code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
def __UpperCamelCase ( _lowerCAmelCase ) -> list[int]: """simple docstring""" A : Optional[int] = len(_lowerCAmelCase ) for i in range(_lowerCAmelCase ): for j in range(i + 1 , _lowerCAmelCase ): if numbers[j] < numbers[i]: A , A : Dict = numbers[j], numbers[i] return numbers if __name__ == "__main__": SCREAMING_SNAKE_CASE_:List[Any] = input("""Enter numbers separated by a comma:\n""").strip() SCREAMING_SNAKE_CASE_:Optional[Any] = [int(item) for item in user_input.split(""",""")] print(exchange_sort(unsorted))
116
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE_:Optional[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_:Dict = { """camembert-base""": """https://huggingface.co/camembert-base/resolve/main/config.json""", """umberto-commoncrawl-cased-v1""": ( """https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json""" ), """umberto-wikipedia-uncased-v1""": ( """https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json""" ), } class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __lowerCamelCase : Optional[int] = "camembert" def __init__( self, lowerCamelCase__=3_0522, lowerCamelCase__=768, lowerCamelCase__=12, lowerCamelCase__=12, lowerCamelCase__=3072, lowerCamelCase__="gelu", lowerCamelCase__=0.1, lowerCamelCase__=0.1, lowerCamelCase__=512, lowerCamelCase__=2, lowerCamelCase__=0.02, lowerCamelCase__=1e-12, lowerCamelCase__=1, lowerCamelCase__=0, lowerCamelCase__=2, lowerCamelCase__="absolute", lowerCamelCase__=True, lowerCamelCase__=None, **lowerCamelCase__, ): super().__init__(pad_token_id=lowerCamelCase__, bos_token_id=lowerCamelCase__, eos_token_id=lowerCamelCase__, **lowerCamelCase__ ) A : List[Any] = vocab_size A : Dict = hidden_size A : str = num_hidden_layers A : List[Any] = num_attention_heads A : List[str] = hidden_act A : Tuple = intermediate_size A : Tuple = hidden_dropout_prob A : List[Any] = attention_probs_dropout_prob A : Optional[int] = max_position_embeddings A : Tuple = type_vocab_size A : List[Any] = initializer_range A : str = layer_norm_eps A : Tuple = position_embedding_type A : str = use_cache A : Any = classifier_dropout class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' @property def _lowerCAmelCase ( self ): if self.task == "multiple-choice": A : int = {0: """batch""", 1: """choice""", 2: """sequence"""} else: A : Tuple = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
116
1
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase_ ={ """configuration_trajectory_transformer""": [ """TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TrajectoryTransformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ =[ """TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TrajectoryTransformerModel""", """TrajectoryTransformerPreTrainedModel""", """load_tf_weights_in_trajectory_transformer""", ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys UpperCamelCase_ =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
128
"""simple docstring""" def a_ ( _lowercase , _lowercase ): if discount_rate < 0: raise ValueError('''Discount rate cannot be negative''' ) if not cash_flows: raise ValueError('''Cash flows list cannot be empty''' ) _UpperCamelCase : Optional[int] = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(_lowercase ) ) return round(_lowercase , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
128
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor _lowercase : Union[str, Any] = logging.get_logger(__name__) class _UpperCAmelCase ( lowerCAmelCase__ ): def __init__( self : Optional[Any] , *_lowercase : Optional[Any] , **_lowercase : int ): warnings.warn( '''The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use BeitImageProcessor instead.''' , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
332
import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict ) -> List[str]: if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class A__ ( nn.Module ): def __init__( self : Any , _UpperCAmelCase : nn.Module , _UpperCAmelCase : int ) -> Optional[int]: """simple docstring""" super().__init__() __lowercase = module __lowercase = nn.Sequential( nn.Linear(module.in_features , _UpperCAmelCase , bias=_UpperCAmelCase ) , nn.Linear(_UpperCAmelCase , module.out_features , bias=_UpperCAmelCase ) , ) __lowercase = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=_UpperCAmelCase ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def a__ ( self : str , _UpperCAmelCase : List[str] , *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : List[str] ) -> Optional[Any]: """simple docstring""" return self.module(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) + self.adapter(_UpperCAmelCase ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class A__ ( unittest.TestCase ): # We keep the constants inside the init function and model loading inside setUp function # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected) # Therefore here we use only bloom-1b3 to test our module lowerCAmelCase__ : int = "bigscience/bloom-1b7" # Constant values lowerCAmelCase__ : Any = 2.109659552692574 lowerCAmelCase__ : str = "Hello my name is" lowerCAmelCase__ : Any = set() EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I" ) EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n" ) EXPECTED_OUTPUTS.add("Hello my name is John Doe, I am a student at the University" ) lowerCAmelCase__ : List[Any] = 10 def a__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" __lowercase = AutoTokenizer.from_pretrained(self.model_name ) class A__ ( lowerCAmelCase__ ): def a__ ( self : Any ) -> Union[str, Any]: """simple docstring""" super().setUp() # Models and tokenizer __lowercase = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map='auto' ) __lowercase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) def a__ ( self : Any ) -> Optional[Any]: """simple docstring""" del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def a__ ( self : str ) -> int: """simple docstring""" __lowercase = self.model_abit.config self.assertTrue(hasattr(_UpperCAmelCase , 'quantization_config' ) ) __lowercase = config.to_dict() __lowercase = config.to_diff_dict() __lowercase = config.to_json_string() def a__ ( self : Dict ) -> Tuple: """simple docstring""" from bitsandbytes.nn import Paramsabit __lowercase = self.model_fpaa.get_memory_footprint() __lowercase = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) __lowercase = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def a__ ( self : Tuple ) -> str: """simple docstring""" from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(_UpperCAmelCase , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def a__ ( self : List[str] ) -> str: """simple docstring""" __lowercase = self.tokenizer(self.input_text , return_tensors='pt' ) __lowercase = self.model_abit.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) def a__ ( self : Union[str, Any] ) -> str: """simple docstring""" __lowercase = BitsAndBytesConfig() __lowercase = True __lowercase = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=_UpperCAmelCase , device_map='auto' ) __lowercase = self.tokenizer(self.input_text , return_tensors='pt' ) __lowercase = model_abit_from_config.generate( input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) def a__ ( self : str ) -> List[str]: """simple docstring""" with self.assertRaises(_UpperCAmelCase ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(_UpperCAmelCase ) def a__ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" __lowercase = BitsAndBytesConfig() with self.assertRaises(_UpperCAmelCase ): __lowercase = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=_UpperCAmelCase , load_in_abit=_UpperCAmelCase , device_map='auto' , bnb_abit_quant_type='nf4' , ) def a__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" with self.assertRaises(_UpperCAmelCase ): # Tries with `str` self.model_abit.to('cpu' ) with self.assertRaises(_UpperCAmelCase ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(_UpperCAmelCase ): # Tries with a `device` self.model_abit.to(torch.device('cuda:0' ) ) with self.assertRaises(_UpperCAmelCase ): # Tries with a `device` self.model_abit.float() with self.assertRaises(_UpperCAmelCase ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything __lowercase = self.tokenizer(self.input_text , return_tensors='pt' ) __lowercase = self.model_fpaa.to(torch.floataa ) __lowercase = self.model_fpaa.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error __lowercase = self.model_fpaa.to('cpu' ) # Check this does not throw an error __lowercase = self.model_fpaa.half() # Check this does not throw an error __lowercase = self.model_fpaa.float() def a__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase = AutoModelForSeqaSeqLM.from_pretrained('t5-small' , load_in_abit=_UpperCAmelCase , device_map='auto' ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class A__ ( unittest.TestCase ): @classmethod def a__ ( cls : int ) -> Tuple: """simple docstring""" __lowercase = 't5-small' __lowercase = 'google/flan-t5-small' # flan-t5 uses dense-act instead of dense-relu-dense __lowercase = AutoTokenizer.from_pretrained(cls.model_name ) __lowercase = 'Translate in German: Hello, my dog is cute' def a__ ( self : List[Any] ) -> Dict: """simple docstring""" gc.collect() torch.cuda.empty_cache() def a__ ( self : int ) -> int: """simple docstring""" from transformers import TaForConditionalGeneration __lowercase = TaForConditionalGeneration._keep_in_fpaa_modules __lowercase = None # test with `t5-small` __lowercase = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) __lowercase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __lowercase = model.generate(**_UpperCAmelCase ) # test with `flan-t5-small` __lowercase = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) __lowercase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __lowercase = model.generate(**_UpperCAmelCase ) __lowercase = modules def a__ ( self : str ) -> Optional[Any]: """simple docstring""" import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` __lowercase = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) __lowercase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __lowercase = model.generate(**_UpperCAmelCase ) # test with `flan-t5-small` __lowercase = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) __lowercase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __lowercase = model.generate(**_UpperCAmelCase ) class A__ ( lowerCAmelCase__ ): def a__ ( self : Union[str, Any] ) -> Any: """simple docstring""" super().setUp() # model_name __lowercase = 'bigscience/bloom-560m' __lowercase = 't5-small' # Different types of model __lowercase = AutoModel.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) # Sequence classification model __lowercase = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) # CausalLM model __lowercase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) # Seq2seq model __lowercase = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) def a__ ( self : int ) -> List[str]: """simple docstring""" del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def a__ ( self : Tuple ) -> str: """simple docstring""" from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class A__ ( lowerCAmelCase__ ): def a__ ( self : str ) -> str: """simple docstring""" super().setUp() def a__ ( self : Dict ) -> Any: """simple docstring""" del self.pipe gc.collect() torch.cuda.empty_cache() def a__ ( self : Tuple ) -> int: """simple docstring""" __lowercase = pipeline( 'text-generation' , model=self.model_name , model_kwargs={'device_map': 'auto', 'load_in_4bit': True, 'torch_dtype': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass __lowercase = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]['generated_text'] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class A__ ( lowerCAmelCase__ ): def a__ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" super().setUp() def a__ ( self : List[Any] ) -> int: """simple docstring""" __lowercase = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=_UpperCAmelCase , device_map='balanced' ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model __lowercase = self.tokenizer(self.input_text , return_tensors='pt' ) # Second real batch __lowercase = model_parallel.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=_UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) class A__ ( lowerCAmelCase__ ): def a__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase = 'facebook/opt-350m' super().setUp() def a__ ( self : Dict ) -> List[str]: """simple docstring""" if version.parse(importlib.metadata.version('bitsandbytes' ) ) < version.parse('0.37.0' ): return # Step 1: freeze all parameters __lowercase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): __lowercase = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability __lowercase = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(_UpperCAmelCase ) ): __lowercase = LoRALayer(module.q_proj , rank=16 ) __lowercase = LoRALayer(module.k_proj , rank=16 ) __lowercase = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch __lowercase = self.tokenizer('Test batch ' , return_tensors='pt' ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): __lowercase = model.forward(**_UpperCAmelCase ) out.logits.norm().backward() for module in model.modules(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(_UpperCAmelCase , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Any = "gpt2-xl" lowerCAmelCase__ : str = 3.3191854854152187
325
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer __A = logging.get_logger(__name__) __A = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} # See all BART models at https://huggingface.co/models?filter=bart __A = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, "tokenizer_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json", }, } __A = { "facebook/bart-base": 1024, "facebook/bart-large": 1024, "facebook/bart-large-mnli": 1024, "facebook/bart-large-cnn": 1024, "facebook/bart-large-xsum": 1024, "yjernite/bart_eli5": 1024, } class snake_case ( __snake_case ): SCREAMING_SNAKE_CASE_ : Any = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : str = ["""input_ids""", """attention_mask"""] SCREAMING_SNAKE_CASE_ : Any = BartTokenizer def __init__( self : List[str] , UpperCamelCase__ : Dict=None , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : Dict=None , UpperCamelCase__ : List[Any]="replace" , UpperCamelCase__ : Optional[int]="<s>" , UpperCamelCase__ : Optional[int]="</s>" , UpperCamelCase__ : List[str]="</s>" , UpperCamelCase__ : Any="<s>" , UpperCamelCase__ : str="<unk>" , UpperCamelCase__ : str="<pad>" , UpperCamelCase__ : List[str]="<mask>" , UpperCamelCase__ : List[str]=False , UpperCamelCase__ : Tuple=True , **UpperCamelCase__ : Optional[Any] , )-> int: '''simple docstring''' super().__init__( UpperCamelCase__ , UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , errors=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ , **UpperCamelCase__ , ) __lowerCAmelCase: Tuple = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get("add_prefix_space" , UpperCamelCase__) != add_prefix_space: __lowerCAmelCase: Any = getattr(UpperCamelCase__ , pre_tok_state.pop("type")) __lowerCAmelCase: Any = add_prefix_space __lowerCAmelCase: Union[str, Any] = pre_tok_class(**UpperCamelCase__) __lowerCAmelCase: Any = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` __lowerCAmelCase: Tuple = "post_processor" __lowerCAmelCase: str = getattr(self.backend_tokenizer , UpperCamelCase__ , UpperCamelCase__) if tokenizer_component_instance: __lowerCAmelCase: Tuple = json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __lowerCAmelCase: Dict = tuple(state["sep"]) if "cls" in state: __lowerCAmelCase: Union[str, Any] = tuple(state["cls"]) __lowerCAmelCase: Optional[Any] = False if state.get("add_prefix_space" , UpperCamelCase__) != add_prefix_space: __lowerCAmelCase: Dict = add_prefix_space __lowerCAmelCase: Optional[int] = True if state.get("trim_offsets" , UpperCamelCase__) != trim_offsets: __lowerCAmelCase: int = trim_offsets __lowerCAmelCase: Dict = True if changes_to_apply: __lowerCAmelCase: int = getattr(UpperCamelCase__ , state.pop("type")) __lowerCAmelCase: List[str] = component_class(**UpperCamelCase__) setattr(self.backend_tokenizer , UpperCamelCase__ , UpperCamelCase__) @property def lowercase_ ( self : List[Any])-> str: '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet.") return None return str(self._mask_token) @mask_token.setter def lowercase_ ( self : Any , UpperCamelCase__ : int)-> Optional[Any]: '''simple docstring''' __lowerCAmelCase: str = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__) if isinstance(UpperCamelCase__ , UpperCamelCase__) else value __lowerCAmelCase: Union[str, Any] = value def lowercase_ ( self : str , *UpperCamelCase__ : Union[str, Any] , **UpperCamelCase__ : Any)-> BatchEncoding: '''simple docstring''' __lowerCAmelCase: List[str] = kwargs.get("is_split_into_words" , UpperCamelCase__) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs.") return super()._batch_encode_plus(*UpperCamelCase__ , **UpperCamelCase__) def lowercase_ ( self : Optional[Any] , *UpperCamelCase__ : Any , **UpperCamelCase__ : Optional[int])-> BatchEncoding: '''simple docstring''' __lowerCAmelCase: List[str] = kwargs.get("is_split_into_words" , UpperCamelCase__) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs.") return super()._encode_plus(*UpperCamelCase__ , **UpperCamelCase__) def lowercase_ ( self : List[Any] , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] = None)-> Tuple[str]: '''simple docstring''' __lowerCAmelCase: Optional[int] = self._tokenizer.model.save(UpperCamelCase__ , name=UpperCamelCase__) return tuple(UpperCamelCase__) def lowercase_ ( self : Tuple , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[Any]=None)-> Dict: '''simple docstring''' __lowerCAmelCase: Dict = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowercase_ ( self : Dict , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None)-> List[int]: '''simple docstring''' __lowerCAmelCase: Optional[Any] = [self.sep_token_id] __lowerCAmelCase: int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
108
"""simple docstring""" from math import ceil def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> str: __lowerCAmelCase: Tuple = list(range(0 , __SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase: Optional[Any] = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check __lowerCAmelCase: List[Any] = [] for i in device_map_blocks: if device_map_blocks.count(__SCREAMING_SNAKE_CASE ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(__SCREAMING_SNAKE_CASE ) # Missing blocks __lowerCAmelCase: Optional[Any] = [i for i in blocks if i not in device_map_blocks] __lowerCAmelCase: List[Any] = [i for i in device_map_blocks if i not in blocks] if len(__SCREAMING_SNAKE_CASE ) != 0: raise ValueError( "Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device." " These attention blocks were specified more than once: " + str(__SCREAMING_SNAKE_CASE ) ) if len(__SCREAMING_SNAKE_CASE ) != 0: raise ValueError( "There are attention blocks for this model that are not specified in the device_map. Add these attention " "blocks to a device on the device_map: " + str(__SCREAMING_SNAKE_CASE ) ) if len(__SCREAMING_SNAKE_CASE ) != 0: raise ValueError( "The device_map contains more attention blocks than this model has. Remove these from the device_map:" + str(__SCREAMING_SNAKE_CASE ) ) def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> str: __lowerCAmelCase: List[Any] = list(range(__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase: Dict = int(ceil(n_layers / len(__SCREAMING_SNAKE_CASE ) ) ) __lowerCAmelCase: Union[str, Any] = [layers[i : i + n_blocks] for i in range(0 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )] return dict(zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
108
1
def A_ ( A__ = 1000 ) -> int: return sum(e for e in range(3 , A__ ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(F"""{solution() = }""")
99
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCAmelCase : Any = { "configuration_altclip": [ "ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "AltCLIPConfig", "AltCLIPTextConfig", "AltCLIPVisionConfig", ], "processing_altclip": ["AltCLIPProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Tuple = [ "ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "AltCLIPPreTrainedModel", "AltCLIPModel", "AltCLIPTextModel", "AltCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys UpperCAmelCase : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
252
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase__ =logging.get_logger(__name__) UpperCamelCase__ ={ 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/config.json', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/config.json', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/config.json', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/config.json', 'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json', 'roberta-large-openai-detector': 'https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json', } class lowerCAmelCase__( __lowercase ): '''simple docstring''' __snake_case = 'roberta' def __init__( self , __lowerCamelCase=5_0_2_6_5 , __lowerCamelCase=7_6_8 , __lowerCamelCase=1_2 , __lowerCamelCase=1_2 , __lowerCamelCase=3_0_7_2 , __lowerCamelCase="gelu" , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=5_1_2 , __lowerCamelCase=2 , __lowerCamelCase=0.02 , __lowerCamelCase=1E-12 , __lowerCamelCase=1 , __lowerCamelCase=0 , __lowerCamelCase=2 , __lowerCamelCase="absolute" , __lowerCamelCase=True , __lowerCamelCase=None , **__lowerCamelCase , ) -> List[Any]: super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = vocab_size _SCREAMING_SNAKE_CASE : List[Any] = hidden_size _SCREAMING_SNAKE_CASE : List[Any] = num_hidden_layers _SCREAMING_SNAKE_CASE : Tuple = num_attention_heads _SCREAMING_SNAKE_CASE : Optional[Any] = hidden_act _SCREAMING_SNAKE_CASE : int = intermediate_size _SCREAMING_SNAKE_CASE : List[Any] = hidden_dropout_prob _SCREAMING_SNAKE_CASE : Union[str, Any] = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE : Any = max_position_embeddings _SCREAMING_SNAKE_CASE : List[Any] = type_vocab_size _SCREAMING_SNAKE_CASE : Any = initializer_range _SCREAMING_SNAKE_CASE : Optional[Any] = layer_norm_eps _SCREAMING_SNAKE_CASE : Optional[Any] = position_embedding_type _SCREAMING_SNAKE_CASE : str = use_cache _SCREAMING_SNAKE_CASE : Optional[Any] = classifier_dropout class lowerCAmelCase__( __lowercase ): '''simple docstring''' @property def UpperCamelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _SCREAMING_SNAKE_CASE : str = {0: "batch", 1: "choice", 2: "sequence"} else: _SCREAMING_SNAKE_CASE : Optional[Any] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
325
from __future__ import annotations import typing from collections import Counter def lowerCamelCase__ (__lowerCamelCase ): _SCREAMING_SNAKE_CASE : typing.Counter[int] = Counter() for base in range(1, max_perimeter + 1 ): for perpendicular in range(__lowerCamelCase, max_perimeter + 1 ): _SCREAMING_SNAKE_CASE : List[Any] = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def lowerCamelCase__ (__lowerCamelCase = 1000 ): _SCREAMING_SNAKE_CASE : Union[str, Any] = pythagorean_triple(__lowerCamelCase ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(f"Perimeter {solution()} has maximum solutions")
325
1
'''simple docstring''' import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) UpperCamelCase__ : Union[str, Any] = logging.getLogger(__name__) @dataclass(frozen=lowerCamelCase__ ) class _UpperCamelCase : '''simple docstring''' _A : str _A : str _A : Optional[str] = None _A : Optional[str] = None _A : Optional[str] = None @dataclass(frozen=lowerCamelCase__ ) class _UpperCamelCase : '''simple docstring''' _A : List[int] _A : Optional[List[int]] = None _A : Optional[List[int]] = None _A : Optional[Union[int, float]] = None _A : Optional[int] = None if is_torch_available(): import torch from torch.utils.data import Dataset class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' _A : List[InputFeatures] def __init__( self : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : PreTrainedTokenizer , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : int=False , lowerCAmelCase__ : bool = False , ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = hans_processors[task]() __SCREAMING_SNAKE_CASE : Dict = os.path.join( lowerCAmelCase__ , """cached_{}_{}_{}_{}""".format( """dev""" if evaluate else """train""" , tokenizer.__class__.__name__ , str(lowerCAmelCase__ ) , lowerCAmelCase__ , ) , ) __SCREAMING_SNAKE_CASE : List[str] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : int = label_list[2], label_list[1] __SCREAMING_SNAKE_CASE : int = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __SCREAMING_SNAKE_CASE : Optional[int] = cached_features_file + """.lock""" with FileLock(lowerCAmelCase__ ): if os.path.exists(lowerCAmelCase__ ) and not overwrite_cache: logger.info(F"Loading features from cached file {cached_features_file}" ) __SCREAMING_SNAKE_CASE : Optional[int] = torch.load(lowerCAmelCase__ ) else: logger.info(F"Creating features from dataset file at {data_dir}" ) __SCREAMING_SNAKE_CASE : Union[str, Any] = ( processor.get_dev_examples(lowerCAmelCase__ ) if evaluate else processor.get_train_examples(lowerCAmelCase__ ) ) logger.info("""Training examples: %s""" , len(lowerCAmelCase__ ) ) __SCREAMING_SNAKE_CASE : Tuple = hans_convert_examples_to_features(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) logger.info("""Saving features into cached file %s""" , lowerCAmelCase__ ) torch.save(self.features , lowerCAmelCase__ ) def __len__( self : Optional[int] ): """simple docstring""" return len(self.features ) def __getitem__( self : List[Any] , lowerCAmelCase__ : List[Any] ): """simple docstring""" return self.features[i] def UpperCamelCase__ ( self : int ): """simple docstring""" return self.label_list if is_tf_available(): import tensorflow as tf class _UpperCamelCase : '''simple docstring''' _A : List[InputFeatures] def __init__( self : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : PreTrainedTokenizer , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[int] = 1_2_8 , lowerCAmelCase__ : List[Any]=False , lowerCAmelCase__ : bool = False , ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = hans_processors[task]() __SCREAMING_SNAKE_CASE : Optional[int] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Tuple = label_list[2], label_list[1] __SCREAMING_SNAKE_CASE : List[Any] = label_list __SCREAMING_SNAKE_CASE : List[str] = processor.get_dev_examples(lowerCAmelCase__ ) if evaluate else processor.get_train_examples(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = hans_convert_examples_to_features(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc="""convert examples to features""" ): if ex_index % 1_0_0_0_0 == 0: logger.info("""Writing example %d of %d""" % (ex_index, len(lowerCAmelCase__ )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) __SCREAMING_SNAKE_CASE : List[Any] = tf.data.Dataset.from_generator( lowerCAmelCase__ , ( { """example_id""": tf.intaa, """input_ids""": tf.intaa, """attention_mask""": tf.intaa, """token_type_ids""": tf.intaa, }, tf.intaa, ) , ( { """example_id""": tf.TensorShape([] ), """input_ids""": tf.TensorShape([None, None] ), """attention_mask""": tf.TensorShape([None, None] ), """token_type_ids""": tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def UpperCamelCase__ ( self : Dict ): """simple docstring""" return self.dataset def __len__( self : List[Any] ): """simple docstring""" return len(self.features ) def __getitem__( self : Union[str, Any] , lowerCAmelCase__ : List[str] ): """simple docstring""" return self.features[i] def UpperCamelCase__ ( self : Optional[int] ): """simple docstring""" return self.label_list class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' def UpperCamelCase__ ( self : Optional[int] , lowerCAmelCase__ : List[Any] ): """simple docstring""" return self._create_examples(self._read_tsv(os.path.join(lowerCAmelCase__ , """heuristics_train_set.txt""" ) ) , """train""" ) def UpperCamelCase__ ( self : List[str] , lowerCAmelCase__ : Any ): """simple docstring""" return self._create_examples(self._read_tsv(os.path.join(lowerCAmelCase__ , """heuristics_evaluation_set.txt""" ) ) , """dev""" ) def UpperCamelCase__ ( self : Optional[int] ): """simple docstring""" return ["contradiction", "entailment", "neutral"] def UpperCamelCase__ ( self : Dict , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = [] for i, line in enumerate(lowerCAmelCase__ ): if i == 0: continue __SCREAMING_SNAKE_CASE : Any = """%s-%s""" % (set_type, line[0]) __SCREAMING_SNAKE_CASE : Tuple = line[5] __SCREAMING_SNAKE_CASE : Dict = line[6] __SCREAMING_SNAKE_CASE : Tuple = line[7][2:] if line[7].startswith("""ex""" ) else line[7] __SCREAMING_SNAKE_CASE : Tuple = line[0] examples.append(InputExample(guid=lowerCAmelCase__ , text_a=lowerCAmelCase__ , text_b=lowerCAmelCase__ , label=lowerCAmelCase__ , pairID=lowerCAmelCase__ ) ) return examples def lowerCAmelCase_ ( _lowerCamelCase: List[InputExample] , _lowerCamelCase: List[str] , _lowerCamelCase: int , _lowerCamelCase: PreTrainedTokenizer , ): __SCREAMING_SNAKE_CASE : Dict = {label: i for i, label in enumerate(_lowerCamelCase )} __SCREAMING_SNAKE_CASE : str = [] for ex_index, example in tqdm.tqdm(enumerate(_lowerCamelCase ) , desc="""convert examples to features""" ): if ex_index % 1_00_00 == 0: logger.info("""Writing example %d""" % (ex_index) ) __SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer( example.text_a , example.text_b , add_special_tokens=_lowerCamelCase , max_length=_lowerCamelCase , padding="""max_length""" , truncation=_lowerCamelCase , return_overflowing_tokens=_lowerCamelCase , ) __SCREAMING_SNAKE_CASE : Optional[int] = label_map[example.label] if example.label in label_map else 0 __SCREAMING_SNAKE_CASE : Optional[Any] = int(example.pairID ) features.append(InputFeatures(**_lowerCamelCase , label=_lowerCamelCase , pairID=_lowerCamelCase ) ) for i, example in enumerate(examples[:5] ): logger.info("""*** Example ***""" ) logger.info(F"guid: {example}" ) logger.info(F"features: {features[i]}" ) return features UpperCamelCase__ : List[str] = { '''hans''': 3, } UpperCamelCase__ : str = { '''hans''': HansProcessor, }
112
'''simple docstring''' def lowerCAmelCase_ ( _lowerCamelCase: list[int] , _lowerCamelCase: str ): __SCREAMING_SNAKE_CASE : str = int(_lowerCamelCase ) # Initialize Result __SCREAMING_SNAKE_CASE : Tuple = [] # Traverse through all denomination for denomination in reversed(_lowerCamelCase ): # Find denominations while int(_lowerCamelCase ) >= int(_lowerCamelCase ): total_value -= int(_lowerCamelCase ) answer.append(_lowerCamelCase ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": UpperCamelCase__ : int = [] UpperCamelCase__ : List[Any] = '''0''' if ( input('''Do you want to enter your denominations ? (yY/n): ''').strip().lower() == "y" ): UpperCamelCase__ : Tuple = int(input('''Enter the number of denominations you want to add: ''').strip()) for i in range(0, n): denominations.append(int(input(f"Denomination {i}: ").strip())) UpperCamelCase__ : str = input('''Enter the change you want to make in Indian Currency: ''').strip() else: # All denominations of Indian Currency if user does not enter UpperCamelCase__ : List[Any] = [1, 2, 5, 10, 20, 50, 1_00, 5_00, 20_00] UpperCamelCase__ : str = input('''Enter the change you want to make: ''').strip() if int(value) == 0 or int(value) < 0: print('''The total value cannot be zero or negative.''') else: print(f"Following is minimal change for {value}: ") UpperCamelCase__ : int = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=''' ''')
112
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a_ = { 'configuration_xlm_roberta': [ 'XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLMRobertaConfig', 'XLMRobertaOnnxConfig', ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['XLMRobertaTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['XLMRobertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLMRobertaForCausalLM', 'XLMRobertaForMaskedLM', 'XLMRobertaForMultipleChoice', 'XLMRobertaForQuestionAnswering', 'XLMRobertaForSequenceClassification', 'XLMRobertaForTokenClassification', 'XLMRobertaModel', 'XLMRobertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLMRobertaForCausalLM', 'TFXLMRobertaForMaskedLM', 'TFXLMRobertaForMultipleChoice', 'TFXLMRobertaForQuestionAnswering', 'TFXLMRobertaForSequenceClassification', 'TFXLMRobertaForTokenClassification', 'TFXLMRobertaModel', 'TFXLMRobertaPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'FlaxXLMRobertaForMaskedLM', 'FlaxXLMRobertaForCausalLM', 'FlaxXLMRobertaForMultipleChoice', 'FlaxXLMRobertaForQuestionAnswering', 'FlaxXLMRobertaForSequenceClassification', 'FlaxXLMRobertaForTokenClassification', 'FlaxXLMRobertaModel', 'FlaxXLMRobertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
350
'''simple docstring''' from decimal import Decimal, getcontext from math import ceil, factorial def _a( UpperCamelCase__ : int ): '''simple docstring''' if not isinstance(UpperCamelCase__, UpperCamelCase__ ): raise TypeError('''Undefined for non-integers''' ) elif precision < 1: raise ValueError('''Undefined for non-natural numbers''' ) SCREAMING_SNAKE_CASE__ : Optional[Any] =precision SCREAMING_SNAKE_CASE__ : int =ceil(precision / 1_4 ) SCREAMING_SNAKE_CASE__ : int =4_2_6_8_8_0 * Decimal(1_0_0_0_5 ).sqrt() SCREAMING_SNAKE_CASE__ : Tuple =1 SCREAMING_SNAKE_CASE__ : Any =1_3_5_9_1_4_0_9 SCREAMING_SNAKE_CASE__ : List[Any] =Decimal(UpperCamelCase__ ) for k in range(1, UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ : str =factorial(6 * k ) // (factorial(3 * k ) * factorial(UpperCamelCase__ ) ** 3) linear_term += 5_4_5_1_4_0_1_3_4 exponential_term *= -2_6_2_5_3_7_4_1_2_6_4_0_7_6_8_0_0_0 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": a_ = 5_0 print(F'''The first {n} digits of pi is: {pi(n)}''')
222
0
"""simple docstring""" import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def __a ( __lowerCamelCase ): UpperCAmelCase_ : Any = filter(lambda __lowerCamelCase : p.requires_grad, model.parameters() ) UpperCAmelCase_ : Optional[int] = sum([np.prod(p.size() ) for p in model_parameters] ) return params _a = logging.getLogger(__name__) def __a ( __lowerCamelCase, __lowerCamelCase ): if metric == "rouge2": UpperCAmelCase_ : str = "{val_avg_rouge2:.4f}-{step_count}" elif metric == "bleu": UpperCAmelCase_ : Optional[Any] = "{val_avg_bleu:.4f}-{step_count}" elif metric == "em": UpperCAmelCase_ : str = "{val_avg_em:.4f}-{step_count}" else: raise NotImplementedError( f"""seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this""" " function." ) UpperCAmelCase_ : int = ModelCheckpoint( dirpath=__UpperCamelCase, filename=__UpperCamelCase, monitor=f"""val_{metric}""", mode="max", save_top_k=3, every_n_epochs=1, ) return checkpoint_callback def __a ( __lowerCamelCase, __lowerCamelCase ): return EarlyStopping( monitor=f"""val_{metric}""", mode="min" if "loss" in metric else "max", patience=__UpperCamelCase, verbose=__UpperCamelCase, ) class A_ (pl.Callback ): '''simple docstring''' def UpperCamelCase__ ( self , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Any = {F"""lr_group_{i}""": param["lr"] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(_SCREAMING_SNAKE_CASE ) @rank_zero_only def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_=True ): """simple docstring""" logger.info(F"""***** {type_path} results at step {trainer.global_step:05d} *****""" ) UpperCAmelCase_ : Tuple = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["log", "progress_bar", "preds"]} ) # Log results UpperCAmelCase_ : Optional[int] = Path(pl_module.hparams.output_dir ) if type_path == "test": UpperCAmelCase_ : Optional[Any] = od / "test_results.txt" UpperCAmelCase_ : Any = od / "test_generations.txt" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. UpperCAmelCase_ : List[str] = od / F"""{type_path}_results/{trainer.global_step:05d}.txt""" UpperCAmelCase_ : Tuple = od / F"""{type_path}_generations/{trainer.global_step:05d}.txt""" results_file.parent.mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) generations_file.parent.mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) with open(_SCREAMING_SNAKE_CASE , "a+" ) as writer: for key in sorted(_SCREAMING_SNAKE_CASE ): if key in ["log", "progress_bar", "preds"]: continue UpperCAmelCase_ : Dict = metrics[key] if isinstance(_SCREAMING_SNAKE_CASE , torch.Tensor ): UpperCAmelCase_ : Union[str, Any] = val.item() UpperCAmelCase_ : Optional[int] = F"""{key}: {val:.6f}\n""" writer.write(_SCREAMING_SNAKE_CASE ) if not save_generations: return if "preds" in metrics: UpperCAmelCase_ : Optional[Any] = "\n".join(metrics["preds"] ) generations_file.open("w+" ).write(_SCREAMING_SNAKE_CASE ) @rank_zero_only def UpperCamelCase__ ( self , lowercase_ , lowercase_ ): """simple docstring""" try: UpperCAmelCase_ : Optional[int] = pl_module.model.model.num_parameters() except AttributeError: UpperCAmelCase_ : Tuple = pl_module.model.num_parameters() UpperCAmelCase_ : List[Any] = count_trainable_parameters(_SCREAMING_SNAKE_CASE ) # mp stands for million parameters trainer.logger.log_metrics({"n_params": npars, "mp": npars / 1E6, "grad_mp": n_trainable_pars / 1E6} ) @rank_zero_only def UpperCamelCase__ ( self , lowercase_ , lowercase_ ): """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , "test" ) @rank_zero_only def UpperCamelCase__ ( self , lowercase_ , lowercase_ ): """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
61
'''simple docstring''' def lowercase__ ( __UpperCamelCase = 4000000 )-> int: UpperCamelCase = [] UpperCamelCase ,UpperCamelCase = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(__UpperCamelCase ) UpperCamelCase ,UpperCamelCase = b, a + b return sum(__UpperCamelCase ) if __name__ == "__main__": print(f'{solution() = }')
321
0
'''simple docstring''' import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class a__ : """simple docstring""" def __init__(self , __lowercase , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase="resnet50" , __lowercase=3 , __lowercase=32 , __lowercase=3 , __lowercase=True , __lowercase=True , ): __lowerCAmelCase = parent __lowerCAmelCase = out_indices if out_indices is not None else [4] __lowerCAmelCase = stage_names __lowerCAmelCase = out_features __lowerCAmelCase = backbone __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = num_channels __lowerCAmelCase = use_pretrained_backbone __lowerCAmelCase = is_training def _snake_case (self ): __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = self.get_config() return config, pixel_values def _snake_case (self ): return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def _snake_case (self , __lowercase , __lowercase ): __lowerCAmelCase = TimmBackbone(config=__lowercase ) model.to(__lowercase ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(__lowercase ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def _snake_case (self ): __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch @require_timm class a__ ( __A , __A , __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : Union[str, Any] = (TimmBackbone,) if is_torch_available() else () __UpperCamelCase : Optional[int] = {'feature-extraction': TimmBackbone} if is_torch_available() else {} __UpperCamelCase : str = False __UpperCamelCase : int = False __UpperCamelCase : Optional[int] = False __UpperCamelCase : Optional[int] = False def _snake_case (self ): __lowerCAmelCase = TimmBackboneModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=__lowercase , has_text_modality=__lowercase ) def _snake_case (self ): self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _snake_case (self ): __lowerCAmelCase = '''resnet18''' __lowerCAmelCase = '''microsoft/resnet-18''' __lowerCAmelCase = AutoBackbone.from_pretrained(__lowercase , use_timm_backbone=__lowercase ) __lowerCAmelCase = AutoBackbone.from_pretrained(__lowercase ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) __lowerCAmelCase = AutoBackbone.from_pretrained(__lowercase , use_timm_backbone=__lowercase , out_indices=[1, 2, 3] ) __lowerCAmelCase = AutoBackbone.from_pretrained(__lowercase , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip('''TimmBackbone doesn\'t support feed forward chunking''' ) def _snake_case (self ): pass @unittest.skip('''TimmBackbone doesn\'t have num_hidden_layers attribute''' ) def _snake_case (self ): pass @unittest.skip('''TimmBackbone initialization is managed on the timm side''' ) def _snake_case (self ): pass @unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' ) def _snake_case (self ): pass @unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' ) def _snake_case (self ): pass @unittest.skip('''TimmBackbone model cannot be created without specifying a backbone checkpoint''' ) def _snake_case (self ): pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def _snake_case (self ): pass @unittest.skip('''model weights aren\'t tied in TimmBackbone.''' ) def _snake_case (self ): pass @unittest.skip('''model weights aren\'t tied in TimmBackbone.''' ) def _snake_case (self ): pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def _snake_case (self ): pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def _snake_case (self ): pass @unittest.skip('''TimmBackbone doesn\'t have hidden size info in its configuration.''' ) def _snake_case (self ): pass @unittest.skip('''TimmBackbone doesn\'t support output_attentions.''' ) def _snake_case (self ): pass @unittest.skip('''Safetensors is not supported by timm.''' ) def _snake_case (self ): pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def _snake_case (self ): pass def _snake_case (self ): __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(__lowercase ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __lowercase ) def _snake_case (self ): __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = True __lowerCAmelCase = self.has_attentions # no need to test all models as different heads yield the same functionality __lowerCAmelCase = self.all_model_classes[0] __lowerCAmelCase = model_class(__lowercase ) model.to(__lowercase ) __lowerCAmelCase = self._prepare_for_class(__lowercase , __lowercase ) __lowerCAmelCase = model(**__lowercase ) __lowerCAmelCase = outputs[0][-1] # Encoder-/Decoder-only models __lowerCAmelCase = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: __lowerCAmelCase = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=__lowercase ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def _snake_case (self ): __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(__lowercase ) model.to(__lowercase ) model.eval() __lowerCAmelCase = model(**__lowercase ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None __lowerCAmelCase = copy.deepcopy(__lowercase ) __lowerCAmelCase = None __lowerCAmelCase = model_class(__lowercase ) model.to(__lowercase ) model.eval() __lowerCAmelCase = model(**__lowercase ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights __lowerCAmelCase = copy.deepcopy(__lowercase ) __lowerCAmelCase = False __lowerCAmelCase = model_class(__lowercase ) model.to(__lowercase ) model.eval() __lowerCAmelCase = model(**__lowercase )
9
'''simple docstring''' from math import sqrt def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and ( number >= 0 ), "'number' must been an int and positive" __lowerCAmelCase = True # 0 and 1 are none primes. if number <= 1: __lowerCAmelCase = False for divisor in range(2, int(round(sqrt(lowerCamelCase))) + 1): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: __lowerCAmelCase = False break # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'status' must been from type bool" return status def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N __lowerCAmelCase = list(range(2, n + 1)) __lowerCAmelCase = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(lowerCamelCase)): for j in range(i + 1, len(lowerCamelCase)): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): __lowerCAmelCase = 0 # filters actual prime numbers. __lowerCAmelCase = [x for x in begin_list if x != 0] # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type list" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n > 2), "'N' must been an int and > 2" __lowerCAmelCase = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2, n + 1): if is_prime(lowerCamelCase): ans.append(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type list" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and number >= 0, "'number' must been an int and >= 0" __lowerCAmelCase = [] # this list will be returns of the function. # potential prime number factors. __lowerCAmelCase = 2 __lowerCAmelCase = number if number == 0 or number == 1: ans.append(lowerCamelCase) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(lowerCamelCase): while quotient != 1: if is_prime(lowerCamelCase) and (quotient % factor == 0): ans.append(lowerCamelCase) quotient /= factor else: factor += 1 else: ans.append(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type list" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and ( number >= 0 ), "'number' bust been an int and >= 0" __lowerCAmelCase = 0 # prime factorization of 'number' __lowerCAmelCase = prime_factorization(lowerCamelCase) __lowerCAmelCase = max(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type int" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and ( number >= 0 ), "'number' bust been an int and >= 0" __lowerCAmelCase = 0 # prime factorization of 'number' __lowerCAmelCase = prime_factorization(lowerCamelCase) __lowerCAmelCase = min(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type int" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase), "'number' must been an int" assert isinstance(number % 2 == 0, lowerCamelCase), "compare bust been from type bool" return number % 2 == 0 def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase), "'number' must been an int" assert isinstance(number % 2 != 0, lowerCamelCase), "compare bust been from type bool" return number % 2 != 0 def __magic_name__( lowerCamelCase): assert ( isinstance(lowerCamelCase, lowerCamelCase) and (number > 2) and is_even(lowerCamelCase) ), "'number' must been an int, even and > 2" __lowerCAmelCase = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' __lowerCAmelCase = get_prime_numbers(lowerCamelCase) __lowerCAmelCase = len(lowerCamelCase) # run variable for while-loops. __lowerCAmelCase = 0 __lowerCAmelCase = None # exit variable. for break up the loops __lowerCAmelCase = True while i < len_pn and loop: __lowerCAmelCase = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: __lowerCAmelCase = False ans.append(prime_numbers[i]) ans.append(prime_numbers[j]) j += 1 i += 1 # precondition assert ( isinstance(lowerCamelCase, lowerCamelCase) and (len(lowerCamelCase) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0]) and is_prime(ans[1]) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def __magic_name__( lowerCamelCase, lowerCamelCase): assert ( isinstance(lowerCamelCase, lowerCamelCase) and isinstance(lowerCamelCase, lowerCamelCase) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." __lowerCAmelCase = 0 while numbera != 0: __lowerCAmelCase = numbera % numbera __lowerCAmelCase = numbera __lowerCAmelCase = rest # precondition assert isinstance(lowerCamelCase, lowerCamelCase) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def __magic_name__( lowerCamelCase, lowerCamelCase): assert ( isinstance(lowerCamelCase, lowerCamelCase) and isinstance(lowerCamelCase, lowerCamelCase) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." __lowerCAmelCase = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' __lowerCAmelCase = prime_factorization(lowerCamelCase) __lowerCAmelCase = prime_factorization(lowerCamelCase) elif numbera == 1 or numbera == 1: __lowerCAmelCase = [] __lowerCAmelCase = [] __lowerCAmelCase = max(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: __lowerCAmelCase = prime_fac_a.count(lowerCamelCase) __lowerCAmelCase = prime_fac_a.count(lowerCamelCase) for _ in range(max(lowerCamelCase, lowerCamelCase)): ans *= n else: __lowerCAmelCase = prime_fac_a.count(lowerCamelCase) for _ in range(lowerCamelCase): ans *= n done.append(lowerCamelCase) # iterates through primeFac2 for n in prime_fac_a: if n not in done: __lowerCAmelCase = prime_fac_a.count(lowerCamelCase) for _ in range(lowerCamelCase): ans *= n done.append(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 0), "'number' must been a positive int" __lowerCAmelCase = 0 __lowerCAmelCase = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(lowerCamelCase): ans += 1 # precondition assert isinstance(lowerCamelCase, lowerCamelCase) and is_prime( lowerCamelCase), "'ans' must been a prime number and from type int" return ans def __magic_name__( lowerCamelCase, lowerCamelCase): assert ( is_prime(lowerCamelCase) and is_prime(lowerCamelCase) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" __lowerCAmelCase = p_number_a + 1 # jump to the next number __lowerCAmelCase = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(lowerCamelCase): number += 1 while number < p_number_a: ans.append(lowerCamelCase) number += 1 # fetch the next prime number. while not is_prime(lowerCamelCase): number += 1 # precondition assert ( isinstance(lowerCamelCase, lowerCamelCase) and ans[0] != p_number_a and ans[len(lowerCamelCase) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 1), "'n' must been int and >= 1" __lowerCAmelCase = [] # will be returned. for divisor in range(1, n + 1): if n % divisor == 0: ans.append(lowerCamelCase) # precondition assert ans[0] == 1 and ans[len(lowerCamelCase) - 1] == n, "Error in function getDivisiors(...)" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and ( number > 1 ), "'number' must been an int and >= 1" __lowerCAmelCase = get_divisors(lowerCamelCase) # precondition assert ( isinstance(lowerCamelCase, lowerCamelCase) and (divisors[0] == 1) and (divisors[len(lowerCamelCase) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1]) == number def __magic_name__( lowerCamelCase, lowerCamelCase): assert ( isinstance(lowerCamelCase, lowerCamelCase) and isinstance(lowerCamelCase, lowerCamelCase) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. __lowerCAmelCase = gcd(abs(lowerCamelCase), abs(lowerCamelCase)) # precondition assert ( isinstance(lowerCamelCase, lowerCamelCase) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 0), "'n' must been a int and >= 0" __lowerCAmelCase = 1 # this will be return. for factor in range(1, n + 1): ans *= factor return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 0), "'n' must been an int and >= 0" __lowerCAmelCase = 0 __lowerCAmelCase = 1 __lowerCAmelCase = 1 # this will be return for _ in range(n - 1): __lowerCAmelCase = ans ans += fiba __lowerCAmelCase = tmp return ans
9
1
'''simple docstring''' import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _snake_case ( lowercase_ , unittest.TestCase ): lowerCAmelCase_ : List[str] = LongformerTokenizer lowerCAmelCase_ : Optional[Any] = True lowerCAmelCase_ : List[str] = LongformerTokenizerFast lowerCAmelCase_ : Any = True def lowerCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt snake_case_ = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] snake_case_ = dict(zip(a__ , range(len(a__ ) ) ) ) snake_case_ = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] snake_case_ = {"unk_token": "<unk>"} snake_case_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) snake_case_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(a__ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(a__ ) ) def lowerCAmelCase__ ( self , **a__ ) -> List[Any]: '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **a__ ) def lowerCAmelCase__ ( self , **a__ ) -> Union[str, Any]: '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **a__ ) def lowerCAmelCase__ ( self , a__ ) -> Union[str, Any]: '''simple docstring''' snake_case_ = "lower newer" snake_case_ = "lower newer" return input_text, output_text def lowerCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) snake_case_ = "lower newer" snake_case_ = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"] snake_case_ = tokenizer.tokenize(a__ ) # , add_prefix_space=True) self.assertListEqual(a__ , a__ ) snake_case_ = tokens + [tokenizer.unk_token] snake_case_ = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , a__ ) def lowerCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ = self.get_tokenizer() self.assertListEqual(tokenizer.encode("Hello world!" , add_special_tokens=a__ ) , [0, 31_414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode("Hello world! cécé herlolip 418" , add_special_tokens=a__ ) , [0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2] , ) @slow def lowerCAmelCase__ ( self ) -> Tuple: '''simple docstring''' snake_case_ = self.tokenizer_class.from_pretrained("allenai/longformer-base-4096" ) snake_case_ = tokenizer.encode("sequence builders" , add_special_tokens=a__ ) snake_case_ = tokenizer.encode("multi-sequence build" , add_special_tokens=a__ ) snake_case_ = tokenizer.encode( "sequence builders" , add_special_tokens=a__ , add_prefix_space=a__ ) snake_case_ = tokenizer.encode( "sequence builders" , "multi-sequence build" , add_special_tokens=a__ , add_prefix_space=a__ ) snake_case_ = tokenizer.build_inputs_with_special_tokens(a__ ) snake_case_ = tokenizer.build_inputs_with_special_tokens(a__ , a__ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def lowerCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' snake_case_ = self.get_tokenizer() snake_case_ = "Encode this sequence." snake_case_ = tokenizer.byte_encoder[" ".encode("utf-8" )[0]] # Testing encoder arguments snake_case_ = tokenizer.encode(a__ , add_special_tokens=a__ , add_prefix_space=a__ ) snake_case_ = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(a__ , a__ ) snake_case_ = tokenizer.encode(a__ , add_special_tokens=a__ , add_prefix_space=a__ ) snake_case_ = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(a__ , a__ ) tokenizer.add_special_tokens({"bos_token": "<s>"} ) snake_case_ = tokenizer.encode(a__ , add_special_tokens=a__ ) snake_case_ = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(a__ , a__ ) # Testing spaces after special tokens snake_case_ = "<mask>" tokenizer.add_special_tokens( {"mask_token": AddedToken(a__ , lstrip=a__ , rstrip=a__ )} ) # mask token has a left space snake_case_ = tokenizer.convert_tokens_to_ids(a__ ) snake_case_ = "Encode <mask> sequence" snake_case_ = "Encode <mask>sequence" snake_case_ = tokenizer.encode(a__ ) snake_case_ = encoded.index(a__ ) snake_case_ = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(a__ , a__ ) snake_case_ = tokenizer.encode(a__ ) snake_case_ = encoded.index(a__ ) snake_case_ = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(a__ , a__ ) def lowerCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): snake_case_ = self.rust_tokenizer_class.from_pretrained(a__ , **a__ ) snake_case_ = self.tokenizer_class.from_pretrained(a__ , **a__ ) snake_case_ = "A, <mask> AllenNLP sentence." snake_case_ = tokenizer_r.encode_plus(a__ , add_special_tokens=a__ , return_token_type_ids=a__ ) snake_case_ = tokenizer_p.encode_plus(a__ , add_special_tokens=a__ , return_token_type_ids=a__ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["token_type_ids"] ) , sum(tokens_p["token_type_ids"] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) , sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) , ) snake_case_ = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] ) snake_case_ = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["input_ids"] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r["input_ids"] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( a__ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) self.assertSequenceEqual( a__ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) def lowerCAmelCase__ ( self ) -> Any: '''simple docstring''' for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): snake_case_ = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=a__ , add_prefix_space=a__ , trim_offsets=a__ ) snake_case_ = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) snake_case_ = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["add_prefix_space"] , a__ ) self.assertEqual(post_processor_state["add_prefix_space"] , a__ ) self.assertEqual(post_processor_state["trim_offsets"] , a__ ) def lowerCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): snake_case_ = "hello" # `hello` is a token in the vocabulary of `pretrained_name` snake_case_ = F'{text_of_1_token} {text_of_1_token}' snake_case_ = self.rust_tokenizer_class.from_pretrained( a__ , use_fast=a__ , add_prefix_space=a__ , trim_offsets=a__ ) snake_case_ = tokenizer_r(a__ , return_offsets_mapping=a__ , add_special_tokens=a__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(a__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(a__ ) + 1, len(a__ ) + 1 + len(a__ )) , ) snake_case_ = self.rust_tokenizer_class.from_pretrained( a__ , use_fast=a__ , add_prefix_space=a__ , trim_offsets=a__ ) snake_case_ = tokenizer_r(a__ , return_offsets_mapping=a__ , add_special_tokens=a__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(a__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(a__ ) + 1, len(a__ ) + 1 + len(a__ )) , ) snake_case_ = self.rust_tokenizer_class.from_pretrained( a__ , use_fast=a__ , add_prefix_space=a__ , trim_offsets=a__ ) snake_case_ = tokenizer_r(a__ , return_offsets_mapping=a__ , add_special_tokens=a__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(a__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(a__ ), len(a__ ) + 1 + len(a__ )) , ) snake_case_ = self.rust_tokenizer_class.from_pretrained( a__ , use_fast=a__ , add_prefix_space=a__ , trim_offsets=a__ ) snake_case_ = tokenizer_r(a__ , return_offsets_mapping=a__ , add_special_tokens=a__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(a__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(a__ ), len(a__ ) + 1 + len(a__ )) , ) snake_case_ = F' {text}' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) snake_case_ = self.rust_tokenizer_class.from_pretrained( a__ , use_fast=a__ , add_prefix_space=a__ , trim_offsets=a__ ) snake_case_ = tokenizer_r(a__ , return_offsets_mapping=a__ , add_special_tokens=a__ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(a__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(a__ ) + 1, 1 + len(a__ ) + 1 + len(a__ )) , ) snake_case_ = self.rust_tokenizer_class.from_pretrained( a__ , use_fast=a__ , add_prefix_space=a__ , trim_offsets=a__ ) snake_case_ = tokenizer_r(a__ , return_offsets_mapping=a__ , add_special_tokens=a__ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(a__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(a__ ), 1 + len(a__ ) + 1 + len(a__ )) , ) snake_case_ = self.rust_tokenizer_class.from_pretrained( a__ , use_fast=a__ , add_prefix_space=a__ , trim_offsets=a__ ) snake_case_ = tokenizer_r(a__ , return_offsets_mapping=a__ , add_special_tokens=a__ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(a__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(a__ ), 1 + len(a__ ) + 1 + len(a__ )) , )
85
'''simple docstring''' from __future__ import annotations import requests def UpperCamelCase_( snake_case : str ): '''simple docstring''' snake_case_ = f'https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty' return requests.get(snake_case ).json() def UpperCamelCase_( snake_case : int = 1_0 ): '''simple docstring''' snake_case_ = "https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty" snake_case_ = requests.get(snake_case ).json()[:max_stories] return [get_hackernews_story(snake_case ) for story_id in story_ids] def UpperCamelCase_( snake_case : int = 1_0 ): '''simple docstring''' snake_case_ = hackernews_top_stories(snake_case ) return "\n".join("* [{title}]({url})".format(**snake_case ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
85
1
from __future__ import annotations def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> list[int]: '''simple docstring''' UpperCAmelCase : Optional[int] =0 UpperCAmelCase : str =len(__lowerCAmelCase ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: UpperCAmelCase : int =i + 1 else: UpperCAmelCase : List[str] =j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f'{two_pointer([2, 7, 11, 15], 9) = }')
78
import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class __snake_case ( lowerCamelCase__ ): @require_torch def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase : List[Any] =''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' UpperCAmelCase : Tuple =''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' UpperCAmelCase : int =''' import socket def offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache UpperCAmelCase : Optional[int] ='''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(snake_case__ ) BertModel.from_pretrained(snake_case__ ) BertTokenizer.from_pretrained(snake_case__ ) pipeline(task='''fill-mask''' , model=snake_case__ ) # baseline - just load from_pretrained with normal network UpperCAmelCase : List[Any] =[sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed UpperCAmelCase : List[Any] =self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files UpperCAmelCase : Optional[Any] ='''1''' UpperCAmelCase : List[Any] =subprocess.run(snake_case__ , env=snake_case__ , check=snake_case__ , capture_output=snake_case__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' UpperCAmelCase : Optional[Any] =''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' UpperCAmelCase : Any =''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' UpperCAmelCase : Union[str, Any] =''' import socket def offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache UpperCAmelCase : Union[str, Any] ='''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(snake_case__ ) BertModel.from_pretrained(snake_case__ ) BertTokenizer.from_pretrained(snake_case__ ) pipeline(task='''fill-mask''' , model=snake_case__ ) # baseline - just load from_pretrained with normal network UpperCAmelCase : Any =[sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed UpperCAmelCase : List[str] =self.get_env() UpperCAmelCase : Any =subprocess.run(snake_case__ , env=snake_case__ , check=snake_case__ , capture_output=snake_case__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Union[str, Any] =''' from transformers import BertConfig, BertModel, BertTokenizer ''' UpperCAmelCase : int =''' mname = "hf-internal-testing/tiny-random-bert-sharded" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print("success") ''' UpperCAmelCase : int =''' import socket def offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled") socket.socket = offline_socket ''' # baseline - just load from_pretrained with normal network UpperCAmelCase : Dict =[sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed UpperCAmelCase : Any =self.get_env() UpperCAmelCase : List[Any] =subprocess.run(snake_case__ , env=snake_case__ , check=snake_case__ , capture_output=snake_case__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # next emulate no network UpperCAmelCase : Optional[Any] =[sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files UpperCAmelCase : int ='''1''' UpperCAmelCase : Optional[Any] =subprocess.run(snake_case__ , env=snake_case__ , check=snake_case__ , capture_output=snake_case__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' UpperCAmelCase : Dict =''' from transformers import pipeline ''' UpperCAmelCase : List[Any] =''' mname = "hf-internal-testing/tiny-random-bert" pipe = pipeline(model=mname) ''' UpperCAmelCase : Tuple =''' import socket def offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled") socket.socket = offline_socket ''' UpperCAmelCase : Optional[int] =self.get_env() UpperCAmelCase : int ='''1''' UpperCAmelCase : Optional[int] =[sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] UpperCAmelCase : List[str] =subprocess.run(snake_case__ , env=snake_case__ , check=snake_case__ , capture_output=snake_case__ ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( '''You cannot infer task automatically within `pipeline` when using offline mode''' , result.stderr.decode().replace('''\n''' , '''''' ) , ) @require_torch def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase : Any =''' from transformers import AutoModel ''' UpperCAmelCase : Optional[Any] =''' mname = "hf-internal-testing/test_dynamic_model" AutoModel.from_pretrained(mname, trust_remote_code=True) print("success") ''' # baseline - just load from_pretrained with normal network UpperCAmelCase : Dict =[sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed UpperCAmelCase : Optional[int] =self.get_env() UpperCAmelCase : Optional[Any] =subprocess.run(snake_case__ , env=snake_case__ , check=snake_case__ , capture_output=snake_case__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files UpperCAmelCase : Any ='''1''' UpperCAmelCase : Dict =subprocess.run(snake_case__ , env=snake_case__ , check=snake_case__ , capture_output=snake_case__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() )
78
1
"""simple docstring""" import numpy as np import torch from imwatermark import WatermarkEncoder # Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66 __lowercase = 0B1011_0011_1110_1100_1001_0000_0111_1011_1011_0001_1001_1110 # bin(x)[2:] gives bits of x as str, use int to convert them to 0/1 __lowercase = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] class _A : """simple docstring""" def __init__( self : Tuple): a : List[str] = WATERMARK_BITS a : int = WatermarkEncoder() self.encoder.set_watermark("bits" , self.watermark) def __snake_case ( self : int , __UpperCAmelCase : torch.FloatTensor): # can't encode images that are smaller than 256 if images.shape[-1] < 256: return images a : Optional[Any] = (255 * (images / 2 + 0.5)).cpu().permute(0 , 2 , 3 , 1).float().numpy() a : str = [self.encoder.encode(__UpperCAmelCase , "dwtDct") for image in images] a : Any = torch.from_numpy(np.array(__UpperCAmelCase)).permute(0 , 3 , 1 , 2) a : Any = torch.clamp(2 * (images / 255 - 0.5) , min=-1.0 , max=1.0) return images
40
"""simple docstring""" from __future__ import annotations class _A : """simple docstring""" def __init__( self : List[str] , __UpperCAmelCase : int = 0): a : Tuple = key def __snake_case ( self : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : int): assert isinstance(__UpperCAmelCase , __UpperCAmelCase) and isinstance(__UpperCAmelCase , __UpperCAmelCase) a : Dict = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(__UpperCAmelCase) ^ key) for ch in content] def __snake_case ( self : int , __UpperCAmelCase : str , __UpperCAmelCase : int): assert isinstance(__UpperCAmelCase , __UpperCAmelCase) and isinstance(__UpperCAmelCase , __UpperCAmelCase) a : Optional[Any] = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(__UpperCAmelCase) ^ key) for ch in content] def __snake_case ( self : Optional[Any] , __UpperCAmelCase : str , __UpperCAmelCase : int = 0): assert isinstance(__UpperCAmelCase , __UpperCAmelCase) and isinstance(__UpperCAmelCase , __UpperCAmelCase) a : List[Any] = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned a : Any = "" for ch in content: ans += chr(ord(__UpperCAmelCase) ^ key) return ans def __snake_case ( self : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : int = 0): assert isinstance(__UpperCAmelCase , __UpperCAmelCase) and isinstance(__UpperCAmelCase , __UpperCAmelCase) a : Dict = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned a : str = "" for ch in content: ans += chr(ord(__UpperCAmelCase) ^ key) return ans def __snake_case ( self : int , __UpperCAmelCase : str , __UpperCAmelCase : int = 0): assert isinstance(__UpperCAmelCase , __UpperCAmelCase) and isinstance(__UpperCAmelCase , __UpperCAmelCase) try: with open(__UpperCAmelCase) as fin, open("encrypt.out" , "w+") as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(__UpperCAmelCase , __UpperCAmelCase)) except OSError: return False return True def __snake_case ( self : Any , __UpperCAmelCase : str , __UpperCAmelCase : int): assert isinstance(__UpperCAmelCase , __UpperCAmelCase) and isinstance(__UpperCAmelCase , __UpperCAmelCase) try: with open(__UpperCAmelCase) as fin, open("decrypt.out" , "w+") as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(__UpperCAmelCase , __UpperCAmelCase)) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
40
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) class A_ ( __lowercase ): '''simple docstring''' __snake_case = '''timm_backbone''' def __init__( self: Union[str, Any] , a: Any=None , a: Dict=3 , a: List[str]=True , a: Optional[Any]=True , a: Tuple=None , **a: Union[str, Any] , ): super().__init__(**a ) __lowerCamelCase : Any = backbone __lowerCamelCase : Tuple = num_channels __lowerCamelCase : int = features_only __lowerCamelCase : int = use_pretrained_backbone __lowerCamelCase : List[str] = True __lowerCamelCase : Dict = out_indices if out_indices is not None else (-1,)
363
from __future__ import annotations def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : List[Any] = str(SCREAMING_SNAKE_CASE__ ) return len(SCREAMING_SNAKE_CASE__ ) == 9 and set(SCREAMING_SNAKE_CASE__ ) == set('123456789' ) def UpperCamelCase__ ( ): for base_num in range(9_999 , 4_999 , -1 ): __lowerCamelCase : Tuple = 100_002 * base_num if is_9_pandigital(SCREAMING_SNAKE_CASE__ ): return candidate for base_num in range(333 , 99 , -1 ): __lowerCamelCase : Union[str, Any] = 1_002_003 * base_num if is_9_pandigital(SCREAMING_SNAKE_CASE__ ): return candidate return None if __name__ == "__main__": print(F"""{solution() = }""")
194
0
from string import ascii_uppercase _lowerCamelCase ={char: i for i, char in enumerate(ascii_uppercase)} _lowerCamelCase =dict(enumerate(ascii_uppercase)) def _a ( lowerCamelCase, lowerCamelCase ): lowerCamelCase : Optional[Any] = len(lowerCamelCase ) lowerCamelCase : str = 0 while True: if x == i: lowerCamelCase : int = 0 if len(lowerCamelCase ) == len(lowerCamelCase ): break key += key[i] i += 1 return key def _a ( lowerCamelCase, lowerCamelCase ): lowerCamelCase : Union[str, Any] = """""" lowerCamelCase : List[Any] = 0 for letter in message: if letter == " ": cipher_text += " " else: lowerCamelCase : Dict = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def _a ( lowerCamelCase, lowerCamelCase ): lowerCamelCase : str = """""" lowerCamelCase : Dict = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: lowerCamelCase : Union[str, Any] = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def _a ( ): lowerCamelCase : int = """THE GERMAN ATTACK""" lowerCamelCase : List[Any] = """SECRET""" lowerCamelCase : Optional[Any] = generate_key(lowerCamelCase, lowerCamelCase ) lowerCamelCase : Union[str, Any] = cipher_text(lowerCamelCase, lowerCamelCase ) print(F'''Encrypted Text = {s}''' ) print(F'''Original Text = {original_text(lowerCamelCase, lowerCamelCase )}''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
287
import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor _lowerCamelCase =logging.get_logger(__name__) class A__ ( __SCREAMING_SNAKE_CASE): def __init__( self , *__magic_name__ , **__magic_name__ ): warnings.warn( """The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use OwlViTImageProcessor instead.""" , __magic_name__ , ) super().__init__(*__magic_name__ , **__magic_name__ )
287
1
'''simple docstring''' def __lowerCamelCase ( __lowerCAmelCase : int ) -> list[int]: if length <= 0 or not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError("""Length must be a positive integer.""" ) return [n * (2 * n - 1) for n in range(__lowerCAmelCase )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
351
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : Any , __snake_case : Optional[Any] , __snake_case : List[Any]=7 , __snake_case : Optional[Any]=3 , __snake_case : str=18 , __snake_case : Union[str, Any]=30 , __snake_case : Union[str, Any]=4_00 , __snake_case : Optional[int]=True , __snake_case : Any=None , __snake_case : List[str]=True , )-> Optional[Any]: snake_case = size if size is not None else {"""height""": 18, """width""": 18} snake_case = parent snake_case = batch_size snake_case = num_channels snake_case = image_size snake_case = min_resolution snake_case = max_resolution snake_case = do_resize snake_case = size snake_case = apply_ocr def lowerCAmelCase ( self : List[Any] )-> List[str]: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class _lowerCAmelCase ( A__ , unittest.TestCase ): """simple docstring""" snake_case_ = LayoutLMvaImageProcessor if is_pytesseract_available() else None def lowerCAmelCase ( self : int )-> Tuple: snake_case = LayoutLMvaImageProcessingTester(self ) @property def lowerCAmelCase ( self : Tuple )-> Tuple: return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase ( self : Union[str, Any] )-> Any: snake_case = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__snake_case , """do_resize""" ) ) self.assertTrue(hasattr(__snake_case , """size""" ) ) self.assertTrue(hasattr(__snake_case , """apply_ocr""" ) ) def lowerCAmelCase ( self : List[str] )-> List[Any]: snake_case = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) snake_case = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def lowerCAmelCase ( self : Dict )-> Union[str, Any]: pass def lowerCAmelCase ( self : Tuple )-> Dict: # Initialize image_processing snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , Image.Image ) # Test not batched input snake_case = image_processing(image_inputs[0] , return_tensors="""pt""" ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) self.assertIsInstance(encoding.words , __snake_case ) self.assertIsInstance(encoding.boxes , __snake_case ) # Test batched snake_case = image_processing(__snake_case , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def lowerCAmelCase ( self : int )-> str: # Initialize image_processing snake_case = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , numpify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , np.ndarray ) # Test not batched input snake_case = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched snake_case = image_processing(__snake_case , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def lowerCAmelCase ( self : List[Any] )-> Optional[Any]: # Initialize image_processing snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , torchify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , torch.Tensor ) # Test not batched input snake_case = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched snake_case = image_processing(__snake_case , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def lowerCAmelCase ( self : int )-> List[Any]: # with apply_OCR = True snake_case = LayoutLMvaImageProcessor() from datasets import load_dataset snake_case = load_dataset("""hf-internal-testing/fixtures_docvqa""" , split="""test""" ) snake_case = Image.open(ds[0]["""file"""] ).convert("""RGB""" ) snake_case = image_processing(__snake_case , return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 snake_case = [["""11:14""", """to""", """11:39""", """a.m""", """11:39""", """to""", """11:44""", """a.m.""", """11:44""", """a.m.""", """to""", """12:25""", """p.m.""", """12:25""", """to""", """12:58""", """p.m.""", """12:58""", """to""", """4:00""", """p.m.""", """2:00""", """to""", """5:00""", """p.m.""", """Coffee""", """Break""", """Coffee""", """will""", """be""", """served""", """for""", """men""", """and""", """women""", """in""", """the""", """lobby""", """adjacent""", """to""", """exhibit""", """area.""", """Please""", """move""", """into""", """exhibit""", """area.""", """(Exhibits""", """Open)""", """TRRF""", """GENERAL""", """SESSION""", """(PART""", """|)""", """Presiding:""", """Lee""", """A.""", """Waller""", """TRRF""", """Vice""", """President""", """“Introductory""", """Remarks”""", """Lee""", """A.""", """Waller,""", """TRRF""", """Vice""", """Presi-""", """dent""", """Individual""", """Interviews""", """with""", """TRRF""", """Public""", """Board""", """Members""", """and""", """Sci-""", """entific""", """Advisory""", """Council""", """Mem-""", """bers""", """Conducted""", """by""", """TRRF""", """Treasurer""", """Philip""", """G.""", """Kuehn""", """to""", """get""", """answers""", """which""", """the""", """public""", """refrigerated""", """warehousing""", """industry""", """is""", """looking""", """for.""", """Plus""", """questions""", """from""", """the""", """floor.""", """Dr.""", """Emil""", """M.""", """Mrak,""", """University""", """of""", """Cal-""", """ifornia,""", """Chairman,""", """TRRF""", """Board;""", """Sam""", """R.""", """Cecil,""", """University""", """of""", """Georgia""", """College""", """of""", """Agriculture;""", """Dr.""", """Stanley""", """Charm,""", """Tufts""", """University""", """School""", """of""", """Medicine;""", """Dr.""", """Robert""", """H.""", """Cotton,""", """ITT""", """Continental""", """Baking""", """Company;""", """Dr.""", """Owen""", """Fennema,""", """University""", """of""", """Wis-""", """consin;""", """Dr.""", """Robert""", """E.""", """Hardenburg,""", """USDA.""", """Questions""", """and""", """Answers""", """Exhibits""", """Open""", """Capt.""", """Jack""", """Stoney""", """Room""", """TRRF""", """Scientific""", """Advisory""", """Council""", """Meeting""", """Ballroom""", """Foyer"""]] # noqa: E231 snake_case = [[[1_41, 57, 2_14, 69], [2_28, 58, 2_52, 69], [1_41, 75, 2_16, 88], [2_30, 79, 2_80, 88], [1_42, 2_60, 2_18, 2_73], [2_30, 2_61, 2_55, 2_73], [1_43, 2_79, 2_18, 2_90], [2_31, 2_82, 2_90, 2_91], [1_43, 3_42, 2_18, 3_54], [2_31, 3_45, 2_89, 3_55], [2_02, 3_62, 2_27, 3_73], [1_43, 3_79, 2_20, 3_92], [2_31, 3_82, 2_91, 3_94], [1_44, 7_14, 2_20, 7_26], [2_31, 7_15, 2_56, 7_26], [1_44, 7_32, 2_20, 7_45], [2_32, 7_36, 2_91, 7_47], [1_44, 7_69, 2_18, 7_82], [2_31, 7_70, 2_56, 7_82], [1_41, 7_88, 2_02, 8_01], [2_15, 7_91, 2_74, 8_04], [1_43, 8_26, 2_04, 8_38], [2_15, 8_26, 2_40, 8_38], [1_42, 8_44, 2_02, 8_57], [2_15, 8_47, 2_74, 8_59], [3_34, 57, 4_27, 69], [4_40, 57, 5_22, 69], [3_69, 75, 4_61, 88], [4_69, 75, 5_16, 88], [5_28, 76, 5_62, 88], [5_70, 76, 6_67, 88], [6_75, 75, 7_11, 87], [7_21, 79, 7_78, 88], [7_89, 75, 8_40, 88], [3_69, 97, 4_70, 1_07], [4_84, 94, 5_07, 1_06], [5_18, 94, 5_62, 1_07], [5_76, 94, 6_55, 1_10], [6_68, 94, 7_92, 1_09], [8_04, 95, 8_29, 1_07], [3_69, 1_13, 4_65, 1_25], [4_77, 1_16, 5_47, 1_25], [5_62, 1_13, 6_58, 1_25], [6_71, 1_16, 7_48, 1_25], [7_61, 1_13, 8_11, 1_25], [3_69, 1_31, 4_65, 1_43], [4_77, 1_33, 5_48, 1_43], [5_63, 1_30, 6_98, 1_45], [7_10, 1_30, 8_02, 1_46], [3_36, 1_71, 4_12, 1_83], [4_23, 1_71, 5_72, 1_83], [5_82, 1_70, 7_16, 1_84], [7_28, 1_71, 8_17, 1_87], [8_29, 1_71, 8_44, 1_86], [3_38, 1_97, 4_82, 2_12], [5_07, 1_96, 5_57, 2_09], [5_69, 1_96, 5_95, 2_08], [6_10, 1_96, 7_02, 2_09], [5_05, 2_14, 5_83, 2_26], [5_95, 2_14, 6_56, 2_27], [6_70, 2_15, 8_07, 2_27], [3_35, 2_59, 5_43, 2_74], [5_56, 2_59, 7_08, 2_72], [3_72, 2_79, 4_22, 2_91], [4_35, 2_79, 4_60, 2_91], [4_74, 2_79, 5_74, 2_92], [5_87, 2_78, 6_64, 2_91], [6_76, 2_78, 7_38, 2_91], [7_51, 2_79, 8_34, 2_91], [3_72, 2_98, 4_34, 3_10], [3_35, 3_41, 4_83, 3_54], [4_97, 3_41, 6_55, 3_54], [6_67, 3_41, 7_28, 3_54], [7_40, 3_41, 8_25, 3_54], [3_35, 3_60, 4_30, 3_72], [4_42, 3_60, 5_34, 3_72], [5_45, 3_59, 6_87, 3_72], [6_97, 3_60, 7_54, 3_72], [7_65, 3_60, 8_23, 3_73], [3_34, 3_78, 4_28, 3_91], [4_40, 3_78, 5_77, 3_94], [5_90, 3_78, 7_05, 3_91], [7_20, 3_78, 8_01, 3_91], [3_34, 3_97, 4_00, 4_09], [3_70, 4_16, 5_29, 4_29], [5_44, 4_16, 5_76, 4_32], [5_87, 4_16, 6_65, 4_28], [6_77, 4_16, 8_14, 4_29], [3_72, 4_35, 4_52, 4_50], [4_65, 4_34, 4_95, 4_47], [5_11, 4_34, 6_00, 4_47], [6_11, 4_36, 6_37, 4_47], [6_49, 4_36, 6_94, 4_51], [7_05, 4_38, 8_24, 4_47], [3_69, 4_53, 4_52, 4_66], [4_64, 4_54, 5_09, 4_66], [5_22, 4_53, 6_11, 4_69], [6_25, 4_53, 7_92, 4_69], [3_70, 4_72, 5_56, 4_88], [5_70, 4_72, 6_84, 4_87], [6_97, 4_72, 7_18, 4_85], [7_32, 4_72, 8_35, 4_88], [3_69, 4_90, 4_11, 5_03], [4_25, 4_90, 4_84, 5_03], [4_96, 4_90, 6_35, 5_06], [6_45, 4_90, 7_07, 5_03], [7_18, 4_91, 7_61, 5_03], [7_71, 4_90, 8_40, 5_03], [3_36, 5_10, 3_74, 5_21], [3_88, 5_10, 4_47, 5_22], [4_60, 5_10, 4_89, 5_21], [5_03, 5_10, 5_80, 5_22], [5_92, 5_09, 7_36, 5_25], [7_45, 5_09, 7_70, 5_22], [7_81, 5_09, 8_40, 5_22], [3_38, 5_28, 4_34, 5_41], [4_48, 5_28, 5_96, 5_41], [6_09, 5_27, 6_87, 5_40], [7_00, 5_28, 7_92, 5_41], [3_36, 5_46, 3_97, 5_59], [4_07, 5_46, 4_31, 5_59], [4_43, 5_46, 5_25, 5_60], [5_37, 5_46, 6_80, 5_62], [6_88, 5_46, 7_14, 5_59], [7_22, 5_46, 8_37, 5_62], [3_36, 5_65, 4_49, 5_81], [4_61, 5_65, 4_85, 5_77], [4_97, 5_65, 6_65, 5_81], [6_81, 5_65, 7_18, 5_77], [7_32, 5_65, 8_37, 5_80], [3_37, 5_84, 4_38, 5_97], [4_52, 5_83, 5_21, 5_96], [5_35, 5_84, 6_77, 5_99], [6_90, 5_83, 7_87, 5_96], [8_01, 5_83, 8_25, 5_96], [3_38, 6_02, 4_78, 6_15], [4_92, 6_02, 5_30, 6_14], [5_43, 6_02, 6_38, 6_15], [6_50, 6_02, 6_76, 6_14], [6_88, 6_02, 7_88, 6_15], [8_02, 6_02, 8_43, 6_14], [3_37, 6_21, 5_02, 6_33], [5_16, 6_21, 6_15, 6_37], [6_29, 6_21, 7_74, 6_36], [7_89, 6_21, 8_27, 6_33], [3_37, 6_39, 4_18, 6_52], [4_32, 6_40, 5_71, 6_53], [5_87, 6_39, 7_31, 6_55], [7_43, 6_39, 7_69, 6_52], [7_80, 6_39, 8_41, 6_52], [3_38, 6_58, 4_40, 6_73], [4_55, 6_58, 4_91, 6_70], [5_08, 6_58, 6_02, 6_71], [6_16, 6_58, 6_38, 6_70], [6_54, 6_58, 8_35, 6_74], [3_37, 6_77, 4_29, 6_89], [3_37, 7_14, 4_82, 7_26], [4_95, 7_14, 5_48, 7_26], [5_61, 7_14, 6_83, 7_26], [3_38, 7_70, 4_61, 7_82], [4_74, 7_69, 5_54, 7_85], [4_89, 7_88, 5_62, 8_03], [5_76, 7_88, 6_43, 8_01], [6_56, 7_87, 7_51, 8_04], [7_64, 7_88, 8_44, 8_01], [3_34, 8_25, 4_21, 8_38], [4_30, 8_24, 5_74, 8_38], [5_84, 8_24, 7_23, 8_41], [3_35, 8_44, 4_50, 8_57], [4_64, 8_43, 5_83, 8_60], [6_28, 8_62, 7_55, 8_75], [7_69, 8_61, 8_48, 8_78]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , __snake_case ) self.assertListEqual(encoding.boxes , __snake_case ) # with apply_OCR = False snake_case = LayoutLMvaImageProcessor(apply_ocr=__snake_case ) snake_case = image_processing(__snake_case , return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
3
0
from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets UpperCAmelCase_ = '\\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n' UpperCAmelCase_ = '\\nGLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n' UpperCAmelCase_ = '\nCompute GLUE evaluation metric associated to each GLUE dataset.\nArgs:\n predictions: list of predictions to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\nReturns: depending on the GLUE subset, one or several of:\n "accuracy": Accuracy\n "f1": F1 score\n "pearson": Pearson Correlation\n "spearmanr": Spearman Correlation\n "matthews_correlation": Matthew Correlation\nExamples:\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'sst2\') # \'sst2\' or any of ["mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'mrpc\') # \'mrpc\' or \'qqp\'\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'stsb\')\n >>> references = [0., 1., 2., 3., 4., 5.]\n >>> predictions = [0., 1., 2., 3., 4., 5.]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print({"pearson": round(results["pearson"], 2), "spearmanr": round(results["spearmanr"], 2)})\n {\'pearson\': 1.0, \'spearmanr\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'cola\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'matthews_correlation\': 1.0}\n' def lowerCamelCase__ ( A__ : Dict , A__ : List[Any] ): '''simple docstring''' return float((preds == labels).mean() ) def lowerCamelCase__ ( A__ : int , A__ : str ): '''simple docstring''' __lowerCamelCase = simple_accuracy(A__ , A__ ) __lowerCamelCase = float(fa_score(y_true=A__ , y_pred=A__ ) ) return { "accuracy": acc, "f1": fa, } def lowerCamelCase__ ( A__ : str , A__ : List[str] ): '''simple docstring''' __lowerCamelCase = float(pearsonr(A__ , A__ )[0] ) __lowerCamelCase = float(spearmanr(A__ , A__ )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class lowerCamelCase__( datasets.Metric): def lowerCAmelCase__ ( self: Dict ): if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( """You should supply a configuration name selected in """ """[\"sst2\", \"mnli\", \"mnli_mismatched\", \"mnli_matched\", """ """\"cola\", \"stsb\", \"mrpc\", \"qqp\", \"qnli\", \"rte\", \"wnli\", \"hans\"]""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int64""" if self.config_name != """stsb""" else """float32""" ), """references""": datasets.Value("""int64""" if self.config_name != """stsb""" else """float32""" ), } ) , codebase_urls=[] , reference_urls=[] , format="""numpy""" , ) def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: str , UpperCamelCase_: List[str] ): if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(UpperCamelCase_ , UpperCamelCase_ )} elif self.config_name == "stsb": return pearson_and_spearman(UpperCamelCase_ , UpperCamelCase_ ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(UpperCamelCase_ , UpperCamelCase_ ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(UpperCamelCase_ , UpperCamelCase_ )} else: raise KeyError( """You should supply a configuration name selected in """ """[\"sst2\", \"mnli\", \"mnli_mismatched\", \"mnli_matched\", """ """\"cola\", \"stsb\", \"mrpc\", \"qqp\", \"qnli\", \"rte\", \"wnli\", \"hans\"]""" )
12
'''simple docstring''' from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline __snake_case : Union[str, Any] = logging.get_logger(__name__) @add_end_docstrings(lowercase_ ) class lowerCamelCase ( lowercase_ ): '''simple docstring''' def __init__( self : List[str] , **lowerCAmelCase_ : Any ) -> List[Any]: '''simple docstring''' super().__init__(**lowerCAmelCase_ ) if self.framework != "pt": raise ValueError(f"The {self.__class__} is only available in PyTorch." ) # No specific FOR_XXX available yet def __call__( self : int , lowerCAmelCase_ : Union[np.ndarray, bytes, str] , **lowerCAmelCase_ : Tuple ) -> Dict: '''simple docstring''' return super().__call__(lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase__ ( self : Optional[int] , **lowerCAmelCase_ : List[Any] ) -> Union[str, Any]: '''simple docstring''' A__ : Optional[Any] ={} if "candidate_labels" in kwargs: A__ : List[Any] =kwargs["""candidate_labels"""] if "hypothesis_template" in kwargs: A__ : Optional[Any] =kwargs["""hypothesis_template"""] return preprocess_params, {}, {} def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : str="This is a sound of {}." ) -> Tuple: '''simple docstring''' if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): if audio.startswith("""http://""" ) or audio.startswith("""https://""" ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png A__ : Any =requests.get(lowerCAmelCase_ ).content else: with open(lowerCAmelCase_ , """rb""" ) as f: A__ : Dict =f.read() if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): A__ : str =ffmpeg_read(lowerCAmelCase_ , self.feature_extractor.sampling_rate ) if not isinstance(lowerCAmelCase_ , np.ndarray ): raise ValueError("""We expect a numpy ndarray as input""" ) if len(audio.shape ) != 1: raise ValueError("""We expect a single channel audio input for ZeroShotAudioClassificationPipeline""" ) A__ : int =self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors="""pt""" ) A__ : Union[str, Any] =candidate_labels A__ : Tuple =[hypothesis_template.format(lowerCAmelCase_ ) for x in candidate_labels] A__ : Dict =self.tokenizer(lowerCAmelCase_ , return_tensors=self.framework , padding=lowerCAmelCase_ ) A__ : int =[text_inputs] return inputs def lowercase__ ( self : Tuple , lowerCAmelCase_ : Any ) -> Dict: '''simple docstring''' A__ : Optional[int] =model_inputs.pop("""candidate_labels""" ) A__ : List[str] =model_inputs.pop("""text_inputs""" ) if isinstance(text_inputs[0] , lowerCAmelCase_ ): A__ : List[str] =text_inputs[0] else: # Batching case. A__ : Optional[Any] =text_inputs[0][0] A__ : List[str] =self.model(**lowerCAmelCase_ , **lowerCAmelCase_ ) A__ : List[str] ={ """candidate_labels""": candidate_labels, """logits""": outputs.logits_per_audio, } return model_outputs def lowercase__ ( self : Any , lowerCAmelCase_ : List[str] ) -> Tuple: '''simple docstring''' A__ : Any =model_outputs.pop("""candidate_labels""" ) A__ : str =model_outputs["""logits"""][0] if self.framework == "pt": A__ : str =logits.softmax(dim=0 ) A__ : List[str] =probs.tolist() else: raise ValueError("""`tf` framework not supported.""" ) A__ : List[str] =[ {"""score""": score, """label""": candidate_label} for score, candidate_label in sorted(zip(lowerCAmelCase_ , lowerCAmelCase_ ) , key=lambda lowerCAmelCase_ : -x[0] ) ] return result
134
0
"""simple docstring""" import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class snake_case : def __init__( self : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : List[Any]=1_3 , UpperCamelCase__ : List[Any]=7 , UpperCamelCase__ : int=True , UpperCamelCase__ : Tuple=True , UpperCamelCase__ : Optional[Any]=True , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : List[str]=9_9 , UpperCamelCase__ : List[str]=1_6 , UpperCamelCase__ : Dict=3_6 , UpperCamelCase__ : Optional[int]=6 , UpperCamelCase__ : List[str]=6 , UpperCamelCase__ : Dict=6 , UpperCamelCase__ : List[Any]=3_7 , UpperCamelCase__ : Dict="gelu" , UpperCamelCase__ : Optional[int]=0.1 , UpperCamelCase__ : List[Any]=0.1 , UpperCamelCase__ : str=5_1_2 , UpperCamelCase__ : Union[str, Any]=1_6 , UpperCamelCase__ : Optional[Any]=2 , UpperCamelCase__ : Union[str, Any]=0.02 , UpperCamelCase__ : Tuple=3 , UpperCamelCase__ : Dict=4 , UpperCamelCase__ : Tuple=None , )-> int: '''simple docstring''' __lowerCAmelCase: List[str] = parent __lowerCAmelCase: Tuple = batch_size __lowerCAmelCase: Any = seq_length __lowerCAmelCase: List[str] = is_training __lowerCAmelCase: int = use_input_mask __lowerCAmelCase: Tuple = use_token_type_ids __lowerCAmelCase: Any = use_labels __lowerCAmelCase: Dict = vocab_size __lowerCAmelCase: Optional[Any] = embedding_size __lowerCAmelCase: Tuple = hidden_size __lowerCAmelCase: Union[str, Any] = num_hidden_layers __lowerCAmelCase: Union[str, Any] = num_hidden_groups __lowerCAmelCase: Dict = num_attention_heads __lowerCAmelCase: List[str] = intermediate_size __lowerCAmelCase: List[str] = hidden_act __lowerCAmelCase: str = hidden_dropout_prob __lowerCAmelCase: Any = attention_probs_dropout_prob __lowerCAmelCase: Tuple = max_position_embeddings __lowerCAmelCase: int = type_vocab_size __lowerCAmelCase: Dict = type_sequence_label_size __lowerCAmelCase: List[str] = initializer_range __lowerCAmelCase: str = num_labels __lowerCAmelCase: int = num_choices __lowerCAmelCase: Dict = scope def lowercase_ ( self : Tuple)-> Optional[Any]: '''simple docstring''' __lowerCAmelCase: Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __lowerCAmelCase: List[Any] = None if self.use_input_mask: __lowerCAmelCase: Dict = random_attention_mask([self.batch_size, self.seq_length]) __lowerCAmelCase: Union[str, Any] = None if self.use_token_type_ids: __lowerCAmelCase: Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) __lowerCAmelCase: Optional[int] = None __lowerCAmelCase: Tuple = None __lowerCAmelCase: Dict = None if self.use_labels: __lowerCAmelCase: Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size) __lowerCAmelCase: List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __lowerCAmelCase: Tuple = ids_tensor([self.batch_size] , self.num_choices) __lowerCAmelCase: Optional[int] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase_ ( self : Optional[int])-> Union[str, Any]: '''simple docstring''' return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def lowercase_ ( self : Tuple , UpperCamelCase__ : List[str] , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : str , UpperCamelCase__ : Dict , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[int])-> Tuple: '''simple docstring''' __lowerCAmelCase: Dict = AlbertModel(config=UpperCamelCase__) model.to(UpperCamelCase__) model.eval() __lowerCAmelCase: int = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__) __lowerCAmelCase: str = model(UpperCamelCase__ , token_type_ids=UpperCamelCase__) __lowerCAmelCase: int = model(UpperCamelCase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def lowercase_ ( self : Any , UpperCamelCase__ : List[Any] , UpperCamelCase__ : int , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : str , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[int])-> Union[str, Any]: '''simple docstring''' __lowerCAmelCase: List[str] = AlbertForPreTraining(config=UpperCamelCase__) model.to(UpperCamelCase__) model.eval() __lowerCAmelCase: Optional[int] = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ , sentence_order_label=UpperCamelCase__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels)) def lowercase_ ( self : str , UpperCamelCase__ : int , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[Any])-> Dict: '''simple docstring''' __lowerCAmelCase: List[str] = AlbertForMaskedLM(config=UpperCamelCase__) model.to(UpperCamelCase__) model.eval() __lowerCAmelCase: Any = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def lowercase_ ( self : List[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any])-> Tuple: '''simple docstring''' __lowerCAmelCase: Dict = AlbertForQuestionAnswering(config=UpperCamelCase__) model.to(UpperCamelCase__) model.eval() __lowerCAmelCase: List[str] = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , start_positions=UpperCamelCase__ , end_positions=UpperCamelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def lowercase_ ( self : List[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : List[str] , UpperCamelCase__ : Tuple , UpperCamelCase__ : str)-> Union[str, Any]: '''simple docstring''' __lowerCAmelCase: Union[str, Any] = self.num_labels __lowerCAmelCase: Optional[int] = AlbertForSequenceClassification(UpperCamelCase__) model.to(UpperCamelCase__) model.eval() __lowerCAmelCase: List[Any] = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def lowercase_ ( self : Optional[int] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : str)-> int: '''simple docstring''' __lowerCAmelCase: List[str] = self.num_labels __lowerCAmelCase: str = AlbertForTokenClassification(config=UpperCamelCase__) model.to(UpperCamelCase__) model.eval() __lowerCAmelCase: Dict = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def lowercase_ ( self : Union[str, Any] , UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : List[str])-> Optional[Any]: '''simple docstring''' __lowerCAmelCase: str = self.num_choices __lowerCAmelCase: int = AlbertForMultipleChoice(config=UpperCamelCase__) model.to(UpperCamelCase__) model.eval() __lowerCAmelCase: Dict = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() __lowerCAmelCase: Union[str, Any] = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() __lowerCAmelCase: Optional[Any] = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() __lowerCAmelCase: Union[str, Any] = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def lowercase_ ( self : str)-> Union[str, Any]: '''simple docstring''' __lowerCAmelCase: Any = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ): Optional[int] = config_and_inputs __lowerCAmelCase: List[str] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class snake_case ( __snake_case, __snake_case, unittest.TestCase ): SCREAMING_SNAKE_CASE_ : List[Any] = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ : Optional[int] = ( { """feature-extraction""": AlbertModel, """fill-mask""": AlbertForMaskedLM, """question-answering""": AlbertForQuestionAnswering, """text-classification""": AlbertForSequenceClassification, """token-classification""": AlbertForTokenClassification, """zero-shot""": AlbertForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ : Dict = True def lowercase_ ( self : Union[str, Any] , UpperCamelCase__ : str , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[Any]=False)-> str: '''simple docstring''' __lowerCAmelCase: Any = super()._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__) if return_labels: if model_class in get_values(UpperCamelCase__): __lowerCAmelCase: Dict = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=UpperCamelCase__) __lowerCAmelCase: Any = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase__) return inputs_dict def lowercase_ ( self : Optional[Any])-> List[str]: '''simple docstring''' __lowerCAmelCase: int = AlbertModelTester(self) __lowerCAmelCase: int = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=3_7) def lowercase_ ( self : Dict)-> List[str]: '''simple docstring''' self.config_tester.run_common_tests() def lowercase_ ( self : Any)-> int: '''simple docstring''' __lowerCAmelCase: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__) def lowercase_ ( self : Any)-> int: '''simple docstring''' __lowerCAmelCase: List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCamelCase__) def lowercase_ ( self : List[Any])-> Dict: '''simple docstring''' __lowerCAmelCase: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase__) def lowercase_ ( self : Tuple)-> Tuple: '''simple docstring''' __lowerCAmelCase: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCamelCase__) def lowercase_ ( self : str)-> Union[str, Any]: '''simple docstring''' __lowerCAmelCase: List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCamelCase__) def lowercase_ ( self : Dict)-> List[Any]: '''simple docstring''' __lowerCAmelCase: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCamelCase__) def lowercase_ ( self : Optional[Any])-> Any: '''simple docstring''' __lowerCAmelCase: int = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowerCAmelCase: int = type self.model_tester.create_and_check_model(*UpperCamelCase__) @slow def lowercase_ ( self : List[Any])-> List[Any]: '''simple docstring''' for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase: int = AlbertModel.from_pretrained(UpperCamelCase__) self.assertIsNotNone(UpperCamelCase__) @require_torch class snake_case ( unittest.TestCase ): @slow def lowercase_ ( self : Optional[Any])-> int: '''simple docstring''' __lowerCAmelCase: Dict = AlbertModel.from_pretrained("albert-base-v2") __lowerCAmelCase: Dict = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]]) __lowerCAmelCase: Union[str, Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) with torch.no_grad(): __lowerCAmelCase: int = model(UpperCamelCase__ , attention_mask=UpperCamelCase__)[0] __lowerCAmelCase: List[str] = torch.Size((1, 1_1, 7_6_8)) self.assertEqual(output.shape , UpperCamelCase__) __lowerCAmelCase: List[str] = torch.tensor( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]]) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , UpperCamelCase__ , atol=1e-4))
108
"""simple docstring""" def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> int: return int((input_a, input_a).count(0 ) == 0 ) def a__ ( ) -> None: assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
108
1
import string import numpy def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ): return b if a == 0 else greatest_common_divisor(b % a , __lowerCAmelCase ) class UpperCAmelCase__ : """simple docstring""" UpperCAmelCase__ : Any = string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) UpperCAmelCase__ : Optional[int] = numpy.vectorize(lambda A_ : x % 3_6 ) UpperCAmelCase__ : int = numpy.vectorize(__UpperCAmelCase ) def __init__( self , A_ ) -> Optional[Any]: __UpperCamelCase =self.modulus(lowerCAmelCase_ ) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key __UpperCamelCase =encrypt_key.shape[0] def _a ( self , A_ ) -> List[Any]: return self.key_string.index(lowerCAmelCase_ ) def _a ( self , A_ ) -> Dict: return self.key_string[round(lowerCAmelCase_ )] def _a ( self ) -> int: __UpperCamelCase =round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: __UpperCamelCase =det % len(self.key_string ) __UpperCamelCase =len(self.key_string ) if greatest_common_divisor(lowerCAmelCase_ , len(self.key_string ) ) != 1: __UpperCamelCase =( f'determinant modular {req_l} of encryption key({det}) ' f'is not co prime w.r.t {req_l}.\nTry another key.' ) raise ValueError(lowerCAmelCase_ ) def _a ( self , A_ ) -> Any: __UpperCamelCase =[char for char in text.upper() if char in self.key_string] __UpperCamelCase =chars[-1] while len(lowerCAmelCase_ ) % self.break_key != 0: chars.append(lowerCAmelCase_ ) return "".join(lowerCAmelCase_ ) def _a ( self , A_ ) -> Optional[int]: __UpperCamelCase =self.process_text(text.upper() ) __UpperCamelCase ='' for i in range(0 , len(lowerCAmelCase_ ) - self.break_key + 1 , self.break_key ): __UpperCamelCase =text[i : i + self.break_key] __UpperCamelCase =[self.replace_letters(lowerCAmelCase_ ) for char in batch] __UpperCamelCase =numpy.array([vec] ).T __UpperCamelCase =self.modulus(self.encrypt_key.dot(lowerCAmelCase_ ) ).T.tolist()[ 0 ] __UpperCamelCase =''.join( self.replace_digits(lowerCAmelCase_ ) for num in batch_encrypted ) encrypted += encrypted_batch return encrypted def _a ( self ) -> str: __UpperCamelCase =round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: __UpperCamelCase =det % len(self.key_string ) __UpperCamelCase =None for i in range(len(self.key_string ) ): if (det * i) % len(self.key_string ) == 1: __UpperCamelCase =i break __UpperCamelCase =( det_inv * numpy.linalg.det(self.encrypt_key ) * numpy.linalg.inv(self.encrypt_key ) ) return self.to_int(self.modulus(lowerCAmelCase_ ) ) def _a ( self , A_ ) -> Optional[int]: __UpperCamelCase =self.make_decrypt_key() __UpperCamelCase =self.process_text(text.upper() ) __UpperCamelCase ='' for i in range(0 , len(lowerCAmelCase_ ) - self.break_key + 1 , self.break_key ): __UpperCamelCase =text[i : i + self.break_key] __UpperCamelCase =[self.replace_letters(lowerCAmelCase_ ) for char in batch] __UpperCamelCase =numpy.array([vec] ).T __UpperCamelCase =self.modulus(decrypt_key.dot(lowerCAmelCase_ ) ).T.tolist()[0] __UpperCamelCase =''.join( self.replace_digits(lowerCAmelCase_ ) for num in batch_decrypted ) decrypted += decrypted_batch return decrypted def _UpperCAmelCase ( ): __UpperCamelCase =int(input('Enter the order of the encryption key: ' ) ) __UpperCamelCase =[] print('Enter each row of the encryption key with space separated integers' ) for _ in range(__lowerCAmelCase ): __UpperCamelCase =[int(__lowerCAmelCase ) for x in input().split()] hill_matrix.append(__lowerCAmelCase ) __UpperCamelCase =HillCipher(numpy.array(__lowerCAmelCase ) ) print('Would you like to encrypt or decrypt some text? (1 or 2)' ) __UpperCamelCase =input('\n1. Encrypt\n2. Decrypt\n' ) if option == "1": __UpperCamelCase =input('What text would you like to encrypt?: ' ) print('Your encrypted text is:' ) print(hc.encrypt(__lowerCAmelCase ) ) elif option == "2": __UpperCamelCase =input('What text would you like to decrypt?: ' ) print('Your decrypted text is:' ) print(hc.decrypt(__lowerCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
62
"""simple docstring""" import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = "Speech2TextFeatureExtractor" lowercase__ = "Speech2TextTokenizer" def __init__( self : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple): """simple docstring""" super().__init__(lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = self.feature_extractor lowercase_ = False def __call__( self : Dict , *lowerCAmelCase_ : List[str] , **lowerCAmelCase_ : List[str]): """simple docstring""" if self._in_target_context_manager: return self.current_processor(*lowerCAmelCase_ , **lowerCAmelCase_) if "raw_speech" in kwargs: warnings.warn("""Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.""") lowercase_ = kwargs.pop("""raw_speech""") else: lowercase_ = kwargs.pop("""audio""" , lowerCAmelCase_) lowercase_ = kwargs.pop("""sampling_rate""" , lowerCAmelCase_) lowercase_ = kwargs.pop("""text""" , lowerCAmelCase_) if len(lowerCAmelCase_) > 0: lowercase_ = args[0] lowercase_ = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""") if audio is not None: lowercase_ = self.feature_extractor(lowerCAmelCase_ , *lowerCAmelCase_ , sampling_rate=lowerCAmelCase_ , **lowerCAmelCase_) if text is not None: lowercase_ = self.tokenizer(lowerCAmelCase_ , **lowerCAmelCase_) if text is None: return inputs elif audio is None: return encodings else: lowercase_ = encodings["""input_ids"""] return inputs def _UpperCAmelCase ( self : List[str] , *lowerCAmelCase_ : Dict , **lowerCAmelCase_ : Optional[Any]): """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase_ , **lowerCAmelCase_) def _UpperCAmelCase ( self : Optional[int] , *lowerCAmelCase_ : int , **lowerCAmelCase_ : str): """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase_ , **lowerCAmelCase_) @contextmanager def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" warnings.warn( """`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """ """labels by using the argument `text` of the regular `__call__` method (either in the same call as """ """your audio inputs, or in a separate call.""") lowercase_ = True lowercase_ = self.tokenizer yield lowercase_ = self.feature_extractor lowercase_ = False
136
0
def __snake_case ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> int: '''simple docstring''' while a != 0: _UpperCAmelCase , _UpperCAmelCase : str = b % a, a return b def __snake_case ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> int: '''simple docstring''' if gcd(UpperCamelCase__ , UpperCamelCase__ ) != 1: _UpperCAmelCase : int = f'mod inverse of {a!r} and {m!r} does not exist' raise ValueError(UpperCamelCase__ ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : List[Any] = 1, 0, a _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : List[Any] = 0, 1, m while va != 0: _UpperCAmelCase : Union[str, Any] = ua // va _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Any = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
367
"""simple docstring""" import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params _lowerCAmelCase : List[str] = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ["memory_attention", "encoder_attn"], ["attention", "attn"], ["/", "."], [".LayerNorm.gamma", "_layer_norm.weight"], [".LayerNorm.beta", "_layer_norm.bias"], ["r.layer_", "r.layers."], ["output_proj", "out_proj"], ["ffn.dense_1.", "fc2."], ["ffn.dense.", "fc1."], ["ffn_layer_norm", "final_layer_norm"], ["kernel", "weight"], ["encoder_layer_norm.", "encoder.layer_norm."], ["decoder_layer_norm.", "decoder.layer_norm."], ["embeddings.weights", "shared.weight"], ] def __snake_case ( SCREAMING_SNAKE_CASE__ : Dict ) -> List[str]: '''simple docstring''' for pegasus_name, hf_name in PATTERNS: _UpperCAmelCase : str = k.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return k def __snake_case ( SCREAMING_SNAKE_CASE__ : dict , SCREAMING_SNAKE_CASE__ : dict ) -> PegasusForConditionalGeneration: '''simple docstring''' _UpperCAmelCase : List[Any] = DEFAULTS.copy() cfg_kwargs.update(SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : Optional[Any] = PegasusConfig(**SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : Optional[Any] = PegasusForConditionalGeneration(SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : Optional[int] = torch_model.model.state_dict() _UpperCAmelCase : Union[str, Any] = {} for k, v in tf_weights.items(): _UpperCAmelCase : Union[str, Any] = rename_state_dict_key(SCREAMING_SNAKE_CASE__ ) if new_k not in sd: raise ValueError(f'could not find new key {new_k} in state dict. (converted from {k})' ) if "dense" in k or "proj" in new_k: _UpperCAmelCase : Any = v.T _UpperCAmelCase : str = torch.tensor(SCREAMING_SNAKE_CASE__ , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, f'{new_k}, {k}, {v.shape}, {sd[new_k].shape}' # make sure embedding.padding_idx is respected _UpperCAmelCase : Tuple = torch.zeros_like(mapping["shared.weight"][cfg.pad_token_id + 1] ) _UpperCAmelCase : Any = mapping["shared.weight"] _UpperCAmelCase : Dict = mapping["shared.weight"] _UpperCAmelCase : Dict = {k: torch.zeros_like(SCREAMING_SNAKE_CASE__ ) for k, v in sd.items() if k.endswith("bias" ) and k not in mapping} mapping.update(**SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase , _UpperCAmelCase : List[Any] = torch_model.model.load_state_dict(SCREAMING_SNAKE_CASE__ , strict=SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : int = [ k for k in missing if k not in ["encoder.embed_positions.weight", "decoder.embed_positions.weight"] ] assert unexpected_missing == [], f'no matches found for the following torch keys {unexpected_missing}' assert extra == [], f'no matches found for the following tf keys {extra}' return torch_model def __snake_case ( SCREAMING_SNAKE_CASE__ : Dict="./ckpt/aeslc/model.ckpt-32000" ) -> Dict: '''simple docstring''' _UpperCAmelCase : Optional[int] = tf.train.list_variables(SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : Union[str, Any] = {} _UpperCAmelCase : Optional[Any] = ["Adafactor", "global_step"] for name, shape in tqdm(SCREAMING_SNAKE_CASE__ , desc="converting tf checkpoint to dict" ): _UpperCAmelCase : Union[str, Any] = any(pat in name for pat in ignore_name ) if skip_key: continue _UpperCAmelCase : int = tf.train.load_variable(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : Dict = array return tf_weights def __snake_case ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ) -> Dict: '''simple docstring''' _UpperCAmelCase : Dict = Path(SCREAMING_SNAKE_CASE__ ).parent.name _UpperCAmelCase : Tuple = task_specific_params[f'summarization_{dataset}']["max_position_embeddings"] _UpperCAmelCase : Dict = PegasusTokenizer.from_pretrained("sshleifer/pegasus" , model_max_length=SCREAMING_SNAKE_CASE__ ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(SCREAMING_SNAKE_CASE__ ) # convert model _UpperCAmelCase : Union[str, Any] = get_tf_weights_as_numpy(SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : Optional[Any] = task_specific_params[f'summarization_{dataset}'] if dataset == "large": _UpperCAmelCase : Optional[int] = task_specific_params _UpperCAmelCase : str = convert_pegasus(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) torch_model.save_pretrained(SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : Optional[Any] = torch_model.state_dict() sd.pop("model.decoder.embed_positions.weight" ) sd.pop("model.encoder.embed_positions.weight" ) torch.save(SCREAMING_SNAKE_CASE__ , Path(SCREAMING_SNAKE_CASE__ ) / "pytorch_model.bin" ) if __name__ == "__main__": _lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("tf_ckpt_path", type=str, help="passed to tf.train.list_variables") parser.add_argument("save_dir", default=None, type=str, help="Path to the output PyTorch model.") _lowerCAmelCase : Union[str, Any] = parser.parse_args() if args.save_dir is None: _lowerCAmelCase : Tuple = Path(args.tf_ckpt_path).parent.name _lowerCAmelCase : Dict = os.path.join("pegasus", dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
202
0
import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __lowerCamelCase ( unittest.TestCase): """simple docstring""" @property def UpperCamelCase ( self ): """simple docstring""" torch.manual_seed(0 ) _UpperCAmelCase = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.dummy_uncond_unet _UpperCAmelCase = ScoreSdeVeScheduler() _UpperCAmelCase = ScoreSdeVePipeline(unet=UpperCAmelCase , scheduler=UpperCAmelCase ) sde_ve.to(UpperCAmelCase ) sde_ve.set_progress_bar_config(disable=UpperCAmelCase ) _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = sde_ve(num_inference_steps=2 , output_type='numpy' , generator=UpperCAmelCase ).images _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = sde_ve(num_inference_steps=2 , output_type='numpy' , generator=UpperCAmelCase , return_dict=UpperCAmelCase )[ 0 ] _UpperCAmelCase = image[0, -3:, -3:, -1] _UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _UpperCAmelCase = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class __lowerCamelCase ( unittest.TestCase): """simple docstring""" def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = 'google/ncsnpp-church-256' _UpperCAmelCase = UNetaDModel.from_pretrained(UpperCAmelCase ) _UpperCAmelCase = ScoreSdeVeScheduler.from_pretrained(UpperCAmelCase ) _UpperCAmelCase = ScoreSdeVePipeline(unet=UpperCAmelCase , scheduler=UpperCAmelCase ) sde_ve.to(UpperCAmelCase ) sde_ve.set_progress_bar_config(disable=UpperCAmelCase ) _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = sde_ve(num_inference_steps=10 , output_type='numpy' , generator=UpperCAmelCase ).images _UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) _UpperCAmelCase = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
39
import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer _a = logging.get_logger(__name__) class __lowerCamelCase ( snake_case__): """simple docstring""" UpperCamelCase__ = "AutoTokenizer" UpperCamelCase__ = ["tokenizer"] UpperCamelCase__ = { "semantic_prompt": 1, "coarse_prompt": 2, "fine_prompt": 2, } def __init__( self , UpperCAmelCase , UpperCAmelCase=None ): """simple docstring""" super().__init__(UpperCAmelCase ) _UpperCAmelCase = speaker_embeddings @classmethod def UpperCamelCase ( cls , UpperCAmelCase , UpperCAmelCase="speaker_embeddings_path.json" , **UpperCAmelCase ): """simple docstring""" if speaker_embeddings_dict_path is not None: _UpperCAmelCase = get_file_from_repo( UpperCAmelCase , UpperCAmelCase , subfolder=kwargs.pop('subfolder' , UpperCAmelCase ) , cache_dir=kwargs.pop('cache_dir' , UpperCAmelCase ) , force_download=kwargs.pop('force_download' , UpperCAmelCase ) , proxies=kwargs.pop('proxies' , UpperCAmelCase ) , resume_download=kwargs.pop('resume_download' , UpperCAmelCase ) , local_files_only=kwargs.pop('local_files_only' , UpperCAmelCase ) , use_auth_token=kwargs.pop('use_auth_token' , UpperCAmelCase ) , revision=kwargs.pop('revision' , UpperCAmelCase ) , ) if speaker_embeddings_path is None: logger.warning( F"""`{os.path.join(UpperCAmelCase , UpperCAmelCase )}` does not exists , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.""" ) _UpperCAmelCase = None else: with open(UpperCAmelCase ) as speaker_embeddings_json: _UpperCAmelCase = json.load(UpperCAmelCase ) else: _UpperCAmelCase = None _UpperCAmelCase = AutoTokenizer.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) return cls(tokenizer=UpperCAmelCase , speaker_embeddings=UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase="speaker_embeddings_path.json" , UpperCAmelCase="speaker_embeddings" , UpperCAmelCase = False , **UpperCAmelCase , ): """simple docstring""" if self.speaker_embeddings is not None: os.makedirs(os.path.join(UpperCAmelCase , UpperCAmelCase , 'v2' ) , exist_ok=UpperCAmelCase ) _UpperCAmelCase = {} _UpperCAmelCase = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": _UpperCAmelCase = self._load_voice_preset(UpperCAmelCase ) _UpperCAmelCase = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict['repo_or_path'] , UpperCAmelCase , F"""{prompt_key}_{key}""" ) , voice_preset[key] , allow_pickle=UpperCAmelCase , ) _UpperCAmelCase = os.path.join(UpperCAmelCase , F"""{prompt_key}_{key}.npy""" ) _UpperCAmelCase = tmp_dict with open(os.path.join(UpperCAmelCase , UpperCAmelCase ) , 'w' ) as fp: json.dump(UpperCAmelCase , UpperCAmelCase ) super().save_pretrained(UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase = None , **UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = self.speaker_embeddings[voice_preset] _UpperCAmelCase = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( F"""Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].""" ) _UpperCAmelCase = get_file_from_repo( self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] , subfolder=kwargs.pop('subfolder' , UpperCAmelCase ) , cache_dir=kwargs.pop('cache_dir' , UpperCAmelCase ) , force_download=kwargs.pop('force_download' , UpperCAmelCase ) , proxies=kwargs.pop('proxies' , UpperCAmelCase ) , resume_download=kwargs.pop('resume_download' , UpperCAmelCase ) , local_files_only=kwargs.pop('local_files_only' , UpperCAmelCase ) , use_auth_token=kwargs.pop('use_auth_token' , UpperCAmelCase ) , revision=kwargs.pop('revision' , UpperCAmelCase ) , ) if path is None: raise ValueError( F"""`{os.path.join(self.speaker_embeddings.get("repo_or_path" , "/" ) , voice_preset_paths[key] )}` does not exists , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset} embeddings.""" ) _UpperCAmelCase = np.load(UpperCAmelCase ) return voice_preset_dict def UpperCamelCase ( self , UpperCAmelCase = None ): """simple docstring""" for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(F"""Voice preset unrecognized, missing {key} as a key.""" ) if not isinstance(voice_preset[key] , np.ndarray ): raise ValueError(F"""{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.""" ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(F"""{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.""" ) def __call__( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase="pt" , UpperCAmelCase=256 , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase=False , **UpperCAmelCase , ): """simple docstring""" if voice_preset is not None and not isinstance(UpperCAmelCase , UpperCAmelCase ): if ( isinstance(UpperCAmelCase , UpperCAmelCase ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): _UpperCAmelCase = self._load_voice_preset(UpperCAmelCase ) else: if isinstance(UpperCAmelCase , UpperCAmelCase ) and not voice_preset.endswith('.npz' ): _UpperCAmelCase = voice_preset + '.npz' _UpperCAmelCase = np.load(UpperCAmelCase ) if voice_preset is not None: self._validate_voice_preset_dict(UpperCAmelCase , **UpperCAmelCase ) _UpperCAmelCase = BatchFeature(data=UpperCAmelCase , tensor_type=UpperCAmelCase ) _UpperCAmelCase = self.tokenizer( UpperCAmelCase , return_tensors=UpperCAmelCase , padding='max_length' , max_length=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , add_special_tokens=UpperCAmelCase , **UpperCAmelCase , ) if voice_preset is not None: _UpperCAmelCase = voice_preset return encoded_text
39
1
"""simple docstring""" from __future__ import annotations UpperCamelCase : int = [] def A ( snake_case :list[list[int]] , snake_case :int , snake_case :int ) -> bool: for i in range(len(snake_case ) ): if board[row][i] == 1: return False for i in range(len(snake_case ) ): if board[i][column] == 1: return False for i, j in zip(range(snake_case , -1 , -1 ) , range(snake_case , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(snake_case , -1 , -1 ) , range(snake_case , len(snake_case ) ) ): if board[i][j] == 1: return False return True def A ( snake_case :list[list[int]] , snake_case :int ) -> bool: if row >= len(snake_case ): solution.append(snake_case ) printboard(snake_case ) print() return True for i in range(len(snake_case ) ): if is_safe(snake_case , snake_case , snake_case ): __UpperCamelCase = 1 solve(snake_case , row + 1 ) __UpperCamelCase = 0 return False def A ( snake_case :list[list[int]] ) -> None: for i in range(len(snake_case ) ): for j in range(len(snake_case ) ): if board[i][j] == 1: print('Q' , end=' ' ) else: print('.' , end=' ' ) print() # n=int(input("The no. of queens")) UpperCamelCase : Optional[Any] = 8 UpperCamelCase : List[Any] = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print("The total no. of solutions are :", len(solution))
371
"""simple docstring""" import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ): '''simple docstring''' super().__init__( __UpperCAmelCase , split=__UpperCAmelCase , features=__UpperCAmelCase , cache_dir=__UpperCAmelCase , keep_in_memory=__UpperCAmelCase , streaming=__UpperCAmelCase , num_proc=__UpperCAmelCase , **__UpperCAmelCase , ) __UpperCamelCase = field __UpperCamelCase = path_or_paths if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else {self.split: path_or_paths} __UpperCamelCase = Json( cache_dir=__UpperCAmelCase , data_files=__UpperCAmelCase , features=__UpperCAmelCase , field=__UpperCAmelCase , **__UpperCAmelCase , ) def UpperCAmelCase ( self ): '''simple docstring''' if self.streaming: __UpperCamelCase = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None self.builder.download_and_prepare( download_config=__UpperCAmelCase , download_mode=__UpperCAmelCase , verification_mode=__UpperCAmelCase , base_path=__UpperCAmelCase , num_proc=self.num_proc , ) __UpperCamelCase = self.builder.as_dataset( split=self.split , verification_mode=__UpperCAmelCase , in_memory=self.keep_in_memory ) return dataset class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ): '''simple docstring''' if num_proc is not None and num_proc <= 0: raise ValueError(F'num_proc {num_proc} must be an integer > 0.' ) __UpperCamelCase = dataset __UpperCamelCase = path_or_buf __UpperCamelCase = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE __UpperCamelCase = num_proc __UpperCamelCase = 'utf-8' __UpperCamelCase = to_json_kwargs def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.to_json_kwargs.pop('path_or_buf' , __UpperCAmelCase ) __UpperCamelCase = self.to_json_kwargs.pop('orient' , 'records' ) __UpperCamelCase = self.to_json_kwargs.pop('lines' , True if orient == 'records' else False ) __UpperCamelCase = self.to_json_kwargs.pop('index' , False if orient in ['split', 'table'] else True ) __UpperCamelCase = self.to_json_kwargs.pop('compression' , __UpperCAmelCase ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(F'`datasets` currently does not support {compression} compression' ) if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf , 'wb' , compression=__UpperCAmelCase ) as buffer: __UpperCamelCase = self._write(file_obj=__UpperCAmelCase , orient=__UpperCAmelCase , lines=__UpperCAmelCase , index=__UpperCAmelCase , **self.to_json_kwargs ) else: if compression: raise NotImplementedError( F'The compression parameter is not supported when writing to a buffer, but compression={compression}' ' was passed. Please provide a local path instead.' ) __UpperCamelCase = self._write( file_obj=self.path_or_buf , orient=__UpperCAmelCase , lines=__UpperCAmelCase , index=__UpperCAmelCase , **self.to_json_kwargs ) return written def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = args __UpperCamelCase = query_table( table=self.dataset.data , key=slice(__UpperCAmelCase , offset + self.batch_size ) , indices=self.dataset._indices , ) __UpperCamelCase = batch.to_pandas().to_json( path_or_buf=__UpperCAmelCase , orient=__UpperCAmelCase , lines=__UpperCAmelCase , index=__UpperCAmelCase , **__UpperCAmelCase ) if not json_str.endswith('\n' ): json_str += "\n" return json_str.encode(self.encoding ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating json from Arrow format' , ): __UpperCamelCase = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(__UpperCAmelCase ) else: __UpperCamelCase , __UpperCamelCase = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , __UpperCAmelCase , __UpperCAmelCase )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating json from Arrow format' , ): written += file_obj.write(__UpperCAmelCase ) return written
263
0
def SCREAMING_SNAKE_CASE_ ( __magic_name__ : List[Any] ) -> Union[str, Any]: """simple docstring""" UpperCamelCase :Union[str, Any] = [0] * len(__magic_name__ ) UpperCamelCase :int = [] UpperCamelCase :str = [] UpperCamelCase :str = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__magic_name__ ) ): if indegree[i] == 0: queue.append(__magic_name__ ) while queue: UpperCamelCase :str = queue.pop(0 ) cnt += 1 topo.append(__magic_name__ ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(__magic_name__ ) if cnt != len(__magic_name__ ): print("""Cycle exists""" ) else: print(__magic_name__ ) # Adjacency List of Graph UpperCAmelCase_ : str = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
38
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler UpperCAmelCase_ : Union[str, Any] = 16 UpperCAmelCase_ : int = 32 def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Accelerator , __magic_name__ : int = 16 , __magic_name__ : str = "bert-base-cased" ) -> Dict: """simple docstring""" UpperCamelCase :List[str] = AutoTokenizer.from_pretrained(__magic_name__ ) UpperCamelCase :Union[str, Any] = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(__magic_name__ : Tuple ): # max_length=None => use the model max length (it's actually the default) UpperCamelCase :List[Any] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__magic_name__ , max_length=__magic_name__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset UpperCamelCase :List[Any] = datasets.map( __magic_name__ , batched=__magic_name__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=__magic_name__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCamelCase :Optional[Any] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(__magic_name__ : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__magic_name__ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(__magic_name__ , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. UpperCamelCase :List[str] = DataLoader( tokenized_datasets["""train"""] , shuffle=__magic_name__ , collate_fn=__magic_name__ , batch_size=__magic_name__ ) UpperCamelCase :List[Any] = DataLoader( tokenized_datasets["""validation"""] , shuffle=__magic_name__ , collate_fn=__magic_name__ , batch_size=__magic_name__ ) return train_dataloader, eval_dataloader def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Dict , __magic_name__ : Optional[Any] ) -> List[Any]: """simple docstring""" UpperCamelCase :Optional[Any] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCamelCase :Union[str, Any] = config["""lr"""] UpperCamelCase :List[str] = int(config["""num_epochs"""] ) UpperCamelCase :str = int(config["""seed"""] ) UpperCamelCase :Dict = int(config["""batch_size"""] ) UpperCamelCase :Union[str, Any] = args.model_name_or_path set_seed(__magic_name__ ) UpperCamelCase , UpperCamelCase :Dict = get_dataloaders(__magic_name__ , __magic_name__ , __magic_name__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCamelCase :List[str] = AutoModelForSequenceClassification.from_pretrained(__magic_name__ , return_dict=__magic_name__ ) # Instantiate optimizer UpperCamelCase :Union[str, Any] = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) UpperCamelCase :Optional[Any] = optimizer_cls(params=model.parameters() , lr=__magic_name__ ) if accelerator.state.deepspeed_plugin is not None: UpperCamelCase :Any = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: UpperCamelCase :Any = 1 UpperCamelCase :Dict = (len(__magic_name__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): UpperCamelCase :List[Any] = get_linear_schedule_with_warmup( optimizer=__magic_name__ , num_warmup_steps=0 , num_training_steps=__magic_name__ , ) else: UpperCamelCase :Any = DummyScheduler(__magic_name__ , total_num_steps=__magic_name__ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase :str = accelerator.prepare( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) # We need to keep track of how many total steps we have iterated over UpperCamelCase :int = 0 # We also need to keep track of the stating epoch so files are named properly UpperCamelCase :Tuple = 0 # Now we train the model UpperCamelCase :Any = evaluate.load("""glue""" , """mrpc""" ) UpperCamelCase :Tuple = 0 UpperCamelCase :List[Any] = {} for epoch in range(__magic_name__ , __magic_name__ ): model.train() for step, batch in enumerate(__magic_name__ ): UpperCamelCase :List[str] = model(**__magic_name__ ) UpperCamelCase :Dict = outputs.loss UpperCamelCase :Optional[int] = loss / gradient_accumulation_steps accelerator.backward(__magic_name__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() UpperCamelCase :str = 0 for step, batch in enumerate(__magic_name__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCamelCase :Optional[int] = model(**__magic_name__ ) UpperCamelCase :List[Any] = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times UpperCamelCase , UpperCamelCase :Optional[int] = accelerator.gather( (predictions, batch["""labels"""]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(__magic_name__ ) - 1: UpperCamelCase :Dict = predictions[: len(eval_dataloader.dataset ) - samples_seen] UpperCamelCase :List[str] = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=__magic_name__ , references=__magic_name__ , ) UpperCamelCase :List[str] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , __magic_name__ ) UpperCamelCase :Dict = eval_metric["""accuracy"""] if best_performance < eval_metric["accuracy"]: UpperCamelCase :str = eval_metric["""accuracy"""] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), f"""Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}""" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , """all_results.json""" ) , """w""" ) as f: json.dump(__magic_name__ , __magic_name__ ) def SCREAMING_SNAKE_CASE_ ( ) -> Tuple: """simple docstring""" UpperCamelCase :List[str] = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" , type=__magic_name__ , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=__magic_name__ , ) parser.add_argument( """--output_dir""" , type=__magic_name__ , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--performance_lower_bound""" , type=__magic_name__ , default=__magic_name__ , help="""Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.""" , ) parser.add_argument( """--num_epochs""" , type=__magic_name__ , default=3 , help="""Number of train epochs.""" , ) UpperCamelCase :str = parser.parse_args() UpperCamelCase :Any = {"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(__magic_name__ , __magic_name__ ) if __name__ == "__main__": main()
38
1
import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class lowerCAmelCase : '''simple docstring''' def __init__( self : Optional[Any] , __a : Optional[int] , __a : Optional[Any]=13 , __a : Any=7 , __a : Optional[Any]=True , __a : Dict=True , __a : List[Any]=True , __a : Any=True , __a : int=99 , __a : Union[str, Any]=32 , __a : Union[str, Any]=5 , __a : int=4 , __a : str=4 , __a : Any="gelu" , __a : Union[str, Any]=0.0 , __a : Tuple=0.1 , __a : Optional[Any]=True , __a : Union[str, Any]=512 , __a : Tuple=16 , __a : List[Any]=2 , __a : List[Any]=0.02 , __a : Union[str, Any]=3 , __a : List[str]=4 , __a : Union[str, Any]=None , ) -> Optional[int]: """simple docstring""" __lowercase : str = parent __lowercase : List[Any] = batch_size __lowercase : List[Any] = seq_length __lowercase : Optional[Any] = is_training __lowercase : Optional[Any] = use_input_mask __lowercase : Dict = use_token_type_ids __lowercase : List[str] = use_labels __lowercase : Dict = vocab_size __lowercase : Union[str, Any] = hidden_size __lowercase : Any = num_hidden_layers __lowercase : Union[str, Any] = num_attention_heads __lowercase : Optional[Any] = intermediate_multiple_size __lowercase : List[str] = hidden_act __lowercase : Dict = hidden_dropout __lowercase : Union[str, Any] = attention_dropout __lowercase : Any = weight_tying __lowercase : Optional[Any] = max_position_embeddings __lowercase : Optional[Any] = type_vocab_size __lowercase : Tuple = type_sequence_label_size __lowercase : Optional[Any] = initializer_range __lowercase : str = num_labels __lowercase : Optional[Any] = num_choices __lowercase : Tuple = scope def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" __lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase : int = None if self.use_input_mask: __lowercase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase : Any = None if self.use_labels: __lowercase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase : Optional[Any] = self.get_config() return config, input_ids, input_mask, token_labels def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , ) def lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" __lowercase : int = self.prepare_config_and_inputs() __lowercase : List[str] = True return config, input_ids, input_mask, token_labels def lowerCAmelCase ( self : List[Any] , __a : Tuple , __a : Union[str, Any] , __a : List[str] ) -> Dict: """simple docstring""" __lowercase : List[str] = GPTNeoXJapaneseModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() __lowercase : Any = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ ) __lowercase : str = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self : Tuple , __a : Optional[Any] , __a : Union[str, Any] , __a : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase : Any = True __lowercase : Optional[Any] = GPTNeoXJapaneseModel(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() __lowercase : List[str] = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self : Dict , __a : Union[str, Any] , __a : Dict , __a : Optional[Any] , __a : List[str] ) -> Optional[int]: """simple docstring""" __lowercase : int = GPTNeoXJapaneseForCausalLM(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() __lowercase : Optional[int] = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Union[str, Any] , __a : Union[str, Any] , __a : Union[str, Any] , __a : Tuple ) -> List[Any]: """simple docstring""" __lowercase : Union[str, Any] = True __lowercase : List[str] = GPTNeoXJapaneseForCausalLM(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() # first forward pass __lowercase : List[Any] = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , use_cache=UpperCamelCase__ ) __lowercase : Union[str, Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __lowercase : List[str] = ids_tensor((self.batch_size, 3) , config.vocab_size ) __lowercase : Optional[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __lowercase : Any = torch.cat([input_ids, next_tokens] , dim=-1 ) __lowercase : List[Any] = torch.cat([input_mask, next_mask] , dim=-1 ) __lowercase : Dict = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , output_hidden_states=UpperCamelCase__ ) __lowercase : Dict = output_from_no_past['''hidden_states'''][0] __lowercase : Dict = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , past_key_values=UpperCamelCase__ , output_hidden_states=UpperCamelCase__ , )['''hidden_states'''][0] # select random slice __lowercase : int = ids_tensor((1,) , output_from_past.shape[-1] ).item() __lowercase : List[str] = output_from_no_past[:, -3:, random_slice_idx].detach() __lowercase : Tuple = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1E-3 ) ) def lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase : List[Any] = self.prepare_config_and_inputs() __lowercase : Optional[Any] = config_and_inputs __lowercase : Optional[int] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' _A : List[Any] = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () _A : Dict = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () _A : Tuple = ( {'''feature-extraction''': GPTNeoXJapaneseModel, '''text-generation''': GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) _A : Optional[int] = False _A : str = False _A : Dict = False _A : Optional[Any] = False def lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" __lowercase : Union[str, Any] = GPTNeoXJapaneseModelTester(self ) __lowercase : List[Any] = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=37 ) def lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def lowerCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" __lowercase : List[str] = self.model_tester.prepare_config_and_inputs_for_decoder() __lowercase : Tuple = None self.model_tester.create_and_check_model_as_decoder(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" __lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*UpperCamelCase__ ) @slow def lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" __lowercase : List[Any] = '''abeja/gpt-neox-japanese-2.7b''' __lowercase : str = ['''データサイエンティストとは、''', '''100年後に必要とされる会社は、''', '''フルリモートの環境で働くために必要なことは、''', '''国境の長いトンネルを抜けると''', '''美味しい日本食といえば、'''] __lowercase : List[str] = [ '''データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。''', '''100年後に必要とされる会社は、「人」が中心の会社です。''', '''フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。''', '''国境の長いトンネルを抜けると、そこは雪国だった。''', '''美味しい日本食といえば、やっぱりお寿司ですよね。''', ] __lowercase : Any = GPTNeoXJapaneseTokenizer.from_pretrained(UpperCamelCase__ ) __lowercase : Union[str, Any] = GPTNeoXJapaneseForCausalLM.from_pretrained(UpperCamelCase__ ) __lowercase : Union[str, Any] = [] for prompt in prompts: __lowercase : int = tokenizer(UpperCamelCase__ , return_tensors="""pt""" ).input_ids __lowercase : List[str] = model.generate(UpperCamelCase__ , max_length=50 ) __lowercase : int = tokenizer.batch_decode(UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ ) predicted_outputs += generated_string self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ )
367
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class lowerCAmelCase : '''simple docstring''' def __init__( self : Any , __a : Tuple , __a : Optional[int]=13 , __a : int=7 , __a : List[str]=False , __a : Optional[int]=True , __a : Optional[int]=False , __a : Dict=True , __a : Optional[int]=33 , __a : Dict=32 , __a : Optional[int]=5 , __a : Union[str, Any]=4 , __a : List[str]=37 , __a : Tuple="gelu" , __a : List[str]=0.1 , __a : Dict=0.1 , __a : List[Any]=512 , __a : Any=16 , __a : Optional[Any]=2 , __a : List[Any]=0.02 , __a : int=3 , __a : Union[str, Any]=4 , __a : Optional[int]=None , ) -> Optional[int]: """simple docstring""" __lowercase : Tuple = parent __lowercase : int = batch_size __lowercase : Any = seq_length __lowercase : str = is_training __lowercase : str = use_input_mask __lowercase : Optional[int] = use_token_type_ids __lowercase : List[Any] = use_labels __lowercase : Optional[Any] = vocab_size __lowercase : int = hidden_size __lowercase : List[Any] = num_hidden_layers __lowercase : Dict = num_attention_heads __lowercase : Any = intermediate_size __lowercase : Dict = hidden_act __lowercase : Union[str, Any] = hidden_dropout_prob __lowercase : List[Any] = attention_probs_dropout_prob __lowercase : List[str] = max_position_embeddings __lowercase : Union[str, Any] = type_vocab_size __lowercase : Dict = type_sequence_label_size __lowercase : Union[str, Any] = initializer_range __lowercase : List[Any] = num_labels __lowercase : str = num_choices __lowercase : Tuple = scope def lowerCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" __lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase : int = None if self.use_input_mask: __lowercase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase : str = None __lowercase : Optional[Any] = None __lowercase : Tuple = None if self.use_labels: __lowercase : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) __lowercase : int = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def lowerCAmelCase ( self : List[Any] , __a : int , __a : int , __a : Dict , __a : Union[str, Any] , __a : List[str] , __a : str ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[int] = EsmModel(config=__a ) model.to(__a ) model.eval() __lowercase : str = model(__a , attention_mask=__a ) __lowercase : List[Any] = model(__a ) __lowercase : Optional[int] = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCAmelCase ( self : Union[str, Any] , __a : Dict , __a : List[Any] , __a : Tuple , __a : Union[str, Any] , __a : str , __a : Union[str, Any] ) -> List[str]: """simple docstring""" __lowercase : List[str] = EsmForMaskedLM(config=__a ) model.to(__a ) model.eval() __lowercase : int = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Optional[int] , __a : Union[str, Any] , __a : List[Any] , __a : Tuple , __a : Tuple , __a : Optional[int] , __a : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase : Tuple = self.num_labels __lowercase : Any = EsmForTokenClassification(config=__a ) model.to(__a ) model.eval() __lowercase : Optional[Any] = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" __lowercase : Any = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) : List[str] = config_and_inputs __lowercase : Any = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : Optional[Any] = False _A : Any = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) _A : Optional[Any] = () _A : List[Any] = ( { '''feature-extraction''': EsmModel, '''fill-mask''': EsmForMaskedLM, '''text-classification''': EsmForSequenceClassification, '''token-classification''': EsmForTokenClassification, '''zero-shot''': EsmForSequenceClassification, } if is_torch_available() else {} ) _A : Optional[Any] = True def lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" __lowercase : Optional[int] = EsmModelTester(self ) __lowercase : Tuple = ConfigTester(self , config_class=__a , hidden_size=37 ) def lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowercase : Union[str, Any] = type self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : int ) -> Any: """simple docstring""" __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" __lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a ) @slow def lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase : List[str] = EsmModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()[0] __lowercase : List[str] = EsmEmbeddings(config=__a ) __lowercase : Union[str, Any] = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) __lowercase : int = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) __lowercase : str = create_position_ids_from_input_ids(__a , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(__a , __a ) ) ) def lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()[0] __lowercase : Optional[Any] = EsmEmbeddings(config=__a ) __lowercase : Optional[int] = torch.empty(2 , 4 , 30 ) __lowercase : Tuple = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] __lowercase : List[str] = torch.as_tensor([expected_single_positions, expected_single_positions] ) __lowercase : Any = embeddings.create_position_ids_from_inputs_embeds(__a ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(__a , __a ) ) ) @unittest.skip("""Esm does not support embedding resizing""" ) def lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" pass @unittest.skip("""Esm does not support embedding resizing""" ) def lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" pass @require_torch class lowerCAmelCase ( __a ): '''simple docstring''' @slow def lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" with torch.no_grad(): __lowercase : Tuple = EsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() __lowercase : Tuple = torch.tensor([[0, 1, 2, 3, 4, 5]] ) __lowercase : List[str] = model(__a )[0] __lowercase : Union[str, Any] = 33 __lowercase : Union[str, Any] = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , __a ) __lowercase : List[Any] = torch.tensor( [[[8.9215, -10.5898, -6.4671], [-6.3967, -13.9114, -1.1212], [-7.7812, -13.9516, -3.7406]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __a , atol=1E-4 ) ) @slow def lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" with torch.no_grad(): __lowercase : int = EsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() __lowercase : int = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) __lowercase : Any = model(__a )[0] # compare the actual values for a slice. __lowercase : int = torch.tensor( [[[0.1444, 0.5413, 0.3248], [0.3034, 0.0053, 0.3108], [0.3228, -0.2499, 0.3415]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __a , atol=1E-4 ) )
306
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _A = { """configuration_tapas""": ["""TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TapasConfig"""], """tokenization_tapas""": ["""TapasTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ """TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST""", """TapasForMaskedLM""", """TapasForQuestionAnswering""", """TapasForSequenceClassification""", """TapasModel""", """TapasPreTrainedModel""", """load_tf_weights_in_tapas""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ """TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFTapasForMaskedLM""", """TFTapasForQuestionAnswering""", """TFTapasForSequenceClassification""", """TFTapasModel""", """TFTapasPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
171
"""simple docstring""" import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class lowerCamelCase : '''simple docstring''' def __init__(self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=32 , _lowerCamelCase=2 , _lowerCamelCase=3 , _lowerCamelCase=16 , _lowerCamelCase=[1, 2, 1] , _lowerCamelCase=[2, 2, 4] , _lowerCamelCase=2 , _lowerCamelCase=2.0 , _lowerCamelCase=True , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=0.1 , _lowerCamelCase="gelu" , _lowerCamelCase=False , _lowerCamelCase=True , _lowerCamelCase=0.02 , _lowerCamelCase=1e-5 , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=10 , _lowerCamelCase=8 , _lowerCamelCase=["stage1", "stage2", "stage3"] , _lowerCamelCase=[1, 2, 3] , ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = parent UpperCAmelCase__ : Union[str, Any] = batch_size UpperCAmelCase__ : Optional[int] = image_size UpperCAmelCase__ : Tuple = patch_size UpperCAmelCase__ : List[Any] = num_channels UpperCAmelCase__ : Dict = embed_dim UpperCAmelCase__ : List[Any] = depths UpperCAmelCase__ : Dict = num_heads UpperCAmelCase__ : Any = window_size UpperCAmelCase__ : str = mlp_ratio UpperCAmelCase__ : str = qkv_bias UpperCAmelCase__ : int = hidden_dropout_prob UpperCAmelCase__ : Tuple = attention_probs_dropout_prob UpperCAmelCase__ : Dict = drop_path_rate UpperCAmelCase__ : Union[str, Any] = hidden_act UpperCAmelCase__ : Union[str, Any] = use_absolute_embeddings UpperCAmelCase__ : Optional[int] = patch_norm UpperCAmelCase__ : Any = layer_norm_eps UpperCAmelCase__ : Dict = initializer_range UpperCAmelCase__ : Tuple = is_training UpperCAmelCase__ : Union[str, Any] = scope UpperCAmelCase__ : int = use_labels UpperCAmelCase__ : Optional[int] = type_sequence_label_size UpperCAmelCase__ : Tuple = encoder_stride UpperCAmelCase__ : Optional[int] = out_features UpperCAmelCase__ : str = out_indices def _a (self ): """simple docstring""" UpperCAmelCase__ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ : Dict = None if self.use_labels: UpperCAmelCase__ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ : Tuple = self.get_config() return config, pixel_values, labels def _a (self ): """simple docstring""" return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = MaskFormerSwinModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCAmelCase__ : Dict = model(_lowerCamelCase ) UpperCAmelCase__ : Any = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) UpperCAmelCase__ : List[str] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = MaskFormerSwinBackbone(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCAmelCase__ : Tuple = model(_lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(_lowerCamelCase ): UpperCAmelCase__ : Union[str, Any] = ["""stem"""] UpperCAmelCase__ : List[Any] = MaskFormerSwinBackbone(config=_lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : str = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = config_and_inputs UpperCAmelCase__ : Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE = {'feature-extraction': MaskFormerSwinModel} if is_torch_available() else {} SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False def _a (self ): """simple docstring""" UpperCAmelCase__ : List[str] = MaskFormerSwinModelTester(self ) UpperCAmelCase__ : Union[str, Any] = ConfigTester(self , config_class=_lowerCamelCase , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( """`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn't work well with""" """ `nn.DataParallel`""" ) ) def _a (self ): """simple docstring""" pass def _a (self ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _a (self ): """simple docstring""" return def _a (self ): """simple docstring""" UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_lowerCamelCase ) @unittest.skip("""Swin does not use inputs_embeds""" ) def _a (self ): """simple docstring""" pass @unittest.skip("""Swin does not support feedforward chunking""" ) def _a (self ): """simple docstring""" pass def _a (self ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Optional[int] = model_class(_lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase__ : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCamelCase , nn.Linear ) ) def _a (self ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Optional[int] = model_class(_lowerCamelCase ) UpperCAmelCase__ : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ : Any = [*signature.parameters.keys()] UpperCAmelCase__ : List[str] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) @unittest.skip(reason="""MaskFormerSwin is only used as backbone and doesn't support output_attentions""" ) def _a (self ): """simple docstring""" pass @unittest.skip(reason="""MaskFormerSwin is only used as an internal backbone""" ) def _a (self ): """simple docstring""" pass def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : Dict = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): UpperCAmelCase__ : List[Any] = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) UpperCAmelCase__ : str = outputs.hidden_states UpperCAmelCase__ : str = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_lowerCamelCase ) , _lowerCamelCase ) # Swin has a different seq_length UpperCAmelCase__ : Optional[Any] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCAmelCase__ : Tuple = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def _a (self ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ : int = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: UpperCAmelCase__ : int = True self.check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase__ : Optional[Any] = True self.check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ : Tuple = 3 UpperCAmelCase__ : Tuple = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) UpperCAmelCase__ : Optional[int] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCAmelCase__ : Any = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) UpperCAmelCase__ : List[str] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: UpperCAmelCase__ : Union[str, Any] = True self.check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase__ : List[Any] = True self.check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , (padded_height, padded_width) ) @unittest.skip(reason="""MaskFormerSwin doesn't have pretrained checkpoints""" ) def _a (self ): """simple docstring""" pass @unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" ) def _a (self ): """simple docstring""" pass @unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" ) def _a (self ): """simple docstring""" pass def _a (self ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(_lowerCamelCase ): UpperCAmelCase__ : Optional[int] = 0 return t def check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase={} ): with torch.no_grad(): UpperCAmelCase__ : List[Any] = model(**_lowerCamelCase , return_dict=_lowerCamelCase , **_lowerCamelCase ) UpperCAmelCase__ : str = model(**_lowerCamelCase , return_dict=_lowerCamelCase , **_lowerCamelCase ).to_tuple() def recursive_check(_lowerCamelCase , _lowerCamelCase ): if isinstance(_lowerCamelCase , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(_lowerCamelCase , _lowerCamelCase ): recursive_check(_lowerCamelCase , _lowerCamelCase ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(_lowerCamelCase , _lowerCamelCase ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(_lowerCamelCase ) , set_nan_tensor_to_zero(_lowerCamelCase ) , atol=1e-5 ) , msg=( """Tuple and dict output are not equal. Difference:""" F""" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:""" F""" {torch.isnan(_lowerCamelCase ).any()} and `inf`: {torch.isinf(_lowerCamelCase )}. Dict has""" F""" `nan`: {torch.isnan(_lowerCamelCase ).any()} and `inf`: {torch.isinf(_lowerCamelCase )}.""" ) , ) recursive_check(_lowerCamelCase , _lowerCamelCase ) for model_class in self.all_model_classes: UpperCAmelCase__ : Optional[int] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCAmelCase__ : Any = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) UpperCAmelCase__ : Dict = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) UpperCAmelCase__ : Tuple = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) UpperCAmelCase__ : Any = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) UpperCAmelCase__ : Optional[int] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , {"""output_hidden_states""": True} ) UpperCAmelCase__ : str = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) UpperCAmelCase__ : List[str] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , {"""output_hidden_states""": True} ) @require_torch class lowerCamelCase ( unittest.TestCase , lowerCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = (MaskFormerSwinBackbone,) if is_torch_available() else () SCREAMING_SNAKE_CASE = MaskFormerSwinConfig def _a (self ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = MaskFormerSwinModelTester(self ) def _a (self ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ : Optional[int] = inputs_dict["""pixel_values"""].shape[0] for backbone_class in self.all_model_classes: UpperCAmelCase__ : Tuple = backbone_class(_lowerCamelCase ) backbone.to(_lowerCamelCase ) backbone.eval() UpperCAmelCase__ : int = backbone(**_lowerCamelCase ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , _lowerCamelCase ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True UpperCAmelCase__ : List[str] = backbone(**_lowerCamelCase , output_hidden_states=_lowerCamelCase ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : str = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: UpperCAmelCase__ : List[str] = backbone(**_lowerCamelCase , output_attentions=_lowerCamelCase ) self.assertIsNotNone(outputs.attentions )
171
1
"""simple docstring""" from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
352
"""simple docstring""" import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def _SCREAMING_SNAKE_CASE ( _lowercase : List[Any] ) ->Union[str, Any]: '''simple docstring''' if isinstance(_lowercase , collections.abc.Iterable ): return x return (x, x) @require_flax class __UpperCamelCase : def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: pass def __a ( self ) -> List[Any]: pass def __a ( self ) -> str: pass def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Any: a : Dict = np.abs((a - b) ).max() self.assertLessEqual(lowerCAmelCase__ , lowerCAmelCase__ , f"""Difference between torch and flax is {diff} (>= {tol}).""" ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , **lowerCAmelCase__ ) -> Dict: a : Dict = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCAmelCase__ , lowerCAmelCase__ ) a : List[str] = FlaxVisionTextDualEncoderModel(lowerCAmelCase__ ) a : int = model(input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], config.projection_dim) ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , **lowerCAmelCase__ ) -> Optional[Any]: a, a : Optional[int] = self.get_vision_text_model(lowerCAmelCase__ , lowerCAmelCase__ ) a : Dict = {"vision_model": vision_model, "text_model": text_model} a : Any = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCAmelCase__ ) a : List[str] = model(input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], model.config.projection_dim) ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , **lowerCAmelCase__ ) -> Union[str, Any]: a, a : Dict = self.get_vision_text_model(lowerCAmelCase__ , lowerCAmelCase__ ) a : Tuple = {"vision_model": vision_model, "text_model": text_model} a : Tuple = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCAmelCase__ ) a : List[str] = model(input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) a : Any = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCAmelCase__ ) a : str = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase__ ) a : Dict = model(input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) a : List[Any] = after_output[0] a : Optional[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCAmelCase__ , 1E-3 ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , **lowerCAmelCase__ ) -> List[Any]: a, a : Union[str, Any] = self.get_vision_text_model(lowerCAmelCase__ , lowerCAmelCase__ ) a : List[Any] = {"vision_model": vision_model, "text_model": text_model} a : int = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCAmelCase__ ) a : Tuple = model( input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , output_attentions=lowerCAmelCase__ ) a : int = output.vision_model_output.attentions self.assertEqual(len(lowerCAmelCase__ ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) a : Optional[int] = to_atuple(vision_model.config.image_size ) a : Tuple = to_atuple(vision_model.config.patch_size ) a : Any = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) a : Dict = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) a : str = output.text_model_output.attentions self.assertEqual(len(lowerCAmelCase__ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: pt_model.to(lowerCAmelCase__ ) pt_model.eval() # prepare inputs a : List[Any] = inputs_dict a : Any = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): a : int = pt_model(**lowerCAmelCase__ ).to_tuple() a : Union[str, Any] = fx_model(**lowerCAmelCase__ ).to_tuple() self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) , "Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(lowerCAmelCase__ , pt_output.numpy() , 4E-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(lowerCAmelCase__ ) a : Dict = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase__ , from_pt=lowerCAmelCase__ ) a : Optional[int] = fx_model_loaded(**lowerCAmelCase__ ).to_tuple() self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) , "Output lengths differ between Flax and PyTorch" ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(lowerCAmelCase__ , pt_output.numpy() , 4E-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(lowerCAmelCase__ ) a : Optional[int] = VisionTextDualEncoderModel.from_pretrained(lowerCAmelCase__ , from_flax=lowerCAmelCase__ ) pt_model_loaded.to(lowerCAmelCase__ ) pt_model_loaded.eval() with torch.no_grad(): a : int = pt_model_loaded(**lowerCAmelCase__ ).to_tuple() self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) , "Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(lowerCAmelCase__ , pt_output_loaded.numpy() , 4E-2 ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[Any]: a : List[Any] = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCAmelCase__ , lowerCAmelCase__ ) a : Dict = VisionTextDualEncoderModel(lowerCAmelCase__ ) a : Optional[int] = FlaxVisionTextDualEncoderModel(lowerCAmelCase__ ) a : Dict = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowerCAmelCase__ ) a : List[str] = fx_state self.check_pt_flax_equivalence(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[int]: a : Optional[int] = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCAmelCase__ , lowerCAmelCase__ ) a : Optional[int] = VisionTextDualEncoderModel(lowerCAmelCase__ ) a : List[Any] = FlaxVisionTextDualEncoderModel(lowerCAmelCase__ ) a : int = load_flax_weights_in_pytorch_model(lowerCAmelCase__ , fx_model.params ) self.check_pt_flax_equivalence(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def __a ( self ) -> Dict: a : Any = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**lowerCAmelCase__ ) def __a ( self ) -> Dict: a : List[str] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**lowerCAmelCase__ ) def __a ( self ) -> List[str]: a : int = self.prepare_config_and_inputs() self.check_save_load(**lowerCAmelCase__ ) def __a ( self ) -> List[str]: a : Tuple = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**lowerCAmelCase__ ) @is_pt_flax_cross_test def __a ( self ) -> Any: a : List[Any] = self.prepare_config_and_inputs() a : Tuple = config_inputs_dict.pop("vision_config" ) a : int = config_inputs_dict.pop("text_config" ) a : List[str] = config_inputs_dict self.check_equivalence_pt_to_flax(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) self.check_equivalence_flax_to_pt(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) @slow def __a ( self ) -> List[Any]: a, a : Optional[int] = self.get_pretrained_model_and_inputs() a : Optional[int] = model_a(**lowerCAmelCase__ ) a : Optional[int] = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(lowerCAmelCase__ ) a : Any = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase__ ) a : str = model_a(**lowerCAmelCase__ ) a : Dict = after_outputs[0] a : Optional[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCAmelCase__ , 1E-5 ) @require_flax class __UpperCamelCase ( a__ , unittest.TestCase ): def __a ( self ) -> List[Any]: a : str = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( "hf-internal-testing/tiny-random-vit" , "hf-internal-testing/tiny-bert" , vision_from_pt=lowerCAmelCase__ , text_from_pt=lowerCAmelCase__ , ) a : Any = 13 a : str = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) a : str = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) a : Optional[Any] = random_attention_mask([batch_size, 4] ) a : Optional[Any] = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: a : Dict = FlaxViTModel(lowerCAmelCase__ ) a : Dict = FlaxBertModel(lowerCAmelCase__ ) return vision_model, text_model def __a ( self ) -> str: a : Union[str, Any] = FlaxViTModelTester(self ) a : Dict = FlaxBertModelTester(self ) a : str = vit_model_tester.prepare_config_and_inputs() a : Any = bert_model_tester.prepare_config_and_inputs() a, a : Optional[int] = vision_config_and_inputs a, a, a, a : Dict = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class __UpperCamelCase ( a__ , unittest.TestCase ): def __a ( self ) -> List[Any]: a : str = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( "hf-internal-testing/tiny-random-clip" , "hf-internal-testing/tiny-bert" , vision_from_pt=lowerCAmelCase__ , text_from_pt=lowerCAmelCase__ , ) a : Tuple = 13 a : Union[str, Any] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) a : Union[str, Any] = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) a : Tuple = random_attention_mask([batch_size, 4] ) a : str = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: a : List[Any] = FlaxCLIPVisionModel(lowerCAmelCase__ ) a : Tuple = FlaxBertModel(lowerCAmelCase__ ) return vision_model, text_model def __a ( self ) -> List[Any]: a : Tuple = FlaxCLIPVisionModelTester(self ) a : Union[str, Any] = FlaxBertModelTester(self ) a : Dict = clip_model_tester.prepare_config_and_inputs() a : Optional[int] = bert_model_tester.prepare_config_and_inputs() a, a : Dict = vision_config_and_inputs a, a, a, a : Union[str, Any] = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class __UpperCamelCase ( unittest.TestCase ): @slow def __a ( self ) -> Dict: a : str = FlaxVisionTextDualEncoderModel.from_pretrained("clip-italian/clip-italian" , logit_scale_init_value=1.0 ) a : Optional[Any] = VisionTextDualEncoderProcessor.from_pretrained("clip-italian/clip-italian" ) a : Any = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) a : Optional[int] = processor( text=["una foto di un gatto", "una foto di un cane"] , images=lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors="np" ) a : Optional[Any] = model(**lowerCAmelCase__ ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) a : List[str] = np.array([[1.2_284_727, 0.3_104_122]] ) self.assertTrue(np.allclose(outputs.logits_per_image , lowerCAmelCase__ , atol=1E-3 ) )
79
0
"""simple docstring""" class snake_case : '''simple docstring''' def __init__( self : Dict, _lowerCamelCase : list ): '''simple docstring''' __A = set_counts __A = max(_lowerCamelCase ) __A = len(_lowerCamelCase ) __A = [1] * num_sets __A = list(range(_lowerCamelCase ) ) def _SCREAMING_SNAKE_CASE ( self : Any, _lowerCamelCase : int, _lowerCamelCase : int ): '''simple docstring''' __A = self.get_parent(_lowerCamelCase ) __A = self.get_parent(_lowerCamelCase ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] __A = 0 __A = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 __A = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] __A = 0 __A = src_parent __A = self.set_counts[src_parent] __A = max(self.max_set, _lowerCamelCase ) return True def _SCREAMING_SNAKE_CASE ( self : str, _lowerCamelCase : int ): '''simple docstring''' if self.parents[disj_set] == disj_set: return disj_set __A = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
266
"""simple docstring""" from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging lowercase_ = logging.get_logger(__name__) class snake_case ( _lowerCAmelCase ): '''simple docstring''' A_ : int = ["input_features", "attention_mask"] def __init__( self : Optional[Any], _lowerCamelCase : Union[str, Any]=80, _lowerCamelCase : int=1_60_00, _lowerCamelCase : Any=80, _lowerCamelCase : List[str]=0.0, _lowerCamelCase : int=True, _lowerCamelCase : Optional[Any]=True, _lowerCamelCase : Optional[int]=True, **_lowerCamelCase : List[str], ): '''simple docstring''' super().__init__(feature_size=_lowerCamelCase, sampling_rate=_lowerCamelCase, padding_value=_lowerCamelCase, **_lowerCamelCase ) __A = num_mel_bins __A = do_ceptral_normalize __A = normalize_means __A = normalize_vars __A = True def _SCREAMING_SNAKE_CASE ( self : Dict, _lowerCamelCase : np.ndarray, ): '''simple docstring''' __A = waveform * (2**15) # Kaldi compliance: 16-bit signed integers __A = torch.from_numpy(_lowerCamelCase ).unsqueeze(0 ) __A = ta_kaldi.fbank(_lowerCamelCase, num_mel_bins=self.num_mel_bins, sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : np.ndarray, _lowerCamelCase : int, _lowerCamelCase : Optional[bool] = True, _lowerCamelCase : Optional[bool] = True, _lowerCamelCase : float = 0.0, ): '''simple docstring''' # make sure we normalize float32 arrays if normalize_means: __A = x[:input_length].mean(axis=0 ) __A = np.subtract(_lowerCamelCase, _lowerCamelCase ) if normalize_vars: __A = x[:input_length].std(axis=0 ) __A = np.divide(_lowerCamelCase, _lowerCamelCase ) if input_length < x.shape[0]: __A = padding_value # make sure array is in float32 __A = x.astype(np.floataa ) return x def _SCREAMING_SNAKE_CASE ( self : str, _lowerCamelCase : List[np.ndarray], _lowerCamelCase : Optional[np.ndarray] = None ): '''simple docstring''' __A = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(_lowerCamelCase, _lowerCamelCase, self.normalize_means, self.normalize_vars, self.padding_value ) for x, n in zip(_lowerCamelCase, _lowerCamelCase ) ] def __call__( self : Optional[Any], _lowerCamelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]], _lowerCamelCase : Union[bool, str, PaddingStrategy] = False, _lowerCamelCase : Optional[int] = None, _lowerCamelCase : bool = False, _lowerCamelCase : Optional[int] = None, _lowerCamelCase : Optional[Union[str, TensorType]] = None, _lowerCamelCase : Optional[int] = None, _lowerCamelCase : Optional[bool] = None, **_lowerCamelCase : Optional[Any], ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' f' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with' f' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) __A = isinstance(_lowerCamelCase, np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'Only mono-channel audio is supported for input to {self}' ) __A = is_batched_numpy or ( isinstance(_lowerCamelCase, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) )) ) if is_batched: __A = [np.asarray(_lowerCamelCase, dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(_lowerCamelCase, np.ndarray ): __A = np.asarray(_lowerCamelCase, dtype=np.floataa ) elif isinstance(_lowerCamelCase, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __A = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __A = [raw_speech] # extract fbank features __A = [self._extract_fbank_features(_lowerCamelCase ) for waveform in raw_speech] # convert into correct format for padding __A = BatchFeature({'''input_features''': features} ) __A = self.pad( _lowerCamelCase, padding=_lowerCamelCase, max_length=_lowerCamelCase, truncation=_lowerCamelCase, pad_to_multiple_of=_lowerCamelCase, return_attention_mask=_lowerCamelCase, **_lowerCamelCase, ) # make sure list is in array format __A = padded_inputs.get('''input_features''' ) if isinstance(input_features[0], _lowerCamelCase ): __A = [np.asarray(_lowerCamelCase, dtype=np.floataa ) for feature in input_features] __A = padded_inputs.get('''attention_mask''' ) if attention_mask is not None: __A = [np.asarray(_lowerCamelCase, dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: __A = ( np.array(_lowerCamelCase, dtype=np.intaa ) if self._get_padding_strategies(_lowerCamelCase, max_length=_lowerCamelCase ) is not PaddingStrategy.DO_NOT_PAD else None ) __A = self.normalize( padded_inputs['''input_features'''], attention_mask=_lowerCamelCase ) if return_tensors is not None: __A = padded_inputs.convert_to_tensors(_lowerCamelCase ) return padded_inputs
266
1
import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator def lowerCAmelCase__ ( a__ ) ->Any: '''simple docstring''' _UpperCamelCase = fname.split(os.path.sep )[-1] return re.search(r"^(.*)_\d+\.jpg$" , a__ ).groups()[0] class _UpperCAmelCase ( lowerCAmelCase ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase_ : List[Any] , lowercase_ : Union[str, Any]=None , lowercase_ : List[Any]=None) -> List[Any]: """simple docstring""" _UpperCamelCase = file_names _UpperCamelCase = image_transform _UpperCamelCase = label_to_id def __len__( self : str) -> Tuple: """simple docstring""" return len(self.file_names) def __getitem__( self : Optional[int] , lowercase_ : List[str]) -> List[Any]: """simple docstring""" _UpperCamelCase = self.file_names[idx] _UpperCamelCase = PIL.Image.open(lowercase_) _UpperCamelCase = raw_image.convert("RGB") if self.image_transform is not None: _UpperCamelCase = self.image_transform(lowercase_) _UpperCamelCase = extract_label(lowercase_) if self.label_to_id is not None: _UpperCamelCase = self.label_to_id[label] return {"image": image, "label": label} def lowerCAmelCase__ ( a__ , a__ ) ->List[Any]: '''simple docstring''' if args.with_tracking: _UpperCamelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="all" , project_dir=args.project_dir ) else: _UpperCamelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _UpperCamelCase = config["lr"] _UpperCamelCase = int(config["num_epochs"] ) _UpperCamelCase = int(config["seed"] ) _UpperCamelCase = int(config["batch_size"] ) _UpperCamelCase = config["image_size"] if not isinstance(a__ , (list, tuple) ): _UpperCamelCase = (image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps , "isdigit" ): if args.checkpointing_steps == "epoch": _UpperCamelCase = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): _UpperCamelCase = int(args.checkpointing_steps ) else: raise ValueError( f'Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed.' ) else: _UpperCamelCase = None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: _UpperCamelCase = os.path.split(a__ )[-1].split("." )[0] accelerator.init_trackers(a__ , a__ ) # Grab all the image filenames _UpperCamelCase = [os.path.join(args.data_dir , a__ ) for fname in os.listdir(args.data_dir ) if fname.endswith(".jpg" )] # Build the label correspondences _UpperCamelCase = [extract_label(a__ ) for fname in file_names] _UpperCamelCase = list(set(a__ ) ) id_to_label.sort() _UpperCamelCase = {lbl: i for i, lbl in enumerate(a__ )} # Set the seed before splitting the data. np.random.seed(a__ ) torch.manual_seed(a__ ) torch.cuda.manual_seed_all(a__ ) # Split our filenames between train and validation _UpperCamelCase = np.random.permutation(len(a__ ) ) _UpperCamelCase = int(0.8 * len(a__ ) ) _UpperCamelCase = random_perm[:cut] _UpperCamelCase = random_perm[cut:] # For training we use a simple RandomResizedCrop _UpperCamelCase = Compose([RandomResizedCrop(a__ , scale=(0.5, 1.0) ), ToTensor()] ) _UpperCamelCase = PetsDataset( [file_names[i] for i in train_split] , image_transform=a__ , label_to_id=a__ ) # For evaluation, we use a deterministic Resize _UpperCamelCase = Compose([Resize(a__ ), ToTensor()] ) _UpperCamelCase = PetsDataset([file_names[i] for i in eval_split] , image_transform=a__ , label_to_id=a__ ) # Instantiate dataloaders. _UpperCamelCase = DataLoader(a__ , shuffle=a__ , batch_size=a__ , num_workers=4 ) _UpperCamelCase = DataLoader(a__ , shuffle=a__ , batch_size=a__ , num_workers=4 ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _UpperCamelCase = create_model("resnet50d" , pretrained=a__ , num_classes=len(a__ ) ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _UpperCamelCase = model.to(accelerator.device ) # Freezing the base model for param in model.parameters(): _UpperCamelCase = False for param in model.get_classifier().parameters(): _UpperCamelCase = True # We normalize the batches of images to be a bit faster. _UpperCamelCase = torch.tensor(model.default_cfg["mean"] )[None, :, None, None].to(accelerator.device ) _UpperCamelCase = torch.tensor(model.default_cfg["std"] )[None, :, None, None].to(accelerator.device ) # Instantiate optimizer _UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=lr / 25 ) # Instantiate learning rate scheduler _UpperCamelCase = OneCycleLR(optimizer=a__ , max_lr=a__ , epochs=a__ , steps_per_epoch=len(a__ ) ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = accelerator.prepare( a__ , a__ , a__ , a__ , a__ ) # We need to keep track of how many total steps we have iterated over _UpperCamelCase = 0 # We also need to keep track of the starting epoch so files are named properly _UpperCamelCase = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(f'Resumed from checkpoint: {args.resume_from_checkpoint}' ) accelerator.load_state(args.resume_from_checkpoint ) _UpperCamelCase = os.path.basename(args.resume_from_checkpoint ) else: # Get the most recent checkpoint _UpperCamelCase = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()] dirs.sort(key=os.path.getctime ) _UpperCamelCase = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` _UpperCamelCase = os.path.splitext(a__ )[0] if "epoch" in training_difference: _UpperCamelCase = int(training_difference.replace("epoch_" , "" ) ) + 1 _UpperCamelCase = None else: _UpperCamelCase = int(training_difference.replace("step_" , "" ) ) _UpperCamelCase = resume_step // len(a__ ) resume_step -= starting_epoch * len(a__ ) # Now we train the model for epoch in range(a__ , a__ ): model.train() if args.with_tracking: _UpperCamelCase = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step _UpperCamelCase = accelerator.skip_first_batches(a__ , a__ ) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader _UpperCamelCase = train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. _UpperCamelCase = {k: v.to(accelerator.device ) for k, v in batch.items()} _UpperCamelCase = (batch["image"] - mean) / std _UpperCamelCase = model(a__ ) _UpperCamelCase = torch.nn.functional.cross_entropy(a__ , batch["label"] ) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(a__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(a__ , a__ ): _UpperCamelCase = f'step_{overall_step}' if overall_step % checkpointing_steps == 0: if args.output_dir is not None: _UpperCamelCase = os.path.join(args.output_dir , a__ ) accelerator.save_state(a__ ) model.eval() _UpperCamelCase = 0 _UpperCamelCase = 0 for step, batch in enumerate(a__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. _UpperCamelCase = {k: v.to(accelerator.device ) for k, v in batch.items()} _UpperCamelCase = (batch["image"] - mean) / std with torch.no_grad(): _UpperCamelCase = model(a__ ) _UpperCamelCase = outputs.argmax(dim=-1 ) _UpperCamelCase , _UpperCamelCase = accelerator.gather_for_metrics((predictions, batch["label"]) ) _UpperCamelCase = predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() _UpperCamelCase = accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(f'epoch {epoch}: {100 * eval_metric:.2f}' ) if args.with_tracking: accelerator.log( { "accuracy": 100 * eval_metric, "train_loss": total_loss.item() / len(a__ ), "epoch": epoch, } , step=a__ , ) if checkpointing_steps == "epoch": _UpperCamelCase = f'epoch_{epoch}' if args.output_dir is not None: _UpperCamelCase = os.path.join(args.output_dir , a__ ) accelerator.save_state(a__ ) if args.with_tracking: accelerator.end_training() def lowerCAmelCase__ ( ) ->Union[str, Any]: '''simple docstring''' _UpperCamelCase = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument("--data_dir" , required=a__ , help="The data folder on disk." ) parser.add_argument("--fp16" , action="store_true" , help="If passed, will use FP16 training." ) parser.add_argument( "--mixed_precision" , type=a__ , default=a__ , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) parser.add_argument( "--checkpointing_steps" , type=a__ , default=a__ , help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch." , ) parser.add_argument( "--output_dir" , type=a__ , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--resume_from_checkpoint" , type=a__ , default=a__ , help="If the training should continue from a checkpoint folder." , ) parser.add_argument( "--with_tracking" , action="store_true" , help="Whether to load in all available experiment trackers from the environment and use them for logging." , ) parser.add_argument( "--project_dir" , type=a__ , default="logs" , help="Location on where to store experiment tracking logs` and relevent project information" , ) _UpperCamelCase = parser.parse_args() _UpperCamelCase = {"lr": 3e-2, "num_epochs": 3, "seed": 42, "batch_size": 64, "image_size": 224} training_function(a__ , a__ ) if __name__ == "__main__": main()
63
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { '''ut/deta''': '''https://huggingface.co/ut/deta/resolve/main/config.json''', } class _UpperCAmelCase ( lowerCAmelCase ): '''simple docstring''' __A = '''deta''' __A = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self : Tuple , lowercase_ : int=None , lowercase_ : Union[str, Any]=900 , lowercase_ : Any=2048 , lowercase_ : Optional[int]=6 , lowercase_ : Optional[int]=2048 , lowercase_ : List[Any]=8 , lowercase_ : Union[str, Any]=6 , lowercase_ : Optional[Any]=1024 , lowercase_ : Dict=8 , lowercase_ : Any=0.0 , lowercase_ : str=True , lowercase_ : List[Any]="relu" , lowercase_ : Optional[int]=256 , lowercase_ : Optional[int]=0.1 , lowercase_ : Optional[Any]=0.0 , lowercase_ : Optional[int]=0.0 , lowercase_ : Dict=0.02 , lowercase_ : List[str]=1.0 , lowercase_ : List[str]=True , lowercase_ : Any=False , lowercase_ : int="sine" , lowercase_ : str=5 , lowercase_ : int=4 , lowercase_ : Any=4 , lowercase_ : Tuple=True , lowercase_ : List[Any]=300 , lowercase_ : Tuple=True , lowercase_ : Any=True , lowercase_ : str=1 , lowercase_ : List[str]=5 , lowercase_ : Union[str, Any]=2 , lowercase_ : Tuple=1 , lowercase_ : int=1 , lowercase_ : Tuple=5 , lowercase_ : Union[str, Any]=2 , lowercase_ : Dict=0.1 , lowercase_ : List[Any]=0.25 , **lowercase_ : Any , ) -> List[str]: """simple docstring""" if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.") _UpperCamelCase = CONFIG_MAPPING["resnet"](out_features=["stage2", "stage3", "stage4"]) else: if isinstance(lowercase_ , lowercase_): _UpperCamelCase = backbone_config.pop("model_type") _UpperCamelCase = CONFIG_MAPPING[backbone_model_type] _UpperCamelCase = config_class.from_dict(lowercase_) _UpperCamelCase = backbone_config _UpperCamelCase = num_queries _UpperCamelCase = max_position_embeddings _UpperCamelCase = d_model _UpperCamelCase = encoder_ffn_dim _UpperCamelCase = encoder_layers _UpperCamelCase = encoder_attention_heads _UpperCamelCase = decoder_ffn_dim _UpperCamelCase = decoder_layers _UpperCamelCase = decoder_attention_heads _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = activation_function _UpperCamelCase = init_std _UpperCamelCase = init_xavier_std _UpperCamelCase = encoder_layerdrop _UpperCamelCase = auxiliary_loss _UpperCamelCase = position_embedding_type # deformable attributes _UpperCamelCase = num_feature_levels _UpperCamelCase = encoder_n_points _UpperCamelCase = decoder_n_points _UpperCamelCase = two_stage _UpperCamelCase = two_stage_num_proposals _UpperCamelCase = with_box_refine _UpperCamelCase = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError("If two_stage is True, with_box_refine must be True.") # Hungarian matcher _UpperCamelCase = class_cost _UpperCamelCase = bbox_cost _UpperCamelCase = giou_cost # Loss coefficients _UpperCamelCase = mask_loss_coefficient _UpperCamelCase = dice_loss_coefficient _UpperCamelCase = bbox_loss_coefficient _UpperCamelCase = giou_loss_coefficient _UpperCamelCase = eos_coefficient _UpperCamelCase = focal_alpha super().__init__(is_encoder_decoder=lowercase_ , **lowercase_) @property def __UpperCAmelCase ( self : List[str]) -> int: """simple docstring""" return self.encoder_attention_heads @property def __UpperCAmelCase ( self : Optional[Any]) -> int: """simple docstring""" return self.d_model def __UpperCAmelCase ( self : Any) -> str: """simple docstring""" _UpperCamelCase = copy.deepcopy(self.__dict__) _UpperCamelCase = self.backbone_config.to_dict() _UpperCamelCase = self.__class__.model_type return output
63
1
"""simple docstring""" from typing import Any class __A : """simple docstring""" def __init__( self , __A ) -> Union[str, Any]: a =data a =None class __A : """simple docstring""" def __init__( self ) -> List[str]: a =None def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: a =self.head while temp is not None: print(temp.data , end=''' ''' ) a =temp.next print() def SCREAMING_SNAKE_CASE ( self , __A ) -> Union[str, Any]: a =Node(__A ) a =self.head a =new_node def SCREAMING_SNAKE_CASE ( self , __A , __A ) -> str: if node_data_a == node_data_a: return else: a =self.head while node_a is not None and node_a.data != node_data_a: a =node_a.next a =self.head while node_a is not None and node_a.data != node_data_a: a =node_a.next if node_a is None or node_a is None: return a , a =node_a.data, node_a.data if __name__ == "__main__": lowerCamelCase_ : List[Any] = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print("""After swapping""") ll.print_list()
81
from maths.prime_check import is_prime def snake_case_ ( lowerCAmelCase_ : int ): if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): __lowercase : Dict = F"Input value of [number={number}] must be an integer" raise TypeError(lowerCAmelCase_ ) if is_prime(lowerCAmelCase_ ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
233
0
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class lowerCamelCase__ ( unittest.TestCase ): def _lowerCamelCase ( self : Union[str, Any] ): a__: List[Any] =AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) a__: Tuple =AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(_a ) a__: Optional[Any] =-1 a__: str =ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_a ) a__: Tuple =model.generate(_a , max_new_tokens=1_0 , do_sample=_a ) a__: List[str] =tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: a__: List[Any] =TextStreamer(_a ) model.generate(_a , max_new_tokens=1_0 , do_sample=_a , streamer=_a ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer a__: Union[str, Any] =cs.out[:-1] self.assertEqual(_a , _a ) def _lowerCamelCase ( self : str ): a__: int =AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) a__: Tuple =AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(_a ) a__: Dict =-1 a__: List[Any] =ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_a ) a__: List[str] =model.generate(_a , max_new_tokens=1_0 , do_sample=_a ) a__: Union[str, Any] =tokenizer.decode(greedy_ids[0] ) a__: Union[str, Any] =TextIteratorStreamer(_a ) a__: Optional[int] ={"input_ids": input_ids, "max_new_tokens": 1_0, "do_sample": False, "streamer": streamer} a__: Union[str, Any] =Thread(target=model.generate , kwargs=_a ) thread.start() a__: Any ="" for new_text in streamer: streamer_text += new_text self.assertEqual(_a , _a ) def _lowerCamelCase ( self : Optional[Any] ): a__: str =AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) a__: Dict =AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(_a ) a__: List[str] =-1 a__: str =ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_a ) a__: List[Any] =model.generate(_a , max_new_tokens=1_0 , do_sample=_a ) a__: Tuple =greedy_ids[:, input_ids.shape[1] :] a__: List[Any] =tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: a__: Dict =TextStreamer(_a , skip_prompt=_a ) model.generate(_a , max_new_tokens=1_0 , do_sample=_a , streamer=_a ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer a__: Union[str, Any] =cs.out[:-1] self.assertEqual(_a , _a ) def _lowerCamelCase ( self : Optional[int] ): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them a__: Optional[Any] =AutoTokenizer.from_pretrained("distilgpt2" ) a__: str =AutoModelForCausalLM.from_pretrained("distilgpt2" ).to(_a ) a__: Any =-1 a__: Optional[int] =torch.ones((1, 5) , device=_a ).long() * model.config.bos_token_id with CaptureStdout() as cs: a__: Optional[int] =TextStreamer(_a , skip_special_tokens=_a ) model.generate(_a , max_new_tokens=1 , do_sample=_a , streamer=_a ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token a__: Union[str, Any] =cs.out[:-1] # Remove the final "\n" a__: int =tokenizer(_a , return_tensors="pt" ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def _lowerCamelCase ( self : Optional[Any] ): a__: Optional[Any] =AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) a__: Optional[Any] =AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(_a ) a__: Tuple =-1 a__: Optional[int] =ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_a ) a__: Any =TextIteratorStreamer(_a , timeout=0.0_0_1 ) a__: Dict ={"input_ids": input_ids, "max_new_tokens": 1_0, "do_sample": False, "streamer": streamer} a__: int =Thread(target=model.generate , kwargs=_a ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(_a ): a__: Tuple ="" for new_text in streamer: streamer_text += new_text
360
def __lowerCamelCase ( __magic_name__ : int ): if not isinstance(__magic_name__ , __magic_name__ ): a__: List[str] =F"Input value of [number={number}] must be an integer" raise TypeError(__magic_name__ ) if number < 1: a__: Union[str, Any] =F"Input value of [number={number}] must be > 0" raise ValueError(__magic_name__ ) a__: List[Any] =1 for i in range(1 , __magic_name__ ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
42
0
'''simple docstring''' import math from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : Union[str, Any] = logging.get_logger(__name__) lowercase__ : str = { '''facebook/data2vec-base-960h''': '''https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json''', # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''data2vec-audio''' def __init__( self , _UpperCAmelCase=32 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-5 , _UpperCAmelCase="gelu" , _UpperCAmelCase=(512, 512, 512, 512, 512, 512, 512) , _UpperCAmelCase=(5, 2, 2, 2, 2, 2, 2) , _UpperCAmelCase=(10, 3, 3, 3, 3, 2, 2) , _UpperCAmelCase=False , _UpperCAmelCase=16 , _UpperCAmelCase=19 , _UpperCAmelCase=5 , _UpperCAmelCase=0.05 , _UpperCAmelCase=10 , _UpperCAmelCase=2 , _UpperCAmelCase=0.0 , _UpperCAmelCase=10 , _UpperCAmelCase=0 , _UpperCAmelCase="sum" , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=256 , _UpperCAmelCase=(512, 512, 512, 512, 1500) , _UpperCAmelCase=(5, 3, 3, 1, 1) , _UpperCAmelCase=(1, 2, 3, 1, 1) , _UpperCAmelCase=512 , _UpperCAmelCase=0 , _UpperCAmelCase=1 , _UpperCAmelCase=2 , _UpperCAmelCase=False , _UpperCAmelCase=3 , _UpperCAmelCase=2 , _UpperCAmelCase=3 , _UpperCAmelCase=None , **_UpperCAmelCase , ): '''simple docstring''' super().__init__(**_UpperCAmelCase , pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase) __A : Tuple = hidden_size __A : Optional[Any] = feat_extract_activation __A : int = list(_UpperCAmelCase) __A : str = list(_UpperCAmelCase) __A : List[str] = list(_UpperCAmelCase) __A : Optional[Any] = conv_bias __A : int = num_conv_pos_embeddings __A : Dict = num_conv_pos_embedding_groups __A : str = conv_pos_kernel_size __A : Optional[Any] = len(self.conv_dim) __A : Any = num_hidden_layers __A : Optional[int] = intermediate_size __A : int = hidden_act __A : Any = num_attention_heads __A : Any = hidden_dropout __A : Optional[Any] = attention_dropout __A : Optional[int] = activation_dropout __A : int = feat_proj_dropout __A : int = final_dropout __A : Union[str, Any] = layerdrop __A : Tuple = layer_norm_eps __A : Union[str, Any] = initializer_range __A : Dict = vocab_size __A : int = use_weighted_layer_sum if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' F' {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,' F' `len(config.conv_kernel) = {len(self.conv_kernel)}`.') # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __A : List[str] = mask_time_prob __A : str = mask_time_length __A : Union[str, Any] = mask_time_min_masks __A : List[str] = mask_feature_prob __A : Optional[int] = mask_feature_length __A : Tuple = mask_feature_min_masks # ctc loss __A : str = ctc_loss_reduction __A : Union[str, Any] = ctc_zero_infinity # adapter __A : int = add_adapter __A : Any = adapter_kernel_size __A : Union[str, Any] = adapter_stride __A : str = num_adapter_layers __A : Tuple = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. __A : int = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __A : Any = list(_UpperCAmelCase) __A : Optional[int] = list(_UpperCAmelCase) __A : Dict = list(_UpperCAmelCase) __A : List[str] = xvector_output_dim @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return math.prod(self.conv_stride)
190
'''simple docstring''' import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class SCREAMING_SNAKE_CASE : @staticmethod def SCREAMING_SNAKE_CASE ( *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' pass def _lowerCAmelCase ( __snake_case : Image ) -> str: __A : Dict = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def _lowerCAmelCase ( __snake_case : Image ) -> Dict: __A : Dict = np.array(__snake_case ) __A : List[Any] = npimg.shape return {"hash": hashimage(__snake_case ), "shape": shape} @is_pipeline_test @require_vision @require_torch class SCREAMING_SNAKE_CASE (unittest.TestCase ): lowerCAmelCase = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) lowerCAmelCase = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Any = MaskGenerationPipeline(model=_UpperCAmelCase , image_processor=_UpperCAmelCase) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' pass @require_tf @unittest.skip('Image segmentation not implemented in TF') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' pass @slow @require_torch def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = pipeline('mask-generation' , model='facebook/sam-vit-huge') __A : Tuple = image_segmenter('http://images.cocodataset.org/val2017/000000039769.jpg' , points_per_batch=256) # Shortening by hashing __A : int = [] for i, o in enumerate(outputs['masks']): new_outupt += [{"mask": mask_to_test_readable(_UpperCAmelCase), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4) , [ {'mask': {'hash': '115ad19f5f', 'shape': (480, 640)}, 'scores': 1.0444}, {'mask': {'hash': '6affa964c6', 'shape': (480, 640)}, 'scores': 1.021}, {'mask': {'hash': 'dfe28a0388', 'shape': (480, 640)}, 'scores': 1.0167}, {'mask': {'hash': 'c0a5f4a318', 'shape': (480, 640)}, 'scores': 1.0132}, {'mask': {'hash': 'fe8065c197', 'shape': (480, 640)}, 'scores': 1.0053}, {'mask': {'hash': 'e2d0b7a0b7', 'shape': (480, 640)}, 'scores': 0.9967}, {'mask': {'hash': '453c7844bd', 'shape': (480, 640)}, 'scores': 0.993}, {'mask': {'hash': '3d44f2926d', 'shape': (480, 640)}, 'scores': 0.9909}, {'mask': {'hash': '64033ddc3f', 'shape': (480, 640)}, 'scores': 0.9879}, {'mask': {'hash': '801064ff79', 'shape': (480, 640)}, 'scores': 0.9834}, {'mask': {'hash': '6172f276ef', 'shape': (480, 640)}, 'scores': 0.9716}, {'mask': {'hash': 'b49e60e084', 'shape': (480, 640)}, 'scores': 0.9612}, {'mask': {'hash': 'a811e775fd', 'shape': (480, 640)}, 'scores': 0.9599}, {'mask': {'hash': 'a6a8ebcf4b', 'shape': (480, 640)}, 'scores': 0.9552}, {'mask': {'hash': '9d8257e080', 'shape': (480, 640)}, 'scores': 0.9532}, {'mask': {'hash': '32de6454a8', 'shape': (480, 640)}, 'scores': 0.9516}, {'mask': {'hash': 'af3d4af2c8', 'shape': (480, 640)}, 'scores': 0.9499}, {'mask': {'hash': '3c6db475fb', 'shape': (480, 640)}, 'scores': 0.9483}, {'mask': {'hash': 'c290813fb9', 'shape': (480, 640)}, 'scores': 0.9464}, {'mask': {'hash': 'b6f0b8f606', 'shape': (480, 640)}, 'scores': 0.943}, {'mask': {'hash': '92ce16bfdf', 'shape': (480, 640)}, 'scores': 0.943}, {'mask': {'hash': 'c749b25868', 'shape': (480, 640)}, 'scores': 0.9408}, {'mask': {'hash': 'efb6cab859', 'shape': (480, 640)}, 'scores': 0.9335}, {'mask': {'hash': '1ff2eafb30', 'shape': (480, 640)}, 'scores': 0.9326}, {'mask': {'hash': '788b798e24', 'shape': (480, 640)}, 'scores': 0.9262}, {'mask': {'hash': 'abea804f0e', 'shape': (480, 640)}, 'scores': 0.8999}, {'mask': {'hash': '7b9e8ddb73', 'shape': (480, 640)}, 'scores': 0.8986}, {'mask': {'hash': 'cd24047c8a', 'shape': (480, 640)}, 'scores': 0.8984}, {'mask': {'hash': '6943e6bcbd', 'shape': (480, 640)}, 'scores': 0.8873}, {'mask': {'hash': 'b5f47c9191', 'shape': (480, 640)}, 'scores': 0.8871} ] , ) # fmt: on @require_torch @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = 'facebook/sam-vit-huge' __A : Optional[Any] = pipeline('mask-generation' , model=_UpperCAmelCase) __A : int = image_segmenter( 'http://images.cocodataset.org/val2017/000000039769.jpg' , pred_iou_thresh=1 , points_per_batch=256) # Shortening by hashing __A : int = [] for i, o in enumerate(outputs['masks']): new_outupt += [{"mask": mask_to_test_readable(_UpperCAmelCase), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4) , [ {'mask': {'hash': '115ad19f5f', 'shape': (480, 640)}, 'scores': 1.0444}, {'mask': {'hash': '6affa964c6', 'shape': (480, 640)}, 'scores': 1.0210}, {'mask': {'hash': 'dfe28a0388', 'shape': (480, 640)}, 'scores': 1.0167}, {'mask': {'hash': 'c0a5f4a318', 'shape': (480, 640)}, 'scores': 1.0132}, {'mask': {'hash': 'fe8065c197', 'shape': (480, 640)}, 'scores': 1.0053}, ] , )
190
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __SCREAMING_SNAKE_CASE :List[Any] = { '''configuration_mobilenet_v2''': [ '''MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileNetV2Config''', '''MobileNetV2OnnxConfig''', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE :int = ['''MobileNetV2FeatureExtractor'''] __SCREAMING_SNAKE_CASE :str = ['''MobileNetV2ImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE :Optional[int] = [ '''MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileNetV2ForImageClassification''', '''MobileNetV2ForSemanticSegmentation''', '''MobileNetV2Model''', '''MobileNetV2PreTrainedModel''', '''load_tf_weights_in_mobilenet_v2''', ] if TYPE_CHECKING: from .configuration_mobilenet_va import ( MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileNetVaConfig, MobileNetVaOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilenet_va import MobileNetVaFeatureExtractor from .image_processing_mobilenet_va import MobileNetVaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilenet_va import ( MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel, MobileNetVaPreTrainedModel, load_tf_weights_in_mobilenet_va, ) else: import sys __SCREAMING_SNAKE_CASE :List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
156
'''simple docstring''' def UpperCAmelCase_ ( __lowercase : int = 100_0000 ) -> int: '''simple docstring''' _UpperCAmelCase = limit + 1 _UpperCAmelCase = [0] * limit for first_term in range(1 , __lowercase ): for n in range(__lowercase , __lowercase , __lowercase ): _UpperCAmelCase = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a _UpperCAmelCase = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(F"{solution() = }")
156
1
from math import isqrt, loga def _lowercase ( UpperCamelCase_ ) -> list[int]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , UpperCamelCase_ , UpperCamelCase_ ): SCREAMING_SNAKE_CASE__ = False return [i for i in range(2 , UpperCamelCase_ ) if is_prime[i]] def _lowercase ( UpperCamelCase_ = 800800 , UpperCamelCase_ = 800800 ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ = degree * loga(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = int(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = calculate_prime_numbers(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = len(UpperCamelCase_ ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(F"""{solution() = }""")
176
import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __snake_case = get_tests_dir("""fixtures/spiece.model""") @require_sentencepiece @require_tokenizers class lowercase__ ( _UpperCAmelCase , unittest.TestCase ): A__ : str =DebertaVaTokenizer A__ : List[str] =DebertaVaTokenizerFast A__ : Any =True A__ : str =True def A_ ( self : Tuple ): super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE__ = DebertaVaTokenizer(UpperCAmelCase_ , unk_token='<unk>' ) tokenizer.save_pretrained(self.tmpdirname ) def A_ ( self : Union[str, Any] , UpperCAmelCase_ : Optional[Any] ): SCREAMING_SNAKE_CASE__ = 'this is a test' SCREAMING_SNAKE_CASE__ = 'this is a test' return input_text, output_text def A_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ = '<pad>' SCREAMING_SNAKE_CASE__ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase_ ) , UpperCAmelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase_ ) , UpperCAmelCase_ ) def A_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<pad>' ) self.assertEqual(vocab_keys[1] , '<unk>' ) self.assertEqual(vocab_keys[-1] , '[PAD]' ) self.assertEqual(len(UpperCAmelCase_ ) , 30001 ) def A_ ( self : str ): self.assertEqual(self.get_tokenizer().vocab_size , 30000 ) def A_ ( self : Optional[Any] ): # fmt: off SCREAMING_SNAKE_CASE__ = ' \tHeLLo!how \n Are yoU? ' SCREAMING_SNAKE_CASE__ = ['▁hello', '!', 'how', '▁are', '▁you', '?'] # fmt: on SCREAMING_SNAKE_CASE__ = DebertaVaTokenizer(UpperCAmelCase_ , do_lower_case=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = DebertaVaTokenizerFast(UpperCAmelCase_ , do_lower_case=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) @unittest.skip('There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.' ) def A_ ( self : Any ): pass @unittest.skip('There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.' ) def A_ ( self : Tuple ): pass def A_ ( self : List[str] ): # fmt: off SCREAMING_SNAKE_CASE__ = 'I was born in 92000, and this is falsé.' SCREAMING_SNAKE_CASE__ = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on SCREAMING_SNAKE_CASE__ = DebertaVaTokenizer(UpperCAmelCase_ , split_by_punct=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = DebertaVaTokenizerFast(UpperCAmelCase_ , split_by_punct=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def A_ ( self : List[str] ): # fmt: off SCREAMING_SNAKE_CASE__ = 'I was born in 92000, and this is falsé.' SCREAMING_SNAKE_CASE__ = ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on SCREAMING_SNAKE_CASE__ = DebertaVaTokenizer(UpperCAmelCase_ , do_lower_case=UpperCAmelCase_ , split_by_punct=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = DebertaVaTokenizerFast(UpperCAmelCase_ , do_lower_case=UpperCAmelCase_ , split_by_punct=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def A_ ( self : int ): # fmt: off SCREAMING_SNAKE_CASE__ = 'I was born in 92000, and this is falsé.' SCREAMING_SNAKE_CASE__ = ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.', ] # fmt: on SCREAMING_SNAKE_CASE__ = DebertaVaTokenizer(UpperCAmelCase_ , do_lower_case=UpperCAmelCase_ , split_by_punct=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = DebertaVaTokenizerFast(UpperCAmelCase_ , do_lower_case=UpperCAmelCase_ , split_by_punct=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def A_ ( self : Tuple ): # fmt: off SCREAMING_SNAKE_CASE__ = 'I was born in 92000, and this is falsé.' SCREAMING_SNAKE_CASE__ = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on SCREAMING_SNAKE_CASE__ = DebertaVaTokenizer(UpperCAmelCase_ , do_lower_case=UpperCAmelCase_ , split_by_punct=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = DebertaVaTokenizerFast(UpperCAmelCase_ , do_lower_case=UpperCAmelCase_ , split_by_punct=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def A_ ( self : Any ): # fmt: off SCREAMING_SNAKE_CASE__ = ' \tHeLLo!how \n Are yoU? ' SCREAMING_SNAKE_CASE__ = ['▁', '<unk>', 'e', '<unk>', 'o', '!', 'how', '▁', '<unk>', 're', '▁yo', '<unk>', '?'] # fmt: on SCREAMING_SNAKE_CASE__ = DebertaVaTokenizer(UpperCAmelCase_ , do_lower_case=UpperCAmelCase_ , split_by_punct=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = DebertaVaTokenizerFast(UpperCAmelCase_ , do_lower_case=UpperCAmelCase_ , split_by_punct=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def A_ ( self : int ): SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE__ = 'I was born in 92000, and this is falsé.' SCREAMING_SNAKE_CASE__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) ) SCREAMING_SNAKE_CASE__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = rust_tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE__ = tokenizer.encode(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = rust_tokenizer.encode(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def A_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE__ = 'This is a test' SCREAMING_SNAKE_CASE__ = [13, 1, 4398, 25, 21, 1289] SCREAMING_SNAKE_CASE__ = ['▁', 'T', 'his', '▁is', '▁a', '▁test'] SCREAMING_SNAKE_CASE__ = ['▁', '<unk>', 'his', '▁is', '▁a', '▁test'] SCREAMING_SNAKE_CASE__ = DebertaVaTokenizer(UpperCAmelCase_ , keep_accents=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = DebertaVaTokenizerFast(UpperCAmelCase_ , keep_accents=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = tokenizer.tokenize(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = tokenizer.convert_ids_to_tokens(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = rust_tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = rust_tokenizer.tokenize(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = rust_tokenizer.convert_ids_to_tokens(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) # fmt: off SCREAMING_SNAKE_CASE__ = 'I was born in 92000, and this is falsé.' SCREAMING_SNAKE_CASE__ = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] SCREAMING_SNAKE_CASE__ = ['▁', 'I', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', 'é', '.', ] SCREAMING_SNAKE_CASE__ = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.', ] # fmt: on SCREAMING_SNAKE_CASE__ = tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = tokenizer.tokenize(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = tokenizer.convert_ids_to_tokens(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = rust_tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = rust_tokenizer.tokenize(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = rust_tokenizer.convert_ids_to_tokens(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def A_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ = DebertaVaTokenizer(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = tokenizer.encode('sequence builders' ) SCREAMING_SNAKE_CASE__ = tokenizer.encode('multi-sequence build' ) SCREAMING_SNAKE_CASE__ = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ , UpperCAmelCase_ ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , UpperCAmelCase_ ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , UpperCAmelCase_ , ) @slow def A_ ( self : Optional[Any] ): # fmt: off SCREAMING_SNAKE_CASE__ = {'input_ids': [[1, 39867, 36, 19390, 486, 27, 35052, 81436, 18, 60685, 1225, 7, 35052, 81436, 18, 9367, 16899, 18, 15937, 53, 594, 773, 18, 16287, 30465, 36, 15937, 6, 41139, 38, 36979, 60763, 191, 6, 34132, 99, 6, 50538, 390, 43230, 6, 34132, 2779, 20850, 14, 699, 1072, 1194, 36, 382, 10901, 53, 7, 699, 1072, 2084, 36, 20422, 630, 53, 19, 105, 3049, 1896, 1053, 16899, 1506, 11, 37978, 4243, 7, 1237, 31869, 200, 16566, 654, 6, 35052, 81436, 7, 55630, 13593, 4, 2], [1, 26, 15011, 13, 667, 8, 1053, 18, 23611, 1237, 72356, 12820, 34, 104134, 1209, 35, 13313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 15785, 14951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase_ , model_name='microsoft/deberta-v2-xlarge' , revision='ad6e42c1532ddf3a15c39246b63f5559d558b670' , )
176
1
import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def A ( __UpperCAmelCase ) -> List[Any]: '''simple docstring''' def wrapper(*__UpperCAmelCase , **__UpperCAmelCase ): UpperCAmelCase_ = timeit.default_timer() UpperCAmelCase_ = func(*__UpperCAmelCase , **__UpperCAmelCase ) UpperCAmelCase_ = timeit.default_timer() - starttime return delta UpperCAmelCase_ = func.__name__ return wrapper def A ( __UpperCAmelCase , __UpperCAmelCase=100 , __UpperCAmelCase=None ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = [] UpperCAmelCase_ = seq_shapes or {} for i in range(__UpperCAmelCase ): UpperCAmelCase_ = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(__UpperCAmelCase , _ArrayXD ): UpperCAmelCase_ = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(__UpperCAmelCase , datasets.Value ): if v.dtype == "string": UpperCAmelCase_ = '''The small grey turtle was surprisingly fast when challenged.''' else: UpperCAmelCase_ = np.random.randint(10 , size=1 ).astype(v.dtype ).item() elif isinstance(__UpperCAmelCase , datasets.Sequence ): while isinstance(__UpperCAmelCase , datasets.Sequence ): UpperCAmelCase_ = v.feature UpperCAmelCase_ = seq_shapes[k] UpperCAmelCase_ = np.random.rand(*__UpperCAmelCase ).astype(v.dtype ) UpperCAmelCase_ = data dummy_data.append((i, example) ) return dummy_data def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=100 , __UpperCAmelCase=None ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = generate_examples(__UpperCAmelCase , num_examples=__UpperCAmelCase , seq_shapes=__UpperCAmelCase ) with ArrowWriter(features=__UpperCAmelCase , path=__UpperCAmelCase ) as writer: for key, record in dummy_data: UpperCAmelCase_ = features.encode_example(__UpperCAmelCase ) writer.write(__UpperCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ = writer.finalize() if not num_final_examples == num_examples: raise ValueError( f"Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}." ) UpperCAmelCase_ = datasets.Dataset.from_file(filename=__UpperCAmelCase , info=datasets.DatasetInfo(features=__UpperCAmelCase ) ) return dataset
344
import pytest UpperCamelCase_ = "__dummy_dataset1__" UpperCamelCase_ = "\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n" @pytest.fixture def A ( ) -> str: '''simple docstring''' return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def A ( ) -> Any: '''simple docstring''' return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = dataset_loading_script_name UpperCAmelCase_ = tmp_path / '''datasets''' / script_name script_dir.mkdir(parents=__UpperCAmelCase ) UpperCAmelCase_ = script_dir / f"{script_name}.py" with open(__UpperCAmelCase , '''w''' ) as f: f.write(__UpperCAmelCase ) return str(__UpperCAmelCase )
344
1
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging A__ : List[str] =logging.get_logger(__name__) A__ : Any ='''▁''' A__ : List[Any] ={'''vocab_file''': '''spiece.model'''} A__ : List[Any] ={ '''vocab_file''': { '''google/reformer-crime-and-punishment''': ( '''https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model''' ) } } A__ : str ={ '''google/reformer-crime-and-punishment''': 52_42_88, } class UpperCAmelCase ( snake_case_ ): _lowercase: Optional[Any] = VOCAB_FILES_NAMES _lowercase: Dict = PRETRAINED_VOCAB_FILES_MAP _lowercase: Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase: Dict = ['''input_ids''', '''attention_mask'''] def __init__( self : List[Any] , __snake_case : Union[str, Any] , __snake_case : Any="</s>" , __snake_case : Dict="<unk>" , __snake_case : List[str]=[] , __snake_case : Optional[Dict[str, Any]] = None , **__snake_case : Union[str, Any] , ) -> None: _lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=__snake_case , unk_token=__snake_case , additional_special_tokens=__snake_case , sp_model_kwargs=self.sp_model_kwargs , **__snake_case , ) _lowerCAmelCase = vocab_file _lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__snake_case ) @property def lowercase__ ( self : Union[str, Any] ) -> str: return self.sp_model.get_piece_size() def lowercase__ ( self : Optional[int] ) -> Dict[str, int]: _lowerCAmelCase = {self.convert_ids_to_tokens(__snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[int] ) -> List[str]: _lowerCAmelCase = self.__dict__.copy() _lowerCAmelCase = None return state def __setstate__( self : str , __snake_case : Dict ) -> Dict: _lowerCAmelCase = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _lowerCAmelCase = {} _lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase__ ( self : int , __snake_case : str ) -> List[str]: return self.sp_model.encode(__snake_case , out_type=__snake_case ) def lowercase__ ( self : str , __snake_case : Any ) -> Optional[int]: return self.sp_model.piece_to_id(__snake_case ) def lowercase__ ( self : Optional[Any] , __snake_case : str ) -> Optional[Any]: if index < self.sp_model.get_piece_size(): _lowerCAmelCase = self.sp_model.IdToPiece(__snake_case ) return token def lowercase__ ( self : List[Any] , __snake_case : str ) -> int: _lowerCAmelCase = [] _lowerCAmelCase = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__snake_case ) + token _lowerCAmelCase = [] else: current_sub_tokens.append(__snake_case ) out_string += self.sp_model.decode(__snake_case ) return out_string.strip() def lowercase__ ( self : int , __snake_case : str , __snake_case : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__snake_case ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return _lowerCAmelCase = os.path.join( __snake_case , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __snake_case ) elif not os.path.isfile(self.vocab_file ): with open(__snake_case , """wb""" ) as fi: _lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(__snake_case ) return (out_vocab_file,)
70
'''simple docstring''' import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__=True, UpperCAmelCase__="pt" ) -> str: A_ = {"""add_prefix_space""": True} if isinstance(UpperCAmelCase__, UpperCAmelCase__ ) and not line.startswith(""" """ ) else {} A_ = padding_side return tokenizer( [line], max_length=UpperCAmelCase__, padding="""max_length""" if pad_to_max_length else None, truncation=UpperCAmelCase__, return_tensors=UpperCAmelCase__, add_special_tokens=UpperCAmelCase__, **UpperCAmelCase__, ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__=None, ) -> List[str]: A_ = input_ids.ne(UpperCAmelCase__ ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class A__ ( _snake_case ): def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__="train" , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__="" , ) -> Union[str, Any]: '''simple docstring''' super().__init__() A_ = Path(UpperCamelCase__ ).joinpath(type_path + """.source""" ) A_ = Path(UpperCamelCase__ ).joinpath(type_path + """.target""" ) A_ = self.get_char_lens(self.src_file ) A_ = max_source_length A_ = max_target_length assert min(self.src_lens ) > 0, f'''found empty line in {self.src_file}''' A_ = tokenizer A_ = prefix if n_obs is not None: A_ = self.src_lens[:n_obs] A_ = src_lang A_ = tgt_lang def __len__( self ) -> Dict: '''simple docstring''' return len(self.src_lens ) def __getitem__( self , UpperCamelCase__ ) -> Dict[str, torch.Tensor]: '''simple docstring''' A_ = index + 1 # linecache starts at 1 A_ = self.prefix + linecache.getline(str(self.src_file ) , UpperCamelCase__ ).rstrip("""\n""" ) A_ = linecache.getline(str(self.tgt_file ) , UpperCamelCase__ ).rstrip("""\n""" ) assert source_line, f'''empty source line for index {index}''' assert tgt_line, f'''empty tgt line for index {index}''' # Need to add eos token manually for T5 if isinstance(self.tokenizer , UpperCamelCase__ ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right A_ = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , UpperCamelCase__ ) else self.tokenizer ) A_ = self.tokenizer.generator if isinstance(self.tokenizer , UpperCamelCase__ ) else self.tokenizer A_ = encode_line(UpperCamelCase__ , UpperCamelCase__ , self.max_source_length , """right""" ) A_ = encode_line(UpperCamelCase__ , UpperCamelCase__ , self.max_target_length , """right""" ) A_ = source_inputs["""input_ids"""].squeeze() A_ = target_inputs["""input_ids"""].squeeze() A_ = source_inputs["""attention_mask"""].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def snake_case_ ( UpperCamelCase__ ) -> Any: '''simple docstring''' return [len(UpperCamelCase__ ) for x in Path(UpperCamelCase__ ).open().readlines()] def snake_case_ ( self , UpperCamelCase__ ) -> Dict[str, torch.Tensor]: '''simple docstring''' A_ = torch.stack([x["""input_ids"""] for x in batch] ) A_ = torch.stack([x["""attention_mask"""] for x in batch] ) A_ = torch.stack([x["""decoder_input_ids"""] for x in batch] ) A_ = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , UpperCamelCase__ ) else self.tokenizer.pad_token_id ) A_ = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , UpperCamelCase__ ) else self.tokenizer.pad_token_id ) A_ = trim_batch(UpperCamelCase__ , UpperCamelCase__ ) A_ , A_ = trim_batch(UpperCamelCase__ , UpperCamelCase__ , attention_mask=UpperCamelCase__ ) A_ = { """input_ids""": source_ids, """attention_mask""": source_mask, """decoder_input_ids""": y, } return batch __lowerCamelCase = getLogger(__name__) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Dict: return list(itertools.chain.from_iterable(UpperCAmelCase__ ) ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> None: A_ = get_git_info() save_json(UpperCAmelCase__, os.path.join(UpperCAmelCase__, """git_log.json""" ) ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__=4, **UpperCAmelCase__ ) -> Dict: with open(UpperCAmelCase__, """w""" ) as f: json.dump(UpperCAmelCase__, UpperCAmelCase__, indent=UpperCAmelCase__, **UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> str: with open(UpperCAmelCase__ ) as f: return json.load(UpperCAmelCase__ ) def UpperCAmelCase__ ( ) -> Any: A_ = git.Repo(search_parent_directories=UpperCAmelCase__ ) A_ = { """repo_id""": str(UpperCAmelCase__ ), """repo_sha""": str(repo.head.object.hexsha ), """repo_branch""": str(repo.active_branch ), """hostname""": str(socket.gethostname() ), } return repo_infos def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> List: return list(map(UpperCAmelCase__, UpperCAmelCase__ ) ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> List[Any]: with open(UpperCAmelCase__, """wb""" ) as f: return pickle.dump(UpperCAmelCase__, UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Union[str, Any]: def remove_articles(UpperCAmelCase__ ): return re.sub(r"""\b(a|an|the)\b""", """ """, UpperCAmelCase__ ) def white_space_fix(UpperCAmelCase__ ): return " ".join(text.split() ) def remove_punc(UpperCAmelCase__ ): A_ = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(UpperCAmelCase__ ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(UpperCAmelCase__ ) ) ) ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> Optional[int]: A_ = normalize_answer(UpperCAmelCase__ ).split() A_ = normalize_answer(UpperCAmelCase__ ).split() A_ = Counter(UpperCAmelCase__ ) & Counter(UpperCAmelCase__ ) A_ = sum(common.values() ) if num_same == 0: return 0 A_ = 1.0 * num_same / len(UpperCAmelCase__ ) A_ = 1.0 * num_same / len(UpperCAmelCase__ ) A_ = (2 * precision * recall) / (precision + recall) return fa def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> Optional[Any]: return normalize_answer(UpperCAmelCase__ ) == normalize_answer(UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> Dict: assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) A_ = 0 for hypo, pred in zip(UpperCAmelCase__, UpperCAmelCase__ ): em += exact_match_score(UpperCAmelCase__, UpperCAmelCase__ ) if len(UpperCAmelCase__ ) > 0: em /= len(UpperCAmelCase__ ) return {"em": em} def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Optional[Any]: return model_prefix.startswith("""rag""" ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> List[str]: A_ = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead A_ = """dropout_rate""" for p in extra_params: if getattr(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ): if not hasattr(UpperCAmelCase__, UpperCAmelCase__ ) and not hasattr(UpperCAmelCase__, equivalent_param[p] ): logger.info("""config doesn't have a `{}` attribute""".format(UpperCAmelCase__ ) ) delattr(UpperCAmelCase__, UpperCAmelCase__ ) continue A_ = p if hasattr(UpperCAmelCase__, UpperCAmelCase__ ) else equivalent_param[p] setattr(UpperCAmelCase__, UpperCAmelCase__, getattr(UpperCAmelCase__, UpperCAmelCase__ ) ) delattr(UpperCAmelCase__, UpperCAmelCase__ ) return hparams, config
162
0
'''simple docstring''' import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase): """simple docstring""" def UpperCAmelCase_ ( self )-> Union[str, Any]: '''simple docstring''' debug_launcher(test_script.main ) def UpperCAmelCase_ ( self )-> Optional[int]: '''simple docstring''' debug_launcher(test_ops.main )
353
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) lowerCAmelCase : str = {'vocab_file': 'sentencepiece.bpe.model'} lowerCAmelCase : Union[str, Any] = { 'vocab_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model' ), }, } lowerCAmelCase : List[str] = { 'moussaKam/mbarthez': 10_24, 'moussaKam/barthez': 10_24, 'moussaKam/barthez-orangesum-title': 10_24, } lowerCAmelCase : Dict = '▁' class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = ["""input_ids""", """attention_mask"""] def __init__( self , A_ , A_="<s>" , A_="</s>" , A_="</s>" , A_="<s>" , A_="<unk>" , A_="<pad>" , A_="<mask>" , A_ = None , **A_ , )-> None: '''simple docstring''' UpperCamelCase = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else mask_token UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A_ , eos_token=A_ , unk_token=A_ , sep_token=A_ , cls_token=A_ , pad_token=A_ , mask_token=A_ , sp_model_kwargs=self.sp_model_kwargs , **A_ , ) UpperCamelCase = vocab_file UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(A_ ) ) UpperCamelCase = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} UpperCamelCase = len(self.sp_model ) - 1 UpperCamelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def UpperCAmelCase_ ( self , A_ , A_ = None )-> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCamelCase = [self.cls_token_id] UpperCamelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase_ ( self , A_ , A_ = None , A_ = False )-> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ , token_ids_a=A_ , already_has_special_tokens=A_ ) if token_ids_a is None: return [1] + ([0] * len(A_ )) + [1] return [1] + ([0] * len(A_ )) + [1, 1] + ([0] * len(A_ )) + [1] def UpperCAmelCase_ ( self , A_ , A_ = None )-> List[int]: '''simple docstring''' UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCAmelCase_ ( self )-> Optional[Any]: '''simple docstring''' return len(self.sp_model ) def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' UpperCamelCase = {self.convert_ids_to_tokens(A_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase_ ( self , A_ )-> List[str]: '''simple docstring''' return self.sp_model.encode(A_ , out_type=A_ ) def UpperCAmelCase_ ( self , A_ )-> Union[str, Any]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCamelCase = self.sp_model.PieceToId(A_ ) return spm_id if spm_id else self.unk_token_id def UpperCAmelCase_ ( self , A_ )-> Any: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(A_ ) def UpperCAmelCase_ ( self , A_ )-> Optional[int]: '''simple docstring''' UpperCamelCase = [] UpperCamelCase = '' UpperCamelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(A_ ) + token UpperCamelCase = True UpperCamelCase = [] else: current_sub_tokens.append(A_ ) UpperCamelCase = False out_string += self.sp_model.decode(A_ ) return out_string.strip() def __getstate__( self )-> int: '''simple docstring''' UpperCamelCase = self.__dict__.copy() UpperCamelCase = None return state def __setstate__( self , A_ )-> List[Any]: '''simple docstring''' UpperCamelCase = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): UpperCamelCase = {} UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase_ ( self , A_ , A_ = None )-> Tuple[str]: '''simple docstring''' if not os.path.isdir(A_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCamelCase = os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A_ ) elif not os.path.isfile(self.vocab_file ): with open(A_ , 'wb' ) as fi: UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(A_ ) return (out_vocab_file,)
251
0
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def __A ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )-> List[str]: """simple docstring""" _UpperCAmelCase = ('dense.weight', 'attention.self.query', 'attention.self.key', 'attention.self.value') _UpperCAmelCase = ( ('layer.', 'layer_'), ('word_embeddings.weight', 'word_embeddings'), ('position_embeddings.weight', 'position_embeddings'), ('token_type_embeddings.weight', 'token_type_embeddings'), ('.', '/'), ('LayerNorm/weight', 'LayerNorm/gamma'), ('LayerNorm/bias', 'LayerNorm/beta'), ('weight', 'kernel'), ) if not os.path.isdir(__lowerCAmelCase ): os.makedirs(__lowerCAmelCase ) _UpperCAmelCase = model.state_dict() def to_tf_var_name(__lowerCAmelCase ): for patt, repl in iter(__lowerCAmelCase ): _UpperCAmelCase = name.replace(__lowerCAmelCase , __lowerCAmelCase ) return F"""bert/{name}""" def create_tf_var(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase = tf.dtypes.as_dtype(tensor.dtype ) _UpperCAmelCase = tf.get_variable(dtype=__lowerCAmelCase , shape=tensor.shape , name=__lowerCAmelCase , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(__lowerCAmelCase ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: _UpperCAmelCase = to_tf_var_name(__lowerCAmelCase ) _UpperCAmelCase = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): _UpperCAmelCase = torch_tensor.T _UpperCAmelCase = create_tf_var(tensor=__lowerCAmelCase , name=__lowerCAmelCase , session=__lowerCAmelCase ) tf.keras.backend.set_value(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = session.run(__lowerCAmelCase ) print(F"""Successfully created {tf_name}: {np.allclose(__lowerCAmelCase , __lowerCAmelCase )}""" ) _UpperCAmelCase = tf.train.Saver(tf.trainable_variables() ) saver.save(__lowerCAmelCase , os.path.join(__lowerCAmelCase , model_name.replace('-' , '_' ) + '.ckpt' ) ) def __A ( __lowerCAmelCase=None )-> Any: """simple docstring""" _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('--model_name' , type=__lowerCAmelCase , required=__lowerCAmelCase , help='model name e.g. bert-base-uncased' ) parser.add_argument( '--cache_dir' , type=__lowerCAmelCase , default=__lowerCAmelCase , required=__lowerCAmelCase , help='Directory containing pytorch model' ) parser.add_argument('--pytorch_model_path' , type=__lowerCAmelCase , required=__lowerCAmelCase , help='/path/to/<pytorch-model-name>.bin' ) parser.add_argument('--tf_cache_dir' , type=__lowerCAmelCase , required=__lowerCAmelCase , help='Directory in which to save tensorflow model' ) _UpperCAmelCase = parser.parse_args(__lowerCAmelCase ) _UpperCAmelCase = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=__lowerCAmelCase , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
39
import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def __A ( )-> Tuple: """simple docstring""" raise RuntimeError('CUDA out of memory.' ) class __lowerCamelCase ( nn.Module): """simple docstring""" def __init__( self ): """simple docstring""" super().__init__() _UpperCAmelCase = nn.Linear(3 , 4 ) _UpperCAmelCase = nn.BatchNormad(4 ) _UpperCAmelCase = nn.Linear(4 , 5 ) def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" return self.lineara(self.batchnorm(self.lineara(UpperCAmelCase ) ) ) class __lowerCamelCase ( unittest.TestCase): """simple docstring""" def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(UpperCAmelCase ): nonlocal batch_sizes batch_sizes.append(UpperCAmelCase ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(UpperCAmelCase , [128, 64, 32, 16, 8] ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(UpperCAmelCase , UpperCAmelCase ): nonlocal batch_sizes batch_sizes.append(UpperCAmelCase ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga _UpperCAmelCase , _UpperCAmelCase = mock_training_loop_function('hello' ) self.assertListEqual(UpperCAmelCase , [128, 64, 32, 16, 8] ) self.assertListEqual([bs, arga] , [8, 'hello'] ) def UpperCamelCase ( self ): """simple docstring""" @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(UpperCAmelCase ): pass with self.assertRaises(UpperCAmelCase ) as cm: mock_training_loop_function() self.assertIn('No executable batch size found, reached zero.' , cm.exception.args[0] ) def UpperCamelCase ( self ): """simple docstring""" @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(UpperCAmelCase ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(UpperCAmelCase ) as cm: mock_training_loop_function() self.assertIn('No executable batch size found, reached zero.' , cm.exception.args[0] ) def UpperCamelCase ( self ): """simple docstring""" @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(UpperCAmelCase ) as cm: mock_training_loop_function(128 , 'hello' , 'world' ) self.assertIn('Batch size was passed into `f`' , cm.exception.args[0] ) self.assertIn('`f(arg1=\'hello\', arg2=\'world\')' , cm.exception.args[0] ) def UpperCamelCase ( self ): """simple docstring""" @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(UpperCAmelCase ): raise ValueError('Oops, we had an error!' ) with self.assertRaises(UpperCAmelCase ) as cm: mock_training_loop_function() self.assertIn('Oops, we had an error!' , cm.exception.args[0] ) @require_cuda def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = torch.cuda.memory_allocated() _UpperCAmelCase = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , UpperCAmelCase ) _UpperCAmelCase = release_memory(UpperCAmelCase ) self.assertEqual(torch.cuda.memory_allocated() , UpperCAmelCase )
39
1
'''simple docstring''' from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean lowerCAmelCase__ = 0 lowerCAmelCase__ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] lowerCAmelCase__ = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right lowerCAmelCase__ = tuple[int, int] class lowercase_ : """simple docstring""" def __init__( self : List[str] ,lowercase__ : int ,lowercase__ : int ,lowercase__ : int ,lowercase__ : int ,lowercase__ : int ,lowercase__ : Node | None ,): __lowercase = pos_x __lowercase = pos_y __lowercase = (pos_y, pos_x) __lowercase = goal_x __lowercase = goal_y __lowercase = g_cost __lowercase = parent __lowercase = self.calculate_heuristic() __lowercase = self.g_cost + self.h_cost def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = self.pos_x - self.goal_x __lowercase = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(lowercase__ ) + abs(lowercase__ ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self : Dict ,lowercase__ : Node ): return self.f_cost < other.f_cost class lowercase_ : """simple docstring""" def __init__( self : str ,lowercase__ : TPosition ,lowercase__ : TPosition ): __lowercase = Node(start[1] ,start[0] ,goal[1] ,goal[0] ,0 ,lowercase__ ) __lowercase = Node(goal[1] ,goal[0] ,goal[1] ,goal[0] ,9_9_9_9_9 ,lowercase__ ) __lowercase = [self.start] __lowercase = [] __lowercase = False def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() __lowercase = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(lowercase__ ) self.closed_nodes.append(lowercase__ ) __lowercase = self.get_successors(lowercase__ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(lowercase__ ) else: # retrieve the best current path __lowercase = self.open_nodes.pop(self.open_nodes.index(lowercase__ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(lowercase__ ) else: self.open_nodes.append(lowercase__ ) return [self.start.pos] def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : Node ): __lowercase = [] for action in delta: __lowercase = parent.pos_x + action[1] __lowercase = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(lowercase__ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( lowercase__ ,lowercase__ ,self.target.pos_y ,self.target.pos_x ,parent.g_cost + 1 ,lowercase__ ,) ) return successors def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : Node | None ): __lowercase = node __lowercase = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __lowercase = current_node.parent path.reverse() return path class lowercase_ : """simple docstring""" def __init__( self : Optional[int] ,lowercase__ : TPosition ,lowercase__ : TPosition ): __lowercase = AStar(lowercase__ ,lowercase__ ) __lowercase = AStar(lowercase__ ,lowercase__ ) __lowercase = False def SCREAMING_SNAKE_CASE ( self : List[Any] ): while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() __lowercase = self.fwd_astar.open_nodes.pop(0 ) __lowercase = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( lowercase__ ,lowercase__ ) self.fwd_astar.closed_nodes.append(lowercase__ ) self.bwd_astar.closed_nodes.append(lowercase__ ) __lowercase = current_bwd_node __lowercase = current_fwd_node __lowercase = { self.fwd_astar: self.fwd_astar.get_successors(lowercase__ ), self.bwd_astar: self.bwd_astar.get_successors(lowercase__ ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(lowercase__ ) else: # retrieve the best current path __lowercase = astar.open_nodes.pop( astar.open_nodes.index(lowercase__ ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(lowercase__ ) else: astar.open_nodes.append(lowercase__ ) return [self.fwd_astar.start.pos] def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : Node ,lowercase__ : Node ): __lowercase = self.fwd_astar.retrace_path(lowercase__ ) __lowercase = self.bwd_astar.retrace_path(lowercase__ ) bwd_path.pop() bwd_path.reverse() __lowercase = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] lowerCAmelCase__ = (0, 0) lowerCAmelCase__ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) lowerCAmelCase__ = time.time() lowerCAmelCase__ = AStar(init, goal) lowerCAmelCase__ = a_star.search() lowerCAmelCase__ = time.time() - start_time print(f'AStar execution time = {end_time:f} seconds') lowerCAmelCase__ = time.time() lowerCAmelCase__ = BidirectionalAStar(init, goal) lowerCAmelCase__ = time.time() - bd_start_time print(f'BidirectionalAStar execution time = {bd_end_time:f} seconds')
353
'''simple docstring''' def _A ( A__ = 1000 ): """simple docstring""" __lowercase , __lowercase = 1, 1 __lowercase = 2 while True: __lowercase = 0 __lowercase = fa + fa __lowercase , __lowercase = fa, f index += 1 for _ in str(A__ ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
52
0
import requests from bsa import BeautifulSoup def UpperCamelCase ( __lowercase : str = "https://www.worldometers.info/coronavirus" ): '''simple docstring''' A_ : Dict = BeautifulSoup(requests.get(__lowercase ).text ,'html.parser' ) A_ : List[Any] = soup.findAll('h1' ) A_ : List[str] = soup.findAll('div' ,{'class': 'maincounter-number'} ) keys += soup.findAll('span' ,{'class': 'panel-title'} ) values += soup.findAll('div' ,{'class': 'number-table-main'} ) return {key.text.strip(): value.text.strip() for key, value in zip(__lowercase ,__lowercase )} if __name__ == "__main__": print("""\033[1m""" + """COVID-19 Status of the World""" + """\033[0m\n""") for key, value in world_covidaa_stats().items(): print(F"""{key}\n{value}\n""")
140
import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = '''char''' lowerCamelCase_ = '''bpe''' lowerCamelCase_ = '''wp''' _UpperCAmelCase = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = ['''image_processor''', '''char_tokenizer'''] lowerCamelCase_ = '''ViTImageProcessor''' lowerCamelCase_ = '''MgpstrTokenizer''' def __init__( self , lowercase=None , lowercase=None , **lowercase ): """simple docstring""" A_ : str = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , lowercase , ) A_ : Optional[int] = kwargs.pop('feature_extractor' ) A_ : List[str] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) A_ : Union[str, Any] = tokenizer A_ : List[Any] = AutoTokenizer.from_pretrained('gpt2' ) A_ : Any = AutoTokenizer.from_pretrained('bert-base-uncased' ) super().__init__(lowercase , lowercase ) def __call__( self , lowercase=None , lowercase=None , lowercase=None , **lowercase ): """simple docstring""" if images is None and text is None: raise ValueError('You need to specify either an `images` or `text` input to process.' ) if images is not None: A_ : List[Any] = self.image_processor(lowercase , return_tensors=lowercase , **lowercase ) if text is not None: A_ : Union[str, Any] = self.char_tokenizer(lowercase , return_tensors=lowercase , **lowercase ) if text is None: return inputs elif images is None: return encodings else: A_ : Optional[int] = encodings['input_ids'] return inputs def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ , A_ , A_ : int = sequences A_ : Union[str, Any] = char_preds.size(0 ) A_ , A_ : Union[str, Any] = self._decode_helper(lowercase , 'char' ) A_ , A_ : List[str] = self._decode_helper(lowercase , 'bpe' ) A_ , A_ : Optional[int] = self._decode_helper(lowercase , 'wp' ) A_ : Dict = [] A_ : Optional[int] = [] for i in range(lowercase ): A_ : List[str] = [char_scores[i], bpe_scores[i], wp_scores[i]] A_ : int = [char_strs[i], bpe_strs[i], wp_strs[i]] A_ : Union[str, Any] = scores.index(max(lowercase ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) A_ : Dict = {} A_ : str = final_strs A_ : Union[str, Any] = final_scores A_ : Optional[Any] = char_strs A_ : Dict = bpe_strs A_ : str = wp_strs return out def lowerCAmelCase_ ( self , lowercase , lowercase ): """simple docstring""" if format == DecodeType.CHARACTER: A_ : List[Any] = self.char_decode A_ : List[Any] = 1 A_ : str = '[s]' elif format == DecodeType.BPE: A_ : List[Any] = self.bpe_decode A_ : Optional[int] = 2 A_ : Tuple = '#' elif format == DecodeType.WORDPIECE: A_ : Optional[int] = self.wp_decode A_ : Optional[int] = 1_0_2 A_ : List[Any] = '[SEP]' else: raise ValueError(F'''Format {format} is not supported.''' ) A_ , A_ : Dict = [], [] A_ : Any = pred_logits.size(0 ) A_ : Optional[int] = pred_logits.size(1 ) A_ , A_ : int = pred_logits.topk(1 , dim=-1 , largest=lowercase , sorted=lowercase ) A_ : Dict = preds_index.view(-1 , lowercase )[:, 1:] A_ : Any = decoder(lowercase ) A_ , A_ : List[Any] = torch.nn.functional.softmax(lowercase , dim=2 ).max(dim=2 ) A_ : List[str] = preds_max_prob[:, 1:] for index in range(lowercase ): A_ : int = preds_str[index].find(lowercase ) A_ : Union[str, Any] = preds_str[index][:pred_eos] A_ : Dict = preds_index[index].cpu().tolist() A_ : List[str] = pred_index.index(lowercase ) if eos_token in pred_index else -1 A_ : List[str] = preds_max_prob[index][: pred_eos_index + 1] A_ : Union[str, Any] = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(lowercase ) conf_scores.append(lowercase ) return dec_strs, conf_scores def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : int = [seq.replace(' ' , '' ) for seq in self.char_tokenizer.batch_decode(lowercase )] return decode_strs def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" return self.bpe_tokenizer.batch_decode(lowercase ) def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : Dict = [seq.replace(' ' , '' ) for seq in self.wp_tokenizer.batch_decode(lowercase )] return decode_strs
140
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): _snake_case : Any = StableDiffusionInstructPixaPixPipeline _snake_case : List[str] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width', 'cross_attention_kwargs'} _snake_case : Optional[Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS _snake_case : Union[str, Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS _snake_case : int = IMAGE_TO_IMAGE_IMAGE_PARAMS def lowerCAmelCase_ ( self : Tuple ): torch.manual_seed(0 ) _UpperCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=8 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) _UpperCAmelCase = PNDMScheduler(skip_prk_steps=__lowerCAmelCase ) torch.manual_seed(0 ) _UpperCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) _UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) _UpperCAmelCase = CLIPTextModel(__lowerCAmelCase ) _UpperCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _UpperCAmelCase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowerCAmelCase_ ( self : Dict , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[Any]=0 ): _UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase ) _UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] _UpperCAmelCase = Image.fromarray(np.uinta(__lowerCAmelCase ) ).convert("""RGB""" ) if str(__lowerCAmelCase ).startswith("""mps""" ): _UpperCAmelCase = torch.manual_seed(__lowerCAmelCase ) else: _UpperCAmelCase = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase ) _UpperCAmelCase = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """image_guidance_scale""": 1, """output_type""": """numpy""", } return inputs def lowerCAmelCase_ ( self : Tuple ): _UpperCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = StableDiffusionInstructPixaPixPipeline(**__lowerCAmelCase ) _UpperCAmelCase = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _UpperCAmelCase = self.get_dummy_inputs(__lowerCAmelCase ) _UpperCAmelCase = sd_pipe(**__lowerCAmelCase ).images _UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _UpperCAmelCase = np.array([0.7_526, 0.3_750, 0.4_547, 0.6_117, 0.5_866, 0.5_016, 0.4_327, 0.5_642, 0.4_815] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowerCAmelCase_ ( self : List[Any] ): _UpperCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = StableDiffusionInstructPixaPixPipeline(**__lowerCAmelCase ) _UpperCAmelCase = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _UpperCAmelCase = self.get_dummy_inputs(__lowerCAmelCase ) _UpperCAmelCase = """french fries""" _UpperCAmelCase = sd_pipe(**__lowerCAmelCase , negative_prompt=__lowerCAmelCase ) _UpperCAmelCase = output.images _UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _UpperCAmelCase = np.array([0.7_511, 0.3_642, 0.4_553, 0.6_236, 0.5_797, 0.5_013, 0.4_343, 0.5_611, 0.4_831] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowerCAmelCase_ ( self : Union[str, Any] ): _UpperCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = StableDiffusionInstructPixaPixPipeline(**__lowerCAmelCase ) _UpperCAmelCase = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _UpperCAmelCase = self.get_dummy_inputs(__lowerCAmelCase ) _UpperCAmelCase = [inputs["""prompt"""]] * 2 _UpperCAmelCase = np.array(inputs["""image"""] ).astype(np.floataa ) / 255.0 _UpperCAmelCase = torch.from_numpy(__lowerCAmelCase ).unsqueeze(0 ).to(__lowerCAmelCase ) _UpperCAmelCase = image / 2 + 0.5 _UpperCAmelCase = image.permute(0 , 3 , 1 , 2 ) _UpperCAmelCase = image.repeat(2 , 1 , 1 , 1 ) _UpperCAmelCase = sd_pipe(**__lowerCAmelCase ).images _UpperCAmelCase = image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) _UpperCAmelCase = np.array([0.5_812, 0.5_748, 0.5_222, 0.5_908, 0.5_695, 0.7_174, 0.6_804, 0.5_523, 0.5_579] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowerCAmelCase_ ( self : Optional[Any] ): _UpperCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = EulerAncestralDiscreteScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" ) _UpperCAmelCase = StableDiffusionInstructPixaPixPipeline(**__lowerCAmelCase ) _UpperCAmelCase = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _UpperCAmelCase = self.get_dummy_inputs(__lowerCAmelCase ) _UpperCAmelCase = sd_pipe(**__lowerCAmelCase ).images _UpperCAmelCase = image[0, -3:, -3:, -1] _UpperCAmelCase = [round(__lowerCAmelCase , 4 ) for x in image_slice.flatten().tolist()] print(""",""".join([str(__lowerCAmelCase ) for x in slice] ) ) assert image.shape == (1, 32, 32, 3) _UpperCAmelCase = np.array([0.7_417, 0.3_842, 0.4_732, 0.5_776, 0.5_891, 0.5_139, 0.4_052, 0.5_673, 0.4_986] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowerCAmelCase_ ( self : Dict ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def lowerCAmelCase_ ( self : List[str] ): _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = StableDiffusionInstructPixaPixPipeline(**__lowerCAmelCase ) _UpperCAmelCase = VaeImageProcessor(do_resize=__lowerCAmelCase , do_normalize=__lowerCAmelCase ) _UpperCAmelCase = pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _UpperCAmelCase = pipe(**self.get_dummy_inputs_by_type(__lowerCAmelCase , input_image_type="""pt""" ) )[0] _UpperCAmelCase = components["""vae"""] _UpperCAmelCase = self.get_dummy_inputs_by_type(__lowerCAmelCase , input_image_type="""pt""" ) for image_param in self.image_latents_params: if image_param in inputs.keys(): _UpperCAmelCase = vae.encode(inputs[image_param] ).latent_dist.mode() _UpperCAmelCase = pipe(**__lowerCAmelCase )[0] _UpperCAmelCase = np.abs(out - out_latents_inputs ).max() self.assertLess(__lowerCAmelCase , 1e-4 , """passing latents as image input generate different result from passing image""" ) @slow @require_torch_gpu class a ( unittest.TestCase ): def lowerCAmelCase_ ( self : List[str] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ ( self : str , __lowerCAmelCase : List[str]=0 ): _UpperCAmelCase = torch.manual_seed(__lowerCAmelCase ) _UpperCAmelCase = load_image( """https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg""" ) _UpperCAmelCase = { """prompt""": """turn him into a cyborg""", """image""": image, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """image_guidance_scale""": 1.0, """output_type""": """numpy""", } return inputs def lowerCAmelCase_ ( self : Union[str, Any] ): _UpperCAmelCase = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=__lowerCAmelCase ) pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) pipe.enable_attention_slicing() _UpperCAmelCase = self.get_inputs() _UpperCAmelCase = pipe(**__lowerCAmelCase ).images _UpperCAmelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) _UpperCAmelCase = np.array([0.5_902, 0.6_015, 0.6_027, 0.5_983, 0.6_092, 0.6_061, 0.5_765, 0.5_785, 0.5_555] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def lowerCAmelCase_ ( self : Union[str, Any] ): _UpperCAmelCase = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=__lowerCAmelCase ) _UpperCAmelCase = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) pipe.enable_attention_slicing() _UpperCAmelCase = self.get_inputs() _UpperCAmelCase = pipe(**__lowerCAmelCase ).images _UpperCAmelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) _UpperCAmelCase = np.array([0.6_578, 0.6_817, 0.6_972, 0.6_761, 0.6_856, 0.6_916, 0.6_428, 0.6_516, 0.6_301] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def lowerCAmelCase_ ( self : Tuple ): _UpperCAmelCase = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=__lowerCAmelCase ) _UpperCAmelCase = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) pipe.enable_attention_slicing() _UpperCAmelCase = self.get_inputs() _UpperCAmelCase = pipe(**__lowerCAmelCase ).images _UpperCAmelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) _UpperCAmelCase = np.array([0.3_828, 0.3_834, 0.3_818, 0.3_792, 0.3_865, 0.3_752, 0.3_792, 0.3_847, 0.3_753] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def lowerCAmelCase_ ( self : List[Any] ): _UpperCAmelCase = 0 def callback_fn(__lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : torch.FloatTensor ) -> None: _UpperCAmelCase = True nonlocal number_of_steps number_of_steps += 1 if step == 1: _UpperCAmelCase = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) _UpperCAmelCase = latents[0, -3:, -3:, -1] _UpperCAmelCase = np.array([-0.2_463, -0.4_644, -0.9_756, 1.5_176, 1.4_414, 0.7_866, 0.9_897, 0.8_521, 0.7_983] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: _UpperCAmelCase = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) _UpperCAmelCase = latents[0, -3:, -3:, -1] _UpperCAmelCase = np.array([-0.2_644, -0.4_626, -0.9_653, 1.5_176, 1.4_551, 0.7_686, 0.9_805, 0.8_452, 0.8_115] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 _UpperCAmelCase = False _UpperCAmelCase = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=__lowerCAmelCase , torch_dtype=torch.floataa ) _UpperCAmelCase = pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) pipe.enable_attention_slicing() _UpperCAmelCase = self.get_inputs() pipe(**__lowerCAmelCase , callback=__lowerCAmelCase , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def lowerCAmelCase_ ( self : str ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _UpperCAmelCase = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=__lowerCAmelCase , torch_dtype=torch.floataa ) _UpperCAmelCase = pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _UpperCAmelCase = self.get_inputs() _UpperCAmelCase = pipe(**__lowerCAmelCase ) _UpperCAmelCase = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def lowerCAmelCase_ ( self : int ): _UpperCAmelCase = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 _UpperCAmelCase = inputs["""image"""].resize((504, 504) ) _UpperCAmelCase = """timbrooks/instruct-pix2pix""" _UpperCAmelCase = StableDiffusionInstructPixaPixPipeline.from_pretrained( __lowerCAmelCase , safety_checker=__lowerCAmelCase , ) pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) pipe.enable_attention_slicing() _UpperCAmelCase = pipe(**__lowerCAmelCase ) _UpperCAmelCase = output.images[0] _UpperCAmelCase = image[255:258, 383:386, -1] assert image.shape == (504, 504, 3) _UpperCAmelCase = np.array([0.2_726, 0.2_529, 0.2_664, 0.2_655, 0.2_641, 0.2_642, 0.2_591, 0.2_649, 0.2_590] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3
350
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase__ = { """configuration_git""": ["""GIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GitConfig""", """GitVisionConfig"""], """processing_git""": ["""GitProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ """GIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """GitForCausalLM""", """GitModel""", """GitPreTrainedModel""", """GitVisionModel""", ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
30
0
"""simple docstring""" from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = ["image_processor", "tokenizer"] __UpperCamelCase = "Pix2StructImageProcessor" __UpperCamelCase = ("T5Tokenizer", "T5TokenizerFast") def __init__( self : Any , lowercase_ : Dict , lowercase_ : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = False super().__init__(lowercase_ , lowercase_) def __call__( self : Dict , lowercase_ : Optional[int]=None , lowercase_ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , lowercase_ : bool = True , lowercase_ : Union[bool, str, PaddingStrategy] = False , lowercase_ : Union[bool, str, TruncationStrategy] = None , lowercase_ : Optional[int] = None , lowercase_ : Optional[int] = 2048 , lowercase_ : int = 0 , lowercase_ : Optional[int] = None , lowercase_ : Optional[bool] = None , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : bool = True , lowercase_ : Optional[Union[str, TensorType]] = None , **lowercase_ : List[str] , ): '''simple docstring''' if images is None and text is None: raise ValueError('''You have to specify either images or text.''') # Get only text if images is None and not self.image_processor.is_vqa: SCREAMING_SNAKE_CASE_ : Dict = self.tokenizer SCREAMING_SNAKE_CASE_ : List[Any] = self.tokenizer( text=lowercase_ , add_special_tokens=lowercase_ , padding=lowercase_ , truncation=lowercase_ , max_length=lowercase_ , stride=lowercase_ , pad_to_multiple_of=lowercase_ , return_attention_mask=lowercase_ , return_overflowing_tokens=lowercase_ , return_special_tokens_mask=lowercase_ , return_offsets_mapping=lowercase_ , return_token_type_ids=lowercase_ , return_length=lowercase_ , verbose=lowercase_ , return_tensors=lowercase_ , **lowercase_ , ) return text_encoding if not self.image_processor.is_vqa: # add pixel_values SCREAMING_SNAKE_CASE_ : Any = self.image_processor( lowercase_ , return_tensors=lowercase_ , max_patches=lowercase_ , **lowercase_) else: # add pixel_values and bbox SCREAMING_SNAKE_CASE_ : List[Any] = self.image_processor( lowercase_ , return_tensors=lowercase_ , max_patches=lowercase_ , header_text=lowercase_ , **lowercase_) if text is not None and not self.image_processor.is_vqa: SCREAMING_SNAKE_CASE_ : Dict = self.tokenizer( text=lowercase_ , add_special_tokens=lowercase_ , padding=lowercase_ , truncation=lowercase_ , max_length=lowercase_ , stride=lowercase_ , pad_to_multiple_of=lowercase_ , return_attention_mask=lowercase_ , return_overflowing_tokens=lowercase_ , return_special_tokens_mask=lowercase_ , return_offsets_mapping=lowercase_ , return_token_type_ids=lowercase_ , return_length=lowercase_ , verbose=lowercase_ , return_tensors=lowercase_ , **lowercase_ , ) if "attention_mask" in text_encoding: SCREAMING_SNAKE_CASE_ : List[Any] = text_encoding.pop('''attention_mask''') if "input_ids" in text_encoding: SCREAMING_SNAKE_CASE_ : Dict = text_encoding.pop('''input_ids''') else: SCREAMING_SNAKE_CASE_ : str = None if text_encoding is not None: encoding_image_processor.update(lowercase_) return encoding_image_processor def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , *lowercase_ : str , **lowercase_ : List[str]): '''simple docstring''' return self.tokenizer.batch_decode(*lowercase_ , **lowercase_) def _SCREAMING_SNAKE_CASE ( self : List[str] , *lowercase_ : List[Any] , **lowercase_ : Any): '''simple docstring''' return self.tokenizer.decode(*lowercase_ , **lowercase_) @property def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = self.tokenizer.model_input_names SCREAMING_SNAKE_CASE_ : List[str] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
91
"""simple docstring""" from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig SCREAMING_SNAKE_CASE_ : Union[str, Any] = logging.get_logger(__name__) # General docstring SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'MobileNetV1Config' # Base docstring SCREAMING_SNAKE_CASE_ : str = 'google/mobilenet_v1_1.0_224' SCREAMING_SNAKE_CASE_ : List[str] = [1, 1_0_2_4, 7, 7] # Image classification docstring SCREAMING_SNAKE_CASE_ : Optional[Any] = 'google/mobilenet_v1_1.0_224' SCREAMING_SNAKE_CASE_ : Tuple = 'tabby, tabby cat' SCREAMING_SNAKE_CASE_ : Union[str, Any] = [ 'google/mobilenet_v1_1.0_224', 'google/mobilenet_v1_0.75_192', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def _snake_case ( UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict=None ): A__ = {} if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): A__ = model.mobilenet_va else: A__ = model A__ = """MobilenetV1/Conv2d_0/""" A__ = backbone.conv_stem.convolution.weight A__ = backbone.conv_stem.normalization.bias A__ = backbone.conv_stem.normalization.weight A__ = backbone.conv_stem.normalization.running_mean A__ = backbone.conv_stem.normalization.running_var for i in range(13 ): A__ = i + 1 A__ = i * 2 A__ = backbone.layer[pt_index] A__ = F"""MobilenetV1/Conv2d_{tf_index}_depthwise/""" A__ = pointer.convolution.weight A__ = pointer.normalization.bias A__ = pointer.normalization.weight A__ = pointer.normalization.running_mean A__ = pointer.normalization.running_var A__ = backbone.layer[pt_index + 1] A__ = F"""MobilenetV1/Conv2d_{tf_index}_pointwise/""" A__ = pointer.convolution.weight A__ = pointer.normalization.bias A__ = pointer.normalization.weight A__ = pointer.normalization.running_mean A__ = pointer.normalization.running_var if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): A__ = """MobilenetV1/Logits/Conv2d_1c_1x1/""" A__ = model.classifier.weight A__ = model.classifier.bias return tf_to_pt_map def _snake_case ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] ): try: import numpy as np import tensorflow as tf except ImportError: logger.error( """Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see """ """https://www.tensorflow.org/install/ for installation instructions.""" ) raise # Load weights from TF model A__ = tf.train.list_variables(UpperCAmelCase_ ) A__ = {} for name, shape in init_vars: logger.info(F"""Loading TF weight {name} with shape {shape}""" ) A__ = tf.train.load_variable(UpperCAmelCase_ , UpperCAmelCase_ ) A__ = array # Build TF to PyTorch weights loading map A__ = _build_tf_to_pytorch_map(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) for name, pointer in tf_to_pt_map.items(): logger.info(F"""Importing {name}""" ) if name not in tf_weights: logger.info(F"""{name} not in tf pre-trained weights, skipping""" ) continue A__ = tf_weights[name] if "depthwise_weights" in name: logger.info("""Transposing depthwise""" ) A__ = np.transpose(UpperCAmelCase_ , (2, 3, 0, 1) ) elif "weights" in name: logger.info("""Transposing""" ) if len(pointer.shape ) == 2: # copying into linear layer A__ = array.squeeze().transpose() else: A__ = np.transpose(UpperCAmelCase_ , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(F"""Pointer shape {pointer.shape} and array shape {array.shape} mismatched""" ) logger.info(F"""Initialize PyTorch weight {name} {array.shape}""" ) A__ = torch.from_numpy(UpperCAmelCase_ ) tf_weights.pop(UpperCAmelCase_ , UpperCAmelCase_ ) tf_weights.pop(name + """/RMSProp""" , UpperCAmelCase_ ) tf_weights.pop(name + """/RMSProp_1""" , UpperCAmelCase_ ) tf_weights.pop(name + """/ExponentialMovingAverage""" , UpperCAmelCase_ ) logger.info(F"""Weights not copied to PyTorch model: {', '.join(tf_weights.keys() )}""" ) return model def _snake_case ( UpperCAmelCase_ : torch.Tensor , UpperCAmelCase_ : nn.Convad ): A__ , A__ = features.shape[-2:] A__ , A__ = conv_layer.stride A__ , A__ = conv_layer.kernel_size if in_height % stride_height == 0: A__ = max(kernel_height - stride_height , 0 ) else: A__ = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: A__ = max(kernel_width - stride_width , 0 ) else: A__ = max(kernel_width - (in_width % stride_width) , 0 ) A__ = pad_along_width // 2 A__ = pad_along_width - pad_left A__ = pad_along_height // 2 A__ = pad_along_height - pad_top A__ = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(UpperCAmelCase_ , UpperCAmelCase_ , """constant""" , 0.0 ) class a ( nn.Module ): """simple docstring""" def __init__( self: Union[str, Any] , UpperCamelCase: MobileNetVaConfig , UpperCamelCase: int , UpperCamelCase: int , UpperCamelCase: int , UpperCamelCase: Optional[int] = 1 , UpperCamelCase: Optional[int] = 1 , UpperCamelCase: bool = False , UpperCamelCase: Optional[bool] = True , UpperCamelCase: Optional[bool or str] = True , ): """simple docstring""" super().__init__() A__ = config if in_channels % groups != 0: raise ValueError(f"""Input channels ({in_channels}) are not divisible by {groups} groups.""" ) if out_channels % groups != 0: raise ValueError(f"""Output channels ({out_channels}) are not divisible by {groups} groups.""" ) A__ = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) A__ = nn.Convad( in_channels=UpperCamelCase , out_channels=UpperCamelCase , kernel_size=UpperCamelCase , stride=UpperCamelCase , padding=UpperCamelCase , groups=UpperCamelCase , bias=UpperCamelCase , padding_mode="""zeros""" , ) if use_normalization: A__ = nn.BatchNormad( num_features=UpperCamelCase , eps=config.layer_norm_eps , momentum=0.9_997 , affine=UpperCamelCase , track_running_stats=UpperCamelCase , ) else: A__ = None if use_activation: if isinstance(UpperCamelCase , UpperCamelCase ): A__ = ACTaFN[use_activation] elif isinstance(config.hidden_act , UpperCamelCase ): A__ = ACTaFN[config.hidden_act] else: A__ = config.hidden_act else: A__ = None def UpperCamelCase ( self: List[Any] , UpperCamelCase: torch.Tensor ): """simple docstring""" if self.config.tf_padding: A__ = apply_tf_padding(UpperCamelCase , self.convolution ) A__ = self.convolution(UpperCamelCase ) if self.normalization is not None: A__ = self.normalization(UpperCamelCase ) if self.activation is not None: A__ = self.activation(UpperCamelCase ) return features class a ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = MobileNetVaConfig UpperCAmelCase = load_tf_weights_in_mobilenet_va UpperCAmelCase = "mobilenet_v1" UpperCAmelCase = "pixel_values" UpperCAmelCase = False def UpperCamelCase ( self: Any , UpperCamelCase: Union[nn.Linear, nn.Convad] ): """simple docstring""" if isinstance(UpperCamelCase , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(UpperCamelCase , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = r'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' SCREAMING_SNAKE_CASE_ : Optional[Any] = r'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`MobileNetV1ImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.", _lowerCamelCase, ) class a ( _lowerCamelCase ): """simple docstring""" def __init__( self: Any , UpperCamelCase: MobileNetVaConfig , UpperCamelCase: bool = True ): """simple docstring""" super().__init__(UpperCamelCase ) A__ = config A__ = 32 A__ = max(int(depth * config.depth_multiplier ) , config.min_depth ) A__ = MobileNetVaConvLayer( UpperCamelCase , in_channels=config.num_channels , out_channels=UpperCamelCase , kernel_size=3 , stride=2 , ) A__ = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] A__ = nn.ModuleList() for i in range(13 ): A__ = out_channels if strides[i] == 2 or i == 0: depth *= 2 A__ = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( UpperCamelCase , in_channels=UpperCamelCase , out_channels=UpperCamelCase , kernel_size=3 , stride=strides[i] , groups=UpperCamelCase , ) ) self.layer.append( MobileNetVaConvLayer( UpperCamelCase , in_channels=UpperCamelCase , out_channels=UpperCamelCase , kernel_size=1 , ) ) A__ = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def UpperCamelCase ( self: Dict , UpperCamelCase: Optional[Any] ): """simple docstring""" raise NotImplementedError @add_start_docstrings_to_model_forward(UpperCamelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=UpperCamelCase , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCamelCase ( self: Tuple , UpperCamelCase: Optional[torch.Tensor] = None , UpperCamelCase: Optional[bool] = None , UpperCamelCase: Optional[bool] = None , ): """simple docstring""" A__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) A__ = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("""You have to specify pixel_values""" ) A__ = self.conv_stem(UpperCamelCase ) A__ = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): A__ = layer_module(UpperCamelCase ) if output_hidden_states: A__ = all_hidden_states + (hidden_states,) A__ = hidden_states if self.pooler is not None: A__ = torch.flatten(self.pooler(UpperCamelCase ) , start_dim=1 ) else: A__ = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=UpperCamelCase , pooler_output=UpperCamelCase , hidden_states=UpperCamelCase , ) @add_start_docstrings( "\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ", _lowerCamelCase, ) class a ( _lowerCamelCase ): """simple docstring""" def __init__( self: Union[str, Any] , UpperCamelCase: MobileNetVaConfig ): """simple docstring""" super().__init__(UpperCamelCase ) A__ = config.num_labels A__ = MobileNetVaModel(UpperCamelCase ) A__ = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head A__ = nn.Dropout(config.classifier_dropout_prob , inplace=UpperCamelCase ) A__ = nn.Linear(UpperCamelCase , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UpperCamelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=UpperCamelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCamelCase ( self: Union[str, Any] , UpperCamelCase: Optional[torch.Tensor] = None , UpperCamelCase: Optional[bool] = None , UpperCamelCase: Optional[torch.Tensor] = None , UpperCamelCase: Optional[bool] = None , ): """simple docstring""" A__ = return_dict if return_dict is not None else self.config.use_return_dict A__ = self.mobilenet_va(UpperCamelCase , output_hidden_states=UpperCamelCase , return_dict=UpperCamelCase ) A__ = outputs.pooler_output if return_dict else outputs[1] A__ = self.classifier(self.dropout(UpperCamelCase ) ) A__ = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: A__ = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): A__ = """single_label_classification""" else: A__ = """multi_label_classification""" if self.config.problem_type == "regression": A__ = MSELoss() if self.num_labels == 1: A__ = loss_fct(logits.squeeze() , labels.squeeze() ) else: A__ = loss_fct(UpperCamelCase , UpperCamelCase ) elif self.config.problem_type == "single_label_classification": A__ = CrossEntropyLoss() A__ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": A__ = BCEWithLogitsLoss() A__ = loss_fct(UpperCamelCase , UpperCamelCase ) if not return_dict: A__ = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=UpperCamelCase , logits=UpperCamelCase , hidden_states=outputs.hidden_states , )
335
0
import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) UpperCAmelCase__ : Union[str, Any] ={ '''iou_prediction_head.layers.0''': '''iou_prediction_head.proj_in''', '''iou_prediction_head.layers.1''': '''iou_prediction_head.layers.0''', '''iou_prediction_head.layers.2''': '''iou_prediction_head.proj_out''', '''mask_decoder.output_upscaling.0''': '''mask_decoder.upscale_conv1''', '''mask_decoder.output_upscaling.1''': '''mask_decoder.upscale_layer_norm''', '''mask_decoder.output_upscaling.3''': '''mask_decoder.upscale_conv2''', '''mask_downscaling.0''': '''mask_embed.conv1''', '''mask_downscaling.1''': '''mask_embed.layer_norm1''', '''mask_downscaling.3''': '''mask_embed.conv2''', '''mask_downscaling.4''': '''mask_embed.layer_norm2''', '''mask_downscaling.6''': '''mask_embed.conv3''', '''point_embeddings''': '''point_embed''', '''pe_layer.positional_encoding_gaussian_matrix''': '''shared_embedding.positional_embedding''', '''image_encoder''': '''vision_encoder''', '''neck.0''': '''neck.conv1''', '''neck.1''': '''neck.layer_norm1''', '''neck.2''': '''neck.conv2''', '''neck.3''': '''neck.layer_norm2''', '''patch_embed.proj''': '''patch_embed.projection''', '''.norm''': '''.layer_norm''', '''blocks''': '''layers''', } def _lowercase ( _UpperCAmelCase ) -> Optional[Any]: lowerCamelCase ={} state_dict.pop("""pixel_mean""" , _UpperCAmelCase ) state_dict.pop("""pixel_std""" , _UpperCAmelCase ) lowerCamelCase =r""".*.output_hypernetworks_mlps.(\d+).layers.(\d+).*""" for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: lowerCamelCase =key.replace(_UpperCAmelCase , _UpperCAmelCase ) if re.match(_UpperCAmelCase , _UpperCAmelCase ): lowerCamelCase =int(re.match(_UpperCAmelCase , _UpperCAmelCase ).group(2 ) ) if layer_nb == 0: lowerCamelCase =key.replace("""layers.0""" , """proj_in""" ) elif layer_nb == 1: lowerCamelCase =key.replace("""layers.1""" , """layers.0""" ) elif layer_nb == 2: lowerCamelCase =key.replace("""layers.2""" , """proj_out""" ) lowerCamelCase =value lowerCamelCase =model_state_dict[ """prompt_encoder.shared_embedding.positional_embedding""" ] return model_state_dict def _lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase="ybelkada/segment-anything" ) -> List[Any]: lowerCamelCase =hf_hub_download(_UpperCAmelCase , F"""checkpoints/{model_name}.pth""" ) if "sam_vit_b" in model_name: lowerCamelCase =SamConfig() elif "sam_vit_l" in model_name: lowerCamelCase =SamVisionConfig( hidden_size=10_24 , num_hidden_layers=24 , num_attention_heads=16 , global_attn_indexes=[5, 11, 17, 23] , ) lowerCamelCase =SamConfig( vision_config=_UpperCAmelCase , ) elif "sam_vit_h" in model_name: lowerCamelCase =SamVisionConfig( hidden_size=12_80 , num_hidden_layers=32 , num_attention_heads=16 , global_attn_indexes=[7, 15, 23, 31] , ) lowerCamelCase =SamConfig( vision_config=_UpperCAmelCase , ) lowerCamelCase =torch.load(_UpperCAmelCase , map_location="""cpu""" ) lowerCamelCase =replace_keys(_UpperCAmelCase ) lowerCamelCase =SamImageProcessor() lowerCamelCase =SamProcessor(image_processor=_UpperCAmelCase ) lowerCamelCase =SamModel(_UpperCAmelCase ) hf_model.load_state_dict(_UpperCAmelCase ) lowerCamelCase =hf_model.to("""cuda""" ) lowerCamelCase ="""https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png""" lowerCamelCase =Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ).convert("""RGB""" ) lowerCamelCase =[[[4_00, 6_50]]] lowerCamelCase =[[1]] lowerCamelCase =processor(images=np.array(_UpperCAmelCase ) , return_tensors="""pt""" ).to("""cuda""" ) with torch.no_grad(): lowerCamelCase =hf_model(**_UpperCAmelCase ) lowerCamelCase =output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.5_7_9_8_9_0_2_5_1_1_5_9_6_6_8 lowerCamelCase =processor( images=np.array(_UpperCAmelCase ) , input_points=_UpperCAmelCase , input_labels=_UpperCAmelCase , return_tensors="""pt""" ).to("""cuda""" ) with torch.no_grad(): lowerCamelCase =hf_model(**_UpperCAmelCase ) lowerCamelCase =output.iou_scores.squeeze() assert scores[-1].item() == 0.9_7_1_2_6_0_3_0_9_2_1_9_3_6_0_4 lowerCamelCase =((75, 2_75, 17_25, 8_50),) lowerCamelCase =processor(images=np.array(_UpperCAmelCase ) , input_boxes=_UpperCAmelCase , return_tensors="""pt""" ).to("""cuda""" ) with torch.no_grad(): lowerCamelCase =hf_model(**_UpperCAmelCase ) lowerCamelCase =output.iou_scores.squeeze() assert scores[-1].item() == 0.8_6_8_6_0_1_5_6_0_5_9_2_6_5_1_4 # Test with 2 points and 1 image. lowerCamelCase =[[[4_00, 6_50], [8_00, 6_50]]] lowerCamelCase =[[1, 1]] lowerCamelCase =processor( images=np.array(_UpperCAmelCase ) , input_points=_UpperCAmelCase , input_labels=_UpperCAmelCase , return_tensors="""pt""" ).to("""cuda""" ) with torch.no_grad(): lowerCamelCase =hf_model(**_UpperCAmelCase ) lowerCamelCase =output.iou_scores.squeeze() assert scores[-1].item() == 0.9_9_3_6_0_4_7_7_9_2_4_3_4_6_9_2 if __name__ == "__main__": UpperCAmelCase__ : Any =argparse.ArgumentParser() UpperCAmelCase__ : Dict =['''sam_vit_b_01ec64''', '''sam_vit_h_4b8939''', '''sam_vit_l_0b3195'''] parser.add_argument( '''--model_name''', default='''sam_vit_h_4b8939''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) parser.add_argument( '''--model_hub_id''', default='''ybelkada/segment-anything''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) UpperCAmelCase__ : Optional[int] =parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
262
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
262
1
import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def _a ( a :Optional[Any] , a :int , a :List[str] , a :List[str] ) -> Tuple: a = s.rsplit(a , a ) return new.join(a ) def _a ( a :Any ) -> List[Any]: # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if '''encoder.embeddings''' not in key else 0 for key, param in state_dict.items() ) def _a ( a :Any ) -> List[Any]: a = {} a = ['''group_1''', '''group_2''', '''group_3''', '''group_4'''] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: a = key.replace(F"""{group_key}.""" , F"""{group_key}.group.""" ) if "res_path" in key: a = key.replace('''res_path.''' , '''res_path.path.''' ) if key.endswith('''.w''' ): a = rreplace(a , '''.w''' , '''.weight''' , 1 ) if key.endswith('''.b''' ): a = rreplace(a , '''.b''' , '''.bias''' , 1 ) a = value.float() return upgrade @torch.no_grad() def _a ( a :Union[str, Any] , a :Optional[Any] , a :Optional[int]=None , a :str=True ) -> Tuple: from dall_e import Encoder a = Encoder() if os.path.exists(a ): a = torch.load(a ) else: a = torch.hub.load_state_dict_from_url(a ) if isinstance(a , a ): a = ckpt.state_dict() encoder.load_state_dict(a ) if config_path is not None: a = FlavaImageCodebookConfig.from_pretrained(a ) else: a = FlavaImageCodebookConfig() a = FlavaImageCodebook(a ).eval() a = encoder.state_dict() a = upgrade_state_dict(a ) hf_model.load_state_dict(a ) a = hf_model.state_dict() a = count_parameters(a ) a = count_parameters(a ) assert torch.allclose(a , a , atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(a ) else: return hf_state_dict if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") UpperCAmelCase__ = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
0
import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) a__: List[Any] = logging.getLogger() def UpperCamelCase__( )->Union[str, Any]: A__ = argparse.ArgumentParser() parser.add_argument('''-f''' ) A__ = parser.parse_args() return args.f class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): def UpperCamelCase ( self ): A__ = logging.StreamHandler(sys.stdout ) logger.addHandler(__lowerCamelCase ) def UpperCamelCase ( self,__lowerCamelCase ): A__ = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0,'''run_glue_deebert.py''' ) with patch.object(__lowerCamelCase,'''argv''',__lowerCamelCase ): A__ = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(__lowerCamelCase,0.666 ) @slow @require_torch_non_multi_gpu def UpperCamelCase ( self ): A__ = ''' --model_type roberta --model_name_or_path roberta-base --task_name MRPC --do_train --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --max_seq_length 128 --per_gpu_eval_batch_size=1 --per_gpu_train_batch_size=8 --learning_rate 2e-4 --num_train_epochs 3 --overwrite_output_dir --seed 42 --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --save_steps 0 --overwrite_cache --eval_after_first_stage '''.split() self.run_and_check(__lowerCamelCase ) A__ = ''' --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --eval_each_highway --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 '''.split() self.run_and_check(__lowerCamelCase ) A__ = ''' --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --early_exit_entropy 0.1 --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 '''.split() self.run_and_check(__lowerCamelCase )
193
0
from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
368
def snake_case_ ( lowerCAmelCase_ : int ): __lowercase : int = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def snake_case_ ( lowerCAmelCase_ : int = 5000 ): __lowercase : Optional[int] = [(i * (3 * i - 1)) // 2 for i in range(1 , lowerCAmelCase_ )] for i, pentagonal_i in enumerate(lowerCAmelCase_ ): for j in range(lowerCAmelCase_ , len(lowerCAmelCase_ ) ): __lowercase : int = pentagonal_nums[j] __lowercase : Optional[int] = pentagonal_i + pentagonal_j __lowercase : Union[str, Any] = pentagonal_j - pentagonal_i if is_pentagonal(lowerCAmelCase_ ) and is_pentagonal(lowerCAmelCase_ ): return b return -1 if __name__ == "__main__": print(f'''{solution() = }''')
306
0
# Lint as: python3 import itertools import os import re UpperCAmelCase_ = re.compile(r'([A-Z]+)([A-Z][a-z])') UpperCAmelCase_ = re.compile(r'([a-z\d])([A-Z])') UpperCAmelCase_ = re.compile(r'(?<!_)_(?!_)') UpperCAmelCase_ = re.compile(r'(_{2,})') UpperCAmelCase_ = r'^\w+(\.\w+)*$' UpperCAmelCase_ = r'<>:/\|?*' def lowerCamelCase__ ( A__ : Dict ): '''simple docstring''' __lowerCamelCase = _uppercase_uppercase_re.sub(R"""\1_\2""" , A__ ) __lowerCamelCase = _lowercase_uppercase_re.sub(R"""\1_\2""" , A__ ) return name.lower() def lowerCamelCase__ ( A__ : str ): '''simple docstring''' __lowerCamelCase = _single_underscore_re.split(A__ ) __lowerCamelCase = [_multiple_underscores_re.split(A__ ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(A__ ) if n != """""" ) def lowerCamelCase__ ( A__ : Optional[Any] ): '''simple docstring''' if os.path.basename(A__ ) != name: raise ValueError(f'Should be a dataset name, not a path: {name}' ) return camelcase_to_snakecase(A__ ) def lowerCamelCase__ ( A__ : Dict , A__ : Dict ): '''simple docstring''' if os.path.basename(A__ ) != name: raise ValueError(f'Should be a dataset name, not a path: {name}' ) if not re.match(_split_re , A__ ): raise ValueError(f'Split name should match \'{_split_re}\'\' but got \'{split}\'.' ) return f'{filename_prefix_for_name(A__ )}-{split}' def lowerCamelCase__ ( A__ : int , A__ : Tuple , A__ : Optional[Any] , A__ : str=None ): '''simple docstring''' __lowerCamelCase = filename_prefix_for_split(A__ , A__ ) if filetype_suffix: prefix += f'.{filetype_suffix}' __lowerCamelCase = os.path.join(A__ , A__ ) return f'{filepath}*' def lowerCamelCase__ ( A__ : List[str] , A__ : List[Any] , A__ : int , A__ : int=None , A__ : Any=None ): '''simple docstring''' __lowerCamelCase = filename_prefix_for_split(A__ , A__ ) __lowerCamelCase = os.path.join(A__ , A__ ) if shard_lengths: __lowerCamelCase = len(A__ ) __lowerCamelCase = [f'{prefix}-{shard_id:05d}-of-{num_shards:05d}' for shard_id in range(A__ )] if filetype_suffix: __lowerCamelCase = [filename + f'.{filetype_suffix}' for filename in filenames] return filenames else: __lowerCamelCase = prefix if filetype_suffix: filename += f'.{filetype_suffix}' return [filename]
12
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging UpperCAmelCase_ = logging.get_logger(__name__) class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Tuple = ['pixel_values'] def __init__( self: Any , UpperCamelCase_: bool = True , UpperCamelCase_: Union[int, float] = 1 / 2_55 , UpperCamelCase_: bool = True , UpperCamelCase_: int = 8 , **UpperCamelCase_: Tuple , ): super().__init__(**UpperCamelCase_ ) __lowerCamelCase = do_rescale __lowerCamelCase = rescale_factor __lowerCamelCase = do_pad __lowerCamelCase = pad_size def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: np.ndarray , UpperCamelCase_: float , UpperCamelCase_: Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_: Tuple ): return rescale(UpperCamelCase_ , scale=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: np.ndarray , UpperCamelCase_: int , UpperCamelCase_: Optional[Union[str, ChannelDimension]] = None ): __lowerCamelCase, __lowerCamelCase = get_image_size(UpperCamelCase_ ) __lowerCamelCase = (old_height // size + 1) * size - old_height __lowerCamelCase = (old_width // size + 1) * size - old_width return pad(UpperCamelCase_ , ((0, pad_height), (0, pad_width)) , mode="""symmetric""" , data_format=UpperCamelCase_ ) def lowerCAmelCase__ ( self: str , UpperCamelCase_: ImageInput , UpperCamelCase_: Optional[bool] = None , UpperCamelCase_: Optional[float] = None , UpperCamelCase_: Optional[bool] = None , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: Optional[Union[str, TensorType]] = None , UpperCamelCase_: Union[str, ChannelDimension] = ChannelDimension.FIRST , **UpperCamelCase_: Any , ): __lowerCamelCase = do_rescale if do_rescale is not None else self.do_rescale __lowerCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCamelCase = do_pad if do_pad is not None else self.do_pad __lowerCamelCase = pad_size if pad_size is not None else self.pad_size __lowerCamelCase = make_list_of_images(UpperCamelCase_ ) if not valid_images(UpperCamelCase_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) # All transformations expect numpy arrays. __lowerCamelCase = [to_numpy_array(UpperCamelCase_ ) for image in images] if do_rescale: __lowerCamelCase = [self.rescale(image=UpperCamelCase_ , scale=UpperCamelCase_ ) for image in images] if do_pad: __lowerCamelCase = [self.pad(UpperCamelCase_ , size=UpperCamelCase_ ) for image in images] __lowerCamelCase = [to_channel_dimension_format(UpperCamelCase_ , UpperCamelCase_ ) for image in images] __lowerCamelCase = {"""pixel_values""": images} return BatchFeature(data=UpperCamelCase_ , tensor_type=UpperCamelCase_ )
12
1
"""simple docstring""" import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) __UpperCamelCase = [ '''cross_validation.py''', '''gradient_accumulation.py''', '''local_sgd.py''', '''multi_process_metrics.py''', '''memory.py''', '''automatic_gradient_accumulation.py''', '''fsdp_with_peak_mem_tracking.py''', '''deepspeed_with_config_support.py''', '''megatron_lm_gpt_pretraining.py''', ] class UpperCamelCase ( unittest.TestCase ): def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__ = None, lowerCAmelCase__ = None) -> Union[str, Any]: snake_case_ = None snake_case_ = os.path.abspath(os.path.join('examples', 'by_feature')) snake_case_ = os.path.abspath('examples') for item in os.listdir(lowerCAmelCase__): if item not in EXCLUDE_EXAMPLES: snake_case_ = os.path.join(lowerCAmelCase__, lowerCAmelCase__) if os.path.isfile(lowerCAmelCase__) and ".py" in item_path: with self.subTest( tested_script=lowerCAmelCase__, feature_script=lowerCAmelCase__, tested_section='main()' if parser_only else 'training_function()', ): snake_case_ = compare_against_test( os.path.join(lowerCAmelCase__, lowerCAmelCase__), lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) snake_case_ = '\n'.join(lowerCAmelCase__) if special_strings is not None: for string in special_strings: snake_case_ = diff.replace(lowerCAmelCase__, '') self.assertEqual(lowerCAmelCase__, '') def a_ ( self) -> Optional[Any]: self.one_complete_example('complete_nlp_example.py', lowerCAmelCase__) self.one_complete_example('complete_nlp_example.py', lowerCAmelCase__) def a_ ( self) -> Optional[Any]: snake_case_ = os.path.abspath(os.path.join('examples', 'cv_example.py')) snake_case_ = [ ' ' * 16 + '{\n\n', ' ' * 20 + '"accuracy": eval_metric["accuracy"],\n\n', ' ' * 20 + '"f1": eval_metric["f1"],\n\n', ' ' * 20 + '"train_loss": total_loss.item() / len(train_dataloader),\n\n', ' ' * 20 + '"epoch": epoch,\n\n', ' ' * 16 + '},\n\n', ' ' * 16 + 'step=epoch,\n', ' ' * 12, ' ' * 8 + 'for step, batch in enumerate(active_dataloader):\n', ] self.one_complete_example('complete_cv_example.py', lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) self.one_complete_example('complete_cv_example.py', lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) @mock.patch.dict(os.environ , {"TESTING_MOCKED_DATALOADERS": "1"} ) class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = False @classmethod def a_ ( cls) -> List[Any]: super().setUpClass() snake_case_ = tempfile.mkdtemp() snake_case_ = os.path.join(cls._tmpdir, 'default_config.yml') write_basic_config(save_location=cls.configPath) snake_case_ = ['accelerate', 'launch', '--config_file', cls.configPath] @classmethod def a_ ( cls) -> List[str]: super().tearDownClass() shutil.rmtree(cls._tmpdir) def a_ ( self) -> int: snake_case_ = f'\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n '.split() run_command(self._launch_args + testargs) self.assertTrue(os.path.exists(os.path.join(self.tmpdir, 'epoch_0'))) def a_ ( self) -> Optional[int]: snake_case_ = f'\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n '.split() snake_case_ = run_command(self._launch_args + testargs) self.assertTrue(os.path.exists(os.path.join(self.tmpdir, 'step_2'))) def a_ ( self) -> List[Any]: snake_case_ = f'\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir, "epoch_0")}\n '.split() snake_case_ = run_command(self._launch_args + testargs, return_stdout=lowerCAmelCase__) self.assertNotIn('epoch 0:', lowerCAmelCase__) self.assertIn('epoch 1:', lowerCAmelCase__) def a_ ( self) -> List[Any]: snake_case_ = f'\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir, "step_2")}\n '.split() snake_case_ = run_command(self._launch_args + testargs, return_stdout=lowerCAmelCase__) if torch.cuda.is_available(): snake_case_ = torch.cuda.device_count() else: snake_case_ = 1 if num_processes > 1: self.assertNotIn('epoch 0:', lowerCAmelCase__) self.assertIn('epoch 1:', lowerCAmelCase__) else: self.assertIn('epoch 0:', lowerCAmelCase__) self.assertIn('epoch 1:', lowerCAmelCase__) @slow def a_ ( self) -> int: snake_case_ = '\n examples/by_feature/cross_validation.py\n --num_folds 2\n '.split() with mock.patch.dict(os.environ, {'TESTING_MOCKED_DATALOADERS': '0'}): snake_case_ = run_command(self._launch_args + testargs, return_stdout=lowerCAmelCase__) snake_case_ = re.findall('({.+})', lowerCAmelCase__) snake_case_ = [r for r in results if 'accuracy' in r][-1] snake_case_ = ast.literal_eval(lowerCAmelCase__) self.assertGreaterEqual(results['accuracy'], 0.75) def a_ ( self) -> int: snake_case_ = ['examples/by_feature/multi_process_metrics.py'] run_command(self._launch_args + testargs) @require_trackers @mock.patch.dict(os.environ, {'WANDB_MODE': 'offline'}) def a_ ( self) -> Tuple: with tempfile.TemporaryDirectory() as tmpdir: snake_case_ = f'\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n '.split() run_command(self._launch_args + testargs) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__, 'tracking'))) def a_ ( self) -> Optional[Any]: snake_case_ = ['examples/by_feature/gradient_accumulation.py'] run_command(self._launch_args + testargs) def a_ ( self) -> Optional[int]: snake_case_ = ['examples/by_feature/local_sgd.py'] run_command(self._launch_args + testargs)
360
"""simple docstring""" import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __UpperCamelCase = logging.getLogger(__name__) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> Any: return (preds == labels).mean() @dataclass class UpperCamelCase : SCREAMING_SNAKE_CASE_ = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) SCREAMING_SNAKE_CASE_ = field( default=lowerCAmelCase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) SCREAMING_SNAKE_CASE_ = field( default=lowerCAmelCase__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) SCREAMING_SNAKE_CASE_ = field( default=lowerCAmelCase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class UpperCamelCase : SCREAMING_SNAKE_CASE_ = field(metadata={"help": "The name of the task to train on: " + ", ".join(processors.keys() )} ) SCREAMING_SNAKE_CASE_ = field(metadata={"help": "Should contain the data files for the task."} ) SCREAMING_SNAKE_CASE_ = field( default=1_2_8 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) SCREAMING_SNAKE_CASE_ = field( default=lowerCAmelCase__ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def UpperCAmelCase ( ) -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. snake_case_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) snake_case_ , snake_case_ , snake_case_ = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. Use' ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , UpperCAmelCase ) # Set seed set_seed(training_args.seed ) try: snake_case_ = processors[data_args.task_name]() snake_case_ = processor.get_labels() snake_case_ = len(UpperCAmelCase ) except KeyError: raise ValueError('Task not found: %s' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case_ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=UpperCAmelCase , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) snake_case_ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) snake_case_ = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=UpperCAmelCase , cache_dir=model_args.cache_dir , ) # Get datasets snake_case_ = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=UpperCAmelCase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) snake_case_ = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=UpperCAmelCase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(UpperCAmelCase ) -> Dict: snake_case_ = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(UpperCAmelCase , p.label_ids )} # Data collator snake_case_ = DataCollatorWithPadding(UpperCAmelCase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer snake_case_ = Trainer( model=UpperCAmelCase , args=UpperCAmelCase , train_dataset=UpperCAmelCase , eval_dataset=UpperCAmelCase , compute_metrics=UpperCAmelCase , data_collator=UpperCAmelCase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation snake_case_ = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) snake_case_ = trainer.evaluate() snake_case_ = os.path.join(training_args.output_dir , 'eval_results.txt' ) if trainer.is_world_master(): with open(UpperCAmelCase , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(' %s = %s' , UpperCAmelCase , UpperCAmelCase ) writer.write('%s = %s\n' % (key, value) ) results.update(UpperCAmelCase ) return results def UpperCAmelCase ( UpperCAmelCase ) -> Optional[int]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
312
0
"""simple docstring""" import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class lowerCAmelCase_ (a__ ): """simple docstring""" def __magic_name__ (self ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , """hidden_sizes""" ) ) self.parent.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , """neck_hidden_sizes""" ) ) self.parent.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , """num_attention_heads""" ) ) class lowerCAmelCase_ : """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=13 , SCREAMING_SNAKE_CASE__=32 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=6_40 , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__="silu" , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=32 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=10 , SCREAMING_SNAKE_CASE__=None , ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = parent SCREAMING_SNAKE_CASE__ : int = batch_size SCREAMING_SNAKE_CASE__ : List[str] = image_size SCREAMING_SNAKE_CASE__ : Optional[int] = patch_size SCREAMING_SNAKE_CASE__ : int = num_channels SCREAMING_SNAKE_CASE__ : Union[str, Any] = last_hidden_size SCREAMING_SNAKE_CASE__ : int = num_attention_heads SCREAMING_SNAKE_CASE__ : Optional[Any] = hidden_act SCREAMING_SNAKE_CASE__ : Dict = conv_kernel_size SCREAMING_SNAKE_CASE__ : int = output_stride SCREAMING_SNAKE_CASE__ : str = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : Union[str, Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : Any = classifier_dropout_prob SCREAMING_SNAKE_CASE__ : Tuple = use_labels SCREAMING_SNAKE_CASE__ : str = is_training SCREAMING_SNAKE_CASE__ : str = num_labels SCREAMING_SNAKE_CASE__ : Dict = initializer_range SCREAMING_SNAKE_CASE__ : str = scope def __magic_name__ (self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE__ : Optional[int] = None SCREAMING_SNAKE_CASE__ : List[Any] = None if self.use_labels: SCREAMING_SNAKE_CASE__ : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) SCREAMING_SNAKE_CASE__ : str = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) SCREAMING_SNAKE_CASE__ : List[Any] = self.get_config() return config, pixel_values, labels, pixel_labels def __magic_name__ (self ) -> str: """simple docstring""" return MobileViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = MobileViTModel(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.num_labels SCREAMING_SNAKE_CASE__ : Dict = MobileViTForImageClassification(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() SCREAMING_SNAKE_CASE__ : Any = model(SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = self.num_labels SCREAMING_SNAKE_CASE__ : int = MobileViTForSemanticSegmentation(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __magic_name__ (self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any = config_and_inputs SCREAMING_SNAKE_CASE__ : Dict = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase_ (a__ , a__ , unittest.TestCase ): """simple docstring""" __UpperCamelCase : Dict = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) __UpperCamelCase : List[str] = ( { '''feature-extraction''': MobileViTModel, '''image-classification''': MobileViTForImageClassification, '''image-segmentation''': MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) __UpperCamelCase : str = False __UpperCamelCase : List[Any] = False __UpperCamelCase : Any = False __UpperCamelCase : int = False def __magic_name__ (self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = MobileViTModelTester(self ) SCREAMING_SNAKE_CASE__ : Dict = MobileViTConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , has_text_modality=SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""MobileViT does not use inputs_embeds""" ) def __magic_name__ (self ) -> Any: """simple docstring""" pass @unittest.skip(reason="""MobileViT does not support input and output embeddings""" ) def __magic_name__ (self ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip(reason="""MobileViT does not output attentions""" ) def __magic_name__ (self ) -> Any: """simple docstring""" pass def __magic_name__ (self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : Optional[int] = model_class(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE__ : Union[str, Any] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE__ : Union[str, Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE__ ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def __magic_name__ (self ) -> int: """simple docstring""" pass def __magic_name__ (self ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> Any: """simple docstring""" def check_hidden_states_output(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE__ : List[Any] = model_class(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Tuple = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) SCREAMING_SNAKE_CASE__ : Dict = outputs.hidden_states SCREAMING_SNAKE_CASE__ : str = 5 self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. SCREAMING_SNAKE_CASE__ : Tuple = 2 for i in range(len(SCREAMING_SNAKE_CASE__ ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : Optional[int] = True check_hidden_states_output(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE__ : Any = True check_hidden_states_output(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*SCREAMING_SNAKE_CASE__ ) @slow def __magic_name__ (self ) -> List[str]: """simple docstring""" for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ : Optional[Any] = MobileViTModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) def lowercase_ ( ): SCREAMING_SNAKE_CASE__ : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowerCAmelCase_ (unittest.TestCase ): """simple docstring""" @cached_property def __magic_name__ (self ) -> Dict: """simple docstring""" return MobileViTImageProcessor.from_pretrained("""apple/mobilevit-xx-small""" ) if is_vision_available() else None @slow def __magic_name__ (self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = MobileViTForImageClassification.from_pretrained("""apple/mobilevit-xx-small""" ).to(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = self.default_image_processor SCREAMING_SNAKE_CASE__ : List[str] = prepare_img() SCREAMING_SNAKE_CASE__ : int = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ).to(SCREAMING_SNAKE_CASE__ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(**SCREAMING_SNAKE_CASE__ ) # verify the logits SCREAMING_SNAKE_CASE__ : Dict = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[int] = torch.tensor([-1.9364, -1.2327, -0.4653] ).to(SCREAMING_SNAKE_CASE__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-4 ) ) @slow def __magic_name__ (self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = MobileViTForSemanticSegmentation.from_pretrained("""apple/deeplabv3-mobilevit-xx-small""" ) SCREAMING_SNAKE_CASE__ : Tuple = model.to(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Dict = MobileViTImageProcessor.from_pretrained("""apple/deeplabv3-mobilevit-xx-small""" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = prepare_img() SCREAMING_SNAKE_CASE__ : str = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ).to(SCREAMING_SNAKE_CASE__ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Tuple = model(**SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = outputs.logits # verify the logits SCREAMING_SNAKE_CASE__ : Tuple = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[int] = torch.tensor( [ [[6.9713, 6.9786, 7.2422], [7.2893, 7.2825, 7.4446], [7.6580, 7.8797, 7.9420]], [[-10.6869, -10.3250, -10.3471], [-10.4228, -9.9868, -9.7132], [-11.0405, -11.0221, -10.7318]], [[-3.3089, -2.8539, -2.6740], [-3.2706, -2.5621, -2.5108], [-3.2534, -2.6615, -2.6651]], ] , device=SCREAMING_SNAKE_CASE__ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-4 ) ) @slow def __magic_name__ (self ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = MobileViTForSemanticSegmentation.from_pretrained("""apple/deeplabv3-mobilevit-xx-small""" ) SCREAMING_SNAKE_CASE__ : Optional[int] = model.to(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : int = MobileViTImageProcessor.from_pretrained("""apple/deeplabv3-mobilevit-xx-small""" ) SCREAMING_SNAKE_CASE__ : List[Any] = prepare_img() SCREAMING_SNAKE_CASE__ : List[Any] = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ).to(SCREAMING_SNAKE_CASE__ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Optional[Any] = model(**SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[int] = outputs.logits.detach().cpu() SCREAMING_SNAKE_CASE__ : Optional[Any] = image_processor.post_process_semantic_segmentation(outputs=SCREAMING_SNAKE_CASE__ , target_sizes=[(50, 60)] ) SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Dict = image_processor.post_process_semantic_segmentation(outputs=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[int] = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , SCREAMING_SNAKE_CASE__ )
25
"""simple docstring""" import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class lowerCAmelCase_ (unittest.TestCase ): """simple docstring""" def __magic_name__ (self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = torch.nn.Linear(10 , 10 ) SCREAMING_SNAKE_CASE__ : Optional[int] = torch.optim.SGD(model.parameters() , 0.1 ) SCREAMING_SNAKE_CASE__ : int = Accelerator() SCREAMING_SNAKE_CASE__ : List[Any] = accelerator.prepare(SCREAMING_SNAKE_CASE__ ) try: pickle.loads(pickle.dumps(SCREAMING_SNAKE_CASE__ ) ) except Exception as e: self.fail(F'''Accelerated optimizer pickling failed with {e}''' ) AcceleratorState._reset_state()
25
1
"""simple docstring""" import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _a = logging.get_logger(__name__) _a = {'vocab_file': 'vocab.json'} _a = { 'vocab_file': { 'mgp-str': 'https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json', } } _a = {'mgp-str': 27} class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : List[str] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , lowercase_ , lowercase_="[GO]" , lowercase_="[GO]" , lowercase_="[s]" , lowercase_="[GO]" , **lowercase_ ): """simple docstring""" super().__init__( unk_token=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , pad_token=lowercase_ , **lowercase_ , ) with open(lowercase_ , encoding="utf-8" ) as vocab_handle: UpperCAmelCase_ : Dict = json.load(lowercase_ ) UpperCAmelCase_ : Dict = {v: k for k, v in self.vocab.items()} @property def UpperCamelCase__ ( self ): """simple docstring""" return len(self.vocab ) def UpperCamelCase__ ( self ): """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[int] = [] for s in text: char_tokens.extend(lowercase_ ) return char_tokens def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" return self.vocab.get(lowercase_ , self.vocab.get(self.unk_token ) ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" return self.decoder.get(lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ): """simple docstring""" if not os.path.isdir(lowercase_ ): logger.error("Vocabulary path ({}) should be a directory".format(lowercase_ ) ) return UpperCAmelCase_ : Optional[int] = os.path.join( lowercase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) with open(lowercase_ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=lowercase_ , ensure_ascii=lowercase_ ) + "\n" ) return (vocab_file,)
23
"""simple docstring""" import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency _a = { 'E': 12.70, 'T': 9.06, 'A': 8.17, 'O': 7.51, 'I': 6.97, 'N': 6.75, 'S': 6.33, 'H': 6.09, 'R': 5.99, 'D': 4.25, 'L': 4.03, 'C': 2.78, 'U': 2.76, 'M': 2.41, 'W': 2.36, 'F': 2.23, 'G': 2.02, 'Y': 1.97, 'P': 1.93, 'B': 1.29, 'V': 0.98, 'K': 0.77, 'J': 0.15, 'X': 0.15, 'Q': 0.10, 'Z': 0.07, } _a = 'ETAOINSHRDLCUMWFGYPBVKJXQZ' _a = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' def __a ( __lowerCamelCase ): UpperCAmelCase_ : Any = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def __a ( __lowerCamelCase ): return x[0] def __a ( __lowerCamelCase ): UpperCAmelCase_ : Any = get_letter_count(__lowerCamelCase ) UpperCAmelCase_ : dict[int, list[str]] = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(__lowerCamelCase ) UpperCAmelCase_ : dict[int, str] = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find, reverse=__lowerCamelCase ) UpperCAmelCase_ : Any = "".join(freq_to_letter[freq] ) UpperCAmelCase_ : str = list(freq_to_letter_str.items() ) freq_pairs.sort(key=__lowerCamelCase, reverse=__lowerCamelCase ) UpperCAmelCase_ : list[str] = [freq_pair[1] for freq_pair in freq_pairs] return "".join(__lowerCamelCase ) def __a ( __lowerCamelCase ): UpperCAmelCase_ : Any = get_frequency_order(__lowerCamelCase ) UpperCAmelCase_ : int = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
23
1
"""simple docstring""" import json import os import re import sys import urllib.request import requests from bsa import BeautifulSoup __SCREAMING_SNAKE_CASE : Union[str, Any] = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36' ' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582' } def _a ( _SCREAMING_SNAKE_CASE = "dhaka" , _SCREAMING_SNAKE_CASE = 5 ) -> Optional[int]: snake_case_ = min(UpperCamelCase__ , 50 ) # Prevent abuse! snake_case_ = { """q""": query, """tbm""": """isch""", """hl""": """en""", """ijn""": """0""", } snake_case_ = requests.get("""https://www.google.com/search""" , params=UpperCamelCase__ , headers=UpperCamelCase__ ) snake_case_ = BeautifulSoup(html.text , """html.parser""" ) snake_case_ = """""".join( re.findall(r"""AF_initDataCallback\(([^<]+)\);""" , str(soup.select("""script""" ) ) ) ) snake_case_ = json.dumps(UpperCamelCase__ ) snake_case_ = json.loads(UpperCamelCase__ ) snake_case_ = re.findall( r"""\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\",""" , UpperCamelCase__ , ) if not matched_google_image_data: return 0 snake_case_ = re.sub( r"""\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]""" , """""" , str(UpperCamelCase__ ) , ) snake_case_ = re.findall( r"""(?:'|,),\[\"(https:|http.*?)\",\d+,\d+\]""" , UpperCamelCase__ , ) for index, fixed_full_res_image in enumerate(UpperCamelCase__ ): if index >= max_images: return index snake_case_ = bytes(UpperCamelCase__ , """ascii""" ).decode( """unicode-escape""" ) snake_case_ = bytes(UpperCamelCase__ , """ascii""" ).decode( """unicode-escape""" ) snake_case_ = urllib.request.build_opener() snake_case_ = [ ( """User-Agent""", """Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36""" """ (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582""", ) ] urllib.request.install_opener(UpperCamelCase__ ) snake_case_ = f"""query_{query.replace(" " , "_" )}""" if not os.path.exists(UpperCamelCase__ ): os.makedirs(UpperCamelCase__ ) urllib.request.urlretrieve( # noqa: S310 UpperCamelCase__ , f"""{path_name}/original_size_img_{index}.jpg""" ) return index if __name__ == "__main__": try: __SCREAMING_SNAKE_CASE : int = download_images_from_google_query(sys.argv[1]) print(f"""{image_count} images were downloaded to disk.""") except IndexError: print('Please provide a search term.') raise
347
"""simple docstring""" import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask _snake_case = logging.getLogger(__name__) class UpperCamelCase ( snake_case_ ): def __init__( self : Optional[Any] , UpperCAmelCase__ : Optional[int]=-1 ) -> Tuple: # in NER datasets, the last column is usually reserved for NER label _a : Optional[int] = label_idx def _lowercase ( self : Any , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Union[Split, str] ) -> List[InputExample]: if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): _a : Any = mode.value _a : Optional[int] = os.path.join(UpperCAmelCase__ , f"""{mode}.txt""" ) _a : int = 1 _a : int = [] with open(UpperCAmelCase__ , encoding="""utf-8""" ) as f: _a : str = [] _a : str = [] for line in f: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f"""{mode}-{guid_index}""" , words=UpperCAmelCase__ , labels=UpperCAmelCase__ ) ) guid_index += 1 _a : List[str] = [] _a : str = [] else: _a : List[Any] = line.split(""" """ ) words.append(splits[0] ) if len(UpperCAmelCase__ ) > 1: labels.append(splits[self.label_idx].replace("""\n""" , """""" ) ) else: # Examples could have no label for mode = "test" labels.append("""O""" ) if words: examples.append(InputExample(guid=f"""{mode}-{guid_index}""" , words=UpperCAmelCase__ , labels=UpperCAmelCase__ ) ) return examples def _lowercase ( self : Optional[Any] , UpperCAmelCase__ : TextIO , UpperCAmelCase__ : TextIO , UpperCAmelCase__ : List ) -> Union[str, Any]: _a : List[str] = 0 for line in test_input_reader: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": writer.write(UpperCAmelCase__ ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: _a : int = line.split()[0] + """ """ + preds_list[example_id].pop(0 ) + """\n""" writer.write(UpperCAmelCase__ ) else: logger.warning("""Maximum sequence length exceeded: No prediction for '%s'.""" , line.split()[0] ) def _lowercase ( self : List[Any] , UpperCAmelCase__ : str ) -> List[str]: if path: with open(UpperCAmelCase__ , """r""" ) as f: _a : List[Any] = f.read().splitlines() if "O" not in labels: _a : Union[str, Any] = ["""O"""] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class UpperCamelCase ( snake_case_ ): def __init__( self : Union[str, Any] ) -> List[str]: # in CONLL2003 dataset chunk column is second-to-last super().__init__(label_idx=-2 ) def _lowercase ( self : List[Any] , UpperCAmelCase__ : str ) -> List[str]: if path: with open(UpperCAmelCase__ , """r""" ) as f: _a : Optional[int] = f.read().splitlines() if "O" not in labels: _a : Optional[Any] = ["""O"""] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class UpperCamelCase ( snake_case_ ): def _lowercase ( self : Optional[Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Union[Split, str] ) -> List[InputExample]: if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): _a : List[Any] = mode.value _a : Union[str, Any] = os.path.join(UpperCAmelCase__ , f"""{mode}.txt""" ) _a : List[str] = 1 _a : Optional[Any] = [] with open(UpperCAmelCase__ , encoding="""utf-8""" ) as f: for sentence in parse_incr(UpperCAmelCase__ ): _a : List[Any] = [] _a : Any = [] for token in sentence: words.append(token["""form"""] ) labels.append(token["""upos"""] ) assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) if words: examples.append(InputExample(guid=f"""{mode}-{guid_index}""" , words=UpperCAmelCase__ , labels=UpperCAmelCase__ ) ) guid_index += 1 return examples def _lowercase ( self : Tuple , UpperCAmelCase__ : TextIO , UpperCAmelCase__ : TextIO , UpperCAmelCase__ : List ) -> Dict: _a : Optional[Any] = 0 for sentence in parse_incr(UpperCAmelCase__ ): _a : List[str] = preds_list[example_id] _a : str = """""" for token in sentence: out += f"""{token['form']} ({token['upos']}|{s_p.pop(0 )}) """ out += "\n" writer.write(UpperCAmelCase__ ) example_id += 1 def _lowercase ( self : List[str] , UpperCAmelCase__ : str ) -> List[str]: if path: with open(UpperCAmelCase__ , """r""" ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
294
0
import baseaa def lowerCamelCase_ ( lowerCAmelCase: str )-> bytes: return baseaa.aaaencode(string.encode('utf-8' ) ) def lowerCamelCase_ ( lowerCAmelCase: bytes )-> str: return baseaa.aaadecode(lowerCAmelCase ).decode('utf-8' ) if __name__ == "__main__": import doctest doctest.testmod()
355
# This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests lowerCAmelCase_ = open # noqa: we just need to have a builtin inside this module to test it properly
260
0
def lowerCamelCase__ ( snake_case_ : str , snake_case_ : str ) -> list: __snake_case = len(snake_case_ ) __snake_case = [] for i in range(len(snake_case_ ) - pat_len + 1 ): __snake_case = True for j in range(snake_case_ ): if s[i + j] != pattern[j]: __snake_case = False break if match_found: position.append(snake_case_ ) return position if __name__ == "__main__": assert naive_pattern_search('ABCDEFG', 'DE') == [3] print(naive_pattern_search('ABAAABCDBBABCDDEBCABC', 'ABC'))
24
import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) snake_case_ = logging.getLogger(__name__) @dataclass class SCREAMING_SNAKE_CASE__ : A_ : str = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) A_ : Optional[str] = field( default=_UpperCAmelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) A_ : Optional[str] = field( default=_UpperCAmelCase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) A_ : Optional[str] = field( default=_UpperCAmelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) A_ : bool = field(default=_UpperCAmelCase , metadata={'help': 'Whether tp freeze the encoder.'} ) A_ : bool = field(default=_UpperCAmelCase , metadata={'help': 'Whether to freeze the embeddings.'} ) @dataclass class SCREAMING_SNAKE_CASE__ : A_ : str = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) A_ : Optional[str] = field( default='summarization' , metadata={'help': 'Task name, summarization (or summarization_{dataset} for pegasus) or translation'} , ) A_ : Optional[int] = field( default=1_024 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) A_ : Optional[int] = field( default=128 , metadata={ 'help': ( 'The maximum total sequence length for target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) A_ : Optional[int] = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for validation target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded. ' 'This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ' 'during ``evaluate`` and ``predict``.' ) } , ) A_ : Optional[int] = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for test target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) A_ : Optional[int] = field(default=-1 , metadata={'help': '# training examples. -1 means use all.'} ) A_ : Optional[int] = field(default=-1 , metadata={'help': '# validation examples. -1 means use all.'} ) A_ : Optional[int] = field(default=-1 , metadata={'help': '# test examples. -1 means use all.'} ) A_ : Optional[str] = field(default=_UpperCAmelCase , metadata={'help': 'Source language id for translation.'} ) A_ : Optional[str] = field(default=_UpperCAmelCase , metadata={'help': 'Target language id for translation.'} ) A_ : Optional[int] = field(default=_UpperCAmelCase , metadata={'help': '# num_beams to use for evaluation.'} ) A_ : bool = field( default=_UpperCAmelCase , metadata={'help': 'If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'} , ) def lowerCamelCase__ ( snake_case_ : List[Any] , snake_case_ : List[str] , snake_case_ : Dict ) -> str: logger.info(f"""***** {split} metrics *****""" ) for key in sorted(metrics.keys() ): logger.info(f""" {key} = {metrics[key]}""" ) save_json(snake_case_ , os.path.join(snake_case_ , f"""{split}_results.json""" ) ) def lowerCamelCase__ ( ) -> Optional[Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __snake_case = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __snake_case , __snake_case , __snake_case = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __snake_case , __snake_case , __snake_case = parser.parse_args_into_dataclasses() check_output_dir(snake_case_ ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('''Training/evaluation parameters %s''' , snake_case_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __snake_case = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __snake_case = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''') for p in extra_model_params: if getattr(snake_case_ , snake_case_ , snake_case_ ): assert hasattr(snake_case_ , snake_case_ ), f"""({config.__class__.__name__}) doesn't have a `{p}` attribute""" setattr(snake_case_ , snake_case_ , getattr(snake_case_ , snake_case_ ) ) __snake_case = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __snake_case = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf='''.ckpt''' in model_args.model_name_or_path , config=snake_case_ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(snake_case_ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: __snake_case = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(snake_case_ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(snake_case_ , snake_case_ ): __snake_case = tokenizer.lang_code_to_id[data_args.tgt_lang] else: __snake_case = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(snake_case_ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) __snake_case = SeqaSeqDataset # Get datasets __snake_case = ( dataset_class( snake_case_ , type_path='''train''' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_train else None ) __snake_case = ( dataset_class( snake_case_ , type_path='''val''' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) __snake_case = ( dataset_class( snake_case_ , type_path='''test''' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_predict else None ) # Initialize our Trainer __snake_case = ( build_compute_metrics_fn(data_args.task , snake_case_ ) if training_args.predict_with_generate else None ) __snake_case = SeqaSeqTrainer( model=snake_case_ , args=snake_case_ , data_args=snake_case_ , train_dataset=snake_case_ , eval_dataset=snake_case_ , data_collator=SeqaSeqDataCollator( snake_case_ , snake_case_ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=snake_case_ , tokenizer=snake_case_ , ) __snake_case = {} # Training if training_args.do_train: logger.info('''*** Train ***''' ) __snake_case = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) __snake_case = train_result.metrics __snake_case = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics('''train''' , snake_case_ , training_args.output_dir ) all_metrics.update(snake_case_ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __snake_case = trainer.evaluate(metric_key_prefix='''val''' ) __snake_case = data_args.n_val __snake_case = round(metrics['''val_loss'''] , 4 ) if trainer.is_world_process_zero(): handle_metrics('''val''' , snake_case_ , training_args.output_dir ) all_metrics.update(snake_case_ ) if training_args.do_predict: logger.info('''*** Predict ***''' ) __snake_case = trainer.predict(test_dataset=snake_case_ , metric_key_prefix='''test''' ) __snake_case = test_output.metrics __snake_case = data_args.n_test if trainer.is_world_process_zero(): __snake_case = round(metrics['''test_loss'''] , 4 ) handle_metrics('''test''' , snake_case_ , training_args.output_dir ) all_metrics.update(snake_case_ ) if training_args.predict_with_generate: __snake_case = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=snake_case_ , clean_up_tokenization_spaces=snake_case_ ) __snake_case = lmap(str.strip , snake_case_ ) write_txt_file(snake_case_ , os.path.join(training_args.output_dir , '''test_generations.txt''' ) ) if trainer.is_world_process_zero(): save_json(snake_case_ , os.path.join(training_args.output_dir , '''all_results.json''' ) ) return all_metrics def lowerCamelCase__ ( snake_case_ : Optional[Any] ) -> Tuple: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
24
1
"""simple docstring""" from functools import reduce lowerCamelCase__ = ( "73167176531330624919225119674426574742355349194934" "96983520312774506326239578318016984801869478851843" "85861560789112949495459501737958331952853208805511" "12540698747158523863050715693290963295227443043557" "66896648950445244523161731856403098711121722383113" "62229893423380308135336276614282806444486645238749" "30358907296290491560440772390713810515859307960866" "70172427121883998797908792274921901699720888093776" "65727333001053367881220235421809751254540594752243" "52584907711670556013604839586446706324415722155397" "53697817977846174064955149290862569321978468622482" "83972241375657056057490261407972968652414535100474" "82166370484403199890008895243450658541227588666881" "16427171479924442928230863465674813919123162824586" "17866458359124566529476545682848912883142607690042" "24219022671055626321111109370544217506941658960408" "07198403850962455444362981230987879927244284909188" "84580156166097919133875499200524063689912560717606" "05886116467109405077541002256983155200055935729725" "71636269561882670428252483600823257530420752963450" ) def lowercase__ ( lowercase_ = N ) -> int: """simple docstring""" return max( # mypy cannot properly interpret reduce int(reduce(lambda lowercase_ ,lowercase_ : str(int(lowercase_ ) * int(lowercase_ ) ) ,n[i : i + 13] ) ) for i in range(len(lowercase_ ) - 12 ) ) if __name__ == "__main__": print(f"""{solution() = }""")
310
"""simple docstring""" import torch from transformers import AutoModel class __SCREAMING_SNAKE_CASE ( torch.nn.Module ): '''simple docstring''' def __init__( self : Dict , __a : Tuple="sayef/fsner-bert-base-uncased" ) -> Dict: super(__a , self ).__init__() _UpperCamelCase : Optional[Any] = AutoModel.from_pretrained(__a , return_dict=__a ) _UpperCamelCase : str = torch.nn.CosineSimilarity(3 , 1e-0_8 ) _UpperCamelCase : List[str] = torch.nn.Softmax(dim=1 ) def __SCREAMING_SNAKE_CASE ( self : int , **__a : Tuple ) -> Optional[Any]: return self.bert(**__a ).last_hidden_state def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : Optional[Any] ) -> Optional[int]: return token_embeddings.sum(2 , keepdim=__a ) def __SCREAMING_SNAKE_CASE ( self : str , __a : Any , __a : List[Any] , __a : Tuple=1 ) -> List[Any]: return self.softmax(T * self.cos(__a , __a ) ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : List[str] , __a : Dict ) -> Union[str, Any]: _UpperCamelCase : str = W_supports["sizes"].tolist() _UpperCamelCase : Any = W_supports["start_token_id"].item() _UpperCamelCase : Optional[Any] = W_supports["end_token_id"].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] _UpperCamelCase : str = self.BERT(**__a ) _UpperCamelCase : int = self.BERT(**__a ) _UpperCamelCase : int = None _UpperCamelCase : Optional[int] = None _UpperCamelCase : List[Any] = W_supports["input_ids"] == start_token_id _UpperCamelCase : Optional[int] = W_supports["input_ids"] == end_token_id for i, size in enumerate(__a ): if i == 0: _UpperCamelCase : Dict = 0 else: _UpperCamelCase : Any = support_sizes[i - 1] _UpperCamelCase : Dict = S[s : s + size][start_token_masks[s : s + size]] _UpperCamelCase : Optional[int] = S[s : s + size][end_token_masks[s : s + size]] _UpperCamelCase : List[Any] = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) _UpperCamelCase : Any = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: _UpperCamelCase : Any = torch.vstack((p_starts, p_start) ) _UpperCamelCase : Any = torch.vstack((p_ends, p_end) ) else: _UpperCamelCase : Optional[Any] = p_start _UpperCamelCase : str = p_end return p_starts, p_ends
310
1
"""simple docstring""" import baseaa def _lowerCAmelCase ( UpperCamelCase_ ): return baseaa.baaencode(string.encode("""utf-8""" ) ) def _lowerCAmelCase ( UpperCamelCase_ ): return baseaa.baadecode(UpperCamelCase_ ).decode("""utf-8""" ) if __name__ == "__main__": __magic_name__ = "Hello World!" __magic_name__ = baseaa_encode(test) print(encoded) __magic_name__ = baseaa_decode(encoded) print(decoded)
100
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __magic_name__ = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE_ ( __a , unittest.TestCase ): """simple docstring""" __lowercase : Optional[Any] = XLNetTokenizer __lowercase : List[str] = XLNetTokenizerFast __lowercase : List[Any] = True __lowercase : int = True def snake_case_ ( self): super().setUp() # We have a SentencePiece fixture for testing __SCREAMING_SNAKE_CASE = XLNetTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = """<s>""" __SCREAMING_SNAKE_CASE = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__) , lowerCAmelCase__) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__) , lowerCAmelCase__) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , """<unk>""") self.assertEqual(vocab_keys[1] , """<s>""") self.assertEqual(vocab_keys[-1] , """<eod>""") self.assertEqual(len(lowerCAmelCase__) , 1_0_0_6) def snake_case_ ( self): self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_0) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = XLNetTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer.tokenize("""This is a test""") self.assertListEqual(lowerCAmelCase__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""]) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__) , [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]) __SCREAMING_SNAKE_CASE = tokenizer.tokenize("""I was born in 92000, and this is falsé.""") self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) __SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 0, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 0, 4]) __SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(lowerCAmelCase__) self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = XLNetTokenizer(lowerCAmelCase__ , do_lower_case=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer.tokenize("""I was born in 92000, and this is falsé.""") self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + """""", """i""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """se""", """.""", ] , ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""▁he""", """ll""", """o"""]) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = XLNetTokenizer(lowerCAmelCase__ , do_lower_case=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer.tokenize("""I was born in 92000, and this is falsé.""") self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """se""", """.""", ] , ) @slow def snake_case_ ( self): __SCREAMING_SNAKE_CASE = XLNetTokenizer.from_pretrained("""xlnet-base-cased""") __SCREAMING_SNAKE_CASE = tokenizer.encode("""sequence builders""" , add_special_tokens=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer.encode("""multi-sequence build""" , add_special_tokens=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__ , lowerCAmelCase__) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def snake_case_ ( self): # fmt: off __SCREAMING_SNAKE_CASE = {"""input_ids""": [[1_7, 2_1_4_4_2, 2_7_0, 1_7, 1_0, 1_4_6_4_5, 3_1_8, 3_4, 1_7, 4_5_4_6, 3_1_4_5, 7_8_7, 1_3, 7_7_5_2, 2_2_0_1_8, 2_3, 2_1, 1_7, 4_5_4_6, 3_1_4_5, 7_8_7, 1_3, 3_3_5_2, 1_4_4_3_1, 1_3, 5_5_0_0, 1_1, 1_1_7_6, 5_8_0, 1_3, 1_6_8_1_9, 4_7_9_7, 2_3, 1_7, 1_0, 1_7_1_3_5, 6_5_8, 1_9, 4_5_7, 7_9_3_2, 1_3, 1_8_4, 1_9, 3_1_5_4, 1_7_1_3_5, 6_4_6_8, 1_9, 1_4_0_4, 1_2_2_6_9, 1_9, 4_2_2_9, 5_3_5_6, 1_6_2_6_4, 4_6, 1_9, 1_7, 2_0_5_4_5, 1_0_3_9_5, 9, 9, 9, 1_1, 2_8, 6_4_2_1, 9_5_3_1, 2_0_7_2_9, 1_7, 1_0, 3_5_3, 1_7_0_2_2, 1_1, 2_1, 6_4_2_1, 9_5_3_1, 1_6_9_4_9, 1_7, 1_0, 1_1_5_0_9, 7_5_3, 1_1, 3_3, 9_5, 2_4_2_1, 7_3_8_5, 9_5_6, 1_4_4_3_1, 2_6_2_6, 2_5, 8_4_2, 7_3_8_5, 4_8_3_6, 2_1, 1_4_2_9, 2_2_7_2, 9_8_5_5, 3_1_2_0, 1_6_1, 2_4_7_3_8, 1_9, 1_3_2_0_3, 6_5_8, 2_1_8, 7_8_7, 2_1, 4_3_0, 1_8_4_8_2, 8_4_7, 2_6_3_7, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3_2_2, 2_2_1_7_8, 2_7, 1_0_6_4, 2_2, 9_5_6, 1_3, 1_1_1_0_1, 1_4_2_9, 5_8_5_4, 2_4_3_1_3, 1_8_9_5_3, 4_0, 4_2_2, 2_4_3_6_6, 6_8, 1_7_5_8, 3_7, 1_0_4_8_3, 1_4_2_5_7, 3_1, 2_0_7, 2_6_3, 2_1, 2_0_3, 3_7_7_3, 2_5, 7_1, 9_7_3_5, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3_2, 2_0_4_9, 3_4_4_2, 1_7, 1_3_8_9_4, 3_3_8_0, 2_3, 9_5, 1_8, 1_7_6_3_4, 2_2_8_8, 9, 4, 3]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__ , model_name="""xlnet-base-cased""" , revision="""c841166438c31ec7ca9a106dee7bb312b73ae511""" , )
100
1
'''simple docstring''' def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : int ) -> int: '''simple docstring''' while second != 0: UpperCAmelCase_ = first & second first ^= second UpperCAmelCase_ = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE_: Optional[Any] =int(input('Enter the first number: ').strip()) SCREAMING_SNAKE_CASE_: Any =int(input('Enter the second number: ').strip()) print(f"{add(first, second) = }")
106
'''simple docstring''' import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation SCREAMING_SNAKE_CASE_: Tuple =logging.get_logger(__name__) SCREAMING_SNAKE_CASE_: List[str] ={'vocab_file': 'vocab.txt', 'emoji_file': 'emoji.json'} SCREAMING_SNAKE_CASE_: Union[str, Any] ={ 'vocab_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt', }, 'emoji_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json', }, } SCREAMING_SNAKE_CASE_: Optional[int] ={ 'abeja/gpt-neox-japanese-2.7b': 20_48, } def lowerCAmelCase_ ( snake_case_ : List[str] , snake_case_ : Tuple ) -> Union[str, Any]: '''simple docstring''' with open(snake_case_ , "r" , encoding="utf-8" ) as f: UpperCAmelCase_ = json.loads(f.read() ) UpperCAmelCase_ = collections.OrderedDict() UpperCAmelCase_ = collections.OrderedDict() UpperCAmelCase_ = collections.OrderedDict() with open(snake_case_ , "r" , encoding="utf-8" ) as f: UpperCAmelCase_ = f.readlines() UpperCAmelCase_ = [[t.rstrip("\n" )] if (t == "," or "," not in t) else t.rstrip("\n" ).split("," ) for t in token] for idx, b in enumerate(snake_case_ ): UpperCAmelCase_ = b UpperCAmelCase_ = idx for wd in b: UpperCAmelCase_ = idx return vocab, raw_vocab, ids_to_tokens, emoji class __A ( UpperCamelCase__ ): a__ : List[str] = VOCAB_FILES_NAMES a__ : Tuple = PRETRAINED_VOCAB_FILES_MAP a__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : Optional[Any] = ["""input_ids""", """attention_mask"""] def __init__(self : Any , __a : List[Any] , __a : Dict , __a : int="<|endoftext|>" , __a : Union[str, Any]="<|endoftext|>" , __a : int="<|startoftext|>" , __a : Tuple="<|endoftext|>" , __a : Optional[int]=False , **__a : int , ): super().__init__( unk_token=__a , pad_token=__a , bos_token=__a , eos_token=__a , do_clean_text=__a , **__a , ) if not os.path.isfile(__a ): raise ValueError( f"""Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained""" " model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) if not os.path.isfile(__a ): raise ValueError( f"""Can't find a emoji file at path '{emoji_file}'. To load the emoji information from a Google""" " pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) UpperCAmelCase_ = do_clean_text UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = load_vocab_and_emoji(__a , __a ) UpperCAmelCase_ = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def _lowercase (self : Optional[Any] ): # self.vocab contains support for character fluctuation unique to Japanese, and has a large number of vocab return len(self.raw_vocab ) def _lowercase (self : List[Any] ): return dict(self.raw_vocab , **self.added_tokens_encoder ) def _lowercase (self : List[Any] , __a : int ): return self.subword_tokenizer.tokenize(__a , clean=self.do_clean_text ) def _lowercase (self : List[Any] , __a : List[str] ): return self.vocab.get(__a , self.vocab.get(self.unk_token ) ) def _lowercase (self : int , __a : List[Any] ): return self.subword_tokenizer.convert_id_to_token(__a ) def _lowercase (self : Dict , __a : str ): UpperCAmelCase_ = "".join(__a ).strip() return out_string def _lowercase (self : int , __a : "Conversation" ): UpperCAmelCase_ = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__a , add_special_tokens=__a ) + [self.eos_token_id] ) if len(__a ) > self.model_max_length: UpperCAmelCase_ = input_ids[-self.model_max_length :] return input_ids def _lowercase (self : int , __a : str , __a : Optional[str] = None ): UpperCAmelCase_ = 0 if os.path.isdir(__a ): UpperCAmelCase_ = os.path.join( __a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase_ = os.path.join( __a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["emoji_file"] ) else: UpperCAmelCase_ = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase_ = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["emoji_file"] ) with open(__a , "w" , encoding="utf-8" ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" " Please check that the vocabulary is not corrupted!" ) UpperCAmelCase_ = token_index writer.write(",".join(__a ) + "\n" ) index += 1 with open(__a , "w" , encoding="utf-8" ) as writer: json.dump(self.emoji , __a ) return vocab_file, emoji_file class __A ( UpperCamelCase__ ): def __init__(self : List[Any] , __a : Dict , __a : Any , __a : int ): UpperCAmelCase_ = vocab # same as swe UpperCAmelCase_ = ids_to_tokens # same as bpe UpperCAmelCase_ = emoji UpperCAmelCase_ = np.max([len(__a ) for w in self.vocab.keys()] ) UpperCAmelCase_ = re.compile(r"(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)" ) UpperCAmelCase_ = re.compile(r"[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*" ) UpperCAmelCase_ = re.compile(r"[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}" ) UpperCAmelCase_ = re.compile( r"([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" ) UpperCAmelCase_ = re.compile( r"(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" ) UpperCAmelCase_ = re.compile( r"((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*" ) UpperCAmelCase_ = "─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿" UpperCAmelCase_ = "▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟" UpperCAmelCase_ = str.maketrans({k: "<BLOCK>" for k in keisen + blocks} ) def __len__(self : Dict ): return len(self.ids_to_tokens ) def _lowercase (self : str , __a : Union[str, Any] ): UpperCAmelCase_ = self.content_repattera.sub("<URL>" , __a ) UpperCAmelCase_ = self.content_repattera.sub("<EMAIL>" , __a ) UpperCAmelCase_ = self.content_repattera.sub("<TEL>" , __a ) UpperCAmelCase_ = self.content_repattera.sub("<DATE>" , __a ) UpperCAmelCase_ = self.content_repattera.sub("<DATE>" , __a ) UpperCAmelCase_ = self.content_repattera.sub("<PRICE>" , __a ) UpperCAmelCase_ = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: UpperCAmelCase_ = content.replace("<BLOCK><BLOCK>" , "<BLOCK>" ) return content def _lowercase (self : Optional[Any] , __a : Union[str, Any] , __a : str=False ): UpperCAmelCase_ = text.replace(" " , "<SP>" ) UpperCAmelCase_ = text.replace(" " , "<SP>" ) UpperCAmelCase_ = text.replace("\r\n" , "<BR>" ) UpperCAmelCase_ = text.replace("\n" , "<BR>" ) UpperCAmelCase_ = text.replace("\r" , "<BR>" ) UpperCAmelCase_ = text.replace("\t" , "<TAB>" ) UpperCAmelCase_ = text.replace("—" , "ー" ) UpperCAmelCase_ = text.replace("−" , "ー" ) for k, v in self.emoji["emoji"].items(): if k in text: UpperCAmelCase_ = text.replace(__a , __a ) if clean: UpperCAmelCase_ = self.clean_text(__a ) def check_simbol(__a : List[Any] ): UpperCAmelCase_ = x.encode() if len(__a ) == 1 and len(__a ) == 2: UpperCAmelCase_ = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0Xc2_a1 and c <= 0Xc2_bf) or (c >= 0Xc7_80 and c <= 0Xc7_83) or (c >= 0Xca_b9 and c <= 0Xcb_bf) or (c >= 0Xcc_80 and c <= 0Xcd_a2) ): return True return False def checkuae(__a : Tuple ): UpperCAmelCase_ = x.encode() if len(__a ) == 1 and len(__a ) == 3: UpperCAmelCase_ = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0Xe2_80_80 and c <= 0Xe2_b0_7f: return True return False UpperCAmelCase_ = 0 UpperCAmelCase_ = [] while pos < len(__a ): UpperCAmelCase_ = min(len(__a ) , pos + self.maxlen + 1 ) if text[pos] == "<" else pos + 3 UpperCAmelCase_ = [] # (token_id, token, pos) for e in range(__a , __a , -1 ): UpperCAmelCase_ = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(__a ) > 2: UpperCAmelCase_ = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(__a ) > 0: # the smallest token_id is adopted UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = sorted(__a , key=lambda __a : x[0] )[0] result.append(__a ) UpperCAmelCase_ = e else: UpperCAmelCase_ = pos + 1 UpperCAmelCase_ = text[pos:end] if check_simbol(__a ): result.append("<KIGOU>" ) elif checkuae(__a ): result.append("<U2000U2BFF>" ) else: for i in wd.encode("utf-8" ): result.append("<|byte%d|>" % i ) UpperCAmelCase_ = end return result def _lowercase (self : int , __a : Optional[Any] , __a : Optional[int]="\n" ): UpperCAmelCase_ = [] UpperCAmelCase_ = [] UpperCAmelCase_ = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(__a ) > 0: words.append(bytearray(__a ).decode("utf-8" , errors="replace" ) ) UpperCAmelCase_ = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji["emoji_inv"][word] ) elif word == "<SP>": words.append(" " ) elif word == "<BR>": words.append(__a ) elif word == "<TAB>": words.append("\t" ) elif word == "<BLOCK>": words.append("▀" ) elif word == "<KIGOU>": words.append("ǀ" ) elif word == "<U2000U2BFF>": words.append("‖" ) else: words.append(__a ) if len(__a ) > 0: words.append(bytearray(__a ).decode("utf-8" , errors="replace" ) ) UpperCAmelCase_ = "".join(__a ) return text
106
1
def UpperCamelCase (lowercase_: str ) -> str: return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
192
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A_ : Optional[int] = {'configuration_ibert': ['IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'IBertConfig', 'IBertOnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : str = [ 'IBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'IBertForMaskedLM', 'IBertForMultipleChoice', 'IBertForQuestionAnswering', 'IBertForSequenceClassification', 'IBertForTokenClassification', 'IBertModel', 'IBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys A_ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
192
1
from collections import defaultdict class _A : def __init__( self : str , _A : Optional[int] , _A : Union[str, Any] ) -> str: """simple docstring""" lowercase : Dict = total # total no of tasks (N) # DP table will have a dimension of (2^M)*N # initially all values are set to -1 lowercase : Optional[int] = [ [-1 for i in range(total + 1 )] for j in range(2 ** len(_A ) ) ] lowercase : Optional[int] = defaultdict(_A ) # stores the list of persons for each task # final_mask is used to check if all persons are included by setting all bits # to 1 lowercase : Tuple = (1 << len(_A )) - 1 def __a ( self : int , _A : List[str] , _A : Any ) -> str: """simple docstring""" if mask == self.final_mask: return 1 # if not everyone gets the task and no more tasks are available, return 0 if task_no > self.total_tasks: return 0 # if case already considered if self.dp[mask][task_no] != -1: return self.dp[mask][task_no] # Number of ways when we don't this task in the arrangement lowercase : List[Any] = self.count_ways_until(_A , task_no + 1 ) # now assign the tasks one by one to all possible persons and recursively # assign for the remaining tasks. if task_no in self.task: for p in self.task[task_no]: # if p is already given a task if mask & (1 << p): continue # assign this task to p and change the mask value. And recursively # assign tasks with the new mask value. total_ways_util += self.count_ways_until(mask | (1 << p) , task_no + 1 ) # save the value. lowercase : Union[str, Any] = total_ways_util return self.dp[mask][task_no] def __a ( self : int , _A : Tuple ) -> str: """simple docstring""" for i in range(len(_A ) ): for j in task_performed[i]: self.task[j].append(_A ) # call the function to fill the DP table, final answer is stored in dp[0][1] return self.count_ways_until(0 , 1 ) if __name__ == "__main__": lowerCAmelCase_ = 5 # total no of tasks (the value of N) # the list of tasks that can be done by M persons. lowerCAmelCase_ = [[1, 3, 4], [1, 2, 5], [3, 4]] print( AssignmentUsingBitmask(task_performed, total_tasks).count_no_of_ways( task_performed ) )
116
import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig lowerCAmelCase_ = { 'facebook/maskformer-swin-base-ade': ( 'https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json' ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } lowerCAmelCase_ = logging.get_logger(__name__) class _A ( _lowerCamelCase ): _UpperCamelCase : int = '''maskformer''' _UpperCamelCase : Union[str, Any] = {'''hidden_size''': '''mask_feature_size'''} _UpperCamelCase : Dict = ['''resnet''', '''swin'''] _UpperCamelCase : Optional[int] = ['''detr'''] def __init__( self : Any , _A : int = 256 , _A : int = 256 , _A : float = 0.1 , _A : bool = False , _A : Optional[Dict] = None , _A : Optional[Dict] = None , _A : float = 0.02 , _A : float = 1.0 , _A : float = 1.0 , _A : float = 1.0 , _A : float = 20.0 , _A : Optional[bool] = None , **_A : str , ) -> str: """simple docstring""" if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k lowercase : List[str] = SwinConfig( image_size=384 , in_channels=3 , patch_size=4 , embed_dim=128 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , ) if isinstance(_A , _A ): lowercase : Optional[int] = backbone_config.pop('''model_type''' ) lowercase : List[str] = CONFIG_MAPPING[backbone_model_type] lowercase : Union[str, Any] = config_class.from_dict(_A ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. """ f"""Supported model types: {','.join(self.backbones_supported )}""" ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 lowercase : Any = DetrConfig() else: # verify that the decoder is supported lowercase : Union[str, Any] = ( decoder_config.pop('''model_type''' ) if isinstance(_A , _A ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f"""Transformer Decoder {decoder_type} not supported, please use one of""" f""" {','.join(self.decoders_supported )}""" ) if isinstance(_A , _A ): lowercase : str = CONFIG_MAPPING[decoder_type] lowercase : Dict = config_class.from_dict(_A ) lowercase : Tuple = backbone_config lowercase : List[Any] = decoder_config # main feature dimension for the model lowercase : Optional[int] = fpn_feature_size lowercase : List[Any] = mask_feature_size # initializer lowercase : Union[str, Any] = init_std lowercase : Tuple = init_xavier_std # Hungarian matcher && loss lowercase : List[str] = cross_entropy_weight lowercase : int = dice_weight lowercase : List[Any] = mask_weight lowercase : Tuple = use_auxiliary_loss lowercase : Tuple = no_object_weight lowercase : int = output_auxiliary_logits lowercase : List[Any] = self.decoder_config.encoder_attention_heads lowercase : List[Any] = self.decoder_config.num_hidden_layers super().__init__(**_A ) @classmethod def __a ( cls : Optional[int] , _A : PretrainedConfig , _A : PretrainedConfig , **_A : str ) -> Any: """simple docstring""" return cls( backbone_config=_A , decoder_config=_A , **_A , ) def __a ( self : Optional[int] ) -> Dict[str, any]: """simple docstring""" lowercase : str = copy.deepcopy(self.__dict__ ) lowercase : Optional[Any] = self.backbone_config.to_dict() lowercase : List[Any] = self.decoder_config.to_dict() lowercase : Optional[int] = self.__class__.model_type return output
116
1
'''simple docstring''' import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('''TEST_SAGEMAKER''' , '''False''' ) ) is not True , reason='''Skipping test because should only be run when releasing minor transformers version''' , ) @pytest.mark.usefixtures('''sm_env''' ) @parameterized_class( [ { '''framework''': '''pytorch''', '''script''': '''run_glue.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.g4dn.xlarge''', '''results''': {'''train_runtime''': 650, '''eval_accuracy''': 0.6, '''eval_loss''': 0.9}, }, { '''framework''': '''tensorflow''', '''script''': '''run_tf.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.g4dn.xlarge''', '''results''': {'''train_runtime''': 600, '''eval_accuracy''': 0.3, '''eval_loss''': 0.9}, }, ] ) class UpperCAmelCase ( unittest.TestCase ): def lowercase__ ( self : int ) -> Optional[Any]: if self.framework == "pytorch": subprocess.run( f"cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py".split() , encoding="""utf-8""" , check=__snake_case , ) assert hasattr(self , """env""" ) def lowercase__ ( self : Optional[int] , __snake_case : List[str]=1 ) -> Optional[Any]: # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f"{self.env.base_job_name}-single" , instance_count=__snake_case , instance_type=self.instance_type , debugger_hook_config=__snake_case , hyperparameters={**self.env.hyperparameters, """model_name_or_path""": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version="""py36""" , ) def lowercase__ ( self : Any , __snake_case : Optional[int] ) -> Optional[Any]: TrainingJobAnalytics(__snake_case ).export_csv(f"{self.env.test_path}/{job_name}_metrics.csv" ) def lowercase__ ( self : int ) -> Any: # create estimator _lowerCAmelCase = self.create_estimator() # run training estimator.fit() # result dataframe _lowerCAmelCase = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis _lowerCAmelCase = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] ) _lowerCAmelCase = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping _lowerCAmelCase = ( Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" , 99_99_99 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy ) assert all(t <= self.results["""eval_loss"""] for t in eval_loss ) # dump tests result into json file to share in PR with open(f"{estimator.latest_training_job.name}.json" , """w""" ) as outfile: json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} , __snake_case )
70
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionAttendAndExcitePipeline, UNetaDConditionModel, ) from diffusers.utils import load_numpy, skip_mps, slow from diffusers.utils.testing_utils import require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin snake_case : int = False @skip_mps class snake_case_ (lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : Union[str, Any] = StableDiffusionAttendAndExcitePipeline UpperCAmelCase__ : List[str] = False UpperCAmelCase__ : int = TEXT_TO_IMAGE_PARAMS UpperCAmelCase__ : List[Any] = TEXT_TO_IMAGE_BATCH_PARAMS.union({'''token_indices'''} ) UpperCAmelCase__ : List[str] = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCAmelCase__ : str = TEXT_TO_IMAGE_IMAGE_PARAMS @classmethod def lowerCamelCase__( cls :int ) -> int: super().setUpClass() torch.use_deterministic_algorithms(__snake_case ) @classmethod def lowerCamelCase__( cls :Optional[Any] ) -> int: super().tearDownClass() torch.use_deterministic_algorithms(__snake_case ) def lowerCamelCase__( self :Dict ) -> Optional[Any]: torch.manual_seed(0 ) a__ = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=1 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') ,up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') ,cross_attention_dim=32 ,attention_head_dim=(2, 4) ,use_linear_projection=__snake_case ,) a__ = DDIMScheduler( beta_start=0.0_00_85 ,beta_end=0.0_12 ,beta_schedule='scaled_linear' ,clip_sample=__snake_case ,set_alpha_to_one=__snake_case ,) torch.manual_seed(0 ) a__ = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] ,up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] ,latent_channels=4 ,sample_size=1_28 ,) torch.manual_seed(0 ) a__ = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=10_00 ,hidden_act='gelu' ,projection_dim=5_12 ,) a__ = CLIPTextModel(__snake_case ) a__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) a__ = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def lowerCamelCase__( self :Any ,__snake_case :Union[str, Any] ,__snake_case :Tuple=0 ) -> Any: if str(__snake_case ).startswith('mps' ): a__ = torch.manual_seed(__snake_case ) else: a__ = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) a__ = a__ = { 'prompt': 'a cat and a frog', 'token_indices': [2, 5], 'generator': generator, 'num_inference_steps': 1, 'guidance_scale': 6.0, 'output_type': 'numpy', 'max_iter_to_alter': 2, 'thresholds': {0: 0.7}, } return inputs def lowerCamelCase__( self :Optional[int] ) -> Any: a__ = 'cpu' a__ = self.get_dummy_components() a__ = self.pipeline_class(**__snake_case ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) a__ = self.get_dummy_inputs(__snake_case ) a__ = pipe(**__snake_case ).images a__ = image[0, -3:, -3:, -1] self.assertEqual(image.shape ,(1, 64, 64, 3) ) a__ = np.array( [0.63_90_53_64, 0.62_89_73_07, 0.48_59_90_17, 0.5_13_36_24, 0.5_55_00_48, 0.45_76_95_16, 0.50_32_69_73, 0.5_02_31_39, 0.45_38_44_96] ) a__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__snake_case ,1E-3 ) def lowerCamelCase__( self :Optional[Any] ) -> List[str]: super().test_cpu_offload_forward_pass(expected_max_diff=5E-4 ) def lowerCamelCase__( self :Dict ) -> List[str]: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowerCamelCase__( self :List[str] ) -> Optional[int]: self._test_inference_batch_single_identical(batch_size=2 ,expected_max_diff=7E-4 ) def lowerCamelCase__( self :Dict ) -> Dict: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def lowerCamelCase__( self :Dict ) -> Union[str, Any]: super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5E-4 ) def lowerCamelCase__( self :Optional[Any] ) -> Dict: super().test_save_load_local(expected_max_difference=5E-4 ) def lowerCamelCase__( self :List[Any] ) -> List[Any]: super().test_save_load_optional_components(expected_max_difference=4E-4 ) @require_torch_gpu @slow class snake_case_ (unittest.TestCase ): @classmethod def lowerCamelCase__( cls :Optional[Any] ) -> Tuple: super().setUpClass() torch.use_deterministic_algorithms(__snake_case ) @classmethod def lowerCamelCase__( cls :Optional[int] ) -> Tuple: super().tearDownClass() torch.use_deterministic_algorithms(__snake_case ) def lowerCamelCase__( self :Tuple ) -> Union[str, Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__( self :Optional[Any] ) -> Tuple: a__ = torch.manual_seed(51 ) a__ = StableDiffusionAttendAndExcitePipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' ,safety_checker=__snake_case ,torch_dtype=torch.floataa ) pipe.to('cuda' ) a__ = 'a painting of an elephant with glasses' a__ = [5, 7] a__ = pipe( prompt=__snake_case ,token_indices=__snake_case ,guidance_scale=7.5 ,generator=__snake_case ,num_inference_steps=5 ,max_iter_to_alter=5 ,output_type='numpy' ,).images[0] a__ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy' ) assert np.abs((expected_image - image).max() ) < 5E-1
240
0
import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format='%(message)s') def lowerCamelCase__ ( A__ : np.ndarray ): '''simple docstring''' return input_array.reshape((input_array.size, 1) ) def lowerCamelCase__ ( A__ : np.ndarray , A__ : np.ndarray , A__ : int ): '''simple docstring''' __lowerCamelCase = np.nan for i in range(A__ ): __lowerCamelCase = features[:, labels == i] __lowerCamelCase = data.mean(1 ) # Centralize the data of class i __lowerCamelCase = data - column_reshape(A__ ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(A__ , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) __lowerCamelCase = np.dot(A__ , centered_data.T ) return covariance_sum / features.shape[1] def lowerCamelCase__ ( A__ : np.ndarray , A__ : np.ndarray , A__ : int ): '''simple docstring''' __lowerCamelCase = features.mean(1 ) __lowerCamelCase = np.nan for i in range(A__ ): __lowerCamelCase = features[:, labels == i] __lowerCamelCase = data.shape[1] __lowerCamelCase = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(A__ ) - column_reshape(A__ ) , (column_reshape(A__ ) - column_reshape(A__ )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) __lowerCamelCase = device_data * np.dot( column_reshape(A__ ) - column_reshape(A__ ) , (column_reshape(A__ ) - column_reshape(A__ )).T , ) return covariance_sum / features.shape[1] def lowerCamelCase__ ( A__ : np.ndarray , A__ : int ): '''simple docstring''' if features.any(): __lowerCamelCase = features.mean(1 ) # Center the dataset __lowerCamelCase = features - np.reshape(A__ , (data_mean.size, 1) ) __lowerCamelCase = np.dot(A__ , centered_data.T ) / features.shape[1] __lowerCamelCase, __lowerCamelCase = np.linalg.eigh(A__ ) # Take all the columns in the reverse order (-1), and then takes only the first __lowerCamelCase = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space __lowerCamelCase = np.dot(filtered_eigenvectors.T , A__ ) logging.info("""Principal Component Analysis computed""" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="""%(message)s""" , force=A__ ) logging.error("""Dataset empty""" ) raise AssertionError def lowerCamelCase__ ( A__ : np.ndarray , A__ : np.ndarray , A__ : int , A__ : int ): '''simple docstring''' assert classes > dimensions # Check if features have been already loaded if features.any: __lowerCamelCase, __lowerCamelCase = eigh( covariance_between_classes(A__ , A__ , A__ ) , covariance_within_classes(A__ , A__ , A__ ) , ) __lowerCamelCase = eigenvectors[:, ::-1][:, :dimensions] __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = np.linalg.svd(A__ ) __lowerCamelCase = svd_matrix[:, 0:dimensions] __lowerCamelCase = np.dot(filtered_svd_matrix.T , A__ ) logging.info("""Linear Discriminant Analysis computed""" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="""%(message)s""" , force=A__ ) logging.error("""Dataset empty""" ) raise AssertionError def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) __lowerCamelCase = np.array([0, 0, 0, 1, 1] ) __lowerCamelCase = 2 __lowerCamelCase = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(A__ ) as error_info: __lowerCamelCase = linear_discriminant_analysis( A__ , A__ , A__ , A__ ) if isinstance(A__ , np.ndarray ): raise AssertionError( """Did not raise AssertionError for dimensions > classes""" ) assert error_info.type is AssertionError def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) __lowerCamelCase = 2 __lowerCamelCase = np.array([[6.92_820_323, 8.66_025_404, 10.39_230_485], [3.0, 3.0, 3.0]] ) with pytest.raises(A__ ) as error_info: __lowerCamelCase = principal_component_analysis(A__ , A__ ) if not np.allclose(A__ , A__ ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
29
def lowerCamelCase__ ( A__ : int ): '''simple docstring''' __lowerCamelCase = [[0 for _ in range(A__ )] for _ in range(m + 1 )] for i in range(m + 1 ): __lowerCamelCase = 1 for n in range(m + 1 ): for k in range(1 , A__ ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: UpperCAmelCase_ = int(input('Enter a number: ').strip()) print(partition(n)) except ValueError: print('Please enter a number.') else: try: UpperCAmelCase_ = int(sys.argv[1]) print(partition(n)) except ValueError: print('Please pass a number.')
29
1
from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging a : str = logging.get_logger(__name__) def lowerCAmelCase_ (lowerCAmelCase__: str , lowerCAmelCase__: List[str] ): """simple docstring""" try: with open(lowerCAmelCase__ , """rb""" ) as flax_state_f: UpperCAmelCase_: Union[str, Any] = from_bytes(lowerCAmelCase__ , flax_state_f.read() ) except UnpicklingError as e: try: with open(lowerCAmelCase__ ) as f: if f.read().startswith("""version""" ): raise OSError( """You seem to have cloned a repository without having git-lfs installed. Please""" """ install git-lfs and run `git lfs install` followed by `git lfs pull` in the""" """ folder you cloned.""" ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(F'Unable to convert {model_file} to Flax deserializable object. ' ) return load_flax_weights_in_pytorch_model(lowerCAmelCase__ , lowerCAmelCase__ ) def lowerCAmelCase_ (lowerCAmelCase__: str , lowerCAmelCase__: Union[str, Any] ): """simple docstring""" try: import torch # noqa: F401 except ImportError: logger.error( """Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see""" """ https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation""" """ instructions.""" ) raise # check if we have bf16 weights UpperCAmelCase_: int = flatten_dict(jax.tree_util.tree_map(lambda lowerCAmelCase__ : x.dtype == jnp.bfloataa , lowerCAmelCase__ ) ).values() if any(lowerCAmelCase__ ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( """Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` """ """before loading those in PyTorch model.""" ) UpperCAmelCase_: List[Any] = jax.tree_util.tree_map( lambda lowerCAmelCase__ : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , lowerCAmelCase__ ) UpperCAmelCase_: Dict = """""" UpperCAmelCase_: Dict = flatten_dict(lowerCAmelCase__ , sep=""".""" ) UpperCAmelCase_: str = pt_model.state_dict() # keep track of unexpected & missing keys UpperCAmelCase_: str = [] UpperCAmelCase_: Optional[Any] = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): UpperCAmelCase_: Union[str, Any] = flax_key_tuple.split(""".""" ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: UpperCAmelCase_: int = flax_key_tuple_array[:-1] + ["""weight"""] UpperCAmelCase_: Optional[int] = jnp.transpose(lowerCAmelCase__ , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": UpperCAmelCase_: Tuple = flax_key_tuple_array[:-1] + ["""weight"""] UpperCAmelCase_: Any = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": UpperCAmelCase_: Dict = flax_key_tuple_array[:-1] + ["""weight"""] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(lowerCAmelCase__ ): UpperCAmelCase_: List[Any] = ( flax_key_tuple_string.replace("""_0""" , """.0""" ) .replace("""_1""" , """.1""" ) .replace("""_2""" , """.2""" ) .replace("""_3""" , """.3""" ) .replace("""_4""" , """.4""" ) .replace("""_5""" , """.5""" ) .replace("""_6""" , """.6""" ) .replace("""_7""" , """.7""" ) .replace("""_8""" , """.8""" ) .replace("""_9""" , """.9""" ) ) UpperCAmelCase_: str = """.""".join(lowerCAmelCase__ ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F'Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ' F'to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) else: # add weight to pytorch dict UpperCAmelCase_: Any = np.asarray(lowerCAmelCase__ ) if not isinstance(lowerCAmelCase__ , np.ndarray ) else flax_tensor UpperCAmelCase_: int = torch.from_numpy(lowerCAmelCase__ ) # remove from missing keys missing_keys.remove(lowerCAmelCase__ ) else: # weight is not expected by PyTorch model unexpected_keys.append(lowerCAmelCase__ ) pt_model.load_state_dict(lowerCAmelCase__ ) # re-transform missing_keys to list UpperCAmelCase_: Optional[int] = list(lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > 0: logger.warning( """Some weights of the Flax model were not used when initializing the PyTorch model""" F' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing' F' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture' """ (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This""" F' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect' """ to be exactly identical (e.g. initializing a BertForSequenceClassification model from a""" """ FlaxBertForSequenceClassification model).""" ) if len(lowerCAmelCase__ ) > 0: logger.warning( F'Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly' F' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to' """ use it for predictions and inference.""" ) return pt_model
147
import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class _a : def __init__(self, SCREAMING_SNAKE_CASE_ = "cpu", SCREAMING_SNAKE_CASE_ = "openai/clip-vit-large-patch14" ) -> None: UpperCAmelCase_: Optional[Any] = device UpperCAmelCase_: Optional[Any] = CLIPTokenizerFast.from_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Tuple = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] UpperCAmelCase_: Optional[Any] = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] UpperCAmelCase_: Optional[Any] = torchvision.transforms.Normalize(self.image_mean, self.image_std ) UpperCAmelCase_: Tuple = torchvision.transforms.Resize(224 ) UpperCAmelCase_: Any = torchvision.transforms.CenterCrop(224 ) def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: UpperCAmelCase_: Dict = self.resize(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[int] = self.center_crop(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Tuple = self.normalize(SCREAMING_SNAKE_CASE_ ) return images def __call__(self, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, **SCREAMING_SNAKE_CASE_ ) -> List[str]: UpperCAmelCase_: Dict = self.tokenizer(text=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Tuple = self.preprocess_img(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: int = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class _a ( nn.Module ): def __init__(self, SCREAMING_SNAKE_CASE_=10, SCREAMING_SNAKE_CASE_=0.0_1, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_="image", SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=False, ) -> None: super().__init__() UpperCAmelCase_: List[Any] = None UpperCAmelCase_: List[str] = device if device else get_device() if vqgan: UpperCAmelCase_: int = vqgan else: UpperCAmelCase_: Optional[Any] = load_vqgan(self.device, conf_path=SCREAMING_SNAKE_CASE_, ckpt_path=SCREAMING_SNAKE_CASE_ ) self.vqgan.eval() if clip: UpperCAmelCase_: List[str] = clip else: UpperCAmelCase_: Any = CLIPModel.from_pretrained("""openai/clip-vit-base-patch32""" ) self.clip.to(self.device ) UpperCAmelCase_: Optional[int] = ProcessorGradientFlow(device=self.device ) UpperCAmelCase_: Optional[int] = iterations UpperCAmelCase_: List[Any] = lr UpperCAmelCase_: str = log UpperCAmelCase_: Tuple = make_grid UpperCAmelCase_: List[str] = return_val UpperCAmelCase_: Dict = quantize UpperCAmelCase_: int = self.vqgan.decoder.z_shape def __snake_case (self, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=5, SCREAMING_SNAKE_CASE_=True ) -> List[Any]: UpperCAmelCase_: Tuple = [] if output_path is None: UpperCAmelCase_: Optional[int] = """./animation.gif""" if input_path is None: UpperCAmelCase_: Tuple = self.save_path UpperCAmelCase_: List[Any] = sorted(glob(input_path + """/*""" ) ) if not len(SCREAMING_SNAKE_CASE_ ): raise ValueError( """No images found in save path, aborting (did you pass save_intermediate=True to the generate""" """ function?)""" ) if len(SCREAMING_SNAKE_CASE_ ) == 1: print("""Only one image found in save path, (did you pass save_intermediate=True to the generate function?)""" ) UpperCAmelCase_: Dict = total_duration / len(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: str = [frame_duration] * len(SCREAMING_SNAKE_CASE_ ) if extend_frames: UpperCAmelCase_: List[str] = 1.5 UpperCAmelCase_: List[Any] = 3 for file_name in paths: if file_name.endswith(""".png""" ): images.append(imageio.imread(SCREAMING_SNAKE_CASE_ ) ) imageio.mimsave(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, duration=SCREAMING_SNAKE_CASE_ ) print(f'gif saved to {output_path}' ) def __snake_case (self, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None ) -> Optional[int]: if not (path or img): raise ValueError("""Input either path or tensor""" ) if img is not None: raise NotImplementedError UpperCAmelCase_: List[Any] = preprocess(Image.open(SCREAMING_SNAKE_CASE_ ), target_image_size=256 ).to(self.device ) UpperCAmelCase_: Union[str, Any] = preprocess_vqgan(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_ , *UpperCAmelCase_: str = self.vqgan.encode(SCREAMING_SNAKE_CASE_ ) return z def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: UpperCAmelCase_: List[Any] = self.latent.detach().requires_grad_() UpperCAmelCase_: Optional[int] = base_latent + transform_vector if self.quantize: UpperCAmelCase_ , *UpperCAmelCase_: Optional[Any] = self.vqgan.quantize(SCREAMING_SNAKE_CASE_ ) else: UpperCAmelCase_: Tuple = trans_latent return self.vqgan.decode(SCREAMING_SNAKE_CASE_ ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=None ) -> List[str]: UpperCAmelCase_: Any = self.clip_preprocessor(text=SCREAMING_SNAKE_CASE_, images=SCREAMING_SNAKE_CASE_, return_tensors="""pt""", padding=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: str = self.clip(**SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Dict = clip_outputs.logits_per_image if weights is not None: UpperCAmelCase_: Any = similarity_logits * weights return similarity_logits.sum() def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Any: UpperCAmelCase_: Dict = self._get_clip_similarity(pos_prompts["""prompts"""], SCREAMING_SNAKE_CASE_, weights=(1 / pos_prompts["""weights"""]) ) if neg_prompts: UpperCAmelCase_: Tuple = self._get_clip_similarity(neg_prompts["""prompts"""], SCREAMING_SNAKE_CASE_, weights=neg_prompts["""weights"""] ) else: UpperCAmelCase_: Any = torch.tensor([1], device=self.device ) UpperCAmelCase_: List[str] = -torch.log(SCREAMING_SNAKE_CASE_ ) + torch.log(SCREAMING_SNAKE_CASE_ ) return loss def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: UpperCAmelCase_: Tuple = torch.randn_like(self.latent, requires_grad=SCREAMING_SNAKE_CASE_, device=self.device ) UpperCAmelCase_: str = torch.optim.Adam([vector], lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() UpperCAmelCase_: Optional[int] = self._add_vector(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Any = loop_post_process(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: int = self._get_CLIP_loss(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) print("""CLIP loss""", SCREAMING_SNAKE_CASE_ ) if self.log: wandb.log({"""CLIP Loss""": clip_loss} ) clip_loss.backward(retain_graph=SCREAMING_SNAKE_CASE_ ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Dict: wandb.init(reinit=SCREAMING_SNAKE_CASE_, project="""face-editor""" ) wandb.config.update({"""Positive Prompts""": positive_prompts} ) wandb.config.update({"""Negative Prompts""": negative_prompts} ) wandb.config.update({"""lr""": self.lr, """iterations""": self.iterations} ) if image_path: UpperCAmelCase_: str = Image.open(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[Any] = image.resize((256, 256) ) wandb.log("""Original Image""", wandb.Image(SCREAMING_SNAKE_CASE_ ) ) def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> Optional[int]: if not prompts: return [] UpperCAmelCase_: Tuple = [] UpperCAmelCase_: str = [] if isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): UpperCAmelCase_: Optional[Any] = [prompt.strip() for prompt in prompts.split("""|""" )] for prompt in prompts: if isinstance(SCREAMING_SNAKE_CASE_, (tuple, list) ): UpperCAmelCase_: str = prompt[0] UpperCAmelCase_: List[str] = float(prompt[1] ) elif ":" in prompt: UpperCAmelCase_ , UpperCAmelCase_: int = prompt.split(""":""" ) UpperCAmelCase_: int = float(SCREAMING_SNAKE_CASE_ ) else: UpperCAmelCase_: str = prompt UpperCAmelCase_: Dict = 1.0 processed_prompts.append(SCREAMING_SNAKE_CASE_ ) weights.append(SCREAMING_SNAKE_CASE_ ) return { "prompts": processed_prompts, "weights": torch.tensor(SCREAMING_SNAKE_CASE_, device=self.device ), } def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=None, ) -> Optional[Any]: if image_path: UpperCAmelCase_: Optional[int] = self._get_latent(SCREAMING_SNAKE_CASE_ ) else: UpperCAmelCase_: str = torch.randn(self.latent_dim, device=self.device ) if self.log: self._init_logging(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) assert pos_prompts, "You must provide at least one positive prompt." UpperCAmelCase_: List[Any] = self.process_prompts(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Dict = self.process_prompts(SCREAMING_SNAKE_CASE_ ) if save_final and save_path is None: UpperCAmelCase_: Optional[int] = os.path.join("""./outputs/""", """_""".join(pos_prompts["""prompts"""] ) ) if not os.path.exists(SCREAMING_SNAKE_CASE_ ): os.makedirs(SCREAMING_SNAKE_CASE_ ) else: UpperCAmelCase_: List[str] = save_path + """_""" + get_timestamp() os.makedirs(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[int] = save_path UpperCAmelCase_: Optional[Any] = self.vqgan.decode(self.latent )[0] if show_intermediate: print("""Original Image""" ) show_pil(custom_to_pil(SCREAMING_SNAKE_CASE_ ) ) UpperCAmelCase_: Tuple = loop_post_process(SCREAMING_SNAKE_CASE_ ) for iter, transformed_img in enumerate(self._optimize_CLIP(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) ): if show_intermediate: show_pil(SCREAMING_SNAKE_CASE_ ) if save_intermediate: transformed_img.save(os.path.join(self.save_path, f'iter_{iter:03d}.png' ) ) if self.log: wandb.log({"""Image""": wandb.Image(SCREAMING_SNAKE_CASE_ )} ) if show_final: show_pil(SCREAMING_SNAKE_CASE_ ) if save_final: transformed_img.save(os.path.join(self.save_path, f'iter_{iter:03d}_final.png' ) )
147
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase =logging.get_logger(__name__) lowercase ={ 'vinvino02/glpn-kitti': 'https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json', # See all GLPN models at https://huggingface.co/models?filter=glpn } class __magic_name__ ( lowerCAmelCase ): UpperCAmelCase ="glpn" def __init__( self , snake_case=3 , snake_case=4 , snake_case=[2, 2, 2, 2] , snake_case=[8, 4, 2, 1] , snake_case=[3_2, 6_4, 1_6_0, 2_5_6] , snake_case=[7, 3, 3, 3] , snake_case=[4, 2, 2, 2] , snake_case=[1, 2, 5, 8] , snake_case=[4, 4, 4, 4] , snake_case="gelu" , snake_case=0.0 , snake_case=0.0 , snake_case=0.02 , snake_case=0.1 , snake_case=1E-6 , snake_case=6_4 , snake_case=1_0 , snake_case=-1 , **snake_case , ) -> Tuple: '''simple docstring''' super().__init__(**snake_case) _UpperCAmelCase : Any =num_channels _UpperCAmelCase : List[str] =num_encoder_blocks _UpperCAmelCase : Optional[Any] =depths _UpperCAmelCase : str =sr_ratios _UpperCAmelCase : Dict =hidden_sizes _UpperCAmelCase : List[str] =patch_sizes _UpperCAmelCase : Any =strides _UpperCAmelCase : List[str] =mlp_ratios _UpperCAmelCase : Dict =num_attention_heads _UpperCAmelCase : List[str] =hidden_act _UpperCAmelCase : int =hidden_dropout_prob _UpperCAmelCase : List[Any] =attention_probs_dropout_prob _UpperCAmelCase : Union[str, Any] =initializer_range _UpperCAmelCase : Tuple =drop_path_rate _UpperCAmelCase : str =layer_norm_eps _UpperCAmelCase : Optional[int] =decoder_hidden_size _UpperCAmelCase : List[str] =max_depth _UpperCAmelCase : Dict =head_in_index
242
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class __magic_name__ ( unittest.TestCase ): def lowerCAmelCase ( self) -> str: '''simple docstring''' _UpperCAmelCase : Dict ='ZinengTang/tvlt-base' _UpperCAmelCase : Dict =tempfile.mkdtemp() def lowerCAmelCase ( self , **snake_case) -> Union[str, Any]: '''simple docstring''' return TvltImageProcessor.from_pretrained(self.checkpoint , **snake_case) def lowerCAmelCase ( self , **snake_case) -> Dict: '''simple docstring''' return TvltFeatureExtractor.from_pretrained(self.checkpoint , **snake_case) def lowerCAmelCase ( self) -> Any: '''simple docstring''' shutil.rmtree(self.tmpdirname) def lowerCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCAmelCase : Any =self.get_image_processor() _UpperCAmelCase : Optional[Any] =self.get_feature_extractor() _UpperCAmelCase : str =TvltProcessor(image_processor=snake_case , feature_extractor=snake_case) processor.save_pretrained(self.tmpdirname) _UpperCAmelCase : str =TvltProcessor.from_pretrained(self.tmpdirname) self.assertIsInstance(processor.feature_extractor , snake_case) self.assertIsInstance(processor.image_processor , snake_case) def lowerCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : str =self.get_image_processor() _UpperCAmelCase : List[Any] =self.get_feature_extractor() _UpperCAmelCase : str =TvltProcessor(image_processor=snake_case , feature_extractor=snake_case) _UpperCAmelCase : Optional[int] =np.ones([1_2_0_0_0]) _UpperCAmelCase : str =feature_extractor(snake_case , return_tensors='np') _UpperCAmelCase : Dict =processor(audio=snake_case , return_tensors='np') for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1E-2) def lowerCAmelCase ( self) -> int: '''simple docstring''' _UpperCAmelCase : Dict =self.get_image_processor() _UpperCAmelCase : int =self.get_feature_extractor() _UpperCAmelCase : int =TvltProcessor(image_processor=snake_case , feature_extractor=snake_case) _UpperCAmelCase : Union[str, Any] =np.ones([3, 2_2_4, 2_2_4]) _UpperCAmelCase : Optional[Any] =image_processor(snake_case , return_tensors='np') _UpperCAmelCase : List[Any] =processor(images=snake_case , return_tensors='np') for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1E-2) def lowerCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCAmelCase : List[str] =self.get_image_processor() _UpperCAmelCase : Dict =self.get_feature_extractor() _UpperCAmelCase : Optional[int] =TvltProcessor(image_processor=snake_case , feature_extractor=snake_case) _UpperCAmelCase : Optional[int] =np.ones([1_2_0_0_0]) _UpperCAmelCase : str =np.ones([3, 2_2_4, 2_2_4]) _UpperCAmelCase : Optional[int] =processor(audio=snake_case , images=snake_case) self.assertListEqual(list(inputs.keys()) , ['audio_values', 'audio_mask', 'pixel_values', 'pixel_mask']) # test if it raises when no input is passed with pytest.raises(snake_case): processor() def lowerCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCAmelCase : Optional[int] =self.get_image_processor() _UpperCAmelCase : Tuple =self.get_feature_extractor() _UpperCAmelCase : Dict =TvltProcessor(image_processor=snake_case , feature_extractor=snake_case) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg='`processor` and `image_processor`+`feature_extractor` model input names do not match' , )
242
1
"""simple docstring""" import math def UpperCAmelCase__ (snake_case__ : int = 1_00 ): """simple docstring""" _snake_case : str = sum(i * i for i in range(1 , n + 1 ) ) _snake_case : Tuple = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(F'''{solution() = }''')
64
"""simple docstring""" from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class lowerCAmelCase__ ( A_ ): def __lt__( self : Any , _lowerCamelCase : int ): return self[-1] < other[-1] def __eq__( self : int , _lowerCamelCase : Optional[Any] ): return self[-1] == other[-1] def _UpperCAmelCase ( __lowerCamelCase : list ) -> list: _snake_case = [] # sort into stacks for element in collection: _snake_case = Stack([element] ) _snake_case = bisect_left(__lowerCamelCase , __lowerCamelCase ) if i != len(__lowerCamelCase ): stacks[i].append(__lowerCamelCase ) else: stacks.append(__lowerCamelCase ) # use a heap-based merge to merge stack efficiently _snake_case = merge(*(reversed(__lowerCamelCase ) for stack in stacks) ) return collection if __name__ == "__main__": UpperCAmelCase__ = input('Enter numbers separated by a comma:\n').strip() UpperCAmelCase__ = [int(item) for item in user_input.split(',')] print(patience_sort(unsorted))
288
0
def lowerCAmelCase_ ( _lowercase : int) -> bool: """simple docstring""" if num < 0: return False a__ : int = num a__ : int = 0 while num > 0: a__ : Tuple = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
266
import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class snake_case__ (A__ , unittest.TestCase ): """simple docstring""" __lowerCAmelCase :Union[str, Any] = ProphetNetTokenizer __lowerCAmelCase :Any = False def SCREAMING_SNAKE_CASE__( self ) -> Union[str, Any]: """simple docstring""" super().setUp() a__ : Optional[Any] = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] a__ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> str: """simple docstring""" a__ : Any = """UNwant\u00E9d,running""" a__ : Dict = """unwanted, running""" return input_text, output_text def SCREAMING_SNAKE_CASE__( self ) -> Dict: """simple docstring""" a__ : Tuple = self.tokenizer_class(self.vocab_file ) a__ : int = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(__lowercase , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowercase ) , [9, 6, 7, 1_2, 1_0, 1_1] ) def SCREAMING_SNAKE_CASE__( self ) -> Union[str, Any]: """simple docstring""" a__ : str = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""" ) , ["""ah""", """\u535A""", """\u63A8""", """zz"""] ) def SCREAMING_SNAKE_CASE__( self ) -> int: """simple docstring""" a__ : int = BasicTokenizer(do_lower_case=__lowercase ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""hello""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def SCREAMING_SNAKE_CASE__( self ) -> List[Any]: """simple docstring""" a__ : str = BasicTokenizer(do_lower_case=__lowercase , strip_accents=__lowercase ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hällo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""h\u00E9llo"""] ) def SCREAMING_SNAKE_CASE__( self ) -> str: """simple docstring""" a__ : List[str] = BasicTokenizer(do_lower_case=__lowercase , strip_accents=__lowercase ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def SCREAMING_SNAKE_CASE__( self ) -> List[Any]: """simple docstring""" a__ : Optional[Any] = BasicTokenizer(do_lower_case=__lowercase ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def SCREAMING_SNAKE_CASE__( self ) -> Optional[int]: """simple docstring""" a__ : List[str] = BasicTokenizer(do_lower_case=__lowercase ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def SCREAMING_SNAKE_CASE__( self ) -> List[str]: """simple docstring""" a__ : str = BasicTokenizer(do_lower_case=__lowercase , strip_accents=__lowercase ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def SCREAMING_SNAKE_CASE__( self ) -> Optional[Any]: """simple docstring""" a__ : List[str] = BasicTokenizer(do_lower_case=__lowercase , strip_accents=__lowercase ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def SCREAMING_SNAKE_CASE__( self ) -> List[Any]: """simple docstring""" a__ : Union[str, Any] = BasicTokenizer(do_lower_case=__lowercase , never_split=["""[UNK]"""] ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""" ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""] ) def SCREAMING_SNAKE_CASE__( self ) -> Optional[Any]: """simple docstring""" a__ : Optional[Any] = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""] a__ : Dict = {} for i, token in enumerate(__lowercase ): a__ : Optional[Any] = i a__ : str = WordpieceTokenizer(vocab=__lowercase , unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) , [] ) self.assertListEqual(tokenizer.tokenize("""unwanted running""" ) , ["""un""", """##want""", """##ed""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.tokenize("""unwantedX running""" ) , ["""[UNK]""", """runn""", """##ing"""] ) @require_torch def SCREAMING_SNAKE_CASE__( self ) -> List[Any]: """simple docstring""" a__ : List[Any] = self.tokenizer_class.from_pretrained("""microsoft/prophetnet-large-uncased""" ) a__ : List[Any] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] a__ : Optional[Any] = [1_0_3_7, 2_1_4_6, 2_0_4_2_3, 2_0_0_5, 7_6_8_0, 7_8_4_9, 3_9_8_9, 1_0_1_2, 1_0_2] a__ : List[Any] = tokenizer(__lowercase , padding=__lowercase , return_tensors="""pt""" ) self.assertIsInstance(__lowercase , __lowercase ) a__ : Optional[int] = list(batch.input_ids.numpy()[0] ) self.assertListEqual(__lowercase , __lowercase ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) def SCREAMING_SNAKE_CASE__( self ) -> List[str]: """simple docstring""" self.assertTrue(_is_whitespace(""" """ ) ) self.assertTrue(_is_whitespace("""\t""" ) ) self.assertTrue(_is_whitespace("""\r""" ) ) self.assertTrue(_is_whitespace("""\n""" ) ) self.assertTrue(_is_whitespace("""\u00A0""" ) ) self.assertFalse(_is_whitespace("""A""" ) ) self.assertFalse(_is_whitespace("""-""" ) ) def SCREAMING_SNAKE_CASE__( self ) -> Optional[Any]: """simple docstring""" self.assertTrue(_is_control("""\u0005""" ) ) self.assertFalse(_is_control("""A""" ) ) self.assertFalse(_is_control(""" """ ) ) self.assertFalse(_is_control("""\t""" ) ) self.assertFalse(_is_control("""\r""" ) ) def SCREAMING_SNAKE_CASE__( self ) -> Optional[Any]: """simple docstring""" self.assertTrue(_is_punctuation("""-""" ) ) self.assertTrue(_is_punctuation("""$""" ) ) self.assertTrue(_is_punctuation("""`""" ) ) self.assertTrue(_is_punctuation(""".""" ) ) self.assertFalse(_is_punctuation("""A""" ) ) self.assertFalse(_is_punctuation(""" """ ) ) @slow def SCREAMING_SNAKE_CASE__( self ) -> Optional[int]: """simple docstring""" a__ : Optional[Any] = self.tokenizer_class.from_pretrained("""microsoft/prophetnet-large-uncased""" ) a__ : Dict = tokenizer.encode("""sequence builders""" , add_special_tokens=__lowercase ) a__ : str = tokenizer.encode("""multi-sequence build""" , add_special_tokens=__lowercase ) a__ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(__lowercase ) a__ : Optional[int] = tokenizer.build_inputs_with_special_tokens(__lowercase , __lowercase ) assert encoded_sentence == text + [1_0_2] assert encoded_pair == text + [1_0_2] + text_a + [1_0_2]
266
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu UpperCAmelCase = False class A_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def SCREAMING_SNAKE_CASE__ ( self ): return 12 @property def SCREAMING_SNAKE_CASE__ ( self ): return 12 @property def SCREAMING_SNAKE_CASE__ ( self ): return 32 @property def SCREAMING_SNAKE_CASE__ ( self ): torch.manual_seed(0 ) lowercase = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def SCREAMING_SNAKE_CASE__ ( self ): lowercase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def SCREAMING_SNAKE_CASE__ ( self ): torch.manual_seed(0 ) lowercase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(snake_case ) @property def SCREAMING_SNAKE_CASE__ ( self ): torch.manual_seed(0 ) lowercase = 12 lowercase = 12 lowercase = { 'attention_bias': True, 'cross_attention_dim': 32, 'attention_head_dim': height * width, 'num_attention_heads': 1, 'num_vector_embeds': self.num_embed, 'num_embeds_ada_norm': self.num_embeds_ada_norm, 'norm_num_groups': 32, 'sample_size': width, 'activation_fn': 'geglu-approximate', } lowercase = TransformeraDModel(**snake_case ) return model def SCREAMING_SNAKE_CASE__ ( self ): lowercase = 'cpu' lowercase = self.dummy_vqvae lowercase = self.dummy_text_encoder lowercase = self.dummy_tokenizer lowercase = self.dummy_transformer lowercase = VQDiffusionScheduler(self.num_embed ) lowercase = LearnedClassifierFreeSamplingEmbeddings(learnable=snake_case ) lowercase = VQDiffusionPipeline( vqvae=snake_case , text_encoder=snake_case , tokenizer=snake_case , transformer=snake_case , scheduler=snake_case , learned_classifier_free_sampling_embeddings=snake_case , ) lowercase = pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) lowercase = 'teddy bear playing in the pool' lowercase = torch.Generator(device=snake_case ).manual_seed(0 ) lowercase = pipe([prompt] , generator=snake_case , num_inference_steps=2 , output_type='np' ) lowercase = output.images lowercase = torch.Generator(device=snake_case ).manual_seed(0 ) lowercase = pipe( [prompt] , generator=snake_case , output_type='np' , return_dict=snake_case , num_inference_steps=2 )[0] lowercase = image[0, -3:, -3:, -1] lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) lowercase = np.array([0.6_551, 0.6_168, 0.5_008, 0.5_676, 0.5_659, 0.4_295, 0.6_073, 0.5_599, 0.4_992] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def SCREAMING_SNAKE_CASE__ ( self ): lowercase = 'cpu' lowercase = self.dummy_vqvae lowercase = self.dummy_text_encoder lowercase = self.dummy_tokenizer lowercase = self.dummy_transformer lowercase = VQDiffusionScheduler(self.num_embed ) lowercase = LearnedClassifierFreeSamplingEmbeddings( learnable=snake_case , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length ) lowercase = VQDiffusionPipeline( vqvae=snake_case , text_encoder=snake_case , tokenizer=snake_case , transformer=snake_case , scheduler=snake_case , learned_classifier_free_sampling_embeddings=snake_case , ) lowercase = pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) lowercase = 'teddy bear playing in the pool' lowercase = torch.Generator(device=snake_case ).manual_seed(0 ) lowercase = pipe([prompt] , generator=snake_case , num_inference_steps=2 , output_type='np' ) lowercase = output.images lowercase = torch.Generator(device=snake_case ).manual_seed(0 ) lowercase = pipe( [prompt] , generator=snake_case , output_type='np' , return_dict=snake_case , num_inference_steps=2 )[0] lowercase = image[0, -3:, -3:, -1] lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) lowercase = np.array([0.6_693, 0.6_075, 0.4_959, 0.5_701, 0.5_583, 0.4_333, 0.6_171, 0.5_684, 0.4_988] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class A_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self ): lowercase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy' ) lowercase = VQDiffusionPipeline.from_pretrained('microsoft/vq-diffusion-ithq' ) lowercase = pipeline.to(snake_case ) pipeline.set_progress_bar_config(disable=snake_case ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though lowercase = torch.Generator(device=snake_case ).manual_seed(0 ) lowercase = pipeline( 'teddy bear playing in the pool' , num_images_per_prompt=1 , generator=snake_case , output_type='np' , ) lowercase = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image ).max() < 2.0
195
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter UpperCAmelCase = '''Create a default config file for Accelerate with only a few flags set.''' def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE="no" , __SCREAMING_SNAKE_CASE = default_json_config_file , __SCREAMING_SNAKE_CASE = False ): lowercase = Path(__SCREAMING_SNAKE_CASE ) path.parent.mkdir(parents=__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) if path.exists(): print( F'''Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.''' ) return False lowercase = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F'''`mixed_precision` should be one of \'no\', \'fp16\', \'bf16\', or \'fp8\'. Received {mixed_precision}''' ) lowercase = { 'compute_environment': 'LOCAL_MACHINE', 'mixed_precision': mixed_precision, } if torch.cuda.is_available(): lowercase = torch.cuda.device_count() lowercase = num_gpus lowercase = False if num_gpus > 1: lowercase = 'MULTI_GPU' else: lowercase = 'NO' elif is_xpu_available() and use_xpu: lowercase = torch.xpu.device_count() lowercase = num_xpus lowercase = False if num_xpus > 1: lowercase = 'MULTI_XPU' else: lowercase = 'NO' elif is_npu_available(): lowercase = torch.npu.device_count() lowercase = num_npus lowercase = False if num_npus > 1: lowercase = 'MULTI_NPU' else: lowercase = 'NO' else: lowercase = 0 lowercase = True lowercase = 1 lowercase = 'NO' lowercase = ClusterConfig(**__SCREAMING_SNAKE_CASE ) config.to_json_file(__SCREAMING_SNAKE_CASE ) return path def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase = parser.add_parser('default' , parents=__SCREAMING_SNAKE_CASE , help=__SCREAMING_SNAKE_CASE , formatter_class=__SCREAMING_SNAKE_CASE ) parser.add_argument( '--config_file' , default=__SCREAMING_SNAKE_CASE , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , dest='save_location' , ) parser.add_argument( '--mixed_precision' , choices=['no', 'fp16', 'bf16'] , type=__SCREAMING_SNAKE_CASE , help='Whether or not to use mixed precision training. ' 'Choose between FP16 and BF16 (bfloat16) training. ' 'BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.' , default='no' , ) parser.set_defaults(func=__SCREAMING_SNAKE_CASE ) return parser def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): lowercase = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(F'''accelerate configuration saved at {config_file}''' )
195
1
import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) a__: str = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase=None,__lowerCamelCase=None ): A__ = self.layer[current_layer](__lowerCamelCase,__lowerCamelCase,head_mask[current_layer] ) A__ = layer_outputs[0] return hidden_states @add_start_docstrings( '''The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top.''' , UpperCamelCase__ , ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): def __init__( self,__lowerCamelCase ): super().__init__(__lowerCamelCase ) A__ = BertEncoderWithPabee(__lowerCamelCase ) self.init_weights() A__ = 0 A__ = 0 A__ = 0 A__ = 0 def UpperCamelCase ( self,__lowerCamelCase ): A__ = threshold def UpperCamelCase ( self,__lowerCamelCase ): A__ = patience def UpperCamelCase ( self ): A__ = 0 A__ = 0 def UpperCamelCase ( self ): A__ = self.inference_layers_num / self.inference_instances_num A__ = ( f"*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =" f" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***" ) print(__lowerCamelCase ) @add_start_docstrings_to_model_forward(__lowerCamelCase ) def UpperCamelCase ( self,__lowerCamelCase=None,__lowerCamelCase=None,__lowerCamelCase=None,__lowerCamelCase=None,__lowerCamelCase=None,__lowerCamelCase=None,__lowerCamelCase=None,__lowerCamelCase=None,__lowerCamelCase=None,__lowerCamelCase=None,__lowerCamelCase=False,): if input_ids is not None and inputs_embeds is not None: raise ValueError('''You cannot specify both input_ids and inputs_embeds at the same time''' ) elif input_ids is not None: A__ = input_ids.size() elif inputs_embeds is not None: A__ = inputs_embeds.size()[:-1] else: raise ValueError('''You have to specify either input_ids or inputs_embeds''' ) A__ = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: A__ = torch.ones(__lowerCamelCase,device=__lowerCamelCase ) if token_type_ids is None: A__ = torch.zeros(__lowerCamelCase,dtype=torch.long,device=__lowerCamelCase ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. A__ = self.get_extended_attention_mask(__lowerCamelCase,__lowerCamelCase,__lowerCamelCase ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: A__ , A__ , A__ = encoder_hidden_states.size() A__ = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: A__ = torch.ones(__lowerCamelCase,device=__lowerCamelCase ) A__ = self.invert_attention_mask(__lowerCamelCase ) else: A__ = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] A__ = self.get_head_mask(__lowerCamelCase,self.config.num_hidden_layers ) A__ = self.embeddings( input_ids=__lowerCamelCase,position_ids=__lowerCamelCase,token_type_ids=__lowerCamelCase,inputs_embeds=__lowerCamelCase ) A__ = embedding_output if self.training: A__ = [] for i in range(self.config.num_hidden_layers ): A__ = self.encoder.adaptive_forward( __lowerCamelCase,current_layer=__lowerCamelCase,attention_mask=__lowerCamelCase,head_mask=__lowerCamelCase ) A__ = self.pooler(__lowerCamelCase ) A__ = output_layers[i](output_dropout(__lowerCamelCase ) ) res.append(__lowerCamelCase ) elif self.patience == 0: # Use all layers for inference A__ = self.encoder( __lowerCamelCase,attention_mask=__lowerCamelCase,head_mask=__lowerCamelCase,encoder_hidden_states=__lowerCamelCase,encoder_attention_mask=__lowerCamelCase,) A__ = self.pooler(encoder_outputs[0] ) A__ = [output_layers[self.config.num_hidden_layers - 1](__lowerCamelCase )] else: A__ = 0 A__ = None A__ = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 A__ = self.encoder.adaptive_forward( __lowerCamelCase,current_layer=__lowerCamelCase,attention_mask=__lowerCamelCase,head_mask=__lowerCamelCase ) A__ = self.pooler(__lowerCamelCase ) A__ = output_layers[i](__lowerCamelCase ) if regression: A__ = logits.detach() if patient_result is not None: A__ = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: A__ = 0 else: A__ = logits.detach().argmax(dim=1 ) if patient_result is not None: A__ = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(__lowerCamelCase ) ): patient_counter += 1 else: A__ = 0 A__ = logits if patient_counter == self.patience: break A__ = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( '''Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. ''' , UpperCamelCase__ , ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): def __init__( self,__lowerCamelCase ): super().__init__(__lowerCamelCase ) A__ = config.num_labels A__ = BertModelWithPabee(__lowerCamelCase ) A__ = nn.Dropout(config.hidden_dropout_prob ) A__ = nn.ModuleList( [nn.Linear(config.hidden_size,self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(__lowerCamelCase ) def UpperCamelCase ( self,__lowerCamelCase=None,__lowerCamelCase=None,__lowerCamelCase=None,__lowerCamelCase=None,__lowerCamelCase=None,__lowerCamelCase=None,__lowerCamelCase=None,): A__ = self.bert( input_ids=__lowerCamelCase,attention_mask=__lowerCamelCase,token_type_ids=__lowerCamelCase,position_ids=__lowerCamelCase,head_mask=__lowerCamelCase,inputs_embeds=__lowerCamelCase,output_dropout=self.dropout,output_layers=self.classifiers,regression=self.num_labels == 1,) A__ = (logits[-1],) if labels is not None: A__ = None A__ = 0 for ix, logits_item in enumerate(__lowerCamelCase ): if self.num_labels == 1: # We are doing regression A__ = MSELoss() A__ = loss_fct(logits_item.view(-1 ),labels.view(-1 ) ) else: A__ = CrossEntropyLoss() A__ = loss_fct(logits_item.view(-1,self.num_labels ),labels.view(-1 ) ) if total_loss is None: A__ = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 A__ = (total_loss / total_weights,) + outputs return outputs
39
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device a__: Union[str, Any] = False class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): pass @nightly @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def UpperCamelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self ): A__ = VersatileDiffusionTextToImagePipeline.from_pretrained('''shi-labs/versatile-diffusion''' ) # remove text_unet pipe.remove_unused_weights() pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) A__ = '''A painting of a squirrel eating a burger ''' A__ = torch.manual_seed(0 ) A__ = pipe( prompt=__lowerCamelCase,generator=__lowerCamelCase,guidance_scale=7.5,num_inference_steps=2,output_type='''numpy''' ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__lowerCamelCase ) A__ = VersatileDiffusionTextToImagePipeline.from_pretrained(__lowerCamelCase ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) A__ = generator.manual_seed(0 ) A__ = pipe( prompt=__lowerCamelCase,generator=__lowerCamelCase,guidance_scale=7.5,num_inference_steps=2,output_type='''numpy''' ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def UpperCamelCase ( self ): A__ = VersatileDiffusionTextToImagePipeline.from_pretrained( '''shi-labs/versatile-diffusion''',torch_dtype=torch.floataa ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) A__ = '''A painting of a squirrel eating a burger ''' A__ = torch.manual_seed(0 ) A__ = pipe( prompt=__lowerCamelCase,generator=__lowerCamelCase,guidance_scale=7.5,num_inference_steps=50,output_type='''numpy''' ).images A__ = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) A__ = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
39
1
from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class SCREAMING_SNAKE_CASE_ : def __init__( self : List[Any] , _A : Optional[Any] , _A : Dict=13 , _A : Union[str, Any]=30 , _A : Tuple=2 , _A : Union[str, Any]=3 , _A : Optional[int]=True , _A : Optional[Any]=True , _A : str=32 , _A : int=2 , _A : List[str]=4 , _A : List[str]=37 , _A : Tuple="gelu" , _A : Dict=0.1 , _A : Optional[Any]=0.1 , _A : Optional[int]=10 , _A : Optional[int]=0.0_2 , _A : Optional[Any]=3 , _A : str=0.6 , _A : Union[str, Any]=None , ) -> Any: """simple docstring""" snake_case_ : Optional[int] = parent snake_case_ : Tuple = batch_size snake_case_ : List[Any] = image_size snake_case_ : List[str] = patch_size snake_case_ : List[str] = num_channels snake_case_ : Optional[Any] = is_training snake_case_ : Any = use_labels snake_case_ : Tuple = hidden_size snake_case_ : Union[str, Any] = num_hidden_layers snake_case_ : List[Any] = num_attention_heads snake_case_ : Optional[Any] = intermediate_size snake_case_ : List[Any] = hidden_act snake_case_ : Union[str, Any] = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : Tuple = type_sequence_label_size snake_case_ : List[str] = initializer_range snake_case_ : Optional[Any] = mask_ratio snake_case_ : Any = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) snake_case_ : Optional[int] = (image_size // patch_size) ** 2 snake_case_ : str = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def UpperCAmelCase_ ( self : List[str] ) -> Optional[Any]: """simple docstring""" snake_case_ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ : Union[str, Any] = None if self.use_labels: snake_case_ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ : Union[str, Any] = self.get_config() return config, pixel_values, labels def UpperCAmelCase_ ( self : int ) -> Optional[Any]: """simple docstring""" return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_A , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def UpperCAmelCase_ ( self : List[Any] , _A : int , _A : Dict , _A : str ) -> Dict: """simple docstring""" snake_case_ : Union[str, Any] = TFViTMAEModel(config=_A ) snake_case_ : str = model(_A , training=_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self : Dict , _A : Dict , _A : Any , _A : List[Any] ) -> int: """simple docstring""" snake_case_ : Any = TFViTMAEForPreTraining(_A ) snake_case_ : Optional[Any] = model(_A , training=_A ) # expected sequence length = num_patches snake_case_ : List[str] = (self.image_size // self.patch_size) ** 2 snake_case_ : Optional[Any] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images snake_case_ : str = 1 snake_case_ : Dict = TFViTMAEForPreTraining(_A ) snake_case_ : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case_ : List[str] = model(_A , training=_A ) snake_case_ : Optional[Any] = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" snake_case_ : List[Any] = self.prepare_config_and_inputs() ((snake_case_) ,(snake_case_) ,(snake_case_)) : Any = config_and_inputs snake_case_ : Optional[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE_ ( snake_case_ , snake_case_ , unittest.TestCase ): __magic_name__: List[str] = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () __magic_name__: str = {"feature-extraction": TFViTMAEModel} if is_tf_available() else {} __magic_name__: Dict = False __magic_name__: Dict = False __magic_name__: List[Any] = False __magic_name__: Dict = False def UpperCAmelCase_ ( self : Any ) -> List[Any]: """simple docstring""" snake_case_ : List[Any] = TFViTMAEModelTester(self ) snake_case_ : Tuple = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=37 ) def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='ViTMAE does not use inputs_embeds' ) def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" pass def UpperCAmelCase_ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" snake_case_ ,snake_case_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ : List[Any] = model_class(_A ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) snake_case_ : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_A , tf.keras.layers.Layer ) ) def UpperCAmelCase_ ( self : List[str] ) -> Dict: """simple docstring""" snake_case_ ,snake_case_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ : List[str] = model_class(_A ) snake_case_ : Any = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ : Dict = [*signature.parameters.keys()] snake_case_ : Dict = ['pixel_values'] self.assertListEqual(arg_names[:1] , _A ) def UpperCAmelCase_ ( self : Dict ) -> List[str]: """simple docstring""" snake_case_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def UpperCAmelCase_ ( self : List[Any] ) -> List[str]: """simple docstring""" snake_case_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_A ) def UpperCAmelCase_ ( self : Tuple ) -> Dict: """simple docstring""" np.random.seed(2 ) snake_case_ ,snake_case_ : int = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : Optional[int] = int((config.image_size // config.patch_size) ** 2 ) snake_case_ : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: snake_case_ : Optional[Any] = model_class(_A ) snake_case_ : Union[str, Any] = self._prepare_for_class(_A , _A ) snake_case_ : List[str] = model(_A , noise=_A ) snake_case_ : Tuple = copy.deepcopy(self._prepare_for_class(_A , _A ) ) snake_case_ : str = model(**_A , noise=_A ) snake_case_ : Union[str, Any] = outputs_dict[0].numpy() snake_case_ : Optional[Any] = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1E-6 ) def UpperCAmelCase_ ( self : List[Any] ) -> List[Any]: """simple docstring""" np.random.seed(2 ) snake_case_ ,snake_case_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : Tuple = int((config.image_size // config.patch_size) ** 2 ) snake_case_ : Optional[int] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(_A : int ): snake_case_ : Any = {} for k, v in inputs_dict.items(): if tf.is_tensor(_A ): snake_case_ : str = v.numpy() else: snake_case_ : Optional[Any] = np.array(_A ) return inputs_np_dict for model_class in self.all_model_classes: snake_case_ : int = model_class(_A ) snake_case_ : List[Any] = self._prepare_for_class(_A , _A ) snake_case_ : Any = prepare_numpy_arrays(_A ) snake_case_ : List[Any] = model(_A , noise=_A ) snake_case_ : List[Any] = model(**_A , noise=_A ) self.assert_outputs_same(_A , _A ) def UpperCAmelCase_ ( self : Tuple , _A : Union[str, Any] , _A : Union[str, Any] , _A : List[Any] ) -> List[str]: """simple docstring""" np.random.seed(2 ) snake_case_ : Optional[int] = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) snake_case_ : Optional[int] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) snake_case_ : Optional[int] = tf.constant(_A ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument snake_case_ : Optional[Any] = tf_noise super().check_pt_tf_models(_A , _A , _A ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Dict: """simple docstring""" np.random.seed(2 ) snake_case_ ,snake_case_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : int = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(_A ) if module_member_name.endswith('MainLayer' ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len('MainLayer' )] == model_class.__name__[: -len('Model' )] for module_member in (getattr(_A , _A ),) if isinstance(_A , _A ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(_A , '_keras_serializable' , _A ) } snake_case_ : List[Any] = int((config.image_size // config.patch_size) ** 2 ) snake_case_ : List[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) snake_case_ : Optional[int] = tf.convert_to_tensor(_A ) inputs_dict.update({'noise': noise} ) for main_layer_class in tf_main_layer_classes: snake_case_ : Optional[Any] = main_layer_class(_A ) snake_case_ : List[str] = { name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } snake_case_ : Union[str, Any] = tf.keras.Model(_A , outputs=main_layer(_A ) ) snake_case_ : int = model(_A ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case_ : List[Any] = os.path.join(_A , 'keras_model.h5' ) model.save(_A ) snake_case_ : str = tf.keras.models.load_model( _A , custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(_A , tf.keras.Model ) snake_case_ : List[str] = model(_A ) self.assert_outputs_same(_A , _A ) @slow def UpperCAmelCase_ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" np.random.seed(2 ) snake_case_ ,snake_case_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : int = int((config.image_size // config.patch_size) ** 2 ) snake_case_ : int = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: snake_case_ : Optional[Any] = model_class(_A ) snake_case_ : Optional[Any] = self._prepare_for_class(_A , _A ) snake_case_ : int = model(_A , noise=_A ) if model_class.__name__ == "TFViTMAEModel": snake_case_ : Any = outputs.last_hidden_state.numpy() snake_case_ : Optional[int] = 0 else: snake_case_ : str = outputs.logits.numpy() snake_case_ : Optional[Any] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_A , saved_model=_A ) snake_case_ : Any = model_class.from_pretrained(_A ) snake_case_ : Any = model(_A , noise=_A ) if model_class.__name__ == "TFViTMAEModel": snake_case_ : Dict = after_outputs['last_hidden_state'].numpy() snake_case_ : Dict = 0 else: snake_case_ : Any = after_outputs['logits'].numpy() snake_case_ : Optional[Any] = 0 snake_case_ : Any = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_A , 1E-5 ) def UpperCAmelCase_ ( self : Any ) -> str: """simple docstring""" np.random.seed(2 ) snake_case_ ,snake_case_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : Optional[int] = int((config.image_size // config.patch_size) ** 2 ) snake_case_ : Union[str, Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: snake_case_ : str = model_class(_A ) snake_case_ : int = self._prepare_for_class(_A , _A ) snake_case_ : str = model(_A , noise=_A ) snake_case_ : Dict = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(_A ) snake_case_ : Any = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config snake_case_ : str = model_class.from_config(model.config ) snake_case_ : Union[str, Any] = new_model(_A ) # Build model new_model.set_weights(model.get_weights() ) snake_case_ : List[str] = new_model(_A , noise=_A ) self.assert_outputs_same(_A , _A ) @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def UpperCAmelCase_ ( self : List[Any] ) -> Optional[int]: """simple docstring""" pass @unittest.skip(reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load' ) def UpperCAmelCase_ ( self : Optional[int] ) -> Tuple: """simple docstring""" pass @slow def UpperCAmelCase_ ( self : Tuple ) -> Tuple: """simple docstring""" snake_case_ : Optional[Any] = TFViTMAEModel.from_pretrained('google/vit-base-patch16-224' ) self.assertIsNotNone(_A ) def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): @cached_property def UpperCAmelCase_ ( self : str ) -> Dict: """simple docstring""" return ViTImageProcessor.from_pretrained('facebook/vit-mae-base' ) if is_vision_available() else None @slow def UpperCAmelCase_ ( self : str ) -> Dict: """simple docstring""" np.random.seed(2 ) snake_case_ : List[str] = TFViTMAEForPreTraining.from_pretrained('facebook/vit-mae-base' ) snake_case_ : List[Any] = self.default_image_processor snake_case_ : Dict = prepare_img() snake_case_ : Optional[Any] = image_processor(images=_A , return_tensors='tf' ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) snake_case_ : int = ViTMAEConfig() snake_case_ : List[Any] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) snake_case_ : List[Any] = np.random.uniform(size=(1, num_patches) ) # forward pass snake_case_ : Optional[Any] = model(**_A , noise=_A ) # verify the logits snake_case_ : Optional[int] = tf.convert_to_tensor([1, 196, 768] ) self.assertEqual(outputs.logits.shape , _A ) snake_case_ : Any = tf.convert_to_tensor( [[-0.0_5_4_8, -1.7_0_2_3, -0.9_3_2_5], [0.3_7_2_1, -0.5_6_7_0, -0.2_2_3_3], [0.8_2_3_5, -1.3_8_7_8, -0.3_5_2_4]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] , _A , atol=1E-4 )
327
import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) _SCREAMING_SNAKE_CASE = logging.getLogger(__name__) @dataclass class SCREAMING_SNAKE_CASE_ : __magic_name__: str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) __magic_name__: Optional[str] = field( default=snake_case_ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) __magic_name__: Optional[str] = field( default=snake_case_ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) __magic_name__: Optional[str] = field( default=snake_case_ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) __magic_name__: bool = field(default=snake_case_ , metadata={"help": "Whether tp freeze the encoder."} ) __magic_name__: bool = field(default=snake_case_ , metadata={"help": "Whether to freeze the embeddings."} ) @dataclass class SCREAMING_SNAKE_CASE_ : __magic_name__: str = field( metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} ) __magic_name__: Optional[str] = field( default="summarization" , metadata={"help": "Task name, summarization (or summarization_{dataset} for pegasus) or translation"} , ) __magic_name__: Optional[int] = field( default=1024 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __magic_name__: Optional[int] = field( default=128 , metadata={ "help": ( "The maximum total sequence length for target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __magic_name__: Optional[int] = field( default=142 , metadata={ "help": ( "The maximum total sequence length for validation target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded. " "This argument is also used to override the ``max_length`` param of ``model.generate``, which is used " "during ``evaluate`` and ``predict``." ) } , ) __magic_name__: Optional[int] = field( default=142 , metadata={ "help": ( "The maximum total sequence length for test target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __magic_name__: Optional[int] = field(default=-1 , metadata={"help": "# training examples. -1 means use all."} ) __magic_name__: Optional[int] = field(default=-1 , metadata={"help": "# validation examples. -1 means use all."} ) __magic_name__: Optional[int] = field(default=-1 , metadata={"help": "# test examples. -1 means use all."} ) __magic_name__: Optional[str] = field(default=snake_case_ , metadata={"help": "Source language id for translation."} ) __magic_name__: Optional[str] = field(default=snake_case_ , metadata={"help": "Target language id for translation."} ) __magic_name__: Optional[int] = field(default=snake_case_ , metadata={"help": "# num_beams to use for evaluation."} ) __magic_name__: bool = field( default=snake_case_ , metadata={"help": "If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."} , ) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ): logger.info(f"""***** {split} metrics *****""" ) for key in sorted(metrics.keys() ): logger.info(f""" {key} = {metrics[key]}""" ) save_json(__a , os.path.join(__a , f"""{split}_results.json""" ) ) def SCREAMING_SNAKE_CASE__ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. snake_case_ : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. snake_case_ ,snake_case_ ,snake_case_ : List[Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: snake_case_ ,snake_case_ ,snake_case_ : List[str] = parser.parse_args_into_dataclasses() check_output_dir(__a ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('Training/evaluation parameters %s' , __a ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case_ : Tuple = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) snake_case_ : Any = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout') for p in extra_model_params: if getattr(__a , __a , __a ): assert hasattr(__a , __a ), f"""({config.__class__.__name__}) doesn't have a `{p}` attribute""" setattr(__a , __a , getattr(__a , __a ) ) snake_case_ : Tuple = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) snake_case_ : Any = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf='.ckpt' in model_args.model_name_or_path , config=__a , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(__a , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: snake_case_ : Any = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(__a , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(__a , __a ): snake_case_ : int = tokenizer.lang_code_to_id[data_args.tgt_lang] else: snake_case_ : int = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(__a ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) snake_case_ : List[Any] = SeqaSeqDataset # Get datasets snake_case_ : List[Any] = ( dataset_class( __a , type_path='train' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , ) if training_args.do_train else None ) snake_case_ : List[str] = ( dataset_class( __a , type_path='val' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) snake_case_ : List[Any] = ( dataset_class( __a , type_path='test' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , ) if training_args.do_predict else None ) # Initialize our Trainer snake_case_ : Any = ( build_compute_metrics_fn(data_args.task , __a ) if training_args.predict_with_generate else None ) snake_case_ : List[str] = SeqaSeqTrainer( model=__a , args=__a , data_args=__a , train_dataset=__a , eval_dataset=__a , data_collator=SeqaSeqDataCollator( __a , __a , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=__a , tokenizer=__a , ) snake_case_ : Optional[int] = {} # Training if training_args.do_train: logger.info('*** Train ***' ) snake_case_ : Any = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) snake_case_ : Tuple = train_result.metrics snake_case_ : List[str] = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics('train' , __a , training_args.output_dir ) all_metrics.update(__a ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , 'trainer_state.json' ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) snake_case_ : List[Any] = trainer.evaluate(metric_key_prefix='val' ) snake_case_ : str = data_args.n_val snake_case_ : Union[str, Any] = round(metrics['val_loss'] , 4 ) if trainer.is_world_process_zero(): handle_metrics('val' , __a , training_args.output_dir ) all_metrics.update(__a ) if training_args.do_predict: logger.info('*** Predict ***' ) snake_case_ : Dict = trainer.predict(test_dataset=__a , metric_key_prefix='test' ) snake_case_ : Union[str, Any] = test_output.metrics snake_case_ : int = data_args.n_test if trainer.is_world_process_zero(): snake_case_ : List[str] = round(metrics['test_loss'] , 4 ) handle_metrics('test' , __a , training_args.output_dir ) all_metrics.update(__a ) if training_args.predict_with_generate: snake_case_ : Any = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=__a , clean_up_tokenization_spaces=__a ) snake_case_ : Any = lmap(str.strip , __a ) write_txt_file(__a , os.path.join(training_args.output_dir , 'test_generations.txt' ) ) if trainer.is_world_process_zero(): save_json(__a , os.path.join(training_args.output_dir , 'all_results.json' ) ) return all_metrics def SCREAMING_SNAKE_CASE__ ( __a ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
327
1
from __future__ import annotations from collections.abc import Iterator from typing import Any class A__ : def __init__( self : Any , a : Any ): '''simple docstring''' lowerCAmelCase__ : Any = data lowerCAmelCase__ : Node | None = None class A__ : def __init__( self : str ): '''simple docstring''' lowerCAmelCase__ : Dict = None lowerCAmelCase__ : Optional[Any] = None def __iter__( self : str ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = self.head while self.head: yield node.data lowerCAmelCase__ : Any = node.next if node == self.head: break def __len__( self : Union[str, Any] ): '''simple docstring''' return sum(1 for _ in self ) def __repr__( self : str ): '''simple docstring''' return "->".join(str(a ) for item in iter(self ) ) def _lowerCamelCase ( self : List[str] , a : Any ): '''simple docstring''' self.insert_nth(len(self ) , a ) def _lowerCamelCase ( self : List[Any] , a : Any ): '''simple docstring''' self.insert_nth(0 , a ) def _lowerCamelCase ( self : str , a : int , a : Any ): '''simple docstring''' if index < 0 or index > len(self ): raise IndexError('list index out of range.' ) lowerCAmelCase__ : int = Node(a ) if self.head is None: lowerCAmelCase__ : Optional[int] = new_node # first node points itself lowerCAmelCase__ : Union[str, Any] = new_node elif index == 0: # insert at head lowerCAmelCase__ : Dict = self.head lowerCAmelCase__ : str = new_node else: lowerCAmelCase__ : List[str] = self.head for _ in range(index - 1 ): lowerCAmelCase__ : List[str] = temp.next lowerCAmelCase__ : Tuple = temp.next lowerCAmelCase__ : Optional[Any] = new_node if index == len(self ) - 1: # insert at tail lowerCAmelCase__ : Optional[Any] = new_node def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return self.delete_nth(0 ) def _lowerCamelCase ( self : int ): '''simple docstring''' return self.delete_nth(len(self ) - 1 ) def _lowerCamelCase ( self : Optional[Any] , a : int = 0 ): '''simple docstring''' if not 0 <= index < len(self ): raise IndexError('list index out of range.' ) lowerCAmelCase__ : str = self.head if self.head == self.tail: # just one node lowerCAmelCase__ : str = None elif index == 0: # delete head node lowerCAmelCase__ : int = self.tail.next.next lowerCAmelCase__ : Tuple = self.head.next else: lowerCAmelCase__ : str = self.head for _ in range(index - 1 ): lowerCAmelCase__ : List[Any] = temp.next lowerCAmelCase__ : List[str] = temp.next lowerCAmelCase__ : Tuple = temp.next.next if index == len(self ) - 1: # delete at tail lowerCAmelCase__ : str = temp return delete_node.data def _lowerCamelCase ( self : Dict ): '''simple docstring''' return len(self ) == 0 def lowerCAmelCase__ ( ) -> None: lowerCAmelCase__ : Any = CircularLinkedList() assert len(SCREAMING_SNAKE_CASE_ ) == 0 assert circular_linked_list.is_empty() is True assert str(SCREAMING_SNAKE_CASE_ ) == "" try: circular_linked_list.delete_front() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_tail() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_nth(-1 ) raise AssertionError except IndexError: assert True try: circular_linked_list.delete_nth(0 ) raise AssertionError except IndexError: assert True assert circular_linked_list.is_empty() is True for i in range(5 ): assert len(SCREAMING_SNAKE_CASE_ ) == i circular_linked_list.insert_nth(SCREAMING_SNAKE_CASE_ , i + 1 ) assert str(SCREAMING_SNAKE_CASE_ ) == "->".join(str(SCREAMING_SNAKE_CASE_ ) for i in range(1 , 6 ) ) circular_linked_list.insert_tail(6 ) assert str(SCREAMING_SNAKE_CASE_ ) == "->".join(str(SCREAMING_SNAKE_CASE_ ) for i in range(1 , 7 ) ) circular_linked_list.insert_head(0 ) assert str(SCREAMING_SNAKE_CASE_ ) == "->".join(str(SCREAMING_SNAKE_CASE_ ) for i in range(0 , 7 ) ) assert circular_linked_list.delete_front() == 0 assert circular_linked_list.delete_tail() == 6 assert str(SCREAMING_SNAKE_CASE_ ) == "->".join(str(SCREAMING_SNAKE_CASE_ ) for i in range(1 , 6 ) ) assert circular_linked_list.delete_nth(2 ) == 3 circular_linked_list.insert_nth(2 , 3 ) assert str(SCREAMING_SNAKE_CASE_ ) == "->".join(str(SCREAMING_SNAKE_CASE_ ) for i in range(1 , 6 ) ) assert circular_linked_list.is_empty() is False if __name__ == "__main__": import doctest doctest.testmod()
357
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers lowerCamelCase__ = """python tqdm regex requests packaging filelock numpy tokenizers""".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("""dataclasses""") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("""importlib_metadata""") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F"""can't find {pkg} in {deps.keys()}, check dependency_versions_table.py""") def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> int: require_version(deps[pkg] , SCREAMING_SNAKE_CASE_ )
307
0
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "adapter_layer": "encoder.layers.*.adapter_layer", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", "pooling_layer.linear": "projector", "pooling_layer.projection": "classifier", } UpperCamelCase__ = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "projector", "classifier", ] def lowerCAmelCase_ ( __A ) -> str: '''simple docstring''' UpperCAmelCase__ = {} with open(__A, "r" ) as file: for line_number, line in enumerate(__A ): UpperCAmelCase__ = line.strip() if line: UpperCAmelCase__ = line.split() UpperCAmelCase__ = line_number UpperCAmelCase__ = words[0] UpperCAmelCase__ = value return result def lowerCAmelCase_ ( __A, __A, __A, __A, __A ) -> Union[str, Any]: '''simple docstring''' for attribute in key.split("." ): UpperCAmelCase__ = getattr(__A, __A ) UpperCAmelCase__ = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__A ): UpperCAmelCase__ = PARAM_MAPPING[full_name.split("." )[-1]] UpperCAmelCase__ = "param" if weight_type is not None and weight_type != "param": UpperCAmelCase__ = getattr(__A, __A ).shape elif weight_type is not None and weight_type == "param": UpperCAmelCase__ = hf_pointer for attribute in hf_param_name.split("." ): UpperCAmelCase__ = getattr(__A, __A ) UpperCAmelCase__ = shape_pointer.shape # let's reduce dimension UpperCAmelCase__ = value[0] else: UpperCAmelCase__ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCAmelCase__ = value elif weight_type == "weight_g": UpperCAmelCase__ = value elif weight_type == "weight_v": UpperCAmelCase__ = value elif weight_type == "bias": UpperCAmelCase__ = value elif weight_type == "param": for attribute in hf_param_name.split("." ): UpperCAmelCase__ = getattr(__A, __A ) UpperCAmelCase__ = value else: UpperCAmelCase__ = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def lowerCAmelCase_ ( __A, __A, __A, __A, __A ) -> Optional[int]: '''simple docstring''' UpperCAmelCase__ = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__A ): UpperCAmelCase__ = PARAM_MAPPING[full_name.split("." )[-1]] UpperCAmelCase__ = "param" if weight_type is not None and weight_type != "param": UpperCAmelCase__ = ".".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": UpperCAmelCase__ = ".".join([key, hf_param_name] ) else: UpperCAmelCase__ = key UpperCAmelCase__ = value if "lm_head" in full_key else value[0] UpperCamelCase__ = { "W_a": "linear_1.weight", "W_b": "linear_2.weight", "b_a": "linear_1.bias", "b_b": "linear_2.bias", "ln_W": "norm.weight", "ln_b": "norm.bias", } def lowerCAmelCase_ ( __A, __A, __A=None, __A=None ) -> List[Any]: '''simple docstring''' UpperCAmelCase__ = False for key, mapped_key in MAPPING.items(): UpperCAmelCase__ = "wav2vec2." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: UpperCAmelCase__ = True if "*" in mapped_key: UpperCAmelCase__ = name.split(__A )[0].split("." )[-2] UpperCAmelCase__ = mapped_key.replace("*", __A ) if "weight_g" in name: UpperCAmelCase__ = "weight_g" elif "weight_v" in name: UpperCAmelCase__ = "weight_v" elif "bias" in name: UpperCAmelCase__ = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCAmelCase__ = "weight" else: UpperCAmelCase__ = None if hf_dict is not None: rename_dict(__A, __A, __A, __A, __A ) else: set_recursively(__A, __A, __A, __A, __A ) return is_used return is_used def lowerCAmelCase_ ( __A, __A, __A ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase__ = [] UpperCAmelCase__ = fairseq_model.state_dict() UpperCAmelCase__ = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase__ = False if "conv_layers" in name: load_conv_layer( __A, __A, __A, __A, hf_model.config.feat_extract_norm == "group", ) UpperCAmelCase__ = True else: UpperCAmelCase__ = load_wavaveca_layer(__A, __A, __A ) if not is_used: unused_weights.append(__A ) logger.warning(f"""Unused weights: {unused_weights}""" ) def lowerCAmelCase_ ( __A, __A, __A, __A, __A ) -> str: '''simple docstring''' UpperCAmelCase__ = full_name.split("conv_layers." )[-1] UpperCAmelCase__ = name.split("." ) UpperCAmelCase__ = int(items[0] ) UpperCAmelCase__ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCAmelCase__ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCAmelCase__ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) UpperCAmelCase__ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCAmelCase__ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__A ) @torch.no_grad() def lowerCAmelCase_ ( __A, __A, __A=None, __A=None, __A=True, __A=False ) -> Tuple: '''simple docstring''' if config_path is not None: UpperCAmelCase__ = WavaVecaConfig.from_pretrained(__A ) else: UpperCAmelCase__ = WavaVecaConfig() if is_seq_class: UpperCAmelCase__ = read_txt_into_dict(__A ) UpperCAmelCase__ = idalabel UpperCAmelCase__ = WavaVecaForSequenceClassification(__A ) UpperCAmelCase__ = WavaVecaFeatureExtractor( feature_size=1, sampling_rate=16_000, padding_value=0, do_normalize=__A, return_attention_mask=__A, ) feature_extractor.save_pretrained(__A ) elif is_finetuned: if dict_path: UpperCAmelCase__ = Dictionary.load(__A ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCAmelCase__ = target_dict.pad_index UpperCAmelCase__ = target_dict.bos_index UpperCAmelCase__ = target_dict.eos_index UpperCAmelCase__ = len(target_dict.symbols ) UpperCAmelCase__ = os.path.join(__A, "vocab.json" ) if not os.path.isdir(__A ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(__A ) ) return os.makedirs(__A, exist_ok=__A ) UpperCAmelCase__ = target_dict.indices # fairseq has the <pad> and <s> switched UpperCAmelCase__ = 0 UpperCAmelCase__ = 1 with open(__A, "w", encoding="utf-8" ) as vocab_handle: json.dump(__A, __A ) UpperCAmelCase__ = WavaVecaCTCTokenizer( __A, unk_token=target_dict.unk_word, pad_token=target_dict.pad_word, bos_token=target_dict.bos_word, eos_token=target_dict.eos_word, word_delimiter_token="|", do_lower_case=__A, ) UpperCAmelCase__ = True if config.feat_extract_norm == "layer" else False UpperCAmelCase__ = WavaVecaFeatureExtractor( feature_size=1, sampling_rate=16_000, padding_value=0, do_normalize=__A, return_attention_mask=__A, ) UpperCAmelCase__ = WavaVecaProcessor(feature_extractor=__A, tokenizer=__A ) processor.save_pretrained(__A ) UpperCAmelCase__ = WavaVecaForCTC(__A ) else: UpperCAmelCase__ = WavaVecaForPreTraining(__A ) if is_finetuned or is_seq_class: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: UpperCAmelCase__ = argparse.Namespace(task="audio_pretraining" ) UpperCAmelCase__ = fairseq.tasks.setup_task(__A ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path], task=__A ) UpperCAmelCase__ = model[0].eval() recursively_load_weights(__A, __A, not is_finetuned ) hf_wavavec.save_pretrained(__A ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) parser.add_argument( '--is_seq_class', action='store_true', help='Whether the model to convert is a fine-tuned sequence classification model or not', ) UpperCamelCase__ = parser.parse_args() UpperCamelCase__ = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
65
def A_ ( ) -> list[list[int]]: '''simple docstring''' return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] lowercase__ : List[str] = generate_large_matrix() lowercase__ : Tuple = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def A_ ( snake_case : list[list[int]] ) -> None: '''simple docstring''' assert all(row == sorted(snake_case , reverse=snake_case ) for row in grid ) assert all(list(snake_case ) == sorted(snake_case , reverse=snake_case ) for col in zip(*snake_case ) ) def A_ ( snake_case : list[int] ) -> int: '''simple docstring''' __UpperCamelCase = 0 __UpperCamelCase = len(snake_case ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: __UpperCamelCase = (left + right) // 2 __UpperCamelCase = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: __UpperCamelCase = mid + 1 else: __UpperCamelCase = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(snake_case ) def A_ ( snake_case : list[list[int]] ) -> int: '''simple docstring''' __UpperCamelCase = 0 __UpperCamelCase = len(grid[0] ) for i in range(len(snake_case ) ): __UpperCamelCase = find_negative_index(grid[i][:bound] ) total += bound return (len(snake_case ) * len(grid[0] )) - total def A_ ( snake_case : list[list[int]] ) -> int: '''simple docstring''' return len([number for row in grid for number in row if number < 0] ) def A_ ( snake_case : list[list[int]] ) -> int: '''simple docstring''' __UpperCamelCase = 0 for row in grid: for i, number in enumerate(snake_case ): if number < 0: total += len(snake_case ) - i break return total def A_ ( ) -> None: '''simple docstring''' from timeit import timeit print('''Running benchmarks''' ) __UpperCamelCase = ( '''from __main__ import count_negatives_binary_search, ''' '''count_negatives_brute_force, count_negatives_brute_force_with_break, grid''' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): __UpperCamelCase = timeit(f"{func}(grid=grid)" , setup=snake_case , number=500 ) print(f"{func}() took {time:0.4f} seconds" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
328
0
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax.numpy as jnp from jax import random from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .scheduling_utils_flax import FlaxSchedulerMixin @flax.struct.dataclass class _lowerCAmelCase : """simple docstring""" lowerCamelCase = None lowerCamelCase = None lowerCamelCase = None # sigma(t_i) @classmethod def UpperCAmelCase_ ( cls ) -> int: return cls() @dataclass class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = 42 lowerCamelCase = 42 lowerCamelCase = 42 class _lowerCAmelCase ( __A, __A ): """simple docstring""" @property def UpperCAmelCase_ ( self ) -> List[Any]: return True @register_to_config def __init__( self , _lowerCamelCase = 0.02 , _lowerCamelCase = 100 , _lowerCamelCase = 1.007 , _lowerCamelCase = 80 , _lowerCamelCase = 0.05 , _lowerCamelCase = 50 , ) -> Any: pass def UpperCAmelCase_ ( self ) -> Optional[int]: return KarrasVeSchedulerState.create() def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = () ) -> KarrasVeSchedulerState: A_ : Optional[Any] = jnp.arange(0 , _lowerCamelCase )[::-1].copy() A_ : int = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in timesteps ] return state.replace( num_inference_steps=_lowerCamelCase , schedule=jnp.array(_lowerCamelCase , dtype=jnp.floataa ) , timesteps=_lowerCamelCase , ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) -> Tuple[jnp.ndarray, float]: if self.config.s_min <= sigma <= self.config.s_max: A_ : List[str] = min(self.config.s_churn / state.num_inference_steps , 2**0.5 - 1 ) else: A_ : Tuple = 0 # sample eps ~ N(0, S_noise^2 * I) A_ : str = random.split(_lowerCamelCase , num=1 ) A_ : str = self.config.s_noise * random.normal(key=_lowerCamelCase , shape=sample.shape ) A_ : Union[str, Any] = sigma + gamma * sigma A_ : Dict = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = True , ) -> Union[FlaxKarrasVeOutput, Tuple]: A_ : Optional[int] = sample_hat + sigma_hat * model_output A_ : Optional[int] = (sample_hat - pred_original_sample) / sigma_hat A_ : List[str] = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=_lowerCamelCase , derivative=_lowerCamelCase , state=_lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = True , ) -> Union[FlaxKarrasVeOutput, Tuple]: A_ : Any = sample_prev + sigma_prev * model_output A_ : Union[str, Any] = (sample_prev - pred_original_sample) / sigma_prev A_ : Union[str, Any] = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=_lowerCamelCase , derivative=_lowerCamelCase , state=_lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Tuple: raise NotImplementedError()
164
'''simple docstring''' from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = 42 lowerCamelCase = 42 if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
164
1
"""simple docstring""" import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class _a ( unittest.TestCase): """simple docstring""" def lowercase__ ( self : str )->Optional[int]: _UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) _UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = -1 _UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = model.generate(_SCREAMING_SNAKE_CASE , max_new_tokens=1_0 , do_sample=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: _UpperCAmelCase = TextStreamer(_SCREAMING_SNAKE_CASE ) model.generate(_SCREAMING_SNAKE_CASE , max_new_tokens=1_0 , do_sample=_SCREAMING_SNAKE_CASE , streamer=_SCREAMING_SNAKE_CASE ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer _UpperCAmelCase = cs.out[:-1] self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowercase__ ( self : List[Any] )->Union[str, Any]: _UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) _UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = -1 _UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = model.generate(_SCREAMING_SNAKE_CASE , max_new_tokens=1_0 , do_sample=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = tokenizer.decode(greedy_ids[0] ) _UpperCAmelCase = TextIteratorStreamer(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = {'''input_ids''': input_ids, '''max_new_tokens''': 1_0, '''do_sample''': False, '''streamer''': streamer} _UpperCAmelCase = Thread(target=model.generate , kwargs=_SCREAMING_SNAKE_CASE ) thread.start() _UpperCAmelCase = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowercase__ ( self : List[Any] )->Union[str, Any]: _UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) _UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = -1 _UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = model.generate(_SCREAMING_SNAKE_CASE , max_new_tokens=1_0 , do_sample=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = greedy_ids[:, input_ids.shape[1] :] _UpperCAmelCase = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: _UpperCAmelCase = TextStreamer(_SCREAMING_SNAKE_CASE , skip_prompt=_SCREAMING_SNAKE_CASE ) model.generate(_SCREAMING_SNAKE_CASE , max_new_tokens=1_0 , do_sample=_SCREAMING_SNAKE_CASE , streamer=_SCREAMING_SNAKE_CASE ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer _UpperCAmelCase = cs.out[:-1] self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowercase__ ( self : Tuple )->Any: # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them _UpperCAmelCase = AutoTokenizer.from_pretrained('''distilgpt2''' ) _UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = -1 _UpperCAmelCase = torch.ones((1, 5) , device=_SCREAMING_SNAKE_CASE ).long() * model.config.bos_token_id with CaptureStdout() as cs: _UpperCAmelCase = TextStreamer(_SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE ) model.generate(_SCREAMING_SNAKE_CASE , max_new_tokens=1 , do_sample=_SCREAMING_SNAKE_CASE , streamer=_SCREAMING_SNAKE_CASE ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token _UpperCAmelCase = cs.out[:-1] # Remove the final "\n" _UpperCAmelCase = tokenizer(_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def lowercase__ ( self : Dict )->Dict: _UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) _UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = -1 _UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = TextIteratorStreamer(_SCREAMING_SNAKE_CASE , timeout=0.0_0_1 ) _UpperCAmelCase = {'''input_ids''': input_ids, '''max_new_tokens''': 1_0, '''do_sample''': False, '''streamer''': streamer} _UpperCAmelCase = Thread(target=model.generate , kwargs=_SCREAMING_SNAKE_CASE ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = '''''' for new_text in streamer: streamer_text += new_text
260
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowerCamelCase = { '''vocab_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } lowerCamelCase = { '''vocab_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } lowerCamelCase = { '''vocab_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json''' ), }, } lowerCamelCase = { '''facebook/dpr-ctx_encoder-single-nq-base''': 512, '''facebook/dpr-ctx_encoder-multiset-base''': 512, } lowerCamelCase = { '''facebook/dpr-question_encoder-single-nq-base''': 512, '''facebook/dpr-question_encoder-multiset-base''': 512, } lowerCamelCase = { '''facebook/dpr-reader-single-nq-base''': 512, '''facebook/dpr-reader-multiset-base''': 512, } lowerCamelCase = { '''facebook/dpr-ctx_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-ctx_encoder-multiset-base''': {'''do_lower_case''': True}, } lowerCamelCase = { '''facebook/dpr-question_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-question_encoder-multiset-base''': {'''do_lower_case''': True}, } lowerCamelCase = { '''facebook/dpr-reader-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-reader-multiset-base''': {'''do_lower_case''': True}, } class _a ( _lowercase): _a : Any = VOCAB_FILES_NAMES _a : List[str] = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP _a : Optional[Any] = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a : Optional[Any] = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class _a ( _lowercase): _a : int = VOCAB_FILES_NAMES _a : List[Any] = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP _a : List[Any] = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a : Any = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION lowerCamelCase = collections.namedtuple( '''DPRSpanPrediction''', ['''span_score''', '''relevance_score''', '''doc_id''', '''start_index''', '''end_index''', '''text'''] ) lowerCamelCase = collections.namedtuple('''DPRReaderOutput''', ['''start_logits''', '''end_logits''', '''relevance_logits''']) lowerCamelCase = R''' Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: ``` [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> ``` Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `\'tf\'`: Return TensorFlow `tf.constant` objects. - `\'pt\'`: Return PyTorch `torch.Tensor` objects. - `\'np\'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer\'s default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Returns: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. ''' @add_start_docstrings(_lowercase) class _a : def __call__( self : Tuple , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Optional[str] = None , _SCREAMING_SNAKE_CASE : Optional[str] = None , _SCREAMING_SNAKE_CASE : Union[bool, str] = False , _SCREAMING_SNAKE_CASE : Union[bool, str] = False , _SCREAMING_SNAKE_CASE : Optional[int] = None , _SCREAMING_SNAKE_CASE : Optional[Union[str, TensorType]] = None , _SCREAMING_SNAKE_CASE : Optional[bool] = None , **_SCREAMING_SNAKE_CASE : str , )-> BatchEncoding: if titles is None and texts is None: return super().__call__( _SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , return_attention_mask=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) elif titles is None or texts is None: lowerCAmelCase__ : Tuple = titles if texts is None else texts return super().__call__( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , return_attention_mask=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) lowerCAmelCase__ : int = titles if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else [titles] lowerCAmelCase__ : Dict = texts if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else [texts] lowerCAmelCase__ : Dict = len(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Dict = questions if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else [questions] * n_passages if len(_SCREAMING_SNAKE_CASE ) != len(_SCREAMING_SNAKE_CASE ): raise ValueError( F'There should be as many titles than texts but got {len(_SCREAMING_SNAKE_CASE )} titles and {len(_SCREAMING_SNAKE_CASE )} texts.' ) lowerCAmelCase__ : Union[str, Any] = super().__call__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE )['''input_ids'''] lowerCAmelCase__ : str = super().__call__(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE )['''input_ids'''] lowerCAmelCase__ : Dict = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ] } if return_attention_mask is not False: lowerCAmelCase__ : Union[str, Any] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) lowerCAmelCase__ : Tuple = attention_mask return self.pad(_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Optional[Any] , _SCREAMING_SNAKE_CASE : BatchEncoding , _SCREAMING_SNAKE_CASE : DPRReaderOutput , _SCREAMING_SNAKE_CASE : int = 16 , _SCREAMING_SNAKE_CASE : int = 64 , _SCREAMING_SNAKE_CASE : int = 4 , )-> List[DPRSpanPrediction]: lowerCAmelCase__ : Optional[int] = reader_input['''input_ids'''] lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = reader_output[:3] lowerCAmelCase__ : Union[str, Any] = len(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Optional[Any] = sorted(range(_SCREAMING_SNAKE_CASE ) , reverse=_SCREAMING_SNAKE_CASE , key=relevance_logits.__getitem__ ) lowerCAmelCase__ : List[DPRReaderOutput] = [] for doc_id in sorted_docs: lowerCAmelCase__ : int = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence lowerCAmelCase__ : Dict = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: lowerCAmelCase__ : Any = sequence_ids.index(self.pad_token_id ) else: lowerCAmelCase__ : Optional[int] = len(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Tuple = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_SCREAMING_SNAKE_CASE , top_spans=_SCREAMING_SNAKE_CASE , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_SCREAMING_SNAKE_CASE , start_index=_SCREAMING_SNAKE_CASE , end_index=_SCREAMING_SNAKE_CASE , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(_SCREAMING_SNAKE_CASE ) >= num_spans: break return nbest_spans_predictions[:num_spans] def UpperCAmelCase__( self : Optional[int] , _SCREAMING_SNAKE_CASE : List[int] , _SCREAMING_SNAKE_CASE : List[int] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , )-> List[DPRSpanPrediction]: lowerCAmelCase__ : Union[str, Any] = [] for start_index, start_score in enumerate(_SCREAMING_SNAKE_CASE ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) lowerCAmelCase__ : List[Any] = sorted(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : x[1] , reverse=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : int = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(F'Wrong span indices: [{start_index}:{end_index}]' ) lowerCAmelCase__ : Tuple = end_index - start_index + 1 if length > max_answer_length: raise ValueError(F'Span is too long: {length} > {max_answer_length}' ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_SCREAMING_SNAKE_CASE ) == top_spans: break return chosen_span_intervals @add_end_docstrings(_lowercase) class _a ( _lowercase , _lowercase): _a : List[str] = VOCAB_FILES_NAMES _a : str = READER_PRETRAINED_VOCAB_FILES_MAP _a : Optional[int] = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a : Union[str, Any] = READER_PRETRAINED_INIT_CONFIGURATION _a : Optional[int] = ['''input_ids''', '''attention_mask''']
131
0
"""simple docstring""" def __lowerCamelCase ( a_ : int , a_ : int ) -> int: while b: __SCREAMING_SNAKE_CASE :Optional[int] = b, a % b return a def __lowerCamelCase ( a_ : int , a_ : int ) -> int: return a if b == 0 else euclidean_gcd_recursive(a_ , a % b ) def __lowerCamelCase ( ) -> List[str]: print(f'''euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}''' ) print(f'''euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}''' ) print(f'''euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}''' ) print(f'''euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}''' ) print(f'''euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}''' ) print(f'''euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}''' ) print(f'''euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}''' ) print(f'''euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}''' ) print(f'''euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}''' ) print(f'''euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}''' ) if __name__ == "__main__": main()
368
"""simple docstring""" import math import random def __lowerCamelCase ( a_ : float , a_ : bool = False ) -> float: if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value lowerCamelCase_ = 0.02 def __lowerCamelCase ( a_ : int , a_ : int ) -> float: __SCREAMING_SNAKE_CASE :Any = float(2 * (random.randint(1 , 1_00 )) - 1 ) for _ in range(a_ ): # Forward propagation __SCREAMING_SNAKE_CASE :Any = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? __SCREAMING_SNAKE_CASE :Tuple = (expected / 1_00) - layer_a # Error delta __SCREAMING_SNAKE_CASE :Union[str, Any] = layer_1_error * sigmoid_function(a_ , a_ ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 1_00 if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase_ = int(input("Expected value: ")) lowerCamelCase_ = int(input("Number of propagations: ")) print(forward_propagation(expected, number_propagations))
239
0
"""simple docstring""" def __magic_name__ ( __snake_case : list[int] ) -> list[int]: lowercase : Any = len(__snake_case ) for i in range(__snake_case ): for j in range(i + 1 , __snake_case ): if numbers[j] < numbers[i]: lowercase , lowercase : List[Any] = numbers[j], numbers[i] return numbers if __name__ == "__main__": _A : Tuple = input("""Enter numbers separated by a comma:\n""").strip() _A : Optional[Any] = [int(item) for item in user_input.split(""",""")] print(exchange_sort(unsorted))
202
"""simple docstring""" import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class a__ ( a_, unittest.TestCase ): __lowerCAmelCase = CpmAntTokenizer __lowerCAmelCase = False def __magic_name__ ( self ): super().setUp() lowercase : List[str] = [ "<d>", "</d>", "<s>", "</s>", "</_>", "<unk>", "<pad>", "</n>", "我", "是", "C", "P", "M", "A", "n", "t", ] lowercase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) @tooslow def __magic_name__ ( self ): lowercase : Tuple = CpmAntTokenizer.from_pretrained("openbmb/cpm-ant-10b" ) lowercase : str = "今天天气真好!" lowercase : Optional[int] = ["今天", "天气", "真", "好", "!"] lowercase : int = tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) lowercase : Any = "今天天气真好!" lowercase : int = [tokenizer.bos_token] + tokens lowercase : List[str] = [6, 9_802, 14_962, 2_082, 831, 244] self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , _a ) lowercase : str = tokenizer.decode(_a ) self.assertEqual(_a , _a )
202
1
"""simple docstring""" # This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny - # all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and # emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files. # The latter is done by `fsmt-make-super-tiny-model.py`. # # It will be used then as "stas/tiny-wmt19-en-ru" from pathlib import Path import json import tempfile from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES __UpperCamelCase : Any = '''tiny-wmt19-en-ru''' # Build # borrowed from a test __UpperCamelCase : int = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] __UpperCamelCase : Tuple = dict(zip(vocab, range(len(vocab)))) __UpperCamelCase : Optional[Any] = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase : Union[str, Any] = Path(tmpdirname) __UpperCamelCase : int = build_dir / VOCAB_FILES_NAMES['''src_vocab_file'''] __UpperCamelCase : str = build_dir / VOCAB_FILES_NAMES['''tgt_vocab_file'''] __UpperCamelCase : List[str] = build_dir / VOCAB_FILES_NAMES['''merges_file'''] with open(src_vocab_file, '''w''') as fp: fp.write(json.dumps(vocab_tokens)) with open(tgt_vocab_file, '''w''') as fp: fp.write(json.dumps(vocab_tokens)) with open(merges_file, '''w''') as fp: fp.write('''\n'''.join(merges)) __UpperCamelCase : Union[str, Any] = FSMTTokenizer( langs=['''en''', '''ru'''], src_vocab_size=len(vocab), tgt_vocab_size=len(vocab), src_vocab_file=src_vocab_file, tgt_vocab_file=tgt_vocab_file, merges_file=merges_file, ) __UpperCamelCase : List[Any] = FSMTConfig( langs=['''ru''', '''en'''], src_vocab_size=1000, tgt_vocab_size=1000, d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) __UpperCamelCase : str = FSMTForConditionalGeneration(config) print(f'''num of params {tiny_model.num_parameters()}''') # Test __UpperCamelCase : Any = tokenizer(['''Making tiny model'''], return_tensors='''pt''') __UpperCamelCase : Any = tiny_model(**batch) print('''test output:''', len(outputs.logits[0])) # Save tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(f'''Generated {mname_tiny}''') # Upload # transformers-cli upload tiny-wmt19-en-ru
365
"""simple docstring""" import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( 'split_dict' , [ SplitDict(), SplitDict({'train': SplitInfo(name='train' , num_bytes=1337 , num_examples=42 , dataset_name='my_dataset' )} ), SplitDict({'train': SplitInfo(name='train' , num_bytes=1337 , num_examples=42 )} ), SplitDict({'train': SplitInfo()} ), ] , ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : SplitDict ): lowerCAmelCase = split_dict._to_yaml_list() assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) lowerCAmelCase = SplitDict._from_yaml_list(_UpperCAmelCase ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump lowerCAmelCase = None # the split name of split_dict takes over the name of the split info object lowerCAmelCase = split_name assert split_dict == reloaded @pytest.mark.parametrize( 'split_info' , [SplitInfo(), SplitInfo(dataset_name=_UpperCAmelCase ), SplitInfo(dataset_name='my_dataset' )] ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] ): # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files lowerCAmelCase = asdict(SplitDict({'train': split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
309
0
from manim import * class SCREAMING_SNAKE_CASE__ ( lowercase__ ): def SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[int]: a_ : Optional[int] = Rectangle(height=0.5 , width=0.5 ) a_ : List[Any] = Rectangle(height=0.25 , width=0.25 ) a_ : Optional[Any] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) a_ : str = [mem.copy() for i in range(6 )] a_ : Tuple = [mem.copy() for i in range(6 )] a_ : Any = VGroup(*SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ , buff=0 ) a_ : int = VGroup(*SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ , buff=0 ) a_ : Optional[Any] = VGroup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ , buff=0 ) a_ : Optional[Any] = Text('CPU' , font_size=2_4 ) a_ : Any = Group(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ , buff=0.5 , aligned_edge=SCREAMING_SNAKE_CASE__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(SCREAMING_SNAKE_CASE__ ) a_ : Union[str, Any] = [mem.copy() for i in range(4 )] a_ : List[Any] = VGroup(*SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ , buff=0 ) a_ : Any = Text('GPU' , font_size=2_4 ) a_ : Optional[Any] = Group(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ , buff=0.5 , aligned_edge=SCREAMING_SNAKE_CASE__ ) gpu.move_to([-1, -1, 0] ) self.add(SCREAMING_SNAKE_CASE__ ) a_ : Optional[Any] = [mem.copy() for i in range(6 )] a_ : List[Any] = VGroup(*SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ , buff=0 ) a_ : List[str] = Text('Model' , font_size=2_4 ) a_ : int = Group(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ , buff=0.5 , aligned_edge=SCREAMING_SNAKE_CASE__ ) model.move_to([3, -1.0, 0] ) self.add(SCREAMING_SNAKE_CASE__ ) a_ : Dict = [] a_ : str = [] a_ : int = [] for i, rect in enumerate(SCREAMING_SNAKE_CASE__ ): rect.set_stroke(SCREAMING_SNAKE_CASE__ ) a_ : int = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(SCREAMING_SNAKE_CASE__ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=SCREAMING_SNAKE_CASE__ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=SCREAMING_SNAKE_CASE__ , buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=SCREAMING_SNAKE_CASE__ , buff=0.0 ) self.add(SCREAMING_SNAKE_CASE__ ) model_cpu_arr.append(SCREAMING_SNAKE_CASE__ ) self.add(*SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ) a_ : Tuple = [mem.copy() for i in range(6 )] a_ : Union[str, Any] = VGroup(*SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ , buff=0 ) a_ : Dict = Text('Loaded Checkpoint' , font_size=2_4 ) a_ : str = Group(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ , buff=0.5 , aligned_edge=SCREAMING_SNAKE_CASE__ ) checkpoint.move_to([3, 0.5, 0] ) self.add(SCREAMING_SNAKE_CASE__ ) a_ : Dict = [] a_ : Optional[int] = [] for i, rect in enumerate(SCREAMING_SNAKE_CASE__ ): a_ : Union[str, Any] = fill.copy().set_fill(SCREAMING_SNAKE_CASE__ , opacity=0.7 ) target.move_to(SCREAMING_SNAKE_CASE__ ) ckpt_arr.append(SCREAMING_SNAKE_CASE__ ) a_ : List[str] = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(SCREAMING_SNAKE_CASE__ ) self.add(*SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ) a_ : List[str] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) a_ : Optional[Any] = MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=1_8 , ) key_text.move_to([-5, 2.4, 0] ) self.add(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) a_ : Optional[int] = MarkupText( F"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=1_8 , ) blue_text.next_to(SCREAMING_SNAKE_CASE__ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(SCREAMING_SNAKE_CASE__ ) a_ : str = MarkupText( F"""Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.""" , font_size=2_4 , ) step_a.move_to([2, 2, 0] ) a_ : List[Any] = [meta_mem.copy() for i in range(6 )] a_ : Optional[Any] = [meta_mem.copy() for i in range(6 )] a_ : int = VGroup(*SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ , buff=0 ) a_ : Optional[int] = VGroup(*SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ , buff=0 ) a_ : Tuple = VGroup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ , buff=0 ) a_ : Dict = Text('Disk' , font_size=2_4 ) a_ : Optional[Any] = Group(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ , buff=0.5 , aligned_edge=SCREAMING_SNAKE_CASE__ ) disk.move_to([-4.0, -1.25, 0] ) self.play(Write(SCREAMING_SNAKE_CASE__ , run_time=3 ) , Write(SCREAMING_SNAKE_CASE__ , run_time=1 ) , Create(SCREAMING_SNAKE_CASE__ , run_time=1 ) ) a_ : List[Any] = [] for i, rect in enumerate(SCREAMING_SNAKE_CASE__ ): a_ : List[str] = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(SCREAMING_SNAKE_CASE__ , run_time=1.5 ) ) self.play(*SCREAMING_SNAKE_CASE__ ) self.play(FadeOut(SCREAMING_SNAKE_CASE__ ) ) a_ : Optional[Any] = MarkupText(F"""Then, the checkpoint is removed from memory\nthrough garbage collection.""" , font_size=2_4 ) step_a.move_to([2, 2, 0] ) self.play(Write(SCREAMING_SNAKE_CASE__ , run_time=3 ) ) self.play( FadeOut(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ) , ) self.wait()
32
import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( "kwargs, expected" , [ ({"num_shards": 0, "max_num_jobs": 1}, []), ({"num_shards": 10, "max_num_jobs": 1}, [range(10 )]), ({"num_shards": 10, "max_num_jobs": 10}, [range(_lowerCamelCase , i + 1 ) for i in range(10 )]), ({"num_shards": 1, "max_num_jobs": 10}, [range(1 )]), ({"num_shards": 10, "max_num_jobs": 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]), ({"num_shards": 3, "max_num_jobs": 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]), ] , ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[Any] = _distribute_shards(**_lowerCamelCase ) assert out == expected @pytest.mark.parametrize( "gen_kwargs, max_num_jobs, expected" , [ ({"foo": 0}, 10, [{"foo": 0}]), ({"shards": [0, 1, 2, 3]}, 1, [{"shards": [0, 1, 2, 3]}]), ({"shards": [0, 1, 2, 3]}, 4, [{"shards": [0]}, {"shards": [1]}, {"shards": [2]}, {"shards": [3]}]), ({"shards": [0, 1]}, 4, [{"shards": [0]}, {"shards": [1]}]), ({"shards": [0, 1, 2, 3]}, 2, [{"shards": [0, 1]}, {"shards": [2, 3]}]), ] , ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = _split_gen_kwargs(_lowerCamelCase , _lowerCamelCase ) assert out == expected @pytest.mark.parametrize( "gen_kwargs, expected" , [ ({"foo": 0}, 1), ({"shards": [0]}, 1), ({"shards": [0, 1, 2, 3]}, 4), ({"shards": [0, 1, 2, 3], "foo": 0}, 4), ({"shards": [0, 1, 2, 3], "other": (0, 1)}, 4), ({"shards": [0, 1, 2, 3], "shards2": [0, 1]}, RuntimeError), ] , ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if expected is RuntimeError: with pytest.raises(_lowerCamelCase ): _number_of_shards_in_gen_kwargs(_lowerCamelCase ) else: _lowerCAmelCase : Optional[int] = _number_of_shards_in_gen_kwargs(_lowerCamelCase ) assert out == expected
36
0
import os import jsonlines import numpy as np from tqdm import tqdm _SCREAMING_SNAKE_CASE = 2_0_4_8 _SCREAMING_SNAKE_CASE = 4_0_9_6 _SCREAMING_SNAKE_CASE = 4_2 _SCREAMING_SNAKE_CASE = os.environ.pop("""PROCESS_TRAIN""", """false""") _SCREAMING_SNAKE_CASE = {"""null""": 0, """short""": 1, """long""": 2, """yes""": 3, """no""": 4} def lowercase( UpperCamelCase_ ) -> Any: '''simple docstring''' def choose_first(UpperCamelCase_ , UpperCamelCase_=False ): assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) if len(_lowerCAmelCase ) == 1: UpperCamelCase = answer[0] return {k: [answer[k]] for k in answer} if is_long_answer else answer for a in answer: if is_long_answer: UpperCamelCase = {k: [a[k]] for k in a} if len(a["""start_token"""] ) > 0: break return a UpperCamelCase = {"""id""": example["""id"""]} UpperCamelCase = example["""annotations"""] UpperCamelCase = annotation["""yes_no_answer"""] if 0 in yes_no_answer or 1 in yes_no_answer: UpperCamelCase = ["""yes"""] if 1 in yes_no_answer else ["""no"""] UpperCamelCase = [] UpperCamelCase = [] UpperCamelCase = ["""<cls>"""] else: UpperCamelCase = ["""short"""] UpperCamelCase = choose_first(annotation["""short_answers"""] ) if len(out["""start_token"""] ) == 0: # answer will be long if short is not available UpperCamelCase = ["""long"""] UpperCamelCase = choose_first(annotation["""long_answer"""] , is_long_answer=_lowerCAmelCase ) UpperCamelCase = [] answer.update(_lowerCAmelCase ) # disregard some samples if len(answer["""start_token"""] ) > 1 or answer["start_token"] == answer["end_token"]: UpperCamelCase = True else: UpperCamelCase = False UpperCamelCase = ["""start_token""", """end_token""", """start_byte""", """end_byte""", """text"""] if not all(isinstance(answer[k] , _lowerCAmelCase ) for k in cols ): raise ValueError("""Issue in ID""" , example["""id"""] ) return answer def lowercase( UpperCamelCase_ , UpperCamelCase_=False ) -> List[Any]: '''simple docstring''' UpperCamelCase = _get_single_answer(_lowerCAmelCase ) # bytes are of no use del answer["start_byte"] del answer["end_byte"] # handle yes_no answers explicitly if answer["category"][0] in ["yes", "no"]: # category is list with one element UpperCamelCase = example["""document"""]["""tokens"""] UpperCamelCase = [] for i in range(len(doc["""token"""] ) ): if not doc["is_html"][i]: context.append(doc["""token"""][i] ) return { "context": " ".join(_lowerCAmelCase ), "answer": { "start_token": -100, # ignore index in cross-entropy "end_token": -100, # ignore index in cross-entropy "category": answer["category"], "span": answer["category"], # extra }, } # later, help in removing all no answers if answer["start_token"] == [-1]: return { "context": "None", "answer": { "start_token": -1, "end_token": -1, "category": "null", "span": "None", # extra }, } # handling normal samples UpperCamelCase = ["""start_token""", """end_token"""] answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10 UpperCamelCase = example["""document"""]["""tokens"""] UpperCamelCase = answer["""start_token"""] UpperCamelCase = answer["""end_token"""] UpperCamelCase = [] for i in range(len(doc["""token"""] ) ): if not doc["is_html"][i]: context.append(doc["""token"""][i] ) else: if answer["start_token"] > i: start_token -= 1 if answer["end_token"] > i: end_token -= 1 UpperCamelCase = """ """.join(context[start_token:end_token] ) # checking above code if assertion: UpperCamelCase = doc["""is_html"""][answer["""start_token"""] : answer["""end_token"""]] UpperCamelCase = doc["""token"""][answer["""start_token"""] : answer["""end_token"""]] UpperCamelCase = """ """.join([old[i] for i in range(len(_lowerCAmelCase ) ) if not is_html[i]] ) if new != old: print("""ID:""" , example["""id"""] ) print("""New:""" , _lowerCAmelCase , end="""\n""" ) print("""Old:""" , _lowerCAmelCase , end="""\n\n""" ) return { "context": " ".join(_lowerCAmelCase ), "answer": { "start_token": start_token, "end_token": end_token - 1, # this makes it inclusive "category": answer["category"], # either long or short "span": new, # extra }, } def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=2048 , UpperCamelCase_=4096 , UpperCamelCase_=True ) -> Any: '''simple docstring''' # overlap will be of doc_stride - q_len UpperCamelCase = get_context_and_ans(_lowerCAmelCase , assertion=_lowerCAmelCase ) UpperCamelCase = out["""answer"""] # later, removing these samples if answer["start_token"] == -1: return { "example_id": example["id"], "input_ids": [[-1]], "labels": { "start_token": [-1], "end_token": [-1], "category": ["null"], }, } UpperCamelCase = tokenizer(example["""question"""]["""text"""] , out["""context"""] ).input_ids UpperCamelCase = input_ids.index(tokenizer.sep_token_id ) + 1 # return yes/no if answer["category"][0] in ["yes", "no"]: # category is list with one element UpperCamelCase = [] UpperCamelCase = [] UpperCamelCase = input_ids[:q_len] UpperCamelCase = range(_lowerCAmelCase , len(_lowerCAmelCase ) , max_length - doc_stride ) for i in doc_start_indices: UpperCamelCase = i + max_length - q_len UpperCamelCase = input_ids[i:end_index] inputs.append(q_indices + slice ) category.append(answer["""category"""][0] ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": [-100] * len(_lowerCAmelCase ), "end_token": [-100] * len(_lowerCAmelCase ), "category": category, }, } UpperCamelCase = out["""context"""].split() UpperCamelCase = splitted_context[answer["""end_token"""]] UpperCamelCase = len( tokenizer( """ """.join(splitted_context[: answer["""start_token"""]] ) , add_special_tokens=_lowerCAmelCase , ).input_ids ) UpperCamelCase = len( tokenizer(""" """.join(splitted_context[: answer["""end_token"""]] ) , add_special_tokens=_lowerCAmelCase ).input_ids ) answer["start_token"] += q_len answer["end_token"] += q_len # fixing end token UpperCamelCase = len(tokenizer(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ).input_ids ) if num_sub_tokens > 1: answer["end_token"] += num_sub_tokens - 1 UpperCamelCase = input_ids[answer["""start_token"""] : answer["""end_token"""] + 1] # right & left are inclusive UpperCamelCase = answer["""start_token"""] UpperCamelCase = answer["""end_token"""] if assertion: UpperCamelCase = tokenizer.decode(_lowerCAmelCase ) if answer["span"] != new: print("""ISSUE IN TOKENIZATION""" ) print("""OLD:""" , answer["""span"""] ) print("""NEW:""" , _lowerCAmelCase , end="""\n\n""" ) if len(_lowerCAmelCase ) <= max_length: return { "example_id": example["id"], "input_ids": [input_ids], "labels": { "start_token": [answer["start_token"]], "end_token": [answer["end_token"]], "category": answer["category"], }, } UpperCamelCase = input_ids[:q_len] UpperCamelCase = range(_lowerCAmelCase , len(_lowerCAmelCase ) , max_length - doc_stride ) UpperCamelCase = [] UpperCamelCase = [] UpperCamelCase = [] UpperCamelCase = [] # null, yes, no, long, short for i in doc_start_indices: UpperCamelCase = i + max_length - q_len UpperCamelCase = input_ids[i:end_index] inputs.append(q_indices + slice ) assert len(inputs[-1] ) <= max_length, "Issue in truncating length" if start_token >= i and end_token <= end_index - 1: UpperCamelCase = start_token - i + q_len UpperCamelCase = end_token - i + q_len answers_category.append(answer["""category"""][0] ) # ["short"] -> "short" else: UpperCamelCase = -100 UpperCamelCase = -100 answers_category.append("""null""" ) UpperCamelCase = inputs[-1][start_token : end_token + 1] answers_start_token.append(_lowerCAmelCase ) answers_end_token.append(_lowerCAmelCase ) if assertion: if new != old and new != [tokenizer.cls_token_id]: print("""ISSUE in strided for ID:""" , example["""id"""] ) print("""New:""" , tokenizer.decode(_lowerCAmelCase ) ) print("""Old:""" , tokenizer.decode(_lowerCAmelCase ) , end="""\n\n""" ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": answers_start_token, "end_token": answers_end_token, "category": answers_category, }, } def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=2048 , UpperCamelCase_=4096 , UpperCamelCase_=False ) -> Dict: '''simple docstring''' UpperCamelCase = get_strided_contexts_and_ans( _lowerCAmelCase , _lowerCAmelCase , doc_stride=_lowerCAmelCase , max_length=_lowerCAmelCase , assertion=_lowerCAmelCase , ) return example def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> List[Any]: '''simple docstring''' with jsonlines.open(_lowerCAmelCase , """a""" ) as writer: for example in tqdm(_lowerCAmelCase , total=len(_lowerCAmelCase ) , desc="""Saving samples ... """ ): UpperCamelCase = example["""labels"""] for ids, start, end, cat in zip( example["""input_ids"""] , labels["""start_token"""] , labels["""end_token"""] , labels["""category"""] , ): if start == -1 and end == -1: continue # leave waste samples with no answer if cat == "null" and np.random.rand() < 0.6: continue # removing 50 % samples writer.write( { """input_ids""": ids, """start_token""": start, """end_token""": end, """category""": CATEGORY_MAPPING[cat], } ) if __name__ == "__main__": from datasets import load_dataset from transformers import BigBirdTokenizer _SCREAMING_SNAKE_CASE = load_dataset("""natural_questions""") _SCREAMING_SNAKE_CASE = BigBirdTokenizer.from_pretrained("""google/bigbird-roberta-base""") _SCREAMING_SNAKE_CASE = data["""train""" if PROCESS_TRAIN == """true""" else """validation"""] _SCREAMING_SNAKE_CASE = { """tokenizer""": tokenizer, """doc_stride""": DOC_STRIDE, """max_length""": MAX_LENGTH, """assertion""": False, } _SCREAMING_SNAKE_CASE = data.map(prepare_inputs, fn_kwargs=fn_kwargs) _SCREAMING_SNAKE_CASE = data.remove_columns(["""annotations""", """document""", """id""", """question"""]) print(data) np.random.seed(SEED) _SCREAMING_SNAKE_CASE = """nq-training.jsonl""" if PROCESS_TRAIN == """true""" else """nq-validation.jsonl""" save_to_disk(data, file_name=cache_file_name)
371
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { """openai/whisper-base""": """https://huggingface.co/openai/whisper-base/resolve/main/config.json""", } # fmt: off _SCREAMING_SNAKE_CASE = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_7, 3_6_6, 4_3_8, 5_3_2, 6_8_5, 7_0_5, 7_9_6, 9_3_0, 1_0_5_8, 1_2_2_0, 1_2_6_7, 1_2_7_9, 1_3_0_3, 1_3_4_3, 1_3_7_7, 1_3_9_1, 1_6_3_5, 1_7_8_2, 1_8_7_5, 2_1_6_2, 2_3_6_1, 2_4_8_8, 3_4_6_7, 4_0_0_8, 4_2_1_1, 4_6_0_0, 4_8_0_8, 5_2_9_9, 5_8_5_5, 6_3_2_9, 7_2_0_3, 9_6_0_9, 9_9_5_9, 1_0_5_6_3, 1_0_7_8_6, 1_1_4_2_0, 1_1_7_0_9, 1_1_9_0_7, 1_3_1_6_3, 1_3_6_9_7, 1_3_7_0_0, 1_4_8_0_8, 1_5_3_0_6, 1_6_4_1_0, 1_6_7_9_1, 1_7_9_9_2, 1_9_2_0_3, 1_9_5_1_0, 2_0_7_2_4, 2_2_3_0_5, 2_2_9_3_5, 2_7_0_0_7, 3_0_1_0_9, 3_0_4_2_0, 3_3_4_0_9, 3_4_9_4_9, 4_0_2_8_3, 4_0_4_9_3, 4_0_5_4_9, 4_7_2_8_2, 4_9_1_4_6, 5_0_2_5_7, 5_0_3_5_9, 5_0_3_6_0, 5_0_3_6_1 ] _SCREAMING_SNAKE_CASE = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_9, 5_0_3, 5_2_2, 5_4_2, 8_7_3, 8_9_3, 9_0_2, 9_1_8, 9_2_2, 9_3_1, 1_3_5_0, 1_8_5_3, 1_9_8_2, 2_4_6_0, 2_6_2_7, 3_2_4_6, 3_2_5_3, 3_2_6_8, 3_5_3_6, 3_8_4_6, 3_9_6_1, 4_1_8_3, 4_6_6_7, 6_5_8_5, 6_6_4_7, 7_2_7_3, 9_0_6_1, 9_3_8_3, 1_0_4_2_8, 1_0_9_2_9, 1_1_9_3_8, 1_2_0_3_3, 1_2_3_3_1, 1_2_5_6_2, 1_3_7_9_3, 1_4_1_5_7, 1_4_6_3_5, 1_5_2_6_5, 1_5_6_1_8, 1_6_5_5_3, 1_6_6_0_4, 1_8_3_6_2, 1_8_9_5_6, 2_0_0_7_5, 2_1_6_7_5, 2_2_5_2_0, 2_6_1_3_0, 2_6_1_6_1, 2_6_4_3_5, 2_8_2_7_9, 2_9_4_6_4, 3_1_6_5_0, 3_2_3_0_2, 3_2_4_7_0, 3_6_8_6_5, 4_2_8_6_3, 4_7_4_2_5, 4_9_8_7_0, 5_0_2_5_4, 5_0_2_5_8, 5_0_3_6_0, 5_0_3_6_1, 5_0_3_6_2 ] class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): __lowerCAmelCase = """whisper""" __lowerCAmelCase = ["""past_key_values"""] __lowerCAmelCase = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : List[Any] , lowerCamelCase_ : Tuple=5_1865 , lowerCamelCase_ : Dict=80 , lowerCamelCase_ : str=6 , lowerCamelCase_ : List[Any]=4 , lowerCamelCase_ : List[str]=6 , lowerCamelCase_ : Optional[int]=4 , lowerCamelCase_ : Optional[int]=1536 , lowerCamelCase_ : int=1536 , lowerCamelCase_ : Any=0.0 , lowerCamelCase_ : int=0.0 , lowerCamelCase_ : str=5_0257 , lowerCamelCase_ : Any=True , lowerCamelCase_ : int=True , lowerCamelCase_ : List[str]="gelu" , lowerCamelCase_ : int=256 , lowerCamelCase_ : str=0.0 , lowerCamelCase_ : int=0.0 , lowerCamelCase_ : List[str]=0.0 , lowerCamelCase_ : Any=0.0_2 , lowerCamelCase_ : str=False , lowerCamelCase_ : List[str]=1500 , lowerCamelCase_ : Dict=448 , lowerCamelCase_ : Tuple=5_0256 , lowerCamelCase_ : Tuple=5_0256 , lowerCamelCase_ : List[Any]=5_0256 , lowerCamelCase_ : List[str]=None , lowerCamelCase_ : Optional[int]=[220, 5_0256] , lowerCamelCase_ : List[Any]=False , lowerCamelCase_ : Dict=256 , lowerCamelCase_ : Optional[Any]=False , lowerCamelCase_ : List[Any]=0.0_5 , lowerCamelCase_ : Dict=10 , lowerCamelCase_ : List[str]=2 , lowerCamelCase_ : Tuple=0.0 , lowerCamelCase_ : str=10 , lowerCamelCase_ : Dict=0 , lowerCamelCase_ : Optional[int]=7 , **lowerCamelCase_ : Any , ): """simple docstring""" UpperCamelCase = vocab_size UpperCamelCase = num_mel_bins UpperCamelCase = d_model UpperCamelCase = encoder_layers UpperCamelCase = encoder_attention_heads UpperCamelCase = decoder_layers UpperCamelCase = decoder_attention_heads UpperCamelCase = decoder_ffn_dim UpperCamelCase = encoder_ffn_dim UpperCamelCase = dropout UpperCamelCase = attention_dropout UpperCamelCase = activation_dropout UpperCamelCase = activation_function UpperCamelCase = init_std UpperCamelCase = encoder_layerdrop UpperCamelCase = decoder_layerdrop UpperCamelCase = use_cache UpperCamelCase = encoder_layers UpperCamelCase = scale_embedding # scale factor will be sqrt(d_model) if True UpperCamelCase = max_source_positions UpperCamelCase = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. UpperCamelCase = classifier_proj_size UpperCamelCase = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCamelCase = apply_spec_augment UpperCamelCase = mask_time_prob UpperCamelCase = mask_time_length UpperCamelCase = mask_time_min_masks UpperCamelCase = mask_feature_prob UpperCamelCase = mask_feature_length UpperCamelCase = mask_feature_min_masks UpperCamelCase = median_filter_width super().__init__( pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , is_encoder_decoder=lowerCamelCase_ , decoder_start_token_id=lowerCamelCase_ , suppress_tokens=lowerCamelCase_ , begin_suppress_tokens=lowerCamelCase_ , **lowerCamelCase_ , ) class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): @property def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = OrderedDict( [ ("""input_features""", {0: """batch""", 1: """feature_size""", 2: """encoder_sequence"""}), ] ) if self.use_past: UpperCamelCase = {0: """batch"""} else: UpperCamelCase = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(lowerCamelCase_ , direction="""inputs""" ) return common_inputs def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , lowerCamelCase_ : int = -1 , lowerCamelCase_ : int = -1 , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional["TensorType"] = None , lowerCamelCase_ : int = 2_2050 , lowerCamelCase_ : float = 5.0 , lowerCamelCase_ : int = 220 , ): """simple docstring""" UpperCamelCase = OrderedDict() UpperCamelCase = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=lowerCamelCase_ , framework=lowerCamelCase_ , sampling_rate=lowerCamelCase_ , time_duration=lowerCamelCase_ , frequency=lowerCamelCase_ , ) UpperCamelCase = encoder_inputs["""input_features"""].shape[2] UpperCamelCase = encoder_sequence_length // 2 if self.use_past else seq_length UpperCamelCase = super().generate_dummy_inputs( preprocessor.tokenizer , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase = encoder_inputs.pop("""input_features""" ) UpperCamelCase = decoder_inputs.pop("""decoder_input_ids""" ) if "past_key_values" in decoder_inputs: UpperCamelCase = decoder_inputs.pop("""past_key_values""" ) return dummy_inputs @property def lowerCamelCase_ ( self : int ): """simple docstring""" return 1E-3
165
0
def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' lowercase = 0 for ch in input_str: lowercase = ord(lowerCAmelCase__ ) lowercase = pow(2 , lowerCAmelCase__ ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
101
'''simple docstring''' from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class A__ ( A__ , A__ ): @register_to_config def __init__( self : Dict , _a : int = 768 , ) -> Union[str, Any]: '''simple docstring''' super().__init__() _SCREAMING_SNAKE_CASE =nn.Parameter(torch.zeros(1 , _a ) ) _SCREAMING_SNAKE_CASE =nn.Parameter(torch.ones(1 , _a ) ) def A ( self : Tuple , _a : Optional[Union[str, torch.device]] = None , _a : Optional[torch.dtype] = None , ) -> List[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =nn.Parameter(self.mean.to(_a ).to(_a ) ) _SCREAMING_SNAKE_CASE =nn.Parameter(self.std.to(_a ).to(_a ) ) return self def A ( self : Tuple , _a : str ) -> str: '''simple docstring''' _SCREAMING_SNAKE_CASE =(embeds - self.mean) * 1.0 / self.std return embeds def A ( self : List[str] , _a : Optional[Any] ) -> Tuple: '''simple docstring''' _SCREAMING_SNAKE_CASE =(embeds * self.std) + self.mean return embeds
47
0
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def __lowerCamelCase ( a_ : str ) -> List[str]: if is_torch_version('''<''' , '''2.0.0''' ) or not hasattr(a_ , '''_dynamo''' ): return False return isinstance(a_ , torch._dynamo.eval_frame.OptimizedModule ) def __lowerCamelCase ( a_ : int , a_ : bool = True ) -> Optional[int]: __SCREAMING_SNAKE_CASE :Tuple = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) __SCREAMING_SNAKE_CASE :Optional[Any] = is_compiled_module(a_ ) if is_compiled: __SCREAMING_SNAKE_CASE :Tuple = model __SCREAMING_SNAKE_CASE :Tuple = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(a_ , a_ ): __SCREAMING_SNAKE_CASE :Optional[Any] = model.module if not keep_fpaa_wrapper: __SCREAMING_SNAKE_CASE :Dict = getattr(a_ , '''forward''' ) __SCREAMING_SNAKE_CASE :Any = model.__dict__.pop('''_original_forward''' , a_ ) if original_forward is not None: while hasattr(a_ , '''__wrapped__''' ): __SCREAMING_SNAKE_CASE :List[str] = forward.__wrapped__ if forward == original_forward: break __SCREAMING_SNAKE_CASE :Any = forward if getattr(a_ , '''_converted_to_transformer_engine''' , a_ ): convert_model(a_ , to_transformer_engine=a_ ) if is_compiled: __SCREAMING_SNAKE_CASE :Optional[int] = model __SCREAMING_SNAKE_CASE :Optional[int] = compiled_model return model def __lowerCamelCase ( ) -> str: PartialState().wait_for_everyone() def __lowerCamelCase ( a_ : Union[str, Any] , a_ : Optional[int] ) -> int: if PartialState().distributed_type == DistributedType.TPU: xm.save(a_ , a_ ) elif PartialState().local_process_index == 0: torch.save(a_ , a_ ) @contextmanager def __lowerCamelCase ( **a_ : int ) -> Tuple: for key, value in kwargs.items(): __SCREAMING_SNAKE_CASE :Any = str(a_ ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def __lowerCamelCase ( a_ : List[str] ) -> List[Any]: if not hasattr(a_ , '''__qualname__''' ) and not hasattr(a_ , '''__name__''' ): __SCREAMING_SNAKE_CASE :List[Any] = getattr(a_ , '''__class__''' , a_ ) if hasattr(a_ , '''__qualname__''' ): return obj.__qualname__ if hasattr(a_ , '''__name__''' ): return obj.__name__ return str(a_ ) def __lowerCamelCase ( a_ : List[Any] , a_ : List[str] ) -> Tuple: for key, value in source.items(): if isinstance(a_ , a_ ): __SCREAMING_SNAKE_CASE :List[str] = destination.setdefault(a_ , {} ) merge_dicts(a_ , a_ ) else: __SCREAMING_SNAKE_CASE :str = value return destination def __lowerCamelCase ( a_ : int = None ) -> bool: if port is None: __SCREAMING_SNAKE_CASE :Dict = 2_95_00 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(('''localhost''', port) ) == 0
371
"""simple docstring""" def __lowerCamelCase ( a_ : Union[str, Any] , a_ : Optional[Any] ) -> Union[str, Any]: return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def __lowerCamelCase ( a_ : Optional[int] , a_ : Any=0 ) -> Optional[Any]: return sorted(a_ , key=lambda a_ : x[column] ) def __lowerCamelCase ( a_ : Optional[Any] , a_ : Optional[int] , a_ : str=float('''inf''' ) ) -> str: for i in range(points_counts - 1 ): for j in range(i + 1 , a_ ): __SCREAMING_SNAKE_CASE :Dict = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: __SCREAMING_SNAKE_CASE :Optional[Any] = current_dis return min_dis def __lowerCamelCase ( a_ : List[Any] , a_ : Any , a_ : Optional[int]=float('''inf''' ) ) -> Optional[Any]: for i in range(min(6 , points_counts - 1 ) , a_ ): for j in range(max(0 , i - 6 ) , a_ ): __SCREAMING_SNAKE_CASE :Dict = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: __SCREAMING_SNAKE_CASE :int = current_dis return min_dis def __lowerCamelCase ( a_ : str , a_ : List[Any] , a_ : int ) -> Optional[int]: # base case if points_counts <= 3: return dis_between_closest_pair(a_ , a_ ) # recursion __SCREAMING_SNAKE_CASE :int = points_counts // 2 __SCREAMING_SNAKE_CASE :Dict = closest_pair_of_points_sqr( a_ , points_sorted_on_y[:mid] , a_ ) __SCREAMING_SNAKE_CASE :Any = closest_pair_of_points_sqr( a_ , points_sorted_on_y[mid:] , points_counts - mid ) __SCREAMING_SNAKE_CASE :Union[str, Any] = min(a_ , a_ ) __SCREAMING_SNAKE_CASE :str = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(a_ ) __SCREAMING_SNAKE_CASE :Dict = dis_between_closest_in_strip( a_ , len(a_ ) , a_ ) return min(a_ , a_ ) def __lowerCamelCase ( a_ : int , a_ : Tuple ) -> List[Any]: __SCREAMING_SNAKE_CASE :Union[str, Any] = column_based_sort(a_ , column=0 ) __SCREAMING_SNAKE_CASE :int = column_based_sort(a_ , column=1 ) return ( closest_pair_of_points_sqr( a_ , a_ , a_ ) ) ** 0.5 if __name__ == "__main__": lowerCamelCase_ = [(2, 3), (1_2, 3_0), (4_0, 5_0), (5, 1), (1_2, 1_0), (3, 4)] print("Distance:", closest_pair_of_points(points, len(points)))
239
0
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' if not isinstance(__lowercase , __lowercase ): raise ValueError('''iterations must be defined as integers''' ) if not isinstance(__lowercase , __lowercase ) or not number >= 1: raise ValueError( '''starting number must be and integer and be more than 0''' ) if not iterations >= 1: raise ValueError('''Iterations must be done more than 0 times to play FizzBuzz''' ) __UpperCAmelCase = '''''' while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(__lowercase ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
333
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase=False , __lowercase=False , __lowercase=False ) -> Optional[Any]: A: str = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""transformer.blocks.{i}.norm1.weight""", F"""vilt.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.norm1.bias""", F"""vilt.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""transformer.blocks.{i}.attn.proj.weight""", F"""vilt.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (F"""transformer.blocks.{i}.attn.proj.bias""", F"""vilt.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""transformer.blocks.{i}.norm2.weight""", F"""vilt.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.norm2.bias""", F"""vilt.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append( (F"""transformer.blocks.{i}.mlp.fc1.weight""", F"""vilt.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc1.bias""", F"""vilt.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.weight""", F"""vilt.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.bias""", F"""vilt.encoder.layer.{i}.output.dense.bias""") ) # embeddings rename_keys.extend( [ # text embeddings ('''text_embeddings.word_embeddings.weight''', '''vilt.embeddings.text_embeddings.word_embeddings.weight'''), ( '''text_embeddings.position_embeddings.weight''', '''vilt.embeddings.text_embeddings.position_embeddings.weight''', ), ('''text_embeddings.position_ids''', '''vilt.embeddings.text_embeddings.position_ids'''), ( '''text_embeddings.token_type_embeddings.weight''', '''vilt.embeddings.text_embeddings.token_type_embeddings.weight''', ), ('''text_embeddings.LayerNorm.weight''', '''vilt.embeddings.text_embeddings.LayerNorm.weight'''), ('''text_embeddings.LayerNorm.bias''', '''vilt.embeddings.text_embeddings.LayerNorm.bias'''), # patch embeddings ('''transformer.cls_token''', '''vilt.embeddings.cls_token'''), ('''transformer.patch_embed.proj.weight''', '''vilt.embeddings.patch_embeddings.projection.weight'''), ('''transformer.patch_embed.proj.bias''', '''vilt.embeddings.patch_embeddings.projection.bias'''), ('''transformer.pos_embed''', '''vilt.embeddings.position_embeddings'''), # token type embeddings ('''token_type_embeddings.weight''', '''vilt.embeddings.token_type_embeddings.weight'''), ] ) # final layernorm + pooler rename_keys.extend( [ ('''transformer.norm.weight''', '''vilt.layernorm.weight'''), ('''transformer.norm.bias''', '''vilt.layernorm.bias'''), ('''pooler.dense.weight''', '''vilt.pooler.dense.weight'''), ('''pooler.dense.bias''', '''vilt.pooler.dense.bias'''), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ('''vqa_classifier.0.weight''', '''classifier.0.weight'''), ('''vqa_classifier.0.bias''', '''classifier.0.bias'''), ('''vqa_classifier.1.weight''', '''classifier.1.weight'''), ('''vqa_classifier.1.bias''', '''classifier.1.bias'''), ('''vqa_classifier.3.weight''', '''classifier.3.weight'''), ('''vqa_classifier.3.bias''', '''classifier.3.bias'''), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ('''nlvr2_classifier.0.weight''', '''classifier.0.weight'''), ('''nlvr2_classifier.0.bias''', '''classifier.0.bias'''), ('''nlvr2_classifier.1.weight''', '''classifier.1.weight'''), ('''nlvr2_classifier.1.bias''', '''classifier.1.bias'''), ('''nlvr2_classifier.3.weight''', '''classifier.3.weight'''), ('''nlvr2_classifier.3.bias''', '''classifier.3.bias'''), ] ) else: pass return rename_keys def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Any: for i in range(config.num_hidden_layers ): A: Tuple = '''vilt.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A: List[str] = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.weight""" ) A: Optional[Any] = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict A: Dict = in_proj_weight[ : config.hidden_size, : ] A: int = in_proj_bias[: config.hidden_size] A: Any = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A: int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A: Optional[int] = in_proj_weight[ -config.hidden_size :, : ] A: Optional[Any] = in_proj_bias[-config.hidden_size :] def SCREAMING_SNAKE_CASE( __lowercase ) -> int: A: Optional[int] = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__lowercase , __lowercase ) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase ) -> int: A: List[Any] = dct.pop(__lowercase ) A: int = val @torch.no_grad() def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> str: A: Optional[Any] = ViltConfig(image_size=3_8_4 , patch_size=3_2 , tie_word_embeddings=__lowercase ) A: Tuple = False A: str = False A: List[Any] = False A: Optional[int] = False if "vqa" in checkpoint_url: A: Union[str, Any] = True A: Union[str, Any] = 3_1_2_9 A: List[Any] = '''huggingface/label-files''' A: Any = '''vqa2-id2label.json''' A: Optional[Any] = json.load(open(hf_hub_download(__lowercase , __lowercase , repo_type='''dataset''' ) , '''r''' ) ) A: Union[str, Any] = {int(__lowercase ): v for k, v in idalabel.items()} A: Any = idalabel A: Optional[Any] = {v: k for k, v in idalabel.items()} A: List[str] = ViltForQuestionAnswering(__lowercase ) elif "nlvr" in checkpoint_url: A: Dict = True A: str = 2 A: Union[str, Any] = {0: '''False''', 1: '''True'''} A: Any = {v: k for k, v in config.idalabel.items()} A: Optional[Any] = 3 A: Any = ViltForImagesAndTextClassification(__lowercase ) elif "irtr" in checkpoint_url: A: Tuple = True A: Optional[Any] = ViltForImageAndTextRetrieval(__lowercase ) elif "mlm_itm" in checkpoint_url: A: Tuple = True A: Optional[int] = ViltForMaskedLM(__lowercase ) else: raise ValueError('''Unknown model type''' ) # load state_dict of original model, remove and rename some keys A: int = torch.hub.load_state_dict_from_url(__lowercase , map_location='''cpu''' )['''state_dict'''] A: List[str] = create_rename_keys(__lowercase , __lowercase , __lowercase , __lowercase ) for src, dest in rename_keys: rename_key(__lowercase , __lowercase , __lowercase ) read_in_q_k_v(__lowercase , __lowercase ) if mlm_model or irtr_model: A: str = ['''itm_score.fc.weight''', '''itm_score.fc.bias'''] for k in ignore_keys: state_dict.pop(__lowercase , __lowercase ) # load state dict into HuggingFace model model.eval() if mlm_model: A , A: Union[str, Any] = model.load_state_dict(__lowercase , strict=__lowercase ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(__lowercase ) # Define processor A: Optional[Any] = ViltImageProcessor(size=3_8_4 ) A: Dict = BertTokenizer.from_pretrained('''bert-base-uncased''' ) A: Optional[int] = ViltProcessor(__lowercase , __lowercase ) # Forward pass on example inputs (image + text) if nlvr_model: A: str = Image.open(requests.get('''https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg''' , stream=__lowercase ).raw ) A: List[str] = Image.open(requests.get('''https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg''' , stream=__lowercase ).raw ) A: Any = ( '''The left image contains twice the number of dogs as the right image, and at least two dogs in total are''' ''' standing.''' ) A: List[Any] = processor(__lowercase , __lowercase , return_tensors='''pt''' ) A: List[Any] = processor(__lowercase , __lowercase , return_tensors='''pt''' ) A: List[str] = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: A: Any = Image.open(requests.get('''http://images.cocodataset.org/val2017/000000039769.jpg''' , stream=__lowercase ).raw ) if mlm_model: A: Optional[int] = '''a bunch of [MASK] laying on a [MASK].''' else: A: Optional[int] = '''How many cats are there?''' A: Union[str, Any] = processor(__lowercase , __lowercase , return_tensors='''pt''' ) A: Any = model(**__lowercase ) # Verify outputs if mlm_model: A: Any = torch.Size([1, 1_1, 3_0_5_2_2] ) A: Tuple = torch.tensor([-1_2.5_0_6_1, -1_2.5_1_2_3, -1_2.5_1_7_4] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , __lowercase , atol=1E-4 ) # verify masked token prediction equals "cats" A: List[str] = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: A: Any = torch.Size([1, 3_1_2_9] ) A: Optional[int] = torch.tensor([-1_5.9_4_9_5, -1_8.1_4_7_2, -1_0.3_0_4_1] ) assert torch.allclose(outputs.logits[0, :3] , __lowercase , atol=1E-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , __lowercase , atol=1E-4 ) # verify vqa prediction equals "2" A: Dict = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: A: Union[str, Any] = torch.Size([1, 2] ) A: Optional[Any] = torch.tensor([-2.8_7_2_1, 2.1_2_9_1] ) assert torch.allclose(outputs.logits[0, :3] , __lowercase , atol=1E-4 ) assert outputs.logits.shape == expected_shape Path(__lowercase ).mkdir(exist_ok=__lowercase ) print(F"""Saving model and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowercase ) processor.save_pretrained(__lowercase ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) UpperCamelCase = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
319
0
'''simple docstring''' from math import factorial, pi def lowerCamelCase ( UpperCAmelCase__ : float , UpperCAmelCase__ : int = 30 ) -> float: if not isinstance(UpperCAmelCase__ , (int, float) ): raise ValueError("""maclaurin_sin() requires either an int or float for theta""" ) if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) or accuracy <= 0: raise ValueError("""maclaurin_sin() requires a positive int for accuracy""" ) lowercase_ : Optional[int] = float(UpperCAmelCase__ ) lowercase_ : int = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(UpperCAmelCase__ ) ) def lowerCamelCase ( UpperCAmelCase__ : float , UpperCAmelCase__ : int = 30 ) -> float: if not isinstance(UpperCAmelCase__ , (int, float) ): raise ValueError("""maclaurin_cos() requires either an int or float for theta""" ) if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) or accuracy <= 0: raise ValueError("""maclaurin_cos() requires a positive int for accuracy""" ) lowercase_ : List[str] = float(UpperCAmelCase__ ) lowercase_ : Union[str, Any] = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(UpperCAmelCase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
21
'''simple docstring''' import os import numpy import onnx def lowerCamelCase ( UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : str ) -> Tuple: lowercase_ : Tuple = a.name lowercase_ : Tuple = b.name lowercase_ : Any = """""" lowercase_ : List[Any] = """""" lowercase_ : List[Any] = a == b lowercase_ : Union[str, Any] = name_a lowercase_ : Optional[Any] = name_b return res def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[Any] ) -> Union[str, Any]: for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(UpperCAmelCase__ , UpperCAmelCase__ ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , UpperCAmelCase__ , UpperCAmelCase__ ) _graph_replace_input_with(node_proto.attribute[1].g , UpperCAmelCase__ , UpperCAmelCase__ ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , UpperCAmelCase__ , UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : str ) -> int: for n in graph_proto.node: _node_replace_input_with(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : Any , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Dict ) -> List[str]: lowercase_ : int = list(model.graph.initializer ) lowercase_ : List[str] = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i lowercase_ : Optional[Any] = inits[i].name lowercase_ : List[str] = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , UpperCAmelCase__ , UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : int ) -> List[str]: lowercase_ : Dict = os.path.dirname(UpperCAmelCase__ ) lowercase_ : Optional[Any] = os.path.basename(UpperCAmelCase__ ) lowercase_ : str = onnx.load(os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) ) lowercase_ : List[Any] = list(model.graph.initializer ) lowercase_ : int = set() lowercase_ : int = {} lowercase_ : str = [] lowercase_ : int = 0 for i in range(len(UpperCAmelCase__ ) ): if i in dup_set: continue for j in range(i + 1 , len(UpperCAmelCase__ ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(UpperCAmelCase__ ) dup_set.add(UpperCAmelCase__ ) lowercase_ : Dict = inits[j].data_type lowercase_ : List[str] = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print("""unexpected data type: """ , UpperCAmelCase__ ) total_reduced_size += mem_size lowercase_ : int = inits[i].name lowercase_ : List[str] = inits[j].name if name_i in dup_map: dup_map[name_i].append(UpperCAmelCase__ ) else: lowercase_ : Optional[int] = [name_j] ind_to_replace.append((j, i) ) print("""total reduced size: """ , total_reduced_size / 1024 / 1024 / 1024 , """GB""" ) lowercase_ : Tuple = sorted(UpperCAmelCase__ ) _remove_dup_initializers_from_model(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) lowercase_ : Union[str, Any] = """optimized_""" + model_file_name lowercase_ : Optional[int] = os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) onnx.save(UpperCAmelCase__ , UpperCAmelCase__ ) return new_model
21
1
"""simple docstring""" def _lowerCAmelCase ( UpperCamelCase_ = 50 ): __SCREAMING_SNAKE_CASE = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(F"""{solution() = }""")
100
import os from distutils.util import strtobool def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: '''simple docstring''' for e in env_keys: SCREAMING_SNAKE_CASE = int(os.environ.get(_SCREAMING_SNAKE_CASE , -1 ) ) if val >= 0: return val return default def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = os.environ.get(_SCREAMING_SNAKE_CASE , str(_SCREAMING_SNAKE_CASE ) ) return strtobool(_SCREAMING_SNAKE_CASE ) == 1 # As its name indicates `strtobool` actually returns an int... def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="no" ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = os.environ.get(_SCREAMING_SNAKE_CASE , str(_SCREAMING_SNAKE_CASE ) ) return value
296
0
from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def lowerCAmelCase__ ( a__ = True , *a__ , **a__ ) ->Dict: '''simple docstring''' if not is_tqdm_available(): raise ImportError("Accelerate's `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`." ) _UpperCamelCase = False if main_process_only: _UpperCamelCase = PartialState().local_process_index == 0 return _tqdm(*a__ , **a__ , disable=a__ )
358
def lowerCAmelCase__ ( a__ , a__ ) ->str: '''simple docstring''' if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) _UpperCamelCase = str(bin(a__ ) )[2:] # remove the leading "0b" _UpperCamelCase = str(bin(a__ ) )[2:] # remove the leading "0b" _UpperCamelCase = max(len(a__ ) , len(a__ ) ) return "0b" + "".join( str(int(char_a == "1" and char_b == "1" ) ) for char_a, char_b in zip(a_binary.zfill(a__ ) , b_binary.zfill(a__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
63
0
'''simple docstring''' import argparse import torch from transformers import ( WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForAudioFrameClassification, WavaVecaForSequenceClassification, WavaVecaForXVector, logging, ) logging.set_verbosity_info() SCREAMING_SNAKE_CASE_: Optional[int] =logging.get_logger(__name__) def lowerCAmelCase_ ( snake_case_ : List[Any] , snake_case_ : Tuple , snake_case_ : int ) -> str: '''simple docstring''' UpperCAmelCase_ = WavaVecaForSequenceClassification.from_pretrained(snake_case_ , config=snake_case_ ) UpperCAmelCase_ = downstream_dict["projector.weight"] UpperCAmelCase_ = downstream_dict["projector.bias"] UpperCAmelCase_ = downstream_dict["model.post_net.linear.weight"] UpperCAmelCase_ = downstream_dict["model.post_net.linear.bias"] return model def lowerCAmelCase_ ( snake_case_ : Union[str, Any] , snake_case_ : Dict , snake_case_ : List[str] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = WavaVecaForAudioFrameClassification.from_pretrained(snake_case_ , config=snake_case_ ) UpperCAmelCase_ = downstream_dict["model.linear.weight"] UpperCAmelCase_ = downstream_dict["model.linear.bias"] return model def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : List[str] , snake_case_ : Union[str, Any] ) -> str: '''simple docstring''' UpperCAmelCase_ = WavaVecaForXVector.from_pretrained(snake_case_ , config=snake_case_ ) UpperCAmelCase_ = downstream_dict["connector.weight"] UpperCAmelCase_ = downstream_dict["connector.bias"] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): UpperCAmelCase_ = downstream_dict[ f"""model.framelevel_feature_extractor.module.{i}.kernel.weight""" ] UpperCAmelCase_ = downstream_dict[f"""model.framelevel_feature_extractor.module.{i}.kernel.bias"""] UpperCAmelCase_ = downstream_dict["model.utterancelevel_feature_extractor.linear1.weight"] UpperCAmelCase_ = downstream_dict["model.utterancelevel_feature_extractor.linear1.bias"] UpperCAmelCase_ = downstream_dict["model.utterancelevel_feature_extractor.linear2.weight"] UpperCAmelCase_ = downstream_dict["model.utterancelevel_feature_extractor.linear2.bias"] UpperCAmelCase_ = downstream_dict["objective.W"] return model @torch.no_grad() def lowerCAmelCase_ ( snake_case_ : Dict , snake_case_ : Tuple , snake_case_ : List[Any] , snake_case_ : Dict ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = torch.load(snake_case_ , map_location="cpu" ) UpperCAmelCase_ = checkpoint["Downstream"] UpperCAmelCase_ = WavaVecaConfig.from_pretrained(snake_case_ ) UpperCAmelCase_ = WavaVecaFeatureExtractor.from_pretrained( snake_case_ , return_attention_mask=snake_case_ , do_normalize=snake_case_ ) UpperCAmelCase_ = hf_config.architectures[0] if arch.endswith("ForSequenceClassification" ): UpperCAmelCase_ = convert_classification(snake_case_ , snake_case_ , snake_case_ ) elif arch.endswith("ForAudioFrameClassification" ): UpperCAmelCase_ = convert_diarization(snake_case_ , snake_case_ , snake_case_ ) elif arch.endswith("ForXVector" ): UpperCAmelCase_ = convert_xvector(snake_case_ , snake_case_ , snake_case_ ) else: raise NotImplementedError(f"""S3PRL weights conversion is not supported for {arch}""" ) if hf_config.use_weighted_layer_sum: UpperCAmelCase_ = checkpoint["Featurizer"]["weights"] hf_feature_extractor.save_pretrained(snake_case_ ) hf_model.save_pretrained(snake_case_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_: int =argparse.ArgumentParser() parser.add_argument( '--base_model_name', default=None, type=str, help='Name of the huggingface pretrained base model.' ) parser.add_argument('--config_path', default=None, type=str, help='Path to the huggingface classifier config.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to the s3prl checkpoint.') parser.add_argument('--model_dump_path', default=None, type=str, help='Path to the final converted model.') SCREAMING_SNAKE_CASE_: List[str] =parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _A = {'configuration_vit_mae': ['VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMAEConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ 'VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMAEForPreTraining', 'ViTMAELayer', 'ViTMAEModel', 'ViTMAEPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ 'TFViTMAEForPreTraining', 'TFViTMAEModel', 'TFViTMAEPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys _A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
62
0
# This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny model through reduction of a normal pre-trained model, but keeping the # full vocab, merges file, and thus also resulting in a larger model due to a large vocab size. # This gives ~3MB in total for all files. # # If you want a 50 times smaller than this see `fsmt-make-super-tiny-model.py`, which is slightly more complicated # # # It will be used then as "stas/tiny-wmt19-en-de" # Build from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration __a = '''facebook/wmt19-en-de''' __a = FSMTTokenizer.from_pretrained(mname) # get the correct vocab sizes, etc. from the master model __a = FSMTConfig.from_pretrained(mname) config.update( dict( d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) ) __a = FSMTForConditionalGeneration(config) print(F'''num of params {tiny_model.num_parameters()}''') # Test __a = tokenizer(['''Making tiny model'''], return_tensors='''pt''') __a = tiny_model(**batch) print('''test output:''', len(outputs.logits[0])) # Save __a = '''tiny-wmt19-en-de''' tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F'''Generated {mname_tiny}''') # Upload # transformers-cli upload tiny-wmt19-en-de
362
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __a = 16 __a = 32 def __lowercase ( _UpperCamelCase, _UpperCamelCase = 16 ) ->List[Any]: """simple docstring""" lowercase : Optional[Any] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) lowercase : List[Any] = load_dataset('''glue''', '''mrpc''' ) def tokenize_function(_UpperCamelCase ): # max_length=None => use the model max length (it's actually the default) lowercase : List[Any] = tokenizer(examples['''sentence1'''], examples['''sentence2'''], truncation=_UpperCamelCase, max_length=_UpperCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase : Union[str, Any] = datasets.map( _UpperCamelCase, batched=_UpperCamelCase, remove_columns=['''idx''', '''sentence1''', '''sentence2'''], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase : Union[str, Any] = tokenized_datasets.rename_column('''label''', '''labels''' ) def collate_fn(_UpperCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase : Optional[Any] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase : Tuple = 16 elif accelerator.mixed_precision != "no": lowercase : str = 8 else: lowercase : List[str] = None return tokenizer.pad( _UpperCamelCase, padding='''longest''', max_length=_UpperCamelCase, pad_to_multiple_of=_UpperCamelCase, return_tensors='''pt''', ) # Instantiate dataloaders. lowercase : int = DataLoader( tokenized_datasets['''train'''], shuffle=_UpperCamelCase, collate_fn=_UpperCamelCase, batch_size=_UpperCamelCase ) lowercase : str = DataLoader( tokenized_datasets['''validation'''], shuffle=_UpperCamelCase, collate_fn=_UpperCamelCase, batch_size=_UpperCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders __a = mocked_dataloaders # noqa: F811 def __lowercase ( _UpperCamelCase, _UpperCamelCase ) ->str: """simple docstring""" if os.environ.get('''TESTING_MOCKED_DATALOADERS''', _UpperCamelCase ) == "1": lowercase : Tuple = 2 # New Code # lowercase : Optional[int] = int(args.gradient_accumulation_steps ) lowercase : Optional[int] = int(args.local_sgd_steps ) # Initialize accelerator lowercase : Tuple = Accelerator( cpu=args.cpu, mixed_precision=args.mixed_precision, gradient_accumulation_steps=_UpperCamelCase ) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError('''LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)''' ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase : Dict = config['''lr'''] lowercase : List[str] = int(config['''num_epochs'''] ) lowercase : str = int(config['''seed'''] ) lowercase : str = int(config['''batch_size'''] ) lowercase : Any = evaluate.load('''glue''', '''mrpc''' ) set_seed(_UpperCamelCase ) lowercase , lowercase : Dict = get_dataloaders(_UpperCamelCase, _UpperCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase : Optional[int] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''', return_dict=_UpperCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase : int = model.to(accelerator.device ) # Instantiate optimizer lowercase : Any = AdamW(params=model.parameters(), lr=_UpperCamelCase ) # Instantiate scheduler lowercase : Union[str, Any] = get_linear_schedule_with_warmup( optimizer=_UpperCamelCase, num_warmup_steps=100, num_training_steps=(len(_UpperCamelCase ) * num_epochs), ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase , lowercase , lowercase , lowercase , lowercase : Optional[Any] = accelerator.prepare( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) # Now we train the model for epoch in range(_UpperCamelCase ): model.train() with LocalSGD( accelerator=_UpperCamelCase, model=_UpperCamelCase, local_sgd_steps=_UpperCamelCase, enabled=local_sgd_steps is not None ) as local_sgd: for step, batch in enumerate(_UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(_UpperCamelCase ): lowercase : int = model(**_UpperCamelCase ) lowercase : Optional[int] = output.loss accelerator.backward(_UpperCamelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(_UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase : Optional[int] = model(**_UpperCamelCase ) lowercase : Optional[Any] = outputs.logits.argmax(dim=-1 ) lowercase , lowercase : Dict = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=_UpperCamelCase, references=_UpperCamelCase, ) lowercase : int = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""", _UpperCamelCase ) def __lowercase ( ) ->int: """simple docstring""" lowercase : int = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''', type=_UpperCamelCase, default=_UpperCamelCase, choices=['''no''', '''fp16''', '''bf16''', '''fp8'''], help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''', ) # New Code # parser.add_argument( '''--gradient_accumulation_steps''', type=_UpperCamelCase, default=1, help='''The number of minibatches to be ran before gradients are accumulated.''', ) parser.add_argument( '''--local_sgd_steps''', type=_UpperCamelCase, default=8, help='''Number of local SGD steps or None to disable local SGD''' ) parser.add_argument('''--cpu''', action='''store_true''', help='''If passed, will train on the CPU.''' ) lowercase : List[Any] = parser.parse_args() lowercase : List[Any] = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(_UpperCamelCase, _UpperCamelCase ) if __name__ == "__main__": main()
173
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __a = { "configuration_conditional_detr": [ "CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConditionalDetrConfig", "ConditionalDetrOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ["ConditionalDetrFeatureExtractor"] __a = ["ConditionalDetrImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ "CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST", "ConditionalDetrForObjectDetection", "ConditionalDetrForSegmentation", "ConditionalDetrModel", "ConditionalDetrPreTrainedModel", ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
35
'''simple docstring''' from transformers import BertTokenizerFast from .custom_tokenization import CustomTokenizer class UpperCAmelCase_ ( _a ): """simple docstring""" lowercase = CustomTokenizer pass
35
1
"""simple docstring""" import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class __A : """simple docstring""" def __init__( self , __A , __A=13 , __A=7 , __A=True , __A=True , __A=True , __A=True , __A=99 , __A=64 , __A=32 , __A=5 , __A=4 , __A=37 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=16 , __A=2 , __A=0.02 , __A=3 , __A=4 , __A=None , ) -> List[str]: a =parent a =batch_size a =seq_length a =is_training a =use_input_mask a =use_token_type_ids a =use_labels a =vocab_size a =hidden_size a =embedding_size a =num_hidden_layers a =num_attention_heads a =intermediate_size a =hidden_act a =hidden_dropout_prob a =attention_probs_dropout_prob a =max_position_embeddings a =type_vocab_size a =type_sequence_label_size a =initializer_range a =num_labels a =num_choices a =scope def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: a =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a =None if self.use_input_mask: a =random_attention_mask([self.batch_size, self.seq_length] ) a =None if self.use_token_type_ids: a =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) a =None a =None a =None if self.use_labels: a =ids_tensor([self.batch_size] , self.type_sequence_label_size ) a =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a =ids_tensor([self.batch_size] , self.num_choices ) a =self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__A , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE ( self , __A , __A , __A , __A , __A , __A , __A ) -> Dict: a =MobileBertModel(config=__A ) model.to(__A ) model.eval() a =model(__A , attention_mask=__A , token_type_ids=__A ) a =model(__A , token_type_ids=__A ) a =model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self , __A , __A , __A , __A , __A , __A , __A ) -> Union[str, Any]: a =MobileBertForMaskedLM(config=__A ) model.to(__A ) model.eval() a =model(__A , attention_mask=__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self , __A , __A , __A , __A , __A , __A , __A ) -> str: a =MobileBertForNextSentencePrediction(config=__A ) model.to(__A ) model.eval() a =model( __A , attention_mask=__A , token_type_ids=__A , labels=__A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def SCREAMING_SNAKE_CASE ( self , __A , __A , __A , __A , __A , __A , __A ) -> str: a =MobileBertForPreTraining(config=__A ) model.to(__A ) model.eval() a =model( __A , attention_mask=__A , token_type_ids=__A , labels=__A , next_sentence_label=__A , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def SCREAMING_SNAKE_CASE ( self , __A , __A , __A , __A , __A , __A , __A ) -> Optional[Any]: a =MobileBertForQuestionAnswering(config=__A ) model.to(__A ) model.eval() a =model( __A , attention_mask=__A , token_type_ids=__A , start_positions=__A , end_positions=__A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE ( self , __A , __A , __A , __A , __A , __A , __A ) -> Any: a =self.num_labels a =MobileBertForSequenceClassification(__A ) model.to(__A ) model.eval() a =model(__A , attention_mask=__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self , __A , __A , __A , __A , __A , __A , __A ) -> int: a =self.num_labels a =MobileBertForTokenClassification(config=__A ) model.to(__A ) model.eval() a =model(__A , attention_mask=__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self , __A , __A , __A , __A , __A , __A , __A ) -> Any: a =self.num_choices a =MobileBertForMultipleChoice(config=__A ) model.to(__A ) model.eval() a =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a =token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a =model( __A , attention_mask=__A , token_type_ids=__A , labels=__A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE ( self ) -> Dict: a =self.prepare_config_and_inputs() ( ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ) =config_and_inputs a ={'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __A ( _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, unittest.TestCase ): """simple docstring""" __lowerCAmelCase = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) __lowerCAmelCase = ( { "feature-extraction": MobileBertModel, "fill-mask": MobileBertForMaskedLM, "question-answering": MobileBertForQuestionAnswering, "text-classification": MobileBertForSequenceClassification, "token-classification": MobileBertForTokenClassification, "zero-shot": MobileBertForSequenceClassification, } if is_torch_available() else {} ) __lowerCAmelCase = True def SCREAMING_SNAKE_CASE ( self , __A , __A , __A=False ) -> List[str]: a =super()._prepare_for_class(__A , __A , return_labels=__A ) if return_labels: if model_class in get_values(__A ): a =torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__A ) a =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__A ) return inputs_dict def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: a =MobileBertModelTester(self ) a =ConfigTester(self , config_class=__A , hidden_size=37 ) def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self ) -> Dict: a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*__A ) def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*__A ) def SCREAMING_SNAKE_CASE ( self ) -> Any: a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__A ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__A ) def SCREAMING_SNAKE_CASE ( self ) -> Any: a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*__A ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*__A ) def SCREAMING_SNAKE_CASE ( self ) -> Any: a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__A ) def SCREAMING_SNAKE_CASE ( self ) -> str: a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*__A ) def _A ( lowercase ): """simple docstring""" return torch.tensor( lowercase , dtype=torch.long , device=lowercase , ) lowerCamelCase_ : Optional[int] = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class __A ( unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: a =MobileBertModel.from_pretrained('''google/mobilebert-uncased''' ).to(__A ) a =_long_tensor([[101, 7110, 1005, 1056, 2023, 1_1333, 1_7413, 1029, 102]] ) with torch.no_grad(): a =model(__A )[0] a =torch.Size((1, 9, 512) ) self.assertEqual(output.shape , __A ) a =torch.tensor( [ [ [-2.4_7_3_6_5_2_6E0_7, 8.2_6_9_1_6_5_6E0_4, 1.6_5_2_1_8_3_8E0_5], [-5.7_5_4_1_7_0_4E-0_1, 3.9_0_5_6_0_2_2E0_0, 4.4_0_1_1_5_0_7E0_0], [2.6_0_4_7_3_5_9E0_0, 1.5_6_7_7_6_5_2E0_0, -1.7_3_2_4_1_8_8E-0_1], ] ] , device=__A , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE a =torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) a =torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
364
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase_ : int = {"""configuration_mbart""": ["""MBART_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MBartConfig""", """MBartOnnxConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Dict = ["""MBartTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : str = ["""MBartTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : List[str] = [ """MBART_PRETRAINED_MODEL_ARCHIVE_LIST""", """MBartForCausalLM""", """MBartForConditionalGeneration""", """MBartForQuestionAnswering""", """MBartForSequenceClassification""", """MBartModel""", """MBartPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : List[Any] = [ """TFMBartForConditionalGeneration""", """TFMBartModel""", """TFMBartPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : str = [ """FlaxMBartForConditionalGeneration""", """FlaxMBartForQuestionAnswering""", """FlaxMBartForSequenceClassification""", """FlaxMBartModel""", """FlaxMBartPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys lowerCamelCase_ : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
215
0
import baseaa def _snake_case ( lowerCAmelCase : str ): """simple docstring""" return baseaa.aaaencode(string.encode("utf-8" ) ) def _snake_case ( lowerCAmelCase : bytes ): """simple docstring""" return baseaa.aaadecode(lowerCAmelCase ).decode("utf-8" ) if __name__ == "__main__": import doctest doctest.testmod()
18
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class a__ : def __init__( self : Optional[int],_A : Dict,_A : List[str]=13,_A : List[str]=7,_A : int=True,_A : str=True,_A : Union[str, Any]=True,_A : Tuple=True,_A : Dict=99,_A : Tuple=32,_A : Tuple=2,_A : Tuple=4,_A : Optional[Any]=37,_A : str="gelu",_A : Dict=0.1,_A : List[Any]=0.1,_A : List[str]=512,_A : str=16,_A : int=2,_A : Dict=0.02,_A : List[Any]=3,_A : Optional[Any]=4,_A : Optional[int]=None,): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = parent SCREAMING_SNAKE_CASE_ : Any = 13 SCREAMING_SNAKE_CASE_ : List[str] = 7 SCREAMING_SNAKE_CASE_ : Dict = True SCREAMING_SNAKE_CASE_ : Optional[Any] = True SCREAMING_SNAKE_CASE_ : Tuple = True SCREAMING_SNAKE_CASE_ : List[str] = True SCREAMING_SNAKE_CASE_ : List[str] = 99 SCREAMING_SNAKE_CASE_ : Tuple = 384 SCREAMING_SNAKE_CASE_ : Optional[Any] = 2 SCREAMING_SNAKE_CASE_ : Any = 4 SCREAMING_SNAKE_CASE_ : str = 37 SCREAMING_SNAKE_CASE_ : Optional[Any] = "gelu" SCREAMING_SNAKE_CASE_ : List[Any] = 0.1 SCREAMING_SNAKE_CASE_ : Union[str, Any] = 0.1 SCREAMING_SNAKE_CASE_ : Dict = 512 SCREAMING_SNAKE_CASE_ : int = 16 SCREAMING_SNAKE_CASE_ : Optional[int] = 2 SCREAMING_SNAKE_CASE_ : Any = 0.02 SCREAMING_SNAKE_CASE_ : str = 3 SCREAMING_SNAKE_CASE_ : int = 4 SCREAMING_SNAKE_CASE_ : Dict = 128 SCREAMING_SNAKE_CASE_ : Any = 2 SCREAMING_SNAKE_CASE_ : Tuple = 9 SCREAMING_SNAKE_CASE_ : List[Any] = 1 SCREAMING_SNAKE_CASE_ : Any = None def __UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) SCREAMING_SNAKE_CASE_ : Any = None if self.use_input_mask: SCREAMING_SNAKE_CASE_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ : List[str] = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE_ : List[Any] = ids_tensor([self.batch_size, self.seq_length],self.type_vocab_size ) SCREAMING_SNAKE_CASE_ : Dict = None SCREAMING_SNAKE_CASE_ : Dict = None SCREAMING_SNAKE_CASE_ : str = None if self.use_labels: SCREAMING_SNAKE_CASE_ : List[str] = ids_tensor([self.batch_size],self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : Dict = ids_tensor([self.batch_size, self.seq_length],self.num_labels ) SCREAMING_SNAKE_CASE_ : List[str] = ids_tensor([self.batch_size],self.num_choices ) SCREAMING_SNAKE_CASE_ : Any = ConvBertConfig( vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,type_vocab_size=self.type_vocab_size,initializer_range=self.initializer_range,return_dict=_A,) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCamelCase ( self : Optional[int],_A : List[Any],_A : int,_A : Tuple,_A : Optional[int],_A : Union[str, Any],_A : Union[str, Any],_A : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = TFConvBertModel(config=_A ) SCREAMING_SNAKE_CASE_ : Optional[int] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} SCREAMING_SNAKE_CASE_ : str = [input_ids, input_mask] SCREAMING_SNAKE_CASE_ : List[str] = model(_A ) SCREAMING_SNAKE_CASE_ : Dict = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self : Dict,_A : Dict,_A : int,_A : Union[str, Any],_A : List[Any],_A : int,_A : str,_A : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = TFConvBertForMaskedLM(config=_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } SCREAMING_SNAKE_CASE_ : List[Any] = model(_A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase ( self : Any,_A : Optional[int],_A : List[Any],_A : Union[str, Any],_A : List[Any],_A : Union[str, Any],_A : Optional[int],_A : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = self.num_labels SCREAMING_SNAKE_CASE_ : Any = TFConvBertForSequenceClassification(config=_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } SCREAMING_SNAKE_CASE_ : Optional[Any] = model(_A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_labels) ) def __UpperCamelCase ( self : int,_A : int,_A : Dict,_A : List[str],_A : Tuple,_A : Dict,_A : Optional[int],_A : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = self.num_choices SCREAMING_SNAKE_CASE_ : Optional[int] = TFConvBertForMultipleChoice(config=_A ) SCREAMING_SNAKE_CASE_ : Any = tf.tile(tf.expand_dims(_A,1 ),(1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE_ : Any = tf.tile(tf.expand_dims(_A,1 ),(1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = tf.tile(tf.expand_dims(_A,1 ),(1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE_ : int = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } SCREAMING_SNAKE_CASE_ : int = model(_A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_choices) ) def __UpperCamelCase ( self : List[Any],_A : Union[str, Any],_A : int,_A : Optional[int],_A : str,_A : str,_A : Tuple,_A : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.num_labels SCREAMING_SNAKE_CASE_ : Union[str, Any] = TFConvBertForTokenClassification(config=_A ) SCREAMING_SNAKE_CASE_ : Tuple = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } SCREAMING_SNAKE_CASE_ : str = model(_A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.num_labels) ) def __UpperCamelCase ( self : List[Any],_A : int,_A : List[str],_A : List[Any],_A : Any,_A : Optional[int],_A : List[str],_A : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = TFConvBertForQuestionAnswering(config=_A ) SCREAMING_SNAKE_CASE_ : Dict = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } SCREAMING_SNAKE_CASE_ : Any = model(_A ) self.parent.assertEqual(result.start_logits.shape,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape,(self.batch_size, self.seq_length) ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ) : List[Any] = config_and_inputs SCREAMING_SNAKE_CASE_ : Any = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class a__ ( A__ , A__ , unittest.TestCase ): A = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) A = ( { 'feature-extraction': TFConvBertModel, 'fill-mask': TFConvBertForMaskedLM, 'question-answering': TFConvBertForQuestionAnswering, 'text-classification': TFConvBertForSequenceClassification, 'token-classification': TFConvBertForTokenClassification, 'zero-shot': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) A = False A = False A = False def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = TFConvBertModelTester(self ) SCREAMING_SNAKE_CASE_ : Tuple = ConfigTester(self,config_class=_A,hidden_size=37 ) def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" self.config_tester.run_common_tests() def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_A ) def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_A ) def __UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_A ) def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_A ) def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_A ) @slow def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : List[str] = True SCREAMING_SNAKE_CASE_ : Any = True if hasattr(_A,"use_cache" ): SCREAMING_SNAKE_CASE_ : List[Any] = True SCREAMING_SNAKE_CASE_ : int = getattr(self.model_tester,"encoder_seq_length",self.model_tester.seq_length ) SCREAMING_SNAKE_CASE_ : Optional[Any] = getattr(self.model_tester,"key_length",_A ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ : List[str] = self._prepare_for_class(_A,_A ) SCREAMING_SNAKE_CASE_ : List[Any] = model_class(_A ) SCREAMING_SNAKE_CASE_ : Optional[int] = len(model(_A ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_A,saved_model=_A ) SCREAMING_SNAKE_CASE_ : Optional[Any] = os.path.join(_A,"saved_model","1" ) SCREAMING_SNAKE_CASE_ : Tuple = tf.keras.models.load_model(_A ) SCREAMING_SNAKE_CASE_ : str = model(_A ) if self.is_encoder_decoder: SCREAMING_SNAKE_CASE_ : Optional[Any] = outputs["encoder_hidden_states"] SCREAMING_SNAKE_CASE_ : str = outputs["encoder_attentions"] else: SCREAMING_SNAKE_CASE_ : Any = outputs["hidden_states"] SCREAMING_SNAKE_CASE_ : List[str] = outputs["attentions"] self.assertEqual(len(_A ),_A ) SCREAMING_SNAKE_CASE_ : Any = getattr( self.model_tester,"expected_num_hidden_layers",self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_A ),_A ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ),[self.model_tester.seq_length, self.model_tester.hidden_size],) self.assertEqual(len(_A ),self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ),[self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length],) @slow def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) self.assertIsNotNone(_A ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : List[str] = True SCREAMING_SNAKE_CASE_ : List[str] = getattr(self.model_tester,"decoder_seq_length",self.model_tester.seq_length ) SCREAMING_SNAKE_CASE_ : Any = getattr(self.model_tester,"encoder_seq_length",self.model_tester.seq_length ) SCREAMING_SNAKE_CASE_ : Optional[int] = getattr(self.model_tester,"key_length",_A ) SCREAMING_SNAKE_CASE_ : int = getattr(self.model_tester,"key_length",_A ) def check_decoder_attentions_output(_A : Dict ): SCREAMING_SNAKE_CASE_ : int = len(_A ) self.assertEqual(out_len % 2,0 ) SCREAMING_SNAKE_CASE_ : Tuple = outputs.decoder_attentions self.assertEqual(len(_A ),self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ),[self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length],) def check_encoder_attentions_output(_A : Tuple ): SCREAMING_SNAKE_CASE_ : int = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_A ),self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ),[self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length],) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ : Optional[Any] = True SCREAMING_SNAKE_CASE_ : Optional[Any] = False SCREAMING_SNAKE_CASE_ : Tuple = model_class(_A ) SCREAMING_SNAKE_CASE_ : Any = model(self._prepare_for_class(_A,_A ) ) SCREAMING_SNAKE_CASE_ : Tuple = len(_A ) self.assertEqual(config.output_hidden_states,_A ) check_encoder_attentions_output(_A ) if self.is_encoder_decoder: SCREAMING_SNAKE_CASE_ : Optional[Any] = model_class(_A ) SCREAMING_SNAKE_CASE_ : int = model(self._prepare_for_class(_A,_A ) ) self.assertEqual(config.output_hidden_states,_A ) check_decoder_attentions_output(_A ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] SCREAMING_SNAKE_CASE_ : str = True SCREAMING_SNAKE_CASE_ : int = model_class(_A ) SCREAMING_SNAKE_CASE_ : List[str] = model(self._prepare_for_class(_A,_A ) ) self.assertEqual(config.output_hidden_states,_A ) check_encoder_attentions_output(_A ) # Check attention is always last and order is fine SCREAMING_SNAKE_CASE_ : str = True SCREAMING_SNAKE_CASE_ : int = True SCREAMING_SNAKE_CASE_ : Dict = model_class(_A ) SCREAMING_SNAKE_CASE_ : str = model(self._prepare_for_class(_A,_A ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1),len(_A ) ) self.assertEqual(model.config.output_hidden_states,_A ) check_encoder_attentions_output(_A ) @require_tf class a__ ( unittest.TestCase ): @slow def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) SCREAMING_SNAKE_CASE_ : int = tf.constant([[0, 1, 2, 3, 4, 5]] ) SCREAMING_SNAKE_CASE_ : Tuple = model(_A )[0] SCREAMING_SNAKE_CASE_ : List[Any] = [1, 6, 768] self.assertEqual(output.shape,_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = tf.constant( [ [ [-0.03475493, -0.4686034, -0.30638832], [0.22637248, -0.26988646, -0.7423424], [0.10324868, -0.45013508, -0.58280784], ] ] ) tf.debugging.assert_near(output[:, :3, :3],_A,atol=1E-4 )
18
1
"""simple docstring""" def __lowerCamelCase ( __UpperCamelCase ) -> int: """simple docstring""" if not isinstance(__UpperCamelCase , __UpperCamelCase ): raise ValueError("multiplicative_persistence() only accepts integral values" ) if num < 0: raise ValueError("multiplicative_persistence() does not accept negative values" ) lowerCAmelCase_ : Union[str, Any] = 0 lowerCAmelCase_ : Dict = str(__UpperCamelCase ) while len(__UpperCamelCase ) != 1: lowerCAmelCase_ : str = [int(__UpperCamelCase ) for i in num_string] lowerCAmelCase_ : Optional[Any] = 1 for i in range(0 , len(__UpperCamelCase ) ): total *= numbers[i] lowerCAmelCase_ : Optional[Any] = str(__UpperCamelCase ) steps += 1 return steps def __lowerCamelCase ( __UpperCamelCase ) -> int: """simple docstring""" if not isinstance(__UpperCamelCase , __UpperCamelCase ): raise ValueError("additive_persistence() only accepts integral values" ) if num < 0: raise ValueError("additive_persistence() does not accept negative values" ) lowerCAmelCase_ : Dict = 0 lowerCAmelCase_ : Optional[int] = str(__UpperCamelCase ) while len(__UpperCamelCase ) != 1: lowerCAmelCase_ : List[Any] = [int(__UpperCamelCase ) for i in num_string] lowerCAmelCase_ : Any = 0 for i in range(0 , len(__UpperCamelCase ) ): total += numbers[i] lowerCAmelCase_ : str = str(__UpperCamelCase ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
351
"""simple docstring""" import argparse import os import re lowercase__ = """src/transformers""" # Pattern that looks at the indentation in a line. lowercase__ = re.compile(r"""^(\s*)\S""") # Pattern that matches `"key":" and puts `key` in group 0. lowercase__ = re.compile(r"""^\s*\"([^\"]+)\":""") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowercase__ = re.compile(r"""^\s*_import_structure\[\"([^\"]+)\"\]""") # Pattern that matches `"key",` and puts `key` in group 0. lowercase__ = re.compile(r"""^\s*\"([^\"]+)\",\s*$""") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowercase__ = re.compile(r"""\[([^\]]+)\]""") def __lowerCamelCase ( __UpperCamelCase ) -> int: """simple docstring""" lowerCAmelCase_ : Union[str, Any] = _re_indent.search(__UpperCamelCase ) return "" if search is None else search.groups()[0] def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase="" , __UpperCamelCase=None , __UpperCamelCase=None ) -> str: """simple docstring""" lowerCAmelCase_ : List[Any] = 0 lowerCAmelCase_ : Dict = code.split("\n" ) if start_prompt is not None: while not lines[index].startswith(__UpperCamelCase ): index += 1 lowerCAmelCase_ : Dict = ["\n".join(lines[:index] )] else: lowerCAmelCase_ : List[Any] = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). lowerCAmelCase_ : Optional[Any] = [lines[index]] index += 1 while index < len(__UpperCamelCase ) and (end_prompt is None or not lines[index].startswith(__UpperCamelCase )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(__UpperCamelCase ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + " " ): current_block.append(lines[index] ) blocks.append("\n".join(__UpperCamelCase ) ) if index < len(__UpperCamelCase ) - 1: lowerCAmelCase_ : List[Any] = [lines[index + 1]] index += 1 else: lowerCAmelCase_ : Any = [] else: blocks.append("\n".join(__UpperCamelCase ) ) lowerCAmelCase_ : Any = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(__UpperCamelCase ) > 0: blocks.append("\n".join(__UpperCamelCase ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(__UpperCamelCase ): blocks.append("\n".join(lines[index:] ) ) return blocks def __lowerCamelCase ( __UpperCamelCase ) -> Any: """simple docstring""" def _inner(__UpperCamelCase ): return key(__UpperCamelCase ).lower().replace("_" , "" ) return _inner def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase=None ) -> List[str]: """simple docstring""" def noop(__UpperCamelCase ): return x if key is None: lowerCAmelCase_ : Optional[int] = noop # Constants are all uppercase, they go first. lowerCAmelCase_ : str = [obj for obj in objects if key(__UpperCamelCase ).isupper()] # Classes are not all uppercase but start with a capital, they go second. lowerCAmelCase_ : str = [obj for obj in objects if key(__UpperCamelCase )[0].isupper() and not key(__UpperCamelCase ).isupper()] # Functions begin with a lowercase, they go last. lowerCAmelCase_ : int = [obj for obj in objects if not key(__UpperCamelCase )[0].isupper()] lowerCAmelCase_ : Dict = ignore_underscore(__UpperCamelCase ) return sorted(__UpperCamelCase , key=__UpperCamelCase ) + sorted(__UpperCamelCase , key=__UpperCamelCase ) + sorted(__UpperCamelCase , key=__UpperCamelCase ) def __lowerCamelCase ( __UpperCamelCase ) -> List[str]: """simple docstring""" def _replace(__UpperCamelCase ): lowerCAmelCase_ : Tuple = match.groups()[0] if "," not in imports: return f'''[{imports}]''' lowerCAmelCase_ : Optional[int] = [part.strip().replace("\"" , "" ) for part in imports.split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase_ : Optional[int] = keys[:-1] return "[" + ", ".join([f'''"{k}"''' for k in sort_objects(__UpperCamelCase )] ) + "]" lowerCAmelCase_ : Union[str, Any] = import_statement.split("\n" ) if len(__UpperCamelCase ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. lowerCAmelCase_ : Optional[int] = 2 if lines[1].strip() == "[" else 1 lowerCAmelCase_ : Optional[Any] = [(i, _re_strip_line.search(__UpperCamelCase ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] lowerCAmelCase_ : List[Any] = sort_objects(__UpperCamelCase , key=lambda __UpperCamelCase : x[1] ) lowerCAmelCase_ : List[str] = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(__UpperCamelCase ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: lowerCAmelCase_ : Dict = _re_bracket_content.sub(_replace , lines[1] ) else: lowerCAmelCase_ : Optional[Any] = [part.strip().replace("\"" , "" ) for part in lines[1].split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase_ : Any = keys[:-1] lowerCAmelCase_ : Dict = get_indent(lines[1] ) + ", ".join([f'''"{k}"''' for k in sort_objects(__UpperCamelCase )] ) return "\n".join(__UpperCamelCase ) else: # Finally we have to deal with imports fitting on one line lowerCAmelCase_ : List[str] = _re_bracket_content.sub(_replace , __UpperCamelCase ) return import_statement def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase=True ) -> Optional[int]: """simple docstring""" with open(__UpperCamelCase , encoding="utf-8" ) as f: lowerCAmelCase_ : List[Any] = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 lowerCAmelCase_ : int = split_code_in_indented_blocks( __UpperCamelCase , start_prompt="_import_structure = {" , end_prompt="if TYPE_CHECKING:" ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(__UpperCamelCase ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. lowerCAmelCase_ : Optional[int] = main_blocks[block_idx] lowerCAmelCase_ : Union[str, Any] = block.split("\n" ) # Get to the start of the imports. lowerCAmelCase_ : str = 0 while line_idx < len(__UpperCamelCase ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: lowerCAmelCase_ : Optional[int] = len(__UpperCamelCase ) else: line_idx += 1 if line_idx >= len(__UpperCamelCase ): continue # Ignore beginning and last line: they don't contain anything. lowerCAmelCase_ : Optional[Any] = "\n".join(block_lines[line_idx:-1] ) lowerCAmelCase_ : Union[str, Any] = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. lowerCAmelCase_ : Tuple = split_code_in_indented_blocks(__UpperCamelCase , indent_level=__UpperCamelCase ) # We have two categories of import key: list or _import_structure[key].append/extend lowerCAmelCase_ : List[Any] = _re_direct_key if "_import_structure = {" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. lowerCAmelCase_ : Dict = [(pattern.search(__UpperCamelCase ).groups()[0] if pattern.search(__UpperCamelCase ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. lowerCAmelCase_ : Any = [(i, key) for i, key in enumerate(__UpperCamelCase ) if key is not None] lowerCAmelCase_ : Union[str, Any] = [x[0] for x in sorted(__UpperCamelCase , key=lambda __UpperCamelCase : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. lowerCAmelCase_ : Optional[Any] = 0 lowerCAmelCase_ : str = [] for i in range(len(__UpperCamelCase ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: lowerCAmelCase_ : Optional[Any] = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(__UpperCamelCase ) count += 1 # And we put our main block back together with its first and last line. lowerCAmelCase_ : Any = "\n".join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(__UpperCamelCase ): if check_only: return True else: print(f'''Overwriting {file}.''' ) with open(__UpperCamelCase , "w" , encoding="utf-8" ) as f: f.write("\n".join(__UpperCamelCase ) ) def __lowerCamelCase ( __UpperCamelCase=True ) -> List[Any]: """simple docstring""" lowerCAmelCase_ : Any = [] for root, _, files in os.walk(__UpperCamelCase ): if "__init__.py" in files: lowerCAmelCase_ : Dict = sort_imports(os.path.join(__UpperCamelCase , "__init__.py" ) , check_only=__UpperCamelCase ) if result: lowerCAmelCase_ : Union[str, Any] = [os.path.join(__UpperCamelCase , "__init__.py" )] if len(__UpperCamelCase ) > 0: raise ValueError(f'''Would overwrite {len(__UpperCamelCase )} files, run `make style`.''' ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""") lowercase__ = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
161
0
import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation snake_case_ = logging.get_logger(__name__) snake_case_ = {'''vocab_file''': '''vocab.txt''', '''emoji_file''': '''emoji.json'''} snake_case_ = { '''vocab_file''': { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt''', }, '''emoji_file''': { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json''', }, } snake_case_ = { '''abeja/gpt-neox-japanese-2.7b''': 2_048, } def snake_case__ ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : List[Any] ): '''simple docstring''' with open(SCREAMING_SNAKE_CASE_ , 'r' , encoding='utf-8' ) as f: lowercase__ : Tuple = json.loads(f.read() ) lowercase__ : Dict = collections.OrderedDict() lowercase__ : List[str] = collections.OrderedDict() lowercase__ : List[str] = collections.OrderedDict() with open(SCREAMING_SNAKE_CASE_ , 'r' , encoding='utf-8' ) as f: lowercase__ : Optional[Any] = f.readlines() lowercase__ : List[Any] = [[t.rstrip('\n' )] if (t == ',' or ',' not in t) else t.rstrip('\n' ).split(',' ) for t in token] for idx, b in enumerate(SCREAMING_SNAKE_CASE_ ): lowercase__ : Dict = b lowercase__ : str = idx for wd in b: lowercase__ : Optional[int] = idx return vocab, raw_vocab, ids_to_tokens, emoji class SCREAMING_SNAKE_CASE__ (__snake_case ): __lowerCamelCase : Tuple = VOCAB_FILES_NAMES __lowerCamelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : List[Any] = ["""input_ids""", """attention_mask"""] def __init__( self , a , a , a="<|endoftext|>" , a="<|endoftext|>" , a="<|startoftext|>" , a="<|endoftext|>" , a=False , **a , ): super().__init__( unk_token=a , pad_token=a , bos_token=a , eos_token=a , do_clean_text=a , **a , ) if not os.path.isfile(a): raise ValueError( f"""Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained""" ' model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`') if not os.path.isfile(a): raise ValueError( f"""Can't find a emoji file at path '{emoji_file}'. To load the emoji information from a Google""" ' pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`') lowercase__ : str = do_clean_text lowercase__ , lowercase__ , lowercase__ , lowercase__ : Tuple = load_vocab_and_emoji(a , a) lowercase__ : Dict = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji) @property def snake_case_ ( self): # self.vocab contains support for character fluctuation unique to Japanese, and has a large number of vocab return len(self.raw_vocab) def snake_case_ ( self): return dict(self.raw_vocab , **self.added_tokens_encoder) def snake_case_ ( self , a): return self.subword_tokenizer.tokenize(a , clean=self.do_clean_text) def snake_case_ ( self , a): return self.vocab.get(a , self.vocab.get(self.unk_token)) def snake_case_ ( self , a): return self.subword_tokenizer.convert_id_to_token(a) def snake_case_ ( self , a): lowercase__ : int = ''.join(a).strip() return out_string def snake_case_ ( self , a): lowercase__ : Union[str, Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(a , add_special_tokens=a) + [self.eos_token_id]) if len(a) > self.model_max_length: lowercase__ : Tuple = input_ids[-self.model_max_length :] return input_ids def snake_case_ ( self , a , a = None): lowercase__ : Optional[int] = 0 if os.path.isdir(a): lowercase__ : str = os.path.join( a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) lowercase__ : Optional[Any] = os.path.join( a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['emoji_file']) else: lowercase__ : Union[str, Any] = ( (filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['vocab_file'] ) lowercase__ : str = ( (filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['emoji_file'] ) with open(a , 'w' , encoding='utf-8') as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ' Please check that the vocabulary is not corrupted!') lowercase__ : Union[str, Any] = token_index writer.write(','.join(a) + '\n') index += 1 with open(a , 'w' , encoding='utf-8') as writer: json.dump(self.emoji , a) return vocab_file, emoji_file class SCREAMING_SNAKE_CASE__ (__snake_case ): def __init__( self , a , a , a): lowercase__ : Union[str, Any] = vocab # same as swe lowercase__ : str = ids_to_tokens # same as bpe lowercase__ : int = emoji lowercase__ : Any = np.max([len(a) for w in self.vocab.keys()]) lowercase__ : int = re.compile(r'(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)') lowercase__ : Tuple = re.compile(r'[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*') lowercase__ : str = re.compile(r'[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}') lowercase__ : Dict = re.compile( r'([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*') lowercase__ : Dict = re.compile( r'(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*') lowercase__ : Union[str, Any] = re.compile( r'((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*') lowercase__ : Optional[Any] = '─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿' lowercase__ : List[Any] = '▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟' lowercase__ : Dict = str.maketrans({k: '<BLOCK>' for k in keisen + blocks}) def __len__( self): return len(self.ids_to_tokens) def snake_case_ ( self , a): lowercase__ : Optional[Any] = self.content_repattera.sub('<URL>' , a) lowercase__ : List[str] = self.content_repattera.sub('<EMAIL>' , a) lowercase__ : List[Any] = self.content_repattera.sub('<TEL>' , a) lowercase__ : Optional[Any] = self.content_repattera.sub('<DATE>' , a) lowercase__ : Optional[int] = self.content_repattera.sub('<DATE>' , a) lowercase__ : Dict = self.content_repattera.sub('<PRICE>' , a) lowercase__ : List[str] = content.translate(self.content_transa) while "<BLOCK><BLOCK>" in content: lowercase__ : Optional[Any] = content.replace('<BLOCK><BLOCK>' , '<BLOCK>') return content def snake_case_ ( self , a , a=False): lowercase__ : str = text.replace(' ' , '<SP>') lowercase__ : Any = text.replace(' ' , '<SP>') lowercase__ : List[str] = text.replace('\r\n' , '<BR>') lowercase__ : List[Any] = text.replace('\n' , '<BR>') lowercase__ : List[str] = text.replace('\r' , '<BR>') lowercase__ : int = text.replace('\t' , '<TAB>') lowercase__ : List[Any] = text.replace('—' , 'ー') lowercase__ : Union[str, Any] = text.replace('−' , 'ー') for k, v in self.emoji["emoji"].items(): if k in text: lowercase__ : Optional[Any] = text.replace(a , a) if clean: lowercase__ : Tuple = self.clean_text(a) def check_simbol(a): lowercase__ : Dict = x.encode() if len(a) == 1 and len(a) == 2: lowercase__ : Union[str, Any] = (int(e[0]) << 8) + int(e[1]) if ( (c >= 0xC_2A1 and c <= 0xC_2BF) or (c >= 0xC_780 and c <= 0xC_783) or (c >= 0xC_AB9 and c <= 0xC_BBF) or (c >= 0xC_C80 and c <= 0xC_DA2) ): return True return False def checkuae(a): lowercase__ : Dict = x.encode() if len(a) == 1 and len(a) == 3: lowercase__ : str = (int(e[0]) << 16) + (int(e[1]) << 8) + int(e[2]) if c >= 0xE28_080 and c <= 0xE2B_07F: return True return False lowercase__ : Optional[Any] = 0 lowercase__ : Union[str, Any] = [] while pos < len(a): lowercase__ : str = min(len(a) , pos + self.maxlen + 1) if text[pos] == '<' else pos + 3 lowercase__ : Any = [] # (token_id, token, pos) for e in range(a , a , -1): lowercase__ : Optional[Any] = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(a) > 2: lowercase__ : Dict = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e)) if len(a) > 0: # the smallest token_id is adopted lowercase__ , lowercase__ , lowercase__ : str = sorted(a , key=lambda a: x[0])[0] result.append(a) lowercase__ : str = e else: lowercase__ : str = pos + 1 lowercase__ : Union[str, Any] = text[pos:end] if check_simbol(a): result.append('<KIGOU>') elif checkuae(a): result.append('<U2000U2BFF>') else: for i in wd.encode('utf-8'): result.append('<|byte%d|>' % i) lowercase__ : str = end return result def snake_case_ ( self , a , a="\n"): lowercase__ : Union[str, Any] = [] lowercase__ : List[Any] = [] lowercase__ : Any = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2])) else: if len(a) > 0: words.append(bytearray(a).decode('utf-8' , errors='replace')) lowercase__ : Optional[int] = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji['emoji_inv'][word]) elif word == "<SP>": words.append(' ') elif word == "<BR>": words.append(a) elif word == "<TAB>": words.append('\t') elif word == "<BLOCK>": words.append('▀') elif word == "<KIGOU>": words.append('ǀ') elif word == "<U2000U2BFF>": words.append('‖') else: words.append(a) if len(a) > 0: words.append(bytearray(a).decode('utf-8' , errors='replace')) lowercase__ : str = ''.join(a) return text
214
import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor snake_case_ = logging.getLogger(__name__) snake_case_ = 50 # max width of layer names snake_case_ = 70 # max width of quantizer names def snake_case__ ( SCREAMING_SNAKE_CASE_ : Tuple ): '''simple docstring''' lowercase__ : str = parser.add_argument_group('quant_trainer arguments' ) group.add_argument('--wprec' , type=SCREAMING_SNAKE_CASE_ , default=8 , help='weight precision' ) group.add_argument('--aprec' , type=SCREAMING_SNAKE_CASE_ , default=8 , help='activation precision' ) group.add_argument('--quant-per-tensor' , action='store_true' , help='per tensor weight scaling' ) group.add_argument('--quant-disable' , action='store_true' , help='disable all quantizers' ) group.add_argument('--quant-disable-embeddings' , action='store_true' , help='disable all embeddings quantizers' ) group.add_argument('--quant-disable-keyword' , type=SCREAMING_SNAKE_CASE_ , nargs='+' , help='disable quantizers by keyword' ) group.add_argument('--quant-disable-layer-module' , type=SCREAMING_SNAKE_CASE_ , help='disable quantizers by keyword under layer.' ) group.add_argument('--quant-enable-layer-module' , type=SCREAMING_SNAKE_CASE_ , help='enable quantizers by keyword under layer' ) group.add_argument('--calibrator' , default='max' , help='which quantization range calibrator to use' ) group.add_argument('--percentile' , default=SCREAMING_SNAKE_CASE_ , type=SCREAMING_SNAKE_CASE_ , help='percentile for PercentileCalibrator' ) group.add_argument('--fuse-qkv' , action='store_true' , help='use the same scale factor for qkv' ) group.add_argument('--clip-gelu' , metavar='N' , type=SCREAMING_SNAKE_CASE_ , help='clip gelu output maximum value to N' ) group.add_argument( '--recalibrate-weights' , action='store_true' , help=( 'recalibrate weight amaxes by taking the max of the weights.' ' amaxes will be computed with the current quantization granularity (axis).' ) , ) def snake_case__ ( SCREAMING_SNAKE_CASE_ : List[Any] ): '''simple docstring''' if args.calibrator == "max": lowercase__ : Optional[int] = 'max' elif args.calibrator == "percentile": if args.percentile is None: raise ValueError('Specify --percentile when using percentile calibrator' ) lowercase__ : Optional[Any] = 'histogram' elif args.calibrator == "mse": lowercase__ : int = 'histogram' else: raise ValueError(f"""Invalid calibrator {args.calibrator}""" ) lowercase__ : Any = QuantDescriptor(num_bits=args.aprec , calib_method=SCREAMING_SNAKE_CASE_ ) lowercase__ : List[Any] = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(SCREAMING_SNAKE_CASE_ ) quant_nn.QuantLinear.set_default_quant_desc_weight(SCREAMING_SNAKE_CASE_ ) def snake_case__ ( SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Union[str, Any]=False , SCREAMING_SNAKE_CASE_ : Any=False ): '''simple docstring''' logger.info('Configuring Model for Quantization' ) logger.info(f"""using quantization package {pytorch_quantization.__file__}""" ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(SCREAMING_SNAKE_CASE_ , ['embeddings'] , which='weight' , _disabled=SCREAMING_SNAKE_CASE_ ) if args.quant_disable: set_quantizer_by_name(SCREAMING_SNAKE_CASE_ , [''] , _disabled=SCREAMING_SNAKE_CASE_ ) if args.quant_disable_keyword: set_quantizer_by_name(SCREAMING_SNAKE_CASE_ , args.quant_disable_keyword , _disabled=SCREAMING_SNAKE_CASE_ ) if args.quant_disable_layer_module: set_quantizer_by_name(SCREAMING_SNAKE_CASE_ , [R'layer.\d+.' + args.quant_disable_layer_module] , _disabled=SCREAMING_SNAKE_CASE_ ) if args.quant_enable_layer_module: set_quantizer_by_name(SCREAMING_SNAKE_CASE_ , [R'layer.\d+.' + args.quant_enable_layer_module] , _disabled=SCREAMING_SNAKE_CASE_ ) if args.recalibrate_weights: recalibrate_weights(SCREAMING_SNAKE_CASE_ ) if args.fuse_qkv: fuse_qkv(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if args.clip_gelu: clip_gelu(SCREAMING_SNAKE_CASE_ , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(SCREAMING_SNAKE_CASE_ ) def snake_case__ ( SCREAMING_SNAKE_CASE_ : Dict ): '''simple docstring''' logger.info('Enabling Calibration' ) for name, module in model.named_modules(): if name.endswith('_quantizer' ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(f"""{name:80}: {module}""" ) def snake_case__ ( SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] ): '''simple docstring''' logger.info('Loading calibrated amax' ) for name, module in model.named_modules(): if name.endswith('_quantizer' ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax('percentile' , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(SCREAMING_SNAKE_CASE_ ) def snake_case__ ( SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Optional[Any] ): '''simple docstring''' def fusea(SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : List[str] ): for mod in [qq, qk, qv]: if not hasattr(SCREAMING_SNAKE_CASE_ , '_amax' ): print(' WARNING: NO AMAX BUFFER' ) return lowercase__ : List[Any] = qq._amax.detach().item() lowercase__ : Optional[int] = qk._amax.detach().item() lowercase__ : List[str] = qv._amax.detach().item() lowercase__ : Tuple = max(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) qq._amax.fill_(SCREAMING_SNAKE_CASE_ ) qk._amax.fill_(SCREAMING_SNAKE_CASE_ ) qv._amax.fill_(SCREAMING_SNAKE_CASE_ ) logger.info(f""" q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}""" ) for name, mod in model.named_modules(): if name.endswith('.attention.self' ): logger.info(f"""FUSE_QKV: {name:{name_width}}""" ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def snake_case__ ( SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] ): '''simple docstring''' for name, mod in model.named_modules(): if name.endswith('.output.dense' ) and not name.endswith('attention.output.dense' ): lowercase__ : Any = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=SCREAMING_SNAKE_CASE_ ) lowercase__ : List[str] = mod._input_quantizer._amax.data.detach().item() logger.info(f"""CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}""" ) def snake_case__ ( SCREAMING_SNAKE_CASE_ : Optional[int] ): '''simple docstring''' for name, mod in model.named_modules(): if hasattr(SCREAMING_SNAKE_CASE_ , '_weight_quantizer' ) and mod._weight_quantizer.axis is not None: lowercase__ : Union[str, Any] = mod.weight.shape[0] lowercase__ : str = mod._weight_quantizer._amax.detach() lowercase__ : Any = torch.ones(SCREAMING_SNAKE_CASE_ , dtype=amax.dtype , device=amax.device ) * amax print(f"""expanding {name} {amax} -> {mod._weight_quantizer._amax}""" ) def snake_case__ ( SCREAMING_SNAKE_CASE_ : Union[str, Any] ): '''simple docstring''' for name, mod in model.named_modules(): if hasattr(SCREAMING_SNAKE_CASE_ , '_weight_quantizer' ): if not hasattr(mod.weight_quantizer , '_amax' ): print('RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER' ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) lowercase__ : Dict = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) lowercase__ : Union[str, Any] = set(range(len(mod.weight.size() ) ) ) - axis_set lowercase__ : str = pytorch_quantization.utils.reduce_amax(mod.weight , axis=SCREAMING_SNAKE_CASE_ , keepdims=SCREAMING_SNAKE_CASE_ ).detach() logger.info(f"""RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}""" ) lowercase__ : Union[str, Any] = amax def snake_case__ ( SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[Any]=25 , SCREAMING_SNAKE_CASE_ : Any=180 , SCREAMING_SNAKE_CASE_ : Optional[int]=None ): '''simple docstring''' if ignore is None: lowercase__ : Tuple = [] elif not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowercase__ : str = [ignore] lowercase__ : Optional[Any] = 0 for name, mod in model.named_modules(): if not hasattr(SCREAMING_SNAKE_CASE_ , 'weight' ): continue lowercase__ : Optional[Any] = max(SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) ) for name, mod in model.named_modules(): lowercase__ : Dict = getattr(SCREAMING_SNAKE_CASE_ , '_input_quantizer' , SCREAMING_SNAKE_CASE_ ) lowercase__ : Optional[Any] = getattr(SCREAMING_SNAKE_CASE_ , '_weight_quantizer' , SCREAMING_SNAKE_CASE_ ) if not hasattr(SCREAMING_SNAKE_CASE_ , 'weight' ): continue if type(SCREAMING_SNAKE_CASE_ ) in ignore: continue if [True for s in ignore if type(SCREAMING_SNAKE_CASE_ ) is str and s in name]: continue lowercase__ : Optional[int] = f"""Act:{input_q.extra_repr()}""" lowercase__ : Dict = f"""Wgt:{weight_q.extra_repr()}""" lowercase__ : Tuple = f"""{name:{name_width}} {act_str} {wgt_str}""" if len(SCREAMING_SNAKE_CASE_ ) <= line_width: logger.info(SCREAMING_SNAKE_CASE_ ) else: logger.info(f"""{name:{name_width}} {act_str}""" ) logger.info(f"""{" ":{name_width}} {wgt_str}""" ) def snake_case__ ( SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' lowercase__ : List[str] = 0 for name, mod in model.named_modules(): if isinstance(SCREAMING_SNAKE_CASE_ , pytorch_quantization.nn.TensorQuantizer ): print(f"""{name:80} {mod}""" ) count += 1 print(f"""{count} TensorQuantizers found in model""" ) def snake_case__ ( SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Optional[int] ): '''simple docstring''' lowercase__ : Dict = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if quantizer_mod is not None: assert hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) setattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else: logger.warning(f"""{name} has no {quantizer}""" ) def snake_case__ ( SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[Any]="both" , **SCREAMING_SNAKE_CASE_ : Tuple ): '''simple docstring''' lowercase__ : Optional[int] = f"""Warning: changing {which} quantizers of {name:{qname_width}}""" for k, v in kwargs.items(): s += f""" {k}={v}""" if which in ["input", "both"]: set_quantizer(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , '_input_quantizer' , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if which in ["weight", "both"]: set_quantizer(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , '_weight_quantizer' , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) logger.info(SCREAMING_SNAKE_CASE_ ) def snake_case__ ( SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Dict , **SCREAMING_SNAKE_CASE_ : List[str] ): '''simple docstring''' for name, mod in model.named_modules(): if hasattr(SCREAMING_SNAKE_CASE_ , '_input_quantizer' ) or hasattr(SCREAMING_SNAKE_CASE_ , '_weight_quantizer' ): for n in names: if re.search(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): set_quantizers(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) elif name.endswith('_quantizer' ): for n in names: if re.search(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowercase__ : Any = f"""Warning: changing {name:{name_width}}""" for k, v in kwargs.items(): s += f""" {k}={v}""" setattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) logger.info(SCREAMING_SNAKE_CASE_ )
214
1
from __future__ import annotations _UpperCamelCase = "#" class lowercase : '''simple docstring''' def __init__(self ) -> int: """simple docstring""" UpperCAmelCase__ = {} def UpperCamelCase__ (self , __a ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = self._trie for char in text: if char not in trie: UpperCAmelCase__ = {} UpperCAmelCase__ = trie[char] UpperCAmelCase__ = True def UpperCamelCase__ (self , __a ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = self._trie for char in prefix: if char in trie: UpperCAmelCase__ = trie[char] else: return [] return self._elements(a_ ) def UpperCamelCase__ (self , __a ) -> Tuple: """simple docstring""" UpperCAmelCase__ = [] for c, v in d.items(): UpperCAmelCase__ = [' '] if c == END else [(c + s) for s in self._elements(a_ )] result.extend(a_ ) return tuple(a_ ) _UpperCamelCase = Trie() _UpperCamelCase = ("depart", "detergent", "daring", "dog", "deer", "deal") for word in words: trie.insert_word(word) def UpperCamelCase_( snake_case__: str ) -> tuple: UpperCAmelCase__ = trie.find_word(_UpperCamelCase ) return tuple(string + word for word in suffixes ) def UpperCamelCase_( ) -> None: print(autocomplete_using_trie('de' ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
359
# flake8: noqa # Lint as: python3 _UpperCamelCase = [ '''VerificationMode''', '''Version''', '''disable_progress_bar''', '''enable_progress_bar''', '''is_progress_bar_enabled''', '''experimental''', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
335
0
"""simple docstring""" import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _A : List[str] = '''▁''' _A : Tuple = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece class a__ ( UpperCamelCase_, unittest.TestCase ): __lowerCAmelCase = BertGenerationTokenizer __lowerCAmelCase = False __lowerCAmelCase = True def __magic_name__ ( self ): super().setUp() lowercase : Any = BertGenerationTokenizer(A_ , keep_accents=A_ ) tokenizer.save_pretrained(self.tmpdirname ) def __magic_name__ ( self ): lowercase : Optional[int] = '''<s>''' lowercase : Tuple = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A_ ) , A_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A_ ) , A_ ) def __magic_name__ ( self ): lowercase : int = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "<pad>" ) self.assertEqual(len(A_ ) , 1_002 ) def __magic_name__ ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1_000 ) def __magic_name__ ( self ): lowercase : int = BertGenerationTokenizer(A_ , keep_accents=A_ ) lowercase : Optional[Any] = tokenizer.tokenize("This is a test" ) self.assertListEqual(A_ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(A_ ) , [285, 46, 10, 170, 382] , ) lowercase : str = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( A_ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) lowercase : Optional[int] = tokenizer.convert_tokens_to_ids(A_ ) self.assertListEqual( A_ , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) lowercase : int = tokenizer.convert_ids_to_tokens(A_ ) self.assertListEqual( A_ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def __magic_name__ ( self ): return BertGenerationTokenizer.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder" ) @slow def __magic_name__ ( self ): lowercase : Tuple = '''Hello World!''' lowercase : Any = [18_536, 2_260, 101] self.assertListEqual(A_ , self.big_tokenizer.encode(A_ ) ) @slow def __magic_name__ ( self ): lowercase : str = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) lowercase : List[Any] = [ 871, 419, 358, 946, 991, 2_521, 452, 358, 1_357, 387, 7_751, 3_536, 112, 985, 456, 126, 865, 938, 5_400, 5_734, 458, 1_368, 467, 786, 2_462, 5_246, 1_159, 633, 865, 4_519, 457, 582, 852, 2_557, 427, 916, 508, 405, 34_324, 497, 391, 408, 11_342, 1_244, 385, 100, 938, 985, 456, 574, 362, 12_597, 3_200, 3_129, 1_172, ] self.assertListEqual(A_ , self.big_tokenizer.encode(A_ ) ) @require_torch @slow def __magic_name__ ( self ): import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence lowercase : List[str] = list(self.big_tokenizer.get_vocab().keys() )[:10] lowercase : List[str] = ''' '''.join(A_ ) lowercase : Dict = self.big_tokenizer.encode_plus(A_ , return_tensors="pt" , return_token_type_ids=A_ ) lowercase : Optional[Any] = self.big_tokenizer.batch_encode_plus( [sequence + " " + sequence] , return_tensors="pt" , return_token_type_ids=A_ ) lowercase : Tuple = BertGenerationConfig() lowercase : str = BertGenerationEncoder(A_ ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**A_ ) model(**A_ ) @slow def __magic_name__ ( self ): # fmt: off lowercase : str = {'''input_ids''': [[39_286, 458, 36_335, 2_001, 456, 13_073, 13_266, 455, 113, 7_746, 1_741, 11_157, 391, 13_073, 13_266, 455, 113, 3_967, 35_412, 113, 4_936, 109, 3_870, 2_377, 113, 30_084, 45_720, 458, 134, 17_496, 112, 503, 11_672, 113, 118, 112, 5_665, 13_347, 38_687, 112, 1_496, 31_389, 112, 3_268, 47_264, 134, 962, 112, 16_377, 8_035, 23_130, 430, 12_169, 15_518, 28_592, 458, 146, 41_697, 109, 391, 12_169, 15_518, 16_689, 458, 146, 41_358, 109, 452, 726, 4_034, 111, 763, 35_412, 5_082, 388, 1_903, 111, 9_051, 391, 2_870, 48_918, 1_900, 1_123, 550, 998, 112, 9_586, 15_985, 455, 391, 410, 22_955, 37_636, 114], [448, 17_496, 419, 3_663, 385, 763, 113, 27_533, 2_870, 3_283, 13_043, 1_639, 24_713, 523, 656, 24_013, 18_550, 2_521, 517, 27_014, 21_244, 420, 1_212, 1_465, 391, 927, 4_833, 388, 578, 11_786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2_169, 7_687, 21_932, 18_146, 726, 363, 17_032, 3_391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A_ , model_name="google/bert_for_seq_generation_L-24_bbc_encoder" , revision="c817d1fd1be2ffa69431227a1fe320544943d4db" , )
202
A__ : Any = '''Tobias Carryer''' from time import time class __snake_case : def __init__( self : Any , A_ : Tuple , A_ : Dict , A_ : Tuple , A_ : str=int(time())): # noqa: B008 lowerCAmelCase_ : int = multiplier lowerCAmelCase_ : int = increment lowerCAmelCase_ : str = modulo lowerCAmelCase_ : str = seed def UpperCAmelCase__ ( self : int): lowerCAmelCase_ : Optional[int] = (self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. A__ : Union[str, Any] = LinearCongruentialGenerator(166_4525, 10_1390_4223, 2 << 31) while True: print(lcg.next_number())
103
0
"""simple docstring""" def lowercase ( A_ )-> bool: '''simple docstring''' if number < 0: raise ValueError("number must not be negative" ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
226
"""simple docstring""" import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch __lowercase = True except ImportError: __lowercase = False try: from torch.hub import _get_torch_home __lowercase = _get_torch_home() except ImportError: __lowercase = os.path.expanduser( os.getenv("""TORCH_HOME""", os.path.join(os.getenv("""XDG_CACHE_HOME""", """~/.cache"""), """torch""")) ) __lowercase = os.path.join(torch_cache_home, """transformers""") __lowercase = """https://cdn.huggingface.co""" __lowercase = """https://s3.amazonaws.com/models.huggingface.co/bert""" __lowercase = """/""".join(str(Path(__file__).resolve()).split("""/""")[:-1]) __lowercase = os.path.join(PATH, """config.yaml""") __lowercase = os.path.join(PATH, """attributes.txt""") __lowercase = os.path.join(PATH, """objects.txt""") __lowercase = os.getenv("""PYTORCH_PRETRAINED_BERT_CACHE""", default_cache_path) __lowercase = os.getenv("""PYTORCH_TRANSFORMERS_CACHE""", PYTORCH_PRETRAINED_BERT_CACHE) __lowercase = os.getenv("""TRANSFORMERS_CACHE""", PYTORCH_TRANSFORMERS_CACHE) __lowercase = """pytorch_model.bin""" __lowercase = """config.yaml""" def lowercase ( A_=OBJECTS , A_=ATTRIBUTES )-> Union[str, Any]: '''simple docstring''' a : Optional[Any] = [] with open(A_ ) as f: for object in f.readlines(): vg_classes.append(object.split("," )[0].lower().strip() ) a : Union[str, Any] = [] with open(A_ ) as f: for object in f.readlines(): vg_attrs.append(object.split("," )[0].lower().strip() ) return vg_classes, vg_attrs def lowercase ( A_ )-> Optional[Any]: '''simple docstring''' a : Dict = OrderedDict() with open(A_ , "rb" ) as f: a : Optional[Any] = pkl.load(A_ )["model"] for k in copy.deepcopy(list(ckp.keys() ) ): a : Dict = ckp.pop(A_ ) if isinstance(A_ , np.ndarray ): a : Optional[Any] = torch.tensor(A_ ) else: assert isinstance(A_ , torch.tensor ), type(A_ ) a : int = v return r class _A : """simple docstring""" UpperCAmelCase : int = {} def __init__( self : Any , __UpperCAmelCase : dict , __UpperCAmelCase : str = "root" , __UpperCAmelCase : Optional[int]=0): a : List[str] = name a : Tuple = level a : int = {} for k, v in dictionary.items(): if v is None: raise ValueError() a : List[Any] = copy.deepcopy(__UpperCAmelCase) a : int = copy.deepcopy(__UpperCAmelCase) if isinstance(__UpperCAmelCase , __UpperCAmelCase): a : Union[str, Any] = Config(__UpperCAmelCase , name=__UpperCAmelCase , level=level + 1) a : Dict = v setattr(self , __UpperCAmelCase , __UpperCAmelCase) a : Tuple = d def __repr__( self : List[str]): return str(list((self._pointer.keys()))) def __setattr__( self : Dict , __UpperCAmelCase : str , __UpperCAmelCase : Tuple): a : Optional[Any] = val a : Tuple = val a : Dict = key.split(".") a : Union[str, Any] = len(__UpperCAmelCase) - 1 a : Optional[int] = self._pointer if len(__UpperCAmelCase) > 1: for i, l in enumerate(__UpperCAmelCase): if hasattr(self , __UpperCAmelCase) and isinstance(getattr(self , __UpperCAmelCase) , __UpperCAmelCase): setattr(getattr(self , __UpperCAmelCase) , ".".join(levels[i:]) , __UpperCAmelCase) if l == last_level: a : int = val else: a : str = pointer[l] def __snake_case ( self : str): return self._pointer def __snake_case ( self : int , __UpperCAmelCase : Tuple , __UpperCAmelCase : List[Any]): with open(f'''{file_name}''' , "w") as stream: dump(__UpperCAmelCase , __UpperCAmelCase) def __snake_case ( self : int , __UpperCAmelCase : Dict , __UpperCAmelCase : int): with open(f'''{file_name}''' , "w") as stream: json.dump(__UpperCAmelCase , __UpperCAmelCase) @staticmethod def __snake_case ( __UpperCAmelCase : Dict): with open(__UpperCAmelCase) as stream: a : List[str] = load(__UpperCAmelCase , Loader=__UpperCAmelCase) return data def __str__( self : Tuple): a : str = " " if self._name != "root": a : List[str] = f'''{t * (self._level-1)}{self._name}:\n''' else: a : Optional[Any] = "" a : List[Any] = self._level for i, (k, v) in enumerate(self._pointer.items()): if isinstance(__UpperCAmelCase , __UpperCAmelCase): r += f'''{t * (self._level)}{v}\n''' self._level += 1 else: r += f'''{t * (self._level)}{k}: {v} ({type(__UpperCAmelCase).__name__})\n''' a : Tuple = level return r[:-1] @classmethod def __snake_case ( cls : str , __UpperCAmelCase : str , **__UpperCAmelCase : List[Any]): a , a : Tuple = cls.get_config_dict(__UpperCAmelCase , **__UpperCAmelCase) return cls(__UpperCAmelCase) @classmethod def __snake_case ( cls : Union[str, Any] , __UpperCAmelCase : str , **__UpperCAmelCase : List[str]): a : int = kwargs.pop("cache_dir" , __UpperCAmelCase) a : List[Any] = kwargs.pop("force_download" , __UpperCAmelCase) a : Optional[int] = kwargs.pop("resume_download" , __UpperCAmelCase) a : Tuple = kwargs.pop("proxies" , __UpperCAmelCase) a : int = kwargs.pop("local_files_only" , __UpperCAmelCase) if os.path.isdir(__UpperCAmelCase): a : Union[str, Any] = os.path.join(__UpperCAmelCase , __UpperCAmelCase) elif os.path.isfile(__UpperCAmelCase) or is_remote_url(__UpperCAmelCase): a : List[Any] = pretrained_model_name_or_path else: a : int = hf_bucket_url(__UpperCAmelCase , filename=__UpperCAmelCase , use_cdn=__UpperCAmelCase) try: # Load from URL or cache if already cached a : Optional[Any] = cached_path( __UpperCAmelCase , cache_dir=__UpperCAmelCase , force_download=__UpperCAmelCase , proxies=__UpperCAmelCase , resume_download=__UpperCAmelCase , local_files_only=__UpperCAmelCase , ) # Load config dict if resolved_config_file is None: raise EnvironmentError a : Union[str, Any] = Config.load_yaml(__UpperCAmelCase) except EnvironmentError: a : str = "Can't load config for" raise EnvironmentError(__UpperCAmelCase) if resolved_config_file == config_file: print("loading configuration file from path") else: print("loading configuration file cache") return Config.load_yaml(__UpperCAmelCase), kwargs def lowercase ( A_ )-> str: '''simple docstring''' a : Tuple = torch.load("dump.pt" , map_location=in_tensor.device ) a : Any = in_tensor.numpy() a : Optional[int] = out_tensor.numpy()[0] print(na.shape , na[0, 0, :5] ) print(na.shape , na[0, 0, :5] ) assert np.allclose(A_ , A_ , rtol=0.0_1 , atol=0.1 ), ( F'''{sum([1 for x in np.isclose(A_ , A_ , rtol=0.0_1 , atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %''' " element-wise mismatch" ) raise Exception("tensors are all good" ) # Hugging face functions below def lowercase ( A_ )-> Optional[Any]: '''simple docstring''' a : Optional[Any] = urlparse(A_ ) return parsed.scheme in ("http", "https") def lowercase ( A_ , A_ , A_=True )-> str: '''simple docstring''' a : List[Any] = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX a : str = "/" not in model_id if legacy_format: return F'''{endpoint}/{model_id}-{filename}''' else: return F'''{endpoint}/{model_id}/{filename}''' def lowercase ( A_ , A_ , A_=None , A_=0 , A_=None , )-> List[str]: '''simple docstring''' a : Optional[int] = "python/{}".format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(A_ , A_ ): ua += "; " + "; ".join("{}/{}".format(A_ , A_ ) for k, v in user_agent.items() ) elif isinstance(A_ , A_ ): ua += "; " + user_agent a : str = {"user-agent": ua} if resume_size > 0: a : List[Any] = "bytes=%d-" % (resume_size,) a : str = requests.get(A_ , stream=A_ , proxies=A_ , headers=A_ ) if response.status_code == 416: # Range not satisfiable return a : Optional[int] = response.headers.get("Content-Length" ) a : List[Any] = resume_size + int(A_ ) if content_length is not None else None a : List[Any] = tqdm( unit="B" , unit_scale=A_ , total=A_ , initial=A_ , desc="Downloading" , ) for chunk in response.iter_content(chunk_size=1_024 ): if chunk: # filter out keep-alive new chunks progress.update(len(A_ ) ) temp_file.write(A_ ) progress.close() def lowercase ( A_ , A_=None , A_=False , A_=None , A_=10 , A_=False , A_=None , A_=False , )-> str: '''simple docstring''' if cache_dir is None: a : List[Any] = TRANSFORMERS_CACHE if isinstance(A_ , A_ ): a : Tuple = str(A_ ) os.makedirs(A_ , exist_ok=A_ ) a : Optional[Any] = None if not local_files_only: try: a : Dict = requests.head(A_ , allow_redirects=A_ , proxies=A_ , timeout=A_ ) if response.status_code == 200: a : int = response.headers.get("ETag" ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass a : List[str] = url_to_filename(A_ , A_ ) # get cache path to put the file a : List[str] = os.path.join(A_ , A_ ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(A_ ): return cache_path else: a : Any = [ file for file in fnmatch.filter(os.listdir(A_ ) , filename + ".*" ) if not file.endswith(".json" ) and not file.endswith(".lock" ) ] if len(A_ ) > 0: return os.path.join(A_ , matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( "Cannot find the requested files in the cached path and outgoing traffic has been" " disabled. To enable model look-ups and downloads online, set 'local_files_only'" " to False." ) return None # From now on, etag is not None. if os.path.exists(A_ ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. a : Dict = cache_path + ".lock" with FileLock(A_ ): # If the download just completed while the lock was activated. if os.path.exists(A_ ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: a : Optional[Any] = cache_path + ".incomplete" @contextmanager def _resumable_file_manager(): with open(A_ , "a+b" ) as f: yield f a : Tuple = _resumable_file_manager if os.path.exists(A_ ): a : Optional[Any] = os.stat(A_ ).st_size else: a : Optional[int] = 0 else: a : Union[str, Any] = partial(tempfile.NamedTemporaryFile , dir=A_ , delete=A_ ) a : Dict = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( "%s not found in cache or force_download set to True, downloading to %s" , A_ , temp_file.name , ) http_get( A_ , A_ , proxies=A_ , resume_size=A_ , user_agent=A_ , ) os.replace(temp_file.name , A_ ) a : List[str] = {"url": url, "etag": etag} a : Tuple = cache_path + ".json" with open(A_ , "w" ) as meta_file: json.dump(A_ , A_ ) return cache_path def lowercase ( A_ , A_=None )-> Any: '''simple docstring''' a : Dict = url.encode("utf-8" ) a : Optional[Any] = shaaaa(A_ ) a : Any = url_hash.hexdigest() if etag: a : Union[str, Any] = etag.encode("utf-8" ) a : Tuple = shaaaa(A_ ) filename += "." + etag_hash.hexdigest() if url.endswith(".h5" ): filename += ".h5" return filename def lowercase ( A_ , A_=None , A_=False , A_=None , A_=False , A_=None , A_=False , A_=False , A_=False , )-> Tuple: '''simple docstring''' if cache_dir is None: a : Union[str, Any] = TRANSFORMERS_CACHE if isinstance(A_ , A_ ): a : List[Any] = str(A_ ) if isinstance(A_ , A_ ): a : int = str(A_ ) if is_remote_url(A_ ): # URL, so get it from the cache (downloading if necessary) a : Optional[Any] = get_from_cache( A_ , cache_dir=A_ , force_download=A_ , proxies=A_ , resume_download=A_ , user_agent=A_ , local_files_only=A_ , ) elif os.path.exists(A_ ): # File, and it exists. a : Union[str, Any] = url_or_filename elif urlparse(A_ ).scheme == "": # File, but it doesn't exist. raise EnvironmentError("file {} not found".format(A_ ) ) else: # Something unknown raise ValueError("unable to parse {} as a URL or as a local path".format(A_ ) ) if extract_compressed_file: if not is_zipfile(A_ ) and not tarfile.is_tarfile(A_ ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" a , a : Dict = os.path.split(A_ ) a : List[str] = output_file.replace("." , "-" ) + "-extracted" a : Optional[Any] = os.path.join(A_ , A_ ) if os.path.isdir(A_ ) and os.listdir(A_ ) and not force_extract: return output_path_extracted # Prevent parallel extractions a : Tuple = output_path + ".lock" with FileLock(A_ ): shutil.rmtree(A_ , ignore_errors=A_ ) os.makedirs(A_ ) if is_zipfile(A_ ): with ZipFile(A_ , "r" ) as zip_file: zip_file.extractall(A_ ) zip_file.close() elif tarfile.is_tarfile(A_ ): a : List[str] = tarfile.open(A_ ) tar_file.extractall(A_ ) tar_file.close() else: raise EnvironmentError("Archive format of {} could not be identified".format(A_ ) ) return output_path_extracted return output_path def lowercase ( A_ , A_="," )-> Union[str, Any]: '''simple docstring''' assert isinstance(A_ , A_ ) if os.path.isfile(A_ ): with open(A_ ) as f: a : str = eval(f.read() ) else: a : List[Any] = requests.get(A_ ) try: a : Any = requests.json() except Exception: a : Any = req.content.decode() assert data is not None, "could not connect" try: a : Optional[Any] = eval(A_ ) except Exception: a : Any = data.split("\n" ) req.close() return data def lowercase ( A_ )-> str: '''simple docstring''' a : Optional[int] = requests.get(A_ ) a : List[str] = np.array(Image.open(BytesIO(response.content ) ) ) return img def lowercase ( A_ )-> Any: '''simple docstring''' a : List[Any] = url.split("/" )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(A_ ) with open(A_ , "rb" ) as stream: a : Any = pkl.load(A_ ) a : List[str] = weights.pop("model" ) a : Dict = {} for k, v in model.items(): a : List[str] = torch.from_numpy(A_ ) if "running_var" in k: a : Dict = torch.tensor([0] ) a : Any = k.replace("running_var" , "num_batches_tracked" ) a : List[Any] = zero return new def lowercase ( )-> Optional[int]: '''simple docstring''' print(F'''{os.path.abspath(os.path.join(A_ , os.pardir ) )}/demo.ipynb''' ) def lowercase ( A_ , A_="RGB" )-> Any: '''simple docstring''' assert isinstance(A_ , A_ ) if os.path.isfile(A_ ): a : Dict = cva.imread(A_ ) else: a : Union[str, Any] = get_image_from_url(A_ ) assert img is not None, F'''could not connect to: {im}''' a : int = cva.cvtColor(A_ , cva.COLOR_BGR2RGB ) if input_format == "RGB": a : List[str] = img[:, :, ::-1] return img def lowercase ( A_ , A_=1 )-> int: '''simple docstring''' return (images[i : i + batch] for i in range(0 , len(A_ ) , A_ ))
226
1
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal lowercase__ :List[str] = datasets.utils.logging.get_logger(__name__) lowercase__ :Tuple = ["names", "prefix"] lowercase__ :List[Any] = ["warn_bad_lines", "error_bad_lines", "mangle_dupe_cols"] lowercase__ :Any = ["encoding_errors", "on_bad_lines"] lowercase__ :Optional[int] = ["date_format"] @dataclass class lowercase ( datasets.BuilderConfig ): lowercase_ : str ="," lowercase_ : Optional[str] =None lowercase_ : Optional[Union[int, List[int], str]] ="infer" lowercase_ : Optional[List[str]] =None lowercase_ : Optional[List[str]] =None lowercase_ : Optional[Union[int, str, List[int], List[str]]] =None lowercase_ : Optional[Union[List[int], List[str]]] =None lowercase_ : Optional[str] =None lowercase_ : bool =True lowercase_ : Optional[Literal["c", "python", "pyarrow"]] =None lowercase_ : Dict[Union[int, str], Callable[[Any], Any]] =None lowercase_ : Optional[list] =None lowercase_ : Optional[list] =None lowercase_ : bool =False lowercase_ : Optional[Union[int, List[int]]] =None lowercase_ : Optional[int] =None lowercase_ : Optional[Union[str, List[str]]] =None lowercase_ : bool =True lowercase_ : bool =True lowercase_ : bool =False lowercase_ : bool =True lowercase_ : Optional[str] =None lowercase_ : str ="." lowercase_ : Optional[str] =None lowercase_ : str ='"' lowercase_ : int =0 lowercase_ : Optional[str] =None lowercase_ : Optional[str] =None lowercase_ : Optional[str] =None lowercase_ : Optional[str] =None lowercase_ : bool =True lowercase_ : bool =True lowercase_ : int =0 lowercase_ : bool =True lowercase_ : bool =False lowercase_ : Optional[str] =None lowercase_ : int =10000 lowercase_ : Optional[datasets.Features] =None lowercase_ : Optional[str] ="strict" lowercase_ : Literal["error", "warn", "skip"] ="error" lowercase_ : Optional[str] =None def A__ ( self): if self.delimiter is not None: lowercase = self.delimiter if self.column_names is not None: lowercase = self.column_names @property def A__ ( self): lowercase = { '''sep''': self.sep, '''header''': self.header, '''names''': self.names, '''index_col''': self.index_col, '''usecols''': self.usecols, '''prefix''': self.prefix, '''mangle_dupe_cols''': self.mangle_dupe_cols, '''engine''': self.engine, '''converters''': self.converters, '''true_values''': self.true_values, '''false_values''': self.false_values, '''skipinitialspace''': self.skipinitialspace, '''skiprows''': self.skiprows, '''nrows''': self.nrows, '''na_values''': self.na_values, '''keep_default_na''': self.keep_default_na, '''na_filter''': self.na_filter, '''verbose''': self.verbose, '''skip_blank_lines''': self.skip_blank_lines, '''thousands''': self.thousands, '''decimal''': self.decimal, '''lineterminator''': self.lineterminator, '''quotechar''': self.quotechar, '''quoting''': self.quoting, '''escapechar''': self.escapechar, '''comment''': self.comment, '''encoding''': self.encoding, '''dialect''': self.dialect, '''error_bad_lines''': self.error_bad_lines, '''warn_bad_lines''': self.warn_bad_lines, '''skipfooter''': self.skipfooter, '''doublequote''': self.doublequote, '''memory_map''': self.memory_map, '''float_precision''': self.float_precision, '''chunksize''': self.chunksize, '''encoding_errors''': self.encoding_errors, '''on_bad_lines''': self.on_bad_lines, '''date_format''': self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() ,A__): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class lowercase ( datasets.ArrowBasedBuilder ): lowercase_ : Optional[int] =CsvConfig def A__ ( self): return datasets.DatasetInfo(features=self.config.features) def A__ ( self ,A__): if not self.config.data_files: raise ValueError(f'At least one data file must be specified, but got data_files={self.config.data_files}') lowercase = dl_manager.download_and_extract(self.config.data_files) if isinstance(A__ ,(str, list, tuple)): lowercase = data_files if isinstance(A__ ,A__): lowercase = [files] lowercase = [dl_manager.iter_files(A__) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN ,gen_kwargs={'''files''': files})] lowercase = [] for split_name, files in data_files.items(): if isinstance(A__ ,A__): lowercase = [files] lowercase = [dl_manager.iter_files(A__) for file in files] splits.append(datasets.SplitGenerator(name=A__ ,gen_kwargs={'''files''': files})) return splits def A__ ( self ,A__): if self.config.features is not None: lowercase = self.config.features.arrow_schema if all(not require_storage_cast(A__) for feature in self.config.features.values()): # cheaper cast lowercase = pa.Table.from_arrays([pa_table[field.name] for field in schema] ,schema=A__) else: # more expensive cast; allows str <-> int/float or str to Audio for example lowercase = table_cast(A__ ,A__) return pa_table def A__ ( self ,A__): lowercase = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str lowercase = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(A__) else object for name, dtype, feature in zip(schema.names ,schema.types ,self.config.features.values()) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(A__)): lowercase = pd.read_csv(A__ ,iterator=A__ ,dtype=A__ ,**self.config.pd_read_csv_kwargs) try: for batch_idx, df in enumerate(A__): lowercase = pa.Table.from_pandas(A__) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(A__) except ValueError as e: logger.error(f'Failed to read file \'{file}\' with error {type(A__)}: {e}') raise
101
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE_:Optional[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_:Dict = { """camembert-base""": """https://huggingface.co/camembert-base/resolve/main/config.json""", """umberto-commoncrawl-cased-v1""": ( """https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json""" ), """umberto-wikipedia-uncased-v1""": ( """https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json""" ), } class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __lowerCamelCase : Optional[int] = "camembert" def __init__( self, lowerCamelCase__=3_0522, lowerCamelCase__=768, lowerCamelCase__=12, lowerCamelCase__=12, lowerCamelCase__=3072, lowerCamelCase__="gelu", lowerCamelCase__=0.1, lowerCamelCase__=0.1, lowerCamelCase__=512, lowerCamelCase__=2, lowerCamelCase__=0.02, lowerCamelCase__=1e-12, lowerCamelCase__=1, lowerCamelCase__=0, lowerCamelCase__=2, lowerCamelCase__="absolute", lowerCamelCase__=True, lowerCamelCase__=None, **lowerCamelCase__, ): super().__init__(pad_token_id=lowerCamelCase__, bos_token_id=lowerCamelCase__, eos_token_id=lowerCamelCase__, **lowerCamelCase__ ) A : List[Any] = vocab_size A : Dict = hidden_size A : str = num_hidden_layers A : List[Any] = num_attention_heads A : List[str] = hidden_act A : Tuple = intermediate_size A : Tuple = hidden_dropout_prob A : List[Any] = attention_probs_dropout_prob A : Optional[int] = max_position_embeddings A : Tuple = type_vocab_size A : List[Any] = initializer_range A : str = layer_norm_eps A : Tuple = position_embedding_type A : str = use_cache A : Any = classifier_dropout class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' @property def _lowerCAmelCase ( self ): if self.task == "multiple-choice": A : int = {0: """batch""", 1: """choice""", 2: """sequence"""} else: A : Tuple = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
116
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { """microsoft/beit-base-patch16-224-pt22k""": ( """https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json""" ), # See all BEiT models at https://huggingface.co/models?filter=beit } class SCREAMING_SNAKE_CASE_ ( snake_case_ ): __magic_name__: Any = "beit" def __init__( self : int , _A : Optional[int]=8192 , _A : Optional[Any]=768 , _A : Dict=12 , _A : int=12 , _A : List[Any]=3072 , _A : Optional[int]="gelu" , _A : Optional[Any]=0.0 , _A : Union[str, Any]=0.0 , _A : Tuple=0.0_2 , _A : Optional[int]=1E-12 , _A : Union[str, Any]=224 , _A : int=16 , _A : str=3 , _A : Optional[Any]=False , _A : Any=False , _A : Optional[Any]=False , _A : List[str]=False , _A : Optional[int]=0.1 , _A : Optional[int]=0.1 , _A : List[str]=True , _A : List[Any]=[3, 5, 7, 11] , _A : Any=[1, 2, 3, 6] , _A : Dict=True , _A : int=0.4 , _A : str=256 , _A : int=1 , _A : Dict=False , _A : Optional[Any]=255 , **_A : List[Any] , ) -> str: """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE ) snake_case_ : Dict = vocab_size snake_case_ : Any = hidden_size snake_case_ : Tuple = num_hidden_layers snake_case_ : Union[str, Any] = num_attention_heads snake_case_ : List[Any] = intermediate_size snake_case_ : List[Any] = hidden_act snake_case_ : Optional[int] = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : str = initializer_range snake_case_ : Any = layer_norm_eps snake_case_ : Tuple = image_size snake_case_ : List[str] = patch_size snake_case_ : Dict = num_channels snake_case_ : Optional[Any] = use_mask_token snake_case_ : str = use_absolute_position_embeddings snake_case_ : List[str] = use_relative_position_bias snake_case_ : Optional[int] = use_shared_relative_position_bias snake_case_ : List[str] = layer_scale_init_value snake_case_ : Union[str, Any] = drop_path_rate snake_case_ : Union[str, Any] = use_mean_pooling # decode head attributes (semantic segmentation) snake_case_ : Optional[Any] = out_indices snake_case_ : Optional[Any] = pool_scales # auxiliary head attributes (semantic segmentation) snake_case_ : Tuple = use_auxiliary_head snake_case_ : str = auxiliary_loss_weight snake_case_ : Union[str, Any] = auxiliary_channels snake_case_ : List[Any] = auxiliary_num_convs snake_case_ : Tuple = auxiliary_concat_input snake_case_ : int = semantic_loss_ignore_index class SCREAMING_SNAKE_CASE_ ( snake_case_ ): __magic_name__: str = version.parse("1.11" ) @property def UpperCAmelCase_ ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def UpperCAmelCase_ ( self : List[Any] ) -> float: """simple docstring""" return 1E-4
371
def SCREAMING_SNAKE_CASE__ ( __a = 60_08_51_47_51_43 ): try: snake_case_ : Optional[Any] = int(__a ) except (TypeError, ValueError): raise TypeError('Parameter n must be int or castable to int.' ) if n <= 0: raise ValueError('Parameter n must be greater than or equal to one.' ) snake_case_ : Any = 2 snake_case_ : Any = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 snake_case_ : Tuple = i while n % i == 0: snake_case_ : List[str] = n // i i += 1 return int(__a ) if __name__ == "__main__": print(F'''{solution() = }''')
88
0
from typing import TYPE_CHECKING from ..utils import _LazyModule __UpperCamelCase : Tuple = { """config""": [ """EXTERNAL_DATA_FORMAT_SIZE_LIMIT""", """OnnxConfig""", """OnnxConfigWithPast""", """OnnxSeq2SeqConfigWithPast""", """PatchingSpec""", ], """convert""": ["""export""", """validate_model_outputs"""], """features""": ["""FeaturesManager"""], """utils""": ["""ParameterFormat""", """compute_serialized_parameters_size"""], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys __UpperCamelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
307
import os import string import sys __UpperCamelCase : List[Any] = 1 << 8 __UpperCamelCase : Union[str, Any] = { """tab""": ord("""\t"""), """newline""": ord("""\r"""), """esc""": 27, """up""": 65 + ARROW_KEY_FLAG, """down""": 66 + ARROW_KEY_FLAG, """right""": 67 + ARROW_KEY_FLAG, """left""": 68 + ARROW_KEY_FLAG, """mod_int""": 91, """undefined""": sys.maxsize, """interrupt""": 3, """insert""": 50, """delete""": 51, """pg_up""": 53, """pg_down""": 54, } __UpperCamelCase : Optional[Any] = KEYMAP["""up"""] __UpperCamelCase : Tuple = KEYMAP["""left"""] if sys.platform == "win32": __UpperCamelCase : List[Any] = [] __UpperCamelCase : int = { b"""\xe0H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, b"""\x00H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, b"""\xe0P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, b"""\x00P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, b"""\xe0M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, b"""\x00M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, b"""\xe0K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, b"""\x00K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, } for i in range(10): __UpperCamelCase : List[str] = ord(str(i)) def a_ ( ) -> Optional[int]: """simple docstring""" if os.name == "nt": import msvcrt snake_case__ = 'mbcs' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(_A ) == 0: # Read the keystroke snake_case__ = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): snake_case__ = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: snake_case__ = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['mod_int'] ) ) WIN_CH_BUFFER.append(_A ) if ord(_A ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) snake_case__ = chr(KEYMAP['esc'] ) except KeyError: snake_case__ = cha[1] else: snake_case__ = ch.decode(_A ) else: snake_case__ = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty snake_case__ = sys.stdin.fileno() snake_case__ = termios.tcgetattr(_A ) try: tty.setraw(_A ) snake_case__ = sys.stdin.read(1 ) finally: termios.tcsetattr(_A , termios.TCSADRAIN , _A ) return ch def a_ ( ) -> Union[str, Any]: """simple docstring""" snake_case__ = get_raw_chars() if ord(_A ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(_A ) == KEYMAP["esc"]: snake_case__ = get_raw_chars() if ord(_A ) == KEYMAP["mod_int"]: snake_case__ = get_raw_chars() if ord(_A ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(_A ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(_A ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
307
1
"""simple docstring""" import copy import re class lowerCAmelCase : '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = """hp""" SCREAMING_SNAKE_CASE_ : List[str] = {} SCREAMING_SNAKE_CASE_ : Tuple = None @classmethod def __A ( cls , lowerCAmelCase__ , lowerCAmelCase__ ) -> Any: SCREAMING_SNAKE_CASE = prefix SCREAMING_SNAKE_CASE = defaults cls.build_naming_info() @staticmethod def __A ( lowerCAmelCase__ , lowerCAmelCase__ ) -> str: if len(lowerCAmelCase__ ) == 0: return "" SCREAMING_SNAKE_CASE = None if any(char.isdigit() for char in word ): raise Exception(F'Parameters should not contain numbers: \'{word}\' contains a number' ) if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1 , len(lowerCAmelCase__ ) + 1 ): SCREAMING_SNAKE_CASE = word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: SCREAMING_SNAKE_CASE = prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(lowerCAmelCase__ ): SCREAMING_SNAKE_CASE = '' while integer != 0: SCREAMING_SNAKE_CASE = chr(ord('A' ) + integer % 10 ) + s integer //= 10 return s SCREAMING_SNAKE_CASE = 0 while True: SCREAMING_SNAKE_CASE = word + '#' + int_to_alphabetic(lowerCAmelCase__ ) if sword in info["reverse_short_word"]: continue else: SCREAMING_SNAKE_CASE = sword break SCREAMING_SNAKE_CASE = short_word SCREAMING_SNAKE_CASE = word return short_word @staticmethod def __A ( lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: SCREAMING_SNAKE_CASE = param_name.split('_' ) SCREAMING_SNAKE_CASE = [TrialShortNamer.shortname_for_word(lowerCAmelCase__ , lowerCAmelCase__ ) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name SCREAMING_SNAKE_CASE = ['', '_'] for separator in separators: SCREAMING_SNAKE_CASE = separator.join(lowerCAmelCase__ ) if shortname not in info["reverse_short_param"]: SCREAMING_SNAKE_CASE = shortname SCREAMING_SNAKE_CASE = param_name return shortname return param_name @staticmethod def __A ( lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: SCREAMING_SNAKE_CASE = TrialShortNamer.shortname_for_key(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = short_name SCREAMING_SNAKE_CASE = param_name @classmethod def __A ( cls ) -> List[str]: if cls.NAMING_INFO is not None: return SCREAMING_SNAKE_CASE = { 'short_word': {}, 'reverse_short_word': {}, 'short_param': {}, 'reverse_short_param': {}, } SCREAMING_SNAKE_CASE = list(cls.DEFAULTS.keys() ) for k in field_keys: cls.add_new_param_name(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = info @classmethod def __A ( cls , lowerCAmelCase__ ) -> Dict: cls.build_naming_info() assert cls.PREFIX is not None SCREAMING_SNAKE_CASE = [copy.copy(cls.PREFIX )] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(F'You should provide a default value for the param name {k} with value {v}' ) if v == cls.DEFAULTS[k]: # The default value is not added to the name continue SCREAMING_SNAKE_CASE = cls.NAMING_INFO['short_param'][k] if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): SCREAMING_SNAKE_CASE = 1 if v else 0 SCREAMING_SNAKE_CASE = '' if isinstance(lowerCAmelCase__ , (int, float) ) else '-' SCREAMING_SNAKE_CASE = F'{key}{sep}{v}' name.append(lowerCAmelCase__ ) return "_".join(lowerCAmelCase__ ) @classmethod def __A ( cls , lowerCAmelCase__ ) -> Optional[Any]: SCREAMING_SNAKE_CASE = repr[len(cls.PREFIX ) + 1 :] if repr == "": SCREAMING_SNAKE_CASE = [] else: SCREAMING_SNAKE_CASE = repr.split('_' ) SCREAMING_SNAKE_CASE = {} for value in values: if "-" in value: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = value.split('-' ) else: SCREAMING_SNAKE_CASE = re.sub('[0-9.]' , '' , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = float(re.sub('[^0-9.]' , '' , lowerCAmelCase__ ) ) SCREAMING_SNAKE_CASE = cls.NAMING_INFO['reverse_short_param'][p_k] SCREAMING_SNAKE_CASE = p_v for k in cls.DEFAULTS: if k not in parameters: SCREAMING_SNAKE_CASE = cls.DEFAULTS[k] return parameters
38
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCamelCase = {'''configuration_opt''': ['''OPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OPTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ '''OPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OPTForCausalLM''', '''OPTModel''', '''OPTPreTrainedModel''', '''OPTForSequenceClassification''', '''OPTForQuestionAnswering''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ['''TFOPTForCausalLM''', '''TFOPTModel''', '''TFOPTPreTrainedModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ '''FlaxOPTForCausalLM''', '''FlaxOPTModel''', '''FlaxOPTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys __UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
38
1
import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class __lowerCAmelCase ( SCREAMING_SNAKE_CASE , unittest.TestCase ): _a = DebertaTokenizer _a = True _a = DebertaTokenizerFast def A__ ( self ) -> Optional[Any]: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowercase =[ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '[UNK]', ] _lowercase =dict(zip(lowerCAmelCase , range(len(lowerCAmelCase ) ) ) ) _lowercase =['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] _lowercase ={'unk_token': '[UNK]'} _lowercase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _lowercase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(lowerCAmelCase ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(lowerCAmelCase ) ) def A__ ( self , **lowerCAmelCase ) -> str: '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase ) def A__ ( self , lowerCAmelCase ) -> Any: '''simple docstring''' _lowercase ='lower newer' _lowercase ='lower newer' return input_text, output_text def A__ ( self ) -> List[str]: '''simple docstring''' _lowercase =self.get_tokenizer() _lowercase ='lower newer' _lowercase =['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] _lowercase =tokenizer.tokenize(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) _lowercase =tokens + [tokenizer.unk_token] _lowercase =[0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase ) , lowerCAmelCase ) def A__ ( self ) -> Dict: '''simple docstring''' _lowercase =self.get_tokenizer() _lowercase =tokenizer('Hello' , 'World' ) _lowercase =[0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['token_type_ids'] , lowerCAmelCase ) @slow def A__ ( self ) -> Any: '''simple docstring''' _lowercase =self.tokenizer_class.from_pretrained('microsoft/deberta-base' ) _lowercase =tokenizer.encode('sequence builders' , add_special_tokens=lowerCAmelCase ) _lowercase =tokenizer.encode('multi-sequence build' , add_special_tokens=lowerCAmelCase ) _lowercase =tokenizer.encode( 'sequence builders' , add_special_tokens=lowerCAmelCase , add_prefix_space=lowerCAmelCase ) _lowercase =tokenizer.encode( 'sequence builders' , 'multi-sequence build' , add_special_tokens=lowerCAmelCase , add_prefix_space=lowerCAmelCase ) _lowercase =tokenizer.build_inputs_with_special_tokens(lowerCAmelCase ) _lowercase =tokenizer.build_inputs_with_special_tokens(lowerCAmelCase , lowerCAmelCase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def A__ ( self ) -> List[str]: '''simple docstring''' _lowercase =[self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: _lowercase =tokenizer_class.from_pretrained('microsoft/deberta-base' ) _lowercase =[ 'ALBERT: A Lite BERT for Self-supervised Learning of Language Representations', 'ALBERT incorporates two parameter reduction techniques', 'The first one is a factorized embedding parameterization. By decomposing the large vocabulary' ' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of' ' vocabulary embedding.', ] _lowercase =tokenizer(lowerCAmelCase , padding=lowerCAmelCase ) _lowercase =[tokenizer.decode(lowerCAmelCase , skip_special_tokens=lowerCAmelCase ) for seq in encoding['input_ids']] # fmt: off _lowercase ={ 'input_ids': [ [1, 2_118, 11_126, 565, 35, 83, 25_191, 163, 18_854, 13, 12_156, 12, 16_101, 25_376, 13_807, 9, 22_205, 27_893, 1_635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2_118, 11_126, 565, 24_536, 80, 43_797, 4_878, 7_373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3_724, 1_538, 33_183, 11_303, 43_797, 1_938, 4, 870, 24_165, 29_105, 5, 739, 32_644, 33_183, 11_303, 36_173, 88, 80, 650, 7_821, 45_940, 6, 52, 2_559, 5, 1_836, 9, 5, 7_397, 13_171, 31, 5, 1_836, 9, 32_644, 33_183, 11_303, 4, 2] ], 'token_type_ids': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], 'attention_mask': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on _lowercase =[ 'ALBERT: A Lite BERT for Self-supervised Learning of Language Representations', 'ALBERT incorporates two parameter reduction techniques', 'The first one is a factorized embedding parameterization. By decomposing the large vocabulary' ' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of' ' vocabulary embedding.', ] self.assertDictEqual(encoding.data , lowerCAmelCase ) for expected, decoded in zip(lowerCAmelCase , lowerCAmelCase ): self.assertEqual(lowerCAmelCase , lowerCAmelCase )
205
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase_ = {'configuration_xlnet': ['XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLNetConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ['XLNetTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ['XLNetTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ 'XLNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLNetForMultipleChoice', 'XLNetForQuestionAnswering', 'XLNetForQuestionAnsweringSimple', 'XLNetForSequenceClassification', 'XLNetForTokenClassification', 'XLNetLMHeadModel', 'XLNetModel', 'XLNetPreTrainedModel', 'load_tf_weights_in_xlnet', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ 'TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLNetForMultipleChoice', 'TFXLNetForQuestionAnsweringSimple', 'TFXLNetForSequenceClassification', 'TFXLNetForTokenClassification', 'TFXLNetLMHeadModel', 'TFXLNetMainLayer', 'TFXLNetModel', 'TFXLNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
205
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ : Dict = logging.get_logger(__name__) lowerCAmelCase__ : int = { "google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/config.json", "google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/config.json" # See all FNet models at https://huggingface.co/models?filter=fnet } class SCREAMING_SNAKE_CASE__ ( snake_case__ ): """simple docstring""" SCREAMING_SNAKE_CASE = '''fnet''' def __init__( self : Tuple , UpperCAmelCase_ : str=32_000 , UpperCAmelCase_ : List[str]=768 , UpperCAmelCase_ : List[str]=12 , UpperCAmelCase_ : str=3_072 , UpperCAmelCase_ : List[str]="gelu_new" , UpperCAmelCase_ : str=0.1 , UpperCAmelCase_ : Optional[Any]=512 , UpperCAmelCase_ : Any=4 , UpperCAmelCase_ : str=0.02 , UpperCAmelCase_ : List[Any]=1e-12 , UpperCAmelCase_ : int=False , UpperCAmelCase_ : Tuple=512 , UpperCAmelCase_ : int=3 , UpperCAmelCase_ : Dict=1 , UpperCAmelCase_ : List[Any]=2 , **UpperCAmelCase_ : Tuple , ): """simple docstring""" super().__init__(pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , **UpperCAmelCase_ ) __UpperCAmelCase : Optional[Any] = vocab_size __UpperCAmelCase : List[str] = max_position_embeddings __UpperCAmelCase : List[Any] = hidden_size __UpperCAmelCase : Optional[int] = num_hidden_layers __UpperCAmelCase : Optional[int] = intermediate_size __UpperCAmelCase : List[str] = hidden_act __UpperCAmelCase : List[str] = hidden_dropout_prob __UpperCAmelCase : Tuple = initializer_range __UpperCAmelCase : Union[str, Any] = type_vocab_size __UpperCAmelCase : List[Any] = layer_norm_eps __UpperCAmelCase : Optional[Any] = use_tpu_fourier_optimizations __UpperCAmelCase : List[Any] = tpu_short_seq_length
361
'''simple docstring''' from heapq import heappop, heappush import numpy as np def __UpperCamelCase ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, ): __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = grid.shape __UpperCAmelCase : List[str] = [-1, 1, 0, 0] __UpperCAmelCase : Optional[Any] = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] __UpperCAmelCase , __UpperCAmelCase : Tuple = [(0, source)], set() __UpperCAmelCase : Any = np.full((rows, cols), np.inf ) __UpperCAmelCase : List[str] = 0 __UpperCAmelCase : Union[str, Any] = np.empty((rows, cols), dtype=_UpperCAmelCase ) __UpperCAmelCase : Any = None while queue: ((__UpperCAmelCase) , (__UpperCAmelCase)) : Optional[Any] = heappop(_UpperCAmelCase ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: __UpperCAmelCase : int = [] while (x, y) != source: path.append((x, y) ) __UpperCAmelCase , __UpperCAmelCase : Tuple = predecessors[x, y] path.append(_UpperCAmelCase ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(_UpperCAmelCase ) ): __UpperCAmelCase , __UpperCAmelCase : int = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: __UpperCAmelCase : Optional[Any] = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(_UpperCAmelCase, (dist + 1, (nx, ny)) ) __UpperCAmelCase : List[str] = dist + 1 __UpperCAmelCase : int = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
37
0
import numpy as np def __lowercase ( __lowerCAmelCase : Any ): return 1 / (1 + np.exp(-vector )) def __lowercase ( __lowerCAmelCase : List[str] ): return vector * sigmoid(UpperCamelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
240
import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __snake_case = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece class lowercase__ ( _UpperCAmelCase , unittest.TestCase ): A__ : List[str] =XLMProphetNetTokenizer A__ : List[Any] =False A__ : Tuple =True def A_ ( self : str ): super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE__ = XLMProphetNetTokenizer(UpperCAmelCase_ , keep_accents=UpperCAmelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def A_ ( self : Tuple ): SCREAMING_SNAKE_CASE__ = '[PAD]' SCREAMING_SNAKE_CASE__ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase_ ) , UpperCAmelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase_ ) , UpperCAmelCase_ ) def A_ ( self : Tuple ): SCREAMING_SNAKE_CASE__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '[PAD]' ) self.assertEqual(vocab_keys[1] , '[CLS]' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(UpperCAmelCase_ ) , 1012 ) def A_ ( self : List[Any] ): self.assertEqual(self.get_tokenizer().vocab_size , 1012 ) def A_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE__ = XLMProphetNetTokenizer(UpperCAmelCase_ , keep_accents=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = tokenizer.tokenize('This is a test' ) self.assertListEqual(UpperCAmelCase_ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) SCREAMING_SNAKE_CASE__ = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( UpperCAmelCase_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) SCREAMING_SNAKE_CASE__ = tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) self.assertListEqual( UpperCAmelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) SCREAMING_SNAKE_CASE__ = tokenizer.convert_ids_to_tokens(UpperCAmelCase_ ) self.assertListEqual( UpperCAmelCase_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '[UNK]', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '[UNK]', '.', ] , ) @cached_property def A_ ( self : Optional[Any] ): return XLMProphetNetTokenizer.from_pretrained('microsoft/xprophetnet-large-wiki100-cased' ) @slow def A_ ( self : Any ): SCREAMING_SNAKE_CASE__ = 'Hello World!' SCREAMING_SNAKE_CASE__ = [35389, 6672, 49, 2] self.assertListEqual(UpperCAmelCase_ , self.big_tokenizer.encode(UpperCAmelCase_ ) ) @slow def A_ ( self : Tuple ): # fmt: off SCREAMING_SNAKE_CASE__ = {'input_ids': [[11073, 82783, 18, 26, 82783, 549, 51540, 248, 17209, 1301, 217, 20, 215186, 1325, 147, 17209, 1301, 217, 20, 56370, 53, 122020, 20, 16477, 27, 87355, 4548, 20, 4728, 78392, 17, 159969, 18, 26, 24491, 629, 15, 538, 22704, 5439, 15, 2788, 24491, 9885, 15, 43534, 605, 15, 814, 18403, 33200, 29, 15, 43534, 24458, 12410, 111, 24966, 83669, 9637, 144068, 26, 850, 22346, 27, 147, 24966, 83669, 83490, 26, 39113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 122020, 115785, 34, 816, 1339, 46887, 18, 147, 53905, 1951, 42238, 41170, 17732, 834, 436, 15, 27523, 98733, 217, 147, 5542, 4981, 930, 17347, 16, 2], [20091, 629, 94, 82786, 58, 490, 20, 1528, 84, 53905, 344, 80592, 110128, 18822, 5267, 1306, 62, 152537, 308, 7997, 401, 124427, 549, 35442, 225, 109, 15055, 25748, 147, 7119, 43712, 34, 767, 135366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 63784, 119466, 17, 147808, 88214, 18, 656, 81, 32, 3296, 10280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase_ , model_name='microsoft/xprophetnet-large-wiki100-cased' , revision='1acad1643ddd54a44df6a1b797ada8373685d90e' , )
176
0
"""simple docstring""" import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _UpperCAmelCase ( lowerCAmelCase__ , unittest.TestCase): _lowerCAmelCase : List[Any] = AudioLDMPipeline _lowerCAmelCase : List[str] = TEXT_TO_AUDIO_PARAMS _lowerCAmelCase : List[Any] = TEXT_TO_AUDIO_BATCH_PARAMS _lowerCAmelCase : Tuple = frozenset( [ """num_inference_steps""", """num_waveforms_per_prompt""", """generator""", """latents""", """output_type""", """return_dict""", """callback""", """callback_steps""", ]) def _snake_case ( self : List[Any] ): torch.manual_seed(0 ) snake_case_ : Any = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=(32, 64) , class_embed_type='''simple_projection''' , projection_class_embeddings_input_dim=32 , class_embeddings_concat=lowercase_ , ) snake_case_ : int = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='''scaled_linear''' , clip_sample=lowercase_ , set_alpha_to_one=lowercase_ , ) torch.manual_seed(0 ) snake_case_ : Union[str, Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=1 , out_channels=1 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) snake_case_ : List[str] = ClapTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , projection_dim=32 , ) snake_case_ : Union[str, Any] = ClapTextModelWithProjection(lowercase_ ) snake_case_ : Union[str, Any] = RobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-roberta''' , model_max_length=77 ) snake_case_ : Any = SpeechTaHifiGanConfig( model_in_dim=8 , sampling_rate=16000 , upsample_initial_channel=16 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=lowercase_ , ) snake_case_ : Optional[int] = SpeechTaHifiGan(lowercase_ ) snake_case_ : Any = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''vocoder''': vocoder, } return components def _snake_case ( self : int , lowercase_ : Any , lowercase_ : str=0 ): if str(lowercase_ ).startswith('''mps''' ): snake_case_ : Any = torch.manual_seed(lowercase_ ) else: snake_case_ : Union[str, Any] = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) snake_case_ : Tuple = { '''prompt''': '''A hammer hitting a wooden surface''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, } return inputs def _snake_case ( self : List[Any] ): snake_case_ : List[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case_ : Optional[Any] = self.get_dummy_components() snake_case_ : Union[str, Any] = AudioLDMPipeline(**lowercase_ ) snake_case_ : Optional[int] = audioldm_pipe.to(lowercase_ ) audioldm_pipe.set_progress_bar_config(disable=lowercase_ ) snake_case_ : Optional[int] = self.get_dummy_inputs(lowercase_ ) snake_case_ : Dict = audioldm_pipe(**lowercase_ ) snake_case_ : Optional[int] = output.audios[0] assert audio.ndim == 1 assert len(lowercase_ ) == 256 snake_case_ : List[str] = audio[:10] snake_case_ : Any = np.array( [-0.00_50, 0.00_50, -0.00_60, 0.00_33, -0.00_26, 0.00_33, -0.00_27, 0.00_33, -0.00_28, 0.00_33] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def _snake_case ( self : int ): snake_case_ : List[Any] = self.get_dummy_components() snake_case_ : Dict = AudioLDMPipeline(**lowercase_ ) snake_case_ : Optional[int] = audioldm_pipe.to(lowercase_ ) snake_case_ : int = audioldm_pipe.to(lowercase_ ) audioldm_pipe.set_progress_bar_config(disable=lowercase_ ) snake_case_ : Any = self.get_dummy_inputs(lowercase_ ) snake_case_ : Optional[int] = 3 * [inputs['''prompt''']] # forward snake_case_ : Union[str, Any] = audioldm_pipe(**lowercase_ ) snake_case_ : Optional[int] = output.audios[0] snake_case_ : Union[str, Any] = self.get_dummy_inputs(lowercase_ ) snake_case_ : str = 3 * [inputs.pop('''prompt''' )] snake_case_ : Dict = audioldm_pipe.tokenizer( lowercase_ , padding='''max_length''' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=lowercase_ , return_tensors='''pt''' , ) snake_case_ : Union[str, Any] = text_inputs['''input_ids'''].to(lowercase_ ) snake_case_ : Optional[Any] = audioldm_pipe.text_encoder( lowercase_ , ) snake_case_ : Dict = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state snake_case_ : Union[str, Any] = F.normalize(lowercase_ , dim=-1 ) snake_case_ : List[Any] = prompt_embeds # forward snake_case_ : List[str] = audioldm_pipe(**lowercase_ ) snake_case_ : Optional[Any] = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def _snake_case ( self : Any ): snake_case_ : Optional[Any] = self.get_dummy_components() snake_case_ : Optional[Any] = AudioLDMPipeline(**lowercase_ ) snake_case_ : int = audioldm_pipe.to(lowercase_ ) snake_case_ : Union[str, Any] = audioldm_pipe.to(lowercase_ ) audioldm_pipe.set_progress_bar_config(disable=lowercase_ ) snake_case_ : Any = self.get_dummy_inputs(lowercase_ ) snake_case_ : List[Any] = 3 * ['''this is a negative prompt'''] snake_case_ : str = negative_prompt snake_case_ : Any = 3 * [inputs['''prompt''']] # forward snake_case_ : List[str] = audioldm_pipe(**lowercase_ ) snake_case_ : Optional[Any] = output.audios[0] snake_case_ : Optional[Any] = self.get_dummy_inputs(lowercase_ ) snake_case_ : List[Any] = 3 * [inputs.pop('''prompt''' )] snake_case_ : Dict = [] for p in [prompt, negative_prompt]: snake_case_ : List[str] = audioldm_pipe.tokenizer( lowercase_ , padding='''max_length''' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=lowercase_ , return_tensors='''pt''' , ) snake_case_ : Optional[Any] = text_inputs['''input_ids'''].to(lowercase_ ) snake_case_ : str = audioldm_pipe.text_encoder( lowercase_ , ) snake_case_ : Optional[Any] = text_embeds.text_embeds # additional L_2 normalization over each hidden-state snake_case_ : Optional[Any] = F.normalize(lowercase_ , dim=-1 ) embeds.append(lowercase_ ) snake_case_ : List[str] = embeds # forward snake_case_ : Optional[Any] = audioldm_pipe(**lowercase_ ) snake_case_ : Tuple = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def _snake_case ( self : Union[str, Any] ): snake_case_ : Union[str, Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case_ : Dict = self.get_dummy_components() snake_case_ : str = PNDMScheduler(skip_prk_steps=lowercase_ ) snake_case_ : str = AudioLDMPipeline(**lowercase_ ) snake_case_ : Union[str, Any] = audioldm_pipe.to(lowercase_ ) audioldm_pipe.set_progress_bar_config(disable=lowercase_ ) snake_case_ : Any = self.get_dummy_inputs(lowercase_ ) snake_case_ : Optional[Any] = '''egg cracking''' snake_case_ : Tuple = audioldm_pipe(**lowercase_ , negative_prompt=lowercase_ ) snake_case_ : Optional[int] = output.audios[0] assert audio.ndim == 1 assert len(lowercase_ ) == 256 snake_case_ : Union[str, Any] = audio[:10] snake_case_ : List[Any] = np.array( [-0.00_51, 0.00_50, -0.00_60, 0.00_34, -0.00_26, 0.00_33, -0.00_27, 0.00_33, -0.00_28, 0.00_32] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def _snake_case ( self : Dict ): snake_case_ : Optional[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case_ : Union[str, Any] = self.get_dummy_components() snake_case_ : str = PNDMScheduler(skip_prk_steps=lowercase_ ) snake_case_ : Any = AudioLDMPipeline(**lowercase_ ) snake_case_ : List[str] = audioldm_pipe.to(lowercase_ ) audioldm_pipe.set_progress_bar_config(disable=lowercase_ ) snake_case_ : List[Any] = '''A hammer hitting a wooden surface''' # test num_waveforms_per_prompt=1 (default) snake_case_ : List[str] = audioldm_pipe(lowercase_ , num_inference_steps=2 ).audios assert audios.shape == (1, 256) # test num_waveforms_per_prompt=1 (default) for batch of prompts snake_case_ : List[str] = 2 snake_case_ : Dict = audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios assert audios.shape == (batch_size, 256) # test num_waveforms_per_prompt for single prompt snake_case_ : Union[str, Any] = 2 snake_case_ : Dict = audioldm_pipe(lowercase_ , num_inference_steps=2 , num_waveforms_per_prompt=lowercase_ ).audios assert audios.shape == (num_waveforms_per_prompt, 256) # test num_waveforms_per_prompt for batch of prompts snake_case_ : Union[str, Any] = 2 snake_case_ : Dict = audioldm_pipe( [prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=lowercase_ ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 256) def _snake_case ( self : str ): snake_case_ : List[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case_ : Tuple = self.get_dummy_components() snake_case_ : Optional[int] = AudioLDMPipeline(**lowercase_ ) snake_case_ : Union[str, Any] = audioldm_pipe.to(lowercase_ ) audioldm_pipe.set_progress_bar_config(disable=lowercase_ ) snake_case_ : int = audioldm_pipe.vocoder.config.sampling_rate snake_case_ : Dict = self.get_dummy_inputs(lowercase_ ) snake_case_ : Optional[Any] = audioldm_pipe(audio_length_in_s=0.0_16 , **lowercase_ ) snake_case_ : Dict = output.audios[0] assert audio.ndim == 1 assert len(lowercase_ ) / vocoder_sampling_rate == 0.0_16 snake_case_ : str = audioldm_pipe(audio_length_in_s=0.0_32 , **lowercase_ ) snake_case_ : Any = output.audios[0] assert audio.ndim == 1 assert len(lowercase_ ) / vocoder_sampling_rate == 0.0_32 def _snake_case ( self : str ): snake_case_ : int = self.get_dummy_components() snake_case_ : Union[str, Any] = AudioLDMPipeline(**lowercase_ ) snake_case_ : List[str] = audioldm_pipe.to(lowercase_ ) audioldm_pipe.set_progress_bar_config(disable=lowercase_ ) snake_case_ : Optional[int] = ['''hey'''] snake_case_ : List[Any] = audioldm_pipe(lowercase_ , num_inference_steps=1 ) snake_case_ : Dict = output.audios.shape assert audio_shape == (1, 256) snake_case_ : Union[str, Any] = audioldm_pipe.vocoder.config config.model_in_dim *= 2 snake_case_ : List[Any] = SpeechTaHifiGan(lowercase_ ).to(lowercase_ ) snake_case_ : Optional[Any] = audioldm_pipe(lowercase_ , num_inference_steps=1 ) snake_case_ : Any = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 256) def _snake_case ( self : int ): self._test_attention_slicing_forward_pass(test_mean_pixel_difference=lowercase_ ) def _snake_case ( self : Dict ): self._test_inference_batch_single_identical(test_mean_pixel_difference=lowercase_ ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def _snake_case ( self : List[Any] ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=lowercase_ ) @slow class _UpperCAmelCase ( unittest.TestCase): def _snake_case ( self : Optional[int] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self : Dict , lowercase_ : Optional[Any] , lowercase_ : Dict="cpu" , lowercase_ : int=torch.floataa , lowercase_ : Optional[Any]=0 ): snake_case_ : Union[str, Any] = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) snake_case_ : Optional[int] = np.random.RandomState(lowercase_ ).standard_normal((1, 8, 128, 16) ) snake_case_ : Dict = torch.from_numpy(lowercase_ ).to(device=lowercase_ , dtype=lowercase_ ) snake_case_ : int = { '''prompt''': '''A hammer hitting a wooden surface''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 2.5, } return inputs def _snake_case ( self : Any ): snake_case_ : List[str] = AudioLDMPipeline.from_pretrained('''cvssp/audioldm''' ) snake_case_ : List[str] = audioldm_pipe.to(lowercase_ ) audioldm_pipe.set_progress_bar_config(disable=lowercase_ ) snake_case_ : Optional[int] = self.get_inputs(lowercase_ ) snake_case_ : List[Any] = 25 snake_case_ : Any = audioldm_pipe(**lowercase_ ).audios[0] assert audio.ndim == 1 assert len(lowercase_ ) == 81920 snake_case_ : int = audio[77230:77240] snake_case_ : Any = np.array( [-0.48_84, -0.46_07, 0.00_23, 0.50_07, 0.58_96, 0.51_51, 0.38_13, -0.02_08, -0.36_87, -0.43_15] ) snake_case_ : str = np.abs(expected_slice - audio_slice ).max() assert max_diff < 1E-2 def _snake_case ( self : Dict ): snake_case_ : str = AudioLDMPipeline.from_pretrained('''cvssp/audioldm''' ) snake_case_ : Tuple = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) snake_case_ : Tuple = audioldm_pipe.to(lowercase_ ) audioldm_pipe.set_progress_bar_config(disable=lowercase_ ) snake_case_ : Tuple = self.get_inputs(lowercase_ ) snake_case_ : List[str] = audioldm_pipe(**lowercase_ ).audios[0] assert audio.ndim == 1 assert len(lowercase_ ) == 81920 snake_case_ : List[Any] = audio[27780:27790] snake_case_ : str = np.array([-0.21_31, -0.08_73, -0.01_24, -0.01_89, 0.05_69, 0.13_73, 0.18_83, 0.28_86, 0.32_97, 0.22_12] ) snake_case_ : Any = np.abs(expected_slice - audio_slice ).max() assert max_diff < 3E-2
357
"""simple docstring""" import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def __lowercase ( _a = 3 ): if isinstance(_a , _a ): raise TypeError('''number of qubits must be a integer.''' ) if number_of_qubits <= 0: raise ValueError('''number of qubits must be > 0.''' ) if math.floor(_a ) != number_of_qubits: raise ValueError('''number of qubits must be exact integer.''' ) if number_of_qubits > 10: raise ValueError('''number of qubits too large to simulate(>10).''' ) snake_case_ : Tuple = QuantumRegister(_a , '''qr''' ) snake_case_ : Optional[Any] = ClassicalRegister(_a , '''cr''' ) snake_case_ : Any = QuantumCircuit(_a , _a ) snake_case_ : int = number_of_qubits for i in range(_a ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(_a ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , _a , _a ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(_a , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(_a , _a ) # simulate with 10000 shots snake_case_ : Any = Aer.get_backend('''qasm_simulator''' ) snake_case_ : Optional[int] = execute(_a , _a , shots=10_000 ) return job.result().get_counts(_a ) if __name__ == "__main__": print( f'Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}' )
155
0
"""simple docstring""" import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def A_ ( _lowercase, _lowercase ): '''simple docstring''' snake_case_ :int = XCLIPTextConfig() # derive patch size from model name snake_case_ :Union[str, Any] = model_name.find("""patch""" ) snake_case_ :List[str] = int(model_name[start_idx + len("""patch""" ) : start_idx + len("""patch""" ) + 2] ) snake_case_ :Any = XCLIPVisionConfig(patch_size=_lowercase, num_frames=_lowercase ) if "large" in model_name: snake_case_ :Optional[Any] = 768 snake_case_ :Union[str, Any] = 3072 snake_case_ :Any = 12 snake_case_ :Any = 1024 snake_case_ :str = 4096 snake_case_ :Union[str, Any] = 16 snake_case_ :Union[str, Any] = 24 snake_case_ :Tuple = 768 snake_case_ :Any = 3072 if model_name == "xclip-large-patch14-16-frames": snake_case_ :Any = 336 snake_case_ :Any = XCLIPConfig.from_text_vision_configs(_lowercase, _lowercase ) if "large" in model_name: snake_case_ :List[Any] = 768 return config def A_ ( _lowercase ): '''simple docstring''' if name == "token_embedding.weight": snake_case_ :Optional[Any] = name.replace("""token_embedding.weight""", """text_model.embeddings.token_embedding.weight""" ) if name == "positional_embedding": snake_case_ :Tuple = name.replace("""positional_embedding""", """text_model.embeddings.position_embedding.weight""" ) if "ln_1" in name: snake_case_ :Dict = name.replace("""ln_1""", """layer_norm1""" ) if "ln_2" in name: snake_case_ :str = name.replace("""ln_2""", """layer_norm2""" ) if "c_fc" in name: snake_case_ :str = name.replace("""c_fc""", """fc1""" ) if "c_proj" in name: snake_case_ :int = name.replace("""c_proj""", """fc2""" ) if name.startswith("""transformer.resblocks""" ): snake_case_ :Union[str, Any] = name.replace("""transformer.resblocks""", """text_model.encoder.layers""" ) if "attn.out_proj" in name and "message" not in name: snake_case_ :Union[str, Any] = name.replace("""attn.out_proj""", """self_attn.out_proj""" ) if "ln_final" in name: snake_case_ :Union[str, Any] = name.replace("""ln_final""", """text_model.final_layer_norm""" ) # visual encoder if name == "visual.class_embedding": snake_case_ :Any = name.replace("""visual.class_embedding""", """vision_model.embeddings.class_embedding""" ) if name == "visual.positional_embedding": snake_case_ :Optional[int] = name.replace("""visual.positional_embedding""", """vision_model.embeddings.position_embedding.weight""" ) if name.startswith("""visual.transformer.resblocks""" ): snake_case_ :Union[str, Any] = name.replace("""visual.transformer.resblocks""", """vision_model.encoder.layers""" ) if "visual.conv1" in name: snake_case_ :int = name.replace("""visual.conv1""", """vision_model.embeddings.patch_embedding""" ) if "visual.ln_pre" in name: snake_case_ :Any = name.replace("""visual.ln_pre""", """vision_model.pre_layernorm""" ) if "visual.ln_post" in name: snake_case_ :str = name.replace("""visual.ln_post""", """vision_model.post_layernorm""" ) if "visual.proj" in name: snake_case_ :Union[str, Any] = name.replace("""visual.proj""", """visual_projection.weight""" ) if "text_projection" in name: snake_case_ :Dict = name.replace("""text_projection""", """text_projection.weight""" ) # things on top if "prompts_visual_proj" in name: snake_case_ :List[str] = name.replace("""prompts_visual_proj""", """prompts_visual_projection""" ) if "prompts_visual_ln" in name: snake_case_ :Dict = name.replace("""prompts_visual_ln""", """prompts_visual_layernorm""" ) # mit if name == "mit.positional_embedding": snake_case_ :str = name.replace("""positional""", """position""" ) if name.startswith("""mit.resblocks""" ): snake_case_ :Dict = name.replace("""mit.resblocks""", """mit.encoder.layers""" ) # prompts generator if name.startswith("""prompts_generator.norm""" ): snake_case_ :Union[str, Any] = name.replace("""prompts_generator.norm""", """prompts_generator.layernorm""" ) return name def A_ ( _lowercase, _lowercase ): '''simple docstring''' for key in orig_state_dict.copy().keys(): snake_case_ :Dict = orig_state_dict.pop(_lowercase ) if "attn.in_proj" in key: snake_case_ :Optional[Any] = key.split(""".""" ) if key.startswith("""visual""" ): snake_case_ :Any = key_split[3] snake_case_ :Optional[Any] = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: snake_case_ :str = val[ :dim, : ] snake_case_ :Optional[int] = val[ dim : dim * 2, : ] snake_case_ :Union[str, Any] = val[ -dim:, : ] else: snake_case_ :Dict = val[ :dim ] snake_case_ :Optional[int] = val[ dim : dim * 2 ] snake_case_ :Optional[int] = val[ -dim: ] else: if "weight" in key: snake_case_ :Optional[Any] = val[ :dim, : ] snake_case_ :List[str] = val[ dim : dim * 2, : ] snake_case_ :Dict = val[ -dim:, : ] else: snake_case_ :Union[str, Any] = val[:dim] snake_case_ :Union[str, Any] = val[ dim : dim * 2 ] snake_case_ :Union[str, Any] = val[-dim:] elif key.startswith("""mit""" ): snake_case_ :Tuple = key_split[2] snake_case_ :Union[str, Any] = config.vision_config.mit_hidden_size if "weight" in key: snake_case_ :Optional[int] = val[:dim, :] snake_case_ :Optional[int] = val[dim : dim * 2, :] snake_case_ :str = val[-dim:, :] else: snake_case_ :str = val[:dim] snake_case_ :Any = val[dim : dim * 2] snake_case_ :int = val[-dim:] else: snake_case_ :Tuple = key_split[2] snake_case_ :Any = config.text_config.hidden_size if "weight" in key: snake_case_ :Dict = val[:dim, :] snake_case_ :Dict = val[ dim : dim * 2, : ] snake_case_ :List[str] = val[-dim:, :] else: snake_case_ :Any = val[:dim] snake_case_ :Tuple = val[ dim : dim * 2 ] snake_case_ :List[str] = val[-dim:] else: snake_case_ :Optional[int] = rename_key(_lowercase ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: snake_case_ :Optional[Any] = val.T snake_case_ :Tuple = val return orig_state_dict def A_ ( _lowercase ): '''simple docstring''' if num_frames == 8: snake_case_ :str = """eating_spaghetti_8_frames.npy""" elif num_frames == 16: snake_case_ :int = """eating_spaghetti.npy""" elif num_frames == 32: snake_case_ :List[str] = """eating_spaghetti_32_frames.npy""" snake_case_ :int = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""", filename=_lowercase, repo_type="""dataset""", ) snake_case_ :Union[str, Any] = np.load(_lowercase ) return list(_lowercase ) def A_ ( _lowercase, _lowercase=None, _lowercase=False ): '''simple docstring''' snake_case_ :List[Any] = { # fully supervised kinetics-400 checkpoints """xclip-base-patch32""": """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth""", """xclip-base-patch32-16-frames""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth""" ), """xclip-base-patch16""": """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth""", """xclip-base-patch16-16-frames""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth""" ), """xclip-large-patch14""": """https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb""", """xclip-large-patch14-16-frames""": """https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f""", # fully supervised kinetics-600 checkpoints """xclip-base-patch16-kinetics-600""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth""" ), """xclip-base-patch16-kinetics-600-16-frames""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth""" ), """xclip-large-patch14-kinetics-600""": """https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be""", # few shot """xclip-base-patch16-hmdb-2-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth""" ), """xclip-base-patch16-hmdb-4-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth""" ), """xclip-base-patch16-hmdb-8-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth""" ), """xclip-base-patch16-hmdb-16-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth""" ), """xclip-base-patch16-ucf-2-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth""" ), """xclip-base-patch16-ucf-4-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth""" ), """xclip-base-patch16-ucf-8-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth""" ), """xclip-base-patch16-ucf-16-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth""" ), # zero shot """xclip-base-patch16-zero-shot""": """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth""", } snake_case_ :Optional[int] = model_to_url[model_name] snake_case_ :int = 8 if "16-frames" in model_name: snake_case_ :List[Any] = 16 elif "shot" in model_name: snake_case_ :Dict = 32 snake_case_ :Optional[int] = get_xclip_config(_lowercase, _lowercase ) snake_case_ :Optional[Any] = XCLIPModel(_lowercase ) model.eval() if "drive" in checkpoint_url: snake_case_ :List[str] = """pytorch_model.bin""" gdown.cached_download(_lowercase, _lowercase, quiet=_lowercase ) snake_case_ :List[Any] = torch.load(_lowercase, map_location="""cpu""" )["""model"""] else: snake_case_ :Tuple = torch.hub.load_state_dict_from_url(_lowercase )["""model"""] snake_case_ :Union[str, Any] = convert_state_dict(_lowercase, _lowercase ) snake_case_ :str = XCLIPModel(_lowercase ) snake_case_, snake_case_ :Optional[int] = model.load_state_dict(_lowercase, strict=_lowercase ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() snake_case_ :List[str] = 336 if model_name == """xclip-large-patch14-16-frames""" else 224 snake_case_ :List[Any] = VideoMAEImageProcessor(size=_lowercase ) snake_case_ :Any = CLIPTokenizer.from_pretrained("""openai/clip-vit-base-patch32""" ) snake_case_ :str = CLIPTokenizerFast.from_pretrained("""openai/clip-vit-base-patch32""" ) snake_case_ :Optional[Any] = XCLIPProcessor(image_processor=_lowercase, tokenizer=_lowercase ) snake_case_ :Optional[int] = prepare_video(_lowercase ) snake_case_ :Optional[Any] = processor( text=["""playing sports""", """eating spaghetti""", """go shopping"""], videos=_lowercase, return_tensors="""pt""", padding=_lowercase ) print("""Shape of pixel values:""", inputs.pixel_values.shape ) with torch.no_grad(): snake_case_ :List[Any] = model(**_lowercase ) # Verify outputs snake_case_ :List[Any] = outputs.logits_per_video snake_case_ :Any = logits_per_video.softmax(dim=1 ) print("""Probs:""", _lowercase ) # kinetics-400 if model_name == "xclip-base-patch32": snake_case_ :Union[str, Any] = torch.tensor([[0.0019, 0.9951, 0.0030]] ) elif model_name == "xclip-base-patch32-16-frames": snake_case_ :str = torch.tensor([[7.09_99e-04, 9.98_83e-01, 4.55_80e-04]] ) elif model_name == "xclip-base-patch16": snake_case_ :Tuple = torch.tensor([[0.0083, 0.9681, 0.0236]] ) elif model_name == "xclip-base-patch16-16-frames": snake_case_ :Any = torch.tensor([[7.69_37e-04, 9.97_28e-01, 1.94_73e-03]] ) elif model_name == "xclip-large-patch14": snake_case_ :str = torch.tensor([[0.0062, 0.9864, 0.0075]] ) elif model_name == "xclip-large-patch14-16-frames": snake_case_ :Tuple = torch.tensor([[3.38_77e-04, 9.99_37e-01, 2.88_88e-04]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": snake_case_ :List[Any] = torch.tensor([[0.0555, 0.8914, 0.0531]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": snake_case_ :Union[str, Any] = torch.tensor([[3.85_54e-04, 9.99_29e-01, 3.27_54e-04]] ) elif model_name == "xclip-large-patch14-kinetics-600": snake_case_ :List[Any] = torch.tensor([[0.0036, 0.9920, 0.0045]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": snake_case_ :Dict = torch.tensor([[7.18_90e-06, 9.99_94e-01, 5.65_59e-05]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": snake_case_ :Union[str, Any] = torch.tensor([[1.03_20e-05, 9.99_93e-01, 6.24_35e-05]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": snake_case_ :str = torch.tensor([[4.13_77e-06, 9.99_90e-01, 9.83_86e-05]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": snake_case_ :str = torch.tensor([[4.13_47e-05, 9.99_62e-01, 3.34_11e-04]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": snake_case_ :int = torch.tensor([[8.58_57e-05, 9.99_28e-01, 6.32_91e-04]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": snake_case_ :Optional[int] = torch.tensor([[8.58_57e-05, 9.99_28e-01, 6.32_91e-04]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": snake_case_ :Any = torch.tensor([[0.0027, 0.9904, 0.0070]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": snake_case_ :Tuple = torch.tensor([[9.82_19e-04, 9.95_93e-01, 3.08_63e-03]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": snake_case_ :Union[str, Any] = torch.tensor([[3.50_82e-04, 9.97_85e-01, 1.79_66e-03]] ) else: raise ValueError(f"""Model name {model_name} not supported""" ) assert torch.allclose(_lowercase, _lowercase, atol=1e-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowercase ) if push_to_hub: print("""Pushing model, processor and slow tokenizer files to the hub...""" ) model.push_to_hub(_lowercase, organization="""nielsr""" ) processor.push_to_hub(_lowercase, organization="""nielsr""" ) slow_tokenizer.push_to_hub(_lowercase, organization="""nielsr""" ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="xclip-base-patch32", type=str, help="Name of the model.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) __a = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
66
def __lowerCAmelCase ( a__ , a__ ) -> float: def get_matched_characters(a__ , a__ ) -> str: __a = [] __a = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): __a = int(max(0 , i - limit ) ) __a = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(a__ ) __a = F"""{_stra[0:_stra.index(a__ )]} {_stra[_stra.index(a__ ) + 1:]}""" return "".join(a__ ) # matching characters __a = get_matched_characters(a__ , a__ ) __a = get_matched_characters(a__ , a__ ) __a = len(a__ ) # transposition __a = ( len([(ca, ca) for ca, ca in zip(a__ , a__ ) if ca != ca] ) // 2 ) if not match_count: __a = 0.0 else: __a = ( 1 / 3 * ( match_count / len(a__ ) + match_count / len(a__ ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters __a = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler('hello', 'world'))
6
0
from __future__ import annotations from collections.abc import Callable from typing import Any, Generic, TypeVar _lowerCamelCase : Optional[Any] = TypeVar('''T''') class SCREAMING_SNAKE_CASE__ ( Generic[T] ): '''simple docstring''' def __init__( self : Dict , lowercase : list[T] , lowercase : Callable[[T, T], T] ): '''simple docstring''' _snake_case = None _snake_case = len(lowercase ) _snake_case = [any_type for _ in range(self.N )] + arr _snake_case = fnc self.build() def A ( self : List[str] ): '''simple docstring''' for p in range(self.N - 1 , 0 , -1 ): _snake_case = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def A ( self : Union[str, Any] , lowercase : int , lowercase : T ): '''simple docstring''' p += self.N _snake_case = v while p > 1: _snake_case = p // 2 _snake_case = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def A ( self : List[str] , lowercase : int , lowercase : int ): # noqa: E741 '''simple docstring''' _snake_case , _snake_case = l + self.N, r + self.N _snake_case = None while l <= r: if l % 2 == 1: _snake_case = self.st[l] if res is None else self.fn(lowercase , self.st[l] ) if r % 2 == 0: _snake_case = self.st[r] if res is None else self.fn(lowercase , self.st[r] ) _snake_case , _snake_case = (l + 1) // 2, (r - 1) // 2 return res if __name__ == "__main__": from functools import reduce _lowerCamelCase : Optional[int] = [1, 10, -2, 9, -3, 8, 4, -7, 5, 6, 11, -12] _lowerCamelCase : Tuple = { 0: 7, 1: 2, 2: 6, 3: -14, 4: 5, 5: 4, 6: 7, 7: -10, 8: 9, 9: 10, 10: 12, 11: 1, } _lowerCamelCase : int = SegmentTree(test_array, min) _lowerCamelCase : Optional[Any] = SegmentTree(test_array, max) _lowerCamelCase : int = SegmentTree(test_array, lambda a, b: a + b) def a_ ( ) -> None: for i in range(len(__lowercase ) ): for j in range(__lowercase , len(__lowercase ) ): _snake_case = reduce(__lowercase , test_array[i : j + 1] ) _snake_case = reduce(__lowercase , test_array[i : j + 1] ) _snake_case = reduce(lambda __lowercase , __lowercase : a + b , test_array[i : j + 1] ) assert min_range == min_segment_tree.query(__lowercase , __lowercase ) assert max_range == max_segment_tree.query(__lowercase , __lowercase ) assert sum_range == sum_segment_tree.query(__lowercase , __lowercase ) test_all_segments() for index, value in test_updates.items(): _lowerCamelCase : Dict = value min_segment_tree.update(index, value) max_segment_tree.update(index, value) sum_segment_tree.update(index, value) test_all_segments()
130
import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def a_ ( __lowercase : Dict ) -> int: _snake_case = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', '_float_tensor', 'decoder.output_projection.weight', ] for k in ignore_keys: state_dict.pop(__lowercase , __lowercase ) def a_ ( __lowercase : List[str] ) -> str: _snake_case , _snake_case = emb.weight.shape _snake_case = nn.Linear(__lowercase , __lowercase , bias=__lowercase ) _snake_case = emb.weight.data return lin_layer def a_ ( __lowercase : Optional[int] , __lowercase : Optional[Any]="facebook/mbart-large-en-ro" , __lowercase : Union[str, Any]=False , __lowercase : Optional[Any]=False ) -> int: _snake_case = torch.load(__lowercase , map_location='cpu' )['model'] remove_ignore_keys_(__lowercase ) _snake_case = state_dict['encoder.embed_tokens.weight'].shape[0] _snake_case = MBartConfig.from_pretrained(__lowercase , vocab_size=__lowercase ) if mbart_aa and finetuned: _snake_case = 'relu' _snake_case = state_dict['decoder.embed_tokens.weight'] _snake_case = MBartForConditionalGeneration(__lowercase ) model.model.load_state_dict(__lowercase ) if finetuned: _snake_case = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": _lowerCamelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.''' ) parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--hf_config''', default='''facebook/mbart-large-cc25''', type=str, help='''Which huggingface architecture to use: mbart-large''', ) parser.add_argument('''--mbart_50''', action='''store_true''', help='''whether the model is mMART-50 checkpoint''') parser.add_argument('''--finetuned''', action='''store_true''', help='''whether the model is a fine-tuned checkpoint''') _lowerCamelCase : List[str] = parser.parse_args() _lowerCamelCase : Tuple = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
130
1