_ : Union[str, Any]=12 , UpperCAmelCase_ : Optional[int]=12 , UpperCAmelCase_ : List[str]="gelu_new" , UpperCAmelCase_ : Any=1E-6 , UpperCAmelCase_ : Any=0.0 , UpperCAmelCase_ : Optional[int]=0.0 , UpperCAmelCase_ : Optional[Any]=1E-10 , UpperCAmelCase_ : str=1.0 , UpperCAmelCase_ : str=4_096 , UpperCAmelCase_ : Dict=32 , UpperCAmelCase_ : List[str]=128 , **UpperCAmelCase_ : List[Any] , ) ->str: """simple docstring""" super().__init__(**UpperCAmelCase_ ) snake_case_ = hidden_size snake_case_ = patch_embed_hidden_size snake_case_ = d_ff snake_case_ = dropout_rate snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = initializer_range snake_case_ = initializer_factor snake_case_ = attention_dropout snake_case_ = layer_norm_eps snake_case_ = dense_act_fn snake_case_ = seq_len snake_case_ = relative_attention_num_buckets snake_case_ = relative_attention_max_distance snake_case_ = d_kv @classmethod def lowerCAmelCase ( cls : str , UpperCAmelCase_ : Union[str, os.PathLike] , **UpperCAmelCase_ : List[str] ) ->"PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(UpperCAmelCase_ ) snake_case_ , snake_case_ = cls.get_config_dict(UpperCAmelCase_ , **UpperCAmelCase_ ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get("""model_type""" ) == "pix2struct": snake_case_ = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(UpperCAmelCase_ , **UpperCAmelCase_ ) class __A (snake_case__): '''simple docstring''' __lowercase: Optional[Any] = """pix2struct""" __lowercase: Union[str, Any] = True def __init__( self : Tuple , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : List[Any]=1.0 , UpperCAmelCase_ : List[str]=0.02 , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : int=True , **UpperCAmelCase_ : Optional[Any] , ) ->Optional[int]: """simple docstring""" super().__init__(tie_word_embeddings=UpperCAmelCase_ , is_encoder_decoder=UpperCAmelCase_ , **UpperCAmelCase_ ) if text_config is None: snake_case_ = {} logger.info("""text_config is None. Initializing the Pix2StructTextConfig with default values.""" ) if vision_config is None: snake_case_ = {} logger.info("""vision_config is None. Initializing the Pix2StructVisionConfig with default values.""" ) snake_case_ = PixaStructTextConfig(**UpperCAmelCase_ ) snake_case_ = PixaStructVisionConfig(**UpperCAmelCase_ ) snake_case_ = self.text_config.decoder_start_token_id snake_case_ = self.text_config.pad_token_id snake_case_ = self.text_config.eos_token_id snake_case_ = initializer_factor snake_case_ = initializer_range snake_case_ = self.initializer_range snake_case_ = self.initializer_range snake_case_ = is_vqa @classmethod def lowerCAmelCase ( cls : Tuple , UpperCAmelCase_ : PixaStructTextConfig , UpperCAmelCase_ : PixaStructVisionConfig , **UpperCAmelCase_ : Tuple ) ->Union[str, Any]: """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **UpperCAmelCase_ ) def lowerCAmelCase ( self : Optional[Any] ) ->Tuple: """simple docstring""" snake_case_ = copy.deepcopy(self.__dict__ ) snake_case_ = self.text_config.to_dict() snake_case_ = self.vision_config.to_dict() snake_case_ = self.__class__.model_type return output
347
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() __SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Tuple = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'adapter_layer': 'encoder.layers.*.adapter_layer', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', 'pooling_layer.linear': 'projector', 'pooling_layer.projection': 'classifier', } __SCREAMING_SNAKE_CASE : List[Any] = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'projector', 'classifier', ] def _a ( _SCREAMING_SNAKE_CASE ) -> List[str]: snake_case_ = {} with open(_SCREAMING_SNAKE_CASE , """r""" ) as file: for line_number, line in enumerate(_SCREAMING_SNAKE_CASE ): snake_case_ = line.strip() if line: snake_case_ = line.split() snake_case_ = line_number snake_case_ = words[0] snake_case_ = value return result def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: for attribute in key.split(""".""" ): snake_case_ = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) snake_case_ = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_SCREAMING_SNAKE_CASE ): snake_case_ = PARAM_MAPPING[full_name.split(""".""" )[-1]] snake_case_ = """param""" if weight_type is not None and weight_type != "param": snake_case_ = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).shape elif weight_type is not None and weight_type == "param": snake_case_ = hf_pointer for attribute in hf_param_name.split(""".""" ): snake_case_ = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) snake_case_ = shape_pointer.shape # let's reduce dimension snake_case_ = value[0] else: snake_case_ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": snake_case_ = value elif weight_type == "weight_g": snake_case_ = value elif weight_type == "weight_v": snake_case_ = value elif weight_type == "bias": snake_case_ = value elif weight_type == "param": for attribute in hf_param_name.split(""".""" ): snake_case_ = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) snake_case_ = value else: snake_case_ = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: snake_case_ = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_SCREAMING_SNAKE_CASE ): snake_case_ = PARAM_MAPPING[full_name.split(""".""" )[-1]] snake_case_ = """param""" if weight_type is not None and weight_type != "param": snake_case_ = """.""".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": snake_case_ = """.""".join([key, hf_param_name] ) else: snake_case_ = key snake_case_ = value if """lm_head""" in full_key else value[0] __SCREAMING_SNAKE_CASE : int = { 'W_a': 'linear_1.weight', 'W_b': 'linear_2.weight', 'b_a': 'linear_1.bias', 'b_b': 'linear_2.bias', 'ln_W': 'norm.weight', 'ln_b': 'norm.bias', } def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> List[str]: snake_case_ = False for key, mapped_key in MAPPING.items(): snake_case_ = """wav2vec2.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: snake_case_ = True if "*" in mapped_key: snake_case_ = name.split(_SCREAMING_SNAKE_CASE )[0].split(""".""" )[-2] snake_case_ = mapped_key.replace("""*""" , _SCREAMING_SNAKE_CASE ) if "weight_g" in name: snake_case_ = """weight_g""" elif "weight_v" in name: snake_case_ = """weight_v""" elif "bias" in name: snake_case_ = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj snake_case_ = """weight""" else: snake_case_ = None if hf_dict is not None: rename_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: set_recursively(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return is_used return is_used def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: snake_case_ = [] snake_case_ = fairseq_model.state_dict() snake_case_ = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): snake_case_ = False if "conv_layers" in name: load_conv_layer( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == """group""" , ) snake_case_ = True else: snake_case_ = load_wavaveca_layer(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if not is_used: unused_weights.append(_SCREAMING_SNAKE_CASE ) logger.warning(f"""Unused weights: {unused_weights}""" ) def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: snake_case_ = full_name.split("""conv_layers.""" )[-1] snake_case_ = name.split(""".""" ) snake_case_ = int(items[0] ) snake_case_ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) snake_case_ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) snake_case_ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) snake_case_ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) snake_case_ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_SCREAMING_SNAKE_CASE ) @torch.no_grad() def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False ) -> int: if config_path is not None: snake_case_ = WavaVecaConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) else: snake_case_ = WavaVecaConfig() if is_seq_class: snake_case_ = read_txt_into_dict(_SCREAMING_SNAKE_CASE ) snake_case_ = idalabel snake_case_ = WavaVecaForSequenceClassification(_SCREAMING_SNAKE_CASE ) snake_case_ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_SCREAMING_SNAKE_CASE , return_attention_mask=_SCREAMING_SNAKE_CASE , ) feature_extractor.save_pretrained(_SCREAMING_SNAKE_CASE ) elif is_finetuned: if dict_path: snake_case_ = Dictionary.load(_SCREAMING_SNAKE_CASE ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq snake_case_ = target_dict.pad_index snake_case_ = target_dict.bos_index snake_case_ = target_dict.eos_index snake_case_ = len(target_dict.symbols ) snake_case_ = os.path.join(_SCREAMING_SNAKE_CASE , """vocab.json""" ) if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(_SCREAMING_SNAKE_CASE ) ) return os.makedirs(_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE ) snake_case_ = target_dict.indices # fairseq has the <pad> and <s> switched snake_case_ = 0 snake_case_ = 1 with open(_SCREAMING_SNAKE_CASE , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) snake_case_ = WavaVecaCTCTokenizer( _SCREAMING_SNAKE_CASE , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=_SCREAMING_SNAKE_CASE , ) snake_case_ = True if config.feat_extract_norm == """layer""" else False snake_case_ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_SCREAMING_SNAKE_CASE , return_attention_mask=_SCREAMING_SNAKE_CASE , ) snake_case_ = WavaVecaProcessor(feature_extractor=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE ) processor.save_pretrained(_SCREAMING_SNAKE_CASE ) snake_case_ = WavaVecaForCTC(_SCREAMING_SNAKE_CASE ) else: snake_case_ = WavaVecaForPreTraining(_SCREAMING_SNAKE_CASE ) if is_finetuned or is_seq_class: snake_case_ , snake_case_ , snake_case_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: snake_case_ = argparse.Namespace(task="""audio_pretraining""" ) snake_case_ = fairseq.tasks.setup_task(_SCREAMING_SNAKE_CASE ) snake_case_ , snake_case_ , snake_case_ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_SCREAMING_SNAKE_CASE ) snake_case_ = model[0].eval() recursively_load_weights(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , not is_finetuned ) hf_wavavec.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : str = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) parser.add_argument( '--is_seq_class', action='store_true', help='Whether the model to convert is a fine-tuned sequence classification model or not', ) __SCREAMING_SNAKE_CASE : Any = parser.parse_args() __SCREAMING_SNAKE_CASE : List[Any] = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
347
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCamelCase = {'''configuration_swin''': ['''SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SwinConfig''', '''SwinOnnxConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ '''SWIN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SwinForImageClassification''', '''SwinForMaskedImageModeling''', '''SwinModel''', '''SwinPreTrainedModel''', '''SwinBackbone''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ '''TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFSwinForImageClassification''', '''TFSwinForMaskedImageModeling''', '''TFSwinModel''', '''TFSwinPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig, SwinOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swin import ( SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, SwinBackbone, SwinForImageClassification, SwinForMaskedImageModeling, SwinModel, SwinPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_swin import ( TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, TFSwinForImageClassification, TFSwinForMaskedImageModeling, TFSwinModel, TFSwinPreTrainedModel, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
365
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowerCamelCase = [ '''small''', '''small-base''', '''medium''', '''medium-base''', '''intermediate''', '''intermediate-base''', '''large''', '''large-base''', '''xlarge''', '''xlarge-base''', ] lowerCamelCase = { '''vocab_file''': { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt''', '''funnel-transformer/small-base''': '''https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt''', '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt''', '''funnel-transformer/medium-base''': ( '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt''' ), '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt''', '''funnel-transformer/large-base''': '''https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt''', '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt''', '''funnel-transformer/xlarge-base''': ( '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json''', '''funnel-transformer/small-base''': ( '''https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json''', '''funnel-transformer/medium-base''': ( '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json''', '''funnel-transformer/large-base''': ( '''https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json''', '''funnel-transformer/xlarge-base''': ( '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json''' ), }, } lowerCamelCase = {f'''funnel-transformer/{name}''': 512 for name in _model_names} lowerCamelCase = {f'''funnel-transformer/{name}''': {'''do_lower_case''': True} for name in _model_names} class _a ( _lowercase): _a : Tuple = VOCAB_FILES_NAMES _a : Dict = PRETRAINED_VOCAB_FILES_MAP _a : Dict = PRETRAINED_INIT_CONFIGURATION _a : Union[str, Any] = FunnelTokenizer _a : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a : int = 2 def __init__( self : List[Any] , _SCREAMING_SNAKE_CASE : str=None , _SCREAMING_SNAKE_CASE : str=None , _SCREAMING_SNAKE_CASE : Any=True , _SCREAMING_SNAKE_CASE : Any="<unk>" , _SCREAMING_SNAKE_CASE : Dict="<sep>" , _SCREAMING_SNAKE_CASE : Optional[int]="<pad>" , _SCREAMING_SNAKE_CASE : str="<cls>" , _SCREAMING_SNAKE_CASE : List[str]="<mask>" , _SCREAMING_SNAKE_CASE : Optional[int]="<s>" , _SCREAMING_SNAKE_CASE : Dict="</s>" , _SCREAMING_SNAKE_CASE : Any=True , _SCREAMING_SNAKE_CASE : Dict=True , _SCREAMING_SNAKE_CASE : Tuple=None , _SCREAMING_SNAKE_CASE : str="##" , **_SCREAMING_SNAKE_CASE : List[str] , )-> List[str]: super().__init__( _SCREAMING_SNAKE_CASE , tokenizer_file=_SCREAMING_SNAKE_CASE , do_lower_case=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , clean_text=_SCREAMING_SNAKE_CASE , tokenize_chinese_chars=_SCREAMING_SNAKE_CASE , strip_accents=_SCREAMING_SNAKE_CASE , wordpieces_prefix=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) lowerCAmelCase__ : Any = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _SCREAMING_SNAKE_CASE ) != do_lower_case or normalizer_state.get('''strip_accents''' , _SCREAMING_SNAKE_CASE ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _SCREAMING_SNAKE_CASE ) != tokenize_chinese_chars ): lowerCAmelCase__ : int = getattr(_SCREAMING_SNAKE_CASE , normalizer_state.pop('''type''' ) ) lowerCAmelCase__ : Dict = do_lower_case lowerCAmelCase__ : str = strip_accents lowerCAmelCase__ : Dict = tokenize_chinese_chars lowerCAmelCase__ : str = normalizer_class(**_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : List[Any] = do_lower_case def UpperCAmelCase__( self : Any , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Union[str, Any]=None )-> Optional[int]: lowerCAmelCase__ : Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase__( self : Optional[Any] , _SCREAMING_SNAKE_CASE : List[int] , _SCREAMING_SNAKE_CASE : Optional[List[int]] = None )-> List[int]: lowerCAmelCase__ : str = [self.sep_token_id] lowerCAmelCase__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase__( self : str , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[str] = None )-> Tuple[str]: lowerCAmelCase__ : Any = self._tokenizer.model.save(_SCREAMING_SNAKE_CASE , name=_SCREAMING_SNAKE_CASE ) return tuple(_SCREAMING_SNAKE_CASE )
211
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { '''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json''', '''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json''', '''junnyu/roformer_chinese_char_small''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json''' ), '''junnyu/roformer_chinese_char_base''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json''' ), '''junnyu/roformer_small_discriminator''': ( '''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json''' ), '''junnyu/roformer_small_generator''': ( '''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json''' ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class __lowerCamelCase ( snake_case__): """simple docstring""" UpperCamelCase__ = "roformer" def __init__( self , UpperCAmelCase=5_0000 , UpperCAmelCase=None , UpperCAmelCase=768 , UpperCAmelCase=12 , UpperCAmelCase=12 , UpperCAmelCase=3072 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=1536 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-12 , UpperCAmelCase=0 , UpperCAmelCase=False , UpperCAmelCase=True , **UpperCAmelCase , ): """simple docstring""" super().__init__(pad_token_id=UpperCAmelCase , **UpperCAmelCase ) _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size if embedding_size is None else embedding_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = hidden_act _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = rotary_value _UpperCAmelCase = use_cache class __lowerCamelCase ( snake_case__): """simple docstring""" @property def UpperCamelCase ( self ): """simple docstring""" if self.task == "multiple-choice": _UpperCAmelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _UpperCAmelCase = {0: 'batch', 1: 'sequence'} _UpperCAmelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
39
"""simple docstring""" import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def lowercase (_lowerCAmelCase , _lowerCAmelCase="shi-labs/oneformer_demo" ): with open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="""dataset""" ) , """r""" ) as f: __lowerCAmelCase = json.load(_lowerCAmelCase ) __lowerCAmelCase = {} __lowerCAmelCase = [] __lowerCAmelCase = [] for key, info in class_info.items(): __lowerCAmelCase = info["""name"""] class_names.append(info["""name"""] ) if info["isthing"]: thing_ids.append(int(_lowerCAmelCase ) ) __lowerCAmelCase = thing_ids __lowerCAmelCase = class_names return metadata class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_=7 , snake_case_=3 , snake_case_=30 , snake_case_=400 , snake_case_=None , snake_case_=True , snake_case_=True , snake_case_=[0.5, 0.5, 0.5] , snake_case_=[0.5, 0.5, 0.5] , snake_case_=10 , snake_case_=False , snake_case_=255 , snake_case_="shi-labs/oneformer_demo" , snake_case_="ade20k_panoptic.json" , snake_case_=10 , ) -> Union[str, Any]: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = num_channels __lowerCAmelCase = min_resolution __lowerCAmelCase = max_resolution __lowerCAmelCase = do_resize __lowerCAmelCase = {"""shortest_edge""": 32, """longest_edge""": 1_333} if size is None else size __lowerCAmelCase = do_normalize __lowerCAmelCase = image_mean __lowerCAmelCase = image_std __lowerCAmelCase = class_info_file __lowerCAmelCase = prepare_metadata(snake_case_ , snake_case_ ) __lowerCAmelCase = num_text __lowerCAmelCase = repo_path # for the post_process_functions __lowerCAmelCase = 2 __lowerCAmelCase = 10 __lowerCAmelCase = 10 __lowerCAmelCase = 3 __lowerCAmelCase = 4 __lowerCAmelCase = num_labels __lowerCAmelCase = do_reduce_labels __lowerCAmelCase = ignore_index def A__ ( self ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def A__ ( self , snake_case_ , snake_case_=False ) -> Dict: if not batched: __lowerCAmelCase = image_inputs[0] if isinstance(snake_case_ , Image.Image ): __lowerCAmelCase , __lowerCAmelCase = image.size else: __lowerCAmelCase , __lowerCAmelCase = image.shape[1], image.shape[2] if w < h: __lowerCAmelCase = int(self.size["""shortest_edge"""] * h / w ) __lowerCAmelCase = self.size["""shortest_edge"""] elif w > h: __lowerCAmelCase = self.size["""shortest_edge"""] __lowerCAmelCase = int(self.size["""shortest_edge"""] * w / h ) else: __lowerCAmelCase = self.size["""shortest_edge"""] __lowerCAmelCase = self.size["""shortest_edge"""] else: __lowerCAmelCase = [] for image in image_inputs: __lowerCAmelCase , __lowerCAmelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __lowerCAmelCase = max(snake_case_ , key=lambda snake_case_ : item[0] )[0] __lowerCAmelCase = max(snake_case_ , key=lambda snake_case_ : item[1] )[1] return expected_height, expected_width def A__ ( self ) -> Tuple: return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class lowerCAmelCase_ ( A__ , unittest.TestCase ): '''simple docstring''' _snake_case = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string _snake_case = image_processing_class def A__ ( self ) -> str: __lowerCAmelCase = OneFormerImageProcessorTester(self ) @property def A__ ( self ) -> Dict: return self.image_processing_tester.prepare_image_processor_dict() def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case_ , """image_mean""" ) ) self.assertTrue(hasattr(snake_case_ , """image_std""" ) ) self.assertTrue(hasattr(snake_case_ , """do_normalize""" ) ) self.assertTrue(hasattr(snake_case_ , """do_resize""" ) ) self.assertTrue(hasattr(snake_case_ , """size""" ) ) self.assertTrue(hasattr(snake_case_ , """ignore_index""" ) ) self.assertTrue(hasattr(snake_case_ , """class_info_file""" ) ) self.assertTrue(hasattr(snake_case_ , """num_text""" ) ) self.assertTrue(hasattr(snake_case_ , """repo_path""" ) ) self.assertTrue(hasattr(snake_case_ , """metadata""" ) ) self.assertTrue(hasattr(snake_case_ , """do_reduce_labels""" ) ) def A__ ( self ) -> List[str]: pass def A__ ( self ) -> Union[str, Any]: # Initialize image_processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , Image.Image ) # Test not batched input __lowerCAmelCase = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ , batched=snake_case_ ) __lowerCAmelCase = image_processor( snake_case_ , ["""semantic"""] * len(snake_case_ ) , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A__ ( self ) -> List[str]: # Initialize image_processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ , numpify=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , np.ndarray ) # Test not batched input __lowerCAmelCase = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ , batched=snake_case_ ) __lowerCAmelCase = image_processor( snake_case_ , ["""semantic"""] * len(snake_case_ ) , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A__ ( self ) -> Tuple: # Initialize image_processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ , torchify=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , torch.Tensor ) # Test not batched input __lowerCAmelCase = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ , batched=snake_case_ ) __lowerCAmelCase = image_processor( snake_case_ , ["""semantic"""] * len(snake_case_ ) , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A__ ( self , snake_case_=False , snake_case_=False , snake_case_="np" ) -> Optional[Any]: __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # prepare image and target __lowerCAmelCase = self.image_processing_tester.num_labels __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ ) if with_segmentation_maps: __lowerCAmelCase = num_labels if is_instance_map: __lowerCAmelCase = list(range(snake_case_ ) ) * 2 __lowerCAmelCase = dict(enumerate(snake_case_ ) ) __lowerCAmelCase = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": __lowerCAmelCase = [Image.fromarray(snake_case_ ) for annotation in annotations] __lowerCAmelCase = image_processor( snake_case_ , ["""semantic"""] * len(snake_case_ ) , snake_case_ , return_tensors="""pt""" , instance_id_to_semantic_id=snake_case_ , pad_and_return_pixel_mask=snake_case_ , ) return inputs def A__ ( self ) -> List[str]: pass def A__ ( self ) -> Optional[Any]: def common(snake_case_=False , snake_case_=None ): __lowerCAmelCase = self.comm_get_image_processor_inputs( with_segmentation_maps=snake_case_ , is_instance_map=snake_case_ , segmentation_type=snake_case_ ) __lowerCAmelCase = inputs["""mask_labels"""] __lowerCAmelCase = inputs["""class_labels"""] __lowerCAmelCase = inputs["""pixel_values"""] __lowerCAmelCase = inputs["""text_inputs"""] # check the batch_size for mask_label, class_label, text_input in zip(snake_case_ , snake_case_ , snake_case_ ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(snake_case_ ) , self.image_processing_tester.num_text ) common() common(is_instance_map=snake_case_ ) common(is_instance_map=snake_case_ , segmentation_type="""pil""" ) common(is_instance_map=snake_case_ , segmentation_type="""pil""" ) def A__ ( self ) -> Optional[int]: __lowerCAmelCase = np.zeros((20, 50) ) __lowerCAmelCase = 1 __lowerCAmelCase = 1 __lowerCAmelCase = 1 __lowerCAmelCase = binary_mask_to_rle(snake_case_ ) self.assertEqual(len(snake_case_ ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def A__ ( self ) -> Optional[Any]: __lowerCAmelCase = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , ) __lowerCAmelCase = self.image_processing_tester.get_fake_oneformer_outputs() __lowerCAmelCase = fature_extractor.post_process_semantic_segmentation(snake_case_ ) self.assertEqual(len(snake_case_ ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) __lowerCAmelCase = [(1, 4) for i in range(self.image_processing_tester.batch_size )] __lowerCAmelCase = fature_extractor.post_process_semantic_segmentation(snake_case_ , target_sizes=snake_case_ ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , ) __lowerCAmelCase = self.image_processing_tester.get_fake_oneformer_outputs() __lowerCAmelCase = image_processor.post_process_instance_segmentation(snake_case_ , threshold=0 ) self.assertTrue(len(snake_case_ ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("""segmentation""" in el ) self.assertTrue("""segments_info""" in el ) self.assertEqual(type(el["""segments_info"""] ) , snake_case_ ) self.assertEqual( el["""segmentation"""].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , ) __lowerCAmelCase = self.image_processing_tester.get_fake_oneformer_outputs() __lowerCAmelCase = image_processor.post_process_panoptic_segmentation(snake_case_ , threshold=0 ) self.assertTrue(len(snake_case_ ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("""segmentation""" in el ) self.assertTrue("""segments_info""" in el ) self.assertEqual(type(el["""segments_info"""] ) , snake_case_ ) self.assertEqual( el["""segmentation"""].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
301
0
from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class __a ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): __lowercase : Optional[Any] = [r'h\.\d+\.attn\.bias', r'h\.\d+\.attn\.masked_bias'] @register_to_config def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = 50_257 , lowerCAmelCase__ = 1_024 , lowerCAmelCase__ = 768 , lowerCAmelCase__ = 12 , lowerCAmelCase__ = 12 , lowerCAmelCase__ = None , lowerCAmelCase__ = "gelu_new" , lowerCAmelCase__ = 0.1 , lowerCAmelCase__ = 0.1 , lowerCAmelCase__ = 0.1 , lowerCAmelCase__ = 1E-5 , lowerCAmelCase__ = 0.0_2 , lowerCAmelCase__ = True , lowerCAmelCase__ = True , lowerCAmelCase__ = False , lowerCAmelCase__ = False , ) -> Optional[int]: '''simple docstring''' super().__init__() lowercase__: Tuple = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( F'`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and' F' `n_embd`: {n_embd} are not equal.' ) lowercase__: List[str] = prefix_inner_dim lowercase__: Optional[int] = prefix_hidden_dim lowercase__: Optional[int] = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) lowercase__: Any = ( nn.Linear(self.prefix_hidden_dim , lowerCAmelCase__ ) if self.prefix_hidden_dim is not None else nn.Identity() ) lowercase__: str = GPTaConfig( vocab_size=lowerCAmelCase__ , n_positions=lowerCAmelCase__ , n_embd=lowerCAmelCase__ , n_layer=lowerCAmelCase__ , n_head=lowerCAmelCase__ , n_inner=lowerCAmelCase__ , activation_function=lowerCAmelCase__ , resid_pdrop=lowerCAmelCase__ , embd_pdrop=lowerCAmelCase__ , attn_pdrop=lowerCAmelCase__ , layer_norm_epsilon=lowerCAmelCase__ , initializer_range=lowerCAmelCase__ , scale_attn_weights=lowerCAmelCase__ , use_cache=lowerCAmelCase__ , scale_attn_by_inverse_layer_idx=lowerCAmelCase__ , reorder_and_upcast_attn=lowerCAmelCase__ , ) lowercase__: str = GPTaLMHeadModel(lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = None , ) -> List[str]: '''simple docstring''' lowercase__: List[Any] = self.transformer.transformer.wte(lowerCAmelCase__ ) lowercase__: Any = self.encode_prefix(lowerCAmelCase__ ) lowercase__: Union[str, Any] = self.decode_prefix(lowerCAmelCase__ ) lowercase__: Tuple = torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: lowercase__: Any = self.get_dummy_token(input_ids.shape[0] , input_ids.device ) lowercase__: Tuple = torch.cat((dummy_token, input_ids) , dim=1 ) lowercase__: Tuple = self.transformer(inputs_embeds=lowerCAmelCase__ , labels=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> torch.Tensor: '''simple docstring''' return torch.zeros(lowerCAmelCase__ , self.prefix_length , dtype=torch.intaa , device=lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> str: '''simple docstring''' return self.encode_prefix(lowerCAmelCase__ ) @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Any: '''simple docstring''' lowercase__: Any = torch.split(lowerCAmelCase__ , 1 , dim=0 ) lowercase__: Optional[Any] = [] lowercase__: Union[str, Any] = [] for feature in features: lowercase__: int = self.decode_prefix(feature.to(lowerCAmelCase__ ) ) # back to the clip feature # Only support beam search for now lowercase__: str = self.generate_beam( input_embeds=lowerCAmelCase__ , device=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) lowercase__: Any = torch.stack(lowerCAmelCase__ ) lowercase__: Dict = torch.stack(lowerCAmelCase__ ) return generated_tokens, generated_seq_lengths @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__ = 5 , lowerCAmelCase__ = 67 , lowerCAmelCase__ = 1.0 , lowerCAmelCase__ = None , ) -> int: '''simple docstring''' lowercase__: Optional[Any] = eos_token_id lowercase__: int = None lowercase__: int = None lowercase__: Optional[int] = torch.ones(lowerCAmelCase__ , device=lowerCAmelCase__ , dtype=torch.int ) lowercase__: Any = torch.zeros(lowerCAmelCase__ , device=lowerCAmelCase__ , dtype=torch.bool ) if input_embeds is not None: lowercase__: Union[str, Any] = input_embeds else: lowercase__: Any = self.transformer.transformer.wte(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ ): lowercase__: Dict = self.transformer(inputs_embeds=lowerCAmelCase__ ) lowercase__: Tuple = outputs.logits lowercase__: List[str] = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) lowercase__: Union[str, Any] = logits.softmax(-1 ).log() if scores is None: lowercase__: List[Any] = logits.topk(lowerCAmelCase__ , -1 ) lowercase__: Optional[Any] = generated.expand(lowerCAmelCase__ , *generated.shape[1:] ) lowercase__: Any = next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: lowercase__: Dict = next_tokens else: lowercase__: List[str] = tokens.expand(lowerCAmelCase__ , *tokens.shape[1:] ) lowercase__: Optional[Any] = torch.cat((tokens, next_tokens) , dim=1 ) else: lowercase__: Optional[Any] = -float(np.inf ) lowercase__: Optional[Any] = 0 lowercase__: int = scores[:, None] + logits seq_lengths[~is_stopped] += 1 lowercase__: List[Any] = scores_sum / seq_lengths[:, None] lowercase__: Union[str, Any] = scores_sum_average.view(-1 ).topk(lowerCAmelCase__ , -1 ) lowercase__: List[str] = next_tokens // scores_sum.shape[1] lowercase__: List[str] = seq_lengths[next_tokens_source] lowercase__: int = next_tokens % scores_sum.shape[1] lowercase__: int = next_tokens.unsqueeze(1 ) lowercase__: List[str] = tokens[next_tokens_source] lowercase__: Optional[Any] = torch.cat((tokens, next_tokens) , dim=1 ) lowercase__: Union[str, Any] = generated[next_tokens_source] lowercase__: Tuple = scores_sum_average * seq_lengths lowercase__: Optional[int] = is_stopped[next_tokens_source] lowercase__: Any = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) lowercase__: List[Any] = torch.cat((generated, next_token_embed) , dim=1 ) lowercase__: str = is_stopped + next_tokens.eq(lowerCAmelCase__ ).squeeze() if is_stopped.all(): break lowercase__: List[Any] = scores / seq_lengths lowercase__: Optional[Any] = scores.argsort(descending=lowerCAmelCase__ ) # tokens tensors are already padded to max_seq_length lowercase__: Any = [tokens[i] for i in order] lowercase__: Union[str, Any] = torch.stack(lowerCAmelCase__ , dim=0 ) lowercase__: Union[str, Any] = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
367
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class __a ( tf.keras.layers.Layer ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = None ) -> int: '''simple docstring''' super().__init__() lowercase__: Union[str, Any] = pad_token_id lowercase__: List[str] = max_length lowercase__: int = vocab lowercase__: List[Any] = merges lowercase__: str = BytePairTokenizer(lowerCAmelCase__ , lowerCAmelCase__ , sequence_length=lowerCAmelCase__ ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls , lowerCAmelCase__ , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Any: '''simple docstring''' lowercase__: Tuple = [' '.join(lowerCAmelCase__ ) for m in tokenizer.bpe_ranks.keys()] lowercase__: List[Any] = tokenizer.get_vocab() return cls(lowerCAmelCase__ , lowerCAmelCase__ , *lowerCAmelCase__ , **lowerCAmelCase__ ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls , lowerCAmelCase__ , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[Any]: '''simple docstring''' lowercase__: int = GPTaTokenizer.from_pretrained(lowerCAmelCase__ , *lowerCAmelCase__ , **lowerCAmelCase__ ) return cls.from_tokenizer(lowerCAmelCase__ , *lowerCAmelCase__ , **lowerCAmelCase__ ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls , lowerCAmelCase__ ) -> Dict: '''simple docstring''' return cls(**lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Optional[Any]: '''simple docstring''' lowercase__: Optional[Any] = self.tf_tokenizer(lowerCAmelCase__ ) lowercase__: List[Any] = tf.ones_like(lowerCAmelCase__ ) if self.pad_token_id is not None: # pad the tokens up to max length lowercase__: int = max_length if max_length is not None else self.max_length if max_length is not None: lowercase__ , lowercase__: List[Any] = pad_model_inputs( lowerCAmelCase__ , max_seq_length=lowerCAmelCase__ , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
288
0
'''simple docstring''' import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin __a = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right __a = 50_003 __a = 50_002 @require_sentencepiece @require_tokenizers class A__ ( UpperCamelCase__ , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Union[str, Any] = PLBartTokenizer UpperCamelCase_ : Union[str, Any] = None UpperCamelCase_ : Tuple = False def _lowerCAmelCase ( self : int ) -> List[str]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing _UpperCAmelCase : Tuple = PLBartTokenizer(__a , language_codes="base" , keep_accents=__a ) tokenizer.save_pretrained(self.tmpdirname ) def _lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Optional[int] = PLBartTokenizer(__a , language_codes="base" , keep_accents=__a ) _UpperCAmelCase : Union[str, Any] = tokenizer.tokenize("This is a test" ) self.assertListEqual(__a , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__a ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) _UpperCAmelCase : List[str] = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __a , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) _UpperCAmelCase : Tuple = tokenizer.convert_tokens_to_ids(__a ) self.assertListEqual( __a , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] ] , ) _UpperCAmelCase : Dict = tokenizer.convert_ids_to_tokens(__a ) self.assertListEqual( __a , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) _UpperCAmelCase : Any = tokenizer.vocab_size _UpperCAmelCase : Dict = [tokenizer.convert_ids_to_tokens(__a ) for x in range(end - 4 , __a )] self.assertListEqual(__a , ["__java__", "__python__", "__en_XX__", "<mask>"] ) _UpperCAmelCase : Tuple = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go" _UpperCAmelCase : Any = tokenizer(__a ).input_ids self.assertEqual( tokenizer.decode(__a , skip_special_tokens=__a , clean_up_tokenization_spaces=__a ) , __a , ) def _lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" _UpperCAmelCase : str = PLBartTokenizer(__a , language_codes="multi" , keep_accents=__a ) _UpperCAmelCase : Optional[Any] = tokenizer.tokenize("This is a test" ) self.assertListEqual(__a , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__a ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) _UpperCAmelCase : str = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __a , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) _UpperCAmelCase : Dict = tokenizer.convert_tokens_to_ids(__a ) self.assertListEqual( __a , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] ] , ) _UpperCAmelCase : Optional[Any] = tokenizer.convert_ids_to_tokens(__a ) self.assertListEqual( __a , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) _UpperCAmelCase : List[Any] = tokenizer.vocab_size _UpperCAmelCase : List[Any] = [tokenizer.convert_ids_to_tokens(__a ) for x in range(end - 7 , __a )] self.assertListEqual( __a , ["__java__", "__python__", "__en_XX__", "__javascript__", "__php__", "__ruby__", "__go__"] ) _UpperCAmelCase : Optional[Any] = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go" _UpperCAmelCase : Dict = tokenizer(__a ).input_ids self.assertEqual( tokenizer.decode(__a , skip_special_tokens=__a , clean_up_tokenization_spaces=__a ) , __a , ) @require_torch @require_sentencepiece @require_tokenizers class A__ ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ : str = """uclanlp/plbart-python-en_XX""" UpperCamelCase_ : List[str] = [ """def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])""", """def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])""", ] UpperCamelCase_ : Tuple = [ """Returns the maximum value of a b c.""", """Sums the values of a b c.""", ] UpperCamelCase_ : Optional[int] = [ 1_34, 54_52, 3_34_60, 3_34_41, 3_34_63, 3_34_65, 3_34_63, 3_34_49, 9_88, 20, 3_34_56, 19, 3_34_56, 7_71, 39, 42_58, 8_89, 33_18, 3_34_41, 3_34_63, 3_34_65, 3_34_63, 3_34_49, 24_71, 2, PYTHON_CODE, ] @classmethod def _lowerCAmelCase ( cls : Optional[int] ) -> Dict: """simple docstring""" _UpperCAmelCase : int = PLBartTokenizer.from_pretrained( cls.checkpoint_name , language_codes="base" , src_lang="python" , tgt_lang="en_XX" ) _UpperCAmelCase : List[str] = 1 return cls def _lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__java__"] , 5_0_0_0_1 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__python__"] , 5_0_0_0_2 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__en_XX__"] , 5_0_0_0_3 ) def _lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" _UpperCAmelCase : int = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __a ) def _lowerCAmelCase ( self : Dict ) -> List[str]: """simple docstring""" self.assertIn(__a , self.tokenizer.all_special_ids ) _UpperCAmelCase : List[Any] = [EN_CODE, 9_0_3_7, 3_3_4_4_2, 5_7, 7_5_2, 1_5_3, 1_4, 5_6, 1_8, 9, 2] _UpperCAmelCase : Tuple = self.tokenizer.decode(__a , skip_special_tokens=__a ) _UpperCAmelCase : List[str] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__a ) self.assertEqual(__a , __a ) self.assertNotIn(self.tokenizer.eos_token , __a ) def _lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" _UpperCAmelCase : List[str] = ["def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])" * 2_0] self.assertIsInstance(src_text[0] , __a ) _UpperCAmelCase : int = 1_0 _UpperCAmelCase : int = self.tokenizer(__a , max_length=__a , truncation=__a ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , __a ) self.assertEqual(len(__a ) , __a ) def _lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "__java__"] ) , [5_0_0_0_4, 5_0_0_0_1] ) def _lowerCAmelCase ( self : int ) -> str: """simple docstring""" _UpperCAmelCase : List[Any] = tempfile.mkdtemp() _UpperCAmelCase : Tuple = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__a ) _UpperCAmelCase : List[str] = PLBartTokenizer.from_pretrained(__a ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __a ) @require_torch def _lowerCAmelCase ( self : str ) -> Dict: """simple docstring""" _UpperCAmelCase : Dict = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=__a , return_tensors="pt" ) _UpperCAmelCase : str = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] ) self.assertEqual(batch.decoder_input_ids[1][0] , __a ) self.assertEqual(batch.decoder_input_ids[1][-1] , 2 ) self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] ) @require_torch def _lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : List[Any] = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=__a , truncation=__a , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , ) _UpperCAmelCase : List[Any] = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) self.assertIsInstance(__a , __a ) self.assertEqual((2, 2_6) , batch.input_ids.shape ) self.assertEqual((2, 2_6) , batch.attention_mask.shape ) _UpperCAmelCase : List[str] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , __a ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] ) def _lowerCAmelCase ( self : Optional[int] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Optional[Any] = self.tokenizer(self.src_text , padding=__a , truncation=__a , max_length=3 , return_tensors="pt" ) _UpperCAmelCase : List[str] = self.tokenizer( text_target=self.tgt_text , padding=__a , truncation=__a , max_length=1_0 , return_tensors="pt" ) _UpperCAmelCase : Optional[int] = targets["input_ids"] _UpperCAmelCase : Dict = shift_tokens_right(__a , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 1_0 ) @require_torch def _lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" _UpperCAmelCase : int = self.tokenizer._build_translation_inputs( "A test" , return_tensors="pt" , src_lang="en_XX" , tgt_lang="java" ) self.assertEqual( nested_simplify(__a ) , { # A, test, EOS, en_XX "input_ids": [[1_5_0, 2_4_2, 2, 5_0_0_0_3]], "attention_mask": [[1, 1, 1, 1]], # java "forced_bos_token_id": 5_0_0_0_1, } , )
145
'''simple docstring''' import math def lowerCAmelCase_ ( ) -> None: '''simple docstring''' UpperCAmelCase_ = input("Enter message: " ) UpperCAmelCase_ = int(input(f"""Enter key [2-{len(snake_case_ ) - 1}]: """ ) ) UpperCAmelCase_ = input("Encryption/Decryption [e/d]: " ) if mode.lower().startswith("e" ): UpperCAmelCase_ = encrypt_message(snake_case_ , snake_case_ ) elif mode.lower().startswith("d" ): UpperCAmelCase_ = decrypt_message(snake_case_ , snake_case_ ) # Append pipe symbol (vertical bar) to identify spaces at the end. print(f"""Output:\n{text + "|"}""" ) def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : str ) -> str: '''simple docstring''' UpperCAmelCase_ = [""] * key for col in range(snake_case_ ): UpperCAmelCase_ = col while pointer < len(snake_case_ ): cipher_text[col] += message[pointer] pointer += key return "".join(snake_case_ ) def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : str ) -> str: '''simple docstring''' UpperCAmelCase_ = math.ceil(len(snake_case_ ) / key ) UpperCAmelCase_ = key UpperCAmelCase_ = (num_cols * num_rows) - len(snake_case_ ) UpperCAmelCase_ = [""] * num_cols UpperCAmelCase_ = 0 UpperCAmelCase_ = 0 for symbol in message: plain_text[col] += symbol col += 1 if ( (col == num_cols) or (col == num_cols - 1) and (row >= num_rows - num_shaded_boxes) ): UpperCAmelCase_ = 0 row += 1 return "".join(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
1
0
from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { """snap-research/efficientformer-l1-300""": ( """https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json""" ), } class lowerCAmelCase ( lowercase_ ): __lowerCamelCase = 'efficientformer' def __init__( self :int , _lowercase :List[int] = [3, 2, 6, 4] , _lowercase :List[int] = [48, 96, 2_24, 4_48] , _lowercase :List[bool] = [True, True, True, True] , _lowercase :int = 4_48 , _lowercase :int = 32 , _lowercase :int = 4 , _lowercase :int = 7 , _lowercase :int = 5 , _lowercase :int = 8 , _lowercase :int = 4 , _lowercase :float = 0.0 , _lowercase :int = 16 , _lowercase :int = 3 , _lowercase :int = 3 , _lowercase :int = 3 , _lowercase :int = 2 , _lowercase :int = 1 , _lowercase :float = 0.0 , _lowercase :int = 1 , _lowercase :bool = True , _lowercase :bool = True , _lowercase :float = 1e-5 , _lowercase :str = "gelu" , _lowercase :float = 0.02 , _lowercase :float = 1e-12 , _lowercase :int = 2_24 , _lowercase :float = 1e-05 , **_lowercase :List[str] , ): '''simple docstring''' super().__init__(**_lowercase ) lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = hidden_sizes lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = patch_size lowercase__ = num_channels lowercase__ = depths lowercase__ = mlp_expansion_ratio lowercase__ = downsamples lowercase__ = dim lowercase__ = key_dim lowercase__ = attention_ratio lowercase__ = resolution lowercase__ = pool_size lowercase__ = downsample_patch_size lowercase__ = downsample_stride lowercase__ = downsample_pad lowercase__ = drop_path_rate lowercase__ = num_metaad_blocks lowercase__ = distillation lowercase__ = use_layer_scale lowercase__ = layer_scale_init_value lowercase__ = image_size lowercase__ = batch_norm_eps
364
def _A ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): if height >= 1: move_tower(height - 1 , __magic_name__ , __magic_name__ , __magic_name__ ) move_disk(__magic_name__ , __magic_name__ ) move_tower(height - 1 , __magic_name__ , __magic_name__ , __magic_name__ ) def _A ( __magic_name__ , __magic_name__ ): print("moving disk from" , __magic_name__ , "to" , __magic_name__ ) def _A ( ): lowercase__ = int(input("Height of hanoi: " ).strip() ) move_tower(__magic_name__ , "A" , "B" , "C" ) if __name__ == "__main__": main()
201
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input SCREAMING_SNAKE_CASE__ : Dict = 'Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine' def A ( ) -> Optional[Any]: lowerCamelCase : Union[str, Any] = _ask_options( "In which compute environment are you running?" ,["This machine", "AWS (Amazon SageMaker)"] ,_convert_compute_environment ,) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: lowerCamelCase : Union[str, Any] = get_sagemaker_input() else: lowerCamelCase : Tuple = get_cluster_input() return config def A ( _SCREAMING_SNAKE_CASE=None ) -> str: if subparsers is not None: lowerCamelCase : int = subparsers.add_parser("config" ,description=_SCREAMING_SNAKE_CASE ) else: lowerCamelCase : Optional[Any] = argparse.ArgumentParser("Accelerate config command" ,description=_SCREAMING_SNAKE_CASE ) parser.add_argument( "--config_file" ,default=_SCREAMING_SNAKE_CASE ,help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " "with 'huggingface'." ) ,) if subparsers is not None: parser.set_defaults(func=_SCREAMING_SNAKE_CASE ) return parser def A ( _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: lowerCamelCase : int = get_user_input() if args.config_file is not None: lowerCamelCase : Optional[int] = args.config_file else: if not os.path.isdir(_SCREAMING_SNAKE_CASE ): os.makedirs(_SCREAMING_SNAKE_CASE ) lowerCamelCase : Tuple = default_yaml_config_file if config_file.endswith(".json" ): config.to_json_file(_SCREAMING_SNAKE_CASE ) else: config.to_yaml_file(_SCREAMING_SNAKE_CASE ) print(f'''accelerate configuration saved at {config_file}''' ) def A ( ) -> List[str]: lowerCamelCase : int = config_command_parser() lowerCamelCase : Tuple = parser.parse_args() config_command(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
48
"""simple docstring""" import json import os import shutil import tempfile from unittest import TestCase from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available if is_torch_available() and is_datasets_available() and is_faiss_available(): from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.tokenization_rag import RagTokenizer @require_faiss @require_torch class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[int] = tempfile.mkdtemp() lowerCAmelCase : Optional[int] = 8 # DPR tok lowerCAmelCase : Dict = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] lowerCAmelCase : List[str] = os.path.join(self.tmpdirname , "dpr_tokenizer" ) os.makedirs(snake_case__ , exist_ok=snake_case__ ) lowerCAmelCase : Dict = os.path.join(snake_case__ , DPR_VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) # BART tok lowerCAmelCase : Optional[int] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] lowerCAmelCase : Optional[int] = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) lowerCAmelCase : List[Any] = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] lowerCAmelCase : str = {"unk_token": "<unk>"} lowerCAmelCase : int = os.path.join(self.tmpdirname , "bart_tokenizer" ) os.makedirs(snake_case__ , exist_ok=snake_case__ ) lowerCAmelCase : int = os.path.join(snake_case__ , BART_VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase : Dict = os.path.join(snake_case__ , BART_VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(snake_case__ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(snake_case__ ) ) def lowercase__ ( self ): """simple docstring""" return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , "dpr_tokenizer" ) ) def lowercase__ ( self ): """simple docstring""" return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , "bart_tokenizer" ) ) def lowercase__ ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) @require_tokenizers def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = os.path.join(self.tmpdirname , "rag_tokenizer" ) lowerCAmelCase : List[Any] = RagConfig(question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() ) lowerCAmelCase : Optional[Any] = RagTokenizer(question_encoder=self.get_dpr_tokenizer() , generator=self.get_bart_tokenizer() ) rag_config.save_pretrained(snake_case__ ) rag_tokenizer.save_pretrained(snake_case__ ) lowerCAmelCase : List[str] = RagTokenizer.from_pretrained(snake_case__ , config=snake_case__ ) self.assertIsInstance(new_rag_tokenizer.question_encoder , snake_case__ ) self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() , rag_tokenizer.question_encoder.get_vocab() ) self.assertIsInstance(new_rag_tokenizer.generator , snake_case__ ) self.assertEqual(new_rag_tokenizer.generator.get_vocab() , rag_tokenizer.generator.get_vocab() ) @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[int] = RagTokenizer.from_pretrained("facebook/rag-token-nq" ) lowerCAmelCase : Dict = [ "who got the first nobel prize in physics", "when is the next deadpool movie being released", "which mode is used for short wave broadcast service", "who is the owner of reading football club", "when is the next scandal episode coming out", "when is the last time the philadelphia won the superbowl", "what is the most current adobe flash player version", "how many episodes are there in dragon ball z", "what is the first step in the evolution of the eye", "where is gall bladder situated in human body", "what is the main mineral in lithium batteries", "who is the president of usa right now", "where do the greasers live in the outsiders", "panda is a national animal of which country", "what is the name of manchester united stadium", ] lowerCAmelCase : Union[str, Any] = tokenizer(snake_case__ ) self.assertIsNotNone(snake_case__ ) @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = RagTokenizer.from_pretrained("facebook/rag-sequence-nq" ) lowerCAmelCase : List[str] = [ "who got the first nobel prize in physics", "when is the next deadpool movie being released", "which mode is used for short wave broadcast service", "who is the owner of reading football club", "when is the next scandal episode coming out", "when is the last time the philadelphia won the superbowl", "what is the most current adobe flash player version", "how many episodes are there in dragon ball z", "what is the first step in the evolution of the eye", "where is gall bladder situated in human body", "what is the main mineral in lithium batteries", "who is the president of usa right now", "where do the greasers live in the outsiders", "panda is a national animal of which country", "what is the name of manchester united stadium", ] lowerCAmelCase : str = tokenizer(snake_case__ ) self.assertIsNotNone(snake_case__ )
108
0
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=lowerCAmelCase__) class _SCREAMING_SNAKE_CASE ( lowerCAmelCase__): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization _UpperCamelCase:str = field(default="summarization" , metadata={"include_in_asdict_even_if_is_default": True}) _UpperCamelCase:ClassVar[Features] = Features({"text": Value("string")}) _UpperCamelCase:ClassVar[Features] = Features({"summary": Value("string")}) _UpperCamelCase:str = "text" _UpperCamelCase:str = "summary" @property def _snake_case ( self )-> Dict[str, str]: return {self.text_column: "text", self.summary_column: "summary"}
49
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __A : Tuple = {'configuration_glpn': ['GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GLPNConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[int] = ['GLPNFeatureExtractor'] __A : Dict = ['GLPNImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = [ 'GLPN_PRETRAINED_MODEL_ARCHIVE_LIST', 'GLPNForDepthEstimation', 'GLPNLayer', 'GLPNModel', 'GLPNPreTrainedModel', ] if TYPE_CHECKING: from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_glpn import GLPNFeatureExtractor from .image_processing_glpn import GLPNImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_glpn import ( GLPN_PRETRAINED_MODEL_ARCHIVE_LIST, GLPNForDepthEstimation, GLPNLayer, GLPNModel, GLPNPreTrainedModel, ) else: import sys __A : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
49
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = "▁" UpperCAmelCase__ = {"vocab_file": "sentencepiece.bpe.model"} UpperCAmelCase__ = { "vocab_file": { "xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model", "xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model", "xlm-roberta-large-finetuned-conll02-dutch": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll02-spanish": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll03-english": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll03-german": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model" ), } } UpperCAmelCase__ = { "xlm-roberta-base": 512, "xlm-roberta-large": 512, "xlm-roberta-large-finetuned-conll02-dutch": 512, "xlm-roberta-large-finetuned-conll02-spanish": 512, "xlm-roberta-large-finetuned-conll03-english": 512, "xlm-roberta-large-finetuned-conll03-german": 512, } class lowercase_ ( lowercase ): '''simple docstring''' __snake_case = VOCAB_FILES_NAMES __snake_case = PRETRAINED_VOCAB_FILES_MAP __snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case = ['''input_ids''', '''attention_mask'''] def __init__( self : Optional[int] , __UpperCAmelCase : int , __UpperCAmelCase : Optional[Any]="<s>" , __UpperCAmelCase : Optional[int]="</s>" , __UpperCAmelCase : str="</s>" , __UpperCAmelCase : int="<s>" , __UpperCAmelCase : Union[str, Any]="<unk>" , __UpperCAmelCase : Optional[Any]="<pad>" , __UpperCAmelCase : str="<mask>" , __UpperCAmelCase : Optional[Dict[str, Any]] = None , **__UpperCAmelCase : Any , ) ->None: """simple docstring""" a = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token a = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , ) a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__UpperCAmelCase ) ) a = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token a = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab a = 1 a = len(self.sp_model ) + self.fairseq_offset a = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : List[str] ) ->Optional[int]: """simple docstring""" a = self.__dict__.copy() a = None a = self.sp_model.serialized_model_proto() return state def __setstate__( self : Tuple , __UpperCAmelCase : Tuple ) ->Optional[Any]: """simple docstring""" a = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): a = {} a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) ->List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] a = [self.cls_token_id] a = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __lowerCAmelCase ( self : str , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None , __UpperCAmelCase : bool = False ) ->List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(__UpperCAmelCase )) + [1] return [1] + ([0] * len(__UpperCAmelCase )) + [1, 1] + ([0] * len(__UpperCAmelCase )) + [1] def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) ->List[int]: """simple docstring""" a = [self.sep_token_id] a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __lowerCAmelCase ( self : Tuple ) ->List[Any]: """simple docstring""" return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def __lowerCAmelCase ( self : Dict ) ->Tuple: """simple docstring""" a = {self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : str ) ->List[str]: """simple docstring""" return self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase ) def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : Optional[int] ) ->Optional[int]: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] a = self.sp_model.PieceToId(__UpperCAmelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __lowerCAmelCase ( self : Dict , __UpperCAmelCase : str ) ->List[str]: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : Optional[Any] ) ->Union[str, Any]: """simple docstring""" a = ''''''.join(__UpperCAmelCase ).replace(__UpperCAmelCase , ''' ''' ).strip() return out_string def __lowerCAmelCase ( self : Any , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ) ->Tuple[str]: """simple docstring""" if not os.path.isdir(__UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return a = os.path.join( __UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCAmelCase , '''wb''' ) as fi: a = self.sp_model.serialized_model_proto() fi.write(__UpperCAmelCase ) return (out_vocab_file,)
0
import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __lowercase (unittest.TestCase ): @property def UpperCamelCase__ ( self ) ->Tuple: '''simple docstring''' torch.manual_seed(0 ) __lowerCAmelCase : List[Any] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def UpperCamelCase__ ( self ) ->int: '''simple docstring''' __lowerCAmelCase : List[str] = self.dummy_uncond_unet __lowerCAmelCase : Any = PNDMScheduler() __lowerCAmelCase : Dict = PNDMPipeline(unet=A_ , scheduler=A_ ) pndm.to(A_ ) pndm.set_progress_bar_config(disable=A_ ) __lowerCAmelCase : Optional[Any] = torch.manual_seed(0 ) __lowerCAmelCase : Any = pndm(generator=A_ , num_inference_steps=20 , output_type='''numpy''' ).images __lowerCAmelCase : Optional[Any] = torch.manual_seed(0 ) __lowerCAmelCase : List[Any] = pndm(generator=A_ , num_inference_steps=20 , output_type='''numpy''' , return_dict=A_ )[0] __lowerCAmelCase : Tuple = image[0, -3:, -3:, -1] __lowerCAmelCase : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __lowerCAmelCase : int = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class __lowercase (unittest.TestCase ): def UpperCamelCase__ ( self ) ->Optional[Any]: '''simple docstring''' __lowerCAmelCase : Optional[int] = '''google/ddpm-cifar10-32''' __lowerCAmelCase : Union[str, Any] = UNetaDModel.from_pretrained(A_ ) __lowerCAmelCase : int = PNDMScheduler() __lowerCAmelCase : Any = PNDMPipeline(unet=A_ , scheduler=A_ ) pndm.to(A_ ) pndm.set_progress_bar_config(disable=A_ ) __lowerCAmelCase : Tuple = torch.manual_seed(0 ) __lowerCAmelCase : Any = pndm(generator=A_ , output_type='''numpy''' ).images __lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __lowerCAmelCase : List[Any] = np.array([0.1_564, 0.14_645, 0.1_406, 0.14_715, 0.12_425, 0.14_045, 0.13_115, 0.12_175, 0.125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
275
0
'''simple docstring''' import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a__ ( __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : List[str] = LongformerTokenizer __UpperCamelCase : Dict = True __UpperCamelCase : List[str] = LongformerTokenizerFast __UpperCamelCase : Optional[Any] = True def _snake_case (self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowerCAmelCase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] __lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) __lowerCAmelCase = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] __lowerCAmelCase = {'''unk_token''': '''<unk>'''} __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowercase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowercase ) ) def _snake_case (self , **__lowercase ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self , **__lowercase ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self , __lowercase ): __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = '''lower newer''' return input_text, output_text def _snake_case (self ): __lowerCAmelCase = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] __lowerCAmelCase = tokenizer.tokenize(__lowercase ) # , add_prefix_space=True) self.assertListEqual(__lowercase , __lowercase ) __lowerCAmelCase = tokens + [tokenizer.unk_token] __lowerCAmelCase = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowercase ) , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer() self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=__lowercase ) , [0, 3_14_14, 2_32, 3_28, 2] ) self.assertListEqual( tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=__lowercase ) , [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2] , ) @slow def _snake_case (self ): __lowerCAmelCase = self.tokenizer_class.from_pretrained('''allenai/longformer-base-4096''' ) __lowerCAmelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=__lowercase ) __lowerCAmelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__lowercase ) __lowerCAmelCase = tokenizer.encode( '''sequence builders''' , add_special_tokens=__lowercase , add_prefix_space=__lowercase ) __lowerCAmelCase = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__lowercase , add_prefix_space=__lowercase ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(__lowercase ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(__lowercase , __lowercase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = '''Encode this sequence.''' __lowerCAmelCase = tokenizer.byte_encoder[''' '''.encode('''utf-8''' )[0]] # Testing encoder arguments __lowerCAmelCase = tokenizer.encode(__lowercase , add_special_tokens=__lowercase , add_prefix_space=__lowercase ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(__lowercase , __lowercase ) __lowerCAmelCase = tokenizer.encode(__lowercase , add_special_tokens=__lowercase , add_prefix_space=__lowercase ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(__lowercase , __lowercase ) tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} ) __lowerCAmelCase = tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(__lowercase , __lowercase ) # Testing spaces after special tokens __lowerCAmelCase = '''<mask>''' tokenizer.add_special_tokens( {'''mask_token''': AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase )} ) # mask token has a left space __lowerCAmelCase = tokenizer.convert_tokens_to_ids(__lowercase ) __lowerCAmelCase = '''Encode <mask> sequence''' __lowerCAmelCase = '''Encode <mask>sequence''' __lowerCAmelCase = tokenizer.encode(__lowercase ) __lowerCAmelCase = encoded.index(__lowercase ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(__lowercase , __lowercase ) __lowerCAmelCase = tokenizer.encode(__lowercase ) __lowerCAmelCase = encoded.index(__lowercase ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(__lowercase , __lowercase ) def _snake_case (self ): pass def _snake_case (self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(__lowercase , **__lowercase ) __lowerCAmelCase = self.tokenizer_class.from_pretrained(__lowercase , **__lowercase ) __lowerCAmelCase = '''A, <mask> AllenNLP sentence.''' __lowerCAmelCase = tokenizer_r.encode_plus(__lowercase , add_special_tokens=__lowercase , return_token_type_ids=__lowercase ) __lowerCAmelCase = tokenizer_p.encode_plus(__lowercase , add_special_tokens=__lowercase , return_token_type_ids=__lowercase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) __lowerCAmelCase = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) __lowerCAmelCase = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( __lowercase , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( __lowercase , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) def _snake_case (self ): for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): __lowerCAmelCase = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=__lowercase , add_prefix_space=__lowercase , trim_offsets=__lowercase ) __lowerCAmelCase = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) __lowerCAmelCase = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , __lowercase ) self.assertEqual(post_processor_state['''add_prefix_space'''] , __lowercase ) self.assertEqual(post_processor_state['''trim_offsets'''] , __lowercase ) def _snake_case (self ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __lowerCAmelCase = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` __lowerCAmelCase = F"""{text_of_1_token} {text_of_1_token}""" __lowerCAmelCase = self.rust_tokenizer_class.from_pretrained( __lowercase , use_fast=__lowercase , add_prefix_space=__lowercase , trim_offsets=__lowercase ) __lowerCAmelCase = tokenizer_r(__lowercase , return_offsets_mapping=__lowercase , add_special_tokens=__lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__lowercase ) + 1, len(__lowercase ) + 1 + len(__lowercase )) , ) __lowerCAmelCase = self.rust_tokenizer_class.from_pretrained( __lowercase , use_fast=__lowercase , add_prefix_space=__lowercase , trim_offsets=__lowercase ) __lowerCAmelCase = tokenizer_r(__lowercase , return_offsets_mapping=__lowercase , add_special_tokens=__lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__lowercase ) + 1, len(__lowercase ) + 1 + len(__lowercase )) , ) __lowerCAmelCase = self.rust_tokenizer_class.from_pretrained( __lowercase , use_fast=__lowercase , add_prefix_space=__lowercase , trim_offsets=__lowercase ) __lowerCAmelCase = tokenizer_r(__lowercase , return_offsets_mapping=__lowercase , add_special_tokens=__lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__lowercase ), len(__lowercase ) + 1 + len(__lowercase )) , ) __lowerCAmelCase = self.rust_tokenizer_class.from_pretrained( __lowercase , use_fast=__lowercase , add_prefix_space=__lowercase , trim_offsets=__lowercase ) __lowerCAmelCase = tokenizer_r(__lowercase , return_offsets_mapping=__lowercase , add_special_tokens=__lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__lowercase ), len(__lowercase ) + 1 + len(__lowercase )) , ) __lowerCAmelCase = F""" {text}""" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) __lowerCAmelCase = self.rust_tokenizer_class.from_pretrained( __lowercase , use_fast=__lowercase , add_prefix_space=__lowercase , trim_offsets=__lowercase ) __lowerCAmelCase = tokenizer_r(__lowercase , return_offsets_mapping=__lowercase , add_special_tokens=__lowercase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__lowercase ) + 1, 1 + len(__lowercase ) + 1 + len(__lowercase )) , ) __lowerCAmelCase = self.rust_tokenizer_class.from_pretrained( __lowercase , use_fast=__lowercase , add_prefix_space=__lowercase , trim_offsets=__lowercase ) __lowerCAmelCase = tokenizer_r(__lowercase , return_offsets_mapping=__lowercase , add_special_tokens=__lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__lowercase ), 1 + len(__lowercase ) + 1 + len(__lowercase )) , ) __lowerCAmelCase = self.rust_tokenizer_class.from_pretrained( __lowercase , use_fast=__lowercase , add_prefix_space=__lowercase , trim_offsets=__lowercase ) __lowerCAmelCase = tokenizer_r(__lowercase , return_offsets_mapping=__lowercase , add_special_tokens=__lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__lowercase ), 1 + len(__lowercase ) + 1 + len(__lowercase )) , )
368
'''simple docstring''' # Imports import numpy as np class a__ : """simple docstring""" def __init__(self , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None ): self.set_matricies(red=__lowercase , green=__lowercase , blue=__lowercase , red_edge=__lowercase , nir=__lowercase ) def _snake_case (self , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None ): if red is not None: __lowerCAmelCase = red if green is not None: __lowerCAmelCase = green if blue is not None: __lowerCAmelCase = blue if red_edge is not None: __lowerCAmelCase = red_edge if nir is not None: __lowerCAmelCase = nir return True def _snake_case (self , __lowercase="" , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None ): self.set_matricies(red=__lowercase , green=__lowercase , blue=__lowercase , red_edge=__lowercase , nir=__lowercase ) __lowerCAmelCase = { '''ARVI2''': self.arvaa, '''CCCI''': self.ccci, '''CVI''': self.cvi, '''GLI''': self.gli, '''NDVI''': self.ndvi, '''BNDVI''': self.bndvi, '''redEdgeNDVI''': self.red_edge_ndvi, '''GNDVI''': self.gndvi, '''GBNDVI''': self.gbndvi, '''GRNDVI''': self.grndvi, '''RBNDVI''': self.rbndvi, '''PNDVI''': self.pndvi, '''ATSAVI''': self.atsavi, '''BWDRVI''': self.bwdrvi, '''CIgreen''': self.ci_green, '''CIrededge''': self.ci_rededge, '''CI''': self.ci, '''CTVI''': self.ctvi, '''GDVI''': self.gdvi, '''EVI''': self.evi, '''GEMI''': self.gemi, '''GOSAVI''': self.gosavi, '''GSAVI''': self.gsavi, '''Hue''': self.hue, '''IVI''': self.ivi, '''IPVI''': self.ipvi, '''I''': self.i, '''RVI''': self.rvi, '''MRVI''': self.mrvi, '''MSAVI''': self.m_savi, '''NormG''': self.norm_g, '''NormNIR''': self.norm_nir, '''NormR''': self.norm_r, '''NGRDI''': self.ngrdi, '''RI''': self.ri, '''S''': self.s, '''IF''': self._if, '''DVI''': self.dvi, '''TVI''': self.tvi, '''NDRE''': self.ndre, } try: return funcs[index]() except KeyError: print('''Index not in the list!''' ) return False def _snake_case (self ): return -0.1_8 + (1.1_7 * ((self.nir - self.red) / (self.nir + self.red))) def _snake_case (self ): return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def _snake_case (self ): return self.nir * (self.red / (self.green**2)) def _snake_case (self ): return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def _snake_case (self ): return (self.nir - self.red) / (self.nir + self.red) def _snake_case (self ): return (self.nir - self.blue) / (self.nir + self.blue) def _snake_case (self ): return (self.redEdge - self.red) / (self.redEdge + self.red) def _snake_case (self ): return (self.nir - self.green) / (self.nir + self.green) def _snake_case (self ): return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def _snake_case (self ): return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def _snake_case (self ): return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def _snake_case (self ): return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def _snake_case (self , __lowercase=0.0_8 , __lowercase=1.2_2 , __lowercase=0.0_3 ): return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def _snake_case (self ): return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def _snake_case (self ): return (self.nir / self.green) - 1 def _snake_case (self ): return (self.nir / self.redEdge) - 1 def _snake_case (self ): return (self.red - self.blue) / self.red def _snake_case (self ): __lowerCAmelCase = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def _snake_case (self ): return self.nir - self.green def _snake_case (self ): return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def _snake_case (self ): __lowerCAmelCase = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.2_5 * n) - (self.red - 0.1_2_5) / (1 - self.red) def _snake_case (self , __lowercase=0.1_6 ): return (self.nir - self.green) / (self.nir + self.green + y) def _snake_case (self , __lowercase=0.5 ): return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def _snake_case (self ): return np.arctan( ((2 * self.red - self.green - self.blue) / 3_0.5) * (self.green - self.blue) ) def _snake_case (self , __lowercase=None , __lowercase=None ): return (self.nir - b) / (a * self.red) def _snake_case (self ): return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def _snake_case (self ): return (self.red + self.green + self.blue) / 3_0.5 def _snake_case (self ): return self.nir / self.red def _snake_case (self ): return (self.rvi() - 1) / (self.rvi() + 1) def _snake_case (self ): return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def _snake_case (self ): return self.green / (self.nir + self.red + self.green) def _snake_case (self ): return self.nir / (self.nir + self.red + self.green) def _snake_case (self ): return self.red / (self.nir + self.red + self.green) def _snake_case (self ): return (self.green - self.red) / (self.green + self.red) def _snake_case (self ): return (self.red - self.green) / (self.red + self.green) def _snake_case (self ): __lowerCAmelCase = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) __lowerCAmelCase = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def _snake_case (self ): return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def _snake_case (self ): return self.nir / self.red def _snake_case (self ): return (self.ndvi() + 0.5) ** (1 / 2) def _snake_case (self ): return (self.nir - self.redEdge) / (self.nir + self.redEdge)
9
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: SCREAMING_SNAKE_CASE : str = None SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : List[Any] = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} SCREAMING_SNAKE_CASE : Optional[int] = { "vocab_file": { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/spiece.model", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/spiece.model", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/spiece.model", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/spiece.model", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model", }, "tokenizer_file": { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json", }, } SCREAMING_SNAKE_CASE : Optional[int] = { "albert-base-v1": 512, "albert-large-v1": 512, "albert-xlarge-v1": 512, "albert-xxlarge-v1": 512, "albert-base-v2": 512, "albert-large-v2": 512, "albert-xlarge-v2": 512, "albert-xxlarge-v2": 512, } SCREAMING_SNAKE_CASE : Union[str, Any] = "▁" class _lowerCamelCase( _a ): lowercase_ : Union[str, Any] = VOCAB_FILES_NAMES lowercase_ : Dict = PRETRAINED_VOCAB_FILES_MAP lowercase_ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ : List[Any] = AlbertTokenizer def __init__( self, lowerCamelCase=None, lowerCamelCase=None, lowerCamelCase=True, lowerCamelCase=True, lowerCamelCase=False, lowerCamelCase="[CLS]", lowerCamelCase="[SEP]", lowerCamelCase="<unk>", lowerCamelCase="[SEP]", lowerCamelCase="<pad>", lowerCamelCase="[CLS]", lowerCamelCase="[MASK]", **lowerCamelCase, ) -> Optional[Any]: """simple docstring""" _lowercase : Optional[Any] = ( AddedToken(lowerCamelCase, lstrip=lowerCamelCase, rstrip=lowerCamelCase, normalized=lowerCamelCase) if isinstance(lowerCamelCase, lowerCamelCase) else mask_token ) super().__init__( lowerCamelCase, tokenizer_file=lowerCamelCase, do_lower_case=lowerCamelCase, remove_space=lowerCamelCase, keep_accents=lowerCamelCase, bos_token=lowerCamelCase, eos_token=lowerCamelCase, unk_token=lowerCamelCase, sep_token=lowerCamelCase, pad_token=lowerCamelCase, cls_token=lowerCamelCase, mask_token=lowerCamelCase, **lowerCamelCase, ) _lowercase : List[Any] = do_lower_case _lowercase : List[Any] = remove_space _lowercase : Optional[int] = keep_accents _lowercase : Optional[int] = vocab_file _lowercase : List[Any] = False if not self.vocab_file else True def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase = None) -> List[int]: """simple docstring""" _lowercase : str = [self.sep_token_id] _lowercase : int = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase = None) -> List[int]: """simple docstring""" _lowercase : Dict = [self.sep_token_id] _lowercase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase = None) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.') if not os.path.isdir(lowerCamelCase): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''') return _lowercase : Optional[Any] = os.path.join( lowerCamelCase, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowerCamelCase): copyfile(self.vocab_file, lowerCamelCase) return (out_vocab_file,)
21
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer SCREAMING_SNAKE_CASE : str = "bart" SCREAMING_SNAKE_CASE : Optional[int] = True @st.cache(allow_output_mutation=lowerCamelCase_ ) def UpperCamelCase_( ) -> int: if LOAD_DENSE_INDEX: _lowercase : str = AutoTokenizer.from_pretrained('yjernite/retribert-base-uncased' ) _lowercase : Union[str, Any] = AutoModel.from_pretrained('yjernite/retribert-base-uncased' ).to('cuda:0' ) _lowercase : str = qar_model.eval() else: _lowercase , _lowercase : Any = (None, None) if MODEL_TYPE == "bart": _lowercase : Dict = AutoTokenizer.from_pretrained('yjernite/bart_eli5' ) _lowercase : int = AutoModelForSeqaSeqLM.from_pretrained('yjernite/bart_eli5' ).to('cuda:0' ) _lowercase : Any = torch.load('seq2seq_models/eli5_bart_model_blm_2.pth' ) sas_model.load_state_dict(save_dict['model'] ) _lowercase : List[Any] = sas_model.eval() else: _lowercase , _lowercase : Union[str, Any] = make_qa_sas_model( model_name='t5-small' , from_file='seq2seq_models/eli5_t5_model_1024_4.pth' , device='cuda:0' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=lowerCamelCase_ ) def UpperCamelCase_( ) -> str: if LOAD_DENSE_INDEX: _lowercase : Optional[Any] = faiss.StandardGpuResources() _lowercase : Optional[int] = datasets.load_dataset(path='wiki_snippets' , name='wiki40b_en_100_0' )['train'] _lowercase : Tuple = np.memmap( 'wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat' , dtype='float32' , mode='r' , shape=(wikiaab_passages.num_rows, 128) , ) _lowercase : Any = faiss.IndexFlatIP(128 ) _lowercase : Union[str, Any] = faiss.index_cpu_to_gpu(lowerCamelCase_ , 1 , lowerCamelCase_ ) wikiaab_gpu_index_flat.add(lowerCamelCase_ ) # TODO fix for larger GPU else: _lowercase , _lowercase : Any = (None, None) _lowercase : List[str] = Elasticsearch([{'host': 'localhost', 'port': '9200'}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=lowerCamelCase_ ) def UpperCamelCase_( ) -> Any: _lowercase : List[str] = datasets.load_dataset('eli5' , name='LFQA_reddit' ) _lowercase : Optional[Any] = elia['train_eli5'] _lowercase : Tuple = np.memmap( 'eli5_questions_reps.dat' , dtype='float32' , mode='r' , shape=(elia_train.num_rows, 128) ) _lowercase : Union[str, Any] = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(lowerCamelCase_ ) return (elia_train, eli5_train_q_index) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = load_indexes() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = load_models() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = load_train_data() def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_=10 ) -> List[str]: _lowercase : Any = embed_questions_for_retrieval([question] , lowerCamelCase_ , lowerCamelCase_ ) _lowercase , _lowercase : List[str] = eli5_train_q_index.search(lowerCamelCase_ , lowerCamelCase_ ) _lowercase : List[str] = [elia_train[int(lowerCamelCase_ )] for i in I[0]] return nn_examples def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_="wiki40b" , lowerCamelCase_="dense" , lowerCamelCase_=10 ) -> Dict: if source == "none": _lowercase , _lowercase : Union[str, Any] = (' <P> '.join(['' for _ in range(11 )] ).strip(), []) else: if method == "dense": _lowercase , _lowercase : Dict = query_qa_dense_index( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) else: _lowercase , _lowercase : str = query_es_index( lowerCamelCase_ , lowerCamelCase_ , index_name='english_wiki40b_snippets_100w' , n_results=lowerCamelCase_ , ) _lowercase : List[Any] = [ (res['article_title'], res['section_title'].strip(), res['score'], res['passage_text']) for res in hit_lst ] _lowercase : Union[str, Any] = 'question: {} context: {}'.format(lowerCamelCase_ , lowerCamelCase_ ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda lowerCamelCase_ : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda lowerCamelCase_ : None), } ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=64 , lowerCamelCase_=256 , lowerCamelCase_=False , lowerCamelCase_=2 , lowerCamelCase_=0.95 , lowerCamelCase_=0.8 ) -> Dict: with torch.no_grad(): _lowercase : str = qa_sas_generate( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , num_answers=1 , num_beams=lowerCamelCase_ , min_len=lowerCamelCase_ , max_len=lowerCamelCase_ , do_sample=lowerCamelCase_ , temp=lowerCamelCase_ , top_p=lowerCamelCase_ , top_k=lowerCamelCase_ , max_input_length=1024 , device='cuda:0' , )[0] return (answer, support_list) st.title("Long Form Question Answering with ELI5") # Start sidebar SCREAMING_SNAKE_CASE : Union[str, Any] = "<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>" SCREAMING_SNAKE_CASE : List[Any] = "\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class=\"img-container\"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n" % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia SCREAMING_SNAKE_CASE : Any = "\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n" st.sidebar.markdown(description, unsafe_allow_html=True) SCREAMING_SNAKE_CASE : Union[str, Any] = [ "Answer the question", "View the retrieved document only", "View the most similar ELI5 question and answer", "Show me everything, please!", ] SCREAMING_SNAKE_CASE : Optional[int] = st.sidebar.checkbox("Demo options") if demo_options: SCREAMING_SNAKE_CASE : List[str] = st.sidebar.selectbox( "", action_list, index=3, ) SCREAMING_SNAKE_CASE : Optional[int] = action_list.index(action_st) SCREAMING_SNAKE_CASE : Tuple = st.sidebar.selectbox( "", ["Show full text of passages", "Show passage section titles"], index=0, ) SCREAMING_SNAKE_CASE : int = show_type == "Show full text of passages" else: SCREAMING_SNAKE_CASE : Any = 3 SCREAMING_SNAKE_CASE : Dict = True SCREAMING_SNAKE_CASE : Union[str, Any] = st.sidebar.checkbox("Retrieval options") if retrieval_options: SCREAMING_SNAKE_CASE : Tuple = "\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n " st.sidebar.markdown(retriever_info) SCREAMING_SNAKE_CASE : Dict = st.sidebar.selectbox("Which Wikipedia format should the model use?", ["wiki40b", "none"]) SCREAMING_SNAKE_CASE : Union[str, Any] = st.sidebar.selectbox("Which Wikipedia indexer should the model use?", ["dense", "sparse", "mixed"]) else: SCREAMING_SNAKE_CASE : int = "wiki40b" SCREAMING_SNAKE_CASE : int = "dense" SCREAMING_SNAKE_CASE : str = "beam" SCREAMING_SNAKE_CASE : Optional[Any] = 2 SCREAMING_SNAKE_CASE : List[str] = 64 SCREAMING_SNAKE_CASE : Union[str, Any] = 256 SCREAMING_SNAKE_CASE : Union[str, Any] = None SCREAMING_SNAKE_CASE : List[Any] = None SCREAMING_SNAKE_CASE : str = st.sidebar.checkbox("Generation options") if generate_options: SCREAMING_SNAKE_CASE : Any = "\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder's output probabilities.\n " st.sidebar.markdown(generate_info) SCREAMING_SNAKE_CASE : List[Any] = st.sidebar.selectbox("Would you like to use beam search or sample an answer?", ["beam", "sampled"]) SCREAMING_SNAKE_CASE : Tuple = st.sidebar.slider( "Minimum generation length", min_value=8, max_value=256, value=64, step=8, format=None, key=None ) SCREAMING_SNAKE_CASE : int = st.sidebar.slider( "Maximum generation length", min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": SCREAMING_SNAKE_CASE : int = st.sidebar.slider("Beam size", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: SCREAMING_SNAKE_CASE : Union[str, Any] = st.sidebar.slider( "Nucleus sampling p", min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) SCREAMING_SNAKE_CASE : Any = st.sidebar.slider( "Temperature", min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) SCREAMING_SNAKE_CASE : str = None # start main text SCREAMING_SNAKE_CASE : List[str] = [ "<MY QUESTION>", "How do people make chocolate?", "Why do we get a fever when we are sick?", "How can different animals perceive different colors?", "What is natural language processing?", "What's the best way to treat a sunburn?", "What exactly are vitamins ?", "How does nuclear energy provide electricity?", "What's the difference between viruses and bacteria?", "Why are flutes classified as woodwinds when most of them are made out of metal ?", "Why do people like drinking coffee even though it tastes so bad?", "What happens when wine ages? How does it make the wine taste better?", "If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?", "How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?", "How does New Zealand have so many large bird predators?", ] SCREAMING_SNAKE_CASE : str = st.selectbox( "What would you like to ask? ---- select <MY QUESTION> to enter a new query", questions_list, index=1, ) if question_s == "<MY QUESTION>": SCREAMING_SNAKE_CASE : List[str] = st.text_input("Enter your question here:", "") else: SCREAMING_SNAKE_CASE : Optional[int] = question_s if st.button("Show me!"): if action in [0, 1, 3]: if index_type == "mixed": SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = make_support(question, source=wiki_source, method="dense", n_results=10) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = make_support(question, source=wiki_source, method="sparse", n_results=10) SCREAMING_SNAKE_CASE : Tuple = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] SCREAMING_SNAKE_CASE : Optional[Any] = support_list[:10] SCREAMING_SNAKE_CASE : int = "<P> " + " <P> ".join([res[-1] for res in support_list]) else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == "sampled"), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("### The model generated answer is:") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("--- \n ### The model is drawing information from the following Wikipedia passages:") for i, res in enumerate(support_list): SCREAMING_SNAKE_CASE : Optional[Any] = "https://en.wikipedia.org/wiki/{}".format(res[0].replace(" ", "_")) SCREAMING_SNAKE_CASE : List[Any] = res[1].strip() if sec_titles == "": SCREAMING_SNAKE_CASE : Union[str, Any] = "[{}]({})".format(res[0], wiki_url) else: SCREAMING_SNAKE_CASE : Any = sec_titles.split(" & ") SCREAMING_SNAKE_CASE : List[Any] = " & ".join( ["[{}]({}#{})".format(sec.strip(), wiki_url, sec.strip().replace(" ", "_")) for sec in sec_list] ) st.markdown( "{0:02d} - **Article**: {1:<18} <br> _Section_: {2}".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( "> <span style=\"font-family:arial; font-size:10pt;\">" + res[-1] + "</span>", unsafe_allow_html=True ) if action in [2, 3]: SCREAMING_SNAKE_CASE : str = find_nearest_training(question) SCREAMING_SNAKE_CASE : Any = nn_train_list[0] st.markdown( "--- \n ### The most similar question in the ELI5 training set was: \n\n {}".format(train_exple["title"]) ) SCREAMING_SNAKE_CASE : str = [ "{}. {}".format(i + 1, " \n".join([line.strip() for line in ans.split("\n") if line.strip() != ""])) for i, (ans, sc) in enumerate(zip(train_exple["answers"]["text"], train_exple["answers"]["score"])) if i == 0 or sc > 2 ] st.markdown("##### Its answers were: \n\n {}".format("\n".join(answers_st))) SCREAMING_SNAKE_CASE : Tuple = "\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n" st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
21
1
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=_lowercase ) class _lowerCAmelCase ( _lowercase ): '''simple docstring''' a_ : str =field(default="""language-modeling""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) a_ : Optional[int] =Features({"""text""": Value("""string""" )} ) a_ : int =Features({} ) a_ : Optional[int] ="""text""" @property def UpperCamelCase_ ( self : Any ): '''simple docstring''' return {self.text_column: "text"}
360
from __future__ import annotations lowerCAmelCase_ = [] def lowerCamelCase_ ( lowerCAmelCase: list[list[int]] , lowerCAmelCase: int , lowerCAmelCase: int )-> bool: for i in range(len(lowerCAmelCase ) ): if board[row][i] == 1: return False for i in range(len(lowerCAmelCase ) ): if board[i][column] == 1: return False for i, j in zip(range(lowerCAmelCase , -1 , -1 ) , range(lowerCAmelCase , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(lowerCAmelCase , -1 , -1 ) , range(lowerCAmelCase , len(lowerCAmelCase ) ) ): if board[i][j] == 1: return False return True def lowerCamelCase_ ( lowerCAmelCase: list[list[int]] , lowerCAmelCase: int )-> bool: if row >= len(lowerCAmelCase ): solution.append(lowerCAmelCase ) printboard(lowerCAmelCase ) print() return True for i in range(len(lowerCAmelCase ) ): if is_safe(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): _snake_case : Dict = 1 solve(lowerCAmelCase , row + 1 ) _snake_case : str = 0 return False def lowerCamelCase_ ( lowerCAmelCase: list[list[int]] )-> None: for i in range(len(lowerCAmelCase ) ): for j in range(len(lowerCAmelCase ) ): if board[i][j] == 1: print('Q' , end=' ' ) else: print('.' , end=' ' ) print() # n=int(input("The no. of queens")) lowerCAmelCase_ = 8 lowerCAmelCase_ = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print("""The total no. of solutions are :""", len(solution))
260
0
"""simple docstring""" from __future__ import annotations def __lowerCamelCase ( a_ : int , a_ : Dict , a_ : Union[str, Any] , a_ : Union[str, Any] ) -> List[str]: __SCREAMING_SNAKE_CASE :Tuple = [] __SCREAMING_SNAKE_CASE :int = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) __SCREAMING_SNAKE_CASE :Optional[int] = result + left + right return input_list def __lowerCamelCase ( a_ : int ) -> Optional[int]: if len(_lowercase ) <= 1: return input_list __SCREAMING_SNAKE_CASE :Optional[int] = list(_lowercase ) # iteration for two-way merging __SCREAMING_SNAKE_CASE :Dict = 2 while p <= len(_lowercase ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(_lowercase ) , _lowercase ): __SCREAMING_SNAKE_CASE :List[Any] = i __SCREAMING_SNAKE_CASE :Union[str, Any] = i + p - 1 __SCREAMING_SNAKE_CASE :Union[str, Any] = (low + high + 1) // 2 __SCREAMING_SNAKE_CASE :Optional[Any] = merge(_lowercase , _lowercase , _lowercase , _lowercase ) # final merge of last two parts if p * 2 >= len(_lowercase ): __SCREAMING_SNAKE_CASE :Any = i __SCREAMING_SNAKE_CASE :Any = merge(_lowercase , 0 , _lowercase , len(_lowercase ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": lowerCamelCase_ = input("Enter numbers separated by a comma:\n").strip() if user_input == "": lowerCamelCase_ = [] else: lowerCamelCase_ = [int(item.strip()) for item in user_input.split(",")] print(iter_merge_sort(unsorted))
191
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Any = logging.get_logger(__name__) __UpperCamelCase : Optional[int] = { 'facebook/nllb-moe-54B': 'https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json', } class lowercase__ ( UpperCamelCase_): UpperCamelCase_ = """nllb-moe""" UpperCamelCase_ = ["""past_key_values"""] UpperCamelCase_ = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : List[str] , UpperCamelCase__ : List[str]=12_8112 , UpperCamelCase__ : str=1024 , UpperCamelCase__ : Optional[int]=12 , UpperCamelCase__ : Union[str, Any]=4096 , UpperCamelCase__ : Optional[Any]=16 , UpperCamelCase__ : Optional[Any]=12 , UpperCamelCase__ : str=4096 , UpperCamelCase__ : Dict=16 , UpperCamelCase__ : Any=0.05 , UpperCamelCase__ : Any=0.05 , UpperCamelCase__ : Optional[Any]=True , UpperCamelCase__ : Optional[Any]=True , UpperCamelCase__ : List[Any]="relu" , UpperCamelCase__ : Union[str, Any]=1024 , UpperCamelCase__ : Optional[int]=0.1 , UpperCamelCase__ : Any=0.1 , UpperCamelCase__ : Optional[Any]=0.0 , UpperCamelCase__ : str=0.02 , UpperCamelCase__ : Tuple=2 , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : Dict=False , UpperCamelCase__ : Any="float32" , UpperCamelCase__ : List[Any]=False , UpperCamelCase__ : Tuple=128 , UpperCamelCase__ : Tuple=64 , UpperCamelCase__ : List[str]=4 , UpperCamelCase__ : Union[str, Any]=4 , UpperCamelCase__ : Dict=0.001 , UpperCamelCase__ : Optional[Any]=0.001 , UpperCamelCase__ : Optional[Any]="all" , UpperCamelCase__ : Tuple=False , UpperCamelCase__ : List[Any]=False , UpperCamelCase__ : List[Any]=1.0 , UpperCamelCase__ : str=0.2 , UpperCamelCase__ : List[Any]=1 , UpperCamelCase__ : List[Any]=0 , UpperCamelCase__ : Optional[int]=2 , UpperCamelCase__ : Tuple=False , **UpperCamelCase__ : Union[str, Any] , ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = vocab_size SCREAMING_SNAKE_CASE : Dict = max_position_embeddings SCREAMING_SNAKE_CASE : int = d_model SCREAMING_SNAKE_CASE : Any = encoder_ffn_dim SCREAMING_SNAKE_CASE : List[Any] = encoder_layers SCREAMING_SNAKE_CASE : Union[str, Any] = encoder_attention_heads SCREAMING_SNAKE_CASE : List[str] = decoder_ffn_dim SCREAMING_SNAKE_CASE : Dict = decoder_layers SCREAMING_SNAKE_CASE : List[Any] = decoder_attention_heads SCREAMING_SNAKE_CASE : List[str] = dropout SCREAMING_SNAKE_CASE : Any = attention_dropout SCREAMING_SNAKE_CASE : Union[str, Any] = activation_dropout SCREAMING_SNAKE_CASE : List[Any] = activation_function SCREAMING_SNAKE_CASE : Union[str, Any] = init_std SCREAMING_SNAKE_CASE : int = encoder_layerdrop SCREAMING_SNAKE_CASE : List[Any] = decoder_layerdrop SCREAMING_SNAKE_CASE : Any = use_cache SCREAMING_SNAKE_CASE : str = encoder_layers SCREAMING_SNAKE_CASE : List[Any] = scale_embedding # scale factor will be sqrt(d_model) if True SCREAMING_SNAKE_CASE : List[str] = router_z_loss_coef SCREAMING_SNAKE_CASE : List[str] = router_aux_loss_coef SCREAMING_SNAKE_CASE : int = decoder_sparse_step SCREAMING_SNAKE_CASE : Optional[int] = encoder_sparse_step SCREAMING_SNAKE_CASE : List[str] = num_experts SCREAMING_SNAKE_CASE : int = expert_capacity SCREAMING_SNAKE_CASE : Any = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f"""`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}""" ) SCREAMING_SNAKE_CASE : str = router_dtype SCREAMING_SNAKE_CASE : List[Any] = router_ignore_padding_tokens SCREAMING_SNAKE_CASE : int = batch_prioritized_routing SCREAMING_SNAKE_CASE : str = second_expert_policy SCREAMING_SNAKE_CASE : Optional[Any] = normalize_router_prob_before_dropping SCREAMING_SNAKE_CASE : Optional[Any] = moe_eval_capacity_token_fraction SCREAMING_SNAKE_CASE : Optional[int] = moe_token_dropout SCREAMING_SNAKE_CASE : Optional[int] = output_router_logits super().__init__( pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , is_encoder_decoder=UpperCamelCase__ , decoder_start_token_id=UpperCamelCase__ , **UpperCamelCase__ , )
182
0
import torch from torch import nn class lowercase__ ( nn.Module): def __init__( self : int , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[Any]=1 , UpperCamelCase__ : Optional[int]=False ): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE : List[str] = n_token SCREAMING_SNAKE_CASE : str = d_embed SCREAMING_SNAKE_CASE : Dict = d_proj SCREAMING_SNAKE_CASE : str = cutoffs + [n_token] SCREAMING_SNAKE_CASE : List[str] = [0] + self.cutoffs SCREAMING_SNAKE_CASE : Union[str, Any] = div_val SCREAMING_SNAKE_CASE : Optional[int] = self.cutoffs[0] SCREAMING_SNAKE_CASE : Union[str, Any] = len(self.cutoffs ) - 1 SCREAMING_SNAKE_CASE : Any = self.shortlist_size + self.n_clusters if self.n_clusters > 0: SCREAMING_SNAKE_CASE : List[Any] = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) ) SCREAMING_SNAKE_CASE : List[str] = nn.Parameter(torch.zeros(self.n_clusters ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = nn.ModuleList() SCREAMING_SNAKE_CASE : int = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(UpperCamelCase__ , UpperCamelCase__ ) ) ) else: self.out_projs.append(UpperCamelCase__ ) self.out_layers.append(nn.Linear(UpperCamelCase__ , UpperCamelCase__ ) ) else: for i in range(len(self.cutoffs ) ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = self.cutoff_ends[i], self.cutoff_ends[i + 1] SCREAMING_SNAKE_CASE : List[str] = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(UpperCamelCase__ , UpperCamelCase__ ) ) ) self.out_layers.append(nn.Linear(UpperCamelCase__ , r_idx - l_idx ) ) SCREAMING_SNAKE_CASE : List[str] = keep_order def __A ( self : int , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Dict , UpperCamelCase__ : str , UpperCamelCase__ : Optional[int] ): '''simple docstring''' if proj is None: SCREAMING_SNAKE_CASE : List[Any] = nn.functional.linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: SCREAMING_SNAKE_CASE : Any = nn.functional.linear(UpperCamelCase__ , proj.t().contiguous() ) SCREAMING_SNAKE_CASE : List[Any] = nn.functional.linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def __A ( self : Any , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[str]=None , UpperCamelCase__ : Tuple=False ): '''simple docstring''' if labels is not None: # Shift so that tokens < n predict n SCREAMING_SNAKE_CASE : Any = hidden[..., :-1, :].contiguous() SCREAMING_SNAKE_CASE : List[Any] = labels[..., 1:].contiguous() SCREAMING_SNAKE_CASE : Dict = hidden.view(-1 , hidden.size(-1 ) ) SCREAMING_SNAKE_CASE : str = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError('''Input and labels should have the same size in the batch dimension.''' ) else: SCREAMING_SNAKE_CASE : List[Any] = hidden.view(-1 , hidden.size(-1 ) ) if self.n_clusters == 0: SCREAMING_SNAKE_CASE : Tuple = self._compute_logit(UpperCamelCase__ , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) if labels is not None: SCREAMING_SNAKE_CASE : Union[str, Any] = labels != -100 SCREAMING_SNAKE_CASE : Union[str, Any] = torch.zeros_like(UpperCamelCase__ , dtype=hidden.dtype , device=hidden.device ) SCREAMING_SNAKE_CASE : Dict = ( -nn.functional.log_softmax(UpperCamelCase__ , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = nn.functional.log_softmax(UpperCamelCase__ , dim=-1 ) else: # construct weights and biases SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] SCREAMING_SNAKE_CASE : int = self.out_layers[0].weight[l_idx:r_idx] SCREAMING_SNAKE_CASE : List[str] = self.out_layers[0].bias[l_idx:r_idx] else: SCREAMING_SNAKE_CASE : str = self.out_layers[i].weight SCREAMING_SNAKE_CASE : List[Any] = self.out_layers[i].bias if i == 0: SCREAMING_SNAKE_CASE : Union[str, Any] = torch.cat([weight_i, self.cluster_weight] , dim=0 ) SCREAMING_SNAKE_CASE : Any = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(UpperCamelCase__ ) biases.append(UpperCamelCase__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = weights[0], biases[0], self.out_projs[0] SCREAMING_SNAKE_CASE : Dict = self._compute_logit(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Dict = nn.functional.log_softmax(UpperCamelCase__ , dim=1 ) if labels is None: SCREAMING_SNAKE_CASE : str = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: SCREAMING_SNAKE_CASE : Dict = torch.zeros_like(UpperCamelCase__ , dtype=hidden.dtype , device=hidden.device ) SCREAMING_SNAKE_CASE : Any = 0 SCREAMING_SNAKE_CASE : Optional[Any] = [0] + self.cutoffs for i in range(len(UpperCamelCase__ ) - 1 ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = cutoff_values[i], cutoff_values[i + 1] if labels is not None: SCREAMING_SNAKE_CASE : Tuple = (labels >= l_idx) & (labels < r_idx) SCREAMING_SNAKE_CASE : str = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue SCREAMING_SNAKE_CASE : List[str] = labels.index_select(0 , UpperCamelCase__ ) - l_idx SCREAMING_SNAKE_CASE : str = head_logprob.index_select(0 , UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[int] = hidden.index_select(0 , UpperCamelCase__ ) else: SCREAMING_SNAKE_CASE : Any = hidden if i == 0: if labels is not None: SCREAMING_SNAKE_CASE : Union[str, Any] = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 ) else: SCREAMING_SNAKE_CASE : List[Any] = head_logprob[:, : self.cutoffs[0]] else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = weights[i], biases[i], self.out_projs[i] SCREAMING_SNAKE_CASE : str = self._compute_logit(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Tuple = nn.functional.log_softmax(UpperCamelCase__ , dim=1 ) SCREAMING_SNAKE_CASE : Optional[int] = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: SCREAMING_SNAKE_CASE : Tuple = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None] ).squeeze(1 ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i SCREAMING_SNAKE_CASE : List[Any] = logprob_i if labels is not None: if (hasattr(self , '''keep_order''' ) and self.keep_order) or keep_order: out.index_copy_(0 , UpperCamelCase__ , -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def __A ( self : Optional[Any] , UpperCamelCase__ : Tuple ): '''simple docstring''' if self.n_clusters == 0: SCREAMING_SNAKE_CASE : Optional[int] = self._compute_logit(UpperCamelCase__ , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) return nn.functional.log_softmax(UpperCamelCase__ , dim=-1 ) else: # construct weights and biases SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = self.cutoff_ends[i], self.cutoff_ends[i + 1] SCREAMING_SNAKE_CASE : Optional[int] = self.out_layers[0].weight[l_idx:r_idx] SCREAMING_SNAKE_CASE : Optional[Any] = self.out_layers[0].bias[l_idx:r_idx] else: SCREAMING_SNAKE_CASE : str = self.out_layers[i].weight SCREAMING_SNAKE_CASE : Union[str, Any] = self.out_layers[i].bias if i == 0: SCREAMING_SNAKE_CASE : List[Any] = torch.cat([weight_i, self.cluster_weight] , dim=0 ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(UpperCamelCase__ ) biases.append(UpperCamelCase__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = weights[0], biases[0], self.out_projs[0] SCREAMING_SNAKE_CASE : Union[str, Any] = self._compute_logit(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE : List[str] = hidden.new_empty((head_logit.size(0 ), self.n_token) ) SCREAMING_SNAKE_CASE : Any = nn.functional.log_softmax(UpperCamelCase__ , dim=1 ) SCREAMING_SNAKE_CASE : List[Any] = [0] + self.cutoffs for i in range(len(UpperCamelCase__ ) - 1 ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = cutoff_values[i], cutoff_values[i + 1] if i == 0: SCREAMING_SNAKE_CASE : Union[str, Any] = head_logprob[:, : self.cutoffs[0]] else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = weights[i], biases[i], self.out_projs[i] SCREAMING_SNAKE_CASE : Dict = self._compute_logit(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = nn.functional.log_softmax(UpperCamelCase__ , dim=1 ) SCREAMING_SNAKE_CASE : List[Any] = head_logprob[:, -i] + tail_logprob_i SCREAMING_SNAKE_CASE : int = logprob_i return out
258
import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def A ( _lowercase , _lowercase ): # Load checkpoint SCREAMING_SNAKE_CASE : Union[str, Any] = torch.load(_lowercase , map_location='''cpu''' ) SCREAMING_SNAKE_CASE : List[str] = chkpt['''model'''] # We have the base model one level deeper than the original XLM repository SCREAMING_SNAKE_CASE : int = {} for k, v in state_dict.items(): if "pred_layer" in k: SCREAMING_SNAKE_CASE : Optional[Any] = v else: SCREAMING_SNAKE_CASE : List[Any] = v SCREAMING_SNAKE_CASE : Dict = chkpt['''params'''] SCREAMING_SNAKE_CASE : Optional[Any] = {n: v for n, v in config.items() if not isinstance(_lowercase , (torch.FloatTensor, numpy.ndarray) )} SCREAMING_SNAKE_CASE : Any = chkpt['''dico_word2id'''] SCREAMING_SNAKE_CASE : str = {s + '''</w>''' if s.find('''@@''' ) == -1 and i > 13 else s.replace('''@@''' , '''''' ): i for s, i in vocab.items()} # Save pytorch-model SCREAMING_SNAKE_CASE : Dict = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME SCREAMING_SNAKE_CASE : List[str] = pytorch_dump_folder_path + '''/''' + CONFIG_NAME SCREAMING_SNAKE_CASE : Dict = pytorch_dump_folder_path + '''/''' + VOCAB_FILES_NAMES['''vocab_file'''] print(f"""Save PyTorch model to {pytorch_weights_dump_path}""" ) torch.save(_lowercase , _lowercase ) print(f"""Save configuration file to {pytorch_config_dump_path}""" ) with open(_lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(_lowercase , indent=2 ) + '''\n''' ) print(f"""Save vocab file to {pytorch_config_dump_path}""" ) with open(_lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(_lowercase , indent=2 ) + '''\n''' ) if __name__ == "__main__": __UpperCamelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--xlm_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __UpperCamelCase : List[Any] = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
258
1
'''simple docstring''' def _SCREAMING_SNAKE_CASE ( UpperCamelCase = 1000 ): """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : Dict = 1, 1 lowerCAmelCase__ : int = [] for i in range(1 , n + 1 ): lowerCAmelCase__ : List[str] = prev_numerator + 2 * prev_denominator lowerCAmelCase__ : List[Any] = prev_numerator + prev_denominator if len(str(UpperCamelCase ) ) > len(str(UpperCamelCase ) ): result.append(UpperCamelCase ) lowerCAmelCase__ : str = numerator lowerCAmelCase__ : Union[str, Any] = denominator return len(UpperCamelCase ) if __name__ == "__main__": print(F"""{solution() = }""")
37
import re import string import numpy as np import datasets __lowerCAmelCase : Optional[int] = '\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n' __lowerCAmelCase : Optional[int] = '\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results["exact_match"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."]\n >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 33.3\n\n' __lowerCAmelCase : Optional[int] = '\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): '''simple docstring''' def _lowercase ( self : str ) -> Optional[int]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , reference_urls=[] , ) def _lowercase ( self : Optional[int] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : Optional[Any]=False , UpperCamelCase__ : int=False , UpperCamelCase__ : Tuple=False , ) -> Dict: """simple docstring""" if regexes_to_ignore is not None: for s in regexes_to_ignore: __magic_name__ = np.array([re.sub(UpperCamelCase__ , """""" , UpperCamelCase__ ) for x in predictions] ) __magic_name__ = np.array([re.sub(UpperCamelCase__ , """""" , UpperCamelCase__ ) for x in references] ) else: __magic_name__ = np.asarray(UpperCamelCase__ ) __magic_name__ = np.asarray(UpperCamelCase__ ) if ignore_case: __magic_name__ = np.char.lower(UpperCamelCase__ ) __magic_name__ = np.char.lower(UpperCamelCase__ ) if ignore_punctuation: __magic_name__ = string.punctuation.maketrans("""""" , """""" , string.punctuation ) __magic_name__ = np.char.translate(UpperCamelCase__ , table=UpperCamelCase__ ) __magic_name__ = np.char.translate(UpperCamelCase__ , table=UpperCamelCase__ ) if ignore_numbers: __magic_name__ = string.digits.maketrans("""""" , """""" , string.digits ) __magic_name__ = np.char.translate(UpperCamelCase__ , table=UpperCamelCase__ ) __magic_name__ = np.char.translate(UpperCamelCase__ , table=UpperCamelCase__ ) __magic_name__ = predictions == references return {"exact_match": np.mean(UpperCamelCase__ ) * 100}
88
0
def _A ( UpperCamelCase_ : int, UpperCamelCase_ : int, UpperCamelCase_ : int) -> int: '''simple docstring''' if exponent == 1: return base if exponent % 2 == 0: __lowercase = _modexpt(UpperCamelCase_, exponent // 2, UpperCamelCase_) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(UpperCamelCase_, exponent - 1, UpperCamelCase_)) % modulo_value def _A ( UpperCamelCase_ : int = 1777, UpperCamelCase_ : int = 1855, UpperCamelCase_ : int = 8) -> int: '''simple docstring''' __lowercase = base for _ in range(1, UpperCamelCase_): __lowercase = _modexpt(UpperCamelCase_, UpperCamelCase_, 10**digits) return result if __name__ == "__main__": print(F"{solution() = }")
352
"""simple docstring""" import numpy # List of input, output pairs _a = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) _a = (((5_15, 22, 13), 5_55), ((61, 35, 49), 1_50)) _a = [2, 4, 1, 5] _a = len(train_data) _a = 0.009 def _A ( UpperCamelCase_ : str, UpperCamelCase_ : List[Any]="train") -> Optional[Any]: '''simple docstring''' return calculate_hypothesis_value(UpperCamelCase_, UpperCamelCase_) - output( UpperCamelCase_, UpperCamelCase_) def _A ( UpperCamelCase_ : List[Any]) -> Union[str, Any]: '''simple docstring''' __lowercase = 0 for i in range(len(UpperCamelCase_) - 1): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def _A ( UpperCamelCase_ : Dict, UpperCamelCase_ : Optional[int]) -> Dict: '''simple docstring''' if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def _A ( UpperCamelCase_ : Dict, UpperCamelCase_ : List[str]) -> int: '''simple docstring''' if data_set == "train": return _hypothesis_value(train_data[example_no][0]) elif data_set == "test": return _hypothesis_value(test_data[example_no][0]) return None def _A ( UpperCamelCase_ : Any, UpperCamelCase_ : Tuple=m) -> int: '''simple docstring''' __lowercase = 0 for i in range(UpperCamelCase_): if index == -1: summation_value += _error(UpperCamelCase_) else: summation_value += _error(UpperCamelCase_) * train_data[i][0][index] return summation_value def _A ( UpperCamelCase_ : str) -> str: '''simple docstring''' __lowercase = summation_of_cost_derivative(UpperCamelCase_, UpperCamelCase_) / m return cost_derivative_value def _A ( ) -> List[str]: '''simple docstring''' global parameter_vector # Tune these values to set a tolerance value for predicted output __lowercase = 0.000_002 __lowercase = 0 __lowercase = 0 while True: j += 1 __lowercase = [0, 0, 0, 0] for i in range(0, len(UpperCamelCase_)): __lowercase = get_cost_derivative(i - 1) __lowercase = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( UpperCamelCase_, UpperCamelCase_, atol=UpperCamelCase_, rtol=UpperCamelCase_, ): break __lowercase = temp_parameter_vector print(("Number of iterations:", j)) def _A ( ) -> int: '''simple docstring''' for i in range(len(UpperCamelCase_)): print(("Actual output value:", output(UpperCamelCase_, "test"))) print(("Hypothesis output:", calculate_hypothesis_value(UpperCamelCase_, "test"))) if __name__ == "__main__": run_gradient_descent() print('\nTesting gradient descent for a linear hypothesis function.\n') test_gradient_descent()
144
0
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def __UpperCAmelCase ( A : Optional[Any]=None ) -> Union[str, Any]: if subparsers is not None: UpperCAmelCase_ : int = subparsers.add_parser('''test''' ) else: UpperCAmelCase_ : int = argparse.ArgumentParser('''Accelerate test command''' ) parser.add_argument( '''--config_file''' , default=A , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , ) if subparsers is not None: parser.set_defaults(func=A ) return parser def __UpperCAmelCase ( A : Any ) -> Optional[int]: UpperCAmelCase_ : Optional[Any] = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['''test_utils''', '''scripts''', '''test_script.py'''] ) if args.config_file is None: UpperCAmelCase_ : Optional[int] = script_name else: UpperCAmelCase_ : int = F"--config_file={args.config_file} {script_name}" UpperCAmelCase_ : Union[str, Any] = ["""accelerate-launch"""] + test_args.split() UpperCAmelCase_ : Optional[int] = execute_subprocess_async(A , env=os.environ.copy() ) if result.returncode == 0: print('''Test is a success! You are ready for your distributed training!''' ) def __UpperCAmelCase ( ) -> Union[str, Any]: UpperCAmelCase_ : str = test_command_parser() UpperCAmelCase_ : Dict = parser.parse_args() test_command(A ) if __name__ == "__main__": main()
304
import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger _lowerCamelCase =get_logger(__name__) class A__ : def __init__( self , __magic_name__ = None ): lowerCamelCase : Dict = ( os.path.join(__magic_name__ , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) lowerCamelCase : List[str] = Extractor def UpperCamelCase__ ( self , __magic_name__ ): from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" lowerCamelCase : int = os.path.abspath(__magic_name__ ) return os.path.join(self.extract_dir , hash_url_to_filename(__magic_name__ ) ) def UpperCamelCase__ ( self , __magic_name__ , __magic_name__ ): return force_extract or ( not os.path.isfile(__magic_name__ ) and not (os.path.isdir(__magic_name__ ) and os.listdir(__magic_name__ )) ) def UpperCamelCase__ ( self , __magic_name__ , __magic_name__ = False ): lowerCamelCase : Union[str, Any] = self.extractor.infer_extractor_format(__magic_name__ ) if not extractor_format: return input_path lowerCamelCase : int = self._get_output_path(__magic_name__ ) if self._do_extract(__magic_name__ , __magic_name__ ): self.extractor.extract(__magic_name__ , __magic_name__ , __magic_name__ ) return output_path class A__ ( __SCREAMING_SNAKE_CASE): @classmethod @abstractmethod def UpperCamelCase__ ( cls , __magic_name__ , **__magic_name__ ): ... @staticmethod @abstractmethod def UpperCamelCase__ ( __magic_name__ , __magic_name__ ): ... class A__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): _UpperCAmelCase : List[bytes] = [] @staticmethod def UpperCamelCase__ ( __magic_name__ , __magic_name__ ): with open(__magic_name__ , """rb""" ) as f: return f.read(__magic_name__ ) @classmethod def UpperCamelCase__ ( cls , __magic_name__ , __magic_name__ = b"" ): if not magic_number: lowerCamelCase : Optional[Any] = max(len(__magic_name__ ) for cls_magic_number in cls.magic_numbers ) try: lowerCamelCase : Tuple = cls.read_magic_number(__magic_name__ , __magic_name__ ) except OSError: return False return any(magic_number.startswith(__magic_name__ ) for cls_magic_number in cls.magic_numbers ) class A__ ( __SCREAMING_SNAKE_CASE): @classmethod def UpperCamelCase__ ( cls , __magic_name__ , **__magic_name__ ): return tarfile.is_tarfile(__magic_name__ ) @staticmethod def UpperCamelCase__ ( __magic_name__ , __magic_name__ ): def resolved(__magic_name__ ) -> str: return os.path.realpath(os.path.abspath(__magic_name__ ) ) def badpath(__magic_name__ , __magic_name__ ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(__magic_name__ , __magic_name__ ) ).startswith(__magic_name__ ) def badlink(__magic_name__ , __magic_name__ ) -> bool: # Links are interpreted relative to the directory containing the link lowerCamelCase : List[str] = resolved(os.path.join(__magic_name__ , os.path.dirname(info.name ) ) ) return badpath(info.linkname , base=__magic_name__ ) lowerCamelCase : Optional[Any] = resolved(__magic_name__ ) for finfo in members: if badpath(finfo.name , __magic_name__ ): logger.error(F'''Extraction of {finfo.name} is blocked (illegal path)''' ) elif finfo.issym() and badlink(__magic_name__ , __magic_name__ ): logger.error(F'''Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}''' ) elif finfo.islnk() and badlink(__magic_name__ , __magic_name__ ): logger.error(F'''Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}''' ) else: yield finfo @staticmethod def UpperCamelCase__ ( __magic_name__ , __magic_name__ ): os.makedirs(__magic_name__ , exist_ok=__magic_name__ ) lowerCamelCase : Dict = tarfile.open(__magic_name__ ) tar_file.extractall(__magic_name__ , members=TarExtractor.safemembers(__magic_name__ , __magic_name__ ) ) tar_file.close() class A__ ( __SCREAMING_SNAKE_CASE): _UpperCAmelCase : str = [B"""\x1F\x8B"""] @staticmethod def UpperCamelCase__ ( __magic_name__ , __magic_name__ ): with gzip.open(__magic_name__ , """rb""" ) as gzip_file: with open(__magic_name__ , """wb""" ) as extracted_file: shutil.copyfileobj(__magic_name__ , __magic_name__ ) class A__ ( __SCREAMING_SNAKE_CASE): _UpperCAmelCase : Optional[int] = [ B"""PK\x03\x04""", B"""PK\x05\x06""", # empty archive B"""PK\x07\x08""", # spanned archive ] @classmethod def UpperCamelCase__ ( cls , __magic_name__ , __magic_name__ = b"" ): if super().is_extractable(__magic_name__ , magic_number=__magic_name__ ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(__magic_name__ , """rb""" ) as fp: lowerCamelCase : List[str] = _EndRecData(__magic_name__ ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: lowerCamelCase : List[Any] = fp.read(__magic_name__ ) # CD is where we expect it to be if len(__magic_name__ ) == sizeCentralDir: lowerCamelCase : str = struct.unpack(__magic_name__ , __magic_name__ ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def UpperCamelCase__ ( __magic_name__ , __magic_name__ ): os.makedirs(__magic_name__ , exist_ok=__magic_name__ ) with zipfile.ZipFile(__magic_name__ , """r""" ) as zip_file: zip_file.extractall(__magic_name__ ) zip_file.close() class A__ ( __SCREAMING_SNAKE_CASE): _UpperCAmelCase : List[str] = [B"""\xFD\x37\x7A\x58\x5A\x00"""] @staticmethod def UpperCamelCase__ ( __magic_name__ , __magic_name__ ): with lzma.open(__magic_name__ ) as compressed_file: with open(__magic_name__ , """wb""" ) as extracted_file: shutil.copyfileobj(__magic_name__ , __magic_name__ ) class A__ ( __SCREAMING_SNAKE_CASE): _UpperCAmelCase : Any = [B"""Rar!\x1a\x07\x00""", B"""Rar!\x1a\x07\x01\x00"""] # RAR_ID # RAR5_ID @staticmethod def UpperCamelCase__ ( __magic_name__ , __magic_name__ ): if not config.RARFILE_AVAILABLE: raise ImportError("""Please pip install rarfile""" ) import rarfile os.makedirs(__magic_name__ , exist_ok=__magic_name__ ) lowerCamelCase : Union[str, Any] = rarfile.RarFile(__magic_name__ ) rf.extractall(__magic_name__ ) rf.close() class A__ ( __SCREAMING_SNAKE_CASE): _UpperCAmelCase : Tuple = [B"""\x28\xb5\x2F\xFD"""] @staticmethod def UpperCamelCase__ ( __magic_name__ , __magic_name__ ): if not config.ZSTANDARD_AVAILABLE: raise ImportError("""Please pip install zstandard""" ) import zstandard as zstd lowerCamelCase : int = zstd.ZstdDecompressor() with open(__magic_name__ , """rb""" ) as ifh, open(__magic_name__ , """wb""" ) as ofh: dctx.copy_stream(__magic_name__ , __magic_name__ ) class A__ ( __SCREAMING_SNAKE_CASE): _UpperCAmelCase : Any = [B"""\x42\x5A\x68"""] @staticmethod def UpperCamelCase__ ( __magic_name__ , __magic_name__ ): with bza.open(__magic_name__ , """rb""" ) as compressed_file: with open(__magic_name__ , """wb""" ) as extracted_file: shutil.copyfileobj(__magic_name__ , __magic_name__ ) class A__ ( __SCREAMING_SNAKE_CASE): _UpperCAmelCase : List[Any] = [B"""\x37\x7A\xBC\xAF\x27\x1C"""] @staticmethod def UpperCamelCase__ ( __magic_name__ , __magic_name__ ): if not config.PY7ZR_AVAILABLE: raise ImportError("""Please pip install py7zr""" ) import pyazr os.makedirs(__magic_name__ , exist_ok=__magic_name__ ) with pyazr.SevenZipFile(__magic_name__ , """r""" ) as archive: archive.extractall(__magic_name__ ) class A__ ( __SCREAMING_SNAKE_CASE): _UpperCAmelCase : List[Any] = [B"""\x04\x22\x4D\x18"""] @staticmethod def UpperCamelCase__ ( __magic_name__ , __magic_name__ ): if not config.LZ4_AVAILABLE: raise ImportError("""Please pip install lz4""" ) import lza.frame with lza.frame.open(__magic_name__ , """rb""" ) as compressed_file: with open(__magic_name__ , """wb""" ) as extracted_file: shutil.copyfileobj(__magic_name__ , __magic_name__ ) class A__ : # Put zip file to the last, b/c it is possible wrongly detected as zip (I guess it means: as tar or gzip) _UpperCAmelCase : Dict[str, Type[BaseExtractor]] = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def UpperCamelCase__ ( cls ): return max( len(__magic_name__ ) for extractor in cls.extractors.values() if issubclass(__magic_name__ , __magic_name__ ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def UpperCamelCase__ ( __magic_name__ , __magic_name__ ): try: return MagicNumberBaseExtractor.read_magic_number(__magic_name__ , magic_number_length=__magic_name__ ) except OSError: return b"" @classmethod def UpperCamelCase__ ( cls , __magic_name__ , __magic_name__ = False ): warnings.warn( """Method 'is_extractable' was deprecated in version 2.4.0 and will be removed in 3.0.0. """ """Use 'infer_extractor_format' instead.""" , category=__magic_name__ , ) lowerCamelCase : int = cls.infer_extractor_format(__magic_name__ ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def UpperCamelCase__ ( cls , __magic_name__ ): # <Added version="2.4.0"/> lowerCamelCase : Dict = cls._get_magic_number_max_length() lowerCamelCase : Optional[Any] = cls._read_magic_number(__magic_name__ , __magic_name__ ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(__magic_name__ , magic_number=__magic_name__ ): return extractor_format @classmethod def UpperCamelCase__ ( cls , __magic_name__ , __magic_name__ , __magic_name__ = None , __magic_name__ = "deprecated" , ): os.makedirs(os.path.dirname(__magic_name__ ) , exist_ok=__magic_name__ ) # Prevent parallel extractions lowerCamelCase : Tuple = str(Path(__magic_name__ ).with_suffix(""".lock""" ) ) with FileLock(__magic_name__ ): shutil.rmtree(__magic_name__ , ignore_errors=__magic_name__ ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(__magic_name__ , __magic_name__ ): # passed as positional arg warnings.warn( """Parameter 'extractor' was deprecated in version 2.4.0 and will be removed in 3.0.0. """ """Use 'extractor_format' instead.""" , category=__magic_name__ , ) lowerCamelCase : int = extractor if extractor != """deprecated""" else extractor_format else: lowerCamelCase : Optional[int] = cls.extractors[extractor_format] return extractor.extract(__magic_name__ , __magic_name__ ) else: warnings.warn( """Parameter 'extractor_format' was made required in version 2.4.0 and not passing it will raise an """ """exception in 3.0.0.""" , category=__magic_name__ , ) for extractor in cls.extractors.values(): if extractor.is_extractable(__magic_name__ ): return extractor.extract(__magic_name__ , __magic_name__ )
287
0
from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def A ( _lowerCamelCase = "laptop" ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = F"https://www.amazon.in/laptop/s?k={product}" _lowerCAmelCase : Dict = { "User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36\n (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36", "Accept-Language": "en-US, en;q=0.5", } _lowerCAmelCase : Optional[int] = BeautifulSoup(requests.get(_lowerCamelCase , headers=_lowerCamelCase ).text ) # Initialize a Pandas dataframe with the column titles _lowerCAmelCase : int = DataFrame( columns=[ "Product Title", "Product Link", "Current Price of the product", "Product Rating", "MRP of the product", "Discount", ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( "div" , attrs={"class": "s-result-item", "data-component-type": "s-search-result"} , ) , soup.find_all("div" , attrs={"class": "a-row a-size-base a-color-base"} ) , ): try: _lowerCAmelCase : Any = item.ha.text _lowerCAmelCase : List[str] = "https://www.amazon.in/" + item.ha.a["href"] _lowerCAmelCase : Any = item.find("span" , attrs={"class": "a-offscreen"} ).text try: _lowerCAmelCase : List[str] = item.find("span" , attrs={"class": "a-icon-alt"} ).text except AttributeError: _lowerCAmelCase : str = "Not available" try: _lowerCAmelCase : Optional[Any] = ( "₹" + item.find( "span" , attrs={"class": "a-price a-text-price"} ).text.split("₹" )[1] ) except AttributeError: _lowerCAmelCase : Optional[Any] = "" try: _lowerCAmelCase : int = float( ( ( float(product_mrp.strip("₹" ).replace("," , "" ) ) - float(product_price.strip("₹" ).replace("," , "" ) ) ) / float(product_mrp.strip("₹" ).replace("," , "" ) ) ) * 100 ) except ValueError: _lowerCAmelCase : Optional[Any] = float("nan" ) except AttributeError: pass _lowerCAmelCase : Any = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] _lowerCAmelCase : List[str] = " " _lowerCAmelCase : Tuple = " " data_frame.index += 1 return data_frame if __name__ == "__main__": _snake_case = "headphones" get_amazon_product_data(product).to_csv(f'''Amazon Product Data for {product}.csv''')
300
_snake_case = 8.3144598 def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if temperature < 0: raise Exception("Temperature cannot be less than 0 K" ) if molar_mass <= 0: raise Exception("Molar mass cannot be less than or equal to 0 kg/mol" ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example _snake_case = 300 _snake_case = 28 _snake_case = rms_speed_of_molecule(temperature, molar_mass) print(f'''Vrms of Nitrogen gas at 300 K is {vrms} m/s''')
300
1
'''simple docstring''' import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } lowerCamelCase_ = { '''vocab_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json''' }, '''merges_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt''' }, '''tokenizer_config_file''': { '''facebook/blenderbot_small-90M''': ( '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json''' ) }, } lowerCamelCase_ = {'''facebook/blenderbot_small-90M''': 5_12} def __lowercase ( __lowercase ) -> List[str]: '''simple docstring''' _A = set() _A = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _A = char _A = set(__lowercase ) return pairs class _UpperCAmelCase ( snake_case_ ): """simple docstring""" snake_case = VOCAB_FILES_NAMES snake_case = PRETRAINED_VOCAB_FILES_MAP snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case = ['''input_ids''', '''attention_mask'''] def __init__( self : List[Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : int , __UpperCAmelCase : str="__start__" , __UpperCAmelCase : Dict="__end__" , __UpperCAmelCase : str="__unk__" , __UpperCAmelCase : List[str]="__null__" , **__UpperCAmelCase : List[str] , ): '''simple docstring''' super().__init__(unk_token=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , **__UpperCAmelCase ) with open(__UpperCAmelCase , encoding="utf-8" ) as vocab_handle: _A = json.load(__UpperCAmelCase ) _A = {v: k for k, v in self.encoder.items()} with open(__UpperCAmelCase , encoding="utf-8" ) as merges_handle: _A = merges_handle.read().split("\n" )[1:-1] _A = [tuple(merge.split() ) for merge in merges] _A = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) _A = {} @property def lowerCAmelCase ( self : Any ): '''simple docstring''' return len(self.encoder ) def lowerCAmelCase ( self : str ): '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : str ): '''simple docstring''' if token in self.cache: return self.cache[token] _A = re.sub("([.,!?()])" , R" \1" , __UpperCAmelCase ) _A = re.sub("(')" , R" \1 " , __UpperCAmelCase ) _A = re.sub(R"\s{2,}" , " " , __UpperCAmelCase ) if "\n" in token: _A = token.replace("\n" , " __newln__" ) _A = token.split(" " ) _A = [] for token in tokens: if not len(__UpperCAmelCase ): continue _A = token.lower() _A = tuple(__UpperCAmelCase ) _A = tuple(list(word[:-1] ) + [word[-1] + "</w>"] ) _A = get_pairs(__UpperCAmelCase ) if not pairs: words.append(__UpperCAmelCase ) continue while True: _A = min(__UpperCAmelCase , key=lambda __UpperCAmelCase : self.bpe_ranks.get(__UpperCAmelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break _A , _A = bigram _A = [] _A = 0 while i < len(__UpperCAmelCase ): try: _A = word.index(__UpperCAmelCase , __UpperCAmelCase ) new_word.extend(word[i:j] ) _A = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(__UpperCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _A = tuple(__UpperCAmelCase ) _A = new_word if len(__UpperCAmelCase ) == 1: break else: _A = get_pairs(__UpperCAmelCase ) _A = "@@ ".join(__UpperCAmelCase ) _A = word[:-4] _A = word words.append(__UpperCAmelCase ) return " ".join(__UpperCAmelCase ) def lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : str ): '''simple docstring''' _A = [] _A = re.findall(R"\S+\n?" , __UpperCAmelCase ) for token in words: split_tokens.extend(list(self.bpe(__UpperCAmelCase ).split(" " ) ) ) return split_tokens def lowerCAmelCase ( self : Any , __UpperCAmelCase : str ): '''simple docstring''' _A = token.lower() return self.encoder.get(__UpperCAmelCase , self.encoder.get(self.unk_token ) ) def lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : int ): '''simple docstring''' return self.decoder.get(__UpperCAmelCase , self.unk_token ) def lowerCAmelCase ( self : Tuple , __UpperCAmelCase : List[str] ): '''simple docstring''' _A = " ".join(__UpperCAmelCase ).replace("@@ " , "" ).strip() return out_string def lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(__UpperCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _A = os.path.join( __UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) _A = os.path.join( __UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__UpperCAmelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__UpperCAmelCase , ensure_ascii=__UpperCAmelCase ) + "\n" ) _A = 0 with open(__UpperCAmelCase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __UpperCAmelCase : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) _A = token_index writer.write(" ".join(__UpperCAmelCase ) + "\n" ) index += 1 return vocab_file, merge_file
79
'''simple docstring''' import baseaa import io import json import os from copy import deepcopy from ..optimizer import AcceleratedOptimizer from ..scheduler import AcceleratedScheduler class __magic_name__ : def __init__( self : str , lowercase_ : Dict ): if isinstance(lowercase_ , lowercase_ ): # Don't modify user's data should they want to reuse it (e.g. in tests), because once we # modified it, it will not be accepted here again, since `auto` values would have been overridden lowercase_ : List[Any] = deepcopy(lowercase_ ) elif os.path.exists(lowercase_ ): with io.open(lowercase_ , """r""" , encoding="""utf-8""" ) as f: lowercase_ : Union[str, Any] = json.load(lowercase_ ) else: try: lowercase_ : int = baseaa.urlsafe_baadecode(lowercase_ ).decode("""utf-8""" ) lowercase_ : str = json.loads(lowercase_ ) except (UnicodeDecodeError, AttributeError, ValueError): raise ValueError( f'''Expected a string path to an existing deepspeed config, or a dictionary, or a base64 encoded string. Received: {config_file_or_dict}''' ) lowercase_ : Any = config self.set_stage_and_offload() def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): # zero stage - this is done as early as possible, before model is created, to allow # ``is_deepspeed_zero3_enabled`` query and getting to the early deepspeed config object # during ``zero.Init()`` which needs to know the dtype, and some other hparams. lowercase_ : Tuple = self.get_value("""zero_optimization.stage""" , -1 ) # offload lowercase_ : str = False if self.is_zeroa() or self.is_zeroa(): lowercase_ : Dict = set(["""cpu""", """nvme"""] ) lowercase_ : List[Any] = set( [ self.get_value("""zero_optimization.offload_optimizer.device""" ), self.get_value("""zero_optimization.offload_param.device""" ), ] ) if len(offload_devices & offload_devices_valid ) > 0: lowercase_ : Tuple = True def SCREAMING_SNAKE_CASE_ ( self : List[Any] , lowercase_ : Any ): lowercase_ : Optional[Any] = self.config # find the config node of interest if it exists lowercase_ : Tuple = ds_key_long.split(""".""" ) lowercase_ : Union[str, Any] = nodes.pop() for node in nodes: lowercase_ : List[str] = config.get(lowercase_ ) if config is None: return None, ds_key return config, ds_key def SCREAMING_SNAKE_CASE_ ( self : str , lowercase_ : List[str] , lowercase_ : List[str]=None ): lowercase_ , lowercase_ : List[Any] = self.find_config_node(lowercase_ ) if config is None: return default return config.get(lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : Optional[int] , lowercase_ : int=False ): lowercase_ : int = self.config # find the config node of interest if it exists lowercase_ : Dict = ds_key_long.split(""".""" ) for node in nodes: lowercase_ : List[Any] = config lowercase_ : Dict = config.get(lowercase_ ) if config is None: if must_exist: raise ValueError(f'''Can\'t find {ds_key_long} entry in the config: {self.config}''' ) else: return # if found remove it if parent_config is not None: parent_config.pop(lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , lowercase_ : Tuple ): lowercase_ : str = self.get_value(lowercase_ ) return False if value is None else bool(lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : Union[str, Any] ): lowercase_ : Union[str, Any] = self.get_value(lowercase_ ) return False if value is None else not bool(lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Dict ): return self._stage == 2 def SCREAMING_SNAKE_CASE_ ( self : Any ): return self._stage == 3 def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): return self._offload class __magic_name__ : def __init__( self : Any , lowercase_ : Union[str, Any] ): lowercase_ : Any = engine def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : int , **lowercase_ : str ): # runs backpropagation and handles mixed precision self.engine.backward(lowercase_ , **lowercase_ ) # Deepspeed's `engine.step` performs the following operations: # - gradient accumulation check # - gradient clipping # - optimizer step # - zero grad # - checking overflow # - lr_scheduler step (only if engine.lr_scheduler is not None) self.engine.step() # and this plugin overrides the above calls with no-ops when Accelerate runs under # Deepspeed, but allows normal functionality for non-Deepspeed cases thus enabling a simple # training loop that works transparently under many training regimes. class __magic_name__ ( _UpperCAmelCase): def __init__( self : Optional[Any] , lowercase_ : Tuple ): super().__init__(lowercase_ , device_placement=lowercase_ , scaler=lowercase_ ) lowercase_ : Any = hasattr(self.optimizer , """overflow""" ) def SCREAMING_SNAKE_CASE_ ( self : int , lowercase_ : Tuple=None ): pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed def SCREAMING_SNAKE_CASE_ ( self : Tuple ): pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed @property def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): if self.__has_overflow__: return self.optimizer.overflow return False class __magic_name__ ( _UpperCAmelCase): def __init__( self : Dict , lowercase_ : Optional[Any] , lowercase_ : Tuple ): super().__init__(lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed class __magic_name__ : def __init__( self : Any , lowercase_ : Union[str, Any] , lowercase_ : List[str]=0.0_01 , lowercase_ : List[str]=0 , **lowercase_ : List[Any] ): lowercase_ : str = params lowercase_ : List[Any] = lr lowercase_ : int = weight_decay lowercase_ : Union[str, Any] = kwargs class __magic_name__ : def __init__( self : Tuple , lowercase_ : Optional[Any] , lowercase_ : List[str]=None , lowercase_ : int=0 , **lowercase_ : int ): lowercase_ : Union[str, Any] = optimizer lowercase_ : List[str] = total_num_steps lowercase_ : Dict = warmup_num_steps lowercase_ : Dict = kwargs
239
0
"""simple docstring""" from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def __A ( a_ :int) -> bool: __a : int = int(number**0.5) return number == sq * sq def __A ( a_ :int , a_ :int , a_ :int , a_ :int , a_ :int , a_ :int) -> tuple[int, int]: __a : int = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den __a : int = x_den * y_den * z_den __a : int = gcd(a_ , a_) top //= hcf bottom //= hcf return top, bottom def __A ( a_ :int = 35) -> int: __a : set = set() __a : int __a : Fraction = Fraction(0) __a : tuple[int, int] for x_num in range(1 , order + 1): for x_den in range(x_num + 1 , order + 1): for y_num in range(1 , order + 1): for y_den in range(y_num + 1 , order + 1): # n=1 __a : List[str] = x_num * y_den + x_den * y_num __a : List[Any] = x_den * y_den __a : str = gcd(a_ , a_) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: __a : Optional[Any] = add_three( a_ , a_ , a_ , a_ , a_ , a_) unique_s.add(a_) # n=2 __a : Optional[int] = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) __a : List[str] = x_den * x_den * y_den * y_den if is_sq(a_) and is_sq(a_): __a : int = int(sqrt(a_)) __a : int = int(sqrt(a_)) __a : int = gcd(a_ , a_) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: __a : Dict = add_three( a_ , a_ , a_ , a_ , a_ , a_) unique_s.add(a_) # n=-1 __a : Any = x_num * y_num __a : List[str] = x_den * y_num + x_num * y_den __a : str = gcd(a_ , a_) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: __a : int = add_three( a_ , a_ , a_ , a_ , a_ , a_) unique_s.add(a_) # n=2 __a : Optional[Any] = x_num * x_num * y_num * y_num __a : Optional[int] = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(a_) and is_sq(a_): __a : Union[str, Any] = int(sqrt(a_)) __a : Optional[Any] = int(sqrt(a_)) __a : Any = gcd(a_ , a_) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: __a : Dict = add_three( a_ , a_ , a_ , a_ , a_ , a_) unique_s.add(a_) for num, den in unique_s: total += Fraction(a_ , a_) return total.denominator + total.numerator if __name__ == "__main__": print(F'{solution() = }')
188
"""simple docstring""" import os import string import sys A = 1 << 8 A = { '''tab''': ord('''\t'''), '''newline''': ord('''\r'''), '''esc''': 27, '''up''': 65 + ARROW_KEY_FLAG, '''down''': 66 + ARROW_KEY_FLAG, '''right''': 67 + ARROW_KEY_FLAG, '''left''': 68 + ARROW_KEY_FLAG, '''mod_int''': 91, '''undefined''': sys.maxsize, '''interrupt''': 3, '''insert''': 50, '''delete''': 51, '''pg_up''': 53, '''pg_down''': 54, } A = KEYMAP['''up'''] A = KEYMAP['''left'''] if sys.platform == "win32": A = [] A = { B'''\xe0H''': KEYMAP['''up'''] - ARROW_KEY_FLAG, B'''\x00H''': KEYMAP['''up'''] - ARROW_KEY_FLAG, B'''\xe0P''': KEYMAP['''down'''] - ARROW_KEY_FLAG, B'''\x00P''': KEYMAP['''down'''] - ARROW_KEY_FLAG, B'''\xe0M''': KEYMAP['''right'''] - ARROW_KEY_FLAG, B'''\x00M''': KEYMAP['''right'''] - ARROW_KEY_FLAG, B'''\xe0K''': KEYMAP['''left'''] - ARROW_KEY_FLAG, B'''\x00K''': KEYMAP['''left'''] - ARROW_KEY_FLAG, } for i in range(10): A = ord(str(i)) def __A ( ) -> Dict: if os.name == "nt": import msvcrt __a : Optional[Any] = '''mbcs''' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(a_) == 0: # Read the keystroke __a : Optional[Any] = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): __a : Optional[Any] = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: __a : Union[str, Any] = chr(WIN_KEYMAP[cha]) WIN_CH_BUFFER.append(chr(KEYMAP['''mod_int'''])) WIN_CH_BUFFER.append(a_) if ord(a_) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(1_26)) __a : str = chr(KEYMAP['''esc''']) except KeyError: __a : str = cha[1] else: __a : Optional[Any] = ch.decode(a_) else: __a : Union[str, Any] = WIN_CH_BUFFER.pop(0) elif os.name == "posix": import termios import tty __a : Any = sys.stdin.fileno() __a : List[str] = termios.tcgetattr(a_) try: tty.setraw(a_) __a : int = sys.stdin.read(1) finally: termios.tcsetattr(a_ , termios.TCSADRAIN , a_) return ch def __A ( ) -> str: __a : Any = get_raw_chars() if ord(a_) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(a_) == KEYMAP["esc"]: __a : str = get_raw_chars() if ord(a_) == KEYMAP["mod_int"]: __a : List[str] = get_raw_chars() if ord(a_) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(a_) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(a_) + ARROW_KEY_FLAG) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
188
1
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig lowercase_ = [ "openmmlab/upernet-convnext-tiny", # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring lowercase_ = "UperNetConfig" class __lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self , _a , _a , _a , _a = 0 , _a = False , _a = 1 , ): super().__init__() __a = nn.Convad( in_channels=_a , out_channels=_a , kernel_size=_a , padding=_a , bias=_a , dilation=_a , ) __a = nn.BatchNormad(_a ) __a = nn.ReLU() def __UpperCAmelCase ( self , _a ): __a = self.conv(_a ) __a = self.batch_norm(_a ) __a = self.activation(_a ) return output class __lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self , _a , _a , _a ): super().__init__() __a = [ nn.AdaptiveAvgPoolad(_a ), UperNetConvModule(_a , _a , kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(_a ) , _a ) def __UpperCAmelCase ( self , _a ): __a = input for layer in self.layers: __a = layer(_a ) return hidden_state class __lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self , _a , _a , _a , _a ): super().__init__() __a = pool_scales __a = align_corners __a = in_channels __a = channels __a = [] for i, pool_scale in enumerate(_a ): __a = UperNetPyramidPoolingBlock(pool_scale=_a , in_channels=_a , channels=_a ) self.blocks.append(_a ) self.add_module(str(_a ) , _a ) def __UpperCAmelCase ( self , _a ): __a = [] for ppm in self.blocks: __a = ppm(_a ) __a = nn.functional.interpolate( _a , size=x.size()[2:] , mode='''bilinear''' , align_corners=self.align_corners ) ppm_outs.append(_a ) return ppm_outs class __lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self , _a , _a ): super().__init__() __a = config __a = config.pool_scales # e.g. (1, 2, 3, 6) __a = in_channels __a = config.hidden_size __a = False __a = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) # PSP Module __a = UperNetPyramidPoolingModule( self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , ) __a = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) # FPN Module __a = nn.ModuleList() __a = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer __a = UperNetConvModule(_a , self.channels , kernel_size=1 ) __a = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 ) self.lateral_convs.append(_a ) self.fpn_convs.append(_a ) __a = UperNetConvModule( len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) def __UpperCAmelCase ( self ): self.apply(self._init_weights ) def __UpperCAmelCase ( self , _a ): if isinstance(_a , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def __UpperCAmelCase ( self , _a ): __a = inputs[-1] __a = [x] psp_outs.extend(self.psp_modules(_a ) ) __a = torch.cat(_a , dim=1 ) __a = self.bottleneck(_a ) return output def __UpperCAmelCase ( self , _a ): # build laterals __a = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(_a ) ) # build top-down path __a = len(_a ) for i in range(used_backbone_levels - 1 , 0 , -1 ): __a = laterals[i - 1].shape[2:] __a = laterals[i - 1] + nn.functional.interpolate( laterals[i] , size=_a , mode='''bilinear''' , align_corners=self.align_corners ) # build outputs __a = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 , 0 , -1 ): __a = nn.functional.interpolate( fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode='''bilinear''' , align_corners=self.align_corners ) __a = torch.cat(_a , dim=1 ) __a = self.fpn_bottleneck(_a ) __a = self.classifier(_a ) return output class __lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self , _a , _a = 2 , _a = 3 , _a = 1 ): super().__init__() __a = config __a = config.auxiliary_in_channels __a = config.auxiliary_channels __a = config.auxiliary_num_convs __a = config.auxiliary_concat_input __a = in_index __a = (kernel_size // 2) * dilation __a = [] convs.append( UperNetConvModule( self.in_channels , self.channels , kernel_size=_a , padding=_a , dilation=_a ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels , self.channels , kernel_size=_a , padding=_a , dilation=_a ) ) if self.num_convs == 0: __a = nn.Identity() else: __a = nn.Sequential(*_a ) if self.concat_input: __a = UperNetConvModule( self.in_channels + self.channels , self.channels , kernel_size=_a , padding=kernel_size // 2 ) __a = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) def __UpperCAmelCase ( self ): self.apply(self._init_weights ) def __UpperCAmelCase ( self , _a ): if isinstance(_a , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def __UpperCAmelCase ( self , _a ): # just take the relevant feature maps __a = encoder_hidden_states[self.in_index] __a = self.convs(_a ) if self.concat_input: __a = self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) ) __a = self.classifier(_a ) return output class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : int = UperNetConfig __UpperCAmelCase : Union[str, Any] = 'pixel_values' __UpperCAmelCase : Dict = True def __UpperCAmelCase ( self , _a ): if isinstance(_a , _a ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def __UpperCAmelCase ( self ): self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def __UpperCAmelCase ( self , _a , _a=False ): if isinstance(_a , _a ): __a = value lowercase_ = r"\n Parameters:\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" lowercase_ = r"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using\n [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See\n `attentions` under returned tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under\n returned tensors for more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( 'UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes.' , __SCREAMING_SNAKE_CASE , ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , _a ): super().__init__(_a ) __a = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) __a = UperNetHead(_a , in_channels=self.backbone.channels ) __a = UperNetFCNHead(_a ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format('''batch_size, sequence_length''' ) ) @replace_return_docstrings(output_type=_a , config_class=_CONFIG_FOR_DOC ) def __UpperCAmelCase ( self , _a = None , _a = None , _a = None , _a = None , _a = None , ): __a = return_dict if return_dict is not None else self.config.use_return_dict __a = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __a = output_attentions if output_attentions is not None else self.config.output_attentions __a = self.backbone.forward_with_filtered_kwargs( _a , output_hidden_states=_a , output_attentions=_a ) __a = outputs.feature_maps __a = self.decode_head(_a ) __a = nn.functional.interpolate(_a , size=pixel_values.shape[2:] , mode='''bilinear''' , align_corners=_a ) __a = None if self.auxiliary_head is not None: __a = self.auxiliary_head(_a ) __a = nn.functional.interpolate( _a , size=pixel_values.shape[2:] , mode='''bilinear''' , align_corners=_a ) __a = None if labels is not None: if self.config.num_labels == 1: raise ValueError('''The number of labels should be greater than one''' ) else: # compute weighted loss __a = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) __a = loss_fct(_a , _a ) __a = loss_fct(_a , _a ) __a = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: __a = (logits,) + outputs[1:] else: __a = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=_a , logits=_a , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
45
def __lowerCAmelCase ( a__ ) -> str: __a = [] __a = set({'''(''', '''[''', '''{'''} ) __a = set({''')''', ''']''', '''}'''} ) __a = {'''{''': '''}''', '''[''': ''']''', '''(''': ''')'''} for i in range(len(a__ ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(a__ ) == 0 or (len(a__ ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(a__ ) == 0 def __lowerCAmelCase ( ) -> Dict: __a = input('''Enter sequence of brackets: ''' ) if is_balanced(a__ ): print(a__ , '''is balanced''' ) else: print(a__ , '''is not balanced''' ) if __name__ == "__main__": main()
6
0
"""simple docstring""" import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def __UpperCAmelCase ( __lowerCamelCase ) -> Any: lowercase__ : List[str] = {} lowercase__ : Union[str, Any] = tokenizer(example['''content'''] , truncation=__lowerCamelCase )['''input_ids'''] lowercase__ : Union[str, Any] = len(example['''content'''] ) / len(output['''input_ids'''] ) return output lowerCAmelCase_ = HfArgumentParser(PretokenizationArguments) lowerCAmelCase_ = parser.parse_args() if args.num_workers is None: lowerCAmelCase_ = multiprocessing.cpu_count() lowerCAmelCase_ = AutoTokenizer.from_pretrained(args.tokenizer_dir) lowerCAmelCase_ = time.time() lowerCAmelCase_ = load_dataset(args.dataset_name, split='train') print(F'''Dataset loaded in {time.time()-t_start:.2f}s''') lowerCAmelCase_ = time.time() lowerCAmelCase_ = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ 'repo_name', 'path', 'copies', 'size', 'content', 'license', 'hash', 'line_mean', 'line_max', 'alpha_frac', 'autogenerated', ], ) print(F'''Dataset tokenized in {time.time()-t_start:.2f}s''') lowerCAmelCase_ = time.time() ds.push_to_hub(args.tokenized_data_repo) print(F'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
302
"""simple docstring""" import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class __A ( A_ ): '''simple docstring''' def __init__( self : Any ,_snake_case : UNetaDModel ,_snake_case : UNetaDModel ,_snake_case : DDPMScheduler ,_snake_case : Any ,) -> List[Any]: """simple docstring""" super().__init__() lowercase__ : Optional[int] = value_function lowercase__ : Optional[int] = unet lowercase__ : Tuple = scheduler lowercase__ : Dict = env lowercase__ : int = env.get_dataset() lowercase__ : Dict = {} for key in self.data.keys(): try: lowercase__ : Optional[Any] = self.data[key].mean() except: # noqa: E722 pass lowercase__ : List[Any] = {} for key in self.data.keys(): try: lowercase__ : str = self.data[key].std() except: # noqa: E722 pass lowercase__ : Tuple = env.observation_space.shape[0] lowercase__ : Optional[int] = env.action_space.shape[0] def UpperCAmelCase ( self : str ,_snake_case : Any ,_snake_case : int ) -> Optional[Any]: """simple docstring""" return (x_in - self.means[key]) / self.stds[key] def UpperCAmelCase ( self : Dict ,_snake_case : int ,_snake_case : List[Any] ) -> Tuple: """simple docstring""" return x_in * self.stds[key] + self.means[key] def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Dict ) -> Optional[int]: """simple docstring""" if type(_snake_case ) is dict: return {k: self.to_torch(_snake_case ) for k, v in x_in.items()} elif torch.is_tensor(_snake_case ): return x_in.to(self.unet.device ) return torch.tensor(_snake_case ,device=self.unet.device ) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Any ,_snake_case : int ,_snake_case : List[Any] ) -> Tuple: """simple docstring""" for key, val in cond.items(): lowercase__ : List[Any] = val.clone() return x_in def UpperCAmelCase ( self : int ,_snake_case : Optional[int] ,_snake_case : List[Any] ,_snake_case : int ,_snake_case : int ) -> Optional[Any]: """simple docstring""" lowercase__ : Any = x.shape[0] lowercase__ : Dict = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model lowercase__ : Dict = torch.full((batch_size,) ,_snake_case ,device=self.unet.device ,dtype=torch.long ) for _ in range(_snake_case ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models lowercase__ : int = self.value_function(x.permute(0 ,2 ,1 ) ,_snake_case ).sample lowercase__ : Optional[Any] = torch.autograd.grad([y.sum()] ,[x] )[0] lowercase__ : List[str] = self.scheduler._get_variance(_snake_case ) lowercase__ : Union[str, Any] = torch.exp(0.5 * posterior_variance ) lowercase__ : Optional[int] = model_std * grad lowercase__ : Optional[Any] = 0 lowercase__ : str = x.detach() lowercase__ : Dict = x + scale * grad lowercase__ : str = self.reset_xa(_snake_case ,_snake_case ,self.action_dim ) lowercase__ : Union[str, Any] = self.unet(x.permute(0 ,2 ,1 ) ,_snake_case ).sample.permute(0 ,2 ,1 ) # TODO: verify deprecation of this kwarg lowercase__ : Dict = self.scheduler.step(_snake_case ,_snake_case ,_snake_case ,predict_epsilon=_snake_case )['''prev_sample'''] # apply conditions to the trajectory (set the initial state) lowercase__ : Dict = self.reset_xa(_snake_case ,_snake_case ,self.action_dim ) lowercase__ : Union[str, Any] = self.to_torch(_snake_case ) return x, y def __call__( self : Union[str, Any] ,_snake_case : Any ,_snake_case : Tuple=64 ,_snake_case : Any=32 ,_snake_case : Optional[Any]=2 ,_snake_case : str=0.1 ) -> List[Any]: """simple docstring""" lowercase__ : Any = self.normalize(_snake_case ,'''observations''' ) lowercase__ : Tuple = obs[None].repeat(_snake_case ,axis=0 ) lowercase__ : Dict = {0: self.to_torch(_snake_case )} lowercase__ : int = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) lowercase__ : Optional[int] = randn_tensor(_snake_case ,device=self.unet.device ) lowercase__ : Tuple = self.reset_xa(_snake_case ,_snake_case ,self.action_dim ) lowercase__ : str = self.to_torch(_snake_case ) # run the diffusion process lowercase__ , lowercase__ : int = self.run_diffusion(_snake_case ,_snake_case ,_snake_case ,_snake_case ) # sort output trajectories by value lowercase__ : Optional[Any] = y.argsort(0 ,descending=_snake_case ).squeeze() lowercase__ : str = x[sorted_idx] lowercase__ : str = sorted_values[:, :, : self.action_dim] lowercase__ : Optional[int] = actions.detach().cpu().numpy() lowercase__ : List[str] = self.de_normalize(_snake_case ,key='''actions''' ) # select the action with the highest value if y is not None: lowercase__ : str = 0 else: # if we didn't run value guiding, select a random action lowercase__ : str = np.random.randint(0 ,_snake_case ) lowercase__ : int = denorm_actions[selected_index, 0] return denorm_actions
302
1