code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging lowerCamelCase = logging.get_logger(__name__) if is_vision_available(): import PIL class __magic_name__ ( lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : int = ['pixel_values'] def __init__( self, lowercase_ = True, lowercase_ = None, lowercase_ = PILImageResampling.BICUBIC, lowercase_ = True, lowercase_ = None, lowercase_ = True, lowercase_ = 1 / 255, lowercase_ = True, lowercase_ = None, lowercase_ = None, lowercase_ = True, **lowercase_, ) -> None: """simple docstring""" super().__init__(**lowercase_ ) a__ =size if size is not None else {'''shortest_edge''': 224} a__ =get_size_dict(lowercase_, default_to_square=lowercase_ ) a__ =crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} a__ =get_size_dict(lowercase_, default_to_square=lowercase_, param_name='''crop_size''' ) a__ =do_resize a__ =size a__ =resample a__ =do_center_crop a__ =crop_size a__ =do_rescale a__ =rescale_factor a__ =do_normalize a__ =image_mean if image_mean is not None else OPENAI_CLIP_MEAN a__ =image_std if image_std is not None else OPENAI_CLIP_STD a__ =do_convert_rgb def _UpperCAmelCase ( self, lowercase_, lowercase_, lowercase_ = PILImageResampling.BICUBIC, lowercase_ = None, **lowercase_, ) -> np.ndarray: """simple docstring""" a__ =get_size_dict(lowercase_, default_to_square=lowercase_ ) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) a__ =get_resize_output_image_size(lowercase_, size=size['''shortest_edge'''], default_to_square=lowercase_ ) return resize(lowercase_, size=lowercase_, resample=lowercase_, data_format=lowercase_, **lowercase_ ) def _UpperCAmelCase ( self, lowercase_, lowercase_, lowercase_ = None, **lowercase_, ) -> np.ndarray: """simple docstring""" a__ =get_size_dict(lowercase_ ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(lowercase_, size=(size['''height'''], size['''width''']), data_format=lowercase_, **lowercase_ ) def _UpperCAmelCase ( self, lowercase_, lowercase_, lowercase_ = None, **lowercase_, ) -> List[str]: """simple docstring""" return rescale(lowercase_, scale=lowercase_, data_format=lowercase_, **lowercase_ ) def _UpperCAmelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_ = None, **lowercase_, ) -> np.ndarray: """simple docstring""" return normalize(lowercase_, mean=lowercase_, std=lowercase_, data_format=lowercase_, **lowercase_ ) def _UpperCAmelCase ( self, lowercase_, lowercase_ = None, lowercase_ = None, lowercase_ = None, lowercase_ = None, lowercase_ = None, lowercase_ = None, lowercase_ = None, lowercase_ = None, lowercase_ = None, lowercase_ = None, lowercase_ = None, lowercase_ = None, lowercase_ = ChannelDimension.FIRST, **lowercase_, ) -> PIL.Image.Image: """simple docstring""" a__ =do_resize if do_resize is not None else self.do_resize a__ =size if size is not None else self.size a__ =get_size_dict(lowercase_, param_name='''size''', default_to_square=lowercase_ ) a__ =resample if resample is not None else self.resample a__ =do_center_crop if do_center_crop is not None else self.do_center_crop a__ =crop_size if crop_size is not None else self.crop_size a__ =get_size_dict(lowercase_, param_name='''crop_size''', default_to_square=lowercase_ ) a__ =do_rescale if do_rescale is not None else self.do_rescale a__ =rescale_factor if rescale_factor is not None else self.rescale_factor a__ =do_normalize if do_normalize is not None else self.do_normalize a__ =image_mean if image_mean is not None else self.image_mean a__ =image_std if image_std is not None else self.image_std a__ =do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb a__ =make_list_of_images(lowercase_ ) if not valid_images(lowercase_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: a__ =[convert_to_rgb(lowercase_ ) for image in images] # All transformations expect numpy arrays. a__ =[to_numpy_array(lowercase_ ) for image in images] if do_resize: a__ =[self.resize(image=lowercase_, size=lowercase_, resample=lowercase_ ) for image in images] if do_center_crop: a__ =[self.center_crop(image=lowercase_, size=lowercase_ ) for image in images] if do_rescale: a__ =[self.rescale(image=lowercase_, scale=lowercase_ ) for image in images] if do_normalize: a__ =[self.normalize(image=lowercase_, mean=lowercase_, std=lowercase_ ) for image in images] a__ =[to_channel_dimension_format(lowercase_, lowercase_ ) for image in images] a__ ={'''pixel_values''': images} return BatchFeature(data=lowercase_, tensor_type=lowercase_ )
188
import argparse import hashlib # hashlib is only used inside the Test class import struct class __magic_name__ : '''simple docstring''' def __init__( self, lowercase_ ) -> List[str]: """simple docstring""" a__ =data a__ =[0X67452301, 0Xefcdab89, 0X98badcfe, 0X10325476, 0Xc3d2e1f0] @staticmethod def _UpperCAmelCase ( lowercase_, lowercase_ ) -> Union[str, Any]: """simple docstring""" return ((n << b) | (n >> (32 - b))) & 0Xffffffff def _UpperCAmelCase ( self ) -> Optional[int]: """simple docstring""" a__ =b'''\x80''' + b'''\x00''' * (63 - (len(self.data ) + 8) % 64) a__ =self.data + padding + struct.pack('''>Q''', 8 * len(self.data ) ) return padded_data def _UpperCAmelCase ( self ) -> Any: """simple docstring""" return [ self.padded_data[i : i + 64] for i in range(0, len(self.padded_data ), 64 ) ] def _UpperCAmelCase ( self, lowercase_ ) -> List[Any]: """simple docstring""" a__ =list(struct.unpack('''>16L''', lowercase_ ) ) + [0] * 64 for i in range(16, 80 ): a__ =self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]), 1 ) return w def _UpperCAmelCase ( self ) -> Any: """simple docstring""" a__ =self.padding() a__ =self.split_blocks() for block in self.blocks: a__ =self.expand_block(lowercase_ ) a__, a__, a__, a__, a__ =self.h for i in range(0, 80 ): if 0 <= i < 20: a__ =(b & c) | ((~b) & d) a__ =0X5a827999 elif 20 <= i < 40: a__ =b ^ c ^ d a__ =0X6ed9eba1 elif 40 <= i < 60: a__ =(b & c) | (b & d) | (c & d) a__ =0X8f1bbcdc elif 60 <= i < 80: a__ =b ^ c ^ d a__ =0Xca62c1d6 a__, a__, a__, a__, a__ =( self.rotate(lowercase_, 5 ) + f + e + k + expanded_block[i] & 0Xffffffff, a, self.rotate(lowercase_, 30 ), c, d, ) a__ =( self.h[0] + a & 0Xffffffff, self.h[1] + b & 0Xffffffff, self.h[2] + c & 0Xffffffff, self.h[3] + d & 0Xffffffff, self.h[4] + e & 0Xffffffff, ) return ("{:08x}" * 5).format(*self.h ) def UpperCAmelCase__ ( ): '''simple docstring''' a__ =b'''Test String''' assert SHAaHash(_A ).final_hash() == hashlib.shaa(_A ).hexdigest() # noqa: S324 def UpperCAmelCase__ ( ): '''simple docstring''' a__ =argparse.ArgumentParser(description='''Process some strings or files''' ) parser.add_argument( '''--string''' , dest='''input_string''' , default='''Hello World!! Welcome to Cryptography''' , help='''Hash the string''' , ) parser.add_argument('''--file''' , dest='''input_file''' , help='''Hash contents of a file''' ) a__ =parser.parse_args() a__ =args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , '''rb''' ) as f: a__ =f.read() else: a__ =bytes(_A , '''utf-8''' ) print(SHAaHash(_A ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
188
1
import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class lowercase ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): __lowercase : Dict = DebertaTokenizer __lowercase : List[Any] = True __lowercase : Tuple = DebertaTokenizerFast def __UpperCamelCase ( self ) -> str: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCamelCase = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '[UNK]', ] UpperCamelCase = dict(zip(A_ , range(len(A_ ) ) ) ) UpperCamelCase = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] UpperCamelCase = {'unk_token': '[UNK]'} UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(A_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(A_ ) ) def __UpperCamelCase ( self , **A_ ) -> Any: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **A_ ) def __UpperCamelCase ( self , A_ ) -> Any: """simple docstring""" UpperCamelCase = 'lower newer' UpperCamelCase = 'lower newer' return input_text, output_text def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase = self.get_tokenizer() UpperCamelCase = 'lower newer' UpperCamelCase = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] UpperCamelCase = tokenizer.tokenize(A_ ) self.assertListEqual(A_ , A_ ) UpperCamelCase = tokens + [tokenizer.unk_token] UpperCamelCase = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) , A_ ) def __UpperCamelCase ( self ) -> Dict: """simple docstring""" UpperCamelCase = self.get_tokenizer() UpperCamelCase = tokenizer('Hello' , 'World' ) UpperCamelCase = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['token_type_ids'] , A_ ) @slow def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase = self.tokenizer_class.from_pretrained('microsoft/deberta-base' ) UpperCamelCase = tokenizer.encode('sequence builders' , add_special_tokens=A_ ) UpperCamelCase = tokenizer.encode('multi-sequence build' , add_special_tokens=A_ ) UpperCamelCase = tokenizer.encode( 'sequence builders' , add_special_tokens=A_ , add_prefix_space=A_ ) UpperCamelCase = tokenizer.encode( 'sequence builders' , 'multi-sequence build' , add_special_tokens=A_ , add_prefix_space=A_ ) UpperCamelCase = tokenizer.build_inputs_with_special_tokens(A_ ) UpperCamelCase = tokenizer.build_inputs_with_special_tokens(A_ , A_ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: UpperCamelCase = tokenizer_class.from_pretrained('microsoft/deberta-base' ) UpperCamelCase = [ 'ALBERT: A Lite BERT for Self-supervised Learning of Language Representations', 'ALBERT incorporates two parameter reduction techniques', 'The first one is a factorized embedding parameterization. By decomposing the large vocabulary' ' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of' ' vocabulary embedding.', ] UpperCamelCase = tokenizer(A_ , padding=A_ ) UpperCamelCase = [tokenizer.decode(A_ , skip_special_tokens=A_ ) for seq in encoding['input_ids']] # fmt: off UpperCamelCase = { 'input_ids': [ [1, 2_118, 11_126, 565, 35, 83, 25_191, 163, 18_854, 13, 12_156, 12, 16_101, 25_376, 13_807, 9, 22_205, 27_893, 1_635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2_118, 11_126, 565, 24_536, 80, 43_797, 4_878, 7_373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3_724, 1_538, 33_183, 11_303, 43_797, 1_938, 4, 870, 24_165, 29_105, 5, 739, 32_644, 33_183, 11_303, 36_173, 88, 80, 650, 7_821, 45_940, 6, 52, 2_559, 5, 1_836, 9, 5, 7_397, 13_171, 31, 5, 1_836, 9, 32_644, 33_183, 11_303, 4, 2] ], 'token_type_ids': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], 'attention_mask': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on UpperCamelCase = [ 'ALBERT: A Lite BERT for Self-supervised Learning of Language Representations', 'ALBERT incorporates two parameter reduction techniques', 'The first one is a factorized embedding parameterization. By decomposing the large vocabulary' ' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of' ' vocabulary embedding.', ] self.assertDictEqual(encoding.data , A_ ) for expected, decoded in zip(A_ , A_ ): self.assertEqual(A_ , A_ )
110
import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _UpperCAmelCase : Union[str, Any] = get_tests_dir("fixtures/test_sentencepiece_with_bytefallback.model") @require_sentencepiece @require_tokenizers class lowercase ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): __lowercase : Optional[Any] = GPTSwaTokenizer __lowercase : Optional[Any] = False __lowercase : Union[str, Any] = True __lowercase : Tuple = False def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing UpperCamelCase = GPTSwaTokenizer(A_ , eos_token='<unk>' , bos_token='<unk>' , pad_token='<unk>' ) tokenizer.save_pretrained(self.tmpdirname ) def __UpperCamelCase ( self , A_ ) -> List[str]: """simple docstring""" UpperCamelCase = 'This is a test' UpperCamelCase = 'This is a test' return input_text, output_text def __UpperCamelCase ( self ) -> int: """simple docstring""" UpperCamelCase = '<s>' UpperCamelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A_ ) , A_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A_ ) , A_ ) def __UpperCamelCase ( self ) -> Dict: """simple docstring""" UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(A_ ) , 2_000 ) def __UpperCamelCase ( self ) -> Any: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 2_000 ) def __UpperCamelCase ( self ) -> int: """simple docstring""" UpperCamelCase = GPTSwaTokenizer(A_ ) UpperCamelCase = tokenizer.tokenize('This is a test' ) self.assertListEqual(A_ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) , [465, 287, 265, 631, 842] ) UpperCamelCase = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) # fmt: off self.assertListEqual( A_ , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] , ) # fmt: on UpperCamelCase = tokenizer.convert_tokens_to_ids(A_ ) self.assertListEqual( A_ , [262, 272, 1_525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260] , ) UpperCamelCase = tokenizer.convert_ids_to_tokens(A_ ) # fmt: off self.assertListEqual( A_ , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] ) # fmt: on def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase = GPTSwaTokenizer(A_ ) UpperCamelCase = ['This is a test', 'I was born in 92000, and this is falsé.'] UpperCamelCase = [ [465, 287, 265, 631, 842], [262, 272, 1_525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(A_ , A_ ): self.assertListEqual(tokenizer.encode_fast(A_ ) , A_ ) # Test that decode_fast returns the input text for text, token_ids in zip(A_ , A_ ): self.assertEqual(tokenizer.decode_fast(A_ ) , A_ ) @slow def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = [ '<|python|>def fibonacci(n)\n if n < 0:\n print(\'Incorrect input\')', 'Hey there, how are you doing this fine day?', 'This is a text with a trailing spaces followed by a dot .', 'Häj sväjs lillebrör! =)', 'Det är inget fel på Mr. Cool', ] # fmt: off UpperCamelCase = {'input_ids': [[63_423, 5, 6_811, 14_954, 282, 816, 3_821, 63_466, 63_425, 63_462, 18, 63_978, 678, 301, 1_320, 63_423, 63_455, 63_458, 18, 63_982, 4_246, 3_940, 1_901, 47_789, 5_547, 18_994], [19_630, 1_100, 63_446, 1_342, 633, 544, 4_488, 593, 5_102, 2_416, 63_495, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_652, 428, 268, 1_936, 515, 268, 58_593, 22_413, 9_106, 546, 268, 33_213, 63_979, 698, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [55_130, 63_450, 924, 63_449, 2_249, 4_062, 1_558, 318, 63_504, 21_498, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [509, 377, 2_827, 2_559, 332, 6_575, 63_443, 26_801, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=A_ , model_name='AI-Sweden/gpt-sw3-126m' , sequences=A_ , )
110
1
import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase = 1.5 lowercase = int(factor * num_class_images ) lowercase = ClipClient( url='https://knn.laion.ai/knn-service' , indice_name='laion_400m' , num_images=__SCREAMING_SNAKE_CASE , aesthetic_weight=0.1 ) os.makedirs(F'''{class_data_dir}/images''' , exist_ok=__SCREAMING_SNAKE_CASE ) if len(list(Path(F'''{class_data_dir}/images''' ).iterdir() ) ) >= num_class_images: return while True: lowercase = client.query(text=__SCREAMING_SNAKE_CASE ) if len(__SCREAMING_SNAKE_CASE ) >= factor * num_class_images or num_images > 1e4: break else: lowercase = int(factor * num_images ) lowercase = ClipClient( url='https://knn.laion.ai/knn-service' , indice_name='laion_400m' , num_images=__SCREAMING_SNAKE_CASE , aesthetic_weight=0.1 , ) lowercase = 0 lowercase = 0 lowercase = tqdm(desc='downloading real regularization images' , total=__SCREAMING_SNAKE_CASE ) with open(F'''{class_data_dir}/caption.txt''' , 'w' ) as fa, open(F'''{class_data_dir}/urls.txt''' , 'w' ) as fa, open( F'''{class_data_dir}/images.txt''' , 'w' ) as fa: while total < num_class_images: lowercase = class_images[count] count += 1 try: lowercase = requests.get(images['url'] ) if img.status_code == 200: lowercase = Image.open(BytesIO(img.content ) ) with open(F'''{class_data_dir}/images/{total}.jpg''' , 'wb' ) as f: f.write(img.content ) fa.write(images['caption'] + '\n' ) fa.write(images['url'] + '\n' ) fa.write(F'''{class_data_dir}/images/{total}.jpg''' + '\n' ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def UpperCAmelCase_ ( ): lowercase = argparse.ArgumentParser('' , add_help=__SCREAMING_SNAKE_CASE ) parser.add_argument('--class_prompt' , help='text prompt to retrieve images' , required=__SCREAMING_SNAKE_CASE , type=__SCREAMING_SNAKE_CASE ) parser.add_argument('--class_data_dir' , help='path to save images' , required=__SCREAMING_SNAKE_CASE , type=__SCREAMING_SNAKE_CASE ) parser.add_argument('--num_class_images' , help='number of images to download' , default=200 , type=__SCREAMING_SNAKE_CASE ) return parser.parse_args() if __name__ == "__main__": UpperCAmelCase = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
195
from manim import * class A_ ( __lowerCamelCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self ): lowercase = Rectangle(height=0.5 , width=0.5 ) lowercase = Rectangle(height=0.25 , width=0.25 ) lowercase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) lowercase = [mem.copy() for i in range(6 )] lowercase = [mem.copy() for i in range(6 )] lowercase = VGroup(*snake_case ).arrange(snake_case , buff=0 ) lowercase = VGroup(*snake_case ).arrange(snake_case , buff=0 ) lowercase = VGroup(snake_case , snake_case ).arrange(snake_case , buff=0 ) lowercase = Text('CPU' , font_size=24 ) lowercase = Group(snake_case , snake_case ).arrange(snake_case , buff=0.5 , aligned_edge=snake_case ) cpu.move_to([-2.5, -0.5, 0] ) self.add(snake_case ) lowercase = [mem.copy() for i in range(4 )] lowercase = VGroup(*snake_case ).arrange(snake_case , buff=0 ) lowercase = Text('GPU' , font_size=24 ) lowercase = Group(snake_case , snake_case ).arrange(snake_case , buff=0.5 , aligned_edge=snake_case ) gpu.move_to([-1, -1, 0] ) self.add(snake_case ) lowercase = [mem.copy() for i in range(6 )] lowercase = VGroup(*snake_case ).arrange(snake_case , buff=0 ) lowercase = Text('Model' , font_size=24 ) lowercase = Group(snake_case , snake_case ).arrange(snake_case , buff=0.5 , aligned_edge=snake_case ) model.move_to([3, -1.0, 0] ) self.add(snake_case ) lowercase = [] lowercase = [] lowercase = [] for i, rect in enumerate(snake_case ): rect.set_stroke(snake_case ) lowercase = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(snake_case , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=snake_case ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=snake_case , buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=snake_case , buff=0.0 ) self.add(snake_case ) model_cpu_arr.append(snake_case ) self.add(*snake_case , *snake_case , *snake_case ) lowercase = [mem.copy() for i in range(6 )] lowercase = VGroup(*snake_case ).arrange(snake_case , buff=0 ) lowercase = Text('Loaded Checkpoint' , font_size=24 ) lowercase = Group(snake_case , snake_case ).arrange(snake_case , buff=0.5 , aligned_edge=snake_case ) checkpoint.move_to([3, 0.5, 0] ) self.add(snake_case ) lowercase = [] lowercase = [] for i, rect in enumerate(snake_case ): lowercase = fill.copy().set_fill(snake_case , opacity=0.7 ) target.move_to(snake_case ) ckpt_arr.append(snake_case ) lowercase = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(snake_case ) self.add(*snake_case , *snake_case ) lowercase = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowercase = MarkupText( F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(snake_case , snake_case ) lowercase = MarkupText( F'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , ) blue_text.next_to(snake_case , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(snake_case ) lowercase = MarkupText( F'''Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) lowercase = [meta_mem.copy() for i in range(6 )] lowercase = [meta_mem.copy() for i in range(6 )] lowercase = VGroup(*snake_case ).arrange(snake_case , buff=0 ) lowercase = VGroup(*snake_case ).arrange(snake_case , buff=0 ) lowercase = VGroup(snake_case , snake_case ).arrange(snake_case , buff=0 ) lowercase = Text('Disk' , font_size=24 ) lowercase = Group(snake_case , snake_case ).arrange(snake_case , buff=0.5 , aligned_edge=snake_case ) disk.move_to([-4.0, -1.25, 0] ) self.play(Write(snake_case , run_time=3 ) , Write(snake_case , run_time=1 ) , Create(snake_case , run_time=1 ) ) lowercase = [] for i, rect in enumerate(snake_case ): lowercase = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(snake_case , run_time=1.5 ) ) self.play(*snake_case ) self.play(FadeOut(snake_case ) ) lowercase = MarkupText(F'''Then, the checkpoint is removed from memory\nthrough garbage collection.''' , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(snake_case , run_time=3 ) ) self.play( FadeOut(snake_case , snake_case , *snake_case , *snake_case ) , ) self.wait()
195
1
'''simple docstring''' from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING UpperCAmelCase : Any = logging.get_logger(__name__) @add_end_docstrings(a ) class lowerCAmelCase__ ( a ): """simple docstring""" def __init__( self : Optional[Any] , *__SCREAMING_SNAKE_CASE : Union[str, Any] , **__SCREAMING_SNAKE_CASE : str ) -> int: """simple docstring""" super().__init__(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) requires_backends(self , """vision""" ) self.check_model_type(__SCREAMING_SNAKE_CASE ) def __call__( self : Dict , __SCREAMING_SNAKE_CASE : Union[str, List[str], "Image.Image", List["Image.Image"]] , **__SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Optional[Any]: """simple docstring""" return super().__call__(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : str , **__SCREAMING_SNAKE_CASE : int ) -> Union[str, Any]: """simple docstring""" return {}, {}, {} def UpperCAmelCase__ ( self : str , __SCREAMING_SNAKE_CASE : Any ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = load_image(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = image.size __SCREAMING_SNAKE_CASE = self.image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors=self.framework ) return model_inputs def UpperCAmelCase__ ( self : List[Any] , __SCREAMING_SNAKE_CASE : List[Any] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model(**__SCREAMING_SNAKE_CASE ) return model_outputs def UpperCAmelCase__ ( self : str , __SCREAMING_SNAKE_CASE : int ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = model_outputs.predicted_depth __SCREAMING_SNAKE_CASE = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode="""bicubic""" , align_corners=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = prediction.squeeze().cpu().numpy() __SCREAMING_SNAKE_CASE = (output * 255 / np.max(__SCREAMING_SNAKE_CASE )).astype("""uint8""" ) __SCREAMING_SNAKE_CASE = Image.fromarray(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = predicted_depth __SCREAMING_SNAKE_CASE = depth return output_dict
331
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase : int = logging.get_logger(__name__) UpperCAmelCase : Union[str, Any] = { 'microsoft/markuplm-base': 'https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json', 'microsoft/markuplm-large': 'https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json', } class lowerCAmelCase__ ( a ): """simple docstring""" lowerCAmelCase__ = "markuplm" def __init__( self : List[str] , __SCREAMING_SNAKE_CASE : Tuple=30_522 , __SCREAMING_SNAKE_CASE : Optional[Any]=768 , __SCREAMING_SNAKE_CASE : str=12 , __SCREAMING_SNAKE_CASE : List[Any]=12 , __SCREAMING_SNAKE_CASE : str=3_072 , __SCREAMING_SNAKE_CASE : Dict="gelu" , __SCREAMING_SNAKE_CASE : Optional[int]=0.1 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.1 , __SCREAMING_SNAKE_CASE : Optional[Any]=512 , __SCREAMING_SNAKE_CASE : str=2 , __SCREAMING_SNAKE_CASE : List[Any]=0.02 , __SCREAMING_SNAKE_CASE : Union[str, Any]=1E-12 , __SCREAMING_SNAKE_CASE : str=0 , __SCREAMING_SNAKE_CASE : Dict=0 , __SCREAMING_SNAKE_CASE : Union[str, Any]=2 , __SCREAMING_SNAKE_CASE : Union[str, Any]=256 , __SCREAMING_SNAKE_CASE : Union[str, Any]=1_024 , __SCREAMING_SNAKE_CASE : Dict=216 , __SCREAMING_SNAKE_CASE : Union[str, Any]=1_001 , __SCREAMING_SNAKE_CASE : Optional[int]=32 , __SCREAMING_SNAKE_CASE : str=50 , __SCREAMING_SNAKE_CASE : int="absolute" , __SCREAMING_SNAKE_CASE : Dict=True , __SCREAMING_SNAKE_CASE : int=None , **__SCREAMING_SNAKE_CASE : List[str] , ) -> Tuple: """simple docstring""" super().__init__( pad_token_id=__SCREAMING_SNAKE_CASE , bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = type_vocab_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = position_embedding_type __SCREAMING_SNAKE_CASE = use_cache __SCREAMING_SNAKE_CASE = classifier_dropout # additional properties __SCREAMING_SNAKE_CASE = max_depth __SCREAMING_SNAKE_CASE = max_xpath_tag_unit_embeddings __SCREAMING_SNAKE_CASE = max_xpath_subs_unit_embeddings __SCREAMING_SNAKE_CASE = tag_pad_id __SCREAMING_SNAKE_CASE = subs_pad_id __SCREAMING_SNAKE_CASE = xpath_unit_hidden_size
331
1
"""simple docstring""" from manim import * class UpperCamelCase_ (__A ): def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: UpperCAmelCase_ : Any = Rectangle(height=0.5 , width=0.5 ) UpperCAmelCase_ : List[Any] = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) UpperCAmelCase_ : List[Any] = Rectangle(height=0.2_5 , width=0.2_5 ) UpperCAmelCase_ : Tuple = [mem.copy() for i in range(6 )] UpperCAmelCase_ : Union[str, Any] = [mem.copy() for i in range(6 )] UpperCAmelCase_ : List[str] = VGroup(*lowerCAmelCase_ ).arrange(lowerCAmelCase_ , buff=0 ) UpperCAmelCase_ : int = VGroup(*lowerCAmelCase_ ).arrange(lowerCAmelCase_ , buff=0 ) UpperCAmelCase_ : int = VGroup(lowerCAmelCase_ , lowerCAmelCase_ ).arrange(lowerCAmelCase_ , buff=0 ) UpperCAmelCase_ : List[Any] = Text("CPU" , font_size=24 ) UpperCAmelCase_ : List[str] = Group(lowerCAmelCase_ , lowerCAmelCase_ ).arrange(lowerCAmelCase_ , buff=0.5 , aligned_edge=lowerCAmelCase_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowerCAmelCase_ ) UpperCAmelCase_ : Union[str, Any] = [mem.copy() for i in range(4 )] UpperCAmelCase_ : Tuple = VGroup(*lowerCAmelCase_ ).arrange(lowerCAmelCase_ , buff=0 ) UpperCAmelCase_ : List[Any] = Text("GPU" , font_size=24 ) UpperCAmelCase_ : Optional[Any] = Group(lowerCAmelCase_ , lowerCAmelCase_ ).arrange(lowerCAmelCase_ , buff=0.5 , aligned_edge=lowerCAmelCase_ ) gpu.move_to([-1, -1, 0] ) self.add(lowerCAmelCase_ ) UpperCAmelCase_ : Any = [mem.copy() for i in range(6 )] UpperCAmelCase_ : int = VGroup(*lowerCAmelCase_ ).arrange(lowerCAmelCase_ , buff=0 ) UpperCAmelCase_ : Tuple = Text("Model" , font_size=24 ) UpperCAmelCase_ : Optional[Any] = Group(lowerCAmelCase_ , lowerCAmelCase_ ).arrange(lowerCAmelCase_ , buff=0.5 , aligned_edge=lowerCAmelCase_ ) model.move_to([3, -1.0, 0] ) self.add(lowerCAmelCase_ ) UpperCAmelCase_ : str = [] UpperCAmelCase_ : int = [] for i, rect in enumerate(lowerCAmelCase_ ): UpperCAmelCase_ : Optional[int] = fill.copy().set_fill(lowerCAmelCase_ , opacity=0.8 ) target.move_to(lowerCAmelCase_ ) model_arr.append(lowerCAmelCase_ ) UpperCAmelCase_ : str = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0.0 ).set_fill(lowerCAmelCase_ , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(lowerCAmelCase_ ) self.add(*lowerCAmelCase_ , *lowerCAmelCase_ ) UpperCAmelCase_ : Optional[Any] = [meta_mem.copy() for i in range(6 )] UpperCAmelCase_ : Any = [meta_mem.copy() for i in range(6 )] UpperCAmelCase_ : Dict = VGroup(*lowerCAmelCase_ ).arrange(lowerCAmelCase_ , buff=0 ) UpperCAmelCase_ : Optional[int] = VGroup(*lowerCAmelCase_ ).arrange(lowerCAmelCase_ , buff=0 ) UpperCAmelCase_ : Dict = VGroup(lowerCAmelCase_ , lowerCAmelCase_ ).arrange(lowerCAmelCase_ , buff=0 ) UpperCAmelCase_ : Optional[int] = Text("Disk" , font_size=24 ) UpperCAmelCase_ : Union[str, Any] = Group(lowerCAmelCase_ , lowerCAmelCase_ ).arrange(lowerCAmelCase_ , buff=0.5 , aligned_edge=lowerCAmelCase_ ) disk.move_to([-4, -1.2_5, 0] ) self.add(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : Union[str, Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) UpperCAmelCase_ : Dict = MarkupText( f"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : int = MarkupText( f"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(lowerCAmelCase_ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(lowerCAmelCase_ ) UpperCAmelCase_ : Dict = MarkupText( f"""Now watch as an input is passed through the model\nand how the memory is utilized and handled.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCAmelCase_ ) ) UpperCAmelCase_ : str = Square(0.3 ) input.set_fill(lowerCAmelCase_ , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , lowerCAmelCase_ , buff=0.5 ) self.play(Write(lowerCAmelCase_ ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=lowerCAmelCase_ , buff=0.0_2 ) self.play(MoveToTarget(lowerCAmelCase_ ) ) self.play(FadeOut(lowerCAmelCase_ ) ) UpperCAmelCase_ : Any = Arrow(start=lowerCAmelCase_ , end=lowerCAmelCase_ , color=lowerCAmelCase_ , buff=0.5 ) a.next_to(model_arr[0].get_left() , lowerCAmelCase_ , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) UpperCAmelCase_ : str = MarkupText( f"""As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCAmelCase_ , run_time=3 ) ) UpperCAmelCase_ : Optional[int] = {"run_time": 1, "fade_in": True, "fade_out": True, "buff": 0.0_2} self.play( Write(lowerCAmelCase_ ) , Circumscribe(model_arr[0] , color=lowerCAmelCase_ , **lowerCAmelCase_ ) , Circumscribe(model_cpu_arr[0] , color=lowerCAmelCase_ , **lowerCAmelCase_ ) , Circumscribe(gpu_rect[0] , color=lowerCAmelCase_ , **lowerCAmelCase_ ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) UpperCAmelCase_ : int = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.0_2 , lowerCAmelCase_ , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.0_2 ) UpperCAmelCase_ : List[str] = AnimationGroup( FadeOut(lowerCAmelCase_ , run_time=0.5 ) , MoveToTarget(lowerCAmelCase_ , run_time=0.5 ) , FadeIn(lowerCAmelCase_ , run_time=0.5 ) , lag_ratio=0.2 ) self.play(lowerCAmelCase_ ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: UpperCAmelCase_ : Dict = 0.7 self.play( Circumscribe(model_arr[i] , **lowerCAmelCase_ ) , Circumscribe(cpu_left_col_base[i] , **lowerCAmelCase_ ) , Circumscribe(cpu_left_col_base[i + 1] , color=lowerCAmelCase_ , **lowerCAmelCase_ ) , Circumscribe(gpu_rect[0] , color=lowerCAmelCase_ , **lowerCAmelCase_ ) , Circumscribe(model_arr[i + 1] , color=lowerCAmelCase_ , **lowerCAmelCase_ ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.0_2 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=lowerCAmelCase_ , **lowerCAmelCase_ ) , Circumscribe(cpu_left_col_base[-1] , color=lowerCAmelCase_ , **lowerCAmelCase_ ) , Circumscribe(gpu_rect[0] , color=lowerCAmelCase_ , **lowerCAmelCase_ ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) UpperCAmelCase_ : List[str] = a_c UpperCAmelCase_ : Tuple = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.0_2 , buff=0.5 ) self.play( FadeOut(lowerCAmelCase_ ) , FadeOut(lowerCAmelCase_ , run_time=0.5 ) , ) UpperCAmelCase_ : str = MarkupText(f"""Inference on a model too large for GPU memory\nis successfully completed.""" , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCAmelCase_ , run_time=3 ) , MoveToTarget(lowerCAmelCase_ ) ) self.wait()
268
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { '''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''', '''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''', '''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''', '''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''', '''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''', '''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''', } class UpperCamelCase_ (__A ): __magic_name__ = '''rwkv''' __magic_name__ = {'''max_position_embeddings''': '''context_length'''} def __init__( self : str , lowerCAmelCase_ : str=50_277 , lowerCAmelCase_ : Optional[int]=1_024 , lowerCAmelCase_ : Optional[int]=4_096 , lowerCAmelCase_ : Union[str, Any]=32 , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : int=None , lowerCAmelCase_ : List[Any]=1e-5 , lowerCAmelCase_ : str=0 , lowerCAmelCase_ : Tuple=0 , lowerCAmelCase_ : int=6 , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : Any=True , **lowerCAmelCase_ : List[Any] , ) -> List[str]: UpperCAmelCase_ : Tuple = vocab_size UpperCAmelCase_ : List[str] = context_length UpperCAmelCase_ : Dict = hidden_size UpperCAmelCase_ : Optional[int] = num_hidden_layers UpperCAmelCase_ : Optional[int] = attention_hidden_size if attention_hidden_size is not None else hidden_size UpperCAmelCase_ : Dict = intermediate_size if intermediate_size is not None else 4 * hidden_size UpperCAmelCase_ : Any = layer_norm_epsilon UpperCAmelCase_ : List[Any] = rescale_every UpperCAmelCase_ : List[str] = use_cache UpperCAmelCase_ : List[str] = bos_token_id UpperCAmelCase_ : Union[str, Any] = eos_token_id super().__init__( tie_word_embeddings=lowerCAmelCase_ , bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , **lowerCAmelCase_ )
268
1
import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class lowerCamelCase ( A_ ): UpperCAmelCase__ : int = 0 UpperCAmelCase__ : bool = False UpperCAmelCase__ : float = 3.0 class lowerCamelCase ( unittest.TestCase ): def UpperCAmelCase(self : int ) -> List[Any]: # If no defaults are changed, `to_kwargs` returns an empty dict. self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {"a": 2} ) self.assertDictEqual(MockClass(a=2 , b=_A ).to_kwargs() , {"a": 2, "b": True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {"a": 2, "c": 2.25} ) @require_cuda def UpperCAmelCase(self : Any ) -> List[Any]: # If no defaults are changed, `to_kwargs` returns an empty dict. snake_case = GradScalerKwargs(init_scale=1_0_2_4 , growth_factor=2 ) AcceleratorState._reset_state() snake_case = Accelerator(mixed_precision="fp16" , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) snake_case = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1_0_2_4.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2_0_0_0 ) self.assertEqual(scaler._enabled , _A ) @require_multi_gpu def UpperCAmelCase(self : List[Any] ) -> Any: snake_case = ["torchrun", f'--nproc_per_node={torch.cuda.device_count()}', inspect.getfile(self.__class__ )] execute_subprocess_async(_A , env=os.environ.copy() ) if __name__ == "__main__": _A = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) _A = Accelerator(kwargs_handlers=[ddp_scaler]) _A = torch.nn.Linear(1_00, 2_00) _A = accelerator.prepare(model) # Check the values changed in kwargs _A = "" _A = model.bucket_bytes_cap // (10_24 * 10_24) if observed_bucket_cap_map != 15: error_msg += f"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += f"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += f"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += f"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += f"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
364
import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class lowerCamelCase ( unittest.TestCase ): def UpperCAmelCase(self : Tuple ) -> List[str]: snake_case = ["a", "b", "c"] # Defaults to last layer if both are None snake_case , snake_case = get_aligned_output_features_output_indices(_A , _A , _A ) self.assertEqual(_A , ["c"] ) self.assertEqual(_A , [2] ) # Out indices set to match out features snake_case , snake_case = get_aligned_output_features_output_indices(["a", "c"] , _A , _A ) self.assertEqual(_A , ["a", "c"] ) self.assertEqual(_A , [0, 2] ) # Out features set to match out indices snake_case , snake_case = get_aligned_output_features_output_indices(_A , [0, 2] , _A ) self.assertEqual(_A , ["a", "c"] ) self.assertEqual(_A , [0, 2] ) # Out features selected from negative indices snake_case , snake_case = get_aligned_output_features_output_indices(_A , [-3, -1] , _A ) self.assertEqual(_A , ["a", "c"] ) self.assertEqual(_A , [-3, -1] ) def UpperCAmelCase(self : Optional[int] ) -> str: # Stage names must be set with self.assertRaises(_A ): verify_out_features_out_indices(["a", "b"] , (0, 1) , _A ) # Out features must be a list with self.assertRaises(_A ): verify_out_features_out_indices(("a", "b") , (0, 1) , ["a", "b"] ) # Out features must be a subset of stage names with self.assertRaises(_A ): verify_out_features_out_indices(["a", "b"] , (0, 1) , ["a"] ) # Out indices must be a list or tuple with self.assertRaises(_A ): verify_out_features_out_indices(_A , 0 , ["a", "b"] ) # Out indices must be a subset of stage names with self.assertRaises(_A ): verify_out_features_out_indices(_A , (0, 1) , ["a"] ) # Out features and out indices must be the same length with self.assertRaises(_A ): verify_out_features_out_indices(["a", "b"] , (0,) , ["a", "b", "c"] ) # Out features should match out indices with self.assertRaises(_A ): verify_out_features_out_indices(["a", "b"] , (0, 2) , ["a", "b", "c"] ) # Out features and out indices should be in order with self.assertRaises(_A ): verify_out_features_out_indices(["b", "a"] , (0, 1) , ["a", "b"] ) # Check passes with valid inputs verify_out_features_out_indices(["a", "b", "d"] , (0, 1, -1) , ["a", "b", "c", "d"] ) def UpperCAmelCase(self : List[str] ) -> str: snake_case = BackboneMixin() snake_case = ["a", "b", "c"] snake_case = ["a", "c"] snake_case = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ["a", "c"] ) self.assertEqual(backbone.out_indices , [0, 2] ) # Check out features and indices are updated correctly snake_case = ["a", "b"] self.assertEqual(backbone.out_features , ["a", "b"] ) self.assertEqual(backbone.out_indices , [0, 1] ) snake_case = [-3, -1] self.assertEqual(backbone.out_features , ["a", "c"] ) self.assertEqual(backbone.out_indices , [-3, -1] )
137
0
def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' if edge <= 0 or not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise ValueError('''Length must be a positive.''' ) return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' if edge <= 0 or not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise ValueError('''Length must be a positive.''' ) return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
101
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss lowercase__ :Optional[int] = pytest.mark.integration @require_faiss class lowercase ( SCREAMING_SNAKE_CASE__ ): def A__ ( self): lowercase = Dataset.from_dict({'''filename''': ['''my_name-train''' + '''_''' + str(A__) for x in np.arange(3_0).tolist()]}) return dset def A__ ( self): import faiss lowercase = self._create_dummy_dataset() lowercase = dset.map( lambda A__ ,A__: {"vecs": i * np.ones(5 ,dtype=np.floataa)} ,with_indices=A__ ,keep_in_memory=A__) lowercase = dset.add_faiss_index('''vecs''' ,batch_size=1_0_0 ,metric_type=faiss.METRIC_INNER_PRODUCT) lowercase , lowercase = dset.get_nearest_examples('''vecs''' ,np.ones(5 ,dtype=np.floataa)) self.assertEqual(examples['''filename'''][0] ,'''my_name-train_29''') dset.drop_index('''vecs''') def A__ ( self): import faiss lowercase = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5)) * np.arange(3_0).reshape(-1 ,1) ,index_name='''vecs''' ,batch_size=1_0_0 ,metric_type=faiss.METRIC_INNER_PRODUCT ,) lowercase , lowercase = dset.get_nearest_examples('''vecs''' ,np.ones(5 ,dtype=np.floataa)) self.assertEqual(examples['''filename'''][0] ,'''my_name-train_29''') def A__ ( self): import faiss lowercase = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5)) * np.arange(3_0).reshape(-1 ,1) ,index_name='''vecs''' ,metric_type=faiss.METRIC_INNER_PRODUCT ,) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=A__) as tmp_file: dset.save_faiss_index('''vecs''' ,tmp_file.name) dset.load_faiss_index('''vecs2''' ,tmp_file.name) os.unlink(tmp_file.name) lowercase , lowercase = dset.get_nearest_examples('''vecs2''' ,np.ones(5 ,dtype=np.floataa)) self.assertEqual(examples['''filename'''][0] ,'''my_name-train_29''') def A__ ( self): lowercase = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5)) * np.arange(3_0).reshape(-1 ,1) ,index_name='''vecs''') dset.drop_index('''vecs''') self.assertRaises(A__ ,partial(dset.get_nearest_examples ,'''vecs2''' ,np.ones(5 ,dtype=np.floataa))) def A__ ( self): from elasticsearch import Elasticsearch lowercase = self._create_dummy_dataset() with patch('''elasticsearch.Elasticsearch.search''') as mocked_search, patch( '''elasticsearch.client.IndicesClient.create''') as mocked_index_create, patch('''elasticsearch.helpers.streaming_bulk''') as mocked_bulk: lowercase = {'''acknowledged''': True} mocked_bulk.return_value([(True, None)] * 3_0) lowercase = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 2_9}]}} lowercase = Elasticsearch() dset.add_elasticsearch_index('''filename''' ,es_client=A__) lowercase , lowercase = dset.get_nearest_examples('''filename''' ,'''my_name-train_29''') self.assertEqual(examples['''filename'''][0] ,'''my_name-train_29''') @require_faiss class lowercase ( SCREAMING_SNAKE_CASE__ ): def A__ ( self): import faiss lowercase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT) # add vectors index.add_vectors(np.eye(5 ,dtype=np.floataa)) self.assertIsNotNone(index.faiss_index) self.assertEqual(index.faiss_index.ntotal ,5) index.add_vectors(np.zeros((5, 5) ,dtype=np.floataa)) self.assertEqual(index.faiss_index.ntotal ,1_0) # single query lowercase = np.zeros(5 ,dtype=np.floataa) lowercase = 1 lowercase , lowercase = index.search(A__) self.assertRaises(A__ ,index.search ,query.reshape(-1 ,1)) self.assertGreater(scores[0] ,0) self.assertEqual(indices[0] ,1) # batched queries lowercase = np.eye(5 ,dtype=np.floataa)[::-1] lowercase , lowercase = index.search_batch(A__) self.assertRaises(A__ ,index.search_batch ,queries[0]) lowercase = [scores[0] for scores in total_scores] lowercase = [indices[0] for indices in total_indices] self.assertGreater(np.min(A__) ,0) self.assertListEqual([4, 3, 2, 1, 0] ,A__) def A__ ( self): import faiss lowercase = FaissIndex(string_factory='''Flat''') index.add_vectors(np.eye(5 ,dtype=np.floataa)) self.assertIsInstance(index.faiss_index ,faiss.IndexFlat) lowercase = FaissIndex(string_factory='''LSH''') index.add_vectors(np.eye(5 ,dtype=np.floataa)) self.assertIsInstance(index.faiss_index ,faiss.IndexLSH) with self.assertRaises(A__): lowercase = FaissIndex(string_factory='''Flat''' ,custom_index=faiss.IndexFlat(5)) def A__ ( self): import faiss lowercase = faiss.IndexFlat(5) lowercase = FaissIndex(custom_index=A__) index.add_vectors(np.eye(5 ,dtype=np.floataa)) self.assertIsInstance(index.faiss_index ,faiss.IndexFlat) def A__ ( self): import faiss lowercase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT) index.add_vectors(np.eye(5 ,dtype=np.floataa)) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=A__) as tmp_file: index.save(tmp_file.name) lowercase = FaissIndex.load(tmp_file.name) os.unlink(tmp_file.name) lowercase = np.zeros(5 ,dtype=np.floataa) lowercase = 1 lowercase , lowercase = index.search(A__) self.assertGreater(scores[0] ,0) self.assertEqual(indices[0] ,1) @require_faiss def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' import faiss lowercase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) lowercase = '''index.faiss''' lowercase = f'mock://{index_name}' index.save(lowerCAmelCase__ , storage_options=mockfs.storage_options ) lowercase = FaissIndex.load(lowerCAmelCase__ , storage_options=mockfs.storage_options ) lowercase = np.zeros(5 , dtype=np.floataa ) lowercase = 1 lowercase , lowercase = index.search(lowerCAmelCase__ ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class lowercase ( SCREAMING_SNAKE_CASE__ ): def A__ ( self): from elasticsearch import Elasticsearch with patch('''elasticsearch.Elasticsearch.search''') as mocked_search, patch( '''elasticsearch.client.IndicesClient.create''') as mocked_index_create, patch('''elasticsearch.helpers.streaming_bulk''') as mocked_bulk: lowercase = Elasticsearch() lowercase = {'''acknowledged''': True} lowercase = ElasticSearchIndex(es_client=A__) mocked_bulk.return_value([(True, None)] * 3) index.add_documents(['''foo''', '''bar''', '''foobar''']) # single query lowercase = '''foo''' lowercase = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 0}]}} lowercase , lowercase = index.search(A__) self.assertEqual(scores[0] ,1) self.assertEqual(indices[0] ,0) # single query with timeout lowercase = '''foo''' lowercase = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 0}]}} lowercase , lowercase = index.search(A__ ,request_timeout=3_0) self.assertEqual(scores[0] ,1) self.assertEqual(indices[0] ,0) # batched queries lowercase = ['''foo''', '''bar''', '''foobar'''] lowercase = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 1}]}} lowercase , lowercase = index.search_batch(A__) lowercase = [scores[0] for scores in total_scores] lowercase = [indices[0] for indices in total_indices] self.assertGreater(np.min(A__) ,0) self.assertListEqual([1, 1, 1] ,A__) # batched queries with timeout lowercase = ['''foo''', '''bar''', '''foobar'''] lowercase = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 1}]}} lowercase , lowercase = index.search_batch(A__ ,request_timeout=3_0) lowercase = [scores[0] for scores in total_scores] lowercase = [indices[0] for indices in total_indices] self.assertGreater(np.min(A__) ,0) self.assertListEqual([1, 1, 1] ,A__)
101
1
import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) _UpperCAmelCase = { 'iou_prediction_head.layers.0': 'iou_prediction_head.proj_in', 'iou_prediction_head.layers.1': 'iou_prediction_head.layers.0', 'iou_prediction_head.layers.2': 'iou_prediction_head.proj_out', 'mask_decoder.output_upscaling.0': 'mask_decoder.upscale_conv1', 'mask_decoder.output_upscaling.1': 'mask_decoder.upscale_layer_norm', 'mask_decoder.output_upscaling.3': 'mask_decoder.upscale_conv2', 'mask_downscaling.0': 'mask_embed.conv1', 'mask_downscaling.1': 'mask_embed.layer_norm1', 'mask_downscaling.3': 'mask_embed.conv2', 'mask_downscaling.4': 'mask_embed.layer_norm2', 'mask_downscaling.6': 'mask_embed.conv3', 'point_embeddings': 'point_embed', 'pe_layer.positional_encoding_gaussian_matrix': 'shared_embedding.positional_embedding', 'image_encoder': 'vision_encoder', 'neck.0': 'neck.conv1', 'neck.1': 'neck.layer_norm1', 'neck.2': 'neck.conv2', 'neck.3': 'neck.layer_norm2', 'patch_embed.proj': 'patch_embed.projection', '.norm': '.layer_norm', 'blocks': 'layers', } def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :Dict ) -> Tuple: __lowerCAmelCase : Union[str, Any] = {} state_dict.pop("""pixel_mean""" , SCREAMING_SNAKE_CASE ) state_dict.pop("""pixel_std""" , SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[Any] = r""".*.output_hypernetworks_mlps.(\d+).layers.(\d+).*""" for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: __lowerCAmelCase : Dict = key.replace(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if re.match(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Any = int(re.match(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).group(2 ) ) if layer_nb == 0: __lowerCAmelCase : Optional[Any] = key.replace("""layers.0""" , """proj_in""" ) elif layer_nb == 1: __lowerCAmelCase : int = key.replace("""layers.1""" , """layers.0""" ) elif layer_nb == 2: __lowerCAmelCase : List[str] = key.replace("""layers.2""" , """proj_out""" ) __lowerCAmelCase : Optional[Any] = value __lowerCAmelCase : str = model_state_dict[ """prompt_encoder.shared_embedding.positional_embedding""" ] return model_state_dict def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :List[str] , SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :List[str]="ybelkada/segment-anything" ) -> int: __lowerCAmelCase : Dict = hf_hub_download(SCREAMING_SNAKE_CASE , F'''checkpoints/{model_name}.pth''' ) if "sam_vit_b" in model_name: __lowerCAmelCase : Optional[int] = SamConfig() elif "sam_vit_l" in model_name: __lowerCAmelCase : int = SamVisionConfig( hidden_size=1_024 , num_hidden_layers=24 , num_attention_heads=16 , global_attn_indexes=[5, 11, 17, 23] , ) __lowerCAmelCase : List[str] = SamConfig( vision_config=SCREAMING_SNAKE_CASE , ) elif "sam_vit_h" in model_name: __lowerCAmelCase : List[Any] = SamVisionConfig( hidden_size=1_280 , num_hidden_layers=32 , num_attention_heads=16 , global_attn_indexes=[7, 15, 23, 31] , ) __lowerCAmelCase : str = SamConfig( vision_config=SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : Union[str, Any] = torch.load(SCREAMING_SNAKE_CASE , map_location="""cpu""" ) __lowerCAmelCase : Optional[Any] = replace_keys(SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = SamImageProcessor() __lowerCAmelCase : List[Any] = SamProcessor(image_processor=SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Any = SamModel(SCREAMING_SNAKE_CASE ) hf_model.load_state_dict(SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = hf_model.to("""cuda""" ) __lowerCAmelCase : Dict = """https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png""" __lowerCAmelCase : Optional[int] = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ).convert("""RGB""" ) __lowerCAmelCase : Tuple = [[[400, 650]]] __lowerCAmelCase : List[str] = [[1]] __lowerCAmelCase : Optional[int] = processor(images=np.array(SCREAMING_SNAKE_CASE ) , return_tensors="""pt""" ).to("""cuda""" ) with torch.no_grad(): __lowerCAmelCase : str = hf_model(**SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[Any] = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.5_79_89_02_51_15_96_68 __lowerCAmelCase : Optional[int] = processor( images=np.array(SCREAMING_SNAKE_CASE ) , input_points=SCREAMING_SNAKE_CASE , input_labels=SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).to("""cuda""" ) with torch.no_grad(): __lowerCAmelCase : Optional[Any] = hf_model(**SCREAMING_SNAKE_CASE ) __lowerCAmelCase : int = output.iou_scores.squeeze() assert scores[-1].item() == 0.97_12_60_30_92_19_36_04 __lowerCAmelCase : Dict = ((75, 275, 1_725, 850),) __lowerCAmelCase : str = processor(images=np.array(SCREAMING_SNAKE_CASE ) , input_boxes=SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).to("""cuda""" ) with torch.no_grad(): __lowerCAmelCase : Optional[Any] = hf_model(**SCREAMING_SNAKE_CASE ) __lowerCAmelCase : int = output.iou_scores.squeeze() assert scores[-1].item() == 0.86_86_01_56_05_92_65_14 # Test with 2 points and 1 image. __lowerCAmelCase : List[Any] = [[[400, 650], [800, 650]]] __lowerCAmelCase : Optional[Any] = [[1, 1]] __lowerCAmelCase : Union[str, Any] = processor( images=np.array(SCREAMING_SNAKE_CASE ) , input_points=SCREAMING_SNAKE_CASE , input_labels=SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).to("""cuda""" ) with torch.no_grad(): __lowerCAmelCase : Tuple = hf_model(**SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Any = output.iou_scores.squeeze() assert scores[-1].item() == 0.99_36_04_77_92_43_46_92 if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() _UpperCAmelCase = ['sam_vit_b_01ec64', 'sam_vit_h_4b8939', 'sam_vit_l_0b3195'] parser.add_argument( '--model_name', default='sam_vit_h_4b8939', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) parser.add_argument( '--model_hub_id', default='ybelkada/segment-anything', choices=choices, type=str, help='Path to hf config.json of model to convert', ) _UpperCAmelCase = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
232
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets _UpperCAmelCase = '\\n@inproceedings{snover-etal-2006-study,\n title = "A Study of Translation Edit Rate with Targeted Human Annotation",\n author = "Snover, Matthew and\n Dorr, Bonnie and\n Schwartz, Rich and\n Micciulla, Linnea and\n Makhoul, John",\n booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers",\n month = aug # " 8-12",\n year = "2006",\n address = "Cambridge, Massachusetts, USA",\n publisher = "Association for Machine Translation in the Americas",\n url = "https://aclanthology.org/2006.amta-papers.25",\n pages = "223--231",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' _UpperCAmelCase = '\\nTER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a\nhypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu\n(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found\nhere: https://github.com/jhclark/tercom.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.\n' _UpperCAmelCase = '\nProduces TER scores alongside the number of edits and reference length.\n\nArgs:\n predictions (list of str): The system stream (a sequence of segments).\n references (list of list of str): A list of one or more reference streams (each a sequence of segments).\n normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,\n as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.\n Only applies if `normalized = True`. Defaults to `False`.\n case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.\n\nReturns:\n \'score\' (float): TER score (num_edits / sum_ref_lengths * 100)\n \'num_edits\' (int): The cumulative number of edits\n \'ref_length\' (float): The cumulative average reference length\n\nExamples:\n Example 1:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?",\n ... "What did the TER metric user say to the developer?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],\n ... ["Your jokes are...", "...TERrible"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0}\n\n Example 2:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0}\n\n Example 3:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... normalized=True,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5}\n\n Example 4:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0}\n\n Example 5:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?",\n ... "What did the TER metric user say to the developer?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],\n ... ["Your jokes are...", "...TERrible"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class snake_case_ ( datasets.Metric ): def UpperCAmelCase__ ( self : Tuple )->str: '''simple docstring''' if version.parse(scb.__version__ ) < version.parse("""1.4.12""" ): raise ImportWarning( """To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n""" """You can install it with `pip install \"sacrebleu>=1.4.12\"`.""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""http://www.cs.umd.edu/~snover/tercom/""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/mjpost/sacreBLEU#ter"""] , reference_urls=[ """https://github.com/jhclark/tercom""", ] , ) def UpperCAmelCase__ ( self : Dict , _snake_case : List[Any] , _snake_case : int , _snake_case : bool = False , _snake_case : bool = False , _snake_case : bool = False , _snake_case : bool = False , )->str: '''simple docstring''' __lowerCAmelCase : List[str] = len(references[0] ) if any(len(_snake_case ) != references_per_prediction for refs in references ): raise ValueError("""Sacrebleu requires the same number of references for each prediction""" ) __lowerCAmelCase : str = [[refs[i] for refs in references] for i in range(_snake_case )] __lowerCAmelCase : Tuple = TER( normalized=_snake_case , no_punct=_snake_case , asian_support=_snake_case , case_sensitive=_snake_case , ) __lowerCAmelCase : List[Any] = sb_ter.corpus_score(_snake_case , _snake_case ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
232
1
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> str: lowerCAmelCase__ : Optional[int] = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class A__ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = StableDiffusionLatentUpscalePipeline lowercase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { 'height', 'width', 'cross_attention_kwargs', 'negative_prompt_embeds', 'prompt_embeds', } lowercase = PipelineTesterMixin.required_optional_params - {'num_images_per_prompt'} lowercase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowercase = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowercase = frozenset([] ) lowercase = True @property def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : List[str] = 1 lowerCAmelCase__ : Optional[Any] = 4 lowerCAmelCase__ : List[Any] = (16, 16) lowerCAmelCase__ : Tuple = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(a ) return image def _lowerCamelCase ( self : int ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : Any = UNetaDConditionModel( act_fn='gelu' , attention_head_dim=8 , norm_num_groups=a , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=160 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( 'KDownBlock2D', 'KCrossAttnDownBlock2D', 'KCrossAttnDownBlock2D', 'KCrossAttnDownBlock2D', ) , in_channels=8 , mid_block_type=a , only_cross_attention=a , out_channels=5 , resnet_time_scale_shift='scale_shift' , time_embedding_type='fourier' , timestep_post_act='gelu' , up_block_types=('KCrossAttnUpBlock2D', 'KCrossAttnUpBlock2D', 'KCrossAttnUpBlock2D', 'KUpBlock2D') , ) lowerCAmelCase__ : int = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ 'DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D', ] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) lowerCAmelCase__ : Union[str, Any] = EulerDiscreteScheduler(prediction_type='sample' ) lowerCAmelCase__ : Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='quick_gelu' , projection_dim=512 , ) lowerCAmelCase__ : Tuple = CLIPTextModel(a ) lowerCAmelCase__ : List[str] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCAmelCase__ : str = { 'unet': model.eval(), 'vae': vae.eval(), 'scheduler': scheduler, 'text_encoder': text_encoder, 'tokenizer': tokenizer, } return components def _lowerCamelCase ( self : Optional[Any] , a : Optional[int] , a : Optional[int]=0 ): '''simple docstring''' if str(a ).startswith('mps' ): lowerCAmelCase__ : Tuple = torch.manual_seed(a ) else: lowerCAmelCase__ : Optional[Any] = torch.Generator(device=a ).manual_seed(a ) lowerCAmelCase__ : str = { 'prompt': 'A painting of a squirrel eating a burger', 'image': self.dummy_image.cpu(), 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : Dict = 'cpu' lowerCAmelCase__ : Optional[int] = self.get_dummy_components() lowerCAmelCase__ : Optional[Any] = self.pipeline_class(**a ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Tuple = self.get_dummy_inputs(a ) lowerCAmelCase__ : List[str] = pipe(**a ).images lowerCAmelCase__ : Optional[int] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 256, 256, 3) ) lowerCAmelCase__ : int = np.array( [0.4_7_2_2_2_4_1_2, 0.4_1_9_2_1_6_3_3, 0.4_4_7_1_7_4_3_4, 0.4_6_8_7_4_1_9_2, 0.4_2_5_8_8_2_5_8, 0.4_6_1_5_0_7_2_6, 0.4_6_7_7_5_3_4, 0.4_5_5_8_3_8_3_2, 0.4_8_5_7_9_0_5_5] ) lowerCAmelCase__ : Optional[int] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(a , 1E-3 ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' super().test_attention_slicing_forward_pass(expected_max_diff=7E-3 ) def _lowerCamelCase ( self : int ): '''simple docstring''' super().test_cpu_offload_forward_pass(expected_max_diff=3E-3 ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=7E-3 ) def _lowerCamelCase ( self : Any ): '''simple docstring''' super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3E-3 ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' super().test_save_load_local(expected_max_difference=3E-3 ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' super().test_save_load_optional_components(expected_max_difference=3E-3 ) def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : List[str] = [ 'DDIMScheduler', 'DDPMScheduler', 'PNDMScheduler', 'HeunDiscreteScheduler', 'EulerAncestralDiscreteScheduler', 'KDPM2DiscreteScheduler', 'KDPM2AncestralDiscreteScheduler', 'DPMSolverSDEScheduler', ] lowerCAmelCase__ : Union[str, Any] = self.get_dummy_components() lowerCAmelCase__ : str = self.pipeline_class(**a ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=a ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Union[str, Any] = self.get_dummy_inputs(a ) lowerCAmelCase__ : Tuple = 2 lowerCAmelCase__ : List[str] = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue lowerCAmelCase__ : Optional[int] = getattr(a , scheduler_enum.name ) lowerCAmelCase__ : Optional[int] = scheduler_cls.from_config(pipe.scheduler.config ) lowerCAmelCase__ : List[Any] = pipe(**a )[0] outputs.append(a ) assert check_same_shape(a ) @require_torch_gpu @slow class A__ ( unittest.TestCase ): def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Dict = torch.manual_seed(33 ) lowerCAmelCase__ : Union[str, Any] = StableDiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' , torch_dtype=torch.floataa ) pipe.to('cuda' ) lowerCAmelCase__ : Optional[int] = StableDiffusionLatentUpscalePipeline.from_pretrained( 'stabilityai/sd-x2-latent-upscaler' , torch_dtype=torch.floataa ) upscaler.to('cuda' ) lowerCAmelCase__ : Union[str, Any] = 'a photo of an astronaut high resolution, unreal engine, ultra realistic' lowerCAmelCase__ : int = pipe(a , generator=a , output_type='latent' ).images lowerCAmelCase__ : str = upscaler( prompt=a , image=a , num_inference_steps=20 , guidance_scale=0 , generator=a , output_type='np' , ).images[0] lowerCAmelCase__ : int = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy' ) assert np.abs((expected_image - image).mean() ) < 5E-2 def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : int = torch.manual_seed(33 ) lowerCAmelCase__ : Tuple = StableDiffusionLatentUpscalePipeline.from_pretrained( 'stabilityai/sd-x2-latent-upscaler' , torch_dtype=torch.floataa ) upscaler.to('cuda' ) lowerCAmelCase__ : Dict = 'the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas' lowerCAmelCase__ : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png' ) lowerCAmelCase__ : int = upscaler( prompt=a , image=a , num_inference_steps=20 , guidance_scale=0 , generator=a , output_type='np' , ).images[0] lowerCAmelCase__ : Union[str, Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy' ) assert np.abs((expected_image - image).max() ) < 5E-2
212
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=__magic_name__ ) class A__ ( __magic_name__ ): lowercase = field(default='audio-classification' , metadata={'include_in_asdict_even_if_is_default': True} ) lowercase = Features({'audio': Audio()} ) lowercase = Features({'labels': ClassLabel} ) lowercase = "audio" lowercase = "labels" def _lowerCamelCase ( self : Dict , a : Tuple ): '''simple docstring''' if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , a ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) lowerCAmelCase__ : Tuple = copy.deepcopy(self ) lowerCAmelCase__ : List[Any] = self.label_schema.copy() lowerCAmelCase__ : List[Any] = features[self.label_column] lowerCAmelCase__ : Optional[int] = label_schema return task_template @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' return { self.audio_column: "audio", self.label_column: "labels", }
212
1
import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def snake_case_ (): '''simple docstring''' raise RuntimeError('''CUDA out of memory.''' ) class A ( nn.Module ): def __init__( self : Optional[Any] ) -> Tuple: """simple docstring""" super().__init__() _a = nn.Linear(3 , 4 ) _a = nn.BatchNormad(4 ) _a = nn.Linear(4 , 5 ) def __lowerCAmelCase ( self : Dict , lowerCAmelCase_ : int ) -> Tuple: """simple docstring""" return self.lineara(self.batchnorm(self.lineara(_a ) ) ) class A ( unittest.TestCase ): def __lowerCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" _a = [] @find_executable_batch_size(starting_batch_size=1_28 ) def mock_training_loop_function(lowerCAmelCase_ : Any ): nonlocal batch_sizes batch_sizes.append(_a ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(_a , [1_28, 64, 32, 16, 8] ) def __lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" _a = [] @find_executable_batch_size(starting_batch_size=1_28 ) def mock_training_loop_function(lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[int] ): nonlocal batch_sizes batch_sizes.append(_a ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga _a , _a = mock_training_loop_function('''hello''' ) self.assertListEqual(_a , [1_28, 64, 32, 16, 8] ) self.assertListEqual([bs, arga] , [8, '''hello'''] ) def __lowerCAmelCase ( self : Any ) -> int: """simple docstring""" @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(lowerCAmelCase_ : List[Any] ): pass with self.assertRaises(_a ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def __lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(lowerCAmelCase_ : Dict ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(_a ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def __lowerCAmelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" @find_executable_batch_size(starting_batch_size=1_28 ) def mock_training_loop_function(lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(_a ) as cm: mock_training_loop_function(1_28 , '''hello''' , '''world''' ) self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0] ) self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0] ) def __lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(lowerCAmelCase_ : Tuple ): raise ValueError('''Oops, we had an error!''' ) with self.assertRaises(_a ) as cm: mock_training_loop_function() self.assertIn('''Oops, we had an error!''' , cm.exception.args[0] ) @require_cuda def __lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" _a = torch.cuda.memory_allocated() _a = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , _a ) _a = release_memory(_a ) self.assertEqual(torch.cuda.memory_allocated() , _a )
363
'''simple docstring''' import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class A : def __init__( self : Any , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str]=13 , lowerCAmelCase_ : Optional[Any]=10 , lowerCAmelCase_ : Optional[int]=3 , lowerCAmelCase_ : Union[str, Any]=2 , lowerCAmelCase_ : Tuple=2 , lowerCAmelCase_ : Dict=2 , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Dict=32 , lowerCAmelCase_ : Tuple=5 , lowerCAmelCase_ : Optional[int]=4 , lowerCAmelCase_ : int=37 , lowerCAmelCase_ : int="gelu" , lowerCAmelCase_ : List[str]=0.1 , lowerCAmelCase_ : str=0.1 , lowerCAmelCase_ : Dict=10 , lowerCAmelCase_ : int=0.0_2 , lowerCAmelCase_ : Union[str, Any]=0.9 , lowerCAmelCase_ : str=None , ) -> int: """simple docstring""" _a = parent _a = batch_size _a = image_size _a = num_channels _a = patch_size _a = tubelet_size _a = num_frames _a = is_training _a = use_labels _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = type_sequence_label_size _a = initializer_range _a = mask_ratio _a = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame _a = (image_size // patch_size) ** 2 _a = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos _a = int(mask_ratio * self.seq_length ) def __lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" _a = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a = self.get_config() return config, pixel_values, labels def __lowerCAmelCase ( self : List[str] ) -> Any: """simple docstring""" return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , ) def __lowerCAmelCase ( self : List[str] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any] ) -> Optional[int]: """simple docstring""" _a = VideoMAEModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _a = model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[Any] ) -> Optional[Any]: """simple docstring""" _a = VideoMAEForPreTraining(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch _a = torch.ones((self.num_masks,) ) _a = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) _a = mask.expand(self.batch_size , -1 ).bool() _a = model(lowerCAmelCase_ , lowerCAmelCase_ ) # model only returns predictions for masked patches _a = mask.sum().item() _a = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" _a = self.prepare_config_and_inputs() _a , _a , _a = config_and_inputs _a = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class A ( _a ,_a ,unittest.TestCase ): lowercase_ = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) lowercase_ = ( {'feature-extraction': VideoMAEModel, 'video-classification': VideoMAEForVideoClassification} if is_torch_available() else {} ) lowercase_ = False lowercase_ = False lowercase_ = False lowercase_ = False def __lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" _a = VideoMAEModelTester(self ) _a = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ , hidden_size=37 ) def __lowerCAmelCase ( self : Optional[int] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : List[Any]=False ) -> Tuple: """simple docstring""" _a = copy.deepcopy(lowerCAmelCase_ ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch _a = torch.ones((self.model_tester.num_masks,) ) _a = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) _a = mask.expand(self.model_tester.batch_size , -1 ).bool() _a = bool_masked_pos.to(lowerCAmelCase_ ) if return_labels: if model_class in [ *get_values(lowerCAmelCase_ ), ]: _a = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_ ) return inputs_dict def __lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''VideoMAE does not use inputs_embeds''' ) def __lowerCAmelCase ( self : Any ) -> Any: """simple docstring""" pass def __lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(lowerCAmelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _a = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase_ , nn.Linear ) ) def __lowerCAmelCase ( self : Any ) -> Any: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(lowerCAmelCase_ ) _a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a = [*signature.parameters.keys()] _a = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def __lowerCAmelCase ( self : int ) -> Any: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def __lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCAmelCase_ ) @slow def __lowerCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a = VideoMAEModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def __lowerCAmelCase ( self : int ) -> Any: """simple docstring""" if not self.has_attentions: pass else: _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = True for model_class in self.all_model_classes: _a = self.model_tester.seq_length - self.model_tester.num_masks _a = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) _a = True _a = False _a = True _a = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) _a = outputs.attentions self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _a = True _a = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) _a = outputs.attentions self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) _a = len(lowerCAmelCase_ ) # Check attention is always last and order is fine _a = True _a = True _a = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) self.assertEqual(out_len + 1 , len(lowerCAmelCase_ ) ) _a = outputs.attentions self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def __lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" def check_hidden_states_output(lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple ): _a = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) _a = outputs.hidden_states _a = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) _a = self.model_tester.seq_length - self.model_tester.num_masks _a = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _a = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" pass def snake_case_ (): '''simple docstring''' _a = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' , filename='''eating_spaghetti.npy''' , repo_type='''dataset''' ) _a = np.load(UpperCamelCase ) return list(UpperCamelCase ) @require_torch @require_vision class A ( unittest.TestCase ): @cached_property def __lowerCAmelCase ( self : str ) -> List[Any]: """simple docstring""" return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def __lowerCAmelCase ( self : Dict ) -> Dict: """simple docstring""" _a = VideoMAEForVideoClassification.from_pretrained('''MCG-NJU/videomae-base-finetuned-kinetics''' ).to( lowerCAmelCase_ ) _a = self.default_image_processor _a = prepare_video() _a = image_processor(lowerCAmelCase_ , return_tensors='''pt''' ).to(lowerCAmelCase_ ) # forward pass with torch.no_grad(): _a = model(**lowerCAmelCase_ ) # verify the logits _a = torch.Size((1, 4_00) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) _a = torch.tensor([0.3_6_6_9, -0.0_6_8_8, -0.2_4_2_1] ).to(lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1e-4 ) ) @slow def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" _a = VideoMAEForPreTraining.from_pretrained('''MCG-NJU/videomae-base-short''' ).to(lowerCAmelCase_ ) _a = self.default_image_processor _a = prepare_video() _a = image_processor(lowerCAmelCase_ , return_tensors='''pt''' ).to(lowerCAmelCase_ ) # add boolean mask, indicating which patches to mask _a = hf_hub_download(repo_id='''hf-internal-testing/bool-masked-pos''' , filename='''bool_masked_pos.pt''' ) _a = torch.load(lowerCAmelCase_ ) # forward pass with torch.no_grad(): _a = model(**lowerCAmelCase_ ) # verify the logits _a = torch.Size([1, 14_08, 15_36] ) _a = torch.tensor( [[0.7_9_9_4, 0.9_6_1_2, 0.8_5_0_8], [0.7_4_0_1, 0.8_9_5_8, 0.8_3_0_2], [0.5_8_6_2, 0.7_4_6_8, 0.7_3_2_5]] , device=lowerCAmelCase_ ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) _a = torch.tensor([0.5_1_4_2] , device=lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.loss , lowerCAmelCase_ , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) _a = VideoMAEForPreTraining.from_pretrained('''MCG-NJU/videomae-base-short''' , norm_pix_loss=lowerCAmelCase_ ).to( lowerCAmelCase_ ) with torch.no_grad(): _a = model(**lowerCAmelCase_ ) _a = torch.tensor(torch.tensor([0.6_4_6_9] ) , device=lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.loss , lowerCAmelCase_ , atol=1e-4 ) )
179
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCAmelCase : int = {"""configuration_swin""": ["""SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SwinConfig""", """SwinOnnxConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Dict = [ """SWIN_PRETRAINED_MODEL_ARCHIVE_LIST""", """SwinForImageClassification""", """SwinForMaskedImageModeling""", """SwinModel""", """SwinPreTrainedModel""", """SwinBackbone""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : str = [ """TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFSwinForImageClassification""", """TFSwinForMaskedImageModeling""", """TFSwinModel""", """TFSwinPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig, SwinOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swin import ( SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, SwinBackbone, SwinForImageClassification, SwinForMaskedImageModeling, SwinModel, SwinPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_swin import ( TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, TFSwinForImageClassification, TFSwinForMaskedImageModeling, TFSwinModel, TFSwinPreTrainedModel, ) else: import sys lowerCAmelCase : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
13
import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class _a ( unittest.TestCase): def __init__( self : int , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : str=13 , _SCREAMING_SNAKE_CASE : List[str]=7 , _SCREAMING_SNAKE_CASE : List[Any]=True , _SCREAMING_SNAKE_CASE : Dict=True , _SCREAMING_SNAKE_CASE : Optional[int]=True , _SCREAMING_SNAKE_CASE : Union[str, Any]=True , _SCREAMING_SNAKE_CASE : Optional[int]=99 , _SCREAMING_SNAKE_CASE : Optional[int]=32 , _SCREAMING_SNAKE_CASE : Union[str, Any]=5 , _SCREAMING_SNAKE_CASE : Optional[int]=4 , _SCREAMING_SNAKE_CASE : Optional[int]=37 , _SCREAMING_SNAKE_CASE : Any="gelu" , _SCREAMING_SNAKE_CASE : Tuple=0.1 , _SCREAMING_SNAKE_CASE : Any=0.1 , _SCREAMING_SNAKE_CASE : Tuple=512 , _SCREAMING_SNAKE_CASE : Optional[int]=16 , _SCREAMING_SNAKE_CASE : Optional[int]=2 , _SCREAMING_SNAKE_CASE : Union[str, Any]=0.02 , _SCREAMING_SNAKE_CASE : Tuple=4 , )-> Optional[int]: lowerCAmelCase__ : Optional[int] = parent lowerCAmelCase__ : Optional[int] = batch_size lowerCAmelCase__ : List[Any] = seq_length lowerCAmelCase__ : Any = is_training lowerCAmelCase__ : str = use_attention_mask lowerCAmelCase__ : Union[str, Any] = use_token_type_ids lowerCAmelCase__ : List[Any] = use_labels lowerCAmelCase__ : List[str] = vocab_size lowerCAmelCase__ : Optional[Any] = hidden_size lowerCAmelCase__ : str = num_hidden_layers lowerCAmelCase__ : Any = num_attention_heads lowerCAmelCase__ : List[Any] = intermediate_size lowerCAmelCase__ : Any = hidden_act lowerCAmelCase__ : Any = hidden_dropout_prob lowerCAmelCase__ : int = attention_probs_dropout_prob lowerCAmelCase__ : Optional[int] = max_position_embeddings lowerCAmelCase__ : List[str] = type_vocab_size lowerCAmelCase__ : Union[str, Any] = type_sequence_label_size lowerCAmelCase__ : List[str] = initializer_range lowerCAmelCase__ : int = num_choices def UpperCAmelCase__( self : List[str] )-> Optional[Any]: lowerCAmelCase__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase__ : Union[str, Any] = None if self.use_attention_mask: lowerCAmelCase__ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase__ : Any = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=_SCREAMING_SNAKE_CASE , ) return config, input_ids, attention_mask def UpperCAmelCase__( self : Dict )-> Union[str, Any]: lowerCAmelCase__ : List[str] = self.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Dict = config_and_inputs lowerCAmelCase__ : Optional[int] = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class _a ( _lowercase , unittest.TestCase): _a : str = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase__( self : str )-> List[str]: lowerCAmelCase__ : Tuple = FlaxDistilBertModelTester(self ) @slow def UpperCAmelCase__( self : Dict )-> Tuple: for model_class_name in self.all_model_classes: lowerCAmelCase__ : Tuple = model_class_name.from_pretrained('''distilbert-base-uncased''' ) lowerCAmelCase__ : List[str] = model(np.ones((1, 1) ) ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) @require_flax class _a ( unittest.TestCase): @slow def UpperCAmelCase__( self : Optional[int] )-> List[Any]: lowerCAmelCase__ : int = FlaxDistilBertModel.from_pretrained('''distilbert-base-uncased''' ) lowerCAmelCase__ : Tuple = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) lowerCAmelCase__ : str = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) lowerCAmelCase__ : str = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE )[0] lowerCAmelCase__ : str = (1, 11, 768) self.assertEqual(output.shape , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : str = np.array([[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) )
131
0
'''simple docstring''' from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase : def __init__( self : int, a_ : Dict, a_ : Union[str, Any]=12, a_ : Any=7, a_ : List[str]=True, a_ : str=True, a_ : Optional[Any]=True, a_ : Tuple=99, a_ : Optional[Any]=32, a_ : Union[str, Any]=32, a_ : Optional[int]=2, a_ : Dict=4, a_ : Union[str, Any]=37, a_ : Union[str, Any]=0.1, a_ : int=0.1, a_ : Union[str, Any]=512, a_ : str=0.02, a_ : List[Any]=0, a_ : Any=None, ): """simple docstring""" UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = seq_length UpperCamelCase__ = is_training UpperCamelCase__ = use_input_mask UpperCamelCase__ = use_labels UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = projection_dim UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = dropout UpperCamelCase__ = attention_dropout UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = initializer_range UpperCamelCase__ = scope UpperCamelCase__ = bos_token_id def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) UpperCamelCase__ = None if self.use_input_mask: UpperCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: UpperCamelCase__ = input_mask.numpy() UpperCamelCase__ = input_mask.shape UpperCamelCase__ = np.random.randint(1, seq_length - 1, size=(batch_size,) ) for batch_idx, start_index in enumerate(a_ ): UpperCamelCase__ = 1 UpperCamelCase__ = 0 UpperCamelCase__ = self.get_config() return config, input_ids, tf.convert_to_tensor(a_ ) def lowercase_ ( self : List[Any] ): """simple docstring""" return BlipTextConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, projection_dim=self.projection_dim, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, dropout=self.dropout, attention_dropout=self.attention_dropout, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, bos_token_id=self.bos_token_id, ) def lowercase_ ( self : Tuple, a_ : Any, a_ : Optional[Any], a_ : Optional[int] ): """simple docstring""" UpperCamelCase__ = TFBlipTextModel(config=a_ ) UpperCamelCase__ = model(a_, attention_mask=a_, training=a_ ) UpperCamelCase__ = model(a_, training=a_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size) ) def lowercase_ ( self : List[str] ): """simple docstring""" UpperCamelCase__ = self.prepare_config_and_inputs() UpperCamelCase__ = config_and_inputs UpperCamelCase__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase ( __snake_case , unittest.TestCase): _lowerCamelCase : str = (TFBlipTextModel,) if is_tf_available() else () _lowerCamelCase : Dict = False _lowerCamelCase : Optional[Any] = False _lowerCamelCase : Union[str, Any] = False def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ = BlipTextModelTester(self ) UpperCamelCase__ = ConfigTester(self, config_class=a_, hidden_size=37 ) def lowercase_ ( self : Dict ): """simple docstring""" self.config_tester.run_common_tests() def lowercase_ ( self : Tuple ): """simple docstring""" UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def lowercase_ ( self : Any ): """simple docstring""" pass def lowercase_ ( self : Tuple ): """simple docstring""" pass @unittest.skip(reason="Blip does not use inputs_embeds" ) def lowercase_ ( self : Dict ): """simple docstring""" pass @unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING" ) def lowercase_ ( self : Union[str, Any] ): """simple docstring""" pass @unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING" ) def lowercase_ ( self : Optional[Any] ): """simple docstring""" pass @slow def lowercase_ ( self : Dict ): """simple docstring""" for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ = TFBlipTextModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def lowercase_ ( self : Any, a_ : List[str]=True ): """simple docstring""" super().test_pt_tf_model_equivalence(allow_missing_keys=a_ )
352
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE__( _UpperCamelCase : int | float | str , _UpperCamelCase : int | float | str ) -> list[str]: '''simple docstring''' if nth_term == "": return [""] UpperCamelCase__ = int(_UpperCamelCase ) UpperCamelCase__ = int(_UpperCamelCase ) UpperCamelCase__ = [] for temp in range(int(_UpperCamelCase ) ): series.append(F'1 / {pow(temp + 1 , int(_UpperCamelCase ) )}' if series else "1" ) return series if __name__ == "__main__": import doctest doctest.testmod() __lowercase: Dict = int(input("Enter the last number (nth term) of the P-Series")) __lowercase: Optional[int] = int(input("Enter the power for P-Series")) print("Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p") print(p_series(nth_term, power))
31
0
'''simple docstring''' import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def UpperCAmelCase__ ( UpperCAmelCase_ : list , UpperCAmelCase_ : list , UpperCAmelCase_ : list , UpperCAmelCase_ : list , UpperCAmelCase_ : list ) -> float: __lowerCamelCase : Optional[int] = np.array([[1, item, train_mtch[i]] for i, item in enumerate(UpperCAmelCase_ )] ) __lowerCamelCase : Tuple = np.array(UpperCAmelCase_ ) __lowerCamelCase : Dict = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , UpperCAmelCase_ ) ) , x.transpose() ) , UpperCAmelCase_ ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def UpperCAmelCase__ ( UpperCAmelCase_ : list , UpperCAmelCase_ : list , UpperCAmelCase_ : list ) -> float: __lowerCamelCase : Any = (1, 2, 1) __lowerCamelCase : Optional[int] = (1, 1, 0, 7) __lowerCamelCase : List[Any] = SARIMAX( UpperCAmelCase_ , exog=UpperCAmelCase_ , order=UpperCAmelCase_ , seasonal_order=UpperCAmelCase_ ) __lowerCamelCase : Optional[Any] = model.fit(disp=UpperCAmelCase_ , maxiter=6_00 , method='nm' ) __lowerCamelCase : str = model_fit.predict(1 , len(UpperCAmelCase_ ) , exog=[test_match] ) return result[0] def UpperCAmelCase__ ( UpperCAmelCase_ : list , UpperCAmelCase_ : list , UpperCAmelCase_ : list ) -> float: __lowerCamelCase : Any = SVR(kernel='rbf' , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase : List[Any] = regressor.predict(UpperCAmelCase_ ) return y_pred[0] def UpperCAmelCase__ ( UpperCAmelCase_ : list ) -> float: train_user.sort() __lowerCamelCase : Optional[Any] = np.percentile(UpperCAmelCase_ , 25 ) __lowerCamelCase : Optional[int] = np.percentile(UpperCAmelCase_ , 75 ) __lowerCamelCase : Tuple = qa - qa __lowerCamelCase : Optional[Any] = qa - (iqr * 0.1) return low_lim def UpperCAmelCase__ ( UpperCAmelCase_ : list , UpperCAmelCase_ : float ) -> bool: __lowerCamelCase : List[str] = 0 __lowerCamelCase : Optional[int] = 0 for i in list_vote: if i > actual_result: __lowerCamelCase : str = not_safe + 1 else: if abs(abs(UpperCAmelCase_ ) - abs(UpperCAmelCase_ ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) A__ : Any = [[18231, 0.0, 1], [22621, 1.0, 2], [15675, 0.0, 3], [23583, 1.0, 4]] A__ : str = pd.DataFrame( data_input, columns=["""total_user""", """total_even""", """days"""] ) A__ : str = Normalizer().fit_transform(data_input_df.values) # split data A__ : Any = normalize_df[:, 2].tolist() A__ : str = normalize_df[:, 0].tolist() A__ : List[Any] = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) A__ : Optional[Any] = normalize_df[:, [1, 2]].tolist() A__ : List[str] = x[: len(x) - 1] A__ : List[Any] = x[len(x) - 1 :] # for linear regression & sarimax A__ : Dict = total_date[: len(total_date) - 1] A__ : Any = total_user[: len(total_user) - 1] A__ : Tuple = total_match[: len(total_match) - 1] A__ : Union[str, Any] = total_date[len(total_date) - 1 :] A__ : Optional[Any] = total_user[len(total_user) - 1 :] A__ : Tuple = total_match[len(total_match) - 1 :] # voting system with forecasting A__ : Tuple = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data A__ : Dict = """""" if data_safety_checker(res_vote, tst_user) else """not """ print("""Today's data is {not_str}safe.""")
185
'''simple docstring''' import unittest from knapsack import knapsack as k class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def lowercase_ ( self ) -> Optional[Any]: __lowerCamelCase : int = 0 __lowerCamelCase : Union[str, Any] = [0] __lowerCamelCase : Any = [0] __lowerCamelCase : Union[str, Any] = len(SCREAMING_SNAKE_CASE_ ) self.assertEqual(k.knapsack(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , 0 ) __lowerCamelCase : List[str] = [60] __lowerCamelCase : Union[str, Any] = [10] __lowerCamelCase : List[Any] = len(SCREAMING_SNAKE_CASE_ ) self.assertEqual(k.knapsack(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , 0 ) def lowercase_ ( self ) -> List[str]: __lowerCamelCase : Optional[int] = 3 __lowerCamelCase : int = [1, 2, 3] __lowerCamelCase : str = [3, 2, 1] __lowerCamelCase : Union[str, Any] = len(SCREAMING_SNAKE_CASE_ ) self.assertEqual(k.knapsack(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , 5 ) def lowercase_ ( self ) -> int: __lowerCamelCase : Optional[int] = 50 __lowerCamelCase : List[str] = [60, 1_00, 1_20] __lowerCamelCase : List[str] = [10, 20, 30] __lowerCamelCase : List[str] = len(SCREAMING_SNAKE_CASE_ ) self.assertEqual(k.knapsack(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , 2_20 ) if __name__ == "__main__": unittest.main()
185
1
'''simple docstring''' import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class _UpperCamelCase ( enum.Enum ): '''simple docstring''' lowerCAmelCase__ = 0 lowerCAmelCase__ = 1 lowerCAmelCase__ = 2 @add_end_docstrings(A ) class _UpperCamelCase ( A ): '''simple docstring''' lowerCAmelCase__ = """ In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision and denounces one of the men as a horse thief. Although his father initially slaps him for making such an accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop, begging for his blessing. <eod> </s> <eos> """ def __init__( self : int , *_lowerCAmelCase : Optional[int] , **_lowerCAmelCase : Dict): '''simple docstring''' super().__init__(*_lowerCAmelCase , **_lowerCAmelCase) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == 'tf' else MODEL_FOR_CAUSAL_LM_MAPPING) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. __lowercase =None if self.model.config.prefix is not None: __lowercase =self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. __lowercase =self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. __lowercase , __lowercase , __lowercase =self._sanitize_parameters(prefix=_lowerCAmelCase , **self._forward_params) __lowercase ={**self._preprocess_params, **preprocess_params} __lowercase ={**self._forward_params, **forward_params} def __lowerCamelCase ( self : List[Any] , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : Union[str, Any]=None , _lowerCAmelCase : Union[str, Any]=None , _lowerCAmelCase : Dict=None , _lowerCAmelCase : Any=None , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : Optional[int]=None , **_lowerCAmelCase : str , ): '''simple docstring''' __lowercase ={} if prefix is not None: __lowercase =prefix if prefix: __lowercase =self.tokenizer( _lowerCAmelCase , padding=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , return_tensors=self.framework) __lowercase =prefix_inputs['input_ids'].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( f"""{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected""" ' [None, \'hole\']') __lowercase =handle_long_generation preprocess_params.update(_lowerCAmelCase) __lowercase =generate_kwargs __lowercase ={} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError('`return_text` is mutually exclusive with `return_full_text`') if return_tensors is not None: raise ValueError('`return_full_text` is mutually exclusive with `return_tensors`') __lowercase =ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError('`return_text` is mutually exclusive with `return_tensors`') __lowercase =ReturnType.TENSORS if return_type is not None: __lowercase =return_type if clean_up_tokenization_spaces is not None: __lowercase =clean_up_tokenization_spaces if stop_sequence is not None: __lowercase =self.tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase) if len(_lowerCAmelCase) > 1: warnings.warn( 'Stopping on a multiple token sequence is not yet supported on transformers. The first token of' ' the stop sequence will be used as the stop sequence string in the interim.') __lowercase =stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def __lowerCamelCase ( self : Any , *_lowerCAmelCase : int , **_lowerCAmelCase : Dict): '''simple docstring''' if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({'add_space_before_punct_symbol': True}) return super()._parse_and_tokenize(*_lowerCAmelCase , **_lowerCAmelCase) def __call__( self : str , _lowerCAmelCase : int , **_lowerCAmelCase : Optional[int]): '''simple docstring''' return super().__call__(_lowerCAmelCase , **_lowerCAmelCase) def __lowerCamelCase ( self : Optional[int] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Any="" , _lowerCAmelCase : Optional[Any]=None , **_lowerCAmelCase : Union[str, Any]): '''simple docstring''' __lowercase =self.tokenizer( prefix + prompt_text , padding=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , return_tensors=self.framework) __lowercase =prompt_text if handle_long_generation == "hole": __lowercase =inputs['input_ids'].shape[-1] if "max_new_tokens" in generate_kwargs: __lowercase =generate_kwargs['max_new_tokens'] else: __lowercase =generate_kwargs.get('max_length' , self.model.config.max_length) - cur_len if new_tokens < 0: raise ValueError('We cannot infer how many new tokens are expected') if cur_len + new_tokens > self.tokenizer.model_max_length: __lowercase =self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( 'We cannot use `hole` to handle this generation the number of desired tokens exceeds the' ' models max length') __lowercase =inputs['input_ids'][:, -keep_length:] if "attention_mask" in inputs: __lowercase =inputs['attention_mask'][:, -keep_length:] return inputs def __lowerCamelCase ( self : Union[str, Any] , _lowerCAmelCase : List[Any] , **_lowerCAmelCase : int): '''simple docstring''' __lowercase =model_inputs['input_ids'] __lowercase =model_inputs.get('attention_mask' , _lowerCAmelCase) # Allow empty prompts if input_ids.shape[1] == 0: __lowercase =None __lowercase =None __lowercase =1 else: __lowercase =input_ids.shape[0] __lowercase =model_inputs.pop('prompt_text') # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. __lowercase =generate_kwargs.pop('prefix_length' , 0) if prefix_length > 0: __lowercase ='max_new_tokens' in generate_kwargs or ( 'generation_config' in generate_kwargs and generate_kwargs['generation_config'].max_new_tokens is not None ) if not has_max_new_tokens: __lowercase =generate_kwargs.get('max_length') or self.model.config.max_length generate_kwargs["max_length"] += prefix_length __lowercase ='min_new_tokens' in generate_kwargs or ( 'generation_config' in generate_kwargs and generate_kwargs['generation_config'].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL __lowercase =self.model.generate(input_ids=_lowerCAmelCase , attention_mask=_lowerCAmelCase , **_lowerCAmelCase) __lowercase =generated_sequence.shape[0] if self.framework == "pt": __lowercase =generated_sequence.reshape(_lowerCAmelCase , out_b // in_b , *generated_sequence.shape[1:]) elif self.framework == "tf": __lowercase =tf.reshape(_lowerCAmelCase , (in_b, out_b // in_b, *generated_sequence.shape[1:])) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def __lowerCamelCase ( self : Dict , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[int]=ReturnType.FULL_TEXT , _lowerCAmelCase : Any=True): '''simple docstring''' __lowercase =model_outputs['generated_sequence'][0] __lowercase =model_outputs['input_ids'] __lowercase =model_outputs['prompt_text'] __lowercase =generated_sequence.numpy().tolist() __lowercase =[] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: __lowercase ={'generated_token_ids': sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text __lowercase =self.tokenizer.decode( _lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: __lowercase =0 else: __lowercase =len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase , )) if return_type == ReturnType.FULL_TEXT: __lowercase =prompt_text + text[prompt_length:] else: __lowercase =text[prompt_length:] __lowercase ={'generated_text': all_text} records.append(_lowerCAmelCase) return records
48
'''simple docstring''' import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList lowerCamelCase = ["""\nclass""", """\ndef""", """\n#""", """\n@""", """\nprint""", """\nif"""] class _UpperCamelCase ( A ): '''simple docstring''' def __init__( self : List[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : Optional[int]=1): '''simple docstring''' __lowercase =tokenizer __lowercase =dataset __lowercase =len(_lowerCAmelCase) if n_tasks is None else n_tasks __lowercase =n_copies def __iter__( self : Union[str, Any]): '''simple docstring''' __lowercase =[] for task in range(self.n_tasks): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['prompt'].strip()) __lowercase =self.tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors='pt') for task in range(self.n_tasks): for _ in range(self.n_copies): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class _UpperCamelCase ( A ): '''simple docstring''' def __init__( self : List[str] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[Any]): '''simple docstring''' __lowercase =start_length __lowercase =eof_strings __lowercase =tokenizer def __call__( self : List[str] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any] , **_lowerCAmelCase : Any): '''simple docstring''' __lowercase =self.tokenizer.batch_decode(input_ids[:, self.start_length :]) __lowercase =[] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings)) return all(_lowerCAmelCase) def _A ( _lowerCAmelCase ): """simple docstring""" __lowercase =re.split('(%s)' % '|'.join(_lowerCAmelCase ) , _lowerCAmelCase ) # last string should be "" return "".join(string_list[:-2] ) def _A ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=20 , **_lowerCAmelCase ): """simple docstring""" __lowercase =defaultdict(_lowerCAmelCase ) # dict of list of generated tokens for step, batch in tqdm(enumerate(_lowerCAmelCase ) ): with torch.no_grad(): __lowercase =batch['ids'].shape[-1] __lowercase =accelerator.unwrap_model(_lowerCAmelCase ).generate( input_ids=batch['ids'][:, : batch['input_len']] , num_return_sequences=_lowerCAmelCase , **_lowerCAmelCase ) # each task is generated batch_size times __lowercase =batch['task_id'].repeat(_lowerCAmelCase ) __lowercase =accelerator.pad_across_processes( _lowerCAmelCase , dim=1 , pad_index=tokenizer.pad_token_id ) __lowercase , __lowercase =accelerator.gather((generated_tokens, generated_tasks) ) __lowercase =generated_tokens.cpu().numpy() __lowercase =generated_tasks.cpu().numpy() for task, generated_tokens in zip(_lowerCAmelCase , _lowerCAmelCase ): gen_token_dict[task].append(_lowerCAmelCase ) __lowercase =[[] for _ in range(_lowerCAmelCase )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: __lowercase =tokenizer.decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase ) code_gens[task].append(remove_last_block(_lowerCAmelCase ) ) return code_gens def _A ( ): """simple docstring""" __lowercase =HfArgumentParser(_lowerCAmelCase ) __lowercase =parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric __lowercase =args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing __lowercase ='false' if args.num_workers is None: __lowercase =multiprocessing.cpu_count() # Use dataset load to feed to accelerate __lowercase =Accelerator() set_seed(args.seed , device_specific=_lowerCAmelCase ) # Load model and tokenizer __lowercase =AutoTokenizer.from_pretrained(args.model_ckpt ) __lowercase =tokenizer.eos_token __lowercase =AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings __lowercase ={ 'do_sample': args.do_sample, 'temperature': args.temperature, 'max_new_tokens': args.max_new_tokens, 'top_p': args.top_p, 'top_k': args.top_k, 'stopping_criteria': StoppingCriteriaList([EndOfFunctionCriteria(0 , _lowerCAmelCase , _lowerCAmelCase )] ), } # Load evaluation dataset and metric __lowercase =load_dataset('openai_humaneval' ) __lowercase =load_metric('code_eval' ) __lowercase =args.num_tasks if args.num_tasks is not None else len(human_eval['test'] ) __lowercase =args.n_samples // args.batch_size __lowercase =TokenizedDataset(_lowerCAmelCase , human_eval['test'] , n_copies=_lowerCAmelCase , n_tasks=_lowerCAmelCase ) # do not confuse args.batch_size, which is actually the num_return_sequences __lowercase =DataLoader(_lowerCAmelCase , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: __lowercase =code_eval_metric.compute(references=[''] , predictions=[['']] ) except ValueError as exception: print( 'Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`' ' flag to enable code evaluation.' ) raise exception __lowercase , __lowercase =accelerator.prepare(_lowerCAmelCase , _lowerCAmelCase ) __lowercase =complete_code( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , n_tasks=_lowerCAmelCase , batch_size=args.batch_size , **_lowerCAmelCase , ) if accelerator.is_main_process: __lowercase =[] for task in tqdm(range(_lowerCAmelCase ) ): __lowercase =human_eval['test'][task]['test'] __lowercase =f"""check({human_eval['test'][task]['entry_point']})""" references.append('\n' + test_func + '\n' + entry_point ) # Evaluate completions with "code_eval" metric __lowercase , __lowercase =code_eval_metric.compute( references=_lowerCAmelCase , predictions=_lowerCAmelCase , num_workers=args.num_workers ) print(f"""Results: {pass_at_k}""" ) # Save results to json file with open(args.output_file , 'w' ) as fp: json.dump(_lowerCAmelCase , _lowerCAmelCase ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
48
1
"""simple docstring""" import warnings warnings.warn( '''memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: ''' '''`from accelerate import find_executable_batch_size` to avoid this warning.''', FutureWarning, )
54
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE_ ) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = field(default="""question-answering-extractive""" ,metadata={"""include_in_asdict_even_if_is_default""": True} ) snake_case_ : ClassVar[Features] = Features({"""question""": Value("""string""" ), """context""": Value("""string""" )} ) snake_case_ : ClassVar[Features] = Features( { """answers""": Sequence( { """text""": Value("""string""" ), """answer_start""": Value("""int32""" ), } ) } ) snake_case_ : str = "question" snake_case_ : str = "context" snake_case_ : str = "answers" @property def UpperCamelCase_ ( self : Any) -> Dict[str, str]: """simple docstring""" return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
317
0
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _A ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Dict = LDMTextToImagePipeline _SCREAMING_SNAKE_CASE : Tuple = TEXT_TO_IMAGE_PARAMS - { "negative_prompt", "negative_prompt_embeds", "cross_attention_kwargs", "prompt_embeds", } _SCREAMING_SNAKE_CASE : List[Any] = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "callback", "callback_steps", } _SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_BATCH_PARAMS _SCREAMING_SNAKE_CASE : List[str] = False def __A ( self ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) __UpperCAmelCase : Dict = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) __UpperCAmelCase : List[Any] = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=__UpperCAmelCase , set_alpha_to_one=__UpperCAmelCase , ) torch.manual_seed(0 ) __UpperCAmelCase : Any = AutoencoderKL( block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=("""DownEncoderBlock2D""", """DownEncoderBlock2D""") , up_block_types=("""UpDecoderBlock2D""", """UpDecoderBlock2D""") , latent_channels=4 , ) torch.manual_seed(0 ) __UpperCAmelCase : Optional[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) __UpperCAmelCase : Tuple = CLIPTextModel(__UpperCAmelCase ) __UpperCAmelCase : Tuple = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __UpperCAmelCase : Dict = { """unet""": unet, """scheduler""": scheduler, """vqvae""": vae, """bert""": text_encoder, """tokenizer""": tokenizer, } return components def __A ( self , __UpperCAmelCase , __UpperCAmelCase=0 ) -> Any: '''simple docstring''' if str(__UpperCAmelCase ).startswith("""mps""" ): __UpperCAmelCase : int = torch.manual_seed(__UpperCAmelCase ) else: __UpperCAmelCase : List[str] = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) __UpperCAmelCase : Dict = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator __UpperCAmelCase : Dict = self.get_dummy_components() __UpperCAmelCase : Tuple = LDMTextToImagePipeline(**__UpperCAmelCase ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = self.get_dummy_inputs(__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = pipe(**__UpperCAmelCase ).images __UpperCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) __UpperCAmelCase : Dict = np.array([0.6101, 0.6156, 0.5622, 0.4895, 0.6661, 0.3804, 0.5748, 0.6136, 0.5014] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @slow @require_torch_gpu class _A ( unittest.TestCase ): def __A ( self ) -> List[str]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self , __UpperCAmelCase , __UpperCAmelCase=torch.floataa , __UpperCAmelCase=0 ) -> int: '''simple docstring''' __UpperCAmelCase : Tuple = torch.manual_seed(__UpperCAmelCase ) __UpperCAmelCase : int = np.random.RandomState(__UpperCAmelCase ).standard_normal((1, 4, 32, 32) ) __UpperCAmelCase : int = torch.from_numpy(__UpperCAmelCase ).to(device=__UpperCAmelCase , dtype=__UpperCAmelCase ) __UpperCAmelCase : Tuple = { """prompt""": """A painting of a squirrel eating a burger""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase : Any = LDMTextToImagePipeline.from_pretrained("""CompVis/ldm-text2im-large-256""" ).to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = self.get_inputs(__UpperCAmelCase ) __UpperCAmelCase : int = pipe(**__UpperCAmelCase ).images __UpperCAmelCase : Tuple = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) __UpperCAmelCase : Tuple = np.array([0.5_1825, 0.5_2850, 0.5_2543, 0.5_4258, 0.5_2304, 0.5_2569, 0.5_4363, 0.5_5276, 0.5_6878] ) __UpperCAmelCase : Union[str, Any] = np.abs(expected_slice - image_slice ).max() assert max_diff < 1E-3 @nightly @require_torch_gpu class _A ( unittest.TestCase ): def __A ( self ) -> Optional[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self , __UpperCAmelCase , __UpperCAmelCase=torch.floataa , __UpperCAmelCase=0 ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = torch.manual_seed(__UpperCAmelCase ) __UpperCAmelCase : List[Any] = np.random.RandomState(__UpperCAmelCase ).standard_normal((1, 4, 32, 32) ) __UpperCAmelCase : int = torch.from_numpy(__UpperCAmelCase ).to(device=__UpperCAmelCase , dtype=__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = { """prompt""": """A painting of a squirrel eating a burger""", """latents""": latents, """generator""": generator, """num_inference_steps""": 50, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = LDMTextToImagePipeline.from_pretrained("""CompVis/ldm-text2im-large-256""" ).to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = self.get_inputs(__UpperCAmelCase ) __UpperCAmelCase : Optional[int] = pipe(**__UpperCAmelCase ).images[0] __UpperCAmelCase : Tuple = load_numpy( """https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy""" ) __UpperCAmelCase : Dict = np.abs(expected_image - image ).max() assert max_diff < 1E-3
16
'''simple docstring''' import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _A : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=32 , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=16 , __UpperCAmelCase=[1, 2, 1] , __UpperCAmelCase=[2, 2, 4] , __UpperCAmelCase=2 , __UpperCAmelCase=2.0 , __UpperCAmelCase=True , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase="gelu" , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-5 , __UpperCAmelCase=True , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=10 , __UpperCAmelCase=8 , ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[str] = parent __UpperCAmelCase : Union[str, Any] = batch_size __UpperCAmelCase : Any = image_size __UpperCAmelCase : Dict = patch_size __UpperCAmelCase : Dict = num_channels __UpperCAmelCase : List[Any] = embed_dim __UpperCAmelCase : str = depths __UpperCAmelCase : Dict = num_heads __UpperCAmelCase : str = window_size __UpperCAmelCase : int = mlp_ratio __UpperCAmelCase : Union[str, Any] = qkv_bias __UpperCAmelCase : Dict = hidden_dropout_prob __UpperCAmelCase : str = attention_probs_dropout_prob __UpperCAmelCase : Optional[int] = drop_path_rate __UpperCAmelCase : List[str] = hidden_act __UpperCAmelCase : Optional[int] = use_absolute_embeddings __UpperCAmelCase : Any = patch_norm __UpperCAmelCase : Union[str, Any] = layer_norm_eps __UpperCAmelCase : Optional[int] = initializer_range __UpperCAmelCase : Tuple = is_training __UpperCAmelCase : Any = scope __UpperCAmelCase : Optional[Any] = use_labels __UpperCAmelCase : Optional[int] = type_sequence_label_size __UpperCAmelCase : int = encoder_stride def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase : Tuple = None if self.use_labels: __UpperCAmelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : Optional[int] = self.get_config() return config, pixel_values, labels def __A ( self ) -> Dict: '''simple docstring''' return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Tuple = SwinvaModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Union[str, Any] = model(__UpperCAmelCase ) __UpperCAmelCase : Tuple = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __UpperCAmelCase : List[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Any = SwinvaForMaskedImageModeling(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : List[Any] = model(__UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __UpperCAmelCase : Optional[Any] = 1 __UpperCAmelCase : Dict = SwinvaForMaskedImageModeling(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __UpperCAmelCase : str = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' __UpperCAmelCase : str = self.type_sequence_label_size __UpperCAmelCase : str = SwinvaForImageClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Any = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[Any] = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = config_and_inputs __UpperCAmelCase : Dict = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _A ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): _SCREAMING_SNAKE_CASE : List[str] = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE : List[str] = ( {"feature-extraction": SwinvaModel, "image-classification": SwinvaForImageClassification} if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE : Dict = False _SCREAMING_SNAKE_CASE : Optional[Any] = False _SCREAMING_SNAKE_CASE : Union[str, Any] = False _SCREAMING_SNAKE_CASE : Optional[Any] = False def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : List[str] = SwinvaModelTester(self ) __UpperCAmelCase : Any = ConfigTester(self , config_class=__UpperCAmelCase , embed_dim=37 ) def __A ( self ) -> Any: '''simple docstring''' self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) @unittest.skip(reason="""Got `CUDA error: misaligned address` with PyTorch 2.0.0.""" ) def __A ( self ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip(reason="""Swinv2 does not use inputs_embeds""" ) def __A ( self ) -> Dict: '''simple docstring''' pass def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Union[str, Any] = model_class(__UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCAmelCase : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCAmelCase , nn.Linear ) ) def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Tuple = model_class(__UpperCAmelCase ) __UpperCAmelCase : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : str = [*signature.parameters.keys()] __UpperCAmelCase : Tuple = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Optional[Any] = True for model_class in self.all_model_classes: __UpperCAmelCase : Union[str, Any] = True __UpperCAmelCase : Optional[Any] = False __UpperCAmelCase : Optional[int] = True __UpperCAmelCase : int = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : List[Any] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __UpperCAmelCase : str = outputs.attentions __UpperCAmelCase : Any = len(self.model_tester.depths ) self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __UpperCAmelCase : Dict = True __UpperCAmelCase : int = config.window_size**2 __UpperCAmelCase : Any = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : int = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __UpperCAmelCase : Dict = outputs.attentions self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) __UpperCAmelCase : Dict = len(__UpperCAmelCase ) # Check attention is always last and order is fine __UpperCAmelCase : Any = True __UpperCAmelCase : Any = True __UpperCAmelCase : Optional[int] = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : List[str] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) if hasattr(self.model_tester , """num_hidden_states_types""" ): __UpperCAmelCase : Any = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states __UpperCAmelCase : Optional[int] = 2 self.assertEqual(out_len + added_hidden_states , len(__UpperCAmelCase ) ) __UpperCAmelCase : Tuple = outputs.attentions self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : Optional[Any] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __UpperCAmelCase : List[Any] = outputs.hidden_states __UpperCAmelCase : List[Any] = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) # Swinv2 has a different seq_length __UpperCAmelCase : List[str] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __UpperCAmelCase : Union[str, Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) __UpperCAmelCase : int = outputs.reshaped_hidden_states self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : str = reshaped_hidden_states[0].shape __UpperCAmelCase : Any = ( reshaped_hidden_states[0].view(__UpperCAmelCase , __UpperCAmelCase , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Tuple = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: __UpperCAmelCase : Union[str, Any] = True self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : Union[str, Any] = True self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Tuple = 3 __UpperCAmelCase : str = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __UpperCAmelCase : List[str] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __UpperCAmelCase : str = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __UpperCAmelCase : Union[str, Any] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: __UpperCAmelCase : int = True self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : Tuple = True self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , (padded_height, padded_width) ) def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__UpperCAmelCase ) def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase ) @slow def __A ( self ) -> Optional[Any]: '''simple docstring''' for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Dict = SwinvaModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Tuple = _config_zero_init(__UpperCAmelCase ) for model_class in self.all_model_classes: __UpperCAmelCase : List[Any] = model_class(config=__UpperCAmelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) @require_vision @require_torch class _A ( unittest.TestCase ): @cached_property def __A ( self ) -> int: '''simple docstring''' return ( AutoImageProcessor.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ) if is_vision_available() else None ) @slow def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = SwinvaForImageClassification.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ).to( __UpperCAmelCase ) __UpperCAmelCase : Tuple = self.default_image_processor __UpperCAmelCase : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __UpperCAmelCase : Any = image_processor(images=__UpperCAmelCase , return_tensors="""pt""" ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCAmelCase : Optional[int] = model(**__UpperCAmelCase ) # verify the logits __UpperCAmelCase : int = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) )
16
1
"""simple docstring""" import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) lowerCamelCase_ = logging.getLogger() lowerCamelCase_ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class UpperCamelCase_ (a_ ): def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase_ : int ) -> str: os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) UpperCAmelCase_ : Optional[Any] = {"source": "What is love ?", "target": "life"} UpperCAmelCase_ : List[Any] = {"train": 12, "val": 2, "test": 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: UpperCAmelCase_ : Union[str, Any] = "\n".join([contents[field]] * n_lines[split] ) with open(os.path.join(_lowerCamelCase , f"""{split}.{field}""" ) , "w" ) as f: f.write(_lowerCamelCase ) def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Union[str, Any] = "pytorch" ) -> List[Any]: UpperCAmelCase_ : Tuple = self.get_auto_remove_tmp_dir() UpperCAmelCase_ : str = os.path.join(_lowerCamelCase , "output" ) UpperCAmelCase_ : List[str] = os.path.join(_lowerCamelCase , "data" ) self._create_dummy_data(data_dir=_lowerCamelCase ) UpperCAmelCase_ : List[str] = f"""\n --data_dir {data_dir} \\n --output_dir {output_dir} \\n --model_name_or_path facebook/rag-sequence-base \\n --model_type rag_sequence \\n --do_train \\n --do_predict \\n --n_val -1 \\n --val_check_interval 1.0 \\n --train_batch_size 2 \\n --eval_batch_size 1 \\n --max_source_length 25 \\n --max_target_length 25 \\n --val_max_target_length 25 \\n --test_max_target_length 25 \\n --label_smoothing 0.1 \\n --dropout 0.1 \\n --attention_dropout 0.1 \\n --weight_decay 0.001 \\n --adam_epsilon 1e-08 \\n --max_grad_norm 0.1 \\n --lr_scheduler polynomial \\n --learning_rate 3e-04 \\n --num_train_epochs 1 \\n --warmup_steps 4 \\n --gradient_accumulation_steps 1 \\n --distributed-port 8787 \\n --use_dummy_dataset 1 \\n --distributed_retriever {distributed_retriever} \\n """.split() if gpus > 0: testargs.append(f"""--gpus={gpus}""" ) if is_apex_available(): testargs.append("--fp16" ) else: testargs.append("--gpus=0" ) testargs.append("--distributed_backend=ddp_cpu" ) testargs.append("--num_processes=2" ) UpperCAmelCase_ : Optional[int] = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(_lowerCamelCase , env=self.get_env() ) UpperCAmelCase_ : Optional[int] = os.path.join(_lowerCamelCase , "metrics.json" ) with open(_lowerCamelCase ) as f: UpperCAmelCase_ : List[str] = json.load(_lowerCamelCase ) return result @require_torch_gpu def _SCREAMING_SNAKE_CASE ( self : int ) -> Dict: UpperCAmelCase_ : Optional[int] = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 ) @require_torch_multi_gpu def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> str: UpperCAmelCase_ : Any = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 ) @require_torch_gpu @require_ray def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: UpperCAmelCase_ : Tuple = self._run_finetune(gpus=1 , distributed_retriever="ray" ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 ) @require_torch_multi_gpu @require_ray def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Tuple: UpperCAmelCase_ : Optional[int] = self._run_finetune(gpus=1 , distributed_retriever="ray" ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 )
268
"""simple docstring""" # limitations under the License. from typing import Optional, Tuple, Union import torch from diffusers import DiffusionPipeline, ImagePipelineOutput class a ( a_ ): def __init__( self , _lowerCamelCase , _lowerCamelCase ): super().__init__() self.register_modules(unet=_lowerCamelCase , scheduler=_lowerCamelCase ) @torch.no_grad() def __call__( self , _lowerCamelCase = 1 , _lowerCamelCase = None , _lowerCamelCase = 5_0 , _lowerCamelCase = "pil" , _lowerCamelCase = True , **_lowerCamelCase , ): lowercase = torch.randn( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=_lowerCamelCase , ) lowercase = image.to(self.device ) # set step values self.scheduler.set_timesteps(_lowerCamelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output lowercase = self.unet(_lowerCamelCase , _lowerCamelCase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 lowercase = self.scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ).prev_sample lowercase = (image / 2 + 0.5).clamp(0 , 1 ) lowercase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowercase = self.numpy_to_pil(_lowerCamelCase ) if not return_dict: return (image,), "This is a local test" return ImagePipelineOutput(images=_lowerCamelCase ), "This is a local test"
220
0
'''simple docstring''' from __future__ import annotations def _lowerCAmelCase ( lowerCamelCase_ : int ): __lowercase = [True] * limit __lowercase = False __lowercase = False __lowercase = True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): __lowercase = i * 2 while index < limit: __lowercase = False __lowercase = index + i __lowercase = [2] for i in range(3 , lowerCamelCase_ , 2 ): if is_prime[i]: primes.append(lowerCamelCase_ ) return primes def _lowerCAmelCase ( lowerCamelCase_ : int = 1_0_0_0_0_0_0 ): __lowercase = prime_sieve(lowerCamelCase_ ) __lowercase = 0 __lowercase = 0 for i in range(len(lowerCamelCase_ ) ): for j in range(i + length , len(lowerCamelCase_ ) ): __lowercase = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: __lowercase = j - i __lowercase = sol return largest if __name__ == "__main__": print(f'''{solution() = }''')
217
'''simple docstring''' from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : Union[List[PIL.Image.Image], np.ndarray] a : Optional[List[bool]] if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
217
1
"""simple docstring""" import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def UpperCAmelCase__ (snake_case__ : str , snake_case__ : str , **snake_case__ : Tuple ): """simple docstring""" _snake_case : List[Any] = AutoConfig.from_pretrained(snake_case__ , **snake_case__ ) _snake_case : Dict = AutoModelForSeqaSeqLM.from_config(snake_case__ ) model.save_pretrained(snake_case__ ) AutoTokenizer.from_pretrained(snake_case__ ).save_pretrained(snake_case__ ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
64
'''simple docstring''' import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() __A : Any = [ "word_embeddings_layernorm.weight", "word_embeddings_layernorm.bias", "input_layernorm.weight", "input_layernorm.bias", "post_attention_layernorm.weight", "post_attention_layernorm.bias", "self_attention.dense.bias", "mlp.dense_4h_to_h.bias", "ln_f.weight", "ln_f.bias", ] __A : Any = [ "mlp.dense_4h_to_h.weight", "self_attention.dense.weight", ] def UpperCamelCase_ ( A__ : str , A__ : str ): '''simple docstring''' lowerCAmelCase_ : Dict = { """word_embeddings.weight""": """word_embeddings.weight""", """word_embeddings.norm.weight""": """word_embeddings_layernorm.weight""", """word_embeddings.norm.bias""": """word_embeddings_layernorm.bias""", """weight""": """ln_f.weight""", """bias""": """ln_f.bias""", } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks lowerCAmelCase_ : List[str] = int(re.match(R""".*layer_(\d*).*""" , A__ )[1] ) layer_number -= 3 return f'h.{layer_number}.' + key def UpperCamelCase_ ( A__ : List[str] ): '''simple docstring''' if dtype == torch.bool: return 1 / 8 lowerCAmelCase_ : List[str] = re.search(R"""[^\d](\d+)$""" , str(A__ ) ) if bit_search is None: raise ValueError(f'`dtype` is not a valid dtype: {dtype}.' ) lowerCAmelCase_ : Dict = int(bit_search.groups()[0] ) return bit_size // 8 def UpperCamelCase_ ( A__ : int , A__ : Tuple , A__ : Any , A__ : Tuple , A__ : List[str] ): '''simple docstring''' if bloom_config_file == "": lowerCAmelCase_ : Any = BloomConfig() else: lowerCAmelCase_ : Any = BloomConfig.from_json_file(A__ ) if shard_model: lowerCAmelCase_ : Any = os.listdir(A__ ) lowerCAmelCase_ : Optional[int] = sorted(filter(lambda A__ : s.startswith("""layer""" ) and "model_00" in s , A__ ) ) lowerCAmelCase_ : Optional[Any] = {"""weight_map""": {}, """metadata""": {}} lowerCAmelCase_ : Optional[Any] = 0 lowerCAmelCase_ : List[str] = None lowerCAmelCase_ : Optional[int] = BloomConfig() for j, file in enumerate(A__ ): print("""Processing file: {}""".format(A__ ) ) lowerCAmelCase_ : List[str] = None for i in range(A__ ): # load all TP files lowerCAmelCase_ : Optional[Any] = file.replace("""model_00""" , f'model_0{i}' ) lowerCAmelCase_ : Optional[int] = torch.load(os.path.join(A__ , A__ ) , map_location="""cpu""" ) # Rename keys in the transformers names lowerCAmelCase_ : str = list(temp.keys() ) for key in keys: lowerCAmelCase_ : Optional[int] = temp.pop(A__ ) if tensors is None: lowerCAmelCase_ : str = temp else: for key in tensors.keys(): if any(key.endswith(A__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel lowerCAmelCase_ : int = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks lowerCAmelCase_ : List[str] = torch.cat([tensors[key], temp[key]] , dim=A__ ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(A__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): lowerCAmelCase_ : Optional[int] = tensors[key] / pretraining_tp torch.save( A__ , os.path.join( A__ , """pytorch_model_{}-of-{}.bin""".format(str(j + 1 ).zfill(5 ) , str(len(A__ ) ).zfill(5 ) ) , ) , ) for key in tensors.keys(): lowerCAmelCase_ : str = tensors[key] total_size += value.numel() * get_dtype_size(value.dtype ) if key not in index_dict["weight_map"]: lowerCAmelCase_ : Tuple = """pytorch_model_{}-of-{}.bin""".format( str(j + 1 ).zfill(5 ) , str(len(A__ ) ).zfill(5 ) ) lowerCAmelCase_ : str = BloomConfig() lowerCAmelCase_ : List[Any] = pytorch_dump_folder_path + """/""" + CONFIG_NAME lowerCAmelCase_ : List[Any] = total_size with open(A__ , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) with open(os.path.join(A__ , WEIGHTS_NAME + """.index.json""" ) , """w""" , encoding="""utf-8""" ) as f: lowerCAmelCase_ : Optional[int] = json.dumps(A__ , indent=2 , sort_keys=A__ ) + """\n""" f.write(A__ ) else: lowerCAmelCase_ : int = BloomModel(A__ ) lowerCAmelCase_ : Union[str, Any] = os.listdir(A__ ) lowerCAmelCase_ : Tuple = sorted(filter(lambda A__ : s.startswith("""layer""" ) and "model_00" in s , A__ ) ) lowerCAmelCase_ : List[Any] = None for i, file in enumerate(A__ ): lowerCAmelCase_ : List[Any] = None for i in range(A__ ): # load all TP files lowerCAmelCase_ : str = file.replace("""model_00""" , f'model_0{i}' ) lowerCAmelCase_ : Optional[Any] = torch.load(os.path.join(A__ , A__ ) , map_location="""cpu""" ) # Rename keys in the transformers names lowerCAmelCase_ : Union[str, Any] = list(temp.keys() ) for key in keys: lowerCAmelCase_ : str = temp.pop(A__ ) if tensors is None: lowerCAmelCase_ : int = temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(A__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel lowerCAmelCase_ : Optional[Any] = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks lowerCAmelCase_ : Optional[Any] = torch.cat([tensors[key], temp[key]] , dim=A__ ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(A__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): lowerCAmelCase_ : Union[str, Any] = tensors[key] / pretraining_tp lowerCAmelCase_ : Optional[int] = model.load_state_dict(A__ , strict=A__ ) assert not other_keys.unexpected_keys, f'The keys {other_keys.unexpected_keys} are unexpected' if missing_keys is None: lowerCAmelCase_ : Any = set(other_keys.missing_keys ) else: lowerCAmelCase_ : List[Any] = missing_keys.intersection(set(other_keys.missing_keys ) ) assert not missing_keys, f'The keys {missing_keys} are missing' # Save pytorch-model os.makedirs(A__ , exist_ok=A__ ) lowerCAmelCase_ : Dict = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME lowerCAmelCase_ : Tuple = pytorch_dump_folder_path + """/""" + CONFIG_NAME print(f'Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}' ) if config.torch_dtype is not None: lowerCAmelCase_ : Any = model.to(config.torch_dtype ) torch.save(model.state_dict() , A__ ) print(f'Save configuration file to {pytorch_config_dump_path}' ) with open(A__ , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __A : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--bloom_checkpoint_path", default=None, type=str, required=True, help="Path to the Megatron-LM checkpoint path.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--bloom_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--shard_model", action="store_true", help="An optional setting to shard the output model \nThis enables sharding the converted checkpoint", ) parser.add_argument( "--pretraining_tp", default=4, type=int, help="Pretraining TP rank that has been used when training the model in Megatron-LM \n", ) __A : Dict = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
120
0
import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def _a ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Tuple: # picklable for multiprocessing '''simple docstring''' return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def _a ( ) -> Optional[Any]: '''simple docstring''' with parallel_backend("spark" ): assert ParallelBackendConfig.backend_name == "spark" SCREAMING_SNAKE_CASE__ : Tuple = [1, 2, 3] with pytest.raises(SCREAMING_SNAKE_CASE__ ): with parallel_backend("unsupported backend" ): map_nested(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , num_proc=2 ) with pytest.raises(SCREAMING_SNAKE_CASE__ ): with parallel_backend("unsupported backend" ): map_nested(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize("num_proc" , [2, -1] ) def _a ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = [1, 2] SCREAMING_SNAKE_CASE__ : Optional[Any] = {"a": 1, "b": 2} SCREAMING_SNAKE_CASE__ : List[Any] = {"a": [1, 2], "b": [3, 4]} SCREAMING_SNAKE_CASE__ : List[Any] = {"a": {"1": 1}, "b": 2} SCREAMING_SNAKE_CASE__ : int = {"a": 1, "b": 2, "c": 3, "d": 4} SCREAMING_SNAKE_CASE__ : Optional[int] = [2, 3] SCREAMING_SNAKE_CASE__ : str = {"a": 2, "b": 3} SCREAMING_SNAKE_CASE__ : List[str] = {"a": [2, 3], "b": [4, 5]} SCREAMING_SNAKE_CASE__ : Optional[int] = {"a": {"1": 2}, "b": 3} SCREAMING_SNAKE_CASE__ : Dict = {"a": 2, "b": 3, "c": 4, "d": 5} with parallel_backend("spark" ): assert map_nested(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , num_proc=SCREAMING_SNAKE_CASE__ ) == expected_map_nested_sa assert map_nested(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , num_proc=SCREAMING_SNAKE_CASE__ ) == expected_map_nested_sa assert map_nested(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , num_proc=SCREAMING_SNAKE_CASE__ ) == expected_map_nested_sa assert map_nested(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , num_proc=SCREAMING_SNAKE_CASE__ ) == expected_map_nested_sa assert map_nested(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , num_proc=SCREAMING_SNAKE_CASE__ ) == expected_map_nested_sa
364
import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated _lowerCamelCase : Tuple = collections.namedtuple('''_Datasets''', ['''train''', '''validation''', '''test''']) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ _lowerCamelCase : Optional[Any] = '''https://storage.googleapis.com/cvdf-datasets/mnist/''' def _a ( SCREAMING_SNAKE_CASE__ : Any ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = numpy.dtype(numpy.uintaa ).newbyteorder(">" ) return numpy.frombuffer(bytestream.read(4 ) , dtype=SCREAMING_SNAKE_CASE__ )[0] @deprecated(SCREAMING_SNAKE_CASE__ , "Please use tf.data to implement this functionality." ) def _a ( SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> List[str]: '''simple docstring''' print("Extracting" , f.name ) with gzip.GzipFile(fileobj=SCREAMING_SNAKE_CASE__ ) as bytestream: SCREAMING_SNAKE_CASE__ : int = _readaa(SCREAMING_SNAKE_CASE__ ) if magic != 20_51: raise ValueError( "Invalid magic number %d in MNIST image file: %s" % (magic, f.name) ) SCREAMING_SNAKE_CASE__ : Dict = _readaa(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : str = _readaa(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Dict = _readaa(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : str = bytestream.read(rows * cols * num_images ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = numpy.frombuffer(SCREAMING_SNAKE_CASE__ , dtype=numpy.uinta ) SCREAMING_SNAKE_CASE__ : Optional[int] = data.reshape(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 1 ) return data @deprecated(SCREAMING_SNAKE_CASE__ , "Please use tf.one_hot on tensors." ) def _a ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = labels_dense.shape[0] SCREAMING_SNAKE_CASE__ : List[str] = numpy.arange(SCREAMING_SNAKE_CASE__ ) * num_classes SCREAMING_SNAKE_CASE__ : Dict = numpy.zeros((num_labels, num_classes) ) SCREAMING_SNAKE_CASE__ : Tuple = 1 return labels_one_hot @deprecated(SCREAMING_SNAKE_CASE__ , "Please use tf.data to implement this functionality." ) def _a ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=False , SCREAMING_SNAKE_CASE__ : Optional[int]=10 ) -> Optional[int]: '''simple docstring''' print("Extracting" , f.name ) with gzip.GzipFile(fileobj=SCREAMING_SNAKE_CASE__ ) as bytestream: SCREAMING_SNAKE_CASE__ : List[str] = _readaa(SCREAMING_SNAKE_CASE__ ) if magic != 20_49: raise ValueError( "Invalid magic number %d in MNIST label file: %s" % (magic, f.name) ) SCREAMING_SNAKE_CASE__ : Tuple = _readaa(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[Any] = bytestream.read(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[Any] = numpy.frombuffer(SCREAMING_SNAKE_CASE__ , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return labels class lowerCamelCase : """simple docstring""" @deprecated( _UpperCAmelCase, "Please use alternatives such as official/mnist/_DataSet.py" " from tensorflow/models.", ) def __init__( self : int, _UpperCAmelCase : List[Any], _UpperCAmelCase : int, _UpperCAmelCase : List[str]=False, _UpperCAmelCase : Tuple=False, _UpperCAmelCase : Union[str, Any]=dtypes.floataa, _UpperCAmelCase : Optional[Any]=True, _UpperCAmelCase : Optional[int]=None, ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Optional[Any] = random_seed.get_seed(_UpperCAmelCase ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) SCREAMING_SNAKE_CASE__ : Tuple = dtypes.as_dtype(_UpperCAmelCase ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError("Invalid image dtype %r, expected uint8 or float32" % dtype ) if fake_data: SCREAMING_SNAKE_CASE__ : str = 1_0_0_0_0 SCREAMING_SNAKE_CASE__ : str = one_hot else: assert ( images.shape[0] == labels.shape[0] ), F'''images.shape: {images.shape} labels.shape: {labels.shape}''' SCREAMING_SNAKE_CASE__ : List[Any] = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 SCREAMING_SNAKE_CASE__ : List[Any] = images.reshape( images.shape[0], images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. SCREAMING_SNAKE_CASE__ : Any = images.astype(numpy.floataa ) SCREAMING_SNAKE_CASE__ : Optional[Any] = numpy.multiply(_UpperCAmelCase, 1.0 / 255.0 ) SCREAMING_SNAKE_CASE__ : List[str] = images SCREAMING_SNAKE_CASE__ : str = labels SCREAMING_SNAKE_CASE__ : Any = 0 SCREAMING_SNAKE_CASE__ : Optional[Any] = 0 @property def A_ ( self : List[Any] ) -> int: """simple docstring""" return self._images @property def A_ ( self : List[str] ) -> Optional[int]: """simple docstring""" return self._labels @property def A_ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" return self._num_examples @property def A_ ( self : List[Any] ) -> Tuple: """simple docstring""" return self._epochs_completed def A_ ( self : List[str], _UpperCAmelCase : List[str], _UpperCAmelCase : List[Any]=False, _UpperCAmelCase : str=True ) -> Any: """simple docstring""" if fake_data: SCREAMING_SNAKE_CASE__ : Union[str, Any] = [1] * 7_8_4 SCREAMING_SNAKE_CASE__ : Dict = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(_UpperCAmelCase )], [fake_label for _ in range(_UpperCAmelCase )], ) SCREAMING_SNAKE_CASE__ : str = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: SCREAMING_SNAKE_CASE__ : List[str] = numpy.arange(self._num_examples ) numpy.random.shuffle(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = self.images[perma] SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch SCREAMING_SNAKE_CASE__ : Dict = self._num_examples - start SCREAMING_SNAKE_CASE__ : List[str] = self._images[start : self._num_examples] SCREAMING_SNAKE_CASE__ : Optional[Any] = self._labels[start : self._num_examples] # Shuffle the data if shuffle: SCREAMING_SNAKE_CASE__ : Optional[Any] = numpy.arange(self._num_examples ) numpy.random.shuffle(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Dict = self.images[perm] SCREAMING_SNAKE_CASE__ : Optional[int] = self.labels[perm] # Start next epoch SCREAMING_SNAKE_CASE__ : Optional[Any] = 0 SCREAMING_SNAKE_CASE__ : List[str] = batch_size - rest_num_examples SCREAMING_SNAKE_CASE__ : Dict = self._index_in_epoch SCREAMING_SNAKE_CASE__ : Optional[Any] = self._images[start:end] SCREAMING_SNAKE_CASE__ : Optional[Any] = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part), axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part), axis=0 ), ) else: self._index_in_epoch += batch_size SCREAMING_SNAKE_CASE__ : Tuple = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(SCREAMING_SNAKE_CASE__ , "Please write your own downloading logic." ) def _a ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> str: '''simple docstring''' if not gfile.Exists(SCREAMING_SNAKE_CASE__ ): gfile.MakeDirs(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[int] = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if not gfile.Exists(SCREAMING_SNAKE_CASE__ ): urllib.request.urlretrieve(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # noqa: S310 with gfile.GFile(SCREAMING_SNAKE_CASE__ ) as f: SCREAMING_SNAKE_CASE__ : Any = f.size() print("Successfully downloaded" , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , "bytes." ) return filepath @deprecated( SCREAMING_SNAKE_CASE__ , "Please use alternatives such as:" " tensorflow_datasets.load('mnist')" ) def _a ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : str=False , SCREAMING_SNAKE_CASE__ : Any=False , SCREAMING_SNAKE_CASE__ : List[Any]=dtypes.floataa , SCREAMING_SNAKE_CASE__ : str=True , SCREAMING_SNAKE_CASE__ : Dict=50_00 , SCREAMING_SNAKE_CASE__ : str=None , SCREAMING_SNAKE_CASE__ : Optional[int]=DEFAULT_SOURCE_URL , ) -> Any: '''simple docstring''' if fake_data: def fake(): return _DataSet( [] , [] , fake_data=SCREAMING_SNAKE_CASE__ , one_hot=SCREAMING_SNAKE_CASE__ , dtype=SCREAMING_SNAKE_CASE__ , seed=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : int = fake() SCREAMING_SNAKE_CASE__ : List[str] = fake() SCREAMING_SNAKE_CASE__ : Any = fake() return _Datasets(train=SCREAMING_SNAKE_CASE__ , validation=SCREAMING_SNAKE_CASE__ , test=SCREAMING_SNAKE_CASE__ ) if not source_url: # empty string check SCREAMING_SNAKE_CASE__ : str = DEFAULT_SOURCE_URL SCREAMING_SNAKE_CASE__ : Dict = "train-images-idx3-ubyte.gz" SCREAMING_SNAKE_CASE__ : Optional[Any] = "train-labels-idx1-ubyte.gz" SCREAMING_SNAKE_CASE__ : Optional[Any] = "t10k-images-idx3-ubyte.gz" SCREAMING_SNAKE_CASE__ : str = "t10k-labels-idx1-ubyte.gz" SCREAMING_SNAKE_CASE__ : List[Any] = _maybe_download( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , source_url + train_images_file ) with gfile.Open(SCREAMING_SNAKE_CASE__ , "rb" ) as f: SCREAMING_SNAKE_CASE__ : Dict = _extract_images(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[Any] = _maybe_download( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , source_url + train_labels_file ) with gfile.Open(SCREAMING_SNAKE_CASE__ , "rb" ) as f: SCREAMING_SNAKE_CASE__ : List[Any] = _extract_labels(SCREAMING_SNAKE_CASE__ , one_hot=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Dict = _maybe_download( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , source_url + test_images_file ) with gfile.Open(SCREAMING_SNAKE_CASE__ , "rb" ) as f: SCREAMING_SNAKE_CASE__ : List[str] = _extract_images(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[int] = _maybe_download( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , source_url + test_labels_file ) with gfile.Open(SCREAMING_SNAKE_CASE__ , "rb" ) as f: SCREAMING_SNAKE_CASE__ : Any = _extract_labels(SCREAMING_SNAKE_CASE__ , one_hot=SCREAMING_SNAKE_CASE__ ) if not 0 <= validation_size <= len(SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE__ : Optional[int] = ( "Validation size should be between 0 and " f'''{len(SCREAMING_SNAKE_CASE__ )}. Received: {validation_size}.''' ) raise ValueError(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : str = train_images[:validation_size] SCREAMING_SNAKE_CASE__ : str = train_labels[:validation_size] SCREAMING_SNAKE_CASE__ : Any = train_images[validation_size:] SCREAMING_SNAKE_CASE__ : List[Any] = train_labels[validation_size:] SCREAMING_SNAKE_CASE__ : Any = {"dtype": dtype, "reshape": reshape, "seed": seed} SCREAMING_SNAKE_CASE__ : Tuple = _DataSet(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = _DataSet(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : str = _DataSet(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) return _Datasets(train=SCREAMING_SNAKE_CASE__ , validation=SCREAMING_SNAKE_CASE__ , test=SCREAMING_SNAKE_CASE__ )
191
0
import comet # From: unbabel-comet import torch import datasets UpperCAmelCase__ = datasets.logging.get_logger(__name__) UpperCAmelCase__ = '''\ @inproceedings{rei-EtAl:2020:WMT, author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon}, title = {Unbabel\'s Participation in the WMT20 Metrics Shared Task}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, month = {November}, year = {2020}, address = {Online}, publisher = {Association for Computational Linguistics}, pages = {909--918}, } @inproceedings{rei-etal-2020-comet, title = "{COMET}: A Neural Framework for {MT} Evaluation", author = "Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.emnlp-main.213", pages = "2685--2702", } ''' UpperCAmelCase__ = '''\ Crosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA\'s or MQM). With the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition. See the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information. ''' UpperCAmelCase__ = ''' COMET score. Args: `sources` (list of str): Source sentences `predictions` (list of str): candidate translations `references` (list of str): reference translations `cuda` (bool): If set to True, runs COMET using GPU `show_progress` (bool): Shows progress `model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None. Returns: `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`. `scores`: List of scores. Examples: >>> comet_metric = datasets.load_metric(\'comet\') >>> # comet_metric = load_metric(\'comet\', \'wmt20-comet-da\') # you can also choose which model to use >>> source = ["Dem Feuer konnte Einhalt geboten werden", "Schulen und Kindergärten wurden eröffnet."] >>> hypothesis = ["The fire could be stopped", "Schools and kindergartens were open"] >>> reference = ["They were able to control the fire.", "Schools and kindergartens opened"] >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source) >>> print([round(v, 2) for v in results["scores"]]) [0.19, 0.92] ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class lowerCamelCase__ ( datasets.Metric): def __A (self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://unbabel.github.io/COMET/html/index.html''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''sources''': datasets.Value('''string''' , id='''sequence''' ), '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/Unbabel/COMET'''] , reference_urls=[ '''https://github.com/Unbabel/COMET''', '''https://www.aclweb.org/anthology/2020.emnlp-main.213/''', '''http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6''', ] , ) def __A (self , UpperCAmelCase ) -> Dict: if self.config_name == "default": _lowercase =comet.load_from_checkpoint(comet.download_model('''wmt20-comet-da''' ) ) else: _lowercase =comet.load_from_checkpoint(comet.download_model(self.config_name ) ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=False ) -> int: if gpus is None: _lowercase =1 if torch.cuda.is_available() else 0 _lowercase ={'''src''': sources, '''mt''': predictions, '''ref''': references} _lowercase =[dict(zip(UpperCAmelCase , UpperCAmelCase ) ) for t in zip(*data.values() )] _lowercase , _lowercase =self.scorer.predict(UpperCAmelCase , gpus=UpperCAmelCase , progress_bar=UpperCAmelCase ) return {"mean_score": mean_score, "scores": scores}
5
from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class lowerCamelCase__ ( nn.Module): def __init__(self , UpperCAmelCase = 1_6 , UpperCAmelCase = 8_8 , UpperCAmelCase = None , UpperCAmelCase = 1 , UpperCAmelCase = 0.0 , UpperCAmelCase = 3_2 , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = "geglu" , UpperCAmelCase = None , ) -> Any: super().__init__() _lowercase =nn.ModuleList( [ TransformeraDModel( num_attention_heads=UpperCAmelCase , attention_head_dim=UpperCAmelCase , in_channels=UpperCAmelCase , num_layers=UpperCAmelCase , dropout=UpperCAmelCase , norm_num_groups=UpperCAmelCase , cross_attention_dim=UpperCAmelCase , attention_bias=UpperCAmelCase , sample_size=UpperCAmelCase , num_vector_embeds=UpperCAmelCase , activation_fn=UpperCAmelCase , num_embeds_ada_norm=UpperCAmelCase , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference _lowercase =0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` _lowercase =[7_7, 2_5_7] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` _lowercase =[1, 0] def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase = True , ) -> str: _lowercase =hidden_states _lowercase =[] _lowercase =0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens _lowercase =encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] _lowercase =self.transformer_index_for_condition[i] _lowercase =self.transformers[transformer_index]( UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , timestep=UpperCAmelCase , cross_attention_kwargs=UpperCAmelCase , return_dict=UpperCAmelCase , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] _lowercase =encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) _lowercase =output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=UpperCAmelCase )
5
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase = { "configuration_clap": [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapAudioConfig", "ClapConfig", "ClapTextConfig", ], "processing_clap": ["ClapProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapModel", "ClapPreTrainedModel", "ClapTextModel", "ClapTextModelWithProjection", "ClapAudioModel", "ClapAudioModelWithProjection", ] _lowerCAmelCase = ["ClapFeatureExtractor"] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
368
'''simple docstring''' import functools def UpperCamelCase ( a , a ) -> int: '''simple docstring''' __magic_name__ = len(a ) __magic_name__ = len(a ) @functools.cache def min_distance(a , a ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa __magic_name__ = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , a ) , 1 + min_distance(a , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
98
0
"""simple docstring""" from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Union[tf.Tensor, np.ndarray] ): '''simple docstring''' if isinstance(_UpperCamelCase , np.ndarray ): return list(tensor.shape ) lowerCAmelCase = tf.shape(_UpperCamelCase ) if tensor.shape == tf.TensorShape(_UpperCamelCase ): return dynamic lowerCAmelCase = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(_UpperCamelCase )] def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : tf.Tensor , SCREAMING_SNAKE_CASE : Optional[int] = None , SCREAMING_SNAKE_CASE : Optional[str] = None ): '''simple docstring''' return tf.nn.softmax(logits=logits + 1e-9 , axis=_UpperCamelCase , name=_UpperCamelCase ) def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[Any]=1e-5 , SCREAMING_SNAKE_CASE : Dict=-1 ): '''simple docstring''' if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(_UpperCamelCase , _UpperCamelCase ): raise NotImplementedError("""Only 1D weight and bias tensors are supported for now, with only a single axis.""" ) # Get mean and variance on the axis to be normalized lowerCAmelCase , lowerCAmelCase = tf.nn.moments(_UpperCamelCase , axes=[axis] , keepdims=_UpperCamelCase ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis lowerCAmelCase = [1] * inputs.shape.rank lowerCAmelCase = shape_list(_UpperCamelCase )[axis] lowerCAmelCase = tf.reshape(_UpperCamelCase , _UpperCamelCase ) lowerCAmelCase = tf.reshape(_UpperCamelCase , _UpperCamelCase ) # Compute layer normalization using the batch_normalization # function. lowerCAmelCase = tf.nn.batch_normalization( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , offset=_UpperCamelCase , scale=_UpperCamelCase , variance_epsilon=_UpperCamelCase , ) return outputs def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : str=0 , SCREAMING_SNAKE_CASE : List[Any]=-1 ): '''simple docstring''' if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input lowerCAmelCase = tf.shape(_UpperCamelCase ) lowerCAmelCase = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) lowerCAmelCase = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(_UpperCamelCase , _UpperCamelCase ) def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : tf.Tensor ): '''simple docstring''' if not isinstance(_UpperCamelCase , tf.Tensor ): lowerCAmelCase = tf.convert_to_tensor(_UpperCamelCase ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: lowerCAmelCase = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: lowerCAmelCase = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) lowerCAmelCase = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : tf.Tensor , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : str = "input_ids" ): '''simple docstring''' tf.debugging.assert_less( _UpperCamelCase , tf.cast(_UpperCamelCase , dtype=tensor.dtype ) , message=( F'The maximum value of {tensor_name} ({tf.math.reduce_max(_UpperCamelCase )}) must be smaller than the embedding ' F'layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.' ) , ) def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' lowerCAmelCase = 6_45_12 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. lowerCAmelCase = [x for x in data if len(_UpperCamelCase ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( """The following attributes cannot be saved to HDF5 file because """ F'they are larger than {HDF5_OBJECT_HEADER_LIMIT} ' F'bytes: {bad_attributes}' ) lowerCAmelCase = np.asarray(_UpperCamelCase ) lowerCAmelCase = 1 lowerCAmelCase = np.array_split(_UpperCamelCase , _UpperCamelCase ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 lowerCAmelCase = np.array_split(_UpperCamelCase , _UpperCamelCase ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(_UpperCamelCase ): lowerCAmelCase = chunk_data else: lowerCAmelCase = data def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' if name in group.attrs: lowerCAmelCase = [n.decode("""utf8""" ) if hasattr(_UpperCamelCase , """decode""" ) else n for n in group.attrs[name]] else: lowerCAmelCase = [] lowerCAmelCase = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode("""utf8""" ) if hasattr(_UpperCamelCase , """decode""" ) else n for n in group.attrs["""%s%d""" % (name, chunk_id)]] ) chunk_id += 1 return data def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' def _expand_single_ad_tensor(SCREAMING_SNAKE_CASE : Dict ): if isinstance(_UpperCamelCase , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(_UpperCamelCase , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , _UpperCamelCase )
46
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE__ = { "configuration_bloom": ["BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP", "BloomConfig", "BloomOnnxConfig"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["BloomTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ "BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST", "BloomForCausalLM", "BloomModel", "BloomPreTrainedModel", "BloomForSequenceClassification", "BloomForTokenClassification", "BloomForQuestionAnswering", ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
150
0
'''simple docstring''' from __future__ import annotations lowerCamelCase__ = [True] * 1_000_001 lowerCamelCase__ = 2 while i * i <= 1_000_000: if seive[i]: for j in range(i * i, 1_000_001, i): lowerCamelCase__ = False i += 1 def __lowerCAmelCase (__lowerCAmelCase ): return seive[n] def __lowerCAmelCase (__lowerCAmelCase ): return any(digit in "02468" for digit in str(__lowerCAmelCase ) ) def __lowerCAmelCase (__lowerCAmelCase = 1_000_000 ): _UpperCAmelCase : Tuple = [2] # result already includes the number 2. for num in range(3 , limit + 1 , 2 ): if is_prime(__lowerCAmelCase ) and not contains_an_even_digit(__lowerCAmelCase ): _UpperCAmelCase : str = str(__lowerCAmelCase ) _UpperCAmelCase : Dict = [int(str_num[j:] + str_num[:j] ) for j in range(len(__lowerCAmelCase ) )] if all(is_prime(__lowerCAmelCase ) for i in list_nums ): result.append(__lowerCAmelCase ) return result def __lowerCAmelCase (): return len(find_circular_primes() ) if __name__ == "__main__": print(F'''{len(find_circular_primes()) = }''')
322
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase ): if number < 0: raise ValueError("number must not be negative" ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
322
1
'''simple docstring''' _snake_case = 8.3_1_4_4_5_9_8 def _A ( snake_case , snake_case ) -> float: if temperature < 0: raise Exception("Temperature cannot be less than 0 K" ) if molar_mass <= 0: raise Exception("Molar mass cannot be less than or equal to 0 kg/mol" ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example _snake_case = 300 _snake_case = 28 _snake_case = rms_speed_of_molecule(temperature, molar_mass) print(F'''Vrms of Nitrogen gas at 300 K is {vrms} m/s''')
250
'''simple docstring''' from datetime import datetime import matplotlib.pyplot as plt import torch def a ( __a ) -> int: '''simple docstring''' for param in module.parameters(): UpperCamelCase__ :Dict = False def a ( ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ :List[Any] = '''cuda''' if torch.cuda.is_available() else '''cpu''' if torch.backends.mps.is_available() and torch.backends.mps.is_built(): UpperCamelCase__ :Optional[int] = '''mps''' if device == "mps": print( '''WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch''' ''' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues''' ''' with generations.''' ) return device def a ( __a ) -> Any: '''simple docstring''' UpperCamelCase__ :Dict = plt.imshow(__a ) fig.axes.get_xaxis().set_visible(__a ) fig.axes.get_yaxis().set_visible(__a ) plt.show() def a ( ) -> str: '''simple docstring''' UpperCamelCase__ :int = datetime.now() UpperCamelCase__ :str = current_time.strftime('''%H:%M:%S''' ) return timestamp
97
0
from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( "The RoBERTa Model transformer with early exiting (DeeRoBERTa). " ,__lowercase ,) class UpperCamelCase__ ( __lowercase ): _SCREAMING_SNAKE_CASE : Optional[int] = RobertaConfig _SCREAMING_SNAKE_CASE : Union[str, Any] = "roberta" def __init__(self : str , snake_case_ : Optional[int] ): super().__init__(snake_case_ ) __a : Any = RobertaEmbeddings(snake_case_ ) self.init_weights() @add_start_docstrings( "RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top,\n also takes care of multi-layer training. " ,__lowercase ,) class UpperCamelCase__ ( __lowercase ): _SCREAMING_SNAKE_CASE : str = RobertaConfig _SCREAMING_SNAKE_CASE : List[Any] = "roberta" def __init__(self : Dict , snake_case_ : List[Any] ): super().__init__(snake_case_ ) __a : Optional[int] = config.num_labels __a : Tuple = config.num_hidden_layers __a : Any = DeeRobertaModel(snake_case_ ) __a : List[str] = nn.Dropout(config.hidden_dropout_prob ) __a : List[str] = nn.Linear(config.hidden_size , self.config.num_labels ) @add_start_docstrings_to_model_forward(snake_case_ ) def lowerCAmelCase (self : int , snake_case_ : List[str]=None , snake_case_ : Optional[int]=None , snake_case_ : int=None , snake_case_ : Any=None , snake_case_ : Optional[int]=None , snake_case_ : int=None , snake_case_ : List[Any]=None , snake_case_ : Dict=-1 , snake_case_ : Any=False , ): __a : int = self.num_layers try: __a : Optional[int] = self.roberta( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , position_ids=snake_case_ , head_mask=snake_case_ , inputs_embeds=snake_case_ , ) __a : Union[str, Any] = outputs[1] __a : Optional[Any] = self.dropout(snake_case_ ) __a : Optional[Any] = self.classifier(snake_case_ ) __a : Any = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: __a : str = e.message __a : str = e.exit_layer __a : Dict = outputs[0] if not self.training: __a : str = entropy(snake_case_ ) __a : Optional[Any] = [] __a : List[Any] = [] if labels is not None: if self.num_labels == 1: # We are doing regression __a : Dict = MSELoss() __a : Optional[int] = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: __a : Tuple = CrossEntropyLoss() __a : Any = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits __a : Optional[Any] = [] for highway_exit in outputs[-1]: __a : List[str] = highway_exit[0] if not self.training: highway_logits_all.append(snake_case_ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression __a : str = MSELoss() __a : Union[str, Any] = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: __a : Optional[int] = CrossEntropyLoss() __a : Optional[int] = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(snake_case_ ) if train_highway: __a : int = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: __a : List[Any] = (loss,) + outputs if not self.training: __a : List[str] = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: __a : List[Any] = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
369
def __UpperCamelCase ( lowerCAmelCase__ : list[list[int | float]] ): __a : int = len(lowerCAmelCase__ ) __a : Dict = len(matrix[0] ) __a : Union[str, Any] = min(lowerCAmelCase__ , lowerCAmelCase__ ) for row in range(lowerCAmelCase__ ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , lowerCAmelCase__ ): __a : Dict = matrix[col][row] / matrix[row][row] for i in range(lowerCAmelCase__ , lowerCAmelCase__ ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows __a : Optional[int] = True for i in range(row + 1 , lowerCAmelCase__ ): if matrix[i][row] != 0: __a , __a : Any = matrix[i], matrix[row] __a : Union[str, Any] = False break if reduce: rank -= 1 for i in range(lowerCAmelCase__ ): __a : Optional[Any] = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
90
0
"""simple docstring""" import os from bleurt import score # From: git+https://github.com/google-research/bleurt.git import datasets __A = datasets.logging.get_logger(__name__) __A = "\\n@inproceedings{bleurt,\n title={BLEURT: Learning Robust Metrics for Text Generation},\n author={Thibault Sellam and Dipanjan Das and Ankur P. Parikh},\n booktitle={ACL},\n year={2020},\n url={https://arxiv.org/abs/2004.04696}\n}\n" __A = "\\nBLEURT a learnt evaluation metric for Natural Language Generation. It is built using multiple phases of transfer learning starting from a pretrained BERT model (Devlin et al. 2018)\nand then employing another pre-training phrase using synthetic data. Finally it is trained on WMT human annotations. You may run BLEURT out-of-the-box or fine-tune\nit for your specific application (the latter is expected to perform better).\n\nSee the project's README at https://github.com/google-research/bleurt#readme for more information.\n" __A = "\nBLEURT score.\n\nArgs:\n `predictions` (list of str): prediction/candidate sentences\n `references` (list of str): reference sentences\n `checkpoint` BLEURT checkpoint. Will default to BLEURT-tiny if None.\n\nReturns:\n 'scores': List of scores.\nExamples:\n\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> bleurt = datasets.load_metric(\"bleurt\")\n >>> results = bleurt.compute(predictions=predictions, references=references)\n >>> print([round(v, 2) for v in results[\"scores\"]])\n [1.03, 1.04]\n" __A = { "bleurt-tiny-128": "https://storage.googleapis.com/bleurt-oss/bleurt-tiny-128.zip", "bleurt-tiny-512": "https://storage.googleapis.com/bleurt-oss/bleurt-tiny-512.zip", "bleurt-base-128": "https://storage.googleapis.com/bleurt-oss/bleurt-base-128.zip", "bleurt-base-512": "https://storage.googleapis.com/bleurt-oss/bleurt-base-512.zip", "bleurt-large-128": "https://storage.googleapis.com/bleurt-oss/bleurt-large-128.zip", "bleurt-large-512": "https://storage.googleapis.com/bleurt-oss/bleurt-large-512.zip", "BLEURT-20-D3": "https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D3.zip", "BLEURT-20-D6": "https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D6.zip", "BLEURT-20-D12": "https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D12.zip", "BLEURT-20": "https://storage.googleapis.com/bleurt-oss-21/BLEURT-20.zip", } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class snake_case ( datasets.Metric ): def lowercase_ ( self : Optional[int])-> int: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="https://github.com/google-research/bleurt" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence"), "references": datasets.Value("string" , id="sequence"), }) , codebase_urls=["https://github.com/google-research/bleurt"] , reference_urls=["https://github.com/google-research/bleurt", "https://arxiv.org/abs/2004.04696"] , ) def lowercase_ ( self : Optional[int] , UpperCamelCase__ : Any)-> Optional[int]: '''simple docstring''' if self.config_name == "default": logger.warning( "Using default BLEURT-Base checkpoint for sequence maximum length 128. " "You can use a bigger model for better results with e.g.: datasets.load_metric('bleurt', 'bleurt-large-512').") __lowerCAmelCase: Optional[Any] = "bleurt-base-128" if self.config_name.lower() in CHECKPOINT_URLS: __lowerCAmelCase: int = self.config_name.lower() elif self.config_name.upper() in CHECKPOINT_URLS: __lowerCAmelCase: int = self.config_name.upper() else: raise KeyError( f"{self.config_name} model not found. You should supply the name of a model checkpoint for bleurt in {CHECKPOINT_URLS.keys()}") # download the model checkpoint specified by self.config_name and set up the scorer __lowerCAmelCase: Optional[Any] = dl_manager.download_and_extract(CHECKPOINT_URLS[checkpoint_name]) __lowerCAmelCase: str = score.BleurtScorer(os.path.join(UpperCamelCase__ , UpperCamelCase__)) def lowercase_ ( self : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[int])-> Optional[Any]: '''simple docstring''' __lowerCAmelCase: int = self.scorer.score(references=UpperCamelCase__ , candidates=UpperCamelCase__) return {"scores": scores}
217
"""simple docstring""" from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize("repo_id" , ["canonical_dataset_name", "org-name/dataset-name"] ) @pytest.mark.parametrize("path" , ["filename.csv", "filename with blanks.csv"] ) @pytest.mark.parametrize("revision" , [None, "v2"] ) def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> List[str]: __lowerCAmelCase: Optional[Any] = hf_hub_url(repo_id=__SCREAMING_SNAKE_CASE , path=__SCREAMING_SNAKE_CASE , revision=__SCREAMING_SNAKE_CASE ) assert url == F"https://huggingface.co/datasets/{repo_id}/resolve/{revision or 'main'}/{quote(__SCREAMING_SNAKE_CASE )}"
217
1
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : str , SCREAMING_SNAKE_CASE__ : str ) -> List[str]: for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'] , model_result['ss'] ): a_ : Union[str, Any] = model_result["""result"""][batch_size][sequence_length] self.assertIsNotNone(_UpperCamelCase ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: a_ : List[Any] = """sshleifer/tiny-gpt2""" a_ : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_UpperCamelCase , inference=_UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=_UpperCamelCase , multi_process=_UpperCamelCase , ) a_ : Optional[Any] = TensorFlowBenchmark(_UpperCamelCase ) a_ : Any = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Tuple: a_ : Union[str, Any] = """sgugger/tiny-distilbert-classification""" a_ : List[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_UpperCamelCase , inference=_UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_UpperCamelCase , only_pretrain_model=_UpperCamelCase , ) a_ : List[str] = TensorFlowBenchmark(_UpperCamelCase ) a_ : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict: a_ : Any = """sshleifer/tiny-gpt2""" a_ : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_UpperCamelCase , inference=_UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_UpperCamelCase , ) a_ : Any = TensorFlowBenchmark(_UpperCamelCase ) a_ : Any = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: a_ : Optional[Any] = """sshleifer/tiny-gpt2""" a_ : Tuple = AutoConfig.from_pretrained(_UpperCamelCase ) a_ : Optional[int] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_UpperCamelCase , inference=_UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=_UpperCamelCase , multi_process=_UpperCamelCase , ) a_ : Dict = TensorFlowBenchmark(_UpperCamelCase , [config] ) a_ : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Tuple: a_ : Union[str, Any] = """sshleifer/tiny-gpt2""" a_ : Union[str, Any] = AutoConfig.from_pretrained(_UpperCamelCase ) a_ : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_UpperCamelCase , inference=_UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_UpperCamelCase , ) a_ : Any = TensorFlowBenchmark(_UpperCamelCase , [config] ) a_ : str = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Dict: a_ : Dict = """sshleifer/tiny-gpt2""" a_ : Dict = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_UpperCamelCase , inference=_UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_UpperCamelCase , ) a_ : Tuple = TensorFlowBenchmark(_UpperCamelCase ) a_ : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]: a_ : Tuple = """sshleifer/tiny-gpt2""" a_ : Tuple = AutoConfig.from_pretrained(_UpperCamelCase ) a_ : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_UpperCamelCase , inference=_UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_UpperCamelCase , ) a_ : Dict = TensorFlowBenchmark(_UpperCamelCase , [config] ) a_ : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: a_ : Dict = """patrickvonplaten/t5-tiny-random""" a_ : Dict = AutoConfig.from_pretrained(_UpperCamelCase ) a_ : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_UpperCamelCase , inference=_UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_UpperCamelCase , ) a_ : Dict = TensorFlowBenchmark(_UpperCamelCase , configs=[config] ) a_ : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('GPU' ) ) == 0 , 'Cannot do xla on CPU.' ) def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: a_ : List[Any] = """sshleifer/tiny-gpt2""" a_ : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_UpperCamelCase , inference=_UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , use_xla=_UpperCamelCase , multi_process=_UpperCamelCase , ) a_ : Tuple = TensorFlowBenchmark(_UpperCamelCase ) a_ : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: a_ : str = """sshleifer/tiny-gpt2""" with tempfile.TemporaryDirectory() as tmp_dir: a_ : List[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=_UpperCamelCase , save_to_csv=_UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_UpperCamelCase , 'inf_time.csv' ) , inference_memory_csv_file=os.path.join(_UpperCamelCase , 'inf_mem.csv' ) , env_info_csv_file=os.path.join(_UpperCamelCase , 'env.csv' ) , multi_process=_UpperCamelCase , ) a_ : Optional[int] = TensorFlowBenchmark(_UpperCamelCase ) benchmark.run() self.assertTrue(Path(os.path.join(_UpperCamelCase , 'inf_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(_UpperCamelCase , 'inf_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(_UpperCamelCase , 'env.csv' ) ).exists() ) def SCREAMING_SNAKE_CASE ( self : Any ) -> Tuple: a_ : List[Any] = """sshleifer/tiny-gpt2""" def _check_summary_is_not_empty(SCREAMING_SNAKE_CASE__ : Union[str, Any] ): self.assertTrue(hasattr(_UpperCamelCase , 'sequential' ) ) self.assertTrue(hasattr(_UpperCamelCase , 'cumulative' ) ) self.assertTrue(hasattr(_UpperCamelCase , 'current' ) ) self.assertTrue(hasattr(_UpperCamelCase , 'total' ) ) with tempfile.TemporaryDirectory() as tmp_dir: a_ : Union[str, Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=_UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_UpperCamelCase , 'log.txt' ) , log_print=_UpperCamelCase , trace_memory_line_by_line=_UpperCamelCase , eager_mode=_UpperCamelCase , multi_process=_UpperCamelCase , ) a_ : Any = TensorFlowBenchmark(_UpperCamelCase ) a_ : Dict = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(_UpperCamelCase , 'log.txt' ) ).exists() )
358
import json import sys def SCREAMING_SNAKE_CASE_ ( __A : Optional[Any] , __A : List[str] ) -> Tuple: """simple docstring""" with open(__A , encoding='utf-8' ) as f: a_ : Union[str, Any] = json.load(__A ) a_ : Any = ['<details>', '<summary>Show updated benchmarks!</summary>', ' '] for benchmark_name in sorted(__A ): a_ : List[str] = results[benchmark_name] a_ : int = benchmark_name.split('/' )[-1] output_md.append(F"""### Benchmark: {benchmark_file_name}""" ) a_ : Any = '| metric |' a_ : Optional[Any] = '|--------|' a_ : int = '| new / old (diff) |' for metric_name in sorted(__A ): a_ : List[Any] = benchmark_res[metric_name] a_ : int = metric_vals['new'] a_ : Union[str, Any] = metric_vals.get('old' , __A ) a_ : Optional[int] = metric_vals.get('diff' , __A ) a_ : str = F""" {new_val:f}""" if isinstance(__A , (int, float) ) else 'None' if old_val is not None: val_str += F""" / {old_val:f}""" if isinstance(__A , (int, float) ) else "None" if dif_val is not None: val_str += F""" ({dif_val:f})""" if isinstance(__A , (int, float) ) else "None" title += " " + metric_name + " |" lines += "---|" value += val_str + " |" output_md += [title, lines, value, " "] output_md.append('</details>' ) with open(__A , 'w' , encoding='utf-8' ) as f: f.writelines('\n'.join(__A ) ) if __name__ == "__main__": UpperCAmelCase_ : int = sys.argv[1] UpperCAmelCase_ : Any = sys.argv[2] format_json_to_md(input_json_file, output_md_file)
120
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/config.json', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/config.json', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json' ), 'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json', 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json' ), 'distilbert-base-uncased-finetuned-sst-2-english': ( 'https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json' ), } class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : str = 'distilbert' UpperCAmelCase__ : Optional[Any] = { 'hidden_size': 'dim', 'num_attention_heads': 'n_heads', 'num_hidden_layers': 'n_layers', } def __init__( self: str , UpperCamelCase_: Union[str, Any]=3_05_22 , UpperCamelCase_: Tuple=5_12 , UpperCamelCase_: Union[str, Any]=False , UpperCamelCase_: Union[str, Any]=6 , UpperCamelCase_: Tuple=12 , UpperCamelCase_: int=7_68 , UpperCamelCase_: Any=4 * 7_68 , UpperCamelCase_: int=0.1 , UpperCamelCase_: List[str]=0.1 , UpperCamelCase_: Optional[Any]="gelu" , UpperCamelCase_: Union[str, Any]=0.02 , UpperCamelCase_: Optional[int]=0.1 , UpperCamelCase_: Optional[int]=0.2 , UpperCamelCase_: Any=0 , **UpperCamelCase_: Optional[Any] , ): __lowerCamelCase = vocab_size __lowerCamelCase = max_position_embeddings __lowerCamelCase = sinusoidal_pos_embds __lowerCamelCase = n_layers __lowerCamelCase = n_heads __lowerCamelCase = dim __lowerCamelCase = hidden_dim __lowerCamelCase = dropout __lowerCamelCase = attention_dropout __lowerCamelCase = activation __lowerCamelCase = initializer_range __lowerCamelCase = qa_dropout __lowerCamelCase = seq_classif_dropout super().__init__(**UpperCamelCase_ , pad_token_id=UpperCamelCase_ ) class lowerCamelCase__( __lowerCamelCase): @property def lowerCAmelCase__ ( self: Tuple ): if self.task == "multiple-choice": __lowerCamelCase = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __lowerCamelCase = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
12
from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse("""3.8"""): import importlib_metadata else: import importlib.metadata as importlib_metadata lowercase : Tuple = """""" if version.parse(importlib_metadata.version("""jiwer""")) < version.parse("""2.3.0"""): class A__ ( tr.AbstractTransform ): """simple docstring""" def __init__( self , lowercase = " ") -> Tuple: '''simple docstring''' a__ : Tuple = sentence_delimiter def __lowercase ( self , lowercase) -> Optional[int]: '''simple docstring''' return list(lowercase) def __lowercase ( self , lowercase) -> Dict: '''simple docstring''' a__ : Tuple = [] for sent_idx, sentence in enumerate(lowercase): chars.extend(self.process_string(lowercase)) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(lowercase) - 1: chars.append(self.sentence_delimiter) return chars lowercase : Union[str, Any] = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: lowercase : List[str] = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) lowercase : List[Any] = """\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } """ lowercase : Optional[int] = """\ Character error rate (CER) is a common metric of the performance of an automatic speech recognition system. CER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information. Character error rate can be computed as: CER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct characters, N is the number of characters in the reference (N=S+D+C). CER's output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the performance of the ASR system with a CER of 0 being a perfect score. """ lowercase : Optional[Any] = """ Computes CER score of transcribed segments against references. Args: references: list of references for each speech input. predictions: list of transcribtions to score. concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result. Returns: (float): the character error rate Examples: >>> predictions = [\"this is the prediction\", \"there is an other sample\"] >>> references = [\"this is the reference\", \"there is another one\"] >>> cer = datasets.load_metric(\"cer\") >>> cer_score = cer.compute(predictions=predictions, references=references) >>> print(cer_score) 0.34146341463414637 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A__ ( datasets.Metric ): """simple docstring""" def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence'), 'references': datasets.Value('string' , id='sequence'), }) , codebase_urls=['https://github.com/jitsi/jiwer/'] , reference_urls=[ 'https://en.wikipedia.org/wiki/Word_error_rate', 'https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates', ] , ) def __lowercase ( self , lowercase , lowercase , lowercase=False) -> Any: '''simple docstring''' if concatenate_texts: return jiwer.compute_measures( lowercase , lowercase , truth_transform=lowercase , hypothesis_transform=lowercase , )["wer"] a__ : Optional[int] = 0 a__ : str = 0 for prediction, reference in zip(lowercase , lowercase): a__ : Optional[int] = jiwer.compute_measures( lowercase , lowercase , truth_transform=lowercase , hypothesis_transform=lowercase , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
99
0
import gc import inspect import unittest import torch from parameterized import parameterized from diffusers import PriorTransformer from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin enable_full_determinism() class __A ( lowerCAmelCase , unittest.TestCase ): lowerCAmelCase_ : Union[str, Any] = PriorTransformer lowerCAmelCase_ : List[Any] = "hidden_states" @property def lowercase__ ( self : Any ): lowerCAmelCase : List[str] = 4 lowerCAmelCase : str = 8 lowerCAmelCase : Optional[Any] = 7 lowerCAmelCase : Optional[int] = floats_tensor((batch_size, embedding_dim) ).to(UpperCAmelCase_ ) lowerCAmelCase : List[Any] = floats_tensor((batch_size, embedding_dim) ).to(UpperCAmelCase_ ) lowerCAmelCase : str = floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(UpperCAmelCase_ ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def lowercase__ ( self : Dict , UpperCAmelCase_ : List[str]=0 ): torch.manual_seed(UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = 4 lowerCAmelCase : Any = 8 lowerCAmelCase : List[Any] = 7 lowerCAmelCase : Optional[int] = torch.randn((batch_size, embedding_dim) ).to(UpperCAmelCase_ ) lowerCAmelCase : str = torch.randn((batch_size, embedding_dim) ).to(UpperCAmelCase_ ) lowerCAmelCase : str = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(UpperCAmelCase_ ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } @property def lowercase__ ( self : Tuple ): return (4, 8) @property def lowercase__ ( self : int ): return (4, 8) def lowercase__ ( self : str ): lowerCAmelCase : Union[str, Any] = { 'num_attention_heads': 2, 'attention_head_dim': 4, 'num_layers': 2, 'embedding_dim': 8, 'num_embeddings': 7, 'additional_embeddings': 4, } lowerCAmelCase : Any = self.dummy_input return init_dict, inputs_dict def lowercase__ ( self : int ): lowerCAmelCase : List[str] = PriorTransformer.from_pretrained( 'hf-internal-testing/prior-dummy' , output_loading_info=UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(UpperCAmelCase_ ) lowerCAmelCase : int = model(**self.dummy_input )[0] assert hidden_states is not None, "Make sure output is not None" def lowercase__ ( self : Optional[int] ): lowerCAmelCase : List[str] = self.prepare_init_args_and_inputs_for_common() lowerCAmelCase : Dict = self.model_class(**UpperCAmelCase_ ) lowerCAmelCase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase : Dict = [*signature.parameters.keys()] lowerCAmelCase : Tuple = ['hidden_states', 'timestep'] self.assertListEqual(arg_names[:2] , UpperCAmelCase_ ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : Optional[Any] = PriorTransformer.from_pretrained('hf-internal-testing/prior-dummy' ) lowerCAmelCase : Optional[int] = model.to(UpperCAmelCase_ ) if hasattr(UpperCAmelCase_ , 'set_default_attn_processor' ): model.set_default_attn_processor() lowerCAmelCase : Union[str, Any] = self.get_dummy_seed_input() with torch.no_grad(): lowerCAmelCase : Optional[int] = model(**UpperCAmelCase_ )[0] lowerCAmelCase : List[Any] = output[0, :5].flatten().cpu() print(UpperCAmelCase_ ) # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. lowerCAmelCase : int = torch.tensor([-1.34_36, -0.28_70, 0.75_38, 0.43_68, -0.02_39] ) self.assertTrue(torch_all_close(UpperCAmelCase_ , UpperCAmelCase_ , rtol=1E-2 ) ) @slow class __A ( unittest.TestCase ): def lowercase__ ( self : int , UpperCAmelCase_ : Tuple=1 , UpperCAmelCase_ : Union[str, Any]=768 , UpperCAmelCase_ : Tuple=77 , UpperCAmelCase_ : List[str]=0 ): torch.manual_seed(UpperCAmelCase_ ) lowerCAmelCase : Dict = batch_size lowerCAmelCase : Dict = embedding_dim lowerCAmelCase : Dict = num_embeddings lowerCAmelCase : Tuple = torch.randn((batch_size, embedding_dim) ).to(UpperCAmelCase_ ) lowerCAmelCase : Tuple = torch.randn((batch_size, embedding_dim) ).to(UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(UpperCAmelCase_ ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def lowercase__ ( self : Dict ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @parameterized.expand( [ # fmt: off [13, [-0.58_61, 0.12_83, -0.09_31, 0.08_82, 0.44_76, 0.13_29, -0.04_98, 0.06_40]], [37, [-0.49_13, 0.01_10, -0.04_83, 0.05_41, 0.49_54, -0.01_70, 0.03_54, 0.16_51]], # fmt: on ] ) def lowercase__ ( self : Optional[int] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : str ): lowerCAmelCase : Dict = PriorTransformer.from_pretrained('kandinsky-community/kandinsky-2-1-prior' , subfolder='prior' ) model.to(UpperCAmelCase_ ) lowerCAmelCase : Tuple = self.get_dummy_seed_input(seed=UpperCAmelCase_ ) with torch.no_grad(): lowerCAmelCase : Optional[Any] = model(**UpperCAmelCase_ )[0] assert list(sample.shape ) == [1, 768] lowerCAmelCase : Union[str, Any] = sample[0, :8].flatten().cpu() print(UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = torch.tensor(UpperCAmelCase_ ) assert torch_all_close(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-3 )
371
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : List[Any] = { '''configuration_xlm_roberta''': [ '''XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMRobertaConfig''', '''XLMRobertaOnnxConfig''', ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = ['''XLMRobertaTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = ['''XLMRobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = [ '''XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMRobertaForCausalLM''', '''XLMRobertaForMaskedLM''', '''XLMRobertaForMultipleChoice''', '''XLMRobertaForQuestionAnswering''', '''XLMRobertaForSequenceClassification''', '''XLMRobertaForTokenClassification''', '''XLMRobertaModel''', '''XLMRobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ '''TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMRobertaForCausalLM''', '''TFXLMRobertaForMaskedLM''', '''TFXLMRobertaForMultipleChoice''', '''TFXLMRobertaForQuestionAnswering''', '''TFXLMRobertaForSequenceClassification''', '''TFXLMRobertaForTokenClassification''', '''TFXLMRobertaModel''', '''TFXLMRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ '''FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FlaxXLMRobertaForMaskedLM''', '''FlaxXLMRobertaForCausalLM''', '''FlaxXLMRobertaForMultipleChoice''', '''FlaxXLMRobertaForQuestionAnswering''', '''FlaxXLMRobertaForSequenceClassification''', '''FlaxXLMRobertaForTokenClassification''', '''FlaxXLMRobertaModel''', '''FlaxXLMRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
323
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase = logging.get_logger(__name__) __lowercase = { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json''' ), '''google/realm-orqa-nq-openqa''': '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json''', '''google/realm-orqa-nq-reader''': '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json''', '''google/realm-orqa-wq-openqa''': '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json''', '''google/realm-orqa-wq-reader''': '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json''', # See all REALM models at https://huggingface.co/models?filter=realm } class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : Any = """realm""" def __init__( self , __lowercase=30_522 , __lowercase=768 , __lowercase=128 , __lowercase=12 , __lowercase=12 , __lowercase=8 , __lowercase=3_072 , __lowercase="gelu_new" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=512 , __lowercase=2 , __lowercase=0.02 , __lowercase=1E-1_2 , __lowercase=256 , __lowercase=10 , __lowercase=1E-3 , __lowercase=5 , __lowercase=320 , __lowercase=13_353_718 , __lowercase=5_000 , __lowercase=1 , __lowercase=0 , __lowercase=2 , **__lowercase , ) -> Tuple: super().__init__(pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase) # Common config __UpperCamelCase :Union[str, Any] = vocab_size __UpperCamelCase :int = max_position_embeddings __UpperCamelCase :List[Any] = hidden_size __UpperCamelCase :List[str] = retriever_proj_size __UpperCamelCase :int = num_hidden_layers __UpperCamelCase :str = num_attention_heads __UpperCamelCase :List[str] = num_candidates __UpperCamelCase :List[Any] = intermediate_size __UpperCamelCase :List[str] = hidden_act __UpperCamelCase :List[Any] = hidden_dropout_prob __UpperCamelCase :int = attention_probs_dropout_prob __UpperCamelCase :List[Any] = initializer_range __UpperCamelCase :Dict = type_vocab_size __UpperCamelCase :List[str] = layer_norm_eps # Reader config __UpperCamelCase :List[Any] = span_hidden_size __UpperCamelCase :int = max_span_width __UpperCamelCase :List[str] = reader_layer_norm_eps __UpperCamelCase :Optional[int] = reader_beam_size __UpperCamelCase :Optional[Any] = reader_seq_len # Retrieval config __UpperCamelCase :str = num_block_records __UpperCamelCase :Any = searcher_beam_size
43
"""simple docstring""" import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class snake_case : '''simple docstring''' def __init__( self : Optional[int], _lowerCamelCase : Optional[int]=2, _lowerCamelCase : Optional[int]=3, _lowerCamelCase : int=64, _lowerCamelCase : List[str]=None ): '''simple docstring''' __A = np.random.default_rng(_lowerCamelCase ) __A = length __A = rng.normal(size=(length,) ).astype(np.floataa ) __A = a * self.x + b + rng.normal(scale=0.1, size=(length,) ).astype(np.floataa ) def __len__( self : str ): '''simple docstring''' return self.length def __getitem__( self : Dict, _lowerCamelCase : Optional[int] ): '''simple docstring''' return {"x": self.x[i], "y": self.y[i]} class snake_case ( torch.nn.Module ): '''simple docstring''' def __init__( self : Optional[Any], _lowerCamelCase : Tuple=0, _lowerCamelCase : Any=0, _lowerCamelCase : Optional[Any]=False ): '''simple docstring''' super().__init__() __A = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) __A = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) __A = True def _SCREAMING_SNAKE_CASE ( self : List[str], _lowerCamelCase : Optional[Any]=None ): '''simple docstring''' if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) __A = False return x * self.a[0] + self.b[0] class snake_case ( torch.nn.Module ): '''simple docstring''' def __init__( self : str, _lowerCamelCase : Optional[Any]=0, _lowerCamelCase : Any=0, _lowerCamelCase : List[Any]=False ): '''simple docstring''' super().__init__() __A = torch.nn.Parameter(torch.tensor(_lowerCamelCase ).float() ) __A = torch.nn.Parameter(torch.tensor(_lowerCamelCase ).float() ) __A = True def _SCREAMING_SNAKE_CASE ( self : Optional[Any], _lowerCamelCase : List[str]=None ): '''simple docstring''' if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) __A = False return x * self.a + self.b def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase = 1_6 ): """simple docstring""" from datasets import load_dataset from transformers import AutoTokenizer __A = AutoTokenizer.from_pretrained('''bert-base-cased''' ) __A = {'''train''': '''tests/test_samples/MRPC/train.csv''', '''validation''': '''tests/test_samples/MRPC/dev.csv'''} __A = load_dataset('''csv''' , data_files=__UpperCamelCase ) __A = datasets['''train'''].unique('''label''' ) __A = {v: i for i, v in enumerate(__UpperCamelCase )} def tokenize_function(__UpperCamelCase ): # max_length=None => use the model max length (it's actually the default) __A = tokenizer( examples['''sentence1'''] , examples['''sentence2'''] , truncation=__UpperCamelCase , max_length=__UpperCamelCase , padding='''max_length''' ) if "label" in examples: __A = [label_to_id[l] for l in examples['''label''']] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __A = datasets.map( __UpperCamelCase , batched=__UpperCamelCase , remove_columns=['''sentence1''', '''sentence2''', '''label'''] , ) def collate_fn(__UpperCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__UpperCamelCase , padding='''max_length''' , max_length=1_2_8 , return_tensors='''pt''' ) return tokenizer.pad(__UpperCamelCase , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. __A = DataLoader(tokenized_datasets['''train'''] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=2 ) __A = DataLoader(tokenized_datasets['''validation'''] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=1 ) return train_dataloader, eval_dataloader
266
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowercase_ = logging.get_logger(__name__) lowercase_ = { "google/bit-50": "https://huggingface.co/google/bit-50/resolve/main/config.json", } class A ( _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" lowerCamelCase = 'bit' lowerCamelCase = ['preactivation', 'bottleneck'] lowerCamelCase = ['SAME', 'VALID'] def __init__( self : str,lowercase_ : int=3,lowercase_ : List[str]=6_4,lowercase_ : Union[str, Any]=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8],lowercase_ : Optional[int]=[3, 4, 6, 3],lowercase_ : int="preactivation",lowercase_ : Union[str, Any]="relu",lowercase_ : Optional[int]=None,lowercase_ : Optional[int]=3_2,lowercase_ : Union[str, Any]=0.0,lowercase_ : Optional[int]=False,lowercase_ : Union[str, Any]=3_2,lowercase_ : str=1,lowercase_ : Optional[Any]=None,lowercase_ : List[str]=None,**lowercase_ : List[str],)-> Optional[Any]: '''simple docstring''' super().__init__(**lowercase_ ) if layer_type not in self.layer_types: raise ValueError(F'layer_type={layer_type} is not one of {",".join(self.layer_types )}' ) if global_padding is not None: if global_padding.upper() in self.supported_padding: A__ = global_padding.upper() else: raise ValueError(F'Padding strategy {global_padding} not supported' ) A__ = num_channels A__ = embedding_size A__ = hidden_sizes A__ = depths A__ = layer_type A__ = hidden_act A__ = global_padding A__ = num_groups A__ = drop_path_rate A__ = embedding_dynamic_padding A__ = output_stride A__ = width_factor A__ = ['stem'] + [F'stage{idx}' for idx in range(1,len(lowercase_ ) + 1 )] A__ , A__ = get_aligned_output_features_output_indices( out_features=lowercase_,out_indices=lowercase_,stage_names=self.stage_names )
350
import argparse import collections import torch from flax import traverse_util from tax import checkpoints from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def _snake_case( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int]="attention" ) -> Union[str, Any]: '''simple docstring''' A__ = params[f'{prefix}/layers_{i}/{layer_name}/key/kernel'] A__ = params[f'{prefix}/layers_{i}/{layer_name}/out/kernel'] A__ = params[f'{prefix}/layers_{i}/{layer_name}/query/kernel'] A__ = params[f'{prefix}/layers_{i}/{layer_name}/value/kernel'] return k, o, q, v def _snake_case( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Dict=False ) -> str: '''simple docstring''' if split_mlp_wi: A__ = params[f'{prefix}/layers_{i}/mlp/wi_0/kernel'] A__ = params[f'{prefix}/layers_{i}/mlp/wi_1/kernel'] A__ = (wi_a, wi_a) else: A__ = params[f'{prefix}/layers_{i}/mlp/wi/kernel'] A__ = params[f'{prefix}/layers_{i}/mlp/wo/kernel'] return wi, wo def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : int ) -> str: '''simple docstring''' return params[f'{prefix}/layers_{i}/{layer_name}/scale'] def _snake_case( SCREAMING_SNAKE_CASE__ : dict , *, SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : bool ) -> int: '''simple docstring''' A__ = traverse_util.flatten_dict(variables['target'] ) A__ = {'/'.join(SCREAMING_SNAKE_CASE__ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi A__ = 'encoder/layers_0/mlp/wi_0/kernel' in old print('Split MLP:' , SCREAMING_SNAKE_CASE__ ) A__ = collections.OrderedDict() # Shared embeddings. A__ = old['token_embedder/embedding'] # Encoder. for i in range(SCREAMING_SNAKE_CASE__ ): # Block i, layer 0 (Self Attention). A__ = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'encoder' , 'pre_attention_layer_norm' ) A__ , A__ , A__ , A__ = tax_attention_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'encoder' , 'attention' ) A__ = layer_norm A__ = k.T A__ = o.T A__ = q.T A__ = v.T # Block i, layer 1 (MLP). A__ = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'encoder' , 'pre_mlp_layer_norm' ) A__ , A__ = tax_mlp_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'encoder' , SCREAMING_SNAKE_CASE__ ) A__ = layer_norm if split_mlp_wi: A__ = wi[0].T A__ = wi[1].T else: A__ = wi.T A__ = wo.T A__ = old[ 'encoder/relpos_bias/rel_embedding' ].T A__ = old['encoder/encoder_norm/scale'] if not is_encoder_only: # Decoder. for i in range(SCREAMING_SNAKE_CASE__ ): # Block i, layer 0 (Self Attention). A__ = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'decoder' , 'pre_self_attention_layer_norm' ) A__ , A__ , A__ , A__ = tax_attention_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'decoder' , 'self_attention' ) A__ = layer_norm A__ = k.T A__ = o.T A__ = q.T A__ = v.T # Block i, layer 1 (Cross Attention). A__ = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'decoder' , 'pre_cross_attention_layer_norm' ) A__ , A__ , A__ , A__ = tax_attention_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'decoder' , 'encoder_decoder_attention' ) A__ = layer_norm A__ = k.T A__ = o.T A__ = q.T A__ = v.T # Block i, layer 2 (MLP). A__ = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'decoder' , 'pre_mlp_layer_norm' ) A__ , A__ = tax_mlp_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'decoder' , SCREAMING_SNAKE_CASE__ ) A__ = layer_norm if split_mlp_wi: A__ = wi[0].T A__ = wi[1].T else: A__ = wi.T A__ = wo.T A__ = old['decoder/decoder_norm/scale'] A__ = old[ 'decoder/relpos_bias/rel_embedding' ].T # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: A__ = old['decoder/logits_dense/kernel'].T return new def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : bool ) -> Dict: '''simple docstring''' A__ = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: A__ = state_dict['shared.weight'] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: A__ = state_dict['shared.weight'] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('Using shared word embeddings as lm_head.' ) A__ = state_dict['shared.weight'] return state_dict def _snake_case( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Tuple ) -> int: '''simple docstring''' A__ = checkpoints.load_tax_checkpoint(SCREAMING_SNAKE_CASE__ ) A__ = convert_tax_to_pytorch(SCREAMING_SNAKE_CASE__ , num_layers=config.num_layers , is_encoder_only=SCREAMING_SNAKE_CASE__ ) A__ = make_state_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ , strict=SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : bool = False ) -> Any: '''simple docstring''' A__ = TaConfig.from_json_file(SCREAMING_SNAKE_CASE__ ) print(f'Building PyTorch model from configuration: {config}' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: A__ = TaEncoderModel(SCREAMING_SNAKE_CASE__ ) else: A__ = TaForConditionalGeneration(SCREAMING_SNAKE_CASE__ ) # Load weights from tf checkpoint load_tax_weights_in_ta(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) # Verify that we can load the checkpoint. model.from_pretrained(SCREAMING_SNAKE_CASE__ ) print('Done' ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser(description="Converts a native T5X checkpoint into a PyTorch checkpoint.") # Required parameters parser.add_argument( "--t5x_checkpoint_path", default=None, type=str, required=True, help="Path to the T5X checkpoint." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--is_encoder_only", action="store_true", help="Check if the model is encoder-decoder model", default=False ) lowercase_ = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only )
282
0
def A ( lowercase , lowercase ) -> List[Any]: '''simple docstring''' UpperCamelCase = 0 UpperCamelCase = len(lowercase ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None UpperCamelCase = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(lowercase ): return None UpperCamelCase = sorted_collection[point] if current_item == item: return point else: if point < left: UpperCamelCase = left UpperCamelCase = point elif point > right: UpperCamelCase = right UpperCamelCase = point else: if item < current_item: UpperCamelCase = point - 1 else: UpperCamelCase = point + 1 return None def A ( lowercase , lowercase , lowercase , lowercase ) -> Optional[Any]: '''simple docstring''' if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None UpperCamelCase = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(lowercase ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(lowercase , lowercase , lowercase , lowercase ) elif point > right: return interpolation_search_by_recursion(lowercase , lowercase , lowercase , lowercase ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( lowercase , lowercase , lowercase , point - 1 ) else: return interpolation_search_by_recursion( lowercase , lowercase , point + 1 , lowercase ) def A ( lowercase ) -> str: '''simple docstring''' if collection != sorted(lowercase ): raise ValueError('Collection must be ascending sorted' ) return True if __name__ == "__main__": import sys _UpperCAmelCase : List[Any] = 0 if debug == 1: _UpperCAmelCase : Union[str, Any] = [10, 30, 40, 45, 50, 66, 77, 93] try: __assert_sorted(collection) except ValueError: sys.exit("Sequence must be ascending sorted to apply interpolation search") _UpperCAmelCase : Any = 67 _UpperCAmelCase : str = interpolation_search(collection, target) if result is not None: print(F'''{target} found at positions: {result}''') else: print("Not found")
222
import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class lowercase ( unittest.TestCase ): def __UpperCamelCase ( self ) -> Dict: """simple docstring""" # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self ) -> str: """simple docstring""" UpperCamelCase = StableDiffusionKDiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' ) UpperCamelCase = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) sd_pipe.set_scheduler('sample_euler' ) UpperCamelCase = 'A painting of a squirrel eating a burger' UpperCamelCase = torch.manual_seed(0 ) UpperCamelCase = sd_pipe([prompt] , generator=A_ , guidance_scale=9.0 , num_inference_steps=20 , output_type='np' ) UpperCamelCase = output.images UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase = np.array([0.0447, 0.0492, 0.0468, 0.0408, 0.0383, 0.0408, 0.0354, 0.0380, 0.0339] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCamelCase ( self ) -> Any: """simple docstring""" UpperCamelCase = StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) UpperCamelCase = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) sd_pipe.set_scheduler('sample_euler' ) UpperCamelCase = 'A painting of a squirrel eating a burger' UpperCamelCase = torch.manual_seed(0 ) UpperCamelCase = sd_pipe([prompt] , generator=A_ , guidance_scale=9.0 , num_inference_steps=20 , output_type='np' ) UpperCamelCase = output.images UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase = np.array([0.1237, 0.1320, 0.1438, 0.1359, 0.1390, 0.1132, 0.1277, 0.1175, 0.1112] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-1 def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase = StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) UpperCamelCase = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) sd_pipe.set_scheduler('sample_dpmpp_2m' ) UpperCamelCase = 'A painting of a squirrel eating a burger' UpperCamelCase = torch.manual_seed(0 ) UpperCamelCase = sd_pipe( [prompt] , generator=A_ , guidance_scale=7.5 , num_inference_steps=15 , output_type='np' , use_karras_sigmas=A_ , ) UpperCamelCase = output.images UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase = np.array( [0.1138_1689, 0.1211_2921, 0.138_9457, 0.1254_9606, 0.124_4964, 0.1083_1517, 0.1156_2866, 0.1086_7816, 0.1049_9048] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
222
1
"""simple docstring""" import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef __UpperCamelCase : Tuple = ( '''This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate ''' '''library. You can have a look at this example script for pointers: ''' '''https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py''' ) def __SCREAMING_SNAKE_CASE ( A_ , A_ ): warnings.warn(A_ , A_ ) requires_backends(A_ , '''sklearn''' ) return (preds == labels).mean() def __SCREAMING_SNAKE_CASE ( A_ , A_ ): warnings.warn(A_ , A_ ) requires_backends(A_ , '''sklearn''' ) lowerCAmelCase__ : Dict = simple_accuracy(A_ , A_ ) lowerCAmelCase__ : Dict = fa_score(y_true=A_ , y_pred=A_ ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def __SCREAMING_SNAKE_CASE ( A_ , A_ ): warnings.warn(A_ , A_ ) requires_backends(A_ , '''sklearn''' ) lowerCAmelCase__ : Tuple = pearsonr(A_ , A_ )[0] lowerCAmelCase__ : int = spearmanr(A_ , A_ )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ ): warnings.warn(A_ , A_ ) requires_backends(A_ , '''sklearn''' ) assert len(A_ ) == len(A_ ), f'Predictions and labels have mismatched lengths {len(A_ )} and {len(A_ )}' if task_name == "cola": return {"mcc": matthews_corrcoef(A_ , A_ )} elif task_name == "sst-2": return {"acc": simple_accuracy(A_ , A_ )} elif task_name == "mrpc": return acc_and_fa(A_ , A_ ) elif task_name == "sts-b": return pearson_and_spearman(A_ , A_ ) elif task_name == "qqp": return acc_and_fa(A_ , A_ ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(A_ , A_ )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(A_ , A_ )} elif task_name == "qnli": return {"acc": simple_accuracy(A_ , A_ )} elif task_name == "rte": return {"acc": simple_accuracy(A_ , A_ )} elif task_name == "wnli": return {"acc": simple_accuracy(A_ , A_ )} elif task_name == "hans": return {"acc": simple_accuracy(A_ , A_ )} else: raise KeyError(A_ ) def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ ): warnings.warn(A_ , A_ ) requires_backends(A_ , '''sklearn''' ) if len(A_ ) != len(A_ ): raise ValueError(f'Predictions and labels have mismatched lengths {len(A_ )} and {len(A_ )}' ) if task_name == "xnli": return {"acc": simple_accuracy(A_ , A_ )} else: raise KeyError(A_ )
74
"""simple docstring""" import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": __UpperCamelCase : int = '''%20'''.join(argv[1:]) if len(argv) > 1 else quote(str(input('''Search: '''))) print('''Googling.....''') __UpperCamelCase : Dict = F'''https://www.google.com/search?q={query}&num=100''' __UpperCamelCase : Tuple = requests.get( url, headers={'''User-Agent''': str(UserAgent().random)}, ) try: __UpperCamelCase : Tuple = ( BeautifulSoup(res.text, '''html.parser''') .find('''div''', attrs={'''class''': '''yuRUbf'''}) .find('''a''') .get('''href''') ) except AttributeError: __UpperCamelCase : Optional[Any] = parse_qs( BeautifulSoup(res.text, '''html.parser''') .find('''div''', attrs={'''class''': '''kCrYT'''}) .find('''a''') .get('''href''') )['''url'''][0] webbrowser.open(link)
74
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer __UpperCamelCase : List[str] = logging.get_logger(__name__) __UpperCamelCase : Any = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __UpperCamelCase : Dict = { "vocab_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-german-cased": ( "https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json" ), "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json" ), }, } __UpperCamelCase : int = { "distilbert-base-uncased": 512, "distilbert-base-uncased-distilled-squad": 512, "distilbert-base-cased": 512, "distilbert-base-cased-distilled-squad": 512, "distilbert-base-german-cased": 512, "distilbert-base-multilingual-cased": 512, } __UpperCamelCase : Any = { "distilbert-base-uncased": {"do_lower_case": True}, "distilbert-base-uncased-distilled-squad": {"do_lower_case": True}, "distilbert-base-cased": {"do_lower_case": False}, "distilbert-base-cased-distilled-squad": {"do_lower_case": False}, "distilbert-base-german-cased": {"do_lower_case": False}, "distilbert-base-multilingual-cased": {"do_lower_case": False}, } class __magic_name__ ( __lowerCAmelCase): A: Optional[int] = VOCAB_FILES_NAMES A: Any = PRETRAINED_VOCAB_FILES_MAP A: Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A: str = PRETRAINED_INIT_CONFIGURATION A: List[str] = ["input_ids", "attention_mask"] A: str = DistilBertTokenizer def __init__( self : Any , lowerCamelCase__ : int=None , lowerCamelCase__ : List[str]=None , lowerCamelCase__ : Dict=True , lowerCamelCase__ : int="[UNK]" , lowerCamelCase__ : Optional[Any]="[SEP]" , lowerCamelCase__ : Union[str, Any]="[PAD]" , lowerCamelCase__ : List[str]="[CLS]" , lowerCamelCase__ : List[str]="[MASK]" , lowerCamelCase__ : List[str]=True , lowerCamelCase__ : Tuple=None , **lowerCamelCase__ : List[str] , ) -> Tuple: '''simple docstring''' super().__init__( lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , do_lower_case=lowerCamelCase__ , unk_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , tokenize_chinese_chars=lowerCamelCase__ , strip_accents=lowerCamelCase__ , **lowerCamelCase__ , ) UpperCamelCase__ : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , lowerCamelCase__ ) != do_lower_case or normalizer_state.get('''strip_accents''' , lowerCamelCase__ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , lowerCamelCase__ ) != tokenize_chinese_chars ): UpperCamelCase__ : Optional[int] = getattr(lowerCamelCase__ , normalizer_state.pop('''type''' ) ) UpperCamelCase__ : int = do_lower_case UpperCamelCase__ : str = strip_accents UpperCamelCase__ : Union[str, Any] = tokenize_chinese_chars UpperCamelCase__ : List[Any] = normalizer_class(**lowerCamelCase__ ) UpperCamelCase__ : Dict = do_lower_case def UpperCAmelCase__ ( self : List[Any] , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Any=None ) -> Dict: '''simple docstring''' UpperCamelCase__ : int = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase__ ( self : List[Any] , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' UpperCamelCase__ : Dict = [self.sep_token_id] UpperCamelCase__ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase__ ( self : str , lowerCamelCase__ : str , lowerCamelCase__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' UpperCamelCase__ : Dict = self._tokenizer.model.save(lowerCamelCase__ , name=lowerCamelCase__ ) return tuple(lowerCamelCase__ )
146
import cmath import math def _a ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ): """simple docstring""" UpperCamelCase__ : Union[str, Any] = math.radians(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = math.radians(SCREAMING_SNAKE_CASE ) # Convert voltage and current to rectangular form UpperCamelCase__ : str = cmath.rect(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Any = cmath.rect(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
146
1
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _UpperCAmelCase : Tuple = 1_6 _UpperCAmelCase : List[Any] = 3_2 def __magic_name__( lowerCamelCase, lowerCamelCase = 1_6): __lowerCAmelCase = AutoTokenizer.from_pretrained('''bert-base-cased''') __lowerCAmelCase = load_dataset('''glue''', '''mrpc''') def tokenize_function(lowerCamelCase): # max_length=None => use the model max length (it's actually the default) __lowerCAmelCase = tokenizer(examples['''sentence1'''], examples['''sentence2'''], truncation=lowerCamelCase, max_length=lowerCamelCase) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __lowerCAmelCase = datasets.map( lowerCamelCase, batched=lowerCamelCase, remove_columns=['''idx''', '''sentence1''', '''sentence2'''], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __lowerCAmelCase = tokenized_datasets.rename_column('''label''', '''labels''') def collate_fn(lowerCamelCase): # On TPU it's best to pad everything to the same length or training will be very slow. __lowerCAmelCase = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __lowerCAmelCase = 1_6 elif accelerator.mixed_precision != "no": __lowerCAmelCase = 8 else: __lowerCAmelCase = None return tokenizer.pad( lowerCamelCase, padding='''longest''', max_length=lowerCamelCase, pad_to_multiple_of=lowerCamelCase, return_tensors='''pt''', ) # Instantiate dataloaders. __lowerCAmelCase = DataLoader( tokenized_datasets['''train'''], shuffle=lowerCamelCase, collate_fn=lowerCamelCase, batch_size=lowerCamelCase) __lowerCAmelCase = DataLoader( tokenized_datasets['''validation'''], shuffle=lowerCamelCase, collate_fn=lowerCamelCase, batch_size=lowerCamelCase) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders _UpperCAmelCase : Dict = mocked_dataloaders # noqa: F811 def __magic_name__( lowerCamelCase, lowerCamelCase): # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', lowerCamelCase) == "1": __lowerCAmelCase = 2 # New Code # __lowerCAmelCase = int(args.gradient_accumulation_steps) # Initialize accelerator __lowerCAmelCase = Accelerator( cpu=args.cpu, mixed_precision=args.mixed_precision, gradient_accumulation_steps=lowerCamelCase) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( '''Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`''') # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowerCAmelCase = config['''lr'''] __lowerCAmelCase = int(config['''num_epochs''']) __lowerCAmelCase = int(config['''seed''']) __lowerCAmelCase = int(config['''batch_size''']) __lowerCAmelCase = evaluate.load('''glue''', '''mrpc''') set_seed(lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = get_dataloaders(lowerCamelCase, lowerCamelCase) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowerCAmelCase = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''', return_dict=lowerCamelCase) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __lowerCAmelCase = model.to(accelerator.device) # Instantiate optimizer __lowerCAmelCase = AdamW(params=model.parameters(), lr=lowerCamelCase) # Instantiate scheduler __lowerCAmelCase = get_linear_schedule_with_warmup( optimizer=lowerCamelCase, num_warmup_steps=1_0_0, num_training_steps=(len(lowerCamelCase) * num_epochs), ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) # Now we train the model for epoch in range(lowerCamelCase): model.train() for step, batch in enumerate(lowerCamelCase): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(lowerCamelCase): __lowerCAmelCase = model(**lowerCamelCase) __lowerCAmelCase = output.loss accelerator.backward(lowerCamelCase) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCamelCase): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) with torch.no_grad(): __lowerCAmelCase = model(**lowerCamelCase) __lowerCAmelCase = outputs.logits.argmax(dim=-1) __lowerCAmelCase , __lowerCAmelCase = accelerator.gather_for_metrics((predictions, batch['''labels'''])) metric.add_batch( predictions=lowerCamelCase, references=lowerCamelCase, ) __lowerCAmelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""", lowerCamelCase) def __magic_name__( ): __lowerCAmelCase = argparse.ArgumentParser(description='''Simple example of training script.''') parser.add_argument( '''--mixed_precision''', type=lowerCamelCase, default=lowerCamelCase, choices=['''no''', '''fp16''', '''bf16''', '''fp8'''], help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''', ) # New Code # parser.add_argument( '''--gradient_accumulation_steps''', type=lowerCamelCase, default=1, help='''The number of minibatches to be ran before gradients are accumulated.''', ) parser.add_argument('''--cpu''', action='''store_true''', help='''If passed, will train on the CPU.''') __lowerCAmelCase = parser.parse_args() __lowerCAmelCase = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 4_2, '''batch_size''': 1_6} training_function(lowerCamelCase, lowerCamelCase) if __name__ == "__main__": main()
350
'''simple docstring''' import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def __magic_name__( lowerCamelCase, lowerCamelCase): __lowerCAmelCase = old_name if "patch_embed" in old_name: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = old_name.split('''.''') if layer == "0": __lowerCAmelCase = old_name.replace('''0''', '''convolution1''') elif layer == "1": __lowerCAmelCase = old_name.replace('''1''', '''batchnorm_before''') elif layer == "3": __lowerCAmelCase = old_name.replace('''3''', '''convolution2''') else: __lowerCAmelCase = old_name.replace('''4''', '''batchnorm_after''') if "network" in old_name and re.search(r'''\d\.\d''', lowerCamelCase): __lowerCAmelCase = r'''\b\d{2}\b''' if bool(re.search(lowerCamelCase, lowerCamelCase)): __lowerCAmelCase = re.search(r'''\d\.\d\d.''', lowerCamelCase).group() else: __lowerCAmelCase = re.search(r'''\d\.\d.''', lowerCamelCase).group() if int(match[0]) < 6: __lowerCAmelCase = old_name.replace(lowerCamelCase, '''''') __lowerCAmelCase = trimmed_name.replace('''network''', match[0] + '''.meta4D_layers.blocks.''' + match[2:-1]) __lowerCAmelCase = '''intermediate_stages.''' + trimmed_name else: __lowerCAmelCase = old_name.replace(lowerCamelCase, '''''') if int(match[2]) < num_meta4D_last_stage: __lowerCAmelCase = trimmed_name.replace('''network''', '''meta4D_layers.blocks.''' + match[2]) else: __lowerCAmelCase = str(int(match[2]) - num_meta4D_last_stage) __lowerCAmelCase = trimmed_name.replace('''network''', '''meta3D_layers.blocks.''' + layer_index) if "norm1" in old_name: __lowerCAmelCase = trimmed_name.replace('''norm1''', '''layernorm1''') elif "norm2" in old_name: __lowerCAmelCase = trimmed_name.replace('''norm2''', '''layernorm2''') elif "fc1" in old_name: __lowerCAmelCase = trimmed_name.replace('''fc1''', '''linear_in''') elif "fc2" in old_name: __lowerCAmelCase = trimmed_name.replace('''fc2''', '''linear_out''') __lowerCAmelCase = '''last_stage.''' + trimmed_name elif "network" in old_name and re.search(r'''.\d.''', lowerCamelCase): __lowerCAmelCase = old_name.replace('''network''', '''intermediate_stages''') if "fc" in new_name: __lowerCAmelCase = new_name.replace('''fc''', '''convolution''') elif ("norm1" in new_name) and ("layernorm1" not in new_name): __lowerCAmelCase = new_name.replace('''norm1''', '''batchnorm_before''') elif ("norm2" in new_name) and ("layernorm2" not in new_name): __lowerCAmelCase = new_name.replace('''norm2''', '''batchnorm_after''') if "proj" in new_name: __lowerCAmelCase = new_name.replace('''proj''', '''projection''') if "dist_head" in new_name: __lowerCAmelCase = new_name.replace('''dist_head''', '''distillation_classifier''') elif "head" in new_name: __lowerCAmelCase = new_name.replace('''head''', '''classifier''') elif "patch_embed" in new_name: __lowerCAmelCase = '''efficientformer.''' + new_name elif new_name == "norm.weight" or new_name == "norm.bias": __lowerCAmelCase = new_name.replace('''norm''', '''layernorm''') __lowerCAmelCase = '''efficientformer.''' + new_name else: __lowerCAmelCase = '''efficientformer.encoder.''' + new_name return new_name def __magic_name__( lowerCamelCase, lowerCamelCase): for key in checkpoint.copy().keys(): __lowerCAmelCase = checkpoint.pop(lowerCamelCase) __lowerCAmelCase = val return checkpoint def __magic_name__( ): __lowerCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __lowerCAmelCase = Image.open(requests.get(lowerCamelCase, stream=lowerCamelCase).raw) return image def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = torch.load(lowerCamelCase, map_location='''cpu''')['''model'''] __lowerCAmelCase = EfficientFormerConfig.from_json_file(lowerCamelCase) __lowerCAmelCase = EfficientFormerForImageClassificationWithTeacher(lowerCamelCase) __lowerCAmelCase = '''_'''.join(checkpoint_path.split('''/''')[-1].split('''.''')[0].split('''_''')[:-1]) __lowerCAmelCase = config.depths[-1] - config.num_metaad_blocks + 1 __lowerCAmelCase = convert_torch_checkpoint(lowerCamelCase, lowerCamelCase) model.load_state_dict(lowerCamelCase) model.eval() __lowerCAmelCase = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } # prepare image __lowerCAmelCase = prepare_img() __lowerCAmelCase = 2_5_6 __lowerCAmelCase = 2_2_4 __lowerCAmelCase = EfficientFormerImageProcessor( size={'''shortest_edge''': image_size}, crop_size={'''height''': crop_size, '''width''': crop_size}, resample=pillow_resamplings['''bicubic'''], ) __lowerCAmelCase = processor(images=lowerCamelCase, return_tensors='''pt''').pixel_values # original processing pipeline __lowerCAmelCase = Compose( [ Resize(lowerCamelCase, interpolation=pillow_resamplings['''bicubic''']), CenterCrop(lowerCamelCase), ToTensor(), Normalize(lowerCamelCase, lowerCamelCase), ]) __lowerCAmelCase = image_transforms(lowerCamelCase).unsqueeze(0) assert torch.allclose(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = model(lowerCamelCase) __lowerCAmelCase = outputs.logits __lowerCAmelCase = (1, 1_0_0_0) if "l1" in model_name: __lowerCAmelCase = torch.Tensor( [-0.13_12, 0.43_53, -1.04_99, -0.51_24, 0.41_83, -0.67_93, -1.37_77, -0.08_93, -0.73_58, -2.43_28]) assert torch.allclose(logits[0, :1_0], lowerCamelCase, atol=1E-3) assert logits.shape == expected_shape elif "l3" in model_name: __lowerCAmelCase = torch.Tensor( [-1.31_50, -1.54_56, -1.25_56, -0.84_96, -0.71_27, -0.78_97, -0.97_28, -0.30_52, 0.37_51, -0.31_27]) assert torch.allclose(logits[0, :1_0], lowerCamelCase, atol=1E-3) assert logits.shape == expected_shape elif "l7" in model_name: __lowerCAmelCase = torch.Tensor( [-1.02_83, -1.41_31, -0.56_44, -1.31_15, -0.57_85, -1.20_49, -0.75_28, 0.19_92, -0.38_22, -0.08_78]) assert logits.shape == expected_shape else: raise ValueError( F"""Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7""") # Save Checkpoints Path(lowerCamelCase).mkdir(exist_ok=lowerCamelCase) model.save_pretrained(lowerCamelCase) print(F"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""") processor.save_pretrained(lowerCamelCase) print(F"""Processor successfuly saved at {pytorch_dump_path}""") if push_to_hub: print('''Pushing model to the hub...''') model.push_to_hub( repo_id=F"""Bearnardd/{pytorch_dump_path}""", commit_message='''Add model''', use_temp_dir=lowerCamelCase, ) processor.push_to_hub( repo_id=F"""Bearnardd/{pytorch_dump_path}""", commit_message='''Add image processor''', use_temp_dir=lowerCamelCase, ) if __name__ == "__main__": _UpperCAmelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--pytorch_model_path""", default=None, type=str, required=True, help="""Path to EfficientFormer pytorch checkpoint.""", ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The json file for EfficientFormer model config.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""") parser.add_argument( """--no-push_to_hub""", dest="""push_to_hub""", action="""store_false""", help="""Do not push model and image processor to the hub""", ) parser.set_defaults(push_to_hub=True) _UpperCAmelCase : List[str] = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
9
0
import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ): __UpperCamelCase =FileLock(str(tmpdir / 'foo.lock' ) ) __UpperCamelCase =FileLock(str(tmpdir / 'foo.lock' ) ) __UpperCamelCase =0.01 with locka.acquire(): with pytest.raises(SCREAMING_SNAKE_CASE__ ): __UpperCamelCase =time.time() locka.acquire(SCREAMING_SNAKE_CASE__ ) assert time.time() - _start > timeout def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): __UpperCamelCase ='a' * 10_00 + '.lock' __UpperCamelCase =FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith('.lock' ) assert not locka._lock_file.endswith(SCREAMING_SNAKE_CASE__ ) assert len(os.path.basename(locka._lock_file ) ) <= 2_55 __UpperCamelCase =FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(SCREAMING_SNAKE_CASE__ ): locka.acquire(0 )
62
'''simple docstring''' import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class snake_case ( __lowerCamelCase ): """simple docstring""" def __init__( self : Any , __A : Dict , __A : str , __A : List[Any]=1_0_2_4 , __A : Tuple=1_0_2_4 , __A : str=3.6 ): __UpperCamelCase = tokenizer __UpperCamelCase = tokenizer.bos_token_id __UpperCamelCase = dataset __UpperCamelCase = seq_length __UpperCamelCase = seq_length * chars_per_token * num_of_sequences def __iter__( self : Any ): __UpperCamelCase = iter(self.dataset ) __UpperCamelCase = True while more_examples: __UpperCamelCase , __UpperCamelCase = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(__A )['content'] ) buffer_len += len(buffer[-1] ) except StopIteration: __UpperCamelCase = False break __UpperCamelCase = tokenizer(__A , truncation=__A )['input_ids'] __UpperCamelCase = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 , len(__A ) , self.seq_length ): __UpperCamelCase = all_token_ids[i : i + self.seq_length] if len(__A ) == self.seq_length: yield torch.tensor(__A ) def lowercase__ ( __lowercase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __UpperCamelCase = {'streaming': True} __UpperCamelCase = load_dataset(args.dataset_name , split='train' , **__lowercase ) __UpperCamelCase = ConstantLengthDataset(__lowercase , __lowercase , seq_length=args.seq_length ) __UpperCamelCase = DataLoader(__lowercase , batch_size=args.batch_size ) return eval_dataloader def lowercase__ ( __lowercase : Tuple ) -> Optional[Any]: """simple docstring""" model.eval() __UpperCamelCase = [] for step, batch in enumerate(__lowercase ): with torch.no_grad(): __UpperCamelCase = model(__lowercase , labels=__lowercase ) __UpperCamelCase = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(__lowercase ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break __UpperCamelCase = torch.mean(torch.cat(__lowercase ) ) try: __UpperCamelCase = torch.exp(__lowercase ) except OverflowError: __UpperCamelCase = float('inf' ) return loss.item(), perplexity.item() # Setup Accelerator a__ : int =Accelerator() # Parse configuration a__ : Dict =HfArgumentParser(EvaluationArguments) a__ : Union[str, Any] =parser.parse_args() set_seed(args.seed) # Logging a__ : List[Any] =logging.getLogger(__name__) logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) # Load model and tokenizer a__ : Union[str, Any] =AutoModelForCausalLM.from_pretrained(args.model_ckpt) a__ : List[Any] =AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader a__ : Union[str, Any] =create_dataloader(args) # Prepare everything with our `accelerator`. a__ , a__ : List[str] =accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('''Evaluating and saving model after training''') a__ , a__ : Any =evaluate(args) logger.info(f'loss/eval: {eval_loss}, perplexity: {perplexity}')
53
0
def lowercase__ ( __snake_case : Tuple ): '''simple docstring''' UpperCAmelCase_ : int = [], [] while len(A__ ) > 1: UpperCAmelCase_ : List[str] = min(A__ ), max(A__ ) start.append(A__ ) end.append(A__ ) collection.remove(A__ ) collection.remove(A__ ) end.reverse() return start + collection + end if __name__ == "__main__": __UpperCAmelCase = input('Enter numbers separated by a comma:\n').strip() __UpperCAmelCase = [int(item) for item in user_input.split(',')] print(*merge_sort(unsorted), sep=',')
351
import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class lowerCamelCase (unittest.TestCase ): '''simple docstring''' _snake_case : List[str] = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Optional[Any]: UpperCAmelCase_ : List[str] = hf_hub_download( repo_id='nateraw/video-demo' , filename='archery.mp4' , repo_type='dataset' ) UpperCAmelCase_ : str = VideoClassificationPipeline(model=_UpperCamelCase , image_processor=_UpperCamelCase , top_k=2 ) UpperCAmelCase_ : List[str] = [ example_video_filepath, 'https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4', ] return video_classifier, examples def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase ) -> Dict: for example in examples: UpperCAmelCase_ : str = video_classifier(_UpperCamelCase ) self.assertEqual( _UpperCamelCase , [ {'score': ANY(_UpperCamelCase ), 'label': ANY(_UpperCamelCase )}, {'score': ANY(_UpperCamelCase ), 'label': ANY(_UpperCamelCase )}, ] , ) @require_torch def __UpperCAmelCase ( self ) -> List[Any]: UpperCAmelCase_ : str = 'hf-internal-testing/tiny-random-VideoMAEForVideoClassification' UpperCAmelCase_ : Optional[Any] = VideoMAEFeatureExtractor( size={'shortest_edge': 1_0} , crop_size={'height': 1_0, 'width': 1_0} ) UpperCAmelCase_ : str = pipeline( 'video-classification' , model=_UpperCamelCase , feature_extractor=_UpperCamelCase , frame_sampling_rate=4 ) UpperCAmelCase_ : Any = hf_hub_download(repo_id='nateraw/video-demo' , filename='archery.mp4' , repo_type='dataset' ) UpperCAmelCase_ : List[str] = video_classifier(_UpperCamelCase , top_k=2 ) self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4 ) , [{'score': 0.51_99, 'label': 'LABEL_0'}, {'score': 0.48_01, 'label': 'LABEL_1'}] , ) UpperCAmelCase_ : Tuple = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4 ) , [ [{'score': 0.51_99, 'label': 'LABEL_0'}, {'score': 0.48_01, 'label': 'LABEL_1'}], [{'score': 0.51_99, 'label': 'LABEL_0'}, {'score': 0.48_01, 'label': 'LABEL_1'}], ] , ) @require_tf def __UpperCAmelCase ( self ) -> Dict: pass
145
0
"""simple docstring""" from __future__ import annotations import time import numpy as np _snake_case : str = [8, 5, 9, 7] _snake_case : List[Any] = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] _snake_case : Union[str, Any] = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class _UpperCAmelCase : def __init__( self :List[str] , __UpperCamelCase :int , __UpperCamelCase :List[str] , __UpperCamelCase :Union[str, Any] , ): A = claim_vector A = allocated_resources_table A = maximum_claim_table def lowerCamelCase ( self :str ): return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def lowerCamelCase ( self :List[str] ): return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def lowerCamelCase ( self :str ): return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(__UpperCAmelCase ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def lowerCamelCase ( self :str ): return {self.__need().index(__UpperCAmelCase ): i for i in self.__need()} def lowerCamelCase ( self :Optional[int] , **__UpperCamelCase :Dict ): A = self.__need() A = self.__allocated_resources_table A = self.__available_resources() A = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print("_" * 50 + "\n" ) while need_list: A = False for each_need in need_list: A = True for index, need in enumerate(__UpperCAmelCase ): if need > available_resources[index]: A = False break if execution: A = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: A = original_need_index print(f"Process {process_number + 1} is executing." ) # remove the process run from stack need_list.remove(__UpperCAmelCase ) # update available/freed resources stack A = np.array(__UpperCAmelCase ) + np.array( alloc_resources_table[process_number] ) print( "Updated available resource stack for processes: " + " ".join([str(__UpperCAmelCase ) for x in available_resources] ) ) break if safe: print("The process is in a safe state.\n" ) else: print("System in unsafe state. Aborting...\n" ) break def lowerCamelCase ( self :Union[str, Any] ): print(" " * 9 + "Allocated Resource Table" ) for item in self.__allocated_resources_table: print( f"P{self.__allocated_resources_table.index(__UpperCAmelCase ) + 1}" + " ".join(f"{it:>8}" for it in item ) + "\n" ) print(" " * 9 + "System Resource Table" ) for item in self.__maximum_claim_table: print( f"P{self.__maximum_claim_table.index(__UpperCAmelCase ) + 1}" + " ".join(f"{it:>8}" for it in item ) + "\n" ) print( "Current Usage by Active Processes: " + " ".join(str(__UpperCAmelCase ) for x in self.__claim_vector ) ) print( "Initial Available Resources: " + " ".join(str(__UpperCAmelCase ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
292
"""simple docstring""" # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys UpperCamelCase : Union[str, Any] = subprocess.check_output("git merge-base main HEAD".split()).decode("utf-8") UpperCamelCase : Any = subprocess.check_output(f'''git diff --name-only {fork_point_sha}'''.split()).decode("utf-8").split() UpperCamelCase : Tuple = "|".join(sys.argv[1:]) UpperCamelCase : Optional[int] = re.compile(Rf'''^({joined_dirs}).*?\.py$''') UpperCamelCase : Optional[Any] = [x for x in modified_files if regex.match(x)] print(" ".join(relevant_modified_files), end="")
316
0
def lowerCAmelCase( SCREAMING_SNAKE_CASE_ )-> str: """simple docstring""" return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
360
def lowerCAmelCase( SCREAMING_SNAKE_CASE_ )-> list: """simple docstring""" if len(SCREAMING_SNAKE_CASE_ ) <= 1: return lst UpperCamelCase_ = 1 while i < len(SCREAMING_SNAKE_CASE_ ): if lst[i - 1] <= lst[i]: i += 1 else: UpperCamelCase_ , UpperCamelCase_ = lst[i], lst[i - 1] i -= 1 if i == 0: UpperCamelCase_ = 1 return lst if __name__ == "__main__": SCREAMING_SNAKE_CASE :Union[str, Any] = input("""Enter numbers separated by a comma:\n""").strip() SCREAMING_SNAKE_CASE :Optional[int] = [int(item) for item in user_input.split(""",""")] print(gnome_sort(unsorted))
60
0
import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class UpperCamelCase_ ( snake_case_ ): '''simple docstring''' def __init__( self , a , a , a = None , a = None , a = False , **a , ) -> Any: super().__init__(features=a , cache_dir=a , keep_in_memory=a , **a ) snake_case_ = Sql( cache_dir=a , features=a , sql=a , con=a , **a , ) def _UpperCamelCase ( self ) -> Union[str, Any]: snake_case_ = None snake_case_ = None snake_case_ = None snake_case_ = None self.builder.download_and_prepare( download_config=a , download_mode=a , verification_mode=a , base_path=a , ) # Build dataset for splits snake_case_ = self.builder.as_dataset( split='train' , verification_mode=a , in_memory=self.keep_in_memory ) return dataset class UpperCamelCase_ : '''simple docstring''' def __init__( self , a , a , a , a = None , a = None , **a , ) -> Union[str, Any]: if num_proc is not None and num_proc <= 0: raise ValueError(F'''num_proc {num_proc} must be an integer > 0.''' ) snake_case_ = dataset snake_case_ = name snake_case_ = con snake_case_ = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE snake_case_ = num_proc snake_case_ = to_sql_kwargs def _UpperCamelCase ( self ) -> int: snake_case_ = self.to_sql_kwargs.pop('sql' , a ) snake_case_ = self.to_sql_kwargs.pop('con' , a ) snake_case_ = self.to_sql_kwargs.pop('index' , a ) snake_case_ = self._write(index=a , **self.to_sql_kwargs ) return written def _UpperCamelCase ( self , a ) -> Dict: snake_case_ , snake_case_ , snake_case_ = args snake_case_ = {**to_sql_kwargs, 'if_exists': 'append'} if offset > 0 else to_sql_kwargs snake_case_ = query_table( table=self.dataset.data , key=slice(a , offset + self.batch_size ) , indices=self.dataset._indices , ) snake_case_ = batch.to_pandas() snake_case_ = df.to_sql(self.name , self.con , index=a , **a ) return num_rows or len(a ) def _UpperCamelCase ( self , a , **a ) -> int: snake_case_ = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating SQL from Arrow format' , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: snake_case_ , snake_case_ = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , a , a )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating SQL from Arrow format' , ): written += num_rows return written
178
import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def __UpperCAmelCase ( a_ , a_ , a_ , a_ , a_): snake_case_ = np.array([[1, item, train_mtch[i]] for i, item in enumerate(a_)]) snake_case_ = np.array(a_) snake_case_ = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , a_)) , x.transpose()) , a_) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2]) def __UpperCAmelCase ( a_ , a_ , a_): snake_case_ = (1, 2, 1) snake_case_ = (1, 1, 0, 7) snake_case_ = SARIMAX( a_ , exog=a_ , order=a_ , seasonal_order=a_) snake_case_ = model.fit(disp=a_ , maxiter=6_00 , method='nm') snake_case_ = model_fit.predict(1 , len(a_) , exog=[test_match]) return result[0] def __UpperCAmelCase ( a_ , a_ , a_): snake_case_ = SVR(kernel='rbf' , C=1 , gamma=0.1 , epsilon=0.1) regressor.fit(a_ , a_) snake_case_ = regressor.predict(a_) return y_pred[0] def __UpperCAmelCase ( a_): train_user.sort() snake_case_ = np.percentile(a_ , 25) snake_case_ = np.percentile(a_ , 75) snake_case_ = qa - qa snake_case_ = qa - (iqr * 0.1) return low_lim def __UpperCAmelCase ( a_ , a_): snake_case_ = 0 snake_case_ = 0 for i in list_vote: if i > actual_result: snake_case_ = not_safe + 1 else: if abs(abs(a_) - abs(a_)) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) lowercase = [[18231, 0.0, 1], [22621, 1.0, 2], [15675, 0.0, 3], [23583, 1.0, 4]] lowercase = pd.DataFrame( data_input, columns=["total_user", "total_even", "days"] ) lowercase = Normalizer().fit_transform(data_input_df.values) # split data lowercase = normalize_df[:, 2].tolist() lowercase = normalize_df[:, 0].tolist() lowercase = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) lowercase = normalize_df[:, [1, 2]].tolist() lowercase = x[: len(x) - 1] lowercase = x[len(x) - 1 :] # for linear regression & sarimax lowercase = total_date[: len(total_date) - 1] lowercase = total_user[: len(total_user) - 1] lowercase = total_match[: len(total_match) - 1] lowercase = total_date[len(total_date) - 1 :] lowercase = total_user[len(total_user) - 1 :] lowercase = total_match[len(total_match) - 1 :] # voting system with forecasting lowercase = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data lowercase = "" if data_safety_checker(res_vote, tst_user) else "not " print("Today's data is {not_str}safe.")
178
1
'''simple docstring''' import math def A_( A : list , A : int = 0 , A : int = 0): UpperCamelCase = end or len(A) for i in range(A , A): UpperCamelCase = i UpperCamelCase = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: UpperCamelCase = array[temp_index - 1] temp_index -= 1 UpperCamelCase = temp_index_value return array def A_( A : list , A : int , A : int): # Max Heap UpperCamelCase = index UpperCamelCase = 2 * index + 1 # Left Node UpperCamelCase = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: UpperCamelCase = left_index if right_index < heap_size and array[largest] < array[right_index]: UpperCamelCase = right_index if largest != index: UpperCamelCase , UpperCamelCase = array[largest], array[index] heapify(A , A , A) def A_( A : list): UpperCamelCase = len(A) for i in range(n // 2 , -1 , -1): heapify(A , A , A) for i in range(n - 1 , 0 , -1): UpperCamelCase , UpperCamelCase = array[0], array[i] heapify(A , 0 , A) return array def A_( A : list , A : int , A : int , A : int): if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def A_( A : list , A : int , A : int , A : int): UpperCamelCase = low UpperCamelCase = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i UpperCamelCase , UpperCamelCase = array[j], array[i] i += 1 def A_( A : list): if len(A) == 0: return array UpperCamelCase = 2 * math.ceil(math.loga(len(A))) UpperCamelCase = 16 return intro_sort(A , 0 , len(A) , A , A) def A_( A : list , A : int , A : int , A : int , A : int): while end - start > size_threshold: if max_depth == 0: return heap_sort(A) max_depth -= 1 UpperCamelCase = median_of_a(A , A , start + ((end - start) // 2) + 1 , end - 1) UpperCamelCase = partition(A , A , A , A) intro_sort(A , A , A , A , A) UpperCamelCase = p return insertion_sort(A , A , A) if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase : Tuple = input('Enter numbers separated by a comma : ').strip() lowerCAmelCase : Optional[int] = [float(item) for item in user_input.split(',')] print(sort(unsorted))
251
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
251
1
def a_ ( _A , _A , _A , _A , _A , _A ) -> Optional[Any]: """simple docstring""" if index == r: for j in range(_A ): print(data[j] , end=' ' ) print(' ' ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location snake_case__ = arr[i] combination_util(_A , _A , _A , index + 1 , _A , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(_A , _A , _A , _A , _A , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def a_ ( _A , _A , _A ) -> Optional[int]: """simple docstring""" snake_case__ = [0] * r # Print all combination using temporary array 'data[]' combination_util(_A , _A , _A , 0 , _A , 0 ) if __name__ == "__main__": # Driver code to check the function above __UpperCamelCase : Union[str, Any] = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
307
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __UpperCAmelCase ( A__ , A__ , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = CycleDiffusionPipeline __lowerCAmelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { '''negative_prompt''', '''height''', '''width''', '''negative_prompt_embeds''', } __lowerCAmelCase = PipelineTesterMixin.required_optional_params - {'''latents'''} __lowerCAmelCase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''source_prompt'''} ) __lowerCAmelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS __lowerCAmelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS def A (self : int ): torch.manual_seed(0 ) A = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) A = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , num_train_timesteps=1000 , clip_sample=_lowerCAmelCase , set_alpha_to_one=_lowerCAmelCase , ) torch.manual_seed(0 ) A = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) A = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) A = CLIPTextModel(_lowerCAmelCase ) A = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) A = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def A (self : Dict , _lowerCAmelCase : str , _lowerCAmelCase : List[str]=0 ): A = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) A = image / 2 + 0.5 if str(_lowerCAmelCase ).startswith("""mps""" ): A = torch.manual_seed(_lowerCAmelCase ) else: A = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) A = { """prompt""": """An astronaut riding an elephant""", """source_prompt""": """An astronaut riding a horse""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """eta""": 0.1, """strength""": 0.8, """guidance_scale""": 3, """source_guidance_scale""": 1, """output_type""": """numpy""", } return inputs def A (self : Any ): A = """cpu""" # ensure determinism for the device-dependent torch.Generator A = self.get_dummy_components() A = CycleDiffusionPipeline(**_lowerCAmelCase ) A = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) A = self.get_dummy_inputs(_lowerCAmelCase ) A = pipe(**_lowerCAmelCase ) A = output.images A = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) A = np.array([0.4_459, 0.4_943, 0.4_544, 0.6_643, 0.5_474, 0.4_327, 0.5_701, 0.5_959, 0.5_179] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def A (self : str ): A = self.get_dummy_components() for name, module in components.items(): if hasattr(_lowerCAmelCase , """half""" ): A = module.half() A = CycleDiffusionPipeline(**_lowerCAmelCase ) A = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) A = self.get_dummy_inputs(_lowerCAmelCase ) A = pipe(**_lowerCAmelCase ) A = output.images A = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) A = np.array([0.3_506, 0.4_543, 0.446, 0.4_575, 0.5_195, 0.4_155, 0.5_273, 0.518, 0.4_116] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def A (self : Optional[int] ): return super().test_save_load_local() @unittest.skip("""non-deterministic pipeline""" ) def A (self : Optional[Any] ): return super().test_inference_batch_single_identical() @skip_mps def A (self : Dict ): return super().test_dict_tuple_outputs_equivalent() @skip_mps def A (self : Optional[Any] ): return super().test_save_load_optional_components() @skip_mps def A (self : Optional[int] ): return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def A (self : Optional[int] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A (self : int ): A = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/cycle-diffusion/black_colored_car.png""" ) A = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy""" ) A = init_image.resize((512, 512) ) A = """CompVis/stable-diffusion-v1-4""" A = DDIMScheduler.from_pretrained(_lowerCAmelCase , subfolder="""scheduler""" ) A = CycleDiffusionPipeline.from_pretrained( _lowerCAmelCase , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase , torch_dtype=torch.floataa , revision="""fp16""" ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() A = """A black colored car""" A = """A blue colored car""" A = torch.manual_seed(0 ) A = pipe( prompt=_lowerCAmelCase , source_prompt=_lowerCAmelCase , image=_lowerCAmelCase , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=_lowerCAmelCase , output_type="""np""" , ) A = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5e-1 def A (self : int ): A = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/cycle-diffusion/black_colored_car.png""" ) A = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy""" ) A = init_image.resize((512, 512) ) A = """CompVis/stable-diffusion-v1-4""" A = DDIMScheduler.from_pretrained(_lowerCAmelCase , subfolder="""scheduler""" ) A = CycleDiffusionPipeline.from_pretrained(_lowerCAmelCase , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() A = """A black colored car""" A = """A blue colored car""" A = torch.manual_seed(0 ) A = pipe( prompt=_lowerCAmelCase , source_prompt=_lowerCAmelCase , image=_lowerCAmelCase , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=_lowerCAmelCase , output_type="""np""" , ) A = output.images assert np.abs(image - expected_image ).max() < 2e-2
258
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import _LazyModule A = {'''tokenization_byt5''': ['''ByT5Tokenizer''']} if TYPE_CHECKING: from .tokenization_byta import ByTaTokenizer else: import sys A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
363
"""simple docstring""" import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) A = { '''iou_prediction_head.layers.0''': '''iou_prediction_head.proj_in''', '''iou_prediction_head.layers.1''': '''iou_prediction_head.layers.0''', '''iou_prediction_head.layers.2''': '''iou_prediction_head.proj_out''', '''mask_decoder.output_upscaling.0''': '''mask_decoder.upscale_conv1''', '''mask_decoder.output_upscaling.1''': '''mask_decoder.upscale_layer_norm''', '''mask_decoder.output_upscaling.3''': '''mask_decoder.upscale_conv2''', '''mask_downscaling.0''': '''mask_embed.conv1''', '''mask_downscaling.1''': '''mask_embed.layer_norm1''', '''mask_downscaling.3''': '''mask_embed.conv2''', '''mask_downscaling.4''': '''mask_embed.layer_norm2''', '''mask_downscaling.6''': '''mask_embed.conv3''', '''point_embeddings''': '''point_embed''', '''pe_layer.positional_encoding_gaussian_matrix''': '''shared_embedding.positional_embedding''', '''image_encoder''': '''vision_encoder''', '''neck.0''': '''neck.conv1''', '''neck.1''': '''neck.layer_norm1''', '''neck.2''': '''neck.conv2''', '''neck.3''': '''neck.layer_norm2''', '''patch_embed.proj''': '''patch_embed.projection''', '''.norm''': '''.layer_norm''', '''blocks''': '''layers''', } def __A ( a_ :List[Any]) -> List[Any]: __a : List[Any] = {} state_dict.pop('''pixel_mean''' , a_) state_dict.pop('''pixel_std''' , a_) __a : List[Any] = R'''.*.output_hypernetworks_mlps.(\d+).layers.(\d+).*''' for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: __a : int = key.replace(a_ , a_) if re.match(a_ , a_): __a : Optional[Any] = int(re.match(a_ , a_).group(2)) if layer_nb == 0: __a : Any = key.replace('''layers.0''' , '''proj_in''') elif layer_nb == 1: __a : Dict = key.replace('''layers.1''' , '''layers.0''') elif layer_nb == 2: __a : Optional[int] = key.replace('''layers.2''' , '''proj_out''') __a : int = value __a : Union[str, Any] = model_state_dict[ '''prompt_encoder.shared_embedding.positional_embedding''' ] return model_state_dict def __A ( a_ :Optional[int] , a_ :Optional[Any] , a_ :Dict , a_ :Optional[int]="ybelkada/segment-anything") -> Dict: __a : Dict = hf_hub_download(a_ , F"""checkpoints/{model_name}.pth""") if "sam_vit_b" in model_name: __a : List[str] = SamConfig() elif "sam_vit_l" in model_name: __a : List[Any] = SamVisionConfig( hidden_size=10_24 , num_hidden_layers=24 , num_attention_heads=16 , global_attn_indexes=[5, 11, 17, 23] , ) __a : List[Any] = SamConfig( vision_config=a_ , ) elif "sam_vit_h" in model_name: __a : List[str] = SamVisionConfig( hidden_size=12_80 , num_hidden_layers=32 , num_attention_heads=16 , global_attn_indexes=[7, 15, 23, 31] , ) __a : Optional[int] = SamConfig( vision_config=a_ , ) __a : int = torch.load(a_ , map_location='''cpu''') __a : Tuple = replace_keys(a_) __a : Optional[int] = SamImageProcessor() __a : Any = SamProcessor(image_processor=a_) __a : Any = SamModel(a_) hf_model.load_state_dict(a_) __a : Dict = hf_model.to('''cuda''') __a : Tuple = '''https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png''' __a : str = Image.open(requests.get(a_ , stream=a_).raw).convert('''RGB''') __a : Tuple = [[[4_00, 6_50]]] __a : Tuple = [[1]] __a : Tuple = processor(images=np.array(a_) , return_tensors='''pt''').to('''cuda''') with torch.no_grad(): __a : str = hf_model(**a_) __a : Optional[int] = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.5_7_9_8_9_0_2_5_1_1_5_9_6_6_8 __a : Any = processor( images=np.array(a_) , input_points=a_ , input_labels=a_ , return_tensors='''pt''').to('''cuda''') with torch.no_grad(): __a : Optional[int] = hf_model(**a_) __a : Optional[int] = output.iou_scores.squeeze() assert scores[-1].item() == 0.9_7_1_2_6_0_3_0_9_2_1_9_3_6_0_4 __a : str = ((75, 2_75, 17_25, 8_50),) __a : List[str] = processor(images=np.array(a_) , input_boxes=a_ , return_tensors='''pt''').to('''cuda''') with torch.no_grad(): __a : Any = hf_model(**a_) __a : Any = output.iou_scores.squeeze() assert scores[-1].item() == 0.8_6_8_6_0_1_5_6_0_5_9_2_6_5_1_4 # Test with 2 points and 1 image. __a : int = [[[4_00, 6_50], [8_00, 6_50]]] __a : Dict = [[1, 1]] __a : Optional[Any] = processor( images=np.array(a_) , input_points=a_ , input_labels=a_ , return_tensors='''pt''').to('''cuda''') with torch.no_grad(): __a : int = hf_model(**a_) __a : Any = output.iou_scores.squeeze() assert scores[-1].item() == 0.9_9_3_6_0_4_7_7_9_2_4_3_4_6_9_2 if __name__ == "__main__": A = argparse.ArgumentParser() A = ['''sam_vit_b_01ec64''', '''sam_vit_h_4b8939''', '''sam_vit_l_0b3195'''] parser.add_argument( '''--model_name''', default='''sam_vit_h_4b8939''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) parser.add_argument( '''--model_hub_id''', default='''ybelkada/segment-anything''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) A = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
188
0
from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers lowerCAmelCase__ = [ 'python', 'tqdm', 'regex', 'requests', 'packaging', 'filelock', 'numpy', 'tokenizers', 'huggingface-hub', 'safetensors', 'accelerate', 'pyyaml', ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py") def _UpperCAmelCase (UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any]=None ): require_version(deps[pkg] , UpperCamelCase__ )
11
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase__ : List[Any] = { '''configuration_distilbert''': [ '''DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DistilBertConfig''', '''DistilBertOnnxConfig''', ], '''tokenization_distilbert''': ['''DistilBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Any = ['''DistilBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : int = [ '''DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DistilBertForMaskedLM''', '''DistilBertForMultipleChoice''', '''DistilBertForQuestionAnswering''', '''DistilBertForSequenceClassification''', '''DistilBertForTokenClassification''', '''DistilBertModel''', '''DistilBertPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Dict = [ '''TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFDistilBertForMaskedLM''', '''TFDistilBertForMultipleChoice''', '''TFDistilBertForQuestionAnswering''', '''TFDistilBertForSequenceClassification''', '''TFDistilBertForTokenClassification''', '''TFDistilBertMainLayer''', '''TFDistilBertModel''', '''TFDistilBertPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Tuple = [ '''FlaxDistilBertForMaskedLM''', '''FlaxDistilBertForMultipleChoice''', '''FlaxDistilBertForQuestionAnswering''', '''FlaxDistilBertForSequenceClassification''', '''FlaxDistilBertForTokenClassification''', '''FlaxDistilBertModel''', '''FlaxDistilBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys lowercase__ : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
264
0
from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __snake_case : def __init__( self : List[str] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any]=13 , _UpperCAmelCase : int=30 , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : Tuple=32 , _UpperCAmelCase : Any=2 , _UpperCAmelCase : Optional[Any]=4 , _UpperCAmelCase : Optional[Any]=37 , _UpperCAmelCase : List[str]="gelu" , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Tuple=10 , _UpperCAmelCase : str=0.02 , _UpperCAmelCase : int=3 , _UpperCAmelCase : Dict=0.6 , _UpperCAmelCase : str=None , ) -> Dict: '''simple docstring''' _lowerCAmelCase : List[Any] = parent _lowerCAmelCase : List[str] = batch_size _lowerCAmelCase : Tuple = image_size _lowerCAmelCase : Tuple = patch_size _lowerCAmelCase : str = num_channels _lowerCAmelCase : Any = is_training _lowerCAmelCase : str = use_labels _lowerCAmelCase : Optional[int] = hidden_size _lowerCAmelCase : Tuple = num_hidden_layers _lowerCAmelCase : int = num_attention_heads _lowerCAmelCase : Any = intermediate_size _lowerCAmelCase : Optional[int] = hidden_act _lowerCAmelCase : Dict = hidden_dropout_prob _lowerCAmelCase : str = attention_probs_dropout_prob _lowerCAmelCase : Tuple = type_sequence_label_size _lowerCAmelCase : Optional[Any] = initializer_range _lowerCAmelCase : Optional[int] = mask_ratio _lowerCAmelCase : Optional[int] = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) _lowerCAmelCase : Any = (image_size // patch_size) ** 2 _lowerCAmelCase : str = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def SCREAMING_SNAKE_CASE ( self : str ) -> int: '''simple docstring''' _lowerCAmelCase : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase : Dict = None if self.use_labels: _lowerCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase : str = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: '''simple docstring''' return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def SCREAMING_SNAKE_CASE ( self : int , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str ) -> int: '''simple docstring''' _lowerCAmelCase : Union[str, Any] = TFViTMAEModel(config=_UpperCAmelCase ) _lowerCAmelCase : List[str] = model(_UpperCAmelCase , training=_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Any ) -> List[str]: '''simple docstring''' _lowerCAmelCase : Tuple = TFViTMAEForPreTraining(_UpperCAmelCase ) _lowerCAmelCase : Dict = model(_UpperCAmelCase , training=_UpperCAmelCase ) # expected sequence length = num_patches _lowerCAmelCase : int = (self.image_size // self.patch_size) ** 2 _lowerCAmelCase : List[Any] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images _lowerCAmelCase : Union[str, Any] = 1 _lowerCAmelCase : List[str] = TFViTMAEForPreTraining(_UpperCAmelCase ) _lowerCAmelCase : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase : List[Any] = model(_UpperCAmelCase , training=_UpperCAmelCase ) _lowerCAmelCase : int = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: '''simple docstring''' _lowerCAmelCase : List[Any] = self.prepare_config_and_inputs() ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) : Optional[int] = config_and_inputs _lowerCAmelCase : int = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class __snake_case (_a , _a , unittest.TestCase ): lowerCAmelCase__ = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () lowerCAmelCase__ = {"feature-extraction": TFViTMAEModel} if is_tf_available() else {} lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: '''simple docstring''' _lowerCAmelCase : List[str] = TFViTMAEModelTester(self ) _lowerCAmelCase : Any = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37 ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMAE does not use inputs_embeds""" ) def SCREAMING_SNAKE_CASE ( self : int ) -> Dict: '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : Any = model_class(_UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) _lowerCAmelCase : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase , tf.keras.layers.Layer ) ) def SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : Optional[Any] = model_class(_UpperCAmelCase ) _lowerCAmelCase : Optional[Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : str = [*signature.parameters.keys()] _lowerCAmelCase : Dict = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: '''simple docstring''' _lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: '''simple docstring''' np.random.seed(2 ) _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : Tuple = int((config.image_size // config.patch_size) ** 2 ) _lowerCAmelCase : Union[str, Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: _lowerCAmelCase : List[Any] = model_class(_UpperCAmelCase ) _lowerCAmelCase : Tuple = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase : Union[str, Any] = model(_UpperCAmelCase , noise=_UpperCAmelCase ) _lowerCAmelCase : Tuple = copy.deepcopy(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) _lowerCAmelCase : Optional[int] = model(**_UpperCAmelCase , noise=_UpperCAmelCase ) _lowerCAmelCase : int = outputs_dict[0].numpy() _lowerCAmelCase : List[str] = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1E-6 ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: '''simple docstring''' np.random.seed(2 ) _lowerCAmelCase , _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : Optional[Any] = int((config.image_size // config.patch_size) ** 2 ) _lowerCAmelCase : Dict = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(_UpperCAmelCase : Any ): _lowerCAmelCase : Any = {} for k, v in inputs_dict.items(): if tf.is_tensor(_UpperCAmelCase ): _lowerCAmelCase : List[Any] = v.numpy() else: _lowerCAmelCase : Union[str, Any] = np.array(_UpperCAmelCase ) return inputs_np_dict for model_class in self.all_model_classes: _lowerCAmelCase : Tuple = model_class(_UpperCAmelCase ) _lowerCAmelCase : List[Any] = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase : Dict = prepare_numpy_arrays(_UpperCAmelCase ) _lowerCAmelCase : List[Any] = model(_UpperCAmelCase , noise=_UpperCAmelCase ) _lowerCAmelCase : Any = model(**_UpperCAmelCase , noise=_UpperCAmelCase ) self.assert_outputs_same(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Any ) -> Optional[int]: '''simple docstring''' np.random.seed(2 ) _lowerCAmelCase : Optional[int] = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) _lowerCAmelCase : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) _lowerCAmelCase : Any = tf.constant(_UpperCAmelCase ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument _lowerCAmelCase : Union[str, Any] = tf_noise super().check_pt_tf_models(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: '''simple docstring''' np.random.seed(2 ) _lowerCAmelCase , _lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : List[Any] = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(_UpperCAmelCase ) if module_member_name.endswith("""MainLayer""" ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len("""MainLayer""" )] == model_class.__name__[: -len("""Model""" )] for module_member in (getattr(_UpperCAmelCase , _UpperCAmelCase ),) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(_UpperCAmelCase , """_keras_serializable""" , _UpperCAmelCase ) } _lowerCAmelCase : Union[str, Any] = int((config.image_size // config.patch_size) ** 2 ) _lowerCAmelCase : Union[str, Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) _lowerCAmelCase : Tuple = tf.convert_to_tensor(_UpperCAmelCase ) inputs_dict.update({"""noise""": noise} ) for main_layer_class in tf_main_layer_classes: _lowerCAmelCase : Optional[Any] = main_layer_class(_UpperCAmelCase ) _lowerCAmelCase : List[str] = { name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } _lowerCAmelCase : str = tf.keras.Model(_UpperCAmelCase , outputs=main_layer(_UpperCAmelCase ) ) _lowerCAmelCase : Tuple = model(_UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: _lowerCAmelCase : Any = os.path.join(_UpperCAmelCase , """keras_model.h5""" ) model.save(_UpperCAmelCase ) _lowerCAmelCase : str = tf.keras.models.load_model( _UpperCAmelCase , custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(_UpperCAmelCase , tf.keras.Model ) _lowerCAmelCase : Union[str, Any] = model(_UpperCAmelCase ) self.assert_outputs_same(_UpperCAmelCase , _UpperCAmelCase ) @slow def SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: '''simple docstring''' np.random.seed(2 ) _lowerCAmelCase , _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : Dict = int((config.image_size // config.patch_size) ** 2 ) _lowerCAmelCase : int = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: _lowerCAmelCase : str = model_class(_UpperCAmelCase ) _lowerCAmelCase : int = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase : Optional[int] = model(_UpperCAmelCase , noise=_UpperCAmelCase ) if model_class.__name__ == "TFViTMAEModel": _lowerCAmelCase : List[Any] = outputs.last_hidden_state.numpy() _lowerCAmelCase : str = 0 else: _lowerCAmelCase : Optional[Any] = outputs.logits.numpy() _lowerCAmelCase : Optional[Any] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_UpperCAmelCase , saved_model=_UpperCAmelCase ) _lowerCAmelCase : Tuple = model_class.from_pretrained(_UpperCAmelCase ) _lowerCAmelCase : str = model(_UpperCAmelCase , noise=_UpperCAmelCase ) if model_class.__name__ == "TFViTMAEModel": _lowerCAmelCase : str = after_outputs["""last_hidden_state"""].numpy() _lowerCAmelCase : List[Any] = 0 else: _lowerCAmelCase : Tuple = after_outputs["""logits"""].numpy() _lowerCAmelCase : Optional[Any] = 0 _lowerCAmelCase : Any = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_UpperCAmelCase , 1E-5 ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: '''simple docstring''' np.random.seed(2 ) _lowerCAmelCase , _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : Optional[Any] = int((config.image_size // config.patch_size) ** 2 ) _lowerCAmelCase : List[str] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: _lowerCAmelCase : Dict = model_class(_UpperCAmelCase ) _lowerCAmelCase : Union[str, Any] = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase : Any = model(_UpperCAmelCase , noise=_UpperCAmelCase ) _lowerCAmelCase : str = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(_UpperCAmelCase ) _lowerCAmelCase : Union[str, Any] = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config _lowerCAmelCase : Optional[int] = model_class.from_config(model.config ) _lowerCAmelCase : Tuple = new_model(_UpperCAmelCase ) # Build model new_model.set_weights(model.get_weights() ) _lowerCAmelCase : Any = new_model(_UpperCAmelCase , noise=_UpperCAmelCase ) self.assert_outputs_same(_UpperCAmelCase , _UpperCAmelCase ) @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: '''simple docstring''' pass @unittest.skip(reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load""" ) def SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[Any]: '''simple docstring''' pass @slow def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: '''simple docstring''' _lowerCAmelCase : List[str] = TFViTMAEModel.from_pretrained("""google/vit-base-patch16-224""" ) self.assertIsNotNone(_UpperCAmelCase ) def _UpperCAmelCase (): '''simple docstring''' _lowerCAmelCase : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class __snake_case (unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: '''simple docstring''' return ViTImageProcessor.from_pretrained("""facebook/vit-mae-base""" ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Tuple: '''simple docstring''' np.random.seed(2 ) _lowerCAmelCase : str = TFViTMAEForPreTraining.from_pretrained("""facebook/vit-mae-base""" ) _lowerCAmelCase : List[str] = self.default_image_processor _lowerCAmelCase : Optional[Any] = prepare_img() _lowerCAmelCase : Optional[Any] = image_processor(images=_UpperCAmelCase , return_tensors="""tf""" ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) _lowerCAmelCase : Any = ViTMAEConfig() _lowerCAmelCase : Tuple = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) _lowerCAmelCase : Union[str, Any] = np.random.uniform(size=(1, num_patches) ) # forward pass _lowerCAmelCase : List[Any] = model(**_UpperCAmelCase , noise=_UpperCAmelCase ) # verify the logits _lowerCAmelCase : Dict = tf.convert_to_tensor([1, 196, 768] ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) _lowerCAmelCase : Tuple = tf.convert_to_tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] , _UpperCAmelCase , atol=1E-4 )
159
from collections import namedtuple import requests from lxml import html # type: ignore _lowerCamelCase : Dict = namedtuple("covid_data", "cases deaths recovered") def _UpperCAmelCase (UpperCamelCase_ : str = "https://www.worldometers.info/coronavirus/" ): '''simple docstring''' _lowerCAmelCase : Dict = """//div[@class = \"maincounter-number\"]/span/text()""" return covid_data(*html.fromstring(requests.get(UpperCamelCase_ ).content ).xpath(UpperCamelCase_ ) ) _lowerCamelCase : Tuple = "Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}" print(fmt.format(*covid_stats()))
159
1
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path UpperCAmelCase_ = Path(__file__).resolve().parents[3] / 'src' sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) UpperCAmelCase_ = {'base': 'patrickvonplaten/wav2vec2_tiny_random', 'robust': 'patrickvonplaten/wav2vec2_tiny_random_robust'} UpperCAmelCase_ = 'zero2' UpperCAmelCase_ = 'zero3' UpperCAmelCase_ = [ZEROa, ZEROa] def lowerCamelCase__ ( A__ : int , A__ : Union[str, Any] , A__ : List[Any] ): '''simple docstring''' __lowerCamelCase = parameterized.to_safe_name("""_""".join(str(A__ ) for x in param.args ) ) return f'{func.__name__}_{param_based_name}' # Cartesian-product of zero stages with models to test UpperCAmelCase_ = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class lowerCamelCase__( __lowerCamelCase): @parameterized.expand(UpperCamelCase_ , name_func=UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: List[str] , UpperCamelCase_: int ): self.run_and_check( stage=UpperCamelCase_ , model=UpperCamelCase_ , distributed=UpperCamelCase_ , fpaa=UpperCamelCase_ , ) @require_torch_multi_gpu @parameterized.expand(UpperCamelCase_ , name_func=UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Optional[Any] ): self.run_and_check( stage=UpperCamelCase_ , model=UpperCamelCase_ , distributed=UpperCamelCase_ , fpaa=UpperCamelCase_ , ) @parameterized.expand(UpperCamelCase_ , name_func=UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: int , UpperCamelCase_: List[Any] ): self.run_and_check( stage=UpperCamelCase_ , model=UpperCamelCase_ , distributed=UpperCamelCase_ , fpaa=UpperCamelCase_ , ) @require_torch_multi_gpu @parameterized.expand(UpperCamelCase_ , name_func=UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: List[str] , UpperCamelCase_: List[str] ): self.run_and_check( stage=UpperCamelCase_ , model=UpperCamelCase_ , distributed=UpperCamelCase_ , fpaa=UpperCamelCase_ , ) def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: str ): # XXX: run_asr is premature and doesn't save any results # so all we check for now is that the process didn't fail pass def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: str , UpperCamelCase_: str , UpperCamelCase_: int = 10 , UpperCamelCase_: bool = True , UpperCamelCase_: bool = True , UpperCamelCase_: bool = True , ): __lowerCamelCase = models[model] __lowerCamelCase = self.run_trainer( stage=UpperCamelCase_ , model_name=UpperCamelCase_ , eval_steps=UpperCamelCase_ , num_train_epochs=1 , distributed=UpperCamelCase_ , fpaa=UpperCamelCase_ , ) self.do_checks(UpperCamelCase_ ) return output_dir def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: str , UpperCamelCase_: str , UpperCamelCase_: int = 10 , UpperCamelCase_: int = 1 , UpperCamelCase_: bool = True , UpperCamelCase_: bool = True , ): __lowerCamelCase = self.get_auto_remove_tmp_dir("""./xxx""" , after=UpperCamelCase_ ) __lowerCamelCase = F'\n --model_name_or_path {model_name}\n --dataset_name hf-internal-testing/librispeech_asr_dummy\n --dataset_config_name clean\n --train_split_name validation\n --validation_split_name validation\n --output_dir {output_dir}\n --num_train_epochs {str(UpperCamelCase_ )}\n --per_device_train_batch_size 2\n --per_device_eval_batch_size 2\n --evaluation_strategy steps\n --learning_rate 5e-4\n --warmup_steps 8\n --orthography timit\n --preprocessing_num_workers 1\n --group_by_length\n --freeze_feature_extractor\n --report_to none\n --save_steps 0\n --eval_steps {eval_steps}\n --report_to none\n '.split() if fpaa: args.extend(["""--fp16"""] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files __lowerCamelCase = F'--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'.split() __lowerCamelCase = [F'{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py'] __lowerCamelCase = self.get_launcher(UpperCamelCase_ ) __lowerCamelCase = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(UpperCamelCase_ , env=self.get_env() ) return output_dir def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: Optional[Any]=False ): # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup # - it won't be able to handle that # 2. for now testing with just 2 gpus max (since some quality tests may give different # results with mode gpus because we use very little data) __lowerCamelCase = min(2 , get_gpu_count() ) if distributed else 1 return F'deepspeed --num_nodes 1 --num_gpus {num_gpus}'.split()
12
from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class lowerCamelCase__( __lowerCamelCase): def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = SMALL_MODEL_IDENTIFIER __lowerCamelCase = """pt""" __lowerCamelCase = """tf""" def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: Optional[Any] ): __lowerCamelCase = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: Union[str, Any] ): __lowerCamelCase = TFAutoModel.from_pretrained(self.test_model , from_pt=UpperCamelCase_ ) model_tf.save_pretrained(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Union[str, Any] ): __lowerCamelCase = """mock_framework""" # Framework provided - return whatever the user provides __lowerCamelCase = FeaturesManager.determine_framework(self.test_model , UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(UpperCamelCase_ ) __lowerCamelCase = FeaturesManager.determine_framework(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(UpperCamelCase_ ) __lowerCamelCase = FeaturesManager.determine_framework(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: int ): # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(UpperCamelCase_ ) __lowerCamelCase = FeaturesManager.determine_framework(UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(UpperCamelCase_ ) __lowerCamelCase = FeaturesManager.determine_framework(UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(UpperCamelCase_ ): __lowerCamelCase = FeaturesManager.determine_framework(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[int] ): __lowerCamelCase = MagicMock(return_value=UpperCamelCase_ ) with patch("""transformers.onnx.features.is_tf_available""" , UpperCamelCase_ ): __lowerCamelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(UpperCamelCase_ , self.framework_pt ) # PyTorch not in environment -> use TensorFlow __lowerCamelCase = MagicMock(return_value=UpperCamelCase_ ) with patch("""transformers.onnx.features.is_torch_available""" , UpperCamelCase_ ): __lowerCamelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(UpperCamelCase_ , self.framework_tf ) # Both in environment -> use PyTorch __lowerCamelCase = MagicMock(return_value=UpperCamelCase_ ) __lowerCamelCase = MagicMock(return_value=UpperCamelCase_ ) with patch("""transformers.onnx.features.is_tf_available""" , UpperCamelCase_ ), patch( """transformers.onnx.features.is_torch_available""" , UpperCamelCase_ ): __lowerCamelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(UpperCamelCase_ , self.framework_pt ) # Both not in environment -> raise error __lowerCamelCase = MagicMock(return_value=UpperCamelCase_ ) __lowerCamelCase = MagicMock(return_value=UpperCamelCase_ ) with patch("""transformers.onnx.features.is_tf_available""" , UpperCamelCase_ ), patch( """transformers.onnx.features.is_torch_available""" , UpperCamelCase_ ): with self.assertRaises(UpperCamelCase_ ): __lowerCamelCase = FeaturesManager.determine_framework(self.test_model )
12
1
import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowerCAmelCase_ : '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=30 , _UpperCAmelCase=2 , _UpperCAmelCase=3 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=10 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=0.6 , _UpperCAmelCase=None , ): snake_case_ = parent snake_case_ = batch_size snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = is_training snake_case_ = use_labels snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = mask_ratio snake_case_ = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) snake_case_ = (image_size // patch_size) ** 2 snake_case_ = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def UpperCamelCase__ ( self ): snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = self.get_config() return config, pixel_values, labels def UpperCamelCase__ ( self ): return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): snake_case_ = ViTMAEModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() snake_case_ = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): snake_case_ = ViTMAEForPreTraining(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() snake_case_ = model(_UpperCAmelCase ) snake_case_ = (self.image_size // self.patch_size) ** 2 snake_case_ = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images snake_case_ = 1 snake_case_ = ViTMAEForPreTraining(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() snake_case_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case_ = model(_UpperCAmelCase ) snake_case_ = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def UpperCamelCase__ ( self ): snake_case_ = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ = config_and_inputs snake_case_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase_ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): '''simple docstring''' __snake_case = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () __snake_case = {"feature-extraction": ViTMAEModel} if is_torch_available() else {} __snake_case = False __snake_case = False __snake_case = False __snake_case = False def UpperCamelCase__ ( self ): snake_case_ = ViTMAEModelTester(self ) snake_case_ = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37 ) def UpperCamelCase__ ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='''ViTMAE does not use inputs_embeds''' ) def UpperCamelCase__ ( self ): pass def UpperCamelCase__ ( self ): snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(_UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) snake_case_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear ) ) def UpperCamelCase__ ( self ): snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(_UpperCAmelCase ) snake_case_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ = [*signature.parameters.keys()] snake_case_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def UpperCamelCase__ ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def UpperCamelCase__ ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_UpperCAmelCase ) def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): # make masks reproducible np.random.seed(2 ) snake_case_ = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) snake_case_ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) snake_case_ = torch.from_numpy(_UpperCAmelCase ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument snake_case_ = pt_noise super().check_pt_tf_models(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def UpperCamelCase__ ( self ): snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): snake_case_ = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) snake_case_ = outputs[0].cpu().numpy() snake_case_ = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_UpperCAmelCase ) snake_case_ = model_class.from_pretrained(_UpperCAmelCase ) model.to(_UpperCAmelCase ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): snake_case_ = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) # Make sure we don't have nans snake_case_ = after_outputs[0].cpu().numpy() snake_case_ = 0 snake_case_ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_UpperCAmelCase , 1E-5 ) @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def UpperCamelCase__ ( self ): pass @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def UpperCamelCase__ ( self ): pass @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def UpperCamelCase__ ( self ): pass @unittest.skip(reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load''' ) def UpperCamelCase__ ( self ): pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def UpperCamelCase__ ( self ): pass @slow def UpperCamelCase__ ( self ): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = ViTMAEModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def __lowerCAmelCase ()-> Optional[int]: """simple docstring""" snake_case_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase__ ( self ): return ViTImageProcessor.from_pretrained('''facebook/vit-mae-base''' ) if is_vision_available() else None @slow def UpperCamelCase__ ( self ): # make random mask reproducible across the PT and TF model np.random.seed(2 ) snake_case_ = ViTMAEForPreTraining.from_pretrained('''facebook/vit-mae-base''' ).to(_UpperCAmelCase ) snake_case_ = self.default_image_processor snake_case_ = prepare_img() snake_case_ = image_processor(images=_UpperCAmelCase , return_tensors='''pt''' ).to(_UpperCAmelCase ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) snake_case_ = ViTMAEConfig() snake_case_ = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) snake_case_ = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): snake_case_ = model(**_UpperCAmelCase , noise=torch.from_numpy(_UpperCAmelCase ).to(device=_UpperCAmelCase ) ) # verify the logits snake_case_ = torch.Size((1, 1_96, 7_68) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) snake_case_ = torch.tensor( [[-0.0_548, -1.7_023, -0.9_325], [0.3_721, -0.5_670, -0.2_233], [0.8_235, -1.3_878, -0.3_524]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(_UpperCAmelCase ) , atol=1E-4 ) )
267
import os def __lowerCAmelCase ()-> List[Any]: """simple docstring""" snake_case_ = os.path.join(os.path.dirname(SCREAMING_SNAKE_CASE ) , '''num.txt''' ) with open(SCREAMING_SNAKE_CASE ) as file_hand: return str(sum(int(SCREAMING_SNAKE_CASE ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
267
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ : int = logging.get_logger(__name__) snake_case_ : str = { 'vinvino02/glpn-kitti': 'https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json', # See all GLPN models at https://huggingface.co/models?filter=glpn } class lowercase__ ( lowercase ): lowercase__ = """glpn""" def __init__( self : str ,lowerCamelCase__ : Dict=3 ,lowerCamelCase__ : Tuple=4 ,lowerCamelCase__ : List[str]=[2, 2, 2, 2] ,lowerCamelCase__ : int=[8, 4, 2, 1] ,lowerCamelCase__ : List[Any]=[32, 64, 160, 256] ,lowerCamelCase__ : Optional[Any]=[7, 3, 3, 3] ,lowerCamelCase__ : Union[str, Any]=[4, 2, 2, 2] ,lowerCamelCase__ : int=[1, 2, 5, 8] ,lowerCamelCase__ : int=[4, 4, 4, 4] ,lowerCamelCase__ : Union[str, Any]="gelu" ,lowerCamelCase__ : List[str]=0.0 ,lowerCamelCase__ : Optional[Any]=0.0 ,lowerCamelCase__ : Optional[Any]=0.0_2 ,lowerCamelCase__ : Union[str, Any]=0.1 ,lowerCamelCase__ : Optional[Any]=1E-6 ,lowerCamelCase__ : Optional[Any]=64 ,lowerCamelCase__ : Any=10 ,lowerCamelCase__ : Tuple=-1 ,**lowerCamelCase__ : str ,): '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCamelCase : Dict = num_channels _UpperCamelCase : List[Any] = num_encoder_blocks _UpperCamelCase : List[Any] = depths _UpperCamelCase : Tuple = sr_ratios _UpperCamelCase : List[str] = hidden_sizes _UpperCamelCase : Dict = patch_sizes _UpperCamelCase : List[Any] = strides _UpperCamelCase : Any = mlp_ratios _UpperCamelCase : Any = num_attention_heads _UpperCamelCase : Union[str, Any] = hidden_act _UpperCamelCase : Tuple = hidden_dropout_prob _UpperCamelCase : Optional[Any] = attention_probs_dropout_prob _UpperCamelCase : Tuple = initializer_range _UpperCamelCase : Dict = drop_path_rate _UpperCamelCase : Union[str, Any] = layer_norm_eps _UpperCamelCase : str = decoder_hidden_size _UpperCamelCase : int = max_depth _UpperCamelCase : Dict = head_in_index
83
import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging A : Dict = logging.get_logger(__name__) def __lowerCamelCase ( __a :int=None , __a :Optional[Any]=None ) -> int: """simple docstring""" return field(default_factory=lambda: default , metadata=__a ) @dataclass class A : '''simple docstring''' __lowerCamelCase : List[str] = list_field( default=[] , metadata={ '''help''': ( '''Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version''' ''' of all available models''' ) } , ) __lowerCamelCase : List[int] = list_field( default=[8] , metadata={'''help''': '''List of batch sizes for which memory and time performance will be evaluated'''} ) __lowerCamelCase : List[int] = list_field( default=[8, 32, 128, 512] , metadata={'''help''': '''List of sequence lengths for which memory and time performance will be evaluated'''} , ) __lowerCamelCase : bool = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Whether to benchmark inference of model. Inference can be disabled via --no-inference.'''} , ) __lowerCamelCase : bool = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Whether to run on available cuda devices. Cuda can be disabled via --no-cuda.'''} , ) __lowerCamelCase : bool = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Whether to run on available tpu devices. TPU can be disabled via --no-tpu.'''} ) __lowerCamelCase : bool = field(default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Use FP16 to accelerate inference.'''} ) __lowerCamelCase : bool = field(default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Benchmark training of model'''} ) __lowerCamelCase : bool = field(default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Verbose memory tracing'''} ) __lowerCamelCase : bool = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Whether to perform speed measurements. Speed measurements can be disabled via --no-speed.'''} , ) __lowerCamelCase : bool = field( default=SCREAMING_SNAKE_CASE , metadata={ '''help''': '''Whether to perform memory measurements. Memory measurements can be disabled via --no-memory''' } , ) __lowerCamelCase : bool = field(default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Trace memory line by line'''} ) __lowerCamelCase : bool = field(default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Save result to a CSV file'''} ) __lowerCamelCase : bool = field(default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Save all print statements in a log file'''} ) __lowerCamelCase : bool = field(default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Whether to print environment information'''} ) __lowerCamelCase : bool = field( default=SCREAMING_SNAKE_CASE , metadata={ '''help''': ( '''Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use''' ''' multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled''' ''' for debugging / testing and on TPU.''' ) } , ) __lowerCamelCase : str = field( default=F'''inference_time_{round(time() )}.csv''' , metadata={'''help''': '''CSV filename used if saving time results to csv.'''} , ) __lowerCamelCase : str = field( default=F'''inference_memory_{round(time() )}.csv''' , metadata={'''help''': '''CSV filename used if saving memory results to csv.'''} , ) __lowerCamelCase : str = field( default=F'''train_time_{round(time() )}.csv''' , metadata={'''help''': '''CSV filename used if saving time results to csv for training.'''} , ) __lowerCamelCase : str = field( default=F'''train_memory_{round(time() )}.csv''' , metadata={'''help''': '''CSV filename used if saving memory results to csv for training.'''} , ) __lowerCamelCase : str = field( default=F'''env_info_{round(time() )}.csv''' , metadata={'''help''': '''CSV filename used if saving environment information.'''} , ) __lowerCamelCase : str = field( default=F'''log_{round(time() )}.csv''' , metadata={'''help''': '''Log filename used if print statements are saved in log.'''} , ) __lowerCamelCase : int = field(default=3 , metadata={'''help''': '''Times an experiment will be run.'''} ) __lowerCamelCase : bool = field( default=SCREAMING_SNAKE_CASE , metadata={ '''help''': ( '''Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain''' ''' model weights.''' ) } , ) def a_ ( self : Dict ) -> Union[str, Any]: """simple docstring""" warnings.warn( f'The class {self.__class__} is deprecated. Hugging Face Benchmarking utils' """ are deprecated in general and it is advised to use external Benchmarking libraries """ """ to benchmark Transformer models.""" , __lowerCAmelCase , ) def a_ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def a_ ( self : Tuple ) -> List[str]: """simple docstring""" if len(self.models ) <= 0: raise ValueError( """Please make sure you provide at least one model name / model identifier, *e.g.* `--models""" """ bert-base-cased` or `args.models = ['bert-base-cased'].""" ) return self.models @property def a_ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" if not self.multi_process: return False elif self.is_tpu: logger.info("""Multiprocessing is currently not possible on TPU.""" ) return False else: return True
274
0
import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() _A : str = logging.get_logger(__name__) def _a ( UpperCAmelCase ) -> Dict: """simple docstring""" lowerCamelCase__ : List[str] = OrderedDict() for key, value in state_dict.items(): if key.startswith('''module.encoder''' ): lowerCamelCase__ : Any = key.replace('''module.encoder''' , '''glpn.encoder''' ) if key.startswith('''module.decoder''' ): lowerCamelCase__ : Tuple = key.replace('''module.decoder''' , '''decoder.stages''' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 lowerCamelCase__ : List[Any] = key[key.find('''patch_embed''' ) + len('''patch_embed''' )] lowerCamelCase__ : Union[str, Any] = key.replace(f"patch_embed{idx}" , f"patch_embeddings.{int(UpperCAmelCase )-1}" ) if "norm" in key: lowerCamelCase__ : Dict = key.replace('''norm''' , '''layer_norm''' ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 lowerCamelCase__ : Optional[Any] = key[key.find('''glpn.encoder.layer_norm''' ) + len('''glpn.encoder.layer_norm''' )] lowerCamelCase__ : List[Any] = key.replace(f"layer_norm{idx}" , f"layer_norm.{int(UpperCAmelCase )-1}" ) if "layer_norm1" in key: lowerCamelCase__ : Any = key.replace('''layer_norm1''' , '''layer_norm_1''' ) if "layer_norm2" in key: lowerCamelCase__ : Optional[int] = key.replace('''layer_norm2''' , '''layer_norm_2''' ) if "block" in key: # replace for example block1 by block.0 lowerCamelCase__ : Optional[Any] = key[key.find('''block''' ) + len('''block''' )] lowerCamelCase__ : List[Any] = key.replace(f"block{idx}" , f"block.{int(UpperCAmelCase )-1}" ) if "attn.q" in key: lowerCamelCase__ : List[Any] = key.replace('''attn.q''' , '''attention.self.query''' ) if "attn.proj" in key: lowerCamelCase__ : int = key.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in key: lowerCamelCase__ : Tuple = key.replace('''attn''' , '''attention.self''' ) if "fc1" in key: lowerCamelCase__ : Dict = key.replace('''fc1''' , '''dense1''' ) if "fc2" in key: lowerCamelCase__ : int = key.replace('''fc2''' , '''dense2''' ) if "linear_pred" in key: lowerCamelCase__ : Any = key.replace('''linear_pred''' , '''classifier''' ) if "linear_fuse" in key: lowerCamelCase__ : List[Any] = key.replace('''linear_fuse.conv''' , '''linear_fuse''' ) lowerCamelCase__ : int = key.replace('''linear_fuse.bn''' , '''batch_norm''' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 lowerCamelCase__ : List[str] = key[key.find('''linear_c''' ) + len('''linear_c''' )] lowerCamelCase__ : Optional[Any] = key.replace(f"linear_c{idx}" , f"linear_c.{int(UpperCAmelCase )-1}" ) if "bot_conv" in key: lowerCamelCase__ : Union[str, Any] = key.replace('''bot_conv''' , '''0.convolution''' ) if "skip_conv1" in key: lowerCamelCase__ : Optional[Any] = key.replace('''skip_conv1''' , '''1.convolution''' ) if "skip_conv2" in key: lowerCamelCase__ : Optional[int] = key.replace('''skip_conv2''' , '''2.convolution''' ) if "fusion1" in key: lowerCamelCase__ : int = key.replace('''fusion1''' , '''1.fusion''' ) if "fusion2" in key: lowerCamelCase__ : Union[str, Any] = key.replace('''fusion2''' , '''2.fusion''' ) if "fusion3" in key: lowerCamelCase__ : Dict = key.replace('''fusion3''' , '''3.fusion''' ) if "fusion" in key and "conv" in key: lowerCamelCase__ : Tuple = key.replace('''conv''' , '''convolutional_layer''' ) if key.startswith('''module.last_layer_depth''' ): lowerCamelCase__ : Tuple = key.replace('''module.last_layer_depth''' , '''head.head''' ) lowerCamelCase__ : List[str] = value return new_state_dict def _a ( UpperCAmelCase , UpperCAmelCase ) -> Tuple: """simple docstring""" # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) lowerCamelCase__ : Optional[Any] = state_dict.pop(f"glpn.encoder.block.{i}.{j}.attention.self.kv.weight" ) lowerCamelCase__ : List[str] = state_dict.pop(f"glpn.encoder.block.{i}.{j}.attention.self.kv.bias" ) # next, add keys and values (in that order) to the state dict lowerCamelCase__ : Optional[Any] = kv_weight[ : config.hidden_sizes[i], : ] lowerCamelCase__ : Any = kv_bias[: config.hidden_sizes[i]] lowerCamelCase__ : Optional[int] = kv_weight[ config.hidden_sizes[i] :, : ] lowerCamelCase__ : Optional[int] = kv_bias[config.hidden_sizes[i] :] def _a ( ) -> Optional[Any]: """simple docstring""" lowerCamelCase__ : List[Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCamelCase__ : Dict = Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw ) return image @torch.no_grad() def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False , UpperCAmelCase=None ) -> int: """simple docstring""" lowerCamelCase__ : str = GLPNConfig(hidden_sizes=[64, 128, 320, 512] , decoder_hidden_size=64 , depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) lowerCamelCase__ : int = GLPNImageProcessor() # prepare image lowerCamelCase__ : Optional[int] = prepare_img() lowerCamelCase__ : Union[str, Any] = image_processor(images=UpperCAmelCase , return_tensors='''pt''' ).pixel_values logger.info('''Converting model...''' ) # load original state dict lowerCamelCase__ : Optional[Any] = torch.load(UpperCAmelCase , map_location=torch.device('''cpu''' ) ) # rename keys lowerCamelCase__ : Any = rename_keys(UpperCAmelCase ) # key and value matrices need special treatment read_in_k_v(UpperCAmelCase , UpperCAmelCase ) # create HuggingFace model and load state dict lowerCamelCase__ : Optional[Any] = GLPNForDepthEstimation(UpperCAmelCase ) model.load_state_dict(UpperCAmelCase ) model.eval() # forward pass lowerCamelCase__ : Optional[int] = model(UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: lowerCamelCase__ : Optional[Any] = torch.tensor( [[4.41_47, 4.08_73, 4.06_73], [3.78_90, 3.28_81, 3.15_25], [3.76_74, 3.54_23, 3.49_13]] ) elif "kitti" in model_name: lowerCamelCase__ : str = torch.tensor( [[3.42_91, 2.78_65, 2.51_51], [3.28_41, 2.70_21, 2.35_02], [3.11_47, 2.46_25, 2.24_81]] ) else: raise ValueError(f"Unknown model name: {model_name}" ) lowerCamelCase__ : int = torch.Size([1, 480, 640] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] , UpperCAmelCase , atol=1E-4 ) print('''Looks ok!''' ) # finally, push to hub if required if push_to_hub: logger.info('''Pushing model and image processor to the hub...''' ) model.push_to_hub( repo_path_or_name=Path(UpperCAmelCase , UpperCAmelCase ) , organization='''nielsr''' , commit_message='''Add model''' , use_temp_dir=UpperCAmelCase , ) image_processor.push_to_hub( repo_path_or_name=Path(UpperCAmelCase , UpperCAmelCase ) , organization='''nielsr''' , commit_message='''Add image processor''' , use_temp_dir=UpperCAmelCase , ) if __name__ == "__main__": _A : List[str] = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.' ) parser.add_argument( '--model_name', default='glpn-kitti', type=str, help='Name of the model in case you\'re pushing to the hub.', ) _A : Dict = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
265
from ...configuration_utils import PretrainedConfig from ...utils import logging _A : Any = logging.get_logger(__name__) _A : int = { 'facebook/timesformer': 'https://huggingface.co/facebook/timesformer/resolve/main/config.json', } class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): _UpperCAmelCase : Dict = "timesformer" def __init__( self : List[str] , A : int=2_2_4 , A : Optional[Any]=1_6 , A : str=3 , A : str=8 , A : Any=7_6_8 , A : Dict=1_2 , A : Optional[Any]=1_2 , A : Any=3_0_7_2 , A : str="gelu" , A : Optional[int]=0.0 , A : Union[str, Any]=0.0 , A : List[Any]=0.02 , A : int=1e-6 , A : Tuple=True , A : Any="divided_space_time" , A : Optional[Any]=0 , **A : Tuple , ) ->str: super().__init__(**A ) lowerCamelCase__ : Optional[Any] = image_size lowerCamelCase__ : int = patch_size lowerCamelCase__ : Any = num_channels lowerCamelCase__ : Optional[int] = num_frames lowerCamelCase__ : Optional[Any] = hidden_size lowerCamelCase__ : Optional[int] = num_hidden_layers lowerCamelCase__ : Optional[int] = num_attention_heads lowerCamelCase__ : Dict = intermediate_size lowerCamelCase__ : Optional[Any] = hidden_act lowerCamelCase__ : Union[str, Any] = hidden_dropout_prob lowerCamelCase__ : Dict = attention_probs_dropout_prob lowerCamelCase__ : List[Any] = initializer_range lowerCamelCase__ : str = layer_norm_eps lowerCamelCase__ : Union[str, Any] = qkv_bias lowerCamelCase__ : str = attention_type lowerCamelCase__ : List[str] = drop_path_rate
265
1
import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class __SCREAMING_SNAKE_CASE( unittest.TestCase ): _UpperCAmelCase = inspect.getfile(accelerate.test_utils ) _UpperCAmelCase = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_cli.py"] ) _UpperCAmelCase = ["accelerate", "launch"] _UpperCAmelCase = Path.home() / ".cache/huggingface/accelerate" _UpperCAmelCase = "default_config.yaml" _UpperCAmelCase = config_folder / config_file _UpperCAmelCase = config_folder / "_default_config.yaml" _UpperCAmelCase = Path("tests/test_configs" ) @classmethod def lowerCAmelCase_ ( cls: Tuple ) -> List[str]: if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path ) @classmethod def lowerCAmelCase_ ( cls: Tuple ) -> Tuple: if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path ) def lowerCAmelCase_ ( self: List[str] ) -> Tuple: snake_case__ = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy() ) def lowerCAmelCase_ ( self: Union[str, Any] ) -> int: for config in sorted(self.test_config_path.glob('**/*.yaml' ) ): with self.subTest(config_file=UpperCamelCase ): execute_subprocess_async( self.base_cmd + ['--config_file', str(UpperCamelCase ), self.test_file_path] , env=os.environ.copy() ) def lowerCAmelCase_ ( self: Union[str, Any] ) -> Tuple: execute_subprocess_async(['accelerate', 'test'] , env=os.environ.copy() ) class __SCREAMING_SNAKE_CASE( unittest.TestCase ): _UpperCAmelCase = "test-tpu" _UpperCAmelCase = "us-central1-a" _UpperCAmelCase = "ls" _UpperCAmelCase = ["accelerate", "tpu-config"] _UpperCAmelCase = "cd /usr/share" _UpperCAmelCase = "tests/test_samples/test_command_file.sh" _UpperCAmelCase = "Running gcloud compute tpus tpu-vm ssh" def lowerCAmelCase_ ( self: Any ) -> Optional[Any]: snake_case__ = run_command( self.cmd + ['--command', self.command, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug'] , return_stdout=UpperCamelCase , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , UpperCamelCase , ) def lowerCAmelCase_ ( self: str ) -> Optional[Any]: snake_case__ = run_command( self.cmd + [ '--config_file', 'tests/test_configs/0_12_0.yaml', '--command', self.command, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug', ] , return_stdout=UpperCamelCase , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , UpperCamelCase , ) def lowerCAmelCase_ ( self: Optional[int] ) -> Tuple: snake_case__ = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--debug'] , return_stdout=UpperCamelCase ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , UpperCamelCase , ) def lowerCAmelCase_ ( self: List[Any] ) -> str: snake_case__ = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--command', self.command, '--debug'] , return_stdout=UpperCamelCase , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , UpperCamelCase , ) def lowerCAmelCase_ ( self: Dict ) -> Dict: snake_case__ = run_command( self.cmd + [ '--config_file', 'tests/test_configs/latest.yaml', '--command', self.command, '--command', 'echo "Hello World"', '--debug', ] , return_stdout=UpperCamelCase , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo "Hello World" --worker all''' , UpperCamelCase , ) def lowerCAmelCase_ ( self: List[Any] ) -> Dict: snake_case__ = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--command_file', self.command_file, '--debug'] , return_stdout=UpperCamelCase , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , UpperCamelCase , ) def lowerCAmelCase_ ( self: List[Any] ) -> List[Any]: snake_case__ = run_command( self.cmd + [ '--config_file', 'tests/test_configs/0_12_0.yaml', '--command_file', self.command_file, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug', ] , return_stdout=UpperCamelCase , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , UpperCamelCase , ) def lowerCAmelCase_ ( self: Any ) -> List[str]: snake_case__ = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--install_accelerate', '--debug'] , return_stdout=UpperCamelCase , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo "hello world"; echo "this is a second command" --worker all''' , UpperCamelCase , ) def lowerCAmelCase_ ( self: int ) -> Any: snake_case__ = run_command( self.cmd + [ '--config_file', 'tests/test_configs/latest.yaml', '--install_accelerate', '--accelerate_version', '12.0.0', '--debug', ] , return_stdout=UpperCamelCase , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo "hello world"; echo "this is a second command" --worker all''' , UpperCamelCase , )
307
import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( """The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion""" ) __UpperCamelCase : Union[str, Any] = None __UpperCamelCase : Any = { """7B""": 11008, """13B""": 13824, """30B""": 17920, """65B""": 22016, """70B""": 28672, } __UpperCamelCase : Optional[Any] = { """7B""": 1, """7Bf""": 1, """13B""": 2, """13Bf""": 2, """30B""": 4, """65B""": 8, """70B""": 8, """70Bf""": 8, } def a_ ( _A , _A=1 , _A=256 ) -> str: """simple docstring""" return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def a_ ( _A ) -> int: """simple docstring""" with open(_A , 'r' ) as f: return json.load(_A ) def a_ ( _A , _A ) -> int: """simple docstring""" with open(_A , 'w' ) as f: json.dump(_A , _A ) def a_ ( _A , _A , _A , _A=True ) -> List[str]: """simple docstring""" os.makedirs(_A , exist_ok=_A ) snake_case__ = os.path.join(_A , 'tmp' ) os.makedirs(_A , exist_ok=_A ) snake_case__ = read_json(os.path.join(_A , 'params.json' ) ) snake_case__ = NUM_SHARDS[model_size] snake_case__ = params['n_layers'] snake_case__ = params['n_heads'] snake_case__ = n_heads // num_shards snake_case__ = params['dim'] snake_case__ = dim // n_heads snake_case__ = 10000.0 snake_case__ = 1.0 / (base ** (torch.arange(0 , _A , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: snake_case__ = params['n_kv_heads'] # for GQA / MQA snake_case__ = n_heads_per_shard // num_key_value_heads snake_case__ = dim // num_key_value_heads else: # compatibility with other checkpoints snake_case__ = n_heads snake_case__ = n_heads_per_shard snake_case__ = dim # permute for sliced rotary def permute(_A , _A=n_heads , _A=dim , _A=dim ): return w.view(_A , dima // n_heads // 2 , 2 , _A ).transpose(1 , 2 ).reshape(_A , _A ) print(f'''Fetching all parameters from the checkpoint at {input_base_path}.''' ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) snake_case__ = torch.load(os.path.join(_A , 'consolidated.00.pth' ) , map_location='cpu' ) else: # Sharded snake_case__ = [ torch.load(os.path.join(_A , f'''consolidated.{i:02d}.pth''' ) , map_location='cpu' ) for i in range(_A ) ] snake_case__ = 0 snake_case__ = {'weight_map': {}} for layer_i in range(_A ): snake_case__ = f'''pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin''' if model_size == "7B": # Unsharded snake_case__ = { f'''model.layers.{layer_i}.self_attn.q_proj.weight''': permute( loaded[f'''layers.{layer_i}.attention.wq.weight'''] ), f'''model.layers.{layer_i}.self_attn.k_proj.weight''': permute( loaded[f'''layers.{layer_i}.attention.wk.weight'''] ), f'''model.layers.{layer_i}.self_attn.v_proj.weight''': loaded[f'''layers.{layer_i}.attention.wv.weight'''], f'''model.layers.{layer_i}.self_attn.o_proj.weight''': loaded[f'''layers.{layer_i}.attention.wo.weight'''], f'''model.layers.{layer_i}.mlp.gate_proj.weight''': loaded[f'''layers.{layer_i}.feed_forward.w1.weight'''], f'''model.layers.{layer_i}.mlp.down_proj.weight''': loaded[f'''layers.{layer_i}.feed_forward.w2.weight'''], f'''model.layers.{layer_i}.mlp.up_proj.weight''': loaded[f'''layers.{layer_i}.feed_forward.w3.weight'''], f'''model.layers.{layer_i}.input_layernorm.weight''': loaded[f'''layers.{layer_i}.attention_norm.weight'''], f'''model.layers.{layer_i}.post_attention_layernorm.weight''': loaded[f'''layers.{layer_i}.ffn_norm.weight'''], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. snake_case__ = { f'''model.layers.{layer_i}.input_layernorm.weight''': loaded[0][ f'''layers.{layer_i}.attention_norm.weight''' ].clone(), f'''model.layers.{layer_i}.post_attention_layernorm.weight''': loaded[0][ f'''layers.{layer_i}.ffn_norm.weight''' ].clone(), } snake_case__ = permute( torch.cat( [ loaded[i][f'''layers.{layer_i}.attention.wq.weight'''].view(_A , _A , _A ) for i in range(_A ) ] , dim=0 , ).reshape(_A , _A ) ) snake_case__ = permute( torch.cat( [ loaded[i][f'''layers.{layer_i}.attention.wk.weight'''].view( _A , _A , _A ) for i in range(_A ) ] , dim=0 , ).reshape(_A , _A ) , _A , _A , _A , ) snake_case__ = torch.cat( [ loaded[i][f'''layers.{layer_i}.attention.wv.weight'''].view( _A , _A , _A ) for i in range(_A ) ] , dim=0 , ).reshape(_A , _A ) snake_case__ = torch.cat( [loaded[i][f'''layers.{layer_i}.attention.wo.weight'''] for i in range(_A )] , dim=1 ) snake_case__ = torch.cat( [loaded[i][f'''layers.{layer_i}.feed_forward.w1.weight'''] for i in range(_A )] , dim=0 ) snake_case__ = torch.cat( [loaded[i][f'''layers.{layer_i}.feed_forward.w2.weight'''] for i in range(_A )] , dim=1 ) snake_case__ = torch.cat( [loaded[i][f'''layers.{layer_i}.feed_forward.w3.weight'''] for i in range(_A )] , dim=0 ) snake_case__ = inv_freq for k, v in state_dict.items(): snake_case__ = filename param_count += v.numel() torch.save(_A , os.path.join(_A , _A ) ) snake_case__ = f'''pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin''' if model_size == "7B": # Unsharded snake_case__ = { 'model.embed_tokens.weight': loaded['tok_embeddings.weight'], 'model.norm.weight': loaded['norm.weight'], 'lm_head.weight': loaded['output.weight'], } else: snake_case__ = { 'model.norm.weight': loaded[0]['norm.weight'], 'model.embed_tokens.weight': torch.cat( [loaded[i]['tok_embeddings.weight'] for i in range(_A )] , dim=1 ), 'lm_head.weight': torch.cat([loaded[i]['output.weight'] for i in range(_A )] , dim=0 ), } for k, v in state_dict.items(): snake_case__ = filename param_count += v.numel() torch.save(_A , os.path.join(_A , _A ) ) # Write configs snake_case__ = {'total_size': param_count * 2} write_json(_A , os.path.join(_A , 'pytorch_model.bin.index.json' ) ) snake_case__ = params['ffn_dim_multiplier'] if 'ffn_dim_multiplier' in params else 1 snake_case__ = params['multiple_of'] if 'multiple_of' in params else 256 snake_case__ = LlamaConfig( hidden_size=_A , intermediate_size=compute_intermediate_size(_A , _A , _A ) , num_attention_heads=params['n_heads'] , num_hidden_layers=params['n_layers'] , rms_norm_eps=params['norm_eps'] , num_key_value_heads=_A , ) config.save_pretrained(_A ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print('Loading the checkpoint in a Llama model.' ) snake_case__ = LlamaForCausalLM.from_pretrained(_A , torch_dtype=torch.floataa , low_cpu_mem_usage=_A ) # Avoid saving this as part of the config. del model.config._name_or_path print('Saving in the Transformers format.' ) model.save_pretrained(_A , safe_serialization=_A ) shutil.rmtree(_A ) def a_ ( _A , _A ) -> Tuple: """simple docstring""" # Initialize the tokenizer based on the `spm` model snake_case__ = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(f'''Saving a {tokenizer_class.__name__} to {tokenizer_path}.''' ) snake_case__ = tokenizer_class(_A ) tokenizer.save_pretrained(_A ) def a_ ( ) -> str: """simple docstring""" snake_case__ = argparse.ArgumentParser() parser.add_argument( '--input_dir' , help='Location of LLaMA weights, which contains tokenizer.model and model folders' , ) parser.add_argument( '--model_size' , choices=['7B', '7Bf', '13B', '13Bf', '30B', '65B', '70B', '70Bf', 'tokenizer_only'] , ) parser.add_argument( '--output_dir' , help='Location to write HF model and tokenizer' , ) parser.add_argument('--safe_serialization' , type=_A , help='Whether or not to save using `safetensors`.' ) snake_case__ = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) snake_case__ = os.path.join(args.input_dir , 'tokenizer.model' ) write_tokenizer(args.output_dir , _A ) if __name__ == "__main__": main()
307
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A : Dict = { 'configuration_instructblip': [ 'INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'InstructBlipConfig', 'InstructBlipQFormerConfig', 'InstructBlipVisionConfig', ], 'processing_instructblip': ['InstructBlipProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Union[str, Any] = [ 'INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'InstructBlipQFormerModel', 'InstructBlipPreTrainedModel', 'InstructBlipForConditionalGeneration', 'InstructBlipVisionModel', ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys A : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
33
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A : Dict = { 'configuration_instructblip': [ 'INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'InstructBlipConfig', 'InstructBlipQFormerConfig', 'InstructBlipVisionConfig', ], 'processing_instructblip': ['InstructBlipProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Union[str, Any] = [ 'INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'InstructBlipQFormerModel', 'InstructBlipPreTrainedModel', 'InstructBlipForConditionalGeneration', 'InstructBlipVisionModel', ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys A : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
33
1
"""simple docstring""" # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers _a : Any= "3" print("Python version:", sys.version) print("transformers version:", transformers.__version__) try: import torch print("Torch version:", torch.__version__) print("Cuda available:", torch.cuda.is_available()) print("Cuda version:", torch.version.cuda) print("CuDNN version:", torch.backends.cudnn.version()) print("Number of GPUs available:", torch.cuda.device_count()) print("NCCL version:", torch.cuda.nccl.version()) except ImportError: print("Torch version:", None) try: import deepspeed print("DeepSpeed version:", deepspeed.__version__) except ImportError: print("DeepSpeed version:", None) try: import tensorflow as tf print("TensorFlow version:", tf.__version__) print("TF GPUs available:", bool(tf.config.list_physical_devices("GPU"))) print("Number of TF GPUs available:", len(tf.config.list_physical_devices("GPU"))) except ImportError: print("TensorFlow version:", None)
172
"""simple docstring""" import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError("At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training") # TF training parameters _a : Optional[int]= False _a : int= False def __UpperCAmelCase ( UpperCAmelCase_ : Namespace ) -> Optional[Any]: '''simple docstring''' return TrainCommand(UpperCAmelCase_ ) class UpperCamelCase ( lowercase ): @staticmethod def _lowercase (_A : ArgumentParser) -> Any: __snake_case : Any = parser.add_parser('train' , help='CLI tool to train a model on a task.') train_parser.add_argument( '--train_data' , type=_A , required=_A , help='path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.' , ) train_parser.add_argument( '--column_label' , type=_A , default=0 , help='Column of the dataset csv file with example labels.') train_parser.add_argument( '--column_text' , type=_A , default=1 , help='Column of the dataset csv file with example texts.') train_parser.add_argument( '--column_id' , type=_A , default=2 , help='Column of the dataset csv file with example ids.') train_parser.add_argument( '--skip_first_row' , action='store_true' , help='Skip the first row of the csv file (headers).') train_parser.add_argument('--validation_data' , type=_A , default='' , help='path to validation dataset.') train_parser.add_argument( '--validation_split' , type=_A , default=0.1 , help='if validation dataset is not provided, fraction of train dataset to use as validation dataset.' , ) train_parser.add_argument('--output' , type=_A , default='./' , help='path to saved the trained model.') train_parser.add_argument( '--task' , type=_A , default='text_classification' , help='Task to train the model on.') train_parser.add_argument( '--model' , type=_A , default='bert-base-uncased' , help='Model\'s name or path to stored model.') train_parser.add_argument('--train_batch_size' , type=_A , default=32 , help='Batch size for training.') train_parser.add_argument('--valid_batch_size' , type=_A , default=64 , help='Batch size for validation.') train_parser.add_argument('--learning_rate' , type=_A , default=3E-5 , help='Learning rate.') train_parser.add_argument('--adam_epsilon' , type=_A , default=1E-08 , help='Epsilon for Adam optimizer.') train_parser.set_defaults(func=_A) def __init__(self : int , _A : Namespace) -> Tuple: __snake_case : Optional[int] = logging.get_logger('transformers-cli/training') __snake_case : Optional[int] = 'tf' if is_tf_available() else 'torch' os.makedirs(args.output , exist_ok=_A) __snake_case : List[Any] = args.output __snake_case : Any = args.column_label __snake_case : str = args.column_text __snake_case : Any = args.column_id self.logger.info(f"Loading {args.task} pipeline for {args.model}") if args.task == "text_classification": __snake_case : List[str] = TextClassificationPipeline.from_pretrained(args.model) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(f"Loading dataset from {args.train_data}") __snake_case : List[Any] = Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) __snake_case : List[str] = None if args.validation_data: self.logger.info(f"Loading validation dataset from {args.validation_data}") __snake_case : Dict = Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) __snake_case : List[str] = args.validation_split __snake_case : str = args.train_batch_size __snake_case : Any = args.valid_batch_size __snake_case : Union[str, Any] = args.learning_rate __snake_case : str = args.adam_epsilon def _lowercase (self : List[str]) -> str: if self.framework == "tf": return self.run_tf() return self.run_torch() def _lowercase (self : str) -> int: raise NotImplementedError def _lowercase (self : Union[str, Any]) -> Optional[Any]: self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output)
172
1
import re import string import numpy as np import datasets lowerCAmelCase = ''' Returns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list. ''' lowerCAmelCase = ''' Args: predictions: List of predicted texts. references: List of reference texts. regexes_to_ignore: List, defaults to None. Regex expressions of characters to ignore when calculating the exact matches. Note: these regexes are removed from the input data before the changes based on the options below (e.g. ignore_case, ignore_punctuation, ignore_numbers) are applied. ignore_case: Boolean, defaults to False. If true, turns everything to lowercase so that capitalization differences are ignored. ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. Returns: exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive. Examples: >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results["exact_match"], 1)) 25.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True) >>> print(round(results["exact_match"], 1)) 50.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True) >>> print(round(results["exact_match"], 1)) 75.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True) >>> print(round(results["exact_match"], 1)) 100.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."] >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results["exact_match"], 1)) 33.3 ''' lowerCAmelCase = ''' ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): def _A (self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , reference_urls=[] , ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=None , lowerCAmelCase=False , lowerCAmelCase=False , lowerCAmelCase=False , ): if regexes_to_ignore is not None: for s in regexes_to_ignore: __lowercase= np.array([re.sub(lowerCAmelCase , '' , lowerCAmelCase ) for x in predictions] ) __lowercase= np.array([re.sub(lowerCAmelCase , '' , lowerCAmelCase ) for x in references] ) else: __lowercase= np.asarray(lowerCAmelCase ) __lowercase= np.asarray(lowerCAmelCase ) if ignore_case: __lowercase= np.char.lower(lowerCAmelCase ) __lowercase= np.char.lower(lowerCAmelCase ) if ignore_punctuation: __lowercase= string.punctuation.maketrans('' , '' , string.punctuation ) __lowercase= np.char.translate(lowerCAmelCase , table=lowerCAmelCase ) __lowercase= np.char.translate(lowerCAmelCase , table=lowerCAmelCase ) if ignore_numbers: __lowercase= string.digits.maketrans('' , '' , string.digits ) __lowercase= np.char.translate(lowerCAmelCase , table=lowerCAmelCase ) __lowercase= np.char.translate(lowerCAmelCase , table=lowerCAmelCase ) __lowercase= predictions == references return {"exact_match": np.mean(lowerCAmelCase ) * 1_0_0}
304
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class A : def __init__(self , lowerCAmelCase , lowerCAmelCase=1_3 , lowerCAmelCase=7 , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=False , lowerCAmelCase=False , lowerCAmelCase=False , lowerCAmelCase=2 , lowerCAmelCase=9_9 , lowerCAmelCase=0 , lowerCAmelCase=3_2 , lowerCAmelCase=5 , lowerCAmelCase=4 , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=5_1_2 , lowerCAmelCase=2 , lowerCAmelCase=0.02 , lowerCAmelCase=2 , lowerCAmelCase=4 , lowerCAmelCase="last" , lowerCAmelCase=True , lowerCAmelCase=None , lowerCAmelCase=0 , ): __lowercase= parent __lowercase= batch_size __lowercase= seq_length __lowercase= is_training __lowercase= use_input_lengths __lowercase= use_token_type_ids __lowercase= use_labels __lowercase= gelu_activation __lowercase= sinusoidal_embeddings __lowercase= causal __lowercase= asm __lowercase= n_langs __lowercase= vocab_size __lowercase= n_special __lowercase= hidden_size __lowercase= num_hidden_layers __lowercase= num_attention_heads __lowercase= hidden_dropout_prob __lowercase= attention_probs_dropout_prob __lowercase= max_position_embeddings __lowercase= type_sequence_label_size __lowercase= initializer_range __lowercase= num_labels __lowercase= num_choices __lowercase= summary_type __lowercase= use_proj __lowercase= scope __lowercase= bos_token_id def _A (self ): __lowercase= ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase= random_attention_mask([self.batch_size, self.seq_length] ) __lowercase= None if self.use_input_lengths: __lowercase= ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __lowercase= None if self.use_token_type_ids: __lowercase= ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __lowercase= None __lowercase= None __lowercase= None if self.use_labels: __lowercase= ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase= ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase= ids_tensor([self.batch_size] , 2 ).float() __lowercase= ids_tensor([self.batch_size] , self.num_choices ) __lowercase= self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _A (self ): return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= XLMModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase , lengths=lowerCAmelCase , langs=lowerCAmelCase ) __lowercase= model(lowerCAmelCase , langs=lowerCAmelCase ) __lowercase= model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= XLMWithLMHeadModel(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= XLMForQuestionAnsweringSimple(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase ) __lowercase= model(lowerCAmelCase , start_positions=lowerCAmelCase , end_positions=lowerCAmelCase ) __lowercase= outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= XLMForQuestionAnswering(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase ) __lowercase= model( lowerCAmelCase , start_positions=lowerCAmelCase , end_positions=lowerCAmelCase , cls_index=lowerCAmelCase , is_impossible=lowerCAmelCase , p_mask=lowerCAmelCase , ) __lowercase= model( lowerCAmelCase , start_positions=lowerCAmelCase , end_positions=lowerCAmelCase , cls_index=lowerCAmelCase , is_impossible=lowerCAmelCase , ) ((__lowercase), )= result_with_labels.to_tuple() __lowercase= model(lowerCAmelCase , start_positions=lowerCAmelCase , end_positions=lowerCAmelCase ) ((__lowercase), )= result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= XLMForSequenceClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase ) __lowercase= model(lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= self.num_labels __lowercase= XLMForTokenClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase , attention_mask=lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= self.num_choices __lowercase= XLMForMultipleChoice(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase= token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase= input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase= model( lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _A (self ): __lowercase= self.prepare_config_and_inputs() ( ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), )= config_and_inputs __lowercase= {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class A ( A_ , A_ , A_ , unittest.TestCase ): UpperCamelCase_ : int =( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) UpperCamelCase_ : Dict =( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable UpperCamelCase_ : str =( { '''feature-extraction''': XLMModel, '''fill-mask''': XLMWithLMHeadModel, '''question-answering''': XLMForQuestionAnsweringSimple, '''text-classification''': XLMForSequenceClassification, '''text-generation''': XLMWithLMHeadModel, '''token-classification''': XLMForTokenClassification, '''zero-shot''': XLMForSequenceClassification, } if is_torch_available() else {} ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=False ): __lowercase= super()._prepare_for_class(lowerCAmelCase , lowerCAmelCase , return_labels=lowerCAmelCase ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": __lowercase= torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase ) __lowercase= torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase ) return inputs_dict def _A (self ): __lowercase= XLMModelTester(self ) __lowercase= ConfigTester(self , config_class=lowerCAmelCase , emb_dim=3_7 ) def _A (self ): self.config_tester.run_common_tests() def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*lowerCAmelCase ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=False , lowerCAmelCase=1 ): self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) self.assertListEqual( [isinstance(lowerCAmelCase , lowerCAmelCase ) for iter_attentions in attentions] , [True] * len(lowerCAmelCase ) ) self.assertEqual(len(lowerCAmelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(lowerCAmelCase ): # adds PAD dummy token __lowercase= min_length + idx + 1 __lowercase= min_length + idx + 1 __lowercase= ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(lowerCAmelCase ) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=False , lowerCAmelCase=1 ): self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) self.assertListEqual( [isinstance(lowerCAmelCase , lowerCAmelCase ) for iter_hidden_states in hidden_states] , [True] * len(lowerCAmelCase ) , ) self.assertEqual(len(lowerCAmelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(lowerCAmelCase ): # adds PAD dummy token __lowercase= min_length + idx + 1 __lowercase= (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(lowerCAmelCase ) , ) pass @slow def _A (self ): for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase= XLMModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) @require_torch class A ( unittest.TestCase ): @slow def _A (self ): __lowercase= XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048' ) model.to(lowerCAmelCase ) __lowercase= torch.tensor([[1_4, 4_4_7]] , dtype=torch.long , device=lowerCAmelCase ) # the president __lowercase= [ 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference __lowercase= model.generate(lowerCAmelCase , do_sample=lowerCAmelCase ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , lowerCAmelCase )
304
1
"""simple docstring""" from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets __UpperCamelCase = '''\ @inproceedings{wang2019glue, title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding}, author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.}, note={In the Proceedings of ICLR.}, year={2019} } ''' __UpperCamelCase = '''\ GLUE, the General Language Understanding Evaluation benchmark (https://gluebenchmark.com/) is a collection of resources for training, evaluating, and analyzing natural language understanding systems. ''' __UpperCamelCase = ''' Compute GLUE evaluation metric associated to each GLUE dataset. Args: predictions: list of predictions to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. Returns: depending on the GLUE subset, one or several of: "accuracy": Accuracy "f1": F1 score "pearson": Pearson Correlation "spearmanr": Spearman Correlation "matthews_correlation": Matthew Correlation Examples: >>> glue_metric = datasets.load_metric(\'glue\', \'sst2\') # \'sst2\' or any of ["mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'mrpc\') # \'mrpc\' or \'qqp\' >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'stsb\') >>> references = [0., 1., 2., 3., 4., 5.] >>> predictions = [0., 1., 2., 3., 4., 5.] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print({"pearson": round(results["pearson"], 2), "spearmanr": round(results["spearmanr"], 2)}) {\'pearson\': 1.0, \'spearmanr\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'cola\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: return float((preds == labels).mean() ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> str: snake_case_ = simple_accuracy(lowerCAmelCase_ , lowerCAmelCase_ ) snake_case_ = float(fa_score(y_true=lowerCAmelCase_ , y_pred=lowerCAmelCase_ ) ) return { "accuracy": acc, "f1": fa, } def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: snake_case_ = float(pearsonr(lowerCAmelCase_ , lowerCAmelCase_ )[0] ) snake_case_ = float(spearmanr(lowerCAmelCase_ , lowerCAmelCase_ )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase ( datasets.Metric ): def a_ ( self) -> str: if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( 'You should supply a configuration name selected in ' '[\"sst2\", \"mnli\", \"mnli_mismatched\", \"mnli_matched\", ' '\"cola\", \"stsb\", \"mrpc\", \"qqp\", \"qnli\", \"rte\", \"wnli\", \"hans\"]') return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { 'predictions': datasets.Value('int64' if self.config_name != 'stsb' else 'float32'), 'references': datasets.Value('int64' if self.config_name != 'stsb' else 'float32'), }), codebase_urls=[], reference_urls=[], format='numpy', ) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__) -> List[Any]: if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(_lowerCAmelCase, _lowerCAmelCase)} elif self.config_name == "stsb": return pearson_and_spearman(_lowerCAmelCase, _lowerCAmelCase) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(_lowerCAmelCase, _lowerCAmelCase) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(_lowerCAmelCase, _lowerCAmelCase)} else: raise KeyError( 'You should supply a configuration name selected in ' '[\"sst2\", \"mnli\", \"mnli_mismatched\", \"mnli_matched\", ' '\"cola\", \"stsb\", \"mrpc\", \"qqp\", \"qnli\", \"rte\", \"wnli\", \"hans\"]')
69
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging SCREAMING_SNAKE_CASE :Dict = logging.get_logger(__name__) if is_vision_available(): import PIL class __lowerCAmelCase ( a ): """simple docstring""" _SCREAMING_SNAKE_CASE = ['pixel_values'] def __init__( self : Optional[Any] , _lowerCAmelCase : bool = True , _lowerCAmelCase : Dict[str, int] = None , _lowerCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _lowerCAmelCase : bool = True , _lowerCAmelCase : Dict[str, int] = None , _lowerCAmelCase : bool = True , _lowerCAmelCase : Union[int, float] = 1 / 2_5_5 , _lowerCAmelCase : bool = True , _lowerCAmelCase : Optional[Union[float, List[float]]] = None , _lowerCAmelCase : Optional[Union[float, List[float]]] = None , _lowerCAmelCase : bool = True , **_lowerCAmelCase : int , ) -> None: """simple docstring""" super().__init__(**_lowerCAmelCase ) snake_case_ = size if size is not None else {"shortest_edge": 2_2_4} snake_case_ = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) snake_case_ = crop_size if crop_size is not None else {"height": 2_2_4, "width": 2_2_4} snake_case_ = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase , param_name="crop_size" ) snake_case_ = do_resize snake_case_ = size snake_case_ = resample snake_case_ = do_center_crop snake_case_ = crop_size snake_case_ = do_rescale snake_case_ = rescale_factor snake_case_ = do_normalize snake_case_ = image_mean if image_mean is not None else OPENAI_CLIP_MEAN snake_case_ = image_std if image_std is not None else OPENAI_CLIP_STD snake_case_ = do_convert_rgb def lowerCAmelCase__ ( self : Dict , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : Dict[str, int] , _lowerCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase : int , ) -> np.ndarray: """simple docstring""" snake_case_ = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) if "shortest_edge" not in size: raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) snake_case_ = get_resize_output_image_size(_lowerCAmelCase , size=size["shortest_edge"] , default_to_square=_lowerCAmelCase ) return resize(_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self : Any , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : Dict[str, int] , _lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase : List[Any] , ) -> np.ndarray: """simple docstring""" snake_case_ = get_size_dict(_lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(_lowerCAmelCase , size=(size["height"], size["width"]) , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self : Optional[int] , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : Union[int, float] , _lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase : List[Any] , ) -> Optional[Any]: """simple docstring""" return rescale(_lowerCAmelCase , scale=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self : str , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : Union[float, List[float]] , _lowerCAmelCase : Union[float, List[float]] , _lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase : Optional[int] , ) -> np.ndarray: """simple docstring""" return normalize(_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self : Optional[int] , _lowerCAmelCase : ImageInput , _lowerCAmelCase : bool = None , _lowerCAmelCase : Dict[str, int] = None , _lowerCAmelCase : PILImageResampling = None , _lowerCAmelCase : bool = None , _lowerCAmelCase : int = None , _lowerCAmelCase : bool = None , _lowerCAmelCase : float = None , _lowerCAmelCase : bool = None , _lowerCAmelCase : Optional[Union[float, List[float]]] = None , _lowerCAmelCase : Optional[Union[float, List[float]]] = None , _lowerCAmelCase : bool = None , _lowerCAmelCase : Optional[Union[str, TensorType]] = None , _lowerCAmelCase : Optional[ChannelDimension] = ChannelDimension.FIRST , **_lowerCAmelCase : Optional[int] , ) -> PIL.Image.Image: """simple docstring""" snake_case_ = do_resize if do_resize is not None else self.do_resize snake_case_ = size if size is not None else self.size snake_case_ = get_size_dict(_lowerCAmelCase , param_name="size" , default_to_square=_lowerCAmelCase ) snake_case_ = resample if resample is not None else self.resample snake_case_ = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case_ = crop_size if crop_size is not None else self.crop_size snake_case_ = get_size_dict(_lowerCAmelCase , param_name="crop_size" , default_to_square=_lowerCAmelCase ) snake_case_ = do_rescale if do_rescale is not None else self.do_rescale snake_case_ = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case_ = do_normalize if do_normalize is not None else self.do_normalize snake_case_ = image_mean if image_mean is not None else self.image_mean snake_case_ = image_std if image_std is not None else self.image_std snake_case_ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb snake_case_ = make_list_of_images(_lowerCAmelCase ) if not valid_images(_lowerCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # PIL RGBA images are converted to RGB if do_convert_rgb: snake_case_ = [convert_to_rgb(_lowerCAmelCase ) for image in images] # All transformations expect numpy arrays. snake_case_ = [to_numpy_array(_lowerCAmelCase ) for image in images] if do_resize: snake_case_ = [self.resize(image=_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase ) for image in images] if do_center_crop: snake_case_ = [self.center_crop(image=_lowerCAmelCase , size=_lowerCAmelCase ) for image in images] if do_rescale: snake_case_ = [self.rescale(image=_lowerCAmelCase , scale=_lowerCAmelCase ) for image in images] if do_normalize: snake_case_ = [self.normalize(image=_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase ) for image in images] snake_case_ = [to_channel_dimension_format(_lowerCAmelCase , _lowerCAmelCase ) for image in images] snake_case_ = {"pixel_values": images} return BatchFeature(data=_lowerCAmelCase , tensor_type=_lowerCAmelCase )
159
0
"""simple docstring""" import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( """compression_format, is_archive""" , [ ("""7z""", True), ("""bz2""", False), ("""gzip""", False), ("""lz4""", False), ("""tar""", True), ("""xz""", False), ("""zip""", True), ("""zstd""", False), ] , ) def _a ( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ): """simple docstring""" UpperCAmelCase = { """7z""": (seven_zip_file, SevenZipExtractor), """bz2""": (bza_file, BzipaExtractor), """gzip""": (gz_file, GzipExtractor), """lz4""": (lza_file, LzaExtractor), """tar""": (tar_file, TarExtractor), """xz""": (xz_file, XzExtractor), """zip""": (zip_file, ZipExtractor), """zstd""": (zstd_file, ZstdExtractor), } UpperCAmelCase , UpperCAmelCase = input_paths_and_base_extractors[compression_format] if input_path is None: UpperCAmelCase = F'''for \'{compression_format}\' compression_format, ''' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(_snake_case ) assert base_extractor.is_extractable(_snake_case ) UpperCAmelCase = tmp_path / ("""extracted""" if is_archive else """extracted.txt""") base_extractor.extract(_snake_case , _snake_case ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name UpperCAmelCase = file_path.read_text(encoding="""utf-8""" ) else: UpperCAmelCase = output_path.read_text(encoding="""utf-8""" ) UpperCAmelCase = text_file.read_text(encoding="""utf-8""" ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( """compression_format, is_archive""" , [ ("""7z""", True), ("""bz2""", False), ("""gzip""", False), ("""lz4""", False), ("""tar""", True), ("""xz""", False), ("""zip""", True), ("""zstd""", False), ] , ) def _a ( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ): """simple docstring""" UpperCAmelCase = { """7z""": seven_zip_file, """bz2""": bza_file, """gzip""": gz_file, """lz4""": lza_file, """tar""": tar_file, """xz""": xz_file, """zip""": zip_file, """zstd""": zstd_file, } UpperCAmelCase = input_paths[compression_format] if input_path is None: UpperCAmelCase = F'''for \'{compression_format}\' compression_format, ''' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(_snake_case ) UpperCAmelCase = Extractor.infer_extractor_format(_snake_case ) assert extractor_format is not None UpperCAmelCase = tmp_path / ("""extracted""" if is_archive else """extracted.txt""") Extractor.extract(_snake_case , _snake_case , _snake_case ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name UpperCAmelCase = file_path.read_text(encoding="""utf-8""" ) else: UpperCAmelCase = output_path.read_text(encoding="""utf-8""" ) UpperCAmelCase = text_file.read_text(encoding="""utf-8""" ) assert extracted_file_content == expected_file_content @pytest.fixture def _a ( _snake_case , _snake_case ): """simple docstring""" import tarfile UpperCAmelCase = tmp_path / """data_dot_dot""" directory.mkdir() UpperCAmelCase = directory / """tar_file_with_dot_dot.tar""" with tarfile.TarFile(_snake_case , """w""" ) as f: f.add(_snake_case , arcname=os.path.join("""..""" , text_file.name ) ) return path @pytest.fixture def _a ( _snake_case ): """simple docstring""" import tarfile UpperCAmelCase = tmp_path / """data_sym_link""" directory.mkdir() UpperCAmelCase = directory / """tar_file_with_sym_link.tar""" os.symlink("""..""" , directory / """subdir""" , target_is_directory=_snake_case ) with tarfile.TarFile(_snake_case , """w""" ) as f: f.add(str(directory / """subdir""" ) , arcname="""subdir""" ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( """insecure_tar_file, error_log""" , [("""tar_file_with_dot_dot""", """illegal path"""), ("""tar_file_with_sym_link""", """Symlink""")] , ) def _a ( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" UpperCAmelCase = { """tar_file_with_dot_dot""": tar_file_with_dot_dot, """tar_file_with_sym_link""": tar_file_with_sym_link, } UpperCAmelCase = insecure_tar_files[insecure_tar_file] UpperCAmelCase = tmp_path / """extracted""" TarExtractor.extract(_snake_case , _snake_case ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def _a ( _snake_case ): """simple docstring""" UpperCAmelCase = tmpdir / """not_a_zip_file""" # From: https://github.com/python/cpython/pull/5053 UpperCAmelCase = ( b"""\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00""" b"""\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6'\x00\x00\x00\x15I""" b"""DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07""" b"""\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82""" ) with not_a_zip_file.open("""wb""" ) as f: f.write(_snake_case ) assert zipfile.is_zipfile(str(_snake_case ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(_snake_case ) # but we're right
234
"""simple docstring""" import numpy as np def _a ( _snake_case ): """simple docstring""" return 1 / (1 + np.exp(-vector )) if __name__ == "__main__": import doctest doctest.testmod()
234
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging _A = logging.get_logger(__name__) _A = '''▁''' _A = {'''vocab_file''': '''sentencepiece.bpe.model'''} _A = { '''vocab_file''': { '''facebook/mbart-large-50-one-to-many-mmt''': ( '''https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model''' ), } } _A = { '''facebook/mbart-large-50-one-to-many-mmt''': 1_024, } # fmt: off _A = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN''', '''af_ZA''', '''az_AZ''', '''bn_IN''', '''fa_IR''', '''he_IL''', '''hr_HR''', '''id_ID''', '''ka_GE''', '''km_KH''', '''mk_MK''', '''ml_IN''', '''mn_MN''', '''mr_IN''', '''pl_PL''', '''ps_AF''', '''pt_XX''', '''sv_SE''', '''sw_KE''', '''ta_IN''', '''te_IN''', '''th_TH''', '''tl_XX''', '''uk_UA''', '''ur_PK''', '''xh_ZA''', '''gl_ES''', '''sl_SI'''] class A ( _a ): __snake_case = VOCAB_FILES_NAMES __snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case = PRETRAINED_VOCAB_FILES_MAP __snake_case = ['input_ids', 'attention_mask'] __snake_case = [] __snake_case = [] def __init__( self, UpperCamelCase__, UpperCamelCase__=None, UpperCamelCase__=None, UpperCamelCase__="</s>", UpperCamelCase__="</s>", UpperCamelCase__="<s>", UpperCamelCase__="<unk>", UpperCamelCase__="<pad>", UpperCamelCase__="<mask>", UpperCamelCase__ = None, **UpperCamelCase__, ): """simple docstring""" lowerCAmelCase_ = AddedToken(A_, lstrip=A_, rstrip=A_ ) if isinstance(A_, A_ ) else mask_token lowerCAmelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs lowerCAmelCase_ = kwargs.get('''additional_special_tokens''', [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=A_, tgt_lang=A_, eos_token=A_, unk_token=A_, sep_token=A_, cls_token=A_, pad_token=A_, mask_token=A_, sp_model_kwargs=self.sp_model_kwargs, **A_, ) lowerCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(A_ ) ) lowerCAmelCase_ = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token lowerCAmelCase_ = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowerCAmelCase_ = 1 lowerCAmelCase_ = len(self.sp_model ) lowerCAmelCase_ = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(A_ ) } lowerCAmelCase_ = {v: k for k, v in self.lang_code_to_id.items()} lowerCAmelCase_ = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) lowerCAmelCase_ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} lowerCAmelCase_ = src_lang if src_lang is not None else '''en_XX''' lowerCAmelCase_ = self.lang_code_to_id[self._src_lang] lowerCAmelCase_ = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return self._src_lang @src_lang.setter def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ): """simple docstring""" lowerCAmelCase_ = self.__dict__.copy() lowerCAmelCase_ = None return state def __setstate__( self, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = d # for backward compatibility if not hasattr(self, '''sp_model_kwargs''' ): lowerCAmelCase_ = {} lowerCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = {self.convert_ids_to_tokens(A_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" return self.sp_model.encode(A_, out_type=A_ ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowerCAmelCase_ = self.sp_model.PieceToId(A_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = [] lowerCAmelCase_ = '''''' lowerCAmelCase_ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(A_ ) + token lowerCAmelCase_ = True lowerCAmelCase_ = [] else: current_sub_tokens.append(A_ ) lowerCAmelCase_ = False out_string += self.sp_model.decode(A_ ) return out_string.strip() def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ = None ): """simple docstring""" if not os.path.isdir(A_ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return lowerCAmelCase_ = os.path.join( A_, (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file, A_ ) elif not os.path.isfile(self.vocab_file ): with open(A_, '''wb''' ) as fi: lowerCAmelCase_ = self.sp_model.serialized_model_proto() fi.write(A_ ) return (out_vocab_file,) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ = None, UpperCamelCase__ = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_, token_ids_a=A_, already_has_special_tokens=A_ ) lowerCAmelCase_ = [1] * len(self.prefix_tokens ) lowerCAmelCase_ = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(A_ )) + suffix_ones return prefix_ones + ([0] * len(A_ )) + ([0] * len(A_ )) + suffix_ones def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ = None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, **UpperCamelCase__ ): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) lowerCAmelCase_ = src_lang lowerCAmelCase_ = self(A_, add_special_tokens=A_, return_tensors=A_, **A_ ) lowerCAmelCase_ = self.convert_tokens_to_ids(A_ ) lowerCAmelCase_ = tgt_lang_id return inputs def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ = "en_XX", UpperCamelCase__ = None, UpperCamelCase__ = "ro_RO", **UpperCamelCase__, ): """simple docstring""" lowerCAmelCase_ = src_lang lowerCAmelCase_ = tgt_lang return super().prepare_seqaseq_batch(A_, A_, **A_ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = self.lang_code_to_id[src_lang] lowerCAmelCase_ = [self.cur_lang_code_id] lowerCAmelCase_ = [self.eos_token_id] def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = self.lang_code_to_id[tgt_lang] lowerCAmelCase_ = [self.cur_lang_code_id] lowerCAmelCase_ = [self.eos_token_id]
278
def _A ( _lowercase ) -> list[int]: """simple docstring""" if length <= 0 or not isinstance(_lowercase , _lowercase ): raise ValueError('Length must be a positive integer.' ) return [n * (2 * n - 1) for n in range(_lowercase )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=1_0))
310
0
"""simple docstring""" import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def _a ( _snake_case , _snake_case ): """simple docstring""" if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer UpperCAmelCase = flax_key_tuple[:-1] + ("""weight""",) UpperCAmelCase = torch.permute(_snake_case , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(_snake_case ): # linear layer UpperCAmelCase = flax_key_tuple[:-1] + ("""weight""",) UpperCAmelCase = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: UpperCAmelCase = flax_key_tuple[:-1] + ("""weight""",) return flax_key_tuple, flax_tensor def _a ( _snake_case , _snake_case , _snake_case ): """simple docstring""" if "metadata" in layer: UpperCAmelCase = layer.split("""metadata""" ) UpperCAmelCase = """""".join(split_layer[0] )[:-1] UpperCAmelCase = [tuple(("""metadata""" + split_layer[1]).split("""/""" ) )] elif "kvstore" in layer: UpperCAmelCase = layer.split("""kvstore""" ) UpperCAmelCase = """""".join(split_layer[0] )[:-1] UpperCAmelCase = [tuple(("""kvstore""" + split_layer[1]).split("""/""" ) )] else: UpperCAmelCase = layer.split("""/""" ) UpperCAmelCase = """/""".join(split_layer[:-1] ) UpperCAmelCase = (split_layer[-1],) if "kvstore/path" in layer: UpperCAmelCase = F'''{switch_checkpoint_path}/{checkpoint_info[layer]}''' elif "kvstore/driver" in layer: UpperCAmelCase = """file""" else: UpperCAmelCase = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def _a ( _snake_case , _snake_case ): """simple docstring""" UpperCAmelCase = rename_keys(_snake_case ) UpperCAmelCase = {} for k, v in current_block.items(): UpperCAmelCase = v UpperCAmelCase = new_current_block torch.save(_snake_case , _snake_case ) def _a ( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case = WEIGHTS_NAME ): """simple docstring""" UpperCAmelCase = convert_file_size_to_int(_snake_case ) UpperCAmelCase = [] UpperCAmelCase = {} UpperCAmelCase = 0 UpperCAmelCase = 0 os.makedirs(_snake_case , exist_ok=_snake_case ) with gfile.GFile(switch_checkpoint_path + """/checkpoint""" , """rb""" ) as fp: UpperCAmelCase = serialization.msgpack_restore(fp.read() )["""optimizer"""]["""target"""] UpperCAmelCase = flatten_dict(_snake_case , sep="""/""" ) UpperCAmelCase = {} for layer in checkpoint_info.keys(): UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = get_key_and_tensorstore_dict( _snake_case , _snake_case , _snake_case ) if curr_real_layer_name in all_layers: UpperCAmelCase = content else: UpperCAmelCase = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file UpperCAmelCase = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() UpperCAmelCase = torch.tensor(_snake_case ) UpperCAmelCase = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts UpperCAmelCase , UpperCAmelCase = rename_base_flax_keys(tuple(key.split("""/""" ) ) , _snake_case ) UpperCAmelCase = """/""".join(_snake_case ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: UpperCAmelCase = os.path.join( _snake_case , weights_name.replace(""".bin""" , F'''-{len(_snake_case )+1:05d}-of-???.bin''' ) ) rename_and_save_block(_snake_case , _snake_case ) sharded_state_dicts.append(current_block.keys() ) del current_block UpperCAmelCase = {} UpperCAmelCase = 0 UpperCAmelCase = raw_weights.to(getattr(_snake_case , _snake_case ) ) current_block_size += weight_size total_size += weight_size # Add the last block UpperCAmelCase = os.path.join(_snake_case , weights_name.replace(""".bin""" , F'''-{len(_snake_case )+1:05d}-of-???.bin''' ) ) rename_and_save_block(_snake_case , _snake_case ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(_snake_case ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index UpperCAmelCase = {} UpperCAmelCase = {} for idx, shard in enumerate(_snake_case ): UpperCAmelCase = weights_name.replace( """.bin""" , F'''-{idx+1:05d}-of-{len(_snake_case ):05d}.bin''' ) # len(sharded_state_dicts):05d} UpperCAmelCase = os.path.join(_snake_case , weights_name.replace(""".bin""" , F'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(_snake_case , os.path.join(_snake_case , _snake_case ) ) UpperCAmelCase = shard for key in shard: UpperCAmelCase = shard_file # Add the metadata UpperCAmelCase = {"""total_size""": total_size} UpperCAmelCase = {"""metadata""": metadata, """weight_map""": weight_map} with open(os.path.join(_snake_case , _snake_case ) , """w""" , encoding="""utf-8""" ) as f: UpperCAmelCase = json.dumps(_snake_case , indent=2 , sort_keys=_snake_case ) + """\n""" f.write(_snake_case ) return metadata, index if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--switch_t5x_checkpoint_path""", default="""/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600""", type=str, required=False, help="""Path to a directory containing a folder per layer. Follows the original Google format.""", ) parser.add_argument("""--max_shard_size""", default="""10GB""", required=False, help="""Max shard size""") parser.add_argument("""--dtype""", default="""bfloat16""", type=str, required=False, help="""dtype of the saved model""") parser.add_argument( """--pytorch_dump_folder_path""", default="""/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted""", type=str, required=False, help="""Path to the output pytorch model.""", ) _UpperCamelCase = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def _a ( ): """simple docstring""" from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer UpperCAmelCase = SwitchTransformersConfig.from_pretrained("""google/switch-base-8""" ) config.save_pretrained("""/home/arthur_huggingface_co/transformers/switch_converted""" ) UpperCAmelCase = SwitchTransformersForConditionalGeneration.from_pretrained( """/home/arthur_huggingface_co/transformers/switch_converted""" , device_map="""auto""" ) UpperCAmelCase = TaTokenizer.from_pretrained("""t5-small""" ) UpperCAmelCase = """A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.""" UpperCAmelCase = tokenizer(_snake_case , return_tensors="""pt""" ).input_ids UpperCAmelCase = model.generate(_snake_case , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
353
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowerCamelCase__ ( snake_case ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 def __init__( self ,A ,A ): super().__init__() self.register_modules(unet=A ,scheduler=A ) @torch.no_grad() def __call__( self ,A = 1 ,A = 2_000 ,A = None ,A = "pil" ,A = True ,**A ,): UpperCAmelCase = self.unet.config.sample_size UpperCAmelCase = (batch_size, 3, img_size, img_size) UpperCAmelCase = self.unet UpperCAmelCase = randn_tensor(A ,generator=A ) * self.scheduler.init_noise_sigma UpperCAmelCase = sample.to(self.device ) self.scheduler.set_timesteps(A ) self.scheduler.set_sigmas(A ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): UpperCAmelCase = self.scheduler.sigmas[i] * torch.ones(shape[0] ,device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): UpperCAmelCase = self.unet(A ,A ).sample UpperCAmelCase = self.scheduler.step_correct(A ,A ,generator=A ).prev_sample # prediction step UpperCAmelCase = model(A ,A ).sample UpperCAmelCase = self.scheduler.step_pred(A ,A ,A ,generator=A ) UpperCAmelCase , UpperCAmelCase = output.prev_sample, output.prev_sample_mean UpperCAmelCase = sample_mean.clamp(0 ,1 ) UpperCAmelCase = sample.cpu().permute(0 ,2 ,3 ,1 ).numpy() if output_type == "pil": UpperCAmelCase = self.numpy_to_pil(A ) if not return_dict: return (sample,) return ImagePipelineOutput(images=A )
234
0
import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class _snake_case : def __init__( self: List[Any] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Any=13 , __lowerCamelCase: List[Any]=7 , __lowerCamelCase: Optional[Any]=True , __lowerCamelCase: Any=True , __lowerCamelCase: Tuple=99 , __lowerCamelCase: Optional[int]=32 , __lowerCamelCase: List[str]=5 , __lowerCamelCase: List[str]=4 , __lowerCamelCase: List[str]=37 , __lowerCamelCase: Dict="gelu" , __lowerCamelCase: Optional[Any]=0.1 , __lowerCamelCase: Tuple=0.1 , __lowerCamelCase: Tuple=50 , __lowerCamelCase: Dict=0.02 , __lowerCamelCase: Union[str, Any]=True , __lowerCamelCase: List[Any]=None , ) -> Dict: __UpperCAmelCase : List[Any] = parent __UpperCAmelCase : Tuple = batch_size __UpperCAmelCase : Any = seq_length __UpperCAmelCase : Any = is_training __UpperCAmelCase : Tuple = use_input_mask __UpperCAmelCase : Optional[Any] = vocab_size __UpperCAmelCase : Optional[Any] = hidden_size __UpperCAmelCase : Tuple = num_hidden_layers __UpperCAmelCase : List[Any] = num_attention_heads __UpperCAmelCase : List[str] = intermediate_size __UpperCAmelCase : Dict = hidden_act __UpperCAmelCase : Tuple = hidden_dropout_prob __UpperCAmelCase : Any = attention_probs_dropout_prob __UpperCAmelCase : Tuple = max_position_embeddings __UpperCAmelCase : Union[str, Any] = initializer_range __UpperCAmelCase : str = use_labels __UpperCAmelCase : int = scope def _lowerCamelCase ( self: Optional[Any] ) -> Any: __UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : Optional[int] = None if self.use_input_mask: __UpperCAmelCase : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) if self.use_labels: __UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : Any = self.get_config() return config, input_ids, input_mask, token_labels def _lowerCamelCase ( self: List[Any] ) -> List[Any]: return BertGenerationConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , ) def _lowerCamelCase ( self: Tuple ) -> Optional[Any]: ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : str = self.prepare_config_and_inputs() __UpperCAmelCase : List[str] = True __UpperCAmelCase : Any = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def _lowerCamelCase ( self: Tuple , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Dict , __lowerCamelCase: Any , __lowerCamelCase: List[str] , **__lowerCamelCase: List[str] , ) -> Union[str, Any]: __UpperCAmelCase : Optional[int] = BertGenerationEncoder(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : int = model(__lowerCamelCase , attention_mask=__lowerCamelCase ) __UpperCAmelCase : List[str] = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self: Any , __lowerCamelCase: List[Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: Tuple , __lowerCamelCase: Dict , __lowerCamelCase: List[Any] , __lowerCamelCase: int , **__lowerCamelCase: Dict , ) -> Optional[int]: __UpperCAmelCase : Tuple = True __UpperCAmelCase : Any = BertGenerationEncoder(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : str = model( __lowerCamelCase , attention_mask=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , encoder_attention_mask=__lowerCamelCase , ) __UpperCAmelCase : Any = model( __lowerCamelCase , attention_mask=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self: Optional[int] , __lowerCamelCase: str , __lowerCamelCase: Any , __lowerCamelCase: List[str] , __lowerCamelCase: Tuple , __lowerCamelCase: List[str] , __lowerCamelCase: Optional[Any] , **__lowerCamelCase: int , ) -> Tuple: __UpperCAmelCase : str = True __UpperCAmelCase : List[str] = True __UpperCAmelCase : List[str] = BertGenerationDecoder(config=__lowerCamelCase ).to(__lowerCamelCase ).eval() # first forward pass __UpperCAmelCase : Union[str, Any] = model( __lowerCamelCase , attention_mask=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , encoder_attention_mask=__lowerCamelCase , use_cache=__lowerCamelCase , ) __UpperCAmelCase : List[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __UpperCAmelCase : Tuple = ids_tensor((self.batch_size, 3) , config.vocab_size ) __UpperCAmelCase : Dict = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __UpperCAmelCase : Dict = torch.cat([input_ids, next_tokens] , dim=-1 ) __UpperCAmelCase : Any = torch.cat([input_mask, next_mask] , dim=-1 ) __UpperCAmelCase : Union[str, Any] = model( __lowerCamelCase , attention_mask=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , encoder_attention_mask=__lowerCamelCase , output_hidden_states=__lowerCamelCase , )["hidden_states"][0] __UpperCAmelCase : List[str] = model( __lowerCamelCase , attention_mask=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , encoder_attention_mask=__lowerCamelCase , past_key_values=__lowerCamelCase , output_hidden_states=__lowerCamelCase , )["hidden_states"][0] # select random slice __UpperCAmelCase : Optional[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() __UpperCAmelCase : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() __UpperCAmelCase : Optional[int] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-3 ) ) def _lowerCamelCase ( self: str , __lowerCamelCase: str , __lowerCamelCase: Tuple , __lowerCamelCase: Tuple , __lowerCamelCase: Union[str, Any] , *__lowerCamelCase: Optional[int] , ) -> List[Any]: __UpperCAmelCase : Any = BertGenerationDecoder(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : Optional[int] = model(__lowerCamelCase , attention_mask=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self: Tuple ) -> Union[str, Any]: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.prepare_config_and_inputs() __UpperCAmelCase : Any = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _snake_case ( _lowercase , _lowercase , _lowercase , unittest.TestCase ): lowerCamelCase__: Any = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () lowerCamelCase__: List[Any] = (BertGenerationDecoder,) if is_torch_available() else () lowerCamelCase__: Tuple = ( {"feature-extraction": BertGenerationEncoder, "text-generation": BertGenerationDecoder} if is_torch_available() else {} ) def _lowerCamelCase ( self: Union[str, Any] ) -> List[Any]: __UpperCAmelCase : int = BertGenerationEncoderTester(self ) __UpperCAmelCase : Optional[Any] = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=37 ) def _lowerCamelCase ( self: Union[str, Any] ) -> str: self.config_tester.run_common_tests() def _lowerCamelCase ( self: str ) -> List[str]: __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def _lowerCamelCase ( self: Dict ) -> List[Any]: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() __UpperCAmelCase : List[Any] = "bert" self.model_tester.create_and_check_model(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def _lowerCamelCase ( self: Any ) -> Tuple: __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*__lowerCamelCase ) def _lowerCamelCase ( self: Optional[Any] ) -> List[str]: __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*__lowerCamelCase ) def _lowerCamelCase ( self: Any ) -> List[Any]: # This regression test was failing with PyTorch < 1.3 ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_decoder() __UpperCAmelCase : Optional[Any] = None self.model_tester.create_and_check_model_as_decoder( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) def _lowerCamelCase ( self: str ) -> Optional[Any]: __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*__lowerCamelCase ) @slow def _lowerCamelCase ( self: Tuple ) -> int: __UpperCAmelCase : List[str] = BertGenerationEncoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder" ) self.assertIsNotNone(__lowerCamelCase ) @require_torch class _snake_case ( unittest.TestCase ): @slow def _lowerCamelCase ( self: int ) -> Dict: __UpperCAmelCase : int = BertGenerationEncoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder" ) __UpperCAmelCase : Optional[int] = torch.tensor([[1_01, 75_92, 10_10, 20_26, 38_99, 20_03, 1_01_40, 1_02]] ) with torch.no_grad(): __UpperCAmelCase : str = model(__lowerCamelCase )[0] __UpperCAmelCase : Tuple = torch.Size([1, 8, 10_24] ) self.assertEqual(output.shape , __lowerCamelCase ) __UpperCAmelCase : str = torch.tensor( [[[0.17_75, 0.00_83, -0.03_21], [1.60_02, 0.12_87, 0.39_12], [2.14_73, 0.57_91, 0.60_66]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __lowerCamelCase , atol=1e-4 ) ) @require_torch class _snake_case ( unittest.TestCase ): @slow def _lowerCamelCase ( self: List[str] ) -> List[str]: __UpperCAmelCase : List[Any] = BertGenerationDecoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder" ) __UpperCAmelCase : List[Any] = torch.tensor([[1_01, 75_92, 10_10, 20_26, 38_99, 20_03, 1_01_40, 1_02]] ) with torch.no_grad(): __UpperCAmelCase : Dict = model(__lowerCamelCase )[0] __UpperCAmelCase : Optional[Any] = torch.Size([1, 8, 5_03_58] ) self.assertEqual(output.shape , __lowerCamelCase ) __UpperCAmelCase : List[Any] = torch.tensor( [[[-0.57_88, -2.59_94, -3.70_54], [0.04_38, 4.79_97, 1.87_95], [1.58_62, 6.64_09, 4.46_38]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __lowerCamelCase , atol=1e-4 ) )
157
from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class _snake_case ( _lowercase , _lowercase , unittest.TestCase ): lowerCamelCase__: str = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) lowerCamelCase__: Optional[Any] = ( { "feature-extraction": TFMobileBertModel, "fill-mask": TFMobileBertForMaskedLM, "question-answering": TFMobileBertForQuestionAnswering, "text-classification": TFMobileBertForSequenceClassification, "token-classification": TFMobileBertForTokenClassification, "zero-shot": TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) lowerCamelCase__: Union[str, Any] = False lowerCamelCase__: Any = False def _lowerCamelCase ( self: Tuple , __lowerCamelCase: List[Any] , __lowerCamelCase: Any , __lowerCamelCase: List[str]=False ) -> Dict: __UpperCAmelCase : Dict = super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) if return_labels: if model_class in get_values(__lowerCamelCase ): __UpperCAmelCase : List[str] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class _snake_case ( _lowercase ): def __init__( self: str , __lowerCamelCase: Optional[int] , __lowerCamelCase: str=13 , __lowerCamelCase: Any=7 , __lowerCamelCase: int=True , __lowerCamelCase: List[Any]=True , __lowerCamelCase: Any=True , __lowerCamelCase: Optional[Any]=True , __lowerCamelCase: Tuple=99 , __lowerCamelCase: str=32 , __lowerCamelCase: Union[str, Any]=32 , __lowerCamelCase: Dict=2 , __lowerCamelCase: Dict=4 , __lowerCamelCase: Optional[int]=37 , __lowerCamelCase: Optional[int]="gelu" , __lowerCamelCase: Tuple=0.1 , __lowerCamelCase: Optional[int]=0.1 , __lowerCamelCase: int=5_12 , __lowerCamelCase: Optional[int]=16 , __lowerCamelCase: Dict=2 , __lowerCamelCase: List[Any]=0.02 , __lowerCamelCase: List[str]=3 , __lowerCamelCase: List[Any]=4 , __lowerCamelCase: Union[str, Any]=None , ) -> Optional[int]: __UpperCAmelCase : str = parent __UpperCAmelCase : Optional[int] = batch_size __UpperCAmelCase : Any = seq_length __UpperCAmelCase : Dict = is_training __UpperCAmelCase : str = use_input_mask __UpperCAmelCase : Optional[int] = use_token_type_ids __UpperCAmelCase : Dict = use_labels __UpperCAmelCase : int = vocab_size __UpperCAmelCase : Union[str, Any] = hidden_size __UpperCAmelCase : int = num_hidden_layers __UpperCAmelCase : Optional[Any] = num_attention_heads __UpperCAmelCase : Tuple = intermediate_size __UpperCAmelCase : List[Any] = hidden_act __UpperCAmelCase : Optional[Any] = hidden_dropout_prob __UpperCAmelCase : int = attention_probs_dropout_prob __UpperCAmelCase : Tuple = max_position_embeddings __UpperCAmelCase : List[str] = type_vocab_size __UpperCAmelCase : Optional[Any] = type_sequence_label_size __UpperCAmelCase : str = initializer_range __UpperCAmelCase : int = num_labels __UpperCAmelCase : Optional[Any] = num_choices __UpperCAmelCase : Optional[int] = scope __UpperCAmelCase : List[str] = embedding_size def _lowerCamelCase ( self: Tuple ) -> Optional[Any]: __UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : Union[str, Any] = None if self.use_input_mask: __UpperCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : Tuple = None if self.use_token_type_ids: __UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : Tuple = None __UpperCAmelCase : Any = None if self.use_labels: __UpperCAmelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase : Tuple = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase : Dict = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCamelCase ( self: Tuple , __lowerCamelCase: List[str] , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Dict , __lowerCamelCase: List[Any] , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Any , __lowerCamelCase: Optional[Any] ) -> Optional[int]: __UpperCAmelCase : Any = TFMobileBertModel(config=__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __UpperCAmelCase : Tuple = model(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = [input_ids, input_mask] __UpperCAmelCase : List[str] = model(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = model(__lowerCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _lowerCamelCase ( self: Optional[Any] , __lowerCamelCase: Any , __lowerCamelCase: List[Any] , __lowerCamelCase: List[Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Dict ) -> Optional[int]: __UpperCAmelCase : List[str] = TFMobileBertForMaskedLM(config=__lowerCamelCase ) __UpperCAmelCase : Tuple = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __UpperCAmelCase : Tuple = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self: Tuple , __lowerCamelCase: str , __lowerCamelCase: Dict , __lowerCamelCase: List[str] , __lowerCamelCase: List[str] , __lowerCamelCase: Optional[int] , __lowerCamelCase: Tuple , __lowerCamelCase: Union[str, Any] ) -> Any: __UpperCAmelCase : Optional[int] = TFMobileBertForNextSentencePrediction(config=__lowerCamelCase ) __UpperCAmelCase : List[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __UpperCAmelCase : str = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: Dict , __lowerCamelCase: Dict , __lowerCamelCase: Any , __lowerCamelCase: List[Any] , __lowerCamelCase: Any , __lowerCamelCase: Any ) -> List[str]: __UpperCAmelCase : Optional[Any] = TFMobileBertForPreTraining(config=__lowerCamelCase ) __UpperCAmelCase : List[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __UpperCAmelCase : List[str] = model(__lowerCamelCase ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def _lowerCamelCase ( self: Optional[int] , __lowerCamelCase: Dict , __lowerCamelCase: List[Any] , __lowerCamelCase: List[str] , __lowerCamelCase: int , __lowerCamelCase: List[str] , __lowerCamelCase: Any , __lowerCamelCase: Dict ) -> Dict: __UpperCAmelCase : Tuple = self.num_labels __UpperCAmelCase : Tuple = TFMobileBertForSequenceClassification(config=__lowerCamelCase ) __UpperCAmelCase : Optional[int] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __UpperCAmelCase : Optional[int] = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self: Optional[int] , __lowerCamelCase: Dict , __lowerCamelCase: str , __lowerCamelCase: List[str] , __lowerCamelCase: Any , __lowerCamelCase: str , __lowerCamelCase: List[str] , __lowerCamelCase: Union[str, Any] ) -> Optional[int]: __UpperCAmelCase : Union[str, Any] = self.num_choices __UpperCAmelCase : Tuple = TFMobileBertForMultipleChoice(config=__lowerCamelCase ) __UpperCAmelCase : Dict = tf.tile(tf.expand_dims(__lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCAmelCase : str = tf.tile(tf.expand_dims(__lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCAmelCase : Optional[Any] = tf.tile(tf.expand_dims(__lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCAmelCase : Any = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } __UpperCAmelCase : Dict = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCamelCase ( self: Optional[Any] , __lowerCamelCase: List[Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: str , __lowerCamelCase: Tuple , __lowerCamelCase: Dict , __lowerCamelCase: str , __lowerCamelCase: Optional[int] ) -> Dict: __UpperCAmelCase : List[Any] = self.num_labels __UpperCAmelCase : Optional[int] = TFMobileBertForTokenClassification(config=__lowerCamelCase ) __UpperCAmelCase : Dict = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __UpperCAmelCase : Optional[Any] = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCamelCase ( self: int , __lowerCamelCase: Optional[int] , __lowerCamelCase: int , __lowerCamelCase: List[str] , __lowerCamelCase: Any , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Dict , __lowerCamelCase: int ) -> Tuple: __UpperCAmelCase : Tuple = TFMobileBertForQuestionAnswering(config=__lowerCamelCase ) __UpperCAmelCase : Dict = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __UpperCAmelCase : str = model(__lowerCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCamelCase ( self: Tuple ) -> Optional[Any]: __UpperCAmelCase : Tuple = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : Any = config_and_inputs __UpperCAmelCase : List[str] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict def _lowerCamelCase ( self: List[str] ) -> int: __UpperCAmelCase : List[str] = TFMobileBertModelTest.TFMobileBertModelTester(self ) __UpperCAmelCase : Optional[int] = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=37 ) def _lowerCamelCase ( self: Any ) -> Optional[Any]: self.config_tester.run_common_tests() def _lowerCamelCase ( self: int ) -> int: __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*__lowerCamelCase ) def _lowerCamelCase ( self: int ) -> List[str]: __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*__lowerCamelCase ) def _lowerCamelCase ( self: Optional[Any] ) -> Optional[Any]: __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__lowerCamelCase ) def _lowerCamelCase ( self: List[Any] ) -> List[Any]: __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__lowerCamelCase ) def _lowerCamelCase ( self: Tuple ) -> Any: __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*__lowerCamelCase ) def _lowerCamelCase ( self: Optional[Any] ) -> Any: __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*__lowerCamelCase ) def _lowerCamelCase ( self: str ) -> str: __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__lowerCamelCase ) def _lowerCamelCase ( self: Union[str, Any] ) -> str: __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*__lowerCamelCase ) @slow def _lowerCamelCase ( self: List[Any] ) -> Union[str, Any]: # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["google/mobilebert-uncased"]: __UpperCAmelCase : Dict = TFMobileBertModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) @require_tf class _snake_case ( unittest.TestCase ): @slow def _lowerCamelCase ( self: Union[str, Any] ) -> str: __UpperCAmelCase : Any = TFMobileBertForPreTraining.from_pretrained("google/mobilebert-uncased" ) __UpperCAmelCase : Union[str, Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) __UpperCAmelCase : str = model(__lowerCamelCase )[0] __UpperCAmelCase : Any = [1, 6, 3_05_22] self.assertEqual(output.shape , __lowerCamelCase ) __UpperCAmelCase : str = tf.constant( [ [ [-4.5_91_95_47, -9.24_82_95, -9.64_52_56], [-6.7_30_61_75, -6.44_02_84, -6.6_05_28_37], [-7.2_74_35_06, -6.7_84_79_15, -6.02_46_73], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __lowerCamelCase , atol=1e-4 )
157
1
import json import os import unittest from transformers import AutoTokenizer, GPTaTokenizer, GPTaTokenizerFast from transformers.models.gpta.tokenization_gpta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCamelCase (__lowerCamelCase , unittest.TestCase ): UpperCAmelCase_ = GPTaTokenizer UpperCAmelCase_ = GPTaTokenizerFast UpperCAmelCase_ = True UpperCAmelCase_ = {"add_prefix_space": True} UpperCAmelCase_ = False def A_ ( self : str ) -> Optional[int]: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt SCREAMING_SNAKE_CASE__ : int = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", "<|endoftext|>", ] SCREAMING_SNAKE_CASE__ : Optional[int] = dict(zip(_UpperCAmelCase, range(len(_UpperCAmelCase ) ) ) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] SCREAMING_SNAKE_CASE__ : str = {"unk_token": "<unk>"} SCREAMING_SNAKE_CASE__ : Optional[int] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"] ) SCREAMING_SNAKE_CASE__ : str = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file, "w", encoding="utf-8" ) as fp: fp.write(json.dumps(_UpperCAmelCase ) + "\n" ) with open(self.merges_file, "w", encoding="utf-8" ) as fp: fp.write("\n".join(_UpperCAmelCase ) ) def A_ ( self : int, **_UpperCAmelCase : str ) -> str: """simple docstring""" kwargs.update(self.special_tokens_map ) return GPTaTokenizer.from_pretrained(self.tmpdirname, **_UpperCAmelCase ) def A_ ( self : str, **_UpperCAmelCase : List[Any] ) -> Optional[int]: """simple docstring""" kwargs.update(self.special_tokens_map ) return GPTaTokenizerFast.from_pretrained(self.tmpdirname, **_UpperCAmelCase ) def A_ ( self : Any, _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = "lower newer" SCREAMING_SNAKE_CASE__ : Union[str, Any] = "lower newer" return input_text, output_text def A_ ( self : List[Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = GPTaTokenizer(self.vocab_file, self.merges_file, **self.special_tokens_map ) SCREAMING_SNAKE_CASE__ : Optional[Any] = "lower newer" SCREAMING_SNAKE_CASE__ : Union[str, Any] = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"] SCREAMING_SNAKE_CASE__ : int = tokenizer.tokenize(_UpperCAmelCase, add_prefix_space=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Tuple = tokens + [tokenizer.unk_token] SCREAMING_SNAKE_CASE__ : Optional[int] = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ), _UpperCAmelCase ) def A_ ( self : str ) -> Union[str, Any]: """simple docstring""" if not self.test_rust_tokenizer: return SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE__ : str = self.get_rust_tokenizer(add_prefix_space=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = "lower newer" # Testing tokenization SCREAMING_SNAKE_CASE__ : List[Any] = tokenizer.tokenize(_UpperCAmelCase, add_prefix_space=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[int] = rust_tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase ) # Testing conversion to ids without special tokens SCREAMING_SNAKE_CASE__ : Union[str, Any] = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase, add_prefix_space=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Any = rust_tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase ) # Testing conversion to ids with special tokens SCREAMING_SNAKE_CASE__ : Optional[Any] = self.get_rust_tokenizer(add_prefix_space=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Tuple = tokenizer.encode(_UpperCAmelCase, add_prefix_space=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : int = rust_tokenizer.encode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase ) # Testing the unknown token SCREAMING_SNAKE_CASE__ : Tuple = tokens + [rust_tokenizer.unk_token] SCREAMING_SNAKE_CASE__ : List[str] = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(_UpperCAmelCase ), _UpperCAmelCase ) def A_ ( self : List[str], *_UpperCAmelCase : Optional[Any], **_UpperCAmelCase : Optional[int] ) -> int: """simple docstring""" pass def A_ ( self : int, _UpperCAmelCase : str=1_5 ) -> List[str]: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): SCREAMING_SNAKE_CASE__ : List[str] = self.rust_tokenizer_class.from_pretrained(_UpperCAmelCase, **_UpperCAmelCase ) # Simple input SCREAMING_SNAKE_CASE__ : Union[str, Any] = "This is a simple input" SCREAMING_SNAKE_CASE__ : List[str] = ["This is a simple input 1", "This is a simple input 2"] SCREAMING_SNAKE_CASE__ : List[str] = ("This is a simple input", "This is a pair") SCREAMING_SNAKE_CASE__ : Optional[Any] = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(_UpperCAmelCase, tokenizer_r.encode, _UpperCAmelCase, max_length=_UpperCAmelCase, padding="max_length" ) # Simple input self.assertRaises(_UpperCAmelCase, tokenizer_r.encode_plus, _UpperCAmelCase, max_length=_UpperCAmelCase, padding="max_length" ) # Simple input self.assertRaises( _UpperCAmelCase, tokenizer_r.batch_encode_plus, _UpperCAmelCase, max_length=_UpperCAmelCase, padding="max_length", ) # Pair input self.assertRaises(_UpperCAmelCase, tokenizer_r.encode, _UpperCAmelCase, max_length=_UpperCAmelCase, padding="max_length" ) # Pair input self.assertRaises(_UpperCAmelCase, tokenizer_r.encode_plus, _UpperCAmelCase, max_length=_UpperCAmelCase, padding="max_length" ) # Pair input self.assertRaises( _UpperCAmelCase, tokenizer_r.batch_encode_plus, _UpperCAmelCase, max_length=_UpperCAmelCase, padding="max_length", ) def A_ ( self : Optional[Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = GPTaTokenizer.from_pretrained(self.tmpdirname, pad_token="<pad>" ) # Simple input SCREAMING_SNAKE_CASE__ : Dict = "This is a simple input" SCREAMING_SNAKE_CASE__ : str = ["This is a simple input looooooooong", "This is a simple input"] SCREAMING_SNAKE_CASE__ : Union[str, Any] = ("This is a simple input", "This is a pair") SCREAMING_SNAKE_CASE__ : Union[str, Any] = [ ("This is a simple input loooooong", "This is a simple input"), ("This is a simple pair loooooong", "This is a simple pair"), ] SCREAMING_SNAKE_CASE__ : List[Any] = tokenizer.pad_token_id SCREAMING_SNAKE_CASE__ : Tuple = tokenizer(_UpperCAmelCase, padding="max_length", max_length=3_0, return_tensors="np" ) SCREAMING_SNAKE_CASE__ : Any = tokenizer(_UpperCAmelCase, padding=_UpperCAmelCase, truncate=_UpperCAmelCase, return_tensors="np" ) SCREAMING_SNAKE_CASE__ : Optional[Any] = tokenizer(*_UpperCAmelCase, padding="max_length", max_length=6_0, return_tensors="np" ) SCREAMING_SNAKE_CASE__ : List[str] = tokenizer(_UpperCAmelCase, padding=_UpperCAmelCase, truncate=_UpperCAmelCase, return_tensors="np" ) # s # test single string max_length padding self.assertEqual(out_s["input_ids"].shape[-1], 3_0 ) self.assertTrue(pad_token_id in out_s["input_ids"] ) self.assertTrue(0 in out_s["attention_mask"] ) # s2 # test automatic padding self.assertEqual(out_sa["input_ids"].shape[-1], 3_3 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["input_ids"][0] ) self.assertFalse(0 in out_sa["attention_mask"][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["input_ids"][1] ) self.assertTrue(0 in out_sa["attention_mask"][1] ) # p # test single pair max_length padding self.assertEqual(out_p["input_ids"].shape[-1], 6_0 ) self.assertTrue(pad_token_id in out_p["input_ids"] ) self.assertTrue(0 in out_p["attention_mask"] ) # p2 # test automatic padding pair self.assertEqual(out_pa["input_ids"].shape[-1], 5_2 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["input_ids"][0] ) self.assertFalse(0 in out_pa["attention_mask"][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["input_ids"][1] ) self.assertTrue(0 in out_pa["attention_mask"][1] ) def A_ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = "$$$" SCREAMING_SNAKE_CASE__ : List[str] = GPTaTokenizer.from_pretrained(self.tmpdirname, bos_token=_UpperCAmelCase, add_bos_token=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[int] = "This is a simple input" SCREAMING_SNAKE_CASE__ : Optional[int] = ["This is a simple input 1", "This is a simple input 2"] SCREAMING_SNAKE_CASE__ : Any = tokenizer.bos_token_id SCREAMING_SNAKE_CASE__ : Union[str, Any] = tokenizer(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[int] = tokenizer(_UpperCAmelCase ) self.assertEqual(out_s.input_ids[0], _UpperCAmelCase ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) SCREAMING_SNAKE_CASE__ : Dict = tokenizer.decode(out_s.input_ids ) SCREAMING_SNAKE_CASE__ : Tuple = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0], _UpperCAmelCase ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) def A_ ( self : Any ) -> Optional[int]: """simple docstring""" pass def A_ ( self : Tuple ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = [self.get_tokenizer(do_lower_case=_UpperCAmelCase, add_bos_token=_UpperCAmelCase )] for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): SCREAMING_SNAKE_CASE__ : str = "Encode this." SCREAMING_SNAKE_CASE__ : Tuple = "This one too please." SCREAMING_SNAKE_CASE__ : List[Any] = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) encoded_sequence += tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Tuple = tokenizer.encode_plus( _UpperCAmelCase, _UpperCAmelCase, add_special_tokens=_UpperCAmelCase, return_special_tokens_mask=_UpperCAmelCase, ) SCREAMING_SNAKE_CASE__ : Any = encoded_sequence_dict["input_ids"] SCREAMING_SNAKE_CASE__ : int = encoded_sequence_dict["special_tokens_mask"] self.assertEqual(len(_UpperCAmelCase ), len(_UpperCAmelCase ) ) SCREAMING_SNAKE_CASE__ : Optional[int] = [ (x if not special_tokens_mask[i] else None) for i, x in enumerate(_UpperCAmelCase ) ] SCREAMING_SNAKE_CASE__ : Union[str, Any] = [x for x in filtered_sequence if x is not None] self.assertEqual(_UpperCAmelCase, _UpperCAmelCase ) @require_tokenizers class lowerCamelCase (unittest.TestCase ): def A_ ( self : Any ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = AutoTokenizer.from_pretrained("facebook/opt-350m", from_slow=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Dict = "A photo of a cat" SCREAMING_SNAKE_CASE__ : List[str] = tokenizer.encode( _UpperCAmelCase, ) self.assertEqual(_UpperCAmelCase, [2, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] ) tokenizer.save_pretrained("test_opt" ) SCREAMING_SNAKE_CASE__ : Optional[int] = AutoTokenizer.from_pretrained("./test_opt" ) SCREAMING_SNAKE_CASE__ : Optional[int] = tokenizer.encode( _UpperCAmelCase, ) self.assertEqual(_UpperCAmelCase, [2, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] ) def A_ ( self : List[str] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = AutoTokenizer.from_pretrained("facebook/opt-350m", use_slow=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = "A photo of a cat" SCREAMING_SNAKE_CASE__ : Any = tokenizer.encode( _UpperCAmelCase, ) # Same as above self.assertEqual(_UpperCAmelCase, [2, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] ) @unittest.skip("This test is failing because of a bug in the fast tokenizer" ) def A_ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = AutoTokenizer.from_pretrained("facebook/opt-350m", from_slow=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[int] = "bos" SCREAMING_SNAKE_CASE__ : Any = tokenizer.get_vocab()["bos"] SCREAMING_SNAKE_CASE__ : str = "A photo of a cat" SCREAMING_SNAKE_CASE__ : Union[str, Any] = tokenizer.encode( _UpperCAmelCase, ) # We changed the bos token self.assertEqual(_UpperCAmelCase, [3_1_9_5_7, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] ) tokenizer.save_pretrained("./tok" ) SCREAMING_SNAKE_CASE__ : str = AutoTokenizer.from_pretrained("./tok" ) self.assertTrue(tokenizer.is_fast ) SCREAMING_SNAKE_CASE__ : List[str] = tokenizer.encode( _UpperCAmelCase, ) self.assertEqual(_UpperCAmelCase, [3_1_9_5_7, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] )
367
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase : Union[str, Any] = { '''configuration_bigbird_pegasus''': [ '''BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BigBirdPegasusConfig''', '''BigBirdPegasusOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : int = [ '''BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BigBirdPegasusForCausalLM''', '''BigBirdPegasusForConditionalGeneration''', '''BigBirdPegasusForQuestionAnswering''', '''BigBirdPegasusForSequenceClassification''', '''BigBirdPegasusModel''', '''BigBirdPegasusPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys _lowerCamelCase : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
191
0
"""simple docstring""" import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger() @dataclass class _UpperCAmelCase : '''simple docstring''' lowerCamelCase__ =42 lowerCamelCase__ =field(default_factory=__snake_case ) lowerCamelCase__ =field(default_factory=__snake_case ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ ): '''simple docstring''' __snake_case : str = len(list(m.modules() ) ) == 1 or isinstance(a_ , nn.Convad ) or isinstance(a_ , nn.BatchNormad ) if has_not_submodules: self.traced.append(a_ ) def __call__(self , a_ ): '''simple docstring''' for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(a_ ) [x.remove() for x in self.handles] return self @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return list(filter(lambda a_ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class _UpperCAmelCase : '''simple docstring''' lowerCamelCase__ =42 lowerCamelCase__ =42 lowerCamelCase__ =1 lowerCamelCase__ =field(default_factory=__snake_case ) lowerCamelCase__ =field(default_factory=__snake_case ) lowerCamelCase__ =True def __call__(self , a_ ): '''simple docstring''' __snake_case : int = Tracker(self.dest )(a_ ).parametrized __snake_case : Optional[int] = Tracker(self.src )(a_ ).parametrized __snake_case : Union[str, Any] = list(filter(lambda a_ : type(a_ ) not in self.src_skip , a_ ) ) __snake_case : Dict = list(filter(lambda a_ : type(a_ ) not in self.dest_skip , a_ ) ) if len(a_ ) != len(a_ ) and self.raise_if_mismatch: raise Exception( f"""Numbers of operations are different. Source module has {len(a_ )} operations while""" f""" destination module has {len(a_ )}.""" ) for dest_m, src_m in zip(a_ , a_ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f"""Transfered from={src_m} to={dest_m}""" ) class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__(self , a_ ): '''simple docstring''' super().__init__() __snake_case : List[Tuple[str, nn.Module]] = [] # - get the stem feature_blocks.append(('''conv1''', model.stem) ) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith('''block''' ), f"""Unexpected layer name {k}""" __snake_case : Optional[int] = len(a_ ) + 1 feature_blocks.append((f"""res{block_index}""", v) ) __snake_case : List[Any] = nn.ModuleDict(a_ ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' return get_trunk_forward_outputs( a_ , out_feat_keys=a_ , feature_blocks=self._feature_blocks , ) class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : Union[str, Any] = x.split('''-''' ) return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] ) def __getitem__(self , a_ ): '''simple docstring''' if x not in self: __snake_case : Tuple = self.convert_name_to_timm(a_ ) __snake_case : str = partial(lambda: (timm.create_model(a_ , pretrained=a_ ).eval(), None) ) else: __snake_case : Optional[int] = super().__getitem__(a_ ) return val class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __getitem__(self , a_ ): '''simple docstring''' if "seer" in x and "in1k" not in x: __snake_case : List[Any] = RegNetModel else: __snake_case : List[str] = RegNetForImageClassification return val def lowercase ( _snake_case : Dict , _snake_case : List[str] , _snake_case : List[Tuple[str, str]] ) ->Optional[Any]: """simple docstring""" for from_key, to_key in keys: __snake_case : Union[str, Any] = from_state_dict[from_key].clone() print(f"""Copied key={from_key} to={to_key}""" ) return to_state_dict def lowercase ( _snake_case : str , _snake_case : Callable[[], nn.Module] , _snake_case : Callable[[], nn.Module] , _snake_case : RegNetConfig , _snake_case : Path , _snake_case : bool = True , ) ->Dict: """simple docstring""" print(f"""Converting {name}...""" ) with torch.no_grad(): __snake_case , __snake_case : Optional[int] = from_model_func() __snake_case : Tuple = our_model_func(_snake_case ).eval() __snake_case : List[Any] = ModuleTransfer(src=_snake_case , dest=_snake_case , raise_if_mismatch=_snake_case ) __snake_case : Union[str, Any] = torch.randn((1, 3, 224, 224) ) module_transfer(_snake_case ) if from_state_dict is not None: __snake_case : int = [] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: __snake_case : Tuple = [('''0.clf.0.weight''', '''classifier.1.weight'''), ('''0.clf.0.bias''', '''classifier.1.bias''')] __snake_case : Union[str, Any] = manually_copy_vissl_head(_snake_case , our_model.state_dict() , _snake_case ) our_model.load_state_dict(_snake_case ) __snake_case : List[Any] = our_model(_snake_case , output_hidden_states=_snake_case ) __snake_case : Union[str, Any] = ( our_outputs.logits if isinstance(_snake_case , _snake_case ) else our_outputs.last_hidden_state ) __snake_case : Optional[Any] = from_model(_snake_case ) __snake_case : Optional[Any] = from_output[-1] if type(_snake_case ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: __snake_case : str = our_outputs.hidden_states[-1] assert torch.allclose(_snake_case , _snake_case ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name , commit_message='''Add model''' , use_temp_dir=_snake_case , ) __snake_case : Any = 224 if '''seer''' not in name else 384 # we can use the convnext one __snake_case : Dict = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' , size=_snake_case ) image_processor.push_to_hub( repo_path_or_name=save_directory / name , commit_message='''Add image processor''' , use_temp_dir=_snake_case , ) print(f"""Pushed {name}""" ) def lowercase ( _snake_case : Path , _snake_case : str = None , _snake_case : bool = True ) ->Any: """simple docstring""" __snake_case : Union[str, Any] = '''imagenet-1k-id2label.json''' __snake_case : Optional[Any] = 1_000 __snake_case : int = (1, num_labels) __snake_case : Optional[Any] = '''huggingface/label-files''' __snake_case : Optional[int] = num_labels __snake_case : str = json.load(open(cached_download(hf_hub_url(_snake_case , _snake_case , repo_type='''dataset''' ) ) , '''r''' ) ) __snake_case : str = {int(_snake_case ): v for k, v in idalabel.items()} __snake_case : Union[str, Any] = idalabel __snake_case : int = {v: k for k, v in idalabel.items()} __snake_case : int = partial(_snake_case , num_labels=_snake_case , idalabel=_snake_case , labelaid=_snake_case ) __snake_case : int = { '''regnet-x-002''': ImageNetPreTrainedConfig( depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 , layer_type='''x''' ), '''regnet-x-004''': ImageNetPreTrainedConfig( depths=[1, 2, 7, 12] , hidden_sizes=[32, 64, 160, 384] , groups_width=16 , layer_type='''x''' ), '''regnet-x-006''': ImageNetPreTrainedConfig( depths=[1, 3, 5, 7] , hidden_sizes=[48, 96, 240, 528] , groups_width=24 , layer_type='''x''' ), '''regnet-x-008''': ImageNetPreTrainedConfig( depths=[1, 3, 7, 5] , hidden_sizes=[64, 128, 288, 672] , groups_width=16 , layer_type='''x''' ), '''regnet-x-016''': ImageNetPreTrainedConfig( depths=[2, 4, 10, 2] , hidden_sizes=[72, 168, 408, 912] , groups_width=24 , layer_type='''x''' ), '''regnet-x-032''': ImageNetPreTrainedConfig( depths=[2, 6, 15, 2] , hidden_sizes=[96, 192, 432, 1_008] , groups_width=48 , layer_type='''x''' ), '''regnet-x-040''': ImageNetPreTrainedConfig( depths=[2, 5, 14, 2] , hidden_sizes=[80, 240, 560, 1_360] , groups_width=40 , layer_type='''x''' ), '''regnet-x-064''': ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 392, 784, 1_624] , groups_width=56 , layer_type='''x''' ), '''regnet-x-080''': ImageNetPreTrainedConfig( depths=[2, 5, 15, 1] , hidden_sizes=[80, 240, 720, 1_920] , groups_width=120 , layer_type='''x''' ), '''regnet-x-120''': ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2_240] , groups_width=112 , layer_type='''x''' ), '''regnet-x-160''': ImageNetPreTrainedConfig( depths=[2, 6, 13, 1] , hidden_sizes=[256, 512, 896, 2_048] , groups_width=128 , layer_type='''x''' ), '''regnet-x-320''': ImageNetPreTrainedConfig( depths=[2, 7, 13, 1] , hidden_sizes=[336, 672, 1_344, 2_520] , groups_width=168 , layer_type='''x''' ), # y variant '''regnet-y-002''': ImageNetPreTrainedConfig(depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 ), '''regnet-y-004''': ImageNetPreTrainedConfig( depths=[1, 3, 6, 6] , hidden_sizes=[48, 104, 208, 440] , groups_width=8 ), '''regnet-y-006''': ImageNetPreTrainedConfig( depths=[1, 3, 7, 4] , hidden_sizes=[48, 112, 256, 608] , groups_width=16 ), '''regnet-y-008''': ImageNetPreTrainedConfig( depths=[1, 3, 8, 2] , hidden_sizes=[64, 128, 320, 768] , groups_width=16 ), '''regnet-y-016''': ImageNetPreTrainedConfig( depths=[2, 6, 17, 2] , hidden_sizes=[48, 120, 336, 888] , groups_width=24 ), '''regnet-y-032''': ImageNetPreTrainedConfig( depths=[2, 5, 13, 1] , hidden_sizes=[72, 216, 576, 1_512] , groups_width=24 ), '''regnet-y-040''': ImageNetPreTrainedConfig( depths=[2, 6, 12, 2] , hidden_sizes=[128, 192, 512, 1_088] , groups_width=64 ), '''regnet-y-064''': ImageNetPreTrainedConfig( depths=[2, 7, 14, 2] , hidden_sizes=[144, 288, 576, 1_296] , groups_width=72 ), '''regnet-y-080''': ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 448, 896, 2_016] , groups_width=56 ), '''regnet-y-120''': ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2_240] , groups_width=112 ), '''regnet-y-160''': ImageNetPreTrainedConfig( depths=[2, 4, 11, 1] , hidden_sizes=[224, 448, 1_232, 3_024] , groups_width=112 ), '''regnet-y-320''': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1_392, 3_712] , groups_width=232 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 '''regnet-y-320-seer''': RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1_392, 3_712] , groups_width=232 ), '''regnet-y-640-seer''': RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1_968, 4_920] , groups_width=328 ), '''regnet-y-1280-seer''': RegNetConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1_056, 2_904, 7_392] , groups_width=264 ), '''regnet-y-2560-seer''': RegNetConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1_696, 2_544, 5_088] , groups_width=640 ), '''regnet-y-10b-seer''': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2_020, 4_040, 11_110, 28_280] , groups_width=1_010 ), # finetuned on imagenet '''regnet-y-320-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1_392, 3_712] , groups_width=232 ), '''regnet-y-640-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1_968, 4_920] , groups_width=328 ), '''regnet-y-1280-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1_056, 2_904, 7_392] , groups_width=264 ), '''regnet-y-2560-seer-in1k''': ImageNetPreTrainedConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1_696, 2_544, 5_088] , groups_width=640 ), '''regnet-y-10b-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2_020, 4_040, 11_110, 28_280] , groups_width=1_010 ), } __snake_case : int = NameToOurModelFuncMap() __snake_case : List[str] = NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(_snake_case : str , _snake_case : Callable[[], nn.Module] ) -> Tuple[nn.Module, Dict]: __snake_case : Tuple = torch.hub.load_state_dict_from_url(_snake_case , model_dir=str(_snake_case ) , map_location='''cpu''' ) __snake_case : Dict = model_func() # check if we have a head, if yes add it __snake_case : Any = files['''classy_state_dict''']['''base_model''']['''model'''] __snake_case : Tuple = model_state_dict['''trunk'''] model.load_state_dict(_snake_case ) return model.eval(), model_state_dict["heads"] # pretrained __snake_case : List[Any] = partial( _snake_case , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __snake_case : str = partial( _snake_case , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __snake_case : int = partial( _snake_case , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) __snake_case : Optional[Any] = partial( _snake_case , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch''' , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1_010 , w_a=1_744 , w_a=620.83 , w_m=2.52 ) ) ) , ) # IN1K finetuned __snake_case : Union[str, Any] = partial( _snake_case , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __snake_case : List[str] = partial( _snake_case , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __snake_case : Optional[int] = partial( _snake_case , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) __snake_case : Optional[int] = partial( _snake_case , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch''' , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1_010 , w_a=1_744 , w_a=620.83 , w_m=2.52 ) ) ) , ) if model_name: convert_weight_and_push( _snake_case , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , names_to_config[model_name] , _snake_case , _snake_case , ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( _snake_case , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , _snake_case , _snake_case , _snake_case , ) return config, expected_shape if __name__ == "__main__": SCREAMING_SNAKE_CASE : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default=None, type=str, help=( """The name of the model you wish to convert, it must be one of the supported regnet* architecture,""" """ currently: regnetx-*, regnety-*. If `None`, all of them will the converted.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=Path, required=True, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=True, type=bool, required=False, help="""If True, push model and image processor to the hub.""", ) SCREAMING_SNAKE_CASE : List[str] = parser.parse_args() SCREAMING_SNAKE_CASE : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
102
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def __snake_case ( ): lowerCamelCase_ = ArgumentParser("Accelerate CLI tool" , usage="accelerate <command> [<args>]" , allow_abbrev=UpperCAmelCase_ ) lowerCamelCase_ = parser.add_subparsers(help="accelerate command helpers" ) # Register commands get_config_parser(subparsers=UpperCAmelCase_ ) env_command_parser(subparsers=UpperCAmelCase_ ) launch_command_parser(subparsers=UpperCAmelCase_ ) tpu_command_parser(subparsers=UpperCAmelCase_ ) test_command_parser(subparsers=UpperCAmelCase_ ) # Let's go lowerCamelCase_ = parser.parse_args() if not hasattr(UpperCAmelCase_ , "func" ): parser.print_help() exit(1 ) # Run args.func(UpperCAmelCase_ ) if __name__ == "__main__": main()
55
0
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING _a = logging.get_logger(__name__) _a = { """salesforce/blip2-opt-2.7b""": """https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json""", } class _UpperCAmelCase( lowerCamelCase ): lowercase__ = 'blip_2_vision_model' def __init__( self , __a=14_08 , __a=61_44 , __a=39 , __a=16 , __a=2_24 , __a=14 , __a="gelu" , __a=0.0_0001 , __a=0.0 , __a=1e-10 , __a=True , **__a , ) -> str: '''simple docstring''' super().__init__(**__a) _UpperCamelCase = hidden_size _UpperCamelCase = intermediate_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = patch_size _UpperCamelCase = image_size _UpperCamelCase = initializer_range _UpperCamelCase = attention_dropout _UpperCamelCase = layer_norm_eps _UpperCamelCase = hidden_act _UpperCamelCase = qkv_bias @classmethod def UpperCAmelCase ( cls , __a , **__a) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(__a) _UpperCamelCase , _UpperCamelCase = cls.get_config_dict(__a , **__a) # get the vision config dict if we are loading from Blip2Config if config_dict.get('''model_type''') == "blip-2": _UpperCamelCase = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''') and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''') return cls.from_dict(__a , **__a) class _UpperCAmelCase( lowerCamelCase ): lowercase__ = 'blip_2_qformer' def __init__( self , __a=3_05_22 , __a=7_68 , __a=12 , __a=12 , __a=30_72 , __a="gelu" , __a=0.1 , __a=0.1 , __a=5_12 , __a=0.02 , __a=1e-12 , __a=0 , __a="absolute" , __a=2 , __a=14_08 , **__a , ) -> Optional[Any]: '''simple docstring''' super().__init__(pad_token_id=__a , **__a) _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = hidden_act _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = initializer_range _UpperCamelCase = layer_norm_eps _UpperCamelCase = position_embedding_type _UpperCamelCase = cross_attention_frequency _UpperCamelCase = encoder_hidden_size @classmethod def UpperCAmelCase ( cls , __a , **__a) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(__a) _UpperCamelCase , _UpperCamelCase = cls.get_config_dict(__a , **__a) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('''model_type''') == "blip-2": _UpperCamelCase = config_dict['''qformer_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''') and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''') return cls.from_dict(__a , **__a) class _UpperCAmelCase( lowerCamelCase ): lowercase__ = 'blip-2' lowercase__ = True def __init__( self , __a=None , __a=None , __a=None , __a=32 , **__a) -> Any: '''simple docstring''' super().__init__(**__a) if vision_config is None: _UpperCamelCase = {} logger.info('''vision_config is None. initializing the Blip2VisionConfig with default values.''') if qformer_config is None: _UpperCamelCase = {} logger.info('''qformer_config is None. Initializing the Blip2QFormerConfig with default values.''') if text_config is None: _UpperCamelCase = {} logger.info('''text_config is None. Initializing the text config with default values (`OPTConfig`).''') _UpperCamelCase = BlipaVisionConfig(**__a) _UpperCamelCase = BlipaQFormerConfig(**__a) _UpperCamelCase = text_config['''model_type'''] if '''model_type''' in text_config else '''opt''' _UpperCamelCase = CONFIG_MAPPING[text_model_type](**__a) _UpperCamelCase = self.text_config.tie_word_embeddings _UpperCamelCase = self.text_config.is_encoder_decoder _UpperCamelCase = num_query_tokens _UpperCamelCase = self.vision_config.hidden_size _UpperCamelCase = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES _UpperCamelCase = 1.0 _UpperCamelCase = 0.02 @classmethod def UpperCAmelCase ( cls , __a , __a , __a , **__a , ) -> Tuple: '''simple docstring''' return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **__a , ) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = copy.deepcopy(self.__dict__) _UpperCamelCase = self.vision_config.to_dict() _UpperCamelCase = self.qformer_config.to_dict() _UpperCamelCase = self.text_config.to_dict() _UpperCamelCase = self.__class__.model_type return output
100
"""simple docstring""" class _UpperCAmelCase: def __init__( self , __a , __a , __a) -> List[Any]: '''simple docstring''' _UpperCamelCase = name _UpperCamelCase = value _UpperCamelCase = weight def __repr__( self) -> List[str]: '''simple docstring''' return F'''{self.__class__.__name__}({self.name}, {self.value}, {self.weight})''' def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' return self.value def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' return self.name def UpperCAmelCase ( self) -> int: '''simple docstring''' return self.weight def UpperCAmelCase ( self) -> Any: '''simple docstring''' return self.value / self.weight def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = [] for i in range(len(__snake_case ) ): menu.append(Things(name[i], value[i], weight[i] ) ) return menu def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> List[str]: """simple docstring""" _UpperCamelCase = sorted(__snake_case, key=__snake_case, reverse=__snake_case ) _UpperCamelCase = [] _UpperCamelCase , _UpperCamelCase = 0.0, 0.0 for i in range(len(__snake_case ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def lowerCamelCase__ ( ) -> List[str]: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
100
1
from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def __UpperCAmelCase ( __a : List[str] ,__a : List[Any] ,__a : Optional[Any] ,__a : Optional[int] ,) -> Tuple: """simple docstring""" _a : Any = coefficient_matrix.shape _a : List[Any] = constant_matrix.shape if rowsa != colsa: _a : Tuple = F"""Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}""" raise ValueError(__a ) if colsa != 1: _a : Any = F"""Constant matrix must be nx1 but received {rowsa}x{colsa}""" raise ValueError(__a ) if rowsa != rowsa: _a : Tuple = ( '''Coefficient and constant matrices dimensions must be nxn and nx1 but ''' F"""received {rowsa}x{colsa} and {rowsa}x{colsa}""" ) raise ValueError(__a ) if len(__a ) != rowsa: _a : Union[str, Any] = ( '''Number of initial values must be equal to number of rows in coefficient ''' F"""matrix but received {len(__a )} and {rowsa}""" ) raise ValueError(__a ) if iterations <= 0: raise ValueError('''Iterations must be at least 1''' ) _a : NDArray[floataa] = np.concatenate( (coefficient_matrix, constant_matrix) ,axis=1 ) _a : int = table.shape strictly_diagonally_dominant(__a ) # Iterates the whole matrix for given number of times for _ in range(__a ): _a : Optional[int] = [] for row in range(__a ): _a : Tuple = 0 for col in range(__a ): if col == row: _a : str = table[row][col] elif col == cols - 1: _a : Any = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] _a : Optional[Any] = (temp + val) / denom new_val.append(__a ) _a : Tuple = new_val return [float(__a ) for i in new_val] def __UpperCAmelCase ( __a : str ) -> int: """simple docstring""" _a : Union[str, Any] = table.shape _a : int = True for i in range(0 ,__a ): _a : Optional[Any] = 0 for j in range(0 ,cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError('''Coefficient matrix is not strictly diagonally dominant''' ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
235
def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): A_ : List[Any] = current_set.copy() for row_index, row in enumerate(SCREAMING_SNAKE_CASE ): A_ : List[str] = row[0] for column_index, column in enumerate(SCREAMING_SNAKE_CASE ): if magnitude == 0: A_ : Union[str, Any] = column continue A_ : Dict = column / magnitude # Subtract to cancel term A_ : Union[str, Any] = current_set[0] A_ : Tuple = [first_row] A_ : int = current_set[1::] for row in current_set: A_ : Tuple = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(SCREAMING_SNAKE_CASE ) continue for column_index in range(len(SCREAMING_SNAKE_CASE ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(SCREAMING_SNAKE_CASE ) # Create next recursion iteration set if len(final_set[0] ) != 3: A_ : Optional[Any] = final_set[0] A_ : Any = [] A_ : str = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) A_ : Optional[Any] = simplify(SCREAMING_SNAKE_CASE ) for i in range(len(SCREAMING_SNAKE_CASE ) ): resultant[i].insert(0 , current_first_column[i] ) resultant.insert(0 , SCREAMING_SNAKE_CASE ) A_ : List[Any] = resultant return final_set def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): if len(SCREAMING_SNAKE_CASE ) == 0: raise IndexError('''solve_simultaneous() requires n lists of length n+1''' ) A_ : str = len(SCREAMING_SNAKE_CASE ) + 1 if any(len(SCREAMING_SNAKE_CASE ) != _length for item in equations ): raise IndexError('''solve_simultaneous() requires n lists of length n+1''' ) for row in equations: if any(not isinstance(SCREAMING_SNAKE_CASE , (int, float) ) for column in row ): raise ValueError('''solve_simultaneous() requires lists of integers''' ) if len(SCREAMING_SNAKE_CASE ) == 1: return [equations[0][-1] / equations[0][0]] A_ : Dict = equations.copy() if any(0 in row for row in data_set ): A_ : Tuple = data_set.copy() A_ : Optional[Any] = [] for row_index, row in enumerate(SCREAMING_SNAKE_CASE ): if 0 not in row: A_ : str = data_set.pop(SCREAMING_SNAKE_CASE ) break if not full_row: raise ValueError('''solve_simultaneous() requires at least 1 full equation''' ) data_set.insert(0 , SCREAMING_SNAKE_CASE ) A_ : int = data_set.copy() A_ : Dict = simplify(SCREAMING_SNAKE_CASE ) A_ : Dict = simplified[::-1] A_ : list = [] for row in simplified: A_ : Union[str, Any] = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue A_ : Optional[Any] = row.copy()[: len(SCREAMING_SNAKE_CASE ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(SCREAMING_SNAKE_CASE ) == 0: solutions.append(0 ) continue A_ : int = temp_row[1::] A_ : int = temp_row[::-1] for column_index, column in enumerate(SCREAMING_SNAKE_CASE ): current_solution -= column * solutions[column_index] solutions.append(SCREAMING_SNAKE_CASE ) A_ : Union[str, Any] = [] for item in solutions: final.append(float(round(SCREAMING_SNAKE_CASE , 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
186
0
'''simple docstring''' from functools import reduce a__ : Union[str, Any] = ( """73167176531330624919225119674426574742355349194934""" """96983520312774506326239578318016984801869478851843""" """85861560789112949495459501737958331952853208805511""" """12540698747158523863050715693290963295227443043557""" """66896648950445244523161731856403098711121722383113""" """62229893423380308135336276614282806444486645238749""" """30358907296290491560440772390713810515859307960866""" """70172427121883998797908792274921901699720888093776""" """65727333001053367881220235421809751254540594752243""" """52584907711670556013604839586446706324415722155397""" """53697817977846174064955149290862569321978468622482""" """83972241375657056057490261407972968652414535100474""" """82166370484403199890008895243450658541227588666881""" """16427171479924442928230863465674813919123162824586""" """17866458359124566529476545682848912883142607690042""" """24219022671055626321111109370544217506941658960408""" """07198403850962455444362981230987879927244284909188""" """84580156166097919133875499200524063689912560717606""" """05886116467109405077541002256983155200055935729725""" """71636269561882670428252483600823257530420752963450""" ) def _lowercase ( __A = N ): '''simple docstring''' return max( # mypy cannot properly interpret reduce int(reduce(lambda __A ,__A : str(int(__A ) * int(__A ) ) ,n[i : i + 13] ) ) for i in range(len(__A ) - 12 ) ) if __name__ == "__main__": print(f'''{solution() = }''')
353
'''simple docstring''' import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def _lowercase ( *__A ): '''simple docstring''' if not isinstance(__A ,__A ): __UpperCamelCase = list(__A ) for i in range(len(__A ) ): __UpperCamelCase = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def _lowercase ( __A ): '''simple docstring''' __UpperCamelCase = [ """CUDA out of memory.""", # CUDA OOM """cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.""", # CUDNN SNAFU """DefaultCPUAllocator: can't allocate memory""", # CPU OOM ] if isinstance(__A ,__A ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def _lowercase ( __A = None ,__A = 128 ): '''simple docstring''' if function is None: return functools.partial(__A ,starting_batch_size=__A ) __UpperCamelCase = starting_batch_size def decorator(*__A ,**__A ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() __UpperCamelCase = list(inspect.signature(__A ).parameters.keys() ) # Guard against user error if len(__A ) < (len(__A ) + 1): __UpperCamelCase = """, """.join([f"{arg}={value}" for arg, value in zip(params[1:] ,args[1:] )] ) raise TypeError( f"Batch size was passed into `{function.__name__}` as the first argument when called." f"Remove this as the decorator already does so: `{function.__name__}({arg_str})`" ) while True: if batch_size == 0: raise RuntimeError("""No executable batch size found, reached zero.""" ) try: return function(__A ,*__A ,**__A ) except Exception as e: if should_reduce_batch_size(__A ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
243
0
'''simple docstring''' # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. a__ : List[Any] = abspath(join(dirname(dirname(__file__)), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def _UpperCamelCase ( __A ) -> Any: '''simple docstring''' from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(__A ) def _UpperCamelCase ( __A ) -> Dict: '''simple docstring''' from diffusers.utils.testing_utils import pytest_terminal_summary_main UpperCamelCase__ = terminalreporter.config.getoption("--make-reports" ) if make_reports: pytest_terminal_summary_main(__A , id=__A )
80
"""simple docstring""" def __magic_name__ ( __snake_case : list ) -> list: if len(__snake_case ) < 2: return collection def circle_sort_util(__snake_case : list , __snake_case : int , __snake_case : int ) -> bool: lowercase : List[Any] = False if low == high: return swapped lowercase : Union[str, Any] = low lowercase : str = high while left < right: if collection[left] > collection[right]: lowercase , lowercase : Optional[Any] = ( collection[right], collection[left], ) lowercase : Tuple = True left += 1 right -= 1 if left == right and collection[left] > collection[right + 1]: lowercase , lowercase : str = ( collection[right + 1], collection[left], ) lowercase : Union[str, Any] = True lowercase : Any = low + int((high - low) / 2 ) lowercase : Tuple = circle_sort_util(__snake_case , __snake_case , __snake_case ) lowercase : List[Any] = circle_sort_util(__snake_case , mid + 1 , __snake_case ) return swapped or left_swap or right_swap lowercase : int = True while is_not_sorted is True: lowercase : int = circle_sort_util(__snake_case , 0 , len(__snake_case ) - 1 ) return collection if __name__ == "__main__": _A : str = input("""Enter numbers separated by a comma:\n""").strip() _A : Dict = [int(item) for item in user_input.split(""",""")] print(circle_sort(unsorted))
202
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __lowerCamelCase = { "vocab_file": { "junnyu/roformer_chinese_small": "https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt", "junnyu/roformer_chinese_base": "https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt", "junnyu/roformer_chinese_char_small": ( "https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt" ), "junnyu/roformer_chinese_char_base": ( "https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt" ), "junnyu/roformer_small_discriminator": ( "https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt" ), "junnyu/roformer_small_generator": ( "https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt" ), } } __lowerCamelCase = { "junnyu/roformer_chinese_small": 15_36, "junnyu/roformer_chinese_base": 15_36, "junnyu/roformer_chinese_char_small": 5_12, "junnyu/roformer_chinese_char_base": 5_12, "junnyu/roformer_small_discriminator": 1_28, "junnyu/roformer_small_generator": 1_28, } __lowerCamelCase = { "junnyu/roformer_chinese_small": {"do_lower_case": True}, "junnyu/roformer_chinese_base": {"do_lower_case": True}, "junnyu/roformer_chinese_char_small": {"do_lower_case": True}, "junnyu/roformer_chinese_char_base": {"do_lower_case": True}, "junnyu/roformer_small_discriminator": {"do_lower_case": True}, "junnyu/roformer_small_generator": {"do_lower_case": True}, } class UpperCamelCase__( __UpperCamelCase ): lowerCAmelCase__ : Optional[int] = VOCAB_FILES_NAMES lowerCAmelCase__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ : int = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase__ : List[str] = RoFormerTokenizer def __init__( self ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=True ,__UpperCAmelCase="[UNK]" ,__UpperCAmelCase="[SEP]" ,__UpperCAmelCase="[PAD]" ,__UpperCAmelCase="[CLS]" ,__UpperCAmelCase="[MASK]" ,__UpperCAmelCase=True ,__UpperCAmelCase=None ,**__UpperCAmelCase ,) -> Optional[Any]: super().__init__( _lowerCAmelCase ,tokenizer_file=_lowerCAmelCase ,do_lower_case=_lowerCAmelCase ,unk_token=_lowerCAmelCase ,sep_token=_lowerCAmelCase ,pad_token=_lowerCAmelCase ,cls_token=_lowerCAmelCase ,mask_token=_lowerCAmelCase ,tokenize_chinese_chars=_lowerCAmelCase ,strip_accents=_lowerCAmelCase ,**_lowerCAmelCase ,) A__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get('lowercase' ,_lowerCAmelCase ) != do_lower_case or pre_tok_state.get('strip_accents' ,_lowerCAmelCase ) != strip_accents ): A__ = getattr(_lowerCAmelCase ,pre_tok_state.pop('type' ) ) A__ = do_lower_case A__ = strip_accents A__ = pre_tok_class(**_lowerCAmelCase ) A__ = do_lower_case def __getstate__( self ) -> Union[str, Any]: A__ = self.__dict__.copy() A__ = BertPreTokenizer() return state def __setstate__( self ,__UpperCAmelCase ) -> Optional[int]: A__ = d A__ = self.__dict__["""_tokenizer"""].get_vocab() A__ = PreTokenizer.custom(JiebaPreTokenizer(_lowerCAmelCase ) ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase=None ) -> Dict: A__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ) -> List[str]: A__ = [self.sep_token_id] A__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ) -> int: A__ = self._tokenizer.model.save(_lowerCAmelCase ,name=_lowerCAmelCase ) return tuple(_lowerCAmelCase ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=False ,**__UpperCAmelCase ,) -> str: A__ = BertPreTokenizer() return super().save_pretrained(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,**_lowerCAmelCase )
370
"""simple docstring""" def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError('iterations must be defined as integers' ) if not isinstance(UpperCamelCase__ , UpperCamelCase__ ) or not number >= 1: raise ValueError( 'starting number must be\n and integer and be more than 0' ) if not iterations >= 1: raise ValueError('Iterations must be done more than 0 times to play FizzBuzz' ) A__ = '' while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(UpperCamelCase__ ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
154
0
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() a : Optional[int] = logging.get_logger(__name__) a : Optional[Any] = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "adapter_layer": "encoder.layers.*.adapter_layer", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", "pooling_layer.linear": "projector", "pooling_layer.projection": "classifier", } a : Any = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "projector", "classifier", ] def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : str = {} with open(__magic_name__ , "r" ) as file: for line_number, line in enumerate(__magic_name__ ): UpperCAmelCase : Optional[Any] = line.strip() if line: UpperCAmelCase : Optional[Any] = line.split() UpperCAmelCase : Any = line_number UpperCAmelCase : Optional[Any] = words[0] UpperCAmelCase : List[Any] = value return result def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): '''simple docstring''' for attribute in key.split("." ): UpperCAmelCase : str = getattr(__magic_name__ , __magic_name__ ) UpperCAmelCase : str = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__magic_name__ ): UpperCAmelCase : Dict = PARAM_MAPPING[full_name.split("." )[-1]] UpperCAmelCase : str = "param" if weight_type is not None and weight_type != "param": UpperCAmelCase : int = getattr(__magic_name__ , __magic_name__ ).shape elif weight_type is not None and weight_type == "param": UpperCAmelCase : List[str] = hf_pointer for attribute in hf_param_name.split("." ): UpperCAmelCase : Optional[Any] = getattr(__magic_name__ , __magic_name__ ) UpperCAmelCase : Any = shape_pointer.shape # let's reduce dimension UpperCAmelCase : Optional[int] = value[0] else: UpperCAmelCase : Optional[int] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": UpperCAmelCase : List[str] = value elif weight_type == "weight_g": UpperCAmelCase : List[str] = value elif weight_type == "weight_v": UpperCAmelCase : Optional[int] = value elif weight_type == "bias": UpperCAmelCase : Union[str, Any] = value elif weight_type == "param": for attribute in hf_param_name.split("." ): UpperCAmelCase : Tuple = getattr(__magic_name__ , __magic_name__ ) UpperCAmelCase : Optional[Any] = value else: UpperCAmelCase : str = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__magic_name__ ): UpperCAmelCase : Optional[Any] = PARAM_MAPPING[full_name.split("." )[-1]] UpperCAmelCase : int = "param" if weight_type is not None and weight_type != "param": UpperCAmelCase : Tuple = ".".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": UpperCAmelCase : List[Any] = ".".join([key, hf_param_name] ) else: UpperCAmelCase : Optional[int] = key UpperCAmelCase : Optional[int] = value if "lm_head" in full_key else value[0] a : Dict = { "W_a": "linear_1.weight", "W_b": "linear_2.weight", "b_a": "linear_1.bias", "b_b": "linear_2.bias", "ln_W": "norm.weight", "ln_b": "norm.bias", } def lowercase ( __magic_name__ , __magic_name__ , __magic_name__=None , __magic_name__=None ): '''simple docstring''' UpperCAmelCase : Optional[Any] = False for key, mapped_key in MAPPING.items(): UpperCAmelCase : int = "wav2vec2." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: UpperCAmelCase : Tuple = True if "*" in mapped_key: UpperCAmelCase : Dict = name.split(__magic_name__ )[0].split("." )[-2] UpperCAmelCase : Optional[Any] = mapped_key.replace("*" , __magic_name__ ) if "weight_g" in name: UpperCAmelCase : Dict = "weight_g" elif "weight_v" in name: UpperCAmelCase : Optional[int] = "weight_v" elif "bias" in name: UpperCAmelCase : Optional[int] = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCAmelCase : Any = "weight" else: UpperCAmelCase : int = None if hf_dict is not None: rename_dict(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) else: set_recursively(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) return is_used return is_used def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = [] UpperCAmelCase : str = fairseq_model.state_dict() UpperCAmelCase : int = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase : Dict = False if "conv_layers" in name: load_conv_layer( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , hf_model.config.feat_extract_norm == "group" , ) UpperCAmelCase : List[str] = True else: UpperCAmelCase : int = load_wavaveca_layer(__magic_name__ , __magic_name__ , __magic_name__ ) if not is_used: unused_weights.append(__magic_name__ ) logger.warning(F"Unused weights: {unused_weights}" ) def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): '''simple docstring''' UpperCAmelCase : Dict = full_name.split("conv_layers." )[-1] UpperCAmelCase : Union[str, Any] = name.split("." ) UpperCAmelCase : int = int(items[0] ) UpperCAmelCase : Optional[int] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) UpperCAmelCase : List[str] = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) UpperCAmelCase : int = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found." ) UpperCAmelCase : Optional[int] = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found." ) UpperCAmelCase : int = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(__magic_name__ ) @torch.no_grad() def lowercase ( __magic_name__ , __magic_name__ , __magic_name__=None , __magic_name__=None , __magic_name__=True , __magic_name__=False ): '''simple docstring''' if config_path is not None: UpperCAmelCase : Optional[Any] = WavaVecaConfig.from_pretrained(__magic_name__ ) else: UpperCAmelCase : int = WavaVecaConfig() if is_seq_class: UpperCAmelCase : List[Any] = read_txt_into_dict(__magic_name__ ) UpperCAmelCase : List[str] = idalabel UpperCAmelCase : str = WavaVecaForSequenceClassification(__magic_name__ ) UpperCAmelCase : Any = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__magic_name__ , return_attention_mask=__magic_name__ , ) feature_extractor.save_pretrained(__magic_name__ ) elif is_finetuned: if dict_path: UpperCAmelCase : Optional[int] = Dictionary.load(__magic_name__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCAmelCase : int = target_dict.pad_index UpperCAmelCase : Union[str, Any] = target_dict.bos_index UpperCAmelCase : int = target_dict.eos_index UpperCAmelCase : Optional[Any] = len(target_dict.symbols ) UpperCAmelCase : int = os.path.join(__magic_name__ , "vocab.json" ) if not os.path.isdir(__magic_name__ ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(__magic_name__ ) ) return os.makedirs(__magic_name__ , exist_ok=__magic_name__ ) UpperCAmelCase : Union[str, Any] = target_dict.indices # fairseq has the <pad> and <s> switched UpperCAmelCase : List[str] = 0 UpperCAmelCase : str = 1 with open(__magic_name__ , "w" , encoding="utf-8" ) as vocab_handle: json.dump(__magic_name__ , __magic_name__ ) UpperCAmelCase : int = WavaVecaCTCTokenizer( __magic_name__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=__magic_name__ , ) UpperCAmelCase : str = True if config.feat_extract_norm == "layer" else False UpperCAmelCase : str = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__magic_name__ , return_attention_mask=__magic_name__ , ) UpperCAmelCase : Optional[int] = WavaVecaProcessor(feature_extractor=__magic_name__ , tokenizer=__magic_name__ ) processor.save_pretrained(__magic_name__ ) UpperCAmelCase : str = WavaVecaForCTC(__magic_name__ ) else: UpperCAmelCase : Any = WavaVecaForPreTraining(__magic_name__ ) if is_finetuned or is_seq_class: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: UpperCAmelCase : Tuple = argparse.Namespace(task="audio_pretraining" ) UpperCAmelCase : List[Any] = fairseq.tasks.setup_task(__magic_name__ ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=__magic_name__ ) UpperCAmelCase : int = model[0].eval() recursively_load_weights(__magic_name__ , __magic_name__ , not is_finetuned ) hf_wavavec.save_pretrained(__magic_name__ ) if __name__ == "__main__": a : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) parser.add_argument( "--is_seq_class", action="store_true", help="Whether the model to convert is a fine-tuned sequence classification model or not", ) a : List[str] = parser.parse_args() a : int = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
311
'''simple docstring''' import argparse import copy def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : List[str] = {} with open(__magic_name__ ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: UpperCAmelCase : List[Any] = [] _list.append([line.split()[1], line.split()[2]] ) UpperCAmelCase : Tuple = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: UpperCAmelCase : Any = [] _list.append([line.split()[0], line.split()[2]] ) UpperCAmelCase : int = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def lowercase ( __magic_name__ , __magic_name__ ): '''simple docstring''' with open(__magic_name__ ) as f: UpperCAmelCase : List[str] = f.read(1 ) UpperCAmelCase : List[Any] = start_node UpperCAmelCase : Union[str, Any] = [] UpperCAmelCase : Any = start_node UpperCAmelCase : Optional[Any] = 0 while visiting not in first_solution: UpperCAmelCase : Optional[Any] = 1_0000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(__magic_name__ ) and k[0] not in first_solution: UpperCAmelCase : Tuple = k[1] UpperCAmelCase : Dict = k[0] first_solution.append(__magic_name__ ) UpperCAmelCase : int = distance_of_first_solution + int(__magic_name__ ) UpperCAmelCase : str = best_node first_solution.append(__magic_name__ ) UpperCAmelCase : int = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 UpperCAmelCase : str = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 1_0000 ) return first_solution, distance_of_first_solution def lowercase ( __magic_name__ , __magic_name__ ): '''simple docstring''' UpperCAmelCase : Optional[Any] = [] for n in solution[1:-1]: UpperCAmelCase : Any = solution.index(__magic_name__ ) for kn in solution[1:-1]: UpperCAmelCase : Dict = solution.index(__magic_name__ ) if n == kn: continue UpperCAmelCase : Tuple = copy.deepcopy(__magic_name__ ) UpperCAmelCase : Optional[int] = kn UpperCAmelCase : List[str] = n UpperCAmelCase : str = 0 for k in _tmp[:-1]: UpperCAmelCase : List[Any] = _tmp[_tmp.index(__magic_name__ ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: UpperCAmelCase : List[Any] = distance + int(i[1] ) _tmp.append(__magic_name__ ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) UpperCAmelCase : List[str] = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda __magic_name__ : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): '''simple docstring''' UpperCAmelCase : List[Any] = 1 UpperCAmelCase : List[str] = first_solution UpperCAmelCase : str = [] UpperCAmelCase : Union[str, Any] = distance_of_first_solution UpperCAmelCase : Union[str, Any] = solution while count <= iters: UpperCAmelCase : int = find_neighborhood(__magic_name__ , __magic_name__ ) UpperCAmelCase : Any = 0 UpperCAmelCase : List[str] = neighborhood[index_of_best_solution] UpperCAmelCase : Dict = len(__magic_name__ ) - 1 UpperCAmelCase : Dict = False while not found: UpperCAmelCase : List[Any] = 0 while i < len(__magic_name__ ): if best_solution[i] != solution[i]: UpperCAmelCase : int = best_solution[i] UpperCAmelCase : Optional[int] = solution[i] break UpperCAmelCase : List[str] = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) UpperCAmelCase : List[str] = True UpperCAmelCase : List[Any] = best_solution[:-1] UpperCAmelCase : str = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: UpperCAmelCase : Union[str, Any] = cost UpperCAmelCase : Tuple = solution else: UpperCAmelCase : Optional[Any] = index_of_best_solution + 1 UpperCAmelCase : str = neighborhood[index_of_best_solution] if len(__magic_name__ ) >= size: tabu_list.pop(0 ) UpperCAmelCase : int = count + 1 return best_solution_ever, best_cost def lowercase ( __magic_name__=None ): '''simple docstring''' UpperCAmelCase : Dict = generate_neighbours(args.File ) UpperCAmelCase , UpperCAmelCase : Any = generate_first_solution( args.File , __magic_name__ ) UpperCAmelCase , UpperCAmelCase : Any = tabu_search( __magic_name__ , __magic_name__ , __magic_name__ , args.Iterations , args.Size , ) print(F"Best solution: {best_sol}, with total distance: {best_cost}." ) if __name__ == "__main__": a : Union[str, Any] = argparse.ArgumentParser(description="Tabu Search") parser.add_argument( "-f", "--File", type=str, help="Path to the file containing the data", required=True, ) parser.add_argument( "-i", "--Iterations", type=int, help="How many iterations the algorithm should perform", required=True, ) parser.add_argument( "-s", "--Size", type=int, help="Size of the tabu list", required=True ) # Pass the arguments to main method main(parser.parse_args())
311
1
'''simple docstring''' def _a( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] =[3_1, 2_8, 3_1, 3_0, 3_1, 3_0, 3_1, 3_1, 3_0, 3_1, 3_0, 3_1] SCREAMING_SNAKE_CASE__ : Union[str, Any] =6 SCREAMING_SNAKE_CASE__ : Tuple =1 SCREAMING_SNAKE_CASE__ : int =1_9_0_1 SCREAMING_SNAKE_CASE__ : str =0 while year < 2_0_0_1: day += 7 if (year % 4 == 0 and year % 1_0_0 != 0) or (year % 4_0_0 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 SCREAMING_SNAKE_CASE__ : List[str] =day - days_per_month[month - 2] elif day > 2_9 and month == 2: month += 1 SCREAMING_SNAKE_CASE__ : Any =day - 2_9 else: if day > days_per_month[month - 1]: month += 1 SCREAMING_SNAKE_CASE__ : Union[str, Any] =day - days_per_month[month - 2] if month > 1_2: year += 1 SCREAMING_SNAKE_CASE__ : Optional[Any] =1 if year < 2_0_0_1 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
350
'''simple docstring''' from decimal import Decimal, getcontext from math import ceil, factorial def _a( UpperCamelCase__ : int ): '''simple docstring''' if not isinstance(UpperCamelCase__, UpperCamelCase__ ): raise TypeError('''Undefined for non-integers''' ) elif precision < 1: raise ValueError('''Undefined for non-natural numbers''' ) SCREAMING_SNAKE_CASE__ : Optional[Any] =precision SCREAMING_SNAKE_CASE__ : int =ceil(precision / 1_4 ) SCREAMING_SNAKE_CASE__ : int =4_2_6_8_8_0 * Decimal(1_0_0_0_5 ).sqrt() SCREAMING_SNAKE_CASE__ : Tuple =1 SCREAMING_SNAKE_CASE__ : Any =1_3_5_9_1_4_0_9 SCREAMING_SNAKE_CASE__ : List[Any] =Decimal(UpperCamelCase__ ) for k in range(1, UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ : str =factorial(6 * k ) // (factorial(3 * k ) * factorial(UpperCamelCase__ ) ** 3) linear_term += 5_4_5_1_4_0_1_3_4 exponential_term *= -2_6_2_5_3_7_4_1_2_6_4_0_7_6_8_0_0_0 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": a_ = 5_0 print(F'''The first {n} digits of pi is: {pi(n)}''')
222
0
import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def _UpperCAmelCase ( snake_case ): """simple docstring""" _lowerCAmelCase = np.inf def set_batch_size(snake_case ) -> None: nonlocal batch_size if isinstance(snake_case , snake_case ): _lowerCAmelCase = min(snake_case , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(snake_case , snake_case ): _lowerCAmelCase = min(snake_case , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(snake_case , snake_case ) and feature.dtype == "binary": _lowerCAmelCase = min(snake_case , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(snake_case , snake_case ) return None if batch_size is np.inf else batch_size class __lowerCAmelCase ( lowerCamelCase__ ): def __init__( self , _snake_case , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = False , _snake_case = False , _snake_case = None , **_snake_case , ): """simple docstring""" super().__init__( _snake_case , split=_snake_case , features=_snake_case , cache_dir=_snake_case , keep_in_memory=_snake_case , streaming=_snake_case , num_proc=_snake_case , **_snake_case , ) _lowerCAmelCase = path_or_paths if isinstance(_snake_case , _snake_case ) else {self.split: path_or_paths} _lowerCAmelCase = _PACKAGED_DATASETS_MODULES["""parquet"""][1] _lowerCAmelCase = Parquet( cache_dir=_snake_case , data_files=_snake_case , features=_snake_case , hash=_snake_case , **_snake_case , ) def snake_case ( self ): """simple docstring""" if self.streaming: _lowerCAmelCase = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None self.builder.download_and_prepare( download_config=_snake_case , download_mode=_snake_case , verification_mode=_snake_case , base_path=_snake_case , num_proc=self.num_proc , ) _lowerCAmelCase = self.builder.as_dataset( split=self.split , verification_mode=_snake_case , in_memory=self.keep_in_memory ) return dataset class __lowerCAmelCase : def __init__( self , _snake_case , _snake_case , _snake_case = None , **_snake_case , ): """simple docstring""" _lowerCAmelCase = dataset _lowerCAmelCase = path_or_buf _lowerCAmelCase = batch_size or get_writer_batch_size(dataset.features ) _lowerCAmelCase = parquet_writer_kwargs def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with open(self.path_or_buf , """wb+""" ) as buffer: _lowerCAmelCase = self._write(file_obj=_snake_case , batch_size=_snake_case , **self.parquet_writer_kwargs ) else: _lowerCAmelCase = self._write(file_obj=self.path_or_buf , batch_size=_snake_case , **self.parquet_writer_kwargs ) return written def snake_case ( self , _snake_case , _snake_case , **_snake_case ): """simple docstring""" _lowerCAmelCase = 0 _lowerCAmelCase = parquet_writer_kwargs.pop("""path_or_buf""" , _snake_case ) _lowerCAmelCase = self.dataset.features.arrow_schema _lowerCAmelCase = pq.ParquetWriter(_snake_case , schema=_snake_case , **_snake_case ) for offset in logging.tqdm( range(0 , len(self.dataset ) , _snake_case ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating parquet from Arrow format""" , ): _lowerCAmelCase = query_table( table=self.dataset._data , key=slice(_snake_case , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(_snake_case ) written += batch.nbytes writer.close() return written
82
from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class __lowerCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): @register_to_config def __init__( self , _snake_case = 768 , ): """simple docstring""" super().__init__() _lowerCAmelCase = nn.Parameter(torch.zeros(1 , _snake_case ) ) _lowerCAmelCase = nn.Parameter(torch.ones(1 , _snake_case ) ) def snake_case ( self , _snake_case = None , _snake_case = None , ): """simple docstring""" _lowerCAmelCase = nn.Parameter(self.mean.to(_snake_case ).to(_snake_case ) ) _lowerCAmelCase = nn.Parameter(self.std.to(_snake_case ).to(_snake_case ) ) return self def snake_case ( self , _snake_case ): """simple docstring""" _lowerCAmelCase = (embeds - self.mean) * 1.0 / self.std return embeds def snake_case ( self , _snake_case ): """simple docstring""" _lowerCAmelCase = (embeds * self.std) + self.mean return embeds
82
1
def _A ( lowerCAmelCase_ : float ): """simple docstring""" if edge <= 0 or not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): raise ValueError("Length must be a positive." ) return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def _A ( lowerCAmelCase_ : float ): """simple docstring""" if edge <= 0 or not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): raise ValueError("Length must be a positive." ) return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
221
def _A ( lowerCAmelCase_ : int = 1000 ): """simple docstring""" return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) ) if __name__ == "__main__": print(solution())
221
1
from __future__ import annotations _A : Tuple = '#' class __SCREAMING_SNAKE_CASE : def __init__( self : Union[str, Any] ) ->None: lowerCamelCase__ : dict = {} def __lowerCamelCase ( self : int , A : str ) ->None: lowerCamelCase__ : Optional[int] = self._trie for char in text: if char not in trie: lowerCamelCase__ : Any = {} lowerCamelCase__ : Optional[int] = trie[char] lowerCamelCase__ : Dict = True def __lowerCamelCase ( self : List[str] , A : str ) ->tuple | list: lowerCamelCase__ : Union[str, Any] = self._trie for char in prefix: if char in trie: lowerCamelCase__ : Any = trie[char] else: return [] return self._elements(A ) def __lowerCamelCase ( self : str , A : dict ) ->tuple: lowerCamelCase__ : Any = [] for c, v in d.items(): lowerCamelCase__ : Optional[int] = [''' '''] if c == END else [(c + s) for s in self._elements(A )] result.extend(A ) return tuple(A ) _A : Optional[int] = Trie() _A : Optional[Any] = ('depart', 'detergent', 'daring', 'dog', 'deer', 'deal') for word in words: trie.insert_word(word) def _a ( UpperCAmelCase ) -> tuple: """simple docstring""" lowerCamelCase__ : str = trie.find_word(UpperCAmelCase ) return tuple(string + word for word in suffixes ) def _a ( ) -> None: """simple docstring""" print(autocomplete_using_trie('''de''' ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
142
from ..utils import DummyObject, requires_backends class __SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase_ ): _UpperCAmelCase : int = ["transformers", "torch", "note_seq"] def __init__( self : Union[str, Any] , *A : int , **A : Optional[int] ) ->str: requires_backends(self , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def __lowerCamelCase ( cls : Any , *A : Optional[int] , **A : int ) ->int: requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def __lowerCamelCase ( cls : List[Any] , *A : List[str] , **A : str ) ->Optional[Any]: requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] )
142
1
'''simple docstring''' import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def a_ ( _UpperCAmelCase : Optional[int] ) -> int: return 1 / (1 + np.exp(-z )) def a_ ( _UpperCAmelCase : Optional[Any] ,_UpperCAmelCase : int ) -> Dict: return (-y * np.log(__snake_case ) - (1 - y) * np.log(1 - h )).mean() def a_ ( _UpperCAmelCase : Dict ,_UpperCAmelCase : Union[str, Any] ,_UpperCAmelCase : str ) -> Optional[int]: __snake_case : Union[str, Any] = np.dot(__snake_case ,__snake_case ) return np.sum(y * scores - np.log(1 + np.exp(__snake_case ) ) ) def a_ ( _UpperCAmelCase : Optional[Any] ,_UpperCAmelCase : Any ,_UpperCAmelCase : Optional[int] ,_UpperCAmelCase : Dict=7_00_00 ) -> List[str]: __snake_case : List[Any] = np.zeros(x.shape[1] ) for iterations in range(__snake_case ): __snake_case : Tuple = np.dot(__snake_case ,__snake_case ) __snake_case : str = sigmoid_function(__snake_case ) __snake_case : Tuple = np.dot(x.T ,h - y ) / y.size __snake_case : Union[str, Any] = theta - alpha * gradient # updating the weights __snake_case : int = np.dot(__snake_case ,__snake_case ) __snake_case : Any = sigmoid_function(__snake_case ) __snake_case : Optional[Any] = cost_function(__snake_case ,__snake_case ) if iterations % 1_00 == 0: print(f'''loss: {j} \t''' ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": A__ : List[str] = datasets.load_iris() A__ : int = iris.data[:, :2] A__ : Tuple = (iris.target != 0) * 1 A__ : Union[str, Any] = 0.1 A__ : Dict = logistic_reg(alpha, x, y, max_iterations=7_0_0_0_0) print('''theta: ''', theta) # printing the theta i.e our weights vector def a_ ( _UpperCAmelCase : Optional[Any] ) -> Dict: return sigmoid_function( np.dot(__snake_case ,__snake_case ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(1_0, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='''b''', label='''0''') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='''r''', label='''1''') (A__) : Dict = (x[:, 0].min(), x[:, 0].max()) (A__) : List[str] = (x[:, 1].min(), x[:, 1].max()) (A__) : Any = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) A__ : int = np.c_[xxa.ravel(), xxa.ravel()] A__ : Optional[Any] = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='''black''') plt.legend() plt.show()
355
'''simple docstring''' import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class snake_case__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): A__ = ProphetNetTokenizer A__ = False def A_ ( self : Optional[int] ) -> Dict: '''simple docstring''' super().setUp() __snake_case : Dict = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] __snake_case : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def A_ ( self : int , __a : Union[str, Any] ) -> List[str]: '''simple docstring''' __snake_case : Optional[int] = 'UNwant\u00E9d,running' __snake_case : List[str] = 'unwanted, running' return input_text, output_text def A_ ( self : Union[str, Any] ) -> str: '''simple docstring''' __snake_case : Dict = self.tokenizer_class(self.vocab_file ) __snake_case : List[str] = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(__a , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , [9, 6, 7, 12, 10, 11] ) def A_ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' __snake_case : List[str] = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def A_ ( self : Union[str, Any] ) -> str: '''simple docstring''' __snake_case : Optional[int] = BasicTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def A_ ( self : Dict ) -> Optional[int]: '''simple docstring''' __snake_case : List[Any] = BasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def A_ ( self : int ) -> Any: '''simple docstring''' __snake_case : int = BasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def A_ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' __snake_case : Union[str, Any] = BasicTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def A_ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' __snake_case : Dict = BasicTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def A_ ( self : Any ) -> List[str]: '''simple docstring''' __snake_case : str = BasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def A_ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' __snake_case : List[Any] = BasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def A_ ( self : Optional[int] ) -> List[str]: '''simple docstring''' __snake_case : Optional[Any] = BasicTokenizer(do_lower_case=__a , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def A_ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' __snake_case : Any = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] __snake_case : List[Any] = {} for i, token in enumerate(__a ): __snake_case : List[str] = i __snake_case : Any = WordpieceTokenizer(vocab=__a , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) @require_torch def A_ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' __snake_case : Optional[Any] = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' ) __snake_case : int = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] __snake_case : str = [1037, 2146, 20423, 2005, 7680, 7849, 3989, 1012, 102] __snake_case : Union[str, Any] = tokenizer(__a , padding=__a , return_tensors='pt' ) self.assertIsInstance(__a , __a ) __snake_case : int = list(batch.input_ids.numpy()[0] ) self.assertListEqual(__a , __a ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) def A_ ( self : Union[str, Any] ) -> Any: '''simple docstring''' self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def A_ ( self : Dict ) -> Optional[Any]: '''simple docstring''' self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def A_ ( self : List[Any] ) -> int: '''simple docstring''' self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) @slow def A_ ( self : str ) -> Optional[int]: '''simple docstring''' __snake_case : str = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' ) __snake_case : Optional[int] = tokenizer.encode('sequence builders' , add_special_tokens=__a ) __snake_case : Optional[int] = tokenizer.encode('multi-sequence build' , add_special_tokens=__a ) __snake_case : Optional[Any] = tokenizer.build_inputs_with_special_tokens(__a ) __snake_case : List[Any] = tokenizer.build_inputs_with_special_tokens(__a , __a ) assert encoded_sentence == text + [102] assert encoded_pair == text + [102] + text_a + [102]
0
0
from __future__ import annotations import time import numpy as np lowerCAmelCase__ = [8, 5, 9, 7] lowerCAmelCase__ = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] lowerCAmelCase__ = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class a__ : """simple docstring""" def __init__( self , lowercase , lowercase , lowercase , ) -> None: '''simple docstring''' A__ = claim_vector A__ = allocated_resources_table A__ = maximum_claim_table def UpperCamelCase ( self ) -> list[int]: '''simple docstring''' return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def UpperCamelCase ( self ) -> list[int]: '''simple docstring''' return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def UpperCamelCase ( self ) -> list[list[int]]: '''simple docstring''' return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(lowercase ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def UpperCamelCase ( self ) -> dict[int, list[int]]: '''simple docstring''' return {self.__need().index(lowercase ): i for i in self.__need()} def UpperCamelCase ( self , **lowercase ) -> None: '''simple docstring''' A__ = self.__need() A__ = self.__allocated_resources_table A__ = self.__available_resources() A__ = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print("_" * 50 + "\n" ) while need_list: A__ = False for each_need in need_list: A__ = True for index, need in enumerate(lowercase ): if need > available_resources[index]: A__ = False break if execution: A__ = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: A__ = original_need_index print(F'Process {process_number + 1} is executing.' ) # remove the process run from stack need_list.remove(lowercase ) # update available/freed resources stack A__ = np.array(lowercase ) + np.array( alloc_resources_table[process_number] ) print( "Updated available resource stack for processes: " + " ".join([str(lowercase ) for x in available_resources] ) ) break if safe: print("The process is in a safe state.\n" ) else: print("System in unsafe state. Aborting...\n" ) break def UpperCamelCase ( self ) -> Tuple: '''simple docstring''' print(" " * 9 + "Allocated Resource Table" ) for item in self.__allocated_resources_table: print( F'P{self.__allocated_resources_table.index(lowercase ) + 1}' + " ".join(F'{it:>8}' for it in item ) + "\n" ) print(" " * 9 + "System Resource Table" ) for item in self.__maximum_claim_table: print( F'P{self.__maximum_claim_table.index(lowercase ) + 1}' + " ".join(F'{it:>8}' for it in item ) + "\n" ) print( "Current Usage by Active Processes: " + " ".join(str(lowercase ) for x in self.__claim_vector ) ) print( "Initial Available Resources: " + " ".join(str(lowercase ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
68
'''simple docstring''' from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class UpperCAmelCase_ ( __lowercase ): def __lt__( self : Optional[int] , UpperCAmelCase__ : List[str] ) -> List[Any]: return self[-1] < other[-1] def __eq__( self : str , UpperCAmelCase__ : List[str] ) -> Tuple: return self[-1] == other[-1] def a_ ( lowerCamelCase : list ): lowerCAmelCase = [] # sort into stacks for element in collection: lowerCAmelCase = Stack([element] ) lowerCAmelCase = bisect_left(lowerCamelCase , lowerCamelCase ) if i != len(lowerCamelCase ): stacks[i].append(lowerCamelCase ) else: stacks.append(lowerCamelCase ) # use a heap-based merge to merge stack efficiently lowerCAmelCase = merge(*(reversed(lowerCamelCase ) for stack in stacks) ) return collection if __name__ == "__main__": __snake_case =input("""Enter numbers separated by a comma:\n""").strip() __snake_case =[int(item) for item in user_input.split(""",""")] print(patience_sort(unsorted))
4
0
"""simple docstring""" import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings UpperCamelCase_ =logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class _a ( _lowerCAmelCase ): UpperCamelCase = field(default=_lowerCAmelCase , metadata={'''help''': '''Whether to use SortishSampler or not.'''} ) UpperCamelCase = field( default=_lowerCAmelCase , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) UpperCamelCase = field( default=_lowerCAmelCase , metadata={ '''help''': ( '''The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `max_length` value of the model configuration.''' ) } , ) UpperCamelCase = field( default=_lowerCAmelCase , metadata={ '''help''': ( '''The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `num_beams` value of the model configuration.''' ) } , ) UpperCamelCase = field( default=_lowerCAmelCase , metadata={ '''help''': '''Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.''' } , ) def snake_case ( self : Union[str, Any] ) -> int: '''simple docstring''' _UpperCamelCase : List[Any] = super().to_dict() for k, v in d.items(): if isinstance(lowerCAmelCase__, lowerCAmelCase__ ): _UpperCamelCase : Optional[int] = v.to_dict() return d
128
"""simple docstring""" import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( """The `inpainting.py` script is outdated. Please use directly `from diffusers import""" """ StableDiffusionInpaintPipeline` instead.""" )
128
1
'''simple docstring''' import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class lowerCamelCase_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" a_ =(EulerDiscreteScheduler,) a_ =10 def _lowercase ( self : List[str] , **_a : Optional[int] ) -> str: __lowerCamelCase : Dict = { 'num_train_timesteps': 1100, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', } config.update(**_a ) return config def _lowercase ( self : List[str] ) -> Optional[Any]: for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=_a ) def _lowercase ( self : Dict ) -> Dict: for beta_start, beta_end in zip([0.00001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=_a , beta_end=_a ) def _lowercase ( self : str ) -> Optional[Any]: for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_a ) def _lowercase ( self : Tuple ) -> int: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_a ) def _lowercase ( self : Any ) -> Union[str, Any]: __lowerCamelCase : int = self.scheduler_classes[0] __lowerCamelCase : List[Any] = self.get_scheduler_config() __lowerCamelCase : Dict = scheduler_class(**_a ) scheduler.set_timesteps(self.num_inference_steps ) __lowerCamelCase : List[str] = torch.manual_seed(0 ) __lowerCamelCase : Dict = self.dummy_model() __lowerCamelCase : List[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma __lowerCamelCase : List[Any] = sample.to(_a ) for i, t in enumerate(scheduler.timesteps ): __lowerCamelCase : List[Any] = scheduler.scale_model_input(_a , _a ) __lowerCamelCase : List[Any] = model(_a , _a ) __lowerCamelCase : Any = scheduler.step(_a , _a , _a , generator=_a ) __lowerCamelCase : List[str] = output.prev_sample __lowerCamelCase : int = torch.sum(torch.abs(_a ) ) __lowerCamelCase : Optional[int] = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 10.0807 ) < 1e-2 assert abs(result_mean.item() - 0.0131 ) < 1e-3 def _lowercase ( self : Dict ) -> List[str]: __lowerCamelCase : Union[str, Any] = self.scheduler_classes[0] __lowerCamelCase : Union[str, Any] = self.get_scheduler_config(prediction_type='v_prediction' ) __lowerCamelCase : str = scheduler_class(**_a ) scheduler.set_timesteps(self.num_inference_steps ) __lowerCamelCase : Optional[int] = torch.manual_seed(0 ) __lowerCamelCase : str = self.dummy_model() __lowerCamelCase : Any = self.dummy_sample_deter * scheduler.init_noise_sigma __lowerCamelCase : Dict = sample.to(_a ) for i, t in enumerate(scheduler.timesteps ): __lowerCamelCase : str = scheduler.scale_model_input(_a , _a ) __lowerCamelCase : int = model(_a , _a ) __lowerCamelCase : Dict = scheduler.step(_a , _a , _a , generator=_a ) __lowerCamelCase : Union[str, Any] = output.prev_sample __lowerCamelCase : Any = torch.sum(torch.abs(_a ) ) __lowerCamelCase : Any = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 0.0002 ) < 1e-2 assert abs(result_mean.item() - 2.2_676e-06 ) < 1e-3 def _lowercase ( self : Dict ) -> Optional[Any]: __lowerCamelCase : Dict = self.scheduler_classes[0] __lowerCamelCase : Dict = self.get_scheduler_config() __lowerCamelCase : Tuple = scheduler_class(**_a ) scheduler.set_timesteps(self.num_inference_steps , device=_a ) __lowerCamelCase : List[str] = torch.manual_seed(0 ) __lowerCamelCase : int = self.dummy_model() __lowerCamelCase : List[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() __lowerCamelCase : List[str] = sample.to(_a ) for t in scheduler.timesteps: __lowerCamelCase : Union[str, Any] = scheduler.scale_model_input(_a , _a ) __lowerCamelCase : List[Any] = model(_a , _a ) __lowerCamelCase : Optional[int] = scheduler.step(_a , _a , _a , generator=_a ) __lowerCamelCase : Any = output.prev_sample __lowerCamelCase : Optional[int] = torch.sum(torch.abs(_a ) ) __lowerCamelCase : Any = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 10.0807 ) < 1e-2 assert abs(result_mean.item() - 0.0131 ) < 1e-3 def _lowercase ( self : Optional[Any] ) -> Dict: __lowerCamelCase : Union[str, Any] = self.scheduler_classes[0] __lowerCamelCase : List[Any] = self.get_scheduler_config() __lowerCamelCase : int = scheduler_class(**_a , use_karras_sigmas=_a ) scheduler.set_timesteps(self.num_inference_steps , device=_a ) __lowerCamelCase : Optional[Any] = torch.manual_seed(0 ) __lowerCamelCase : Union[str, Any] = self.dummy_model() __lowerCamelCase : List[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() __lowerCamelCase : Union[str, Any] = sample.to(_a ) for t in scheduler.timesteps: __lowerCamelCase : str = scheduler.scale_model_input(_a , _a ) __lowerCamelCase : Optional[Any] = model(_a , _a ) __lowerCamelCase : Union[str, Any] = scheduler.step(_a , _a , _a , generator=_a ) __lowerCamelCase : Optional[int] = output.prev_sample __lowerCamelCase : Union[str, Any] = torch.sum(torch.abs(_a ) ) __lowerCamelCase : Optional[Any] = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 124.52299499511719 ) < 1e-2 assert abs(result_mean.item() - 0.16213932633399963 ) < 1e-3
208
'''simple docstring''' import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 _UpperCamelCase = data_utils.TransfoXLTokenizer _UpperCamelCase = data_utils.TransfoXLCorpus _UpperCamelCase = data_utils _UpperCamelCase = data_utils def a_ ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) -> Optional[Any]: if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(_lowerCAmelCase ,'rb' ) as fp: __lowerCamelCase : Optional[Any] = pickle.load(_lowerCAmelCase ,encoding='latin1' ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) __lowerCamelCase : Tuple = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['pretrained_vocab_file'] print(F'Save vocabulary to {pytorch_vocab_dump_path}' ) __lowerCamelCase : str = corpus.vocab.__dict__ torch.save(_lowerCAmelCase ,_lowerCAmelCase ) __lowerCamelCase : Optional[Any] = corpus.__dict__ corpus_dict_no_vocab.pop('vocab' ,_lowerCAmelCase ) __lowerCamelCase : Optional[Any] = pytorch_dump_folder_path + '/' + CORPUS_NAME print(F'Save dataset to {pytorch_dataset_dump_path}' ) torch.save(_lowerCAmelCase ,_lowerCAmelCase ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model __lowerCamelCase : int = os.path.abspath(_lowerCAmelCase ) __lowerCamelCase : Any = os.path.abspath(_lowerCAmelCase ) print(F'Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.' ) # Initialise PyTorch model if transfo_xl_config_file == "": __lowerCamelCase : Optional[int] = TransfoXLConfig() else: __lowerCamelCase : Optional[int] = TransfoXLConfig.from_json_file(_lowerCAmelCase ) print(F'Building PyTorch model from configuration: {config}' ) __lowerCamelCase : List[str] = TransfoXLLMHeadModel(_lowerCAmelCase ) __lowerCamelCase : Dict = load_tf_weights_in_transfo_xl(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) # Save pytorch-model __lowerCamelCase : List[str] = os.path.join(_lowerCAmelCase ,_lowerCAmelCase ) __lowerCamelCase : int = os.path.join(_lowerCAmelCase ,_lowerCAmelCase ) print(F'Save PyTorch model to {os.path.abspath(_lowerCAmelCase )}' ) torch.save(model.state_dict() ,_lowerCAmelCase ) print(F'Save configuration file to {os.path.abspath(_lowerCAmelCase )}' ) with open(_lowerCAmelCase ,'w' ,encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the folder to store the PyTorch model or dataset/vocab.', ) parser.add_argument( '--tf_checkpoint_path', default='', type=str, help='An optional path to a TensorFlow checkpoint path to be converted.', ) parser.add_argument( '--transfo_xl_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--transfo_xl_dataset_file', default='', type=str, help='An optional dataset file to be converted in a vocabulary.', ) _UpperCamelCase = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
208
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() a__ : str = logging.get_logger(__name__) a__ : Optional[int] = torch.device('cpu') def _lowercase ( ): '''simple docstring''' __UpperCamelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" __UpperCamelCase = Image.open(requests.get(snake_case_ ,stream=snake_case_ ).raw ) return im def _lowercase ( __A ): '''simple docstring''' if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1_703E00, 2.1_107E00, -2.0_811E00, 8.8_685E-01, 2.4_360E-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9_636E-01, 2.3_478E-01, -1.6_963E00, -1.7_381E00, -8.6_337E-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2_768E-01, -4.7_429E-01, -1.0_897E00, -1.0_248E00, 3.5_523E-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5_330E-01, 2.4_211E-01, -6.0_185E-01, -8.2_789E-01, -6.0_446E-02] ) def _lowercase ( __A ,__A ,__A ): '''simple docstring''' __UpperCamelCase = dct.pop(snake_case_ ) __UpperCamelCase = val def _lowercase ( __A ): '''simple docstring''' __UpperCamelCase = [] for k in state_dict.keys(): __UpperCamelCase = k if ".pwconv" in k: __UpperCamelCase = k_new.replace(""".pwconv""" ,""".point_wise_conv""" ) if ".dwconv" in k: __UpperCamelCase = k_new.replace(""".dwconv""" ,""".depth_wise_conv""" ) if ".Proj." in k: __UpperCamelCase = k_new.replace(""".Proj.""" ,""".proj.""" ) if "patch_embed" in k_new: __UpperCamelCase = k_new.replace("""patch_embed""" ,"""swiftformer.patch_embed.patch_embedding""" ) if "network" in k_new: __UpperCamelCase = k_new.split(""".""" ) if ls[2].isdigit(): __UpperCamelCase = """swiftformer.encoder.network.""" + ls[1] + """.blocks.""" + ls[2] + """.""" + """.""".join(ls[3:] ) else: __UpperCamelCase = k_new.replace("""network""" ,"""swiftformer.encoder.network""" ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def _lowercase ( __A ,__A ,__A ): '''simple docstring''' __UpperCamelCase = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size __UpperCamelCase = 1_000 __UpperCamelCase = """huggingface/label-files""" __UpperCamelCase = """imagenet-1k-id2label.json""" __UpperCamelCase = json.load(open(hf_hub_download(snake_case_ ,snake_case_ ,repo_type="""dataset""" ) ,"""r""" ) ) __UpperCamelCase = {int(snake_case_ ): v for k, v in idalabel.items()} __UpperCamelCase = idalabel __UpperCamelCase = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": __UpperCamelCase = [3, 3, 6, 4] __UpperCamelCase = [48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": __UpperCamelCase = [3, 3, 9, 6] __UpperCamelCase = [48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": __UpperCamelCase = [4, 3, 10, 5] __UpperCamelCase = [48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": __UpperCamelCase = [4, 4, 12, 6] __UpperCamelCase = [64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith("""https""" ): __UpperCamelCase = torch.hub.load_state_dict_from_url(snake_case_ ,map_location="""cpu""" ,check_hash=snake_case_ ) else: __UpperCamelCase = torch.load(snake_case_ ,map_location="""cpu""" ) __UpperCamelCase = checkpoint __UpperCamelCase = create_rename_keys(snake_case_ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(snake_case_ ,snake_case_ ,snake_case_ ) # load HuggingFace model __UpperCamelCase = SwiftFormerForImageClassification(snake_case_ ).eval() hf_model.load_state_dict(snake_case_ ) # prepare test inputs __UpperCamelCase = prepare_img() __UpperCamelCase = ViTImageProcessor.from_pretrained("""preprocessor_config""" ) __UpperCamelCase = processor(images=snake_case_ ,return_tensors="""pt""" ) # compare outputs from both models __UpperCamelCase = get_expected_output(snake_case_ ) __UpperCamelCase = hf_model(inputs["""pixel_values"""] ).logits assert hf_logits.shape == torch.Size([1, 1_000] ) assert torch.allclose(hf_logits[0, 0:5] ,snake_case_ ,atol=1E-3 ) Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) print(f"Saving model {swiftformer_name} to {pytorch_dump_folder_path}" ) hf_model.save_pretrained(snake_case_ ) if __name__ == "__main__": a__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--swiftformer_name', default='swiftformer_xs', choices=['swiftformer_xs', 'swiftformer_s', 'swiftformer_l1', 'swiftformer_l3'], type=str, help='Name of the SwiftFormer model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default='./converted_outputs/', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--original_ckpt', default=None, type=str, help='Path to the original model checkpoint.') a__ : Any = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
370
'''simple docstring''' from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = DistilBertTokenizer __SCREAMING_SNAKE_CASE = DistilBertTokenizerFast __SCREAMING_SNAKE_CASE = True @slow def __lowerCamelCase ( self ) -> Any: __UpperCamelCase = DistilBertTokenizer.from_pretrained("""distilbert-base-uncased""" ) __UpperCamelCase = tokenizer.encode("""sequence builders""" , add_special_tokens=lowercase ) __UpperCamelCase = tokenizer.encode("""multi-sequence build""" , add_special_tokens=lowercase ) __UpperCamelCase = tokenizer.build_inputs_with_special_tokens(lowercase ) __UpperCamelCase = tokenizer.build_inputs_with_special_tokens(lowercase , lowercase ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
243
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ : Any = { "configuration_lilt": ["LILT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LiltConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Dict = [ "LILT_PRETRAINED_MODEL_ARCHIVE_LIST", "LiltForQuestionAnswering", "LiltForSequenceClassification", "LiltForTokenClassification", "LiltModel", "LiltPreTrainedModel", ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys a_ : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
55
from __future__ import annotations from collections.abc import Callable def A_ ( snake_case : Callable[[int | float], int | float] , snake_case : int | float , snake_case : int | float , snake_case : int = 100 , ) -> float: '''simple docstring''' __UpperCamelCase = x_start __UpperCamelCase = fnc(snake_case ) __UpperCamelCase = 0.0 for _ in range(snake_case ): # Approximates small segments of curve as linear and solve # for trapezoidal area __UpperCamelCase = (x_end - x_start) / steps + xa __UpperCamelCase = fnc(snake_case ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step __UpperCamelCase = xa __UpperCamelCase = fxa return area if __name__ == "__main__": def A_ ( snake_case : Tuple ) -> Optional[Any]: '''simple docstring''' return x**3 + x**2 print("f(x) = x^3 + x^2") print("The area between the curve, x = -5, x = 5 and the x axis is:") lowercase__ : List[str] = 1_0 while i <= 1_0_0_0_0_0: print(F"with {i} steps: {trapezoidal_area(f, -5, 5, i)}") i *= 1_0
328
0
"""simple docstring""" import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class A__ ( unittest.TestCase): def __lowerCamelCase ( self ): __lowerCAmelCase : Optional[Any] = 0 def __lowerCamelCase ( self ): __lowerCAmelCase : Dict = AutoImageProcessor.from_pretrained('openai/clip-vit-base-patch32' ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase : Optional[Any] = Path(_SCREAMING_SNAKE_CASE ) / 'preprocessor_config.json' __lowerCAmelCase : List[str] = Path(_SCREAMING_SNAKE_CASE ) / 'config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} , open(_SCREAMING_SNAKE_CASE , 'w' ) , ) json.dump({'model_type': 'clip'} , open(_SCREAMING_SNAKE_CASE , 'w' ) ) __lowerCAmelCase : Optional[int] = AutoImageProcessor.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase : int = Path(_SCREAMING_SNAKE_CASE ) / 'preprocessor_config.json' __lowerCAmelCase : Optional[int] = Path(_SCREAMING_SNAKE_CASE ) / 'config.json' json.dump( {'feature_extractor_type': 'CLIPFeatureExtractor', 'processor_class': 'CLIPProcessor'} , open(_SCREAMING_SNAKE_CASE , 'w' ) , ) json.dump({'model_type': 'clip'} , open(_SCREAMING_SNAKE_CASE , 'w' ) ) __lowerCAmelCase : str = AutoImageProcessor.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase : Tuple = CLIPConfig() # Create a dummy config file with image_proceesor_type __lowerCAmelCase : List[Any] = Path(_SCREAMING_SNAKE_CASE ) / 'preprocessor_config.json' __lowerCAmelCase : Tuple = Path(_SCREAMING_SNAKE_CASE ) / 'config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} , open(_SCREAMING_SNAKE_CASE , 'w' ) , ) json.dump({'model_type': 'clip'} , open(_SCREAMING_SNAKE_CASE , 'w' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally __lowerCAmelCase : Dict = AutoImageProcessor.from_pretrained(_SCREAMING_SNAKE_CASE ).to_dict() config_dict.pop('image_processor_type' ) __lowerCAmelCase : Dict = CLIPImageProcessor(**_SCREAMING_SNAKE_CASE ) # save in new folder model_config.save_pretrained(_SCREAMING_SNAKE_CASE ) config.save_pretrained(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : str = AutoImageProcessor.from_pretrained(_SCREAMING_SNAKE_CASE ) # make sure private variable is not incorrectly saved __lowerCAmelCase : List[Any] = json.loads(config.to_json_string() ) self.assertTrue('_processor_class' not in dict_as_saved ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase : List[str] = Path(_SCREAMING_SNAKE_CASE ) / 'preprocessor_config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} , open(_SCREAMING_SNAKE_CASE , 'w' ) , ) __lowerCAmelCase : int = AutoImageProcessor.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): with self.assertRaisesRegex( _SCREAMING_SNAKE_CASE , 'clip-base is not a local folder and is not a valid model identifier' ): __lowerCAmelCase : Optional[Any] = AutoImageProcessor.from_pretrained('clip-base' ) def __lowerCamelCase ( self ): with self.assertRaisesRegex( _SCREAMING_SNAKE_CASE , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): __lowerCAmelCase : List[str] = AutoImageProcessor.from_pretrained(_SCREAMING_SNAKE_CASE , revision='aaaaaa' ) def __lowerCamelCase ( self ): with self.assertRaisesRegex( _SCREAMING_SNAKE_CASE , 'hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.' , ): __lowerCAmelCase : List[str] = AutoImageProcessor.from_pretrained('hf-internal-testing/config-no-model' ) def __lowerCamelCase ( self ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Optional[int] = AutoImageProcessor.from_pretrained('hf-internal-testing/test_dynamic_image_processor' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Dict = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Union[str, Any] = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Any = AutoImageProcessor.from_pretrained(_SCREAMING_SNAKE_CASE , trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertEqual(reloaded_image_processor.__class__.__name__ , 'NewImageProcessor' ) def __lowerCamelCase ( self ): try: AutoConfig.register('custom' , _SCREAMING_SNAKE_CASE ) AutoImageProcessor.register(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_SCREAMING_SNAKE_CASE ): AutoImageProcessor.register(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase : Optional[int] = Path(_SCREAMING_SNAKE_CASE ) / 'preprocessor_config.json' __lowerCAmelCase : Optional[int] = Path(_SCREAMING_SNAKE_CASE ) / 'config.json' json.dump( {'feature_extractor_type': 'CLIPFeatureExtractor', 'processor_class': 'CLIPProcessor'} , open(_SCREAMING_SNAKE_CASE , 'w' ) , ) json.dump({'model_type': 'clip'} , open(_SCREAMING_SNAKE_CASE , 'w' ) ) __lowerCAmelCase : Optional[Any] = CustomImageProcessor.from_pretrained(_SCREAMING_SNAKE_CASE ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[Any] = AutoImageProcessor.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def __lowerCamelCase ( self ): class A__ ( _lowerCamelCase): A_ : Any = True try: AutoConfig.register('custom' , _SCREAMING_SNAKE_CASE ) AutoImageProcessor.register(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # If remote code is not set, the default is to use local __lowerCAmelCase : str = AutoImageProcessor.from_pretrained('hf-internal-testing/test_dynamic_image_processor' ) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. __lowerCAmelCase : Union[str, Any] = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub __lowerCAmelCase : int = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor' ) self.assertTrue(not hasattr(_SCREAMING_SNAKE_CASE , 'is_local' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
357
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=_lowerCamelCase) class A__ ( _lowerCamelCase): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization A_ : str = field(default='text-classification' , metadata={'include_in_asdict_even_if_is_default': True}) A_ : ClassVar[Features] = Features({'text': Value('string')}) A_ : ClassVar[Features] = Features({'labels': ClassLabel}) A_ : str = "text" A_ : str = "labels" def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE ): if self.label_column not in features: raise ValueError(f"Column {self.label_column} is not present in features." ) if not isinstance(features[self.label_column] , _SCREAMING_SNAKE_CASE ): raise ValueError(f"Column {self.label_column} is not a ClassLabel." ) __lowerCAmelCase : Any = copy.deepcopy(self ) __lowerCAmelCase : Dict = self.label_schema.copy() __lowerCAmelCase : List[Any] = features[self.label_column] __lowerCAmelCase : Dict = label_schema return task_template @property def __lowerCamelCase ( self ): return { self.text_column: "text", self.label_column: "labels", }
182
0
'''simple docstring''' import argparse import os import re lowercase__ = "src/transformers" # Pattern that looks at the indentation in a line. lowercase__ = re.compile(r"^(\s*)\S") # Pattern that matches `"key":" and puts `key` in group 0. lowercase__ = re.compile(r"^\s*\"([^\"]+)\":") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowercase__ = re.compile(r"^\s*_import_structure\[\"([^\"]+)\"\]") # Pattern that matches `"key",` and puts `key` in group 0. lowercase__ = re.compile(r"^\s*\"([^\"]+)\",\s*$") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowercase__ = re.compile(r"\[([^\]]+)\]") def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Any = _re_indent.search(UpperCAmelCase_ ) return "" if search is None else search.groups()[0] def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_="" , UpperCAmelCase_=None , UpperCAmelCase_=None ): UpperCAmelCase : Any = 0 UpperCAmelCase : Optional[Any] = code.split('\n' ) if start_prompt is not None: while not lines[index].startswith(UpperCAmelCase_ ): index += 1 UpperCAmelCase : List[str] = ['\n'.join(lines[:index] )] else: UpperCAmelCase : Union[str, Any] = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). UpperCAmelCase : Optional[Any] = [lines[index]] index += 1 while index < len(UpperCAmelCase_ ) and (end_prompt is None or not lines[index].startswith(UpperCAmelCase_ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(UpperCAmelCase_ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ): current_block.append(lines[index] ) blocks.append('\n'.join(UpperCAmelCase_ ) ) if index < len(UpperCAmelCase_ ) - 1: UpperCAmelCase : str = [lines[index + 1]] index += 1 else: UpperCAmelCase : Tuple = [] else: blocks.append('\n'.join(UpperCAmelCase_ ) ) UpperCAmelCase : Optional[Any] = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(UpperCAmelCase_ ) > 0: blocks.append('\n'.join(UpperCAmelCase_ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(UpperCAmelCase_ ): blocks.append('\n'.join(lines[index:] ) ) return blocks def UpperCamelCase( UpperCAmelCase_ ): def _inner(UpperCAmelCase_ ): return key(UpperCAmelCase_ ).lower().replace('_' , '' ) return _inner def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_=None ): # If no key is provided, we use a noop. def noop(UpperCAmelCase_ ): return x if key is None: UpperCAmelCase : Dict = noop # Constants are all uppercase, they go first. UpperCAmelCase : Any = [obj for obj in objects if key(UpperCAmelCase_ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. UpperCAmelCase : List[Any] = [obj for obj in objects if key(UpperCAmelCase_ )[0].isupper() and not key(UpperCAmelCase_ ).isupper()] # Functions begin with a lowercase, they go last. UpperCAmelCase : int = [obj for obj in objects if not key(UpperCAmelCase_ )[0].isupper()] UpperCAmelCase : Any = ignore_underscore(UpperCAmelCase_ ) return sorted(UpperCAmelCase_ , key=UpperCAmelCase_ ) + sorted(UpperCAmelCase_ , key=UpperCAmelCase_ ) + sorted(UpperCAmelCase_ , key=UpperCAmelCase_ ) def UpperCamelCase( UpperCAmelCase_ ): # This inner function sort imports between [ ]. def _replace(UpperCAmelCase_ ): UpperCAmelCase : int = match.groups()[0] if "," not in imports: return F"""[{imports}]""" UpperCAmelCase : Any = [part.strip().replace('"' , '' ) for part in imports.split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: UpperCAmelCase : Optional[int] = keys[:-1] return "[" + ", ".join([F"""\"{k}\"""" for k in sort_objects(UpperCAmelCase_ )] ) + "]" UpperCAmelCase : int = import_statement.split('\n' ) if len(UpperCAmelCase_ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. UpperCAmelCase : Tuple = 2 if lines[1].strip() == '[' else 1 UpperCAmelCase : Optional[Any] = [(i, _re_strip_line.search(UpperCAmelCase_ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] UpperCAmelCase : Union[str, Any] = sort_objects(UpperCAmelCase_ , key=lambda UpperCAmelCase_ : x[1] ) UpperCAmelCase : Any = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(UpperCAmelCase_ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: UpperCAmelCase : Optional[int] = _re_bracket_content.sub(_replace , lines[1] ) else: UpperCAmelCase : Any = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: UpperCAmelCase : List[str] = keys[:-1] UpperCAmelCase : List[Any] = get_indent(lines[1] ) + ', '.join([F"""\"{k}\"""" for k in sort_objects(UpperCAmelCase_ )] ) return "\n".join(UpperCAmelCase_ ) else: # Finally we have to deal with imports fitting on one line UpperCAmelCase : Union[str, Any] = _re_bracket_content.sub(_replace , UpperCAmelCase_ ) return import_statement def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_=True ): with open(UpperCAmelCase_ , encoding='utf-8' ) as f: UpperCAmelCase : Optional[int] = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 UpperCAmelCase : Optional[int] = split_code_in_indented_blocks( UpperCAmelCase_ , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(UpperCAmelCase_ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. UpperCAmelCase : List[Any] = main_blocks[block_idx] UpperCAmelCase : List[str] = block.split('\n' ) # Get to the start of the imports. UpperCAmelCase : str = 0 while line_idx < len(UpperCAmelCase_ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: UpperCAmelCase : List[Any] = len(UpperCAmelCase_ ) else: line_idx += 1 if line_idx >= len(UpperCAmelCase_ ): continue # Ignore beginning and last line: they don't contain anything. UpperCAmelCase : List[Any] = '\n'.join(block_lines[line_idx:-1] ) UpperCAmelCase : int = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. UpperCAmelCase : Any = split_code_in_indented_blocks(UpperCAmelCase_ , indent_level=UpperCAmelCase_ ) # We have two categories of import key: list or _import_structure[key].append/extend UpperCAmelCase : str = _re_direct_key if '_import_structure = {' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. UpperCAmelCase : List[Any] = [(pattern.search(UpperCAmelCase_ ).groups()[0] if pattern.search(UpperCAmelCase_ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. UpperCAmelCase : Dict = [(i, key) for i, key in enumerate(UpperCAmelCase_ ) if key is not None] UpperCAmelCase : str = [x[0] for x in sorted(UpperCAmelCase_ , key=lambda UpperCAmelCase_ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. UpperCAmelCase : int = 0 UpperCAmelCase : Optional[int] = [] for i in range(len(UpperCAmelCase_ ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: UpperCAmelCase : Optional[Any] = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(UpperCAmelCase_ ) count += 1 # And we put our main block back together with its first and last line. UpperCAmelCase : Union[str, Any] = '\n'.join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(UpperCAmelCase_ ): if check_only: return True else: print(F"""Overwriting {file}.""" ) with open(UpperCAmelCase_ , 'w' , encoding='utf-8' ) as f: f.write('\n'.join(UpperCAmelCase_ ) ) def UpperCamelCase( UpperCAmelCase_=True ): UpperCAmelCase : int = [] for root, _, files in os.walk(UpperCAmelCase_ ): if "__init__.py" in files: UpperCAmelCase : str = sort_imports(os.path.join(UpperCAmelCase_ , '__init__.py' ) , check_only=UpperCAmelCase_ ) if result: UpperCAmelCase : Dict = [os.path.join(UpperCAmelCase_ , '__init__.py' )] if len(UpperCAmelCase_ ) > 0: raise ValueError(F"""Would overwrite {len(UpperCAmelCase_ )} files, run `make style`.""" ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() parser.add_argument("--check_only", action="store_true", help="Whether to only check or fix style.") lowercase__ = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
151
'''simple docstring''' import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor lowercase__ = logging.get_logger(__name__) class A_ ( _snake_case ): '''simple docstring''' def __init__( self : List[Any] , *lowercase_ : Optional[Any] , **lowercase_ : Optional[Any] ) -> None: warnings.warn( 'The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use PerceiverImageProcessor instead.' , lowercase_ , ) super().__init__(*lowercase_ , **lowercase_ )
151
1
'''simple docstring''' import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def a_ ( __snake_case : Optional[int] ) -> int: """simple docstring""" return 1 / (1 + np.exp(-z )) def a_ ( __snake_case : Optional[Any] , __snake_case : int ) -> Dict: """simple docstring""" return (-y * np.log(__snake_case ) - (1 - y) * np.log(1 - h )).mean() def a_ ( __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : str ) -> Optional[int]: """simple docstring""" lowerCamelCase_ =np.dot(__snake_case , __snake_case ) return np.sum(y * scores - np.log(1 + np.exp(__snake_case ) ) ) def a_ ( __snake_case : Optional[Any] , __snake_case : Any , __snake_case : Optional[int] , __snake_case : Dict=7_0000 ) -> List[str]: """simple docstring""" lowerCamelCase_ =np.zeros(x.shape[1] ) for iterations in range(__snake_case ): lowerCamelCase_ =np.dot(__snake_case , __snake_case ) lowerCamelCase_ =sigmoid_function(__snake_case ) lowerCamelCase_ =np.dot(x.T , h - y ) / y.size lowerCamelCase_ =theta - alpha * gradient # updating the weights lowerCamelCase_ =np.dot(__snake_case , __snake_case ) lowerCamelCase_ =sigmoid_function(__snake_case ) lowerCamelCase_ =cost_function(__snake_case , __snake_case ) if iterations % 100 == 0: print(F'''loss: {j} \t''' ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": a_ : List[str] = datasets.load_iris() a_ : int = iris.data[:, :2] a_ : Tuple = (iris.target != 0) * 1 a_ : Union[str, Any] = 0.1 a_ : Dict = logistic_reg(alpha, x, y, max_iterations=7_00_00) print("""theta: """, theta) # printing the theta i.e our weights vector def a_ ( __snake_case : Optional[Any] ) -> Dict: """simple docstring""" return sigmoid_function( np.dot(__snake_case , __snake_case ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color="""b""", label="""0""") plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color="""r""", label="""1""") (a_) : Dict = (x[:, 0].min(), x[:, 0].max()) (a_) : List[str] = (x[:, 1].min(), x[:, 1].max()) (a_) : Any = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) a_ : int = np.c_[xxa.ravel(), xxa.ravel()] a_ : Optional[Any] = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors="""black""") plt.legend() plt.show()
353
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) a_ : Any = { """configuration_trocr""": ["""TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TrOCRConfig"""], """processing_trocr""": ["""TrOCRProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Optional[int] = [ """TROCR_PRETRAINED_MODEL_ARCHIVE_LIST""", """TrOCRForCausalLM""", """TrOCRPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys a_ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
6
0
import pickle import numpy as np from matplotlib import pyplot as plt class _snake_case : def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=0.2 , _lowerCamelCase=0.2 ): a :Tuple = bp_numa a :Tuple = bp_numa a :int = bp_numa a :Optional[Any] = conva_get[:2] a :Dict = conva_get[2] a :str = size_pa a :str = rate_w a :List[str] = rate_t a :Union[str, Any] = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] a :Any = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) a :Union[str, Any] = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) a :Tuple = -2 * np.random.rand(self.conva[1] ) + 1 a :Any = -2 * np.random.rand(self.num_bpa ) + 1 a :Optional[int] = -2 * np.random.rand(self.num_bpa ) + 1 def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): # save model dict with pickle a :Any = { '''num_bp1''': self.num_bpa, '''num_bp2''': self.num_bpa, '''num_bp3''': self.num_bpa, '''conv1''': self.conva, '''step_conv1''': self.step_conva, '''size_pooling1''': self.size_poolinga, '''rate_weight''': self.rate_weight, '''rate_thre''': self.rate_thre, '''w_conv1''': self.w_conva, '''wkj''': self.wkj, '''vji''': self.vji, '''thre_conv1''': self.thre_conva, '''thre_bp2''': self.thre_bpa, '''thre_bp3''': self.thre_bpa, } with open(_lowerCamelCase , '''wb''' ) as f: pickle.dump(_lowerCamelCase , _lowerCamelCase ) print(F'''Model saved: {save_path}''' ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls , _lowerCamelCase ): # read saved model with open(_lowerCamelCase , '''rb''' ) as f: a :str = pickle.load(_lowerCamelCase ) # noqa: S301 a :List[str] = model_dic.get('''conv1''' ) conv_get.append(model_dic.get('''step_conv1''' ) ) a :Optional[int] = model_dic.get('''size_pooling1''' ) a :str = model_dic.get('''num_bp1''' ) a :List[Any] = model_dic.get('''num_bp2''' ) a :Dict = model_dic.get('''num_bp3''' ) a :str = model_dic.get('''rate_weight''' ) a :str = model_dic.get('''rate_thre''' ) # create model instance a :Optional[Any] = CNN(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # modify model parameter a :Optional[Any] = model_dic.get('''w_conv1''' ) a :List[str] = model_dic.get('''wkj''' ) a :List[Any] = model_dic.get('''vji''' ) a :Optional[int] = model_dic.get('''thre_conv1''' ) a :Any = model_dic.get('''thre_bp2''' ) a :Optional[int] = model_dic.get('''thre_bp3''' ) return conv_ins def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): return 1 / (1 + np.exp(-1 * x )) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): return round(_lowerCamelCase , 3 ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): # convolution process a :Dict = convs[0] a :Optional[Any] = convs[1] a :Union[str, Any] = np.shape(_lowerCamelCase )[0] # get the data slice of original image data, data_focus a :List[Any] = [] for i_focus in range(0 , size_data - size_conv + 1 , _lowerCamelCase ): for j_focus in range(0 , size_data - size_conv + 1 , _lowerCamelCase ): a :Union[str, Any] = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(_lowerCamelCase ) # calculate the feature map of every single kernel, and saved as list of matrix a :int = [] a :List[Any] = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(_lowerCamelCase ): a :Tuple = [] for i_focus in range(len(_lowerCamelCase ) ): a :str = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(_lowerCamelCase ) ) a :str = np.asmatrix(_lowerCamelCase ).reshape( _lowerCamelCase , _lowerCamelCase ) data_featuremap.append(_lowerCamelCase ) # expanding the data slice to One dimenssion a :Any = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(_lowerCamelCase ) ) a :Any = np.asarray(_lowerCamelCase ) return focus_list, data_featuremap def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase="average_pool" ): # pooling process a :Any = len(featuremaps[0] ) a :List[str] = int(size_map / size_pooling ) a :List[str] = [] for i_map in range(len(_lowerCamelCase ) ): a :Optional[int] = featuremaps[i_map] a :str = [] for i_focus in range(0 , _lowerCamelCase , _lowerCamelCase ): for j_focus in range(0 , _lowerCamelCase , _lowerCamelCase ): a :Union[str, Any] = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(_lowerCamelCase ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(_lowerCamelCase ) ) a :Dict = np.asmatrix(_lowerCamelCase ).reshape(_lowerCamelCase , _lowerCamelCase ) featuremap_pooled.append(_lowerCamelCase ) return featuremap_pooled def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): # expanding three dimension data to one dimension list a :Optional[Any] = [] for i in range(len(_lowerCamelCase ) ): a :Optional[int] = np.shape(data[i] ) a :Tuple = data[i].reshape(1 , shapes[0] * shapes[1] ) a :List[Any] = data_listed.getA().tolist()[0] data_expanded.extend(_lowerCamelCase ) a :List[Any] = np.asarray(_lowerCamelCase ) return data_expanded def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): # expanding matrix to one dimension list a :Optional[Any] = np.asarray(_lowerCamelCase ) a :Any = np.shape(_lowerCamelCase ) a :Optional[Any] = data_mat.reshape(1 , shapes[0] * shapes[1] ) return data_expanded def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): a :Tuple = [] a :List[str] = 0 for i_map in range(_lowerCamelCase ): a :List[str] = np.ones((size_map, size_map) ) for i in range(0 , _lowerCamelCase , _lowerCamelCase ): for j in range(0 , _lowerCamelCase , _lowerCamelCase ): a :Optional[int] = pd_pool[ i_pool ] a :int = i_pool + 1 a :Optional[Any] = np.multiply( _lowerCamelCase , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) ) pd_all.append(_lowerCamelCase ) return pd_all def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=bool ): # model traning print('''----------------------Start Training-------------------------''' ) print((''' - - Shape: Train_Data ''', np.shape(_lowerCamelCase )) ) print((''' - - Shape: Teach_Data ''', np.shape(_lowerCamelCase )) ) a :Union[str, Any] = 0 a :List[Any] = [] a :Optional[Any] = 1_0000 while rp < n_repeat and mse >= error_accuracy: a :Optional[Any] = 0 print(F'''-------------Learning Time {rp}--------------''' ) for p in range(len(_lowerCamelCase ) ): # print('------------Learning Image: %d--------------'%p) a :List[Any] = np.asmatrix(datas_train[p] ) a :int = np.asarray(datas_teach[p] ) a , a :Union[str, Any] = self.convolute( _lowerCamelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) a :Optional[int] = self.pooling(_lowerCamelCase , self.size_poolinga ) a :Optional[int] = np.shape(_lowerCamelCase ) a :List[str] = self._expand(_lowerCamelCase ) a :Tuple = data_bp_input a :str = np.dot(_lowerCamelCase , self.vji.T ) - self.thre_bpa a :Optional[Any] = self.sig(_lowerCamelCase ) a :str = np.dot(_lowerCamelCase , self.wkj.T ) - self.thre_bpa a :Union[str, Any] = self.sig(_lowerCamelCase ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- a :Any = np.multiply( (data_teach - bp_outa) , np.multiply(_lowerCamelCase , (1 - bp_outa) ) ) a :str = np.multiply( np.dot(_lowerCamelCase , self.wkj ) , np.multiply(_lowerCamelCase , (1 - bp_outa) ) ) a :int = np.dot(_lowerCamelCase , self.vji ) a :Any = pd_i_all / (self.size_poolinga * self.size_poolinga) a :List[str] = pd_conva_pooled.T.getA().tolist() a :Optional[int] = self._calculate_gradient_from_pool( _lowerCamelCase , _lowerCamelCase , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): a :Optional[int] = self._expand_mat(pd_conva_all[k_conv] ) a :List[Any] = self.rate_weight * np.dot(_lowerCamelCase , _lowerCamelCase ) a :Union[str, Any] = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) a :Any = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer a :str = self.wkj + pd_k_all.T * bp_outa * self.rate_weight a :List[Any] = self.vji + pd_j_all.T * bp_outa * self.rate_weight a :Dict = self.thre_bpa - pd_k_all * self.rate_thre a :Optional[Any] = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image a :Union[str, Any] = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) a :List[str] = rp + 1 a :List[str] = error_count / patterns all_mse.append(_lowerCamelCase ) def draw_error(): a :Optional[Any] = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(_lowerCamelCase , '''+-''' ) plt.plot(_lowerCamelCase , '''r--''' ) plt.xlabel('''Learning Times''' ) plt.ylabel('''All_mse''' ) plt.grid(_lowerCamelCase , alpha=0.5 ) plt.show() print('''------------------Training Complished---------------------''' ) print((''' - - Training epoch: ''', rp, F''' - - Mse: {mse:.6f}''') ) if draw_e: draw_error() return mse def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): # model predict a :Any = [] print('''-------------------Start Testing-------------------------''' ) print((''' - - Shape: Test_Data ''', np.shape(_lowerCamelCase )) ) for p in range(len(_lowerCamelCase ) ): a :Dict = np.asmatrix(datas_test[p] ) a , a :Union[str, Any] = self.convolute( _lowerCamelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) a :Optional[int] = self.pooling(_lowerCamelCase , self.size_poolinga ) a :int = self._expand(_lowerCamelCase ) a :Optional[int] = data_bp_input a :Dict = bp_outa * self.vji.T - self.thre_bpa a :List[Any] = self.sig(_lowerCamelCase ) a :Optional[int] = bp_outa * self.wkj.T - self.thre_bpa a :Tuple = self.sig(_lowerCamelCase ) produce_out.extend(bp_outa.getA().tolist() ) a :Optional[Any] = [list(map(self.do_round , _lowerCamelCase ) ) for each in produce_out] return np.asarray(_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): # return the data of image after convoluting process so we can check it out a :Union[str, Any] = np.asmatrix(_lowerCamelCase ) a , a :str = self.convolute( _lowerCamelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) a :str = self.pooling(_lowerCamelCase , self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
94
snake_case : str = ''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' snake_case : List[Any] = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] snake_case : int = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
94
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { 'xlm-roberta-base': 'https://huggingface.co/xlm-roberta-base/resolve/main/config.json', 'xlm-roberta-large': 'https://huggingface.co/xlm-roberta-large/resolve/main/config.json', 'xlm-roberta-large-finetuned-conll02-dutch': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll02-spanish': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-english': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-german': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json' ), } class A_ ( __snake_case ): '''simple docstring''' __snake_case = 'xlm-roberta' def __init__( self: Any , a: Tuple=3_0522 , a: Dict=768 , a: Union[str, Any]=12 , a: List[str]=12 , a: int=3072 , a: Dict="gelu" , a: Optional[int]=0.1 , a: Optional[Any]=0.1 , a: Any=512 , a: Any=2 , a: List[Any]=0.0_2 , a: List[Any]=1e-12 , a: Union[str, Any]=1 , a: Tuple=0 , a: Optional[int]=2 , a: Optional[Any]="absolute" , a: Any=True , a: Union[str, Any]=None , **a: Tuple , ): super().__init__(pad_token_id=a , bos_token_id=a , eos_token_id=a , **a ) __lowerCamelCase : List[str] = vocab_size __lowerCamelCase : List[str] = hidden_size __lowerCamelCase : List[str] = num_hidden_layers __lowerCamelCase : Dict = num_attention_heads __lowerCamelCase : int = hidden_act __lowerCamelCase : int = intermediate_size __lowerCamelCase : Any = hidden_dropout_prob __lowerCamelCase : str = attention_probs_dropout_prob __lowerCamelCase : Union[str, Any] = max_position_embeddings __lowerCamelCase : Optional[int] = type_vocab_size __lowerCamelCase : List[str] = initializer_range __lowerCamelCase : Union[str, Any] = layer_norm_eps __lowerCamelCase : Dict = position_embedding_type __lowerCamelCase : str = use_cache __lowerCamelCase : List[Any] = classifier_dropout class A_ ( __snake_case ): '''simple docstring''' @property def _snake_case ( self: int ): if self.task == "multiple-choice": __lowerCamelCase : Tuple = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __lowerCamelCase : int = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
362
import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { 'google/owlvit-base-patch32': 'https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json', 'google/owlvit-base-patch16': 'https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json', 'google/owlvit-large-patch14': 'https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json', } class A_ ( __UpperCamelCase ): '''simple docstring''' __snake_case = """owlvit_text_model""" def __init__( self: Optional[int] , a: Dict=4_9408 , a: Optional[Any]=512 , a: Dict=2048 , a: Optional[Any]=12 , a: Tuple=8 , a: Union[str, Any]=16 , a: str="quick_gelu" , a: List[Any]=1e-5 , a: Dict=0.0 , a: Optional[int]=0.0_2 , a: Dict=1.0 , a: Any=0 , a: Union[str, Any]=4_9406 , a: Any=4_9407 , **a: Dict , ): super().__init__(pad_token_id=a , bos_token_id=a , eos_token_id=a , **a ) __lowerCamelCase : List[Any] = vocab_size __lowerCamelCase : int = hidden_size __lowerCamelCase : Optional[Any] = intermediate_size __lowerCamelCase : List[Any] = num_hidden_layers __lowerCamelCase : Any = num_attention_heads __lowerCamelCase : Union[str, Any] = max_position_embeddings __lowerCamelCase : List[Any] = hidden_act __lowerCamelCase : List[str] = layer_norm_eps __lowerCamelCase : Tuple = attention_dropout __lowerCamelCase : Optional[int] = initializer_range __lowerCamelCase : Tuple = initializer_factor @classmethod def _snake_case ( cls: Dict , a: Union[str, os.PathLike] , **a: Optional[int] ): cls._set_token_in_kwargs(a ) __lowerCamelCase , __lowerCamelCase : Dict = cls.get_config_dict(a , **a ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get('model_type' ) == "owlvit": __lowerCamelCase : Optional[Any] = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(a , **a ) class A_ ( __UpperCamelCase ): '''simple docstring''' __snake_case = """owlvit_vision_model""" def __init__( self: int , a: Tuple=768 , a: int=3072 , a: List[str]=12 , a: Optional[Any]=12 , a: Optional[int]=3 , a: Optional[int]=768 , a: Optional[Any]=32 , a: Optional[int]="quick_gelu" , a: Union[str, Any]=1e-5 , a: Union[str, Any]=0.0 , a: Union[str, Any]=0.0_2 , a: int=1.0 , **a: Union[str, Any] , ): super().__init__(**a ) __lowerCamelCase : str = hidden_size __lowerCamelCase : Tuple = intermediate_size __lowerCamelCase : Dict = num_hidden_layers __lowerCamelCase : Optional[Any] = num_attention_heads __lowerCamelCase : int = num_channels __lowerCamelCase : Optional[Any] = image_size __lowerCamelCase : Tuple = patch_size __lowerCamelCase : List[str] = hidden_act __lowerCamelCase : Tuple = layer_norm_eps __lowerCamelCase : List[Any] = attention_dropout __lowerCamelCase : Tuple = initializer_range __lowerCamelCase : List[Any] = initializer_factor @classmethod def _snake_case ( cls: Optional[int] , a: Union[str, os.PathLike] , **a: int ): cls._set_token_in_kwargs(a ) __lowerCamelCase , __lowerCamelCase : Dict = cls.get_config_dict(a , **a ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get('model_type' ) == "owlvit": __lowerCamelCase : Any = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(a , **a ) class A_ ( __UpperCamelCase ): '''simple docstring''' __snake_case = """owlvit""" __snake_case = True def __init__( self: Dict , a: int=None , a: str=None , a: Tuple=512 , a: Tuple=2.6_5_9_2 , a: int=True , **a: int , ): super().__init__(**a ) if text_config is None: __lowerCamelCase : List[str] = {} logger.info('text_config is None. Initializing the OwlViTTextConfig with default values.' ) if vision_config is None: __lowerCamelCase : str = {} logger.info('vision_config is None. initializing the OwlViTVisionConfig with default values.' ) __lowerCamelCase : List[Any] = OwlViTTextConfig(**a ) __lowerCamelCase : str = OwlViTVisionConfig(**a ) __lowerCamelCase : Union[str, Any] = projection_dim __lowerCamelCase : Tuple = logit_scale_init_value __lowerCamelCase : Dict = return_dict __lowerCamelCase : Tuple = 1.0 @classmethod def _snake_case ( cls: str , a: Union[str, os.PathLike] , **a: List[Any] ): cls._set_token_in_kwargs(a ) __lowerCamelCase , __lowerCamelCase : List[Any] = cls.get_config_dict(a , **a ) if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(a , **a ) @classmethod def _snake_case ( cls: Tuple , a: Dict , a: Dict , **a: str ): __lowerCamelCase : List[str] = {} __lowerCamelCase : List[str] = text_config __lowerCamelCase : Optional[int] = vision_config return cls.from_dict(a , **a ) def _snake_case ( self: Optional[int] ): __lowerCamelCase : Optional[Any] = copy.deepcopy(self.__dict__ ) __lowerCamelCase : List[Any] = self.text_config.to_dict() __lowerCamelCase : List[str] = self.vision_config.to_dict() __lowerCamelCase : Optional[Any] = self.__class__.model_type return output class A_ ( __UpperCamelCase ): '''simple docstring''' @property def _snake_case ( self: str ): return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ] ) @property def _snake_case ( self: Dict ): return OrderedDict( [ ('logits_per_image', {0: 'batch'}), ('logits_per_text', {0: 'batch'}), ('text_embeds', {0: 'batch'}), ('image_embeds', {0: 'batch'}), ] ) @property def _snake_case ( self: int ): return 1e-4 def _snake_case ( self: Any , a: "ProcessorMixin" , a: int = -1 , a: int = -1 , a: Optional["TensorType"] = None , ): __lowerCamelCase : List[str] = super().generate_dummy_inputs( processor.tokenizer , batch_size=a , seq_length=a , framework=a ) __lowerCamelCase : int = super().generate_dummy_inputs( processor.image_processor , batch_size=a , framework=a ) return {**text_input_dict, **image_input_dict} @property def _snake_case ( self: int ): return 14
194
0
'''simple docstring''' def lowerCamelCase ( UpperCAmelCase__ : int ) -> int: lowercase_ : List[Any] = [1] lowercase_ , lowercase_ , lowercase_ : Optional[Any] = 0, 0, 0 lowercase_ : Union[str, Any] = ugly_nums[ia] * 2 lowercase_ : Any = ugly_nums[ia] * 3 lowercase_ : str = ugly_nums[ia] * 5 for _ in range(1 , UpperCAmelCase__ ): lowercase_ : Tuple = min(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) ugly_nums.append(UpperCAmelCase__ ) if next_num == next_a: ia += 1 lowercase_ : List[str] = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 lowercase_ : Any = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 lowercase_ : Dict = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(f"""{ugly_numbers(200) = }""")
239
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : Optional[Any] = logging.get_logger(__name__) _lowercase : Tuple = { "BAAI/AltCLIP": "https://huggingface.co/BAAI/AltCLIP/resolve/main/config.json", # See all AltCLIP models at https://huggingface.co/models?filter=altclip } class __magic_name__ ( _UpperCAmelCase): UpperCamelCase__ = '''altclip_text_model''' def __init__( self : Union[str, Any] , lowercase_ : str=250002 , lowercase_ : Union[str, Any]=1024 , lowercase_ : Any=24 , lowercase_ : Union[str, Any]=16 , lowercase_ : Any=4096 , lowercase_ : Union[str, Any]="gelu" , lowercase_ : Union[str, Any]=0.1 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : int=514 , lowercase_ : Union[str, Any]=1 , lowercase_ : List[str]=0.02 , lowercase_ : Optional[int]=0.02 , lowercase_ : str=1E-05 , lowercase_ : List[str]=1 , lowercase_ : List[Any]=0 , lowercase_ : Dict=2 , lowercase_ : Union[str, Any]="absolute" , lowercase_ : Any=True , lowercase_ : Union[str, Any]=768 , **lowercase_ : Any , ): super().__init__(pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ ) lowercase_ : Union[str, Any] = vocab_size lowercase_ : str = hidden_size lowercase_ : Optional[Any] = num_hidden_layers lowercase_ : int = num_attention_heads lowercase_ : str = hidden_act lowercase_ : List[str] = intermediate_size lowercase_ : Optional[int] = hidden_dropout_prob lowercase_ : str = attention_probs_dropout_prob lowercase_ : str = max_position_embeddings lowercase_ : List[str] = type_vocab_size lowercase_ : Union[str, Any] = initializer_range lowercase_ : List[Any] = initializer_factor lowercase_ : str = layer_norm_eps lowercase_ : Tuple = position_embedding_type lowercase_ : List[Any] = use_cache lowercase_ : Tuple = project_dim class __magic_name__ ( _UpperCAmelCase): UpperCamelCase__ = '''altclip_vision_model''' def __init__( self : Dict , lowercase_ : Any=768 , lowercase_ : Dict=3072 , lowercase_ : Optional[Any]=512 , lowercase_ : Dict=12 , lowercase_ : Optional[int]=12 , lowercase_ : Optional[Any]=3 , lowercase_ : str=224 , lowercase_ : List[Any]=32 , lowercase_ : Union[str, Any]="quick_gelu" , lowercase_ : Dict=1E-5 , lowercase_ : Optional[int]=0.0 , lowercase_ : Optional[Any]=0.02 , lowercase_ : Optional[Any]=1.0 , **lowercase_ : Dict , ): super().__init__(**lowercase_ ) lowercase_ : Tuple = hidden_size lowercase_ : Optional[Any] = intermediate_size lowercase_ : Optional[Any] = projection_dim lowercase_ : Tuple = num_hidden_layers lowercase_ : List[Any] = num_attention_heads lowercase_ : Any = num_channels lowercase_ : Any = patch_size lowercase_ : Dict = image_size lowercase_ : Optional[Any] = initializer_range lowercase_ : str = initializer_factor lowercase_ : Any = attention_dropout lowercase_ : Optional[int] = layer_norm_eps lowercase_ : int = hidden_act @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Optional[int] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : Any ): cls._set_token_in_kwargs(lowercase_ ) lowercase_ , lowercase_ : str = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the vision config dict if we are loading from AltCLIPConfig if config_dict.get("""model_type""" ) == "altclip": lowercase_ : List[str] = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(lowercase_ , **lowercase_ ) class __magic_name__ ( _UpperCAmelCase): UpperCamelCase__ = '''altclip''' UpperCamelCase__ = True def __init__( self : Optional[int] , lowercase_ : Dict=None , lowercase_ : List[Any]=None , lowercase_ : Tuple=768 , lowercase_ : List[str]=2.65_92 , **lowercase_ : List[Any] ): # If `_config_dict` exist, we use them for the backward compatibility. # We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot # of confusion!). lowercase_ : Dict = kwargs.pop("""text_config_dict""" , lowercase_ ) lowercase_ : str = kwargs.pop("""vision_config_dict""" , lowercase_ ) super().__init__(**lowercase_ ) # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`. if text_config_dict is not None: if text_config is None: lowercase_ : Dict = {} # This is the complete result when using `text_config_dict`. lowercase_ : List[str] = AltCLIPTextConfig(**lowercase_ ).to_dict() # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. for key, value in _text_config_dict.items(): if key in text_config and value != text_config[key] and key not in ["transformers_version"]: # If specified in `text_config_dict` if key in text_config_dict: lowercase_ : Optional[Any] = ( f'''`{key}` is found in both `text_config_dict` and `text_config` but with different values. ''' f'''The value `text_config_dict["{key}"]` will be used instead.''' ) # If inferred from default argument values (just to be super careful) else: lowercase_ : Tuple = ( f'''`text_config_dict` is provided which will be used to initialize `AltCLIPTextConfig`. The ''' f'''value `text_config["{key}"]` will be overriden.''' ) logger.warning(lowercase_ ) # Update all values in `text_config` with the ones in `_text_config_dict`. text_config.update(_text_config_dict ) if vision_config_dict is not None: if vision_config is None: lowercase_ : int = {} # This is the complete result when using `vision_config_dict`. lowercase_ : List[str] = AltCLIPVisionConfig(**lowercase_ ).to_dict() # convert keys to string instead of integer if "id2label" in _vision_config_dict: lowercase_ : List[str] = { str(lowercase_ ): value for key, value in _vision_config_dict["""id2label"""].items() } # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. for key, value in _vision_config_dict.items(): if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: # If specified in `vision_config_dict` if key in vision_config_dict: lowercase_ : Any = ( f'''`{key}` is found in both `vision_config_dict` and `vision_config` but with different ''' f'''values. The value `vision_config_dict["{key}"]` will be used instead.''' ) # If inferred from default argument values (just to be super careful) else: lowercase_ : List[str] = ( f'''`vision_config_dict` is provided which will be used to initialize `AltCLIPVisionConfig`. ''' f'''The value `vision_config["{key}"]` will be overriden.''' ) logger.warning(lowercase_ ) # Update all values in `vision_config` with the ones in `_vision_config_dict`. vision_config.update(_vision_config_dict ) if text_config is None: lowercase_ : int = {} logger.info("""`text_config` is `None`. Initializing the `AltCLIPTextConfig` with default values.""" ) if vision_config is None: lowercase_ : Optional[int] = {} logger.info("""`vision_config` is `None`. initializing the `AltCLIPVisionConfig` with default values.""" ) lowercase_ : Optional[int] = AltCLIPTextConfig(**lowercase_ ) lowercase_ : Any = AltCLIPVisionConfig(**lowercase_ ) lowercase_ : List[Any] = projection_dim lowercase_ : Optional[Any] = logit_scale_init_value lowercase_ : int = 1.0 @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Dict , lowercase_ : AltCLIPTextConfig , lowercase_ : AltCLIPVisionConfig , **lowercase_ : Optional[int] ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): lowercase_ : Union[str, Any] = copy.deepcopy(self.__dict__ ) lowercase_ : Optional[int] = self.text_config.to_dict() lowercase_ : Any = self.vision_config.to_dict() lowercase_ : List[str] = self.__class__.model_type return output
239
1
"""simple docstring""" import sys from pathlib import Path A = Path(__file__).resolve().parents[3] / '''src''' sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) A = {'''base''': '''patrickvonplaten/wav2vec2_tiny_random''', '''robust''': '''patrickvonplaten/wav2vec2_tiny_random_robust'''} A = '''zero2''' A = '''zero3''' A = [ZEROa, ZEROa] def __A ( a_ :str , a_ :Optional[int] , a_ :Optional[Any]) -> Optional[Any]: # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param __a : Any = parameterized.to_safe_name('''_'''.join(str(a_) for x in param.args)) return F"""{func.__name__}_{param_based_name}""" # Cartesian-product of zero stages with models to test A = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class __lowercase ( _UpperCamelCase ): '''simple docstring''' @parameterized.expand(_UpperCAmelCase , name_func=_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase ): self.run_and_check( stage=_UpperCAmelCase , model=_UpperCAmelCase , distributed=_UpperCAmelCase , fpaa=_UpperCAmelCase , ) @require_torch_multi_gpu @parameterized.expand(_UpperCAmelCase , name_func=_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase ): self.run_and_check( stage=_UpperCAmelCase , model=_UpperCAmelCase , distributed=_UpperCAmelCase , fpaa=_UpperCAmelCase , ) @parameterized.expand(_UpperCAmelCase , name_func=_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase ): self.run_and_check( stage=_UpperCAmelCase , model=_UpperCAmelCase , distributed=_UpperCAmelCase , fpaa=_UpperCAmelCase , ) @require_torch_multi_gpu @parameterized.expand(_UpperCAmelCase , name_func=_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase ): self.run_and_check( stage=_UpperCAmelCase , model=_UpperCAmelCase , distributed=_UpperCAmelCase , fpaa=_UpperCAmelCase , ) def _lowerCamelCase ( self , _UpperCAmelCase ): # XXX: run_asr is premature and doesn't save any results # so all we check for now is that the process didn't fail pass def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 10 , _UpperCAmelCase = True , _UpperCAmelCase = True , _UpperCAmelCase = True , ): __a : Tuple = models[model] __a : Any = self.run_trainer( stage=_UpperCAmelCase , model_name=_UpperCAmelCase , eval_steps=_UpperCAmelCase , num_train_epochs=1 , distributed=_UpperCAmelCase , fpaa=_UpperCAmelCase , ) self.do_checks(_UpperCAmelCase ) return output_dir def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 10 , _UpperCAmelCase = 1 , _UpperCAmelCase = True , _UpperCAmelCase = True , ): __a : Optional[int] = self.get_auto_remove_tmp_dir('''./xxx''' , after=_UpperCAmelCase ) __a : Any = f""" --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(_UpperCAmelCase )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none """.split() if fpaa: args.extend(['''--fp16'''] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files __a : Tuple = f"""--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json""".split() __a : List[Any] = [f"""{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"""] __a : Tuple = self.get_launcher(_UpperCAmelCase ) __a : Dict = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(_UpperCAmelCase , env=self.get_env() ) return output_dir def _lowerCamelCase ( self , _UpperCAmelCase=False ): # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup # - it won't be able to handle that # 2. for now testing with just 2 gpus max (since some quality tests may give different # results with mode gpus because we use very little data) __a : List[str] = min(2 , get_gpu_count() ) if distributed else 1 return f"""deepspeed --num_nodes 1 --num_gpus {num_gpus}""".split()
352
"""simple docstring""" def __A ( a_ :int , a_ :int) -> str: if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''') __a : Union[str, Any] = str(bin(a_))[2:] # remove the leading "0b" __a : Union[str, Any] = str(bin(a_))[2:] # remove the leading "0b" __a : Optional[Any] = max(len(a_) , len(a_)) return "0b" + "".join( str(int(char_a != char_b)) for char_a, char_b in zip(a_binary.zfill(a_) , b_binary.zfill(a_))) if __name__ == "__main__": import doctest doctest.testmod()
188
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a = { 'configuration_maskformer': ['MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MaskFormerConfig'], 'configuration_maskformer_swin': ['MaskFormerSwinConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = ['MaskFormerFeatureExtractor'] a = ['MaskFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ 'MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'MaskFormerForInstanceSegmentation', 'MaskFormerModel', 'MaskFormerPreTrainedModel', ] a = [ 'MaskFormerSwinBackbone', 'MaskFormerSwinModel', 'MaskFormerSwinPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()['__file__'], _import_structure)
155
import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class UpperCamelCase_ : '''simple docstring''' def __init__( self , a , a=13 , a=7 , a=True , a=True , a=True , a=True , a=99 , a=64 , a=5 , a=4 , a=37 , a="gelu" , a=0.1 , a=0.1 , a=5_12 , a=16 , a=2 , a=0.02 , a=3 , a=4 , a=None , ) -> str: snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_input_mask snake_case_ = use_token_type_ids snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = num_labels snake_case_ = num_choices snake_case_ = scope snake_case_ = vocab_size - 1 def _UpperCamelCase ( self ) -> Tuple: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = None if self.use_input_mask: snake_case_ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ = self.get_config() return config, input_ids, input_mask, token_labels def _UpperCamelCase ( self ) -> int: return GPTNeoXConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , ) def _UpperCamelCase ( self ) -> int: snake_case_ , snake_case_ , snake_case_ , snake_case_ = self.prepare_config_and_inputs() snake_case_ = True return config, input_ids, input_mask, token_labels def _UpperCamelCase ( self , a , a , a ) -> Optional[int]: snake_case_ = GPTNeoXModel(config=a ) model.to(a ) model.eval() snake_case_ = model(a , attention_mask=a ) snake_case_ = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self , a , a , a ) -> List[str]: snake_case_ = True snake_case_ = GPTNeoXModel(a ) model.to(a ) model.eval() snake_case_ = model(a , attention_mask=a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self , a , a , a , a ) -> int: snake_case_ = GPTNeoXForCausalLM(config=a ) model.to(a ) model.eval() snake_case_ = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCamelCase ( self , a , a , a , a ) -> Optional[int]: snake_case_ = self.num_labels snake_case_ = GPTNeoXForQuestionAnswering(a ) model.to(a ) model.eval() snake_case_ = model(a , attention_mask=a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _UpperCamelCase ( self , a , a , a , a ) -> List[str]: snake_case_ = self.num_labels snake_case_ = GPTNeoXForSequenceClassification(a ) model.to(a ) model.eval() snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCamelCase ( self , a , a , a , a ) -> str: snake_case_ = self.num_labels snake_case_ = GPTNeoXForTokenClassification(a ) model.to(a ) model.eval() snake_case_ = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCamelCase ( self , a , a , a ) -> List[Any]: snake_case_ = True snake_case_ = GPTNeoXForCausalLM(config=a ) model.to(a ) model.eval() # first forward pass snake_case_ = model(a , attention_mask=a , use_cache=a ) snake_case_ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids snake_case_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case_ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and snake_case_ = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case_ = torch.cat([input_mask, next_mask] , dim=-1 ) snake_case_ = model(a , attention_mask=a , output_hidden_states=a ) snake_case_ = output_from_no_past['hidden_states'][0] snake_case_ = model( a , attention_mask=a , past_key_values=a , output_hidden_states=a , )['hidden_states'][0] # select random slice snake_case_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case_ = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(a , a , atol=1E-3 ) ) def _UpperCamelCase ( self ) -> str: snake_case_ = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ = config_and_inputs snake_case_ = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCamelCase_ ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) lowerCAmelCase = (GPTNeoXForCausalLM,) if is_torch_available() else () lowerCAmelCase = ( { '''feature-extraction''': GPTNeoXModel, '''question-answering''': GPTNeoXForQuestionAnswering, '''text-classification''': GPTNeoXForSequenceClassification, '''text-generation''': GPTNeoXForCausalLM, '''token-classification''': GPTNeoXForTokenClassification, '''zero-shot''': GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False def _UpperCamelCase ( self ) -> str: snake_case_ = GPTNeoXModelTester(self ) snake_case_ = ConfigTester(self , config_class=a , hidden_size=64 , num_attention_heads=8 ) def _UpperCamelCase ( self ) -> Any: self.config_tester.run_common_tests() def _UpperCamelCase ( self ) -> Optional[int]: snake_case_ , snake_case_ , snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(a , a , a ) def _UpperCamelCase ( self ) -> int: snake_case_ , snake_case_ , snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(a , a , a ) def _UpperCamelCase ( self ) -> Dict: # This regression test was failing with PyTorch < 1.3 snake_case_ , snake_case_ , snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_decoder() snake_case_ = None self.model_tester.create_and_check_model_as_decoder(a , a , a ) def _UpperCamelCase ( self ) -> str: snake_case_ , snake_case_ , snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(a , a , a ) def _UpperCamelCase ( self ) -> List[Any]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*a ) def _UpperCamelCase ( self ) -> Any: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a ) def _UpperCamelCase ( self ) -> List[str]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*a ) def _UpperCamelCase ( self ) -> Any: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a ) @unittest.skip(reason='Feed forward chunking is not implemented' ) def _UpperCamelCase ( self ) -> List[str]: pass @parameterized.expand([('linear',), ('dynamic',)] ) def _UpperCamelCase ( self , a ) -> int: snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = ids_tensor([1, 10] , config.vocab_size ) snake_case_ = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights snake_case_ = GPTNeoXModel(a ) original_model.to(a ) original_model.eval() snake_case_ = original_model(a ).last_hidden_state snake_case_ = original_model(a ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights snake_case_ = {'type': scaling_type, 'factor': 10.0} snake_case_ = GPTNeoXModel(a ) scaled_model.to(a ) scaled_model.eval() snake_case_ = scaled_model(a ).last_hidden_state snake_case_ = scaled_model(a ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(a , a , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(a , a , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(a , a , atol=1E-5 ) ) @require_torch class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _UpperCamelCase ( self ) -> List[str]: snake_case_ = AutoTokenizer.from_pretrained('EleutherAI/pythia-410m-deduped' ) for checkpointing in [True, False]: snake_case_ = GPTNeoXForCausalLM.from_pretrained('EleutherAI/pythia-410m-deduped' ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(a ) snake_case_ = tokenizer('My favorite food is' , return_tensors='pt' ).to(a ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 snake_case_ = 'My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI\'m not sure' snake_case_ = model.generate(**a , do_sample=a , max_new_tokens=20 ) snake_case_ = tokenizer.batch_decode(a )[0] self.assertEqual(a , a )
178
0
'''simple docstring''' from __future__ import annotations def UpperCAmelCase ( a_ ) -> List[Any]: """simple docstring""" if not nums: return 0 A_ : Any = nums[0] A_ : Tuple = 0 for num in nums[1:]: A_ : str = ( max_excluding + num, max(A__ , A__ ), ) return max(A__ , A__ ) if __name__ == "__main__": import doctest doctest.testmod()
351
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import KarrasVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = 42 lowerCamelCase = 42 def __init__( self , _lowerCamelCase , _lowerCamelCase ) -> Dict: super().__init__() self.register_modules(unet=_lowerCamelCase , scheduler=_lowerCamelCase ) @torch.no_grad() def __call__( self , _lowerCamelCase = 1 , _lowerCamelCase = 50 , _lowerCamelCase = None , _lowerCamelCase = "pil" , _lowerCamelCase = True , **_lowerCamelCase , ) -> Union[Tuple, ImagePipelineOutput]: A_ : str = self.unet.config.sample_size A_ : Optional[int] = (batch_size, 3, img_size, img_size) A_ : Any = self.unet # sample x_0 ~ N(0, sigma_0^2 * I) A_ : Dict = randn_tensor(_lowerCamelCase , generator=_lowerCamelCase , device=self.device ) * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(_lowerCamelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # here sigma_t == t_i from the paper A_ : Optional[Any] = self.scheduler.schedule[t] A_ : Union[str, Any] = self.scheduler.schedule[t - 1] if t > 0 else 0 # 1. Select temporarily increased noise level sigma_hat # 2. Add new noise to move from sample_i to sample_hat A_ , A_ : List[Any] = self.scheduler.add_noise_to_input(_lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase ) # 3. Predict the noise residual given the noise magnitude `sigma_hat` # The model inputs and output are adjusted by following eq. (213) in [1]. A_ : List[str] = (sigma_hat / 2) * model((sample_hat + 1) / 2 , sigma_hat / 2 ).sample # 4. Evaluate dx/dt at sigma_hat # 5. Take Euler step from sigma to sigma_prev A_ : List[Any] = self.scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if sigma_prev != 0: # 6. Apply 2nd order correction # The model inputs and output are adjusted by following eq. (213) in [1]. A_ : int = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 , sigma_prev / 2 ).sample A_ : Any = self.scheduler.step_correct( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , step_output.prev_sample , step_output["""derivative"""] , ) A_ : Tuple = step_output.prev_sample A_ : Union[str, Any] = (sample / 2 + 0.5).clamp(0 , 1 ) A_ : Union[str, Any] = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": A_ : Dict = self.numpy_to_pil(_lowerCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_lowerCamelCase )
164
0
import re import string import numpy as np import datasets lowerCAmelCase : Dict = '\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n' lowerCAmelCase : List[str] = '\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results["exact_match"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."]\n >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 33.3\n\n' lowerCAmelCase : List[Any] = '\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class _A ( datasets.Metric): def UpperCAmelCase ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , reference_urls=[] , ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , ): """simple docstring""" if regexes_to_ignore is not None: for s in regexes_to_ignore: SCREAMING_SNAKE_CASE_ : Dict = np.array([re.sub(_SCREAMING_SNAKE_CASE , '' , _SCREAMING_SNAKE_CASE ) for x in predictions] ) SCREAMING_SNAKE_CASE_ : str = np.array([re.sub(_SCREAMING_SNAKE_CASE , '' , _SCREAMING_SNAKE_CASE ) for x in references] ) else: SCREAMING_SNAKE_CASE_ : List[Any] = np.asarray(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : str = np.asarray(_SCREAMING_SNAKE_CASE ) if ignore_case: SCREAMING_SNAKE_CASE_ : Union[str, Any] = np.char.lower(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : int = np.char.lower(_SCREAMING_SNAKE_CASE ) if ignore_punctuation: SCREAMING_SNAKE_CASE_ : Union[str, Any] = string.punctuation.maketrans('' , '' , string.punctuation ) SCREAMING_SNAKE_CASE_ : Optional[Any] = np.char.translate(_SCREAMING_SNAKE_CASE , table=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : List[str] = np.char.translate(_SCREAMING_SNAKE_CASE , table=_SCREAMING_SNAKE_CASE ) if ignore_numbers: SCREAMING_SNAKE_CASE_ : int = string.digits.maketrans('' , '' , string.digits ) SCREAMING_SNAKE_CASE_ : int = np.char.translate(_SCREAMING_SNAKE_CASE , table=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Tuple = np.char.translate(_SCREAMING_SNAKE_CASE , table=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : List[str] = predictions == references return {"exact_match": np.mean(_SCREAMING_SNAKE_CASE ) * 100}
253
import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint lowerCAmelCase : List[str] = { '169M': 12, '430M': 24, '1B5': 24, '3B': 32, '7B': 32, '14B': 40, } lowerCAmelCase : Tuple = { '169M': 7_68, '430M': 10_24, '1B5': 20_48, '3B': 25_60, '7B': 40_96, '14B': 51_20, } def A_ ( a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = list(state_dict.keys() ) for name in state_dict_keys: SCREAMING_SNAKE_CASE_ : Optional[int] = state_dict.pop(a ) # emb -> embedding if name.startswith('emb.' ): SCREAMING_SNAKE_CASE_ : Optional[Any] = name.replace('emb.' , 'embeddings.' ) # ln_0 -> pre_ln (only present at block 0) if name.startswith('blocks.0.ln0' ): SCREAMING_SNAKE_CASE_ : Optional[Any] = name.replace('blocks.0.ln0' , 'blocks.0.pre_ln' ) # att -> attention SCREAMING_SNAKE_CASE_ : Optional[Any] = re.sub(R'blocks\.(\d+)\.att' , R'blocks.\1.attention' , a ) # ffn -> feed_forward SCREAMING_SNAKE_CASE_ : Any = re.sub(R'blocks\.(\d+)\.ffn' , R'blocks.\1.feed_forward' , a ) # time_mix_k -> time_mix_key and reshape if name.endswith('.time_mix_k' ): SCREAMING_SNAKE_CASE_ : Any = name.replace('.time_mix_k' , '.time_mix_key' ) # time_mix_v -> time_mix_value and reshape if name.endswith('.time_mix_v' ): SCREAMING_SNAKE_CASE_ : Optional[int] = name.replace('.time_mix_v' , '.time_mix_value' ) # time_mix_r -> time_mix_key and reshape if name.endswith('.time_mix_r' ): SCREAMING_SNAKE_CASE_ : List[str] = name.replace('.time_mix_r' , '.time_mix_receptance' ) if name != "head.weight": SCREAMING_SNAKE_CASE_ : Any = 'rwkv.' + name SCREAMING_SNAKE_CASE_ : Dict = weight return state_dict def A_ ( a , a , a , a=None , a=None , a=False , a=None ): """simple docstring""" if tokenizer_file is None: print('No `--tokenizer_file` provided, we will use the default tokenizer.' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = 5_0_2_7_7 SCREAMING_SNAKE_CASE_ : Union[str, Any] = AutoTokenizer.from_pretrained('EleutherAI/gpt-neox-20b' ) else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = PreTrainedTokenizerFast(tokenizer_file=a ) SCREAMING_SNAKE_CASE_ : Optional[Any] = len(a ) tokenizer.save_pretrained(a ) # 2. Build the config SCREAMING_SNAKE_CASE_ : List[Any] = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: SCREAMING_SNAKE_CASE_ : str = candidate break if size is None: raise ValueError('Could not infer the size, please provide it with the `--size` argument.' ) if size not in possible_sizes: raise ValueError(f"`size` should be one of {possible_sizes}, got {size}." ) SCREAMING_SNAKE_CASE_ : str = RwkvConfig( vocab_size=a , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(a ) # 3. Download model file then convert state_dict SCREAMING_SNAKE_CASE_ : List[Any] = hf_hub_download(a , a ) SCREAMING_SNAKE_CASE_ : int = torch.load(a , map_location='cpu' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = convert_state_dict(a ) # 4. Split in shards and save SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = shard_checkpoint(a ) for shard_file, shard in shards.items(): torch.save(a , os.path.join(a , a ) ) if index is not None: SCREAMING_SNAKE_CASE_ : Any = os.path.join(a , a ) # Save the index as well with open(a , 'w' , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE_ : int = json.dumps(a , indent=2 , sort_keys=a ) + '\n' f.write(a ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( 'Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model.' ) SCREAMING_SNAKE_CASE_ : List[Any] = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: SCREAMING_SNAKE_CASE_ : List[str] = torch.load(os.path.join(a , a ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(a , a ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError('Please provide a `model_name` to push the model to the Hub.' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = AutoModelForCausalLM.from_pretrained(a ) model.push_to_hub(a , max_shard_size='2GB' ) tokenizer.push_to_hub(a ) if __name__ == "__main__": lowerCAmelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--repo_id', default=None, type=str, required=True, help='Repo ID from which to pull the checkpoint.' ) parser.add_argument( '--checkpoint_file', default=None, type=str, required=True, help='Name of the checkpoint file in the repo.' ) parser.add_argument( '--output_dir', default=None, type=str, required=True, help='Where to save the converted model.' ) parser.add_argument( '--tokenizer_file', default=None, type=str, help='Path to the tokenizer file to use (if not provided, only the model is converted).', ) parser.add_argument( '--size', default=None, type=str, help='Size of the model. Will be inferred from the `checkpoint_file` if not passed.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Push to the Hub the converted model.', ) parser.add_argument( '--model_name', default=None, type=str, help='Name of the pushed model on the Hub, including the username / organization.', ) lowerCAmelCase : Optional[int] = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
253
1
"""simple docstring""" def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Tuple: return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_=0 ) -> str: return sorted(A__ , key=lambda lowercase_ : x[column] ) def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=float("inf" ) ) -> int: for i in range(points_counts - 1 ): for j in range(i + 1 , A__ ): A__ = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: A__ = current_dis return min_dis def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=float("inf" ) ) -> Tuple: for i in range(min(6 , points_counts - 1 ) , A__ ): for j in range(max(0 , i - 6 ) , A__ ): A__ = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: A__ = current_dis return min_dis def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> List[str]: if points_counts <= 3: return dis_between_closest_pair(A__ , A__ ) # recursion A__ = points_counts // 2 A__ = closest_pair_of_points_sqr( A__ , points_sorted_on_y[:mid] , A__ ) A__ = closest_pair_of_points_sqr( A__ , points_sorted_on_y[mid:] , points_counts - mid ) A__ = min(A__ , A__ ) A__ = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(A__ ) A__ = dis_between_closest_in_strip( A__ , len(A__ ) , A__ ) return min(A__ , A__ ) def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Optional[int]: A__ = column_based_sort(A__ , column=0 ) A__ = column_based_sort(A__ , column=1 ) return ( closest_pair_of_points_sqr( A__ , A__ , A__ ) ) ** 0.5 if __name__ == "__main__": SCREAMING_SNAKE_CASE = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)] print("Distance:", closest_pair_of_points(points, len(points)))
357
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { "Intel/dpt-large": "https://huggingface.co/Intel/dpt-large/resolve/main/config.json", # See all DPT models at https://huggingface.co/models?filter=dpt } class UpperCAmelCase_ ( A_ ): lowercase__ = '''dpt''' def __init__( self : List[Any] , snake_case_ : Union[str, Any]=768 , snake_case_ : Tuple=12 , snake_case_ : Tuple=12 , snake_case_ : List[Any]=3_072 , snake_case_ : Dict="gelu" , snake_case_ : Tuple=0.0 , snake_case_ : int=0.0 , snake_case_ : Optional[int]=0.02 , snake_case_ : Union[str, Any]=1e-12 , snake_case_ : Tuple=384 , snake_case_ : Tuple=16 , snake_case_ : Optional[Any]=3 , snake_case_ : Dict=False , snake_case_ : Any=True , snake_case_ : Any=[2, 5, 8, 11] , snake_case_ : Union[str, Any]="project" , snake_case_ : Union[str, Any]=[4, 2, 1, 0.5] , snake_case_ : List[str]=[96, 192, 384, 768] , snake_case_ : int=256 , snake_case_ : Tuple=-1 , snake_case_ : List[str]=False , snake_case_ : int=True , snake_case_ : List[Any]=0.4 , snake_case_ : Optional[Any]=255 , snake_case_ : List[str]=0.1 , snake_case_ : List[str]=[1, 1_024, 24, 24] , snake_case_ : Union[str, Any]=[0, 1] , snake_case_ : Any=None , **snake_case_ : Optional[Any] , ) -> Optional[int]: '''simple docstring''' super().__init__(**snake_case_ ) A__ = hidden_size A__ = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info("Initializing the config with a `BiT` backbone." ) A__ = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, } A__ = BitConfig(**snake_case_ ) elif isinstance(snake_case_ , snake_case_ ): logger.info("Initializing the config with a `BiT` backbone." ) A__ = BitConfig(**snake_case_ ) elif isinstance(snake_case_ , snake_case_ ): A__ = backbone_config else: raise ValueError( F"""backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.""" ) A__ = backbone_featmap_shape A__ = neck_ignore_stages if readout_type != "project": raise ValueError("Readout type must be 'project' when using `DPT-hybrid` mode." ) else: A__ = None A__ = None A__ = [] A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = initializer_range A__ = layer_norm_eps A__ = image_size A__ = patch_size A__ = num_channels A__ = qkv_bias A__ = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError("Readout_type must be one of ['ignore', 'add', 'project']" ) A__ = readout_type A__ = reassemble_factors A__ = neck_hidden_sizes A__ = fusion_hidden_size A__ = head_in_index A__ = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) A__ = use_auxiliary_head A__ = auxiliary_loss_weight A__ = semantic_loss_ignore_index A__ = semantic_classifier_dropout def __magic_name__ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' A__ = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: A__ = self.backbone_config.to_dict() A__ = self.__class__.model_type return output
230
0
from __future__ import annotations def lowerCAmelCase_ ( __UpperCAmelCase: int ) -> bool: UpperCamelCase__ : Tuple = str(__UpperCAmelCase ) return len(__UpperCAmelCase ) == 9 and set(__UpperCAmelCase ) == set('''123456789''' ) def lowerCAmelCase_ ( ) -> int | None: for base_num in range(9999 , 4999 , -1 ): UpperCamelCase__ : List[str] = 10_0002 * base_num if is_9_pandigital(__UpperCAmelCase ): return candidate for base_num in range(333 , 99 , -1 ): UpperCamelCase__ : Dict = 100_2003 * base_num if is_9_pandigital(__UpperCAmelCase ): return candidate return None if __name__ == "__main__": print(F'''{solution() = }''')
201
def lowerCAmelCase_ ( __UpperCAmelCase: int ) -> int: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or number < 0: raise ValueError('''Input must be a non-negative integer''' ) UpperCamelCase__ : Optional[Any] = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
201
1
"""simple docstring""" from __future__ import annotations from math import gcd def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase = 2 , lowerCAmelCase = 1 , lowerCAmelCase = 3 , ): '''simple docstring''' # A value less than 2 can cause an infinite loop in the algorithm. if num < 2: raise ValueError("""The input value cannot be less than 2""" ) # Because of the relationship between ``f(f(x))`` and ``f(x)``, this # algorithm struggles to find factors that are divisible by two. # As a workaround, we specifically check for two and even inputs. # See: https://math.stackexchange.com/a/2856214/165820 if num > 2 and num % 2 == 0: return 2 # Pollard's Rho algorithm requires a function that returns pseudorandom # values between 0 <= X < ``num``. It doesn't need to be random in the # sense that the output value is cryptographically secure or difficult # to calculate, it only needs to be random in the sense that all output # values should be equally likely to appear. # For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num`` # However, the success of Pollard's algorithm isn't guaranteed and is # determined in part by the initial seed and the chosen random function. # To make retries easier, we will instead use ``f(x) = (x**2 + C) % num`` # where ``C`` is a value that we can modify between each attempt. def rand_fn(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> int: return (pow(lowerCAmelCase , 2 ) + step) % modulus for _ in range(lowerCAmelCase ): # These track the position within the cycle detection logic. UpperCAmelCase = seed UpperCAmelCase = seed while True: # At each iteration, the tortoise moves one step and the hare moves two. UpperCAmelCase = rand_fn(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = rand_fn(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = rand_fn(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # At some point both the tortoise and the hare will enter a cycle whose # length ``p`` is a divisor of ``num``. Once in that cycle, at some point # the tortoise and hare will end up on the same value modulo ``p``. # We can detect when this happens because the position difference between # the tortoise and the hare will share a common divisor with ``num``. UpperCAmelCase = gcd(hare - tortoise , lowerCAmelCase ) if divisor == 1: # No common divisor yet, just keep searching. continue else: # We found a common divisor! if divisor == num: # Unfortunately, the divisor is ``num`` itself and is useless. break else: # The divisor is a nontrivial factor of ``num``! return divisor # If we made it here, then this attempt failed. # We need to pick a new starting seed for the tortoise and hare # in addition to a new step value for the random function. # To keep this example implementation deterministic, the # new values will be generated based on currently available # values instead of using something like ``random.randint``. # We can use the hare's position as the new seed. # This is actually what Richard Brent's the "optimized" variant does. UpperCAmelCase = hare # The new step value for the random function can just be incremented. # At first the results will be similar to what the old function would # have produced, but the value will quickly diverge after a bit. step += 1 # We haven't found a divisor within the requested number of attempts. # We were unlucky or ``num`` itself is actually prime. return None if __name__ == "__main__": import argparse lowerCAmelCase_ : Optional[int] = argparse.ArgumentParser() parser.add_argument( '''num''', type=int, help='''The value to find a divisor of''', ) parser.add_argument( '''--attempts''', type=int, default=3, help='''The number of attempts before giving up''', ) lowerCAmelCase_ : Tuple = parser.parse_args() lowerCAmelCase_ : Any = pollard_rho(args.num, attempts=args.attempts) if divisor is None: print(F'{args.num} is probably prime') else: lowerCAmelCase_ : Optional[Any] = args.num // divisor print(F'{args.num} = {divisor} * {quotient}')
248
"""simple docstring""" lowerCAmelCase_ : Dict = {str(digit): digit**5 for digit in range(1_0)} def _lowerCAmelCase ( lowerCAmelCase ): '''simple docstring''' return sum(DIGITS_FIFTH_POWER[digit] for digit in str(lowerCAmelCase ) ) def _lowerCAmelCase ( ): '''simple docstring''' return sum( number for number in range(1000 , 1000000 ) if number == digits_fifth_powers_sum(lowerCAmelCase ) ) if __name__ == "__main__": print(solution())
248
1
from math import sqrt def lowerCamelCase_ ( UpperCamelCase__ : int ) -> bool: """simple docstring""" assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) and ( number >= 0 ), "'number' must been an int and positive" __lowerCamelCase = True # 0 and 1 are none primes. if number <= 1: __lowerCamelCase = False for divisor in range(2 , int(round(sqrt(UpperCamelCase__ ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: __lowerCamelCase = False break # precondition assert isinstance(UpperCamelCase__ , UpperCamelCase__ ), "'status' must been from type bool" return status def lowerCamelCase_ ( UpperCamelCase__ : str ) -> Tuple: """simple docstring""" assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N __lowerCamelCase = list(range(2 , n + 1 ) ) __lowerCamelCase = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(UpperCamelCase__ ) ): for j in range(i + 1 , len(UpperCamelCase__ ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): __lowerCamelCase = 0 # filters actual prime numbers. __lowerCamelCase = [x for x in begin_list if x != 0] # precondition assert isinstance(UpperCamelCase__ , UpperCamelCase__ ), "'ans' must been from type list" return ans def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ) -> List[str]: """simple docstring""" assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) and (n > 2), "'N' must been an int and > 2" __lowerCamelCase = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(UpperCamelCase__ ): ans.append(UpperCamelCase__ ) # precondition assert isinstance(UpperCamelCase__ , UpperCamelCase__ ), "'ans' must been from type list" return ans def lowerCamelCase_ ( UpperCamelCase__ : Optional[int] ) -> int: """simple docstring""" assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) and number >= 0, "'number' must been an int and >= 0" __lowerCamelCase = [] # this list will be returns of the function. # potential prime number factors. __lowerCamelCase = 2 __lowerCamelCase = number if number == 0 or number == 1: ans.append(UpperCamelCase__ ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(UpperCamelCase__ ): while quotient != 1: if is_prime(UpperCamelCase__ ) and (quotient % factor == 0): ans.append(UpperCamelCase__ ) quotient /= factor else: factor += 1 else: ans.append(UpperCamelCase__ ) # precondition assert isinstance(UpperCamelCase__ , UpperCamelCase__ ), "'ans' must been from type list" return ans def lowerCamelCase_ ( UpperCamelCase__ : Tuple ) -> Optional[int]: """simple docstring""" assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) and ( number >= 0 ), "'number' bust been an int and >= 0" __lowerCamelCase = 0 # prime factorization of 'number' __lowerCamelCase = prime_factorization(UpperCamelCase__ ) __lowerCamelCase = max(UpperCamelCase__ ) # precondition assert isinstance(UpperCamelCase__ , UpperCamelCase__ ), "'ans' must been from type int" return ans def lowerCamelCase_ ( UpperCamelCase__ : Union[str, Any] ) -> Tuple: """simple docstring""" assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) and ( number >= 0 ), "'number' bust been an int and >= 0" __lowerCamelCase = 0 # prime factorization of 'number' __lowerCamelCase = prime_factorization(UpperCamelCase__ ) __lowerCamelCase = min(UpperCamelCase__ ) # precondition assert isinstance(UpperCamelCase__ , UpperCamelCase__ ), "'ans' must been from type int" return ans def lowerCamelCase_ ( UpperCamelCase__ : Optional[int] ) -> Optional[int]: """simple docstring""" assert isinstance(UpperCamelCase__ , UpperCamelCase__ ), "'number' must been an int" assert isinstance(number % 2 == 0 , UpperCamelCase__ ), "compare bust been from type bool" return number % 2 == 0 def lowerCamelCase_ ( UpperCamelCase__ : str ) -> str: """simple docstring""" assert isinstance(UpperCamelCase__ , UpperCamelCase__ ), "'number' must been an int" assert isinstance(number % 2 != 0 , UpperCamelCase__ ), "compare bust been from type bool" return number % 2 != 0 def lowerCamelCase_ ( UpperCamelCase__ : Union[str, Any] ) -> Optional[Any]: """simple docstring""" assert ( isinstance(UpperCamelCase__ , UpperCamelCase__ ) and (number > 2) and is_even(UpperCamelCase__ ) ), "'number' must been an int, even and > 2" __lowerCamelCase = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' __lowerCamelCase = get_prime_numbers(UpperCamelCase__ ) __lowerCamelCase = len(UpperCamelCase__ ) # run variable for while-loops. __lowerCamelCase = 0 __lowerCamelCase = None # exit variable. for break up the loops __lowerCamelCase = True while i < len_pn and loop: __lowerCamelCase = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: __lowerCamelCase = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(UpperCamelCase__ , UpperCamelCase__ ) and (len(UpperCamelCase__ ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : Optional[int] ) -> Optional[Any]: """simple docstring""" assert ( isinstance(UpperCamelCase__ , UpperCamelCase__ ) and isinstance(UpperCamelCase__ , UpperCamelCase__ ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." __lowerCamelCase = 0 while numbera != 0: __lowerCamelCase = numbera % numbera __lowerCamelCase = numbera __lowerCamelCase = rest # precondition assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def lowerCamelCase_ ( UpperCamelCase__ : Dict , UpperCamelCase__ : str ) -> int: """simple docstring""" assert ( isinstance(UpperCamelCase__ , UpperCamelCase__ ) and isinstance(UpperCamelCase__ , UpperCamelCase__ ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." __lowerCamelCase = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' __lowerCamelCase = prime_factorization(UpperCamelCase__ ) __lowerCamelCase = prime_factorization(UpperCamelCase__ ) elif numbera == 1 or numbera == 1: __lowerCamelCase = [] __lowerCamelCase = [] __lowerCamelCase = max(UpperCamelCase__ , UpperCamelCase__ ) __lowerCamelCase = 0 __lowerCamelCase = 0 __lowerCamelCase = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: __lowerCamelCase = prime_fac_a.count(UpperCamelCase__ ) __lowerCamelCase = prime_fac_a.count(UpperCamelCase__ ) for _ in range(max(UpperCamelCase__ , UpperCamelCase__ ) ): ans *= n else: __lowerCamelCase = prime_fac_a.count(UpperCamelCase__ ) for _ in range(UpperCamelCase__ ): ans *= n done.append(UpperCamelCase__ ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: __lowerCamelCase = prime_fac_a.count(UpperCamelCase__ ) for _ in range(UpperCamelCase__ ): ans *= n done.append(UpperCamelCase__ ) # precondition assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def lowerCamelCase_ ( UpperCamelCase__ : Dict ) -> str: """simple docstring""" assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) and (n >= 0), "'number' must been a positive int" __lowerCamelCase = 0 __lowerCamelCase = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(UpperCamelCase__ ): ans += 1 # precondition assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) and is_prime( UpperCamelCase__ ), "'ans' must been a prime number and from type int" return ans def lowerCamelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : Tuple ) -> Tuple: """simple docstring""" assert ( is_prime(UpperCamelCase__ ) and is_prime(UpperCamelCase__ ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" __lowerCamelCase = p_number_a + 1 # jump to the next number __lowerCamelCase = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(UpperCamelCase__ ): number += 1 while number < p_number_a: ans.append(UpperCamelCase__ ) number += 1 # fetch the next prime number. while not is_prime(UpperCamelCase__ ): number += 1 # precondition assert ( isinstance(UpperCamelCase__ , UpperCamelCase__ ) and ans[0] != p_number_a and ans[len(UpperCamelCase__ ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def lowerCamelCase_ ( UpperCamelCase__ : int ) -> Optional[Any]: """simple docstring""" assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) and (n >= 1), "'n' must been int and >= 1" __lowerCamelCase = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(UpperCamelCase__ ) # precondition assert ans[0] == 1 and ans[len(UpperCamelCase__ ) - 1] == n, "Error in function getDivisiors(...)" return ans def lowerCamelCase_ ( UpperCamelCase__ : Dict ) -> Optional[int]: """simple docstring""" assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) and ( number > 1 ), "'number' must been an int and >= 1" __lowerCamelCase = get_divisors(UpperCamelCase__ ) # precondition assert ( isinstance(UpperCamelCase__ , UpperCamelCase__ ) and (divisors[0] == 1) and (divisors[len(UpperCamelCase__ ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def lowerCamelCase_ ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[str] ) -> List[Any]: """simple docstring""" assert ( isinstance(UpperCamelCase__ , UpperCamelCase__ ) and isinstance(UpperCamelCase__ , UpperCamelCase__ ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. __lowerCamelCase = gcd(abs(UpperCamelCase__ ) , abs(UpperCamelCase__ ) ) # precondition assert ( isinstance(UpperCamelCase__ , UpperCamelCase__ ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def lowerCamelCase_ ( UpperCamelCase__ : List[str] ) -> Optional[Any]: """simple docstring""" assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) and (n >= 0), "'n' must been a int and >= 0" __lowerCamelCase = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def lowerCamelCase_ ( UpperCamelCase__ : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) and (n >= 0), "'n' must been an int and >= 0" __lowerCamelCase = 0 __lowerCamelCase = 1 __lowerCamelCase = 1 # this will be return for _ in range(n - 1 ): __lowerCamelCase = ans ans += fiba __lowerCamelCase = tmp return ans
90
from ..utils import DummyObject, requires_backends class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''onnx'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ['onnx'] ) @classmethod def lowercase_ ( cls , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(cls , ['onnx'] ) @classmethod def lowercase_ ( cls , *lowerCamelCase__ , **lowerCamelCase__ ) -> List[str]: '''simple docstring''' requires_backends(cls , ['onnx'] )
90
1
import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class lowercase_ ( unittest.TestCase ): @require_torch def UpperCamelCase_ ( self : Union[str, Any] ) -> Optional[int]: _snake_case = pipeline( task='''zero-shot-audio-classification''' , model='''hf-internal-testing/tiny-clap-htsat-unfused''' ) _snake_case = load_dataset('''ashraq/esc50''' ) _snake_case = dataset['''train''']['''audio'''][-1]['''array'''] _snake_case = audio_classifier(A__ , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] ) self.assertEqual( nested_simplify(A__ ) , [{'''score''': 0.501, '''label''': '''Sound of a dog'''}, {'''score''': 0.499, '''label''': '''Sound of vaccum cleaner'''}] , ) @unittest.skip('''No models are available in TF''' ) def UpperCamelCase_ ( self : Union[str, Any] ) -> Tuple: pass @slow @require_torch def UpperCamelCase_ ( self : Optional[Any] ) -> Union[str, Any]: _snake_case = pipeline( task='''zero-shot-audio-classification''' , model='''laion/clap-htsat-unfused''' , ) # This is an audio of a dog _snake_case = load_dataset('''ashraq/esc50''' ) _snake_case = dataset['''train''']['''audio'''][-1]['''array'''] _snake_case = audio_classifier(A__ , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] ) self.assertEqual( nested_simplify(A__ ) , [ {'''score''': 0.999, '''label''': '''Sound of a dog'''}, {'''score''': 0.001, '''label''': '''Sound of vaccum cleaner'''}, ] , ) _snake_case = audio_classifier([audio] * 5 , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] ) self.assertEqual( nested_simplify(A__ ) , [ [ {'''score''': 0.999, '''label''': '''Sound of a dog'''}, {'''score''': 0.001, '''label''': '''Sound of vaccum cleaner'''}, ], ] * 5 , ) _snake_case = audio_classifier( [audio] * 5 , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] , batch_size=5 ) self.assertEqual( nested_simplify(A__ ) , [ [ {'''score''': 0.999, '''label''': '''Sound of a dog'''}, {'''score''': 0.001, '''label''': '''Sound of vaccum cleaner'''}, ], ] * 5 , ) @unittest.skip('''No models are available in TF''' ) def UpperCamelCase_ ( self : Tuple ) -> List[str]: pass
369
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging __A = logging.get_logger(__name__) __A = '''▁''' __A = { '''vocab_file''': '''vocab.json''', '''spm_file''': '''sentencepiece.bpe.model''', '''tokenizer_config_file''': '''tokenizer_config.json''', } __A = { '''vocab_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json''', }, '''spm_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model''', }, '''tokenizer_config_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json''', }, } __A = { '''facebook/m2m100_418M''': 10_24, } # fmt: off __A = { '''m2m100''': ['''af''', '''am''', '''ar''', '''ast''', '''az''', '''ba''', '''be''', '''bg''', '''bn''', '''br''', '''bs''', '''ca''', '''ceb''', '''cs''', '''cy''', '''da''', '''de''', '''el''', '''en''', '''es''', '''et''', '''fa''', '''ff''', '''fi''', '''fr''', '''fy''', '''ga''', '''gd''', '''gl''', '''gu''', '''ha''', '''he''', '''hi''', '''hr''', '''ht''', '''hu''', '''hy''', '''id''', '''ig''', '''ilo''', '''is''', '''it''', '''ja''', '''jv''', '''ka''', '''kk''', '''km''', '''kn''', '''ko''', '''lb''', '''lg''', '''ln''', '''lo''', '''lt''', '''lv''', '''mg''', '''mk''', '''ml''', '''mn''', '''mr''', '''ms''', '''my''', '''ne''', '''nl''', '''no''', '''ns''', '''oc''', '''or''', '''pa''', '''pl''', '''ps''', '''pt''', '''ro''', '''ru''', '''sd''', '''si''', '''sk''', '''sl''', '''so''', '''sq''', '''sr''', '''ss''', '''su''', '''sv''', '''sw''', '''ta''', '''th''', '''tl''', '''tn''', '''tr''', '''uk''', '''ur''', '''uz''', '''vi''', '''wo''', '''xh''', '''yi''', '''yo''', '''zh''', '''zu'''], '''wmt21''': ['''en''', '''ha''', '''is''', '''ja''', '''cs''', '''ru''', '''zh''', '''de'''] } class lowercase_ ( __lowercase ): UpperCamelCase_ : str = VOCAB_FILES_NAMES UpperCamelCase_ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : Dict = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : Union[str, Any] = ["input_ids", "attention_mask"] UpperCamelCase_ : List[int] = [] UpperCamelCase_ : List[int] = [] def __init__( self : str , A__ : str , A__ : Optional[Any] , A__ : Union[str, Any]=None , A__ : Dict=None , A__ : Any="<s>" , A__ : Union[str, Any]="</s>" , A__ : Tuple="</s>" , A__ : Dict="<pad>" , A__ : List[Any]="<unk>" , A__ : str="m2m100" , A__ : Optional[Dict[str, Any]] = None , A__ : List[Any]=8 , **A__ : Union[str, Any] , ) -> None: _snake_case = {} if sp_model_kwargs is None else sp_model_kwargs _snake_case = language_codes _snake_case = FAIRSEQ_LANGUAGE_CODES[language_codes] _snake_case = {lang_code: f"""__{lang_code}__""" for lang_code in fairseq_language_code} _snake_case = kwargs.get('''additional_special_tokens''' , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(A__ ) for lang_code in fairseq_language_code if self.get_lang_token(A__ ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=A__ , tgt_lang=A__ , bos_token=A__ , eos_token=A__ , sep_token=A__ , unk_token=A__ , pad_token=A__ , language_codes=A__ , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=A__ , **A__ , ) _snake_case = vocab_file _snake_case = load_json(A__ ) _snake_case = {v: k for k, v in self.encoder.items()} _snake_case = spm_file _snake_case = load_spm(A__ , self.sp_model_kwargs ) _snake_case = len(self.encoder ) _snake_case = { self.get_lang_token(A__ ): self.encoder_size + i for i, lang_code in enumerate(A__ ) } _snake_case = {lang_code: self.encoder_size + i for i, lang_code in enumerate(A__ )} _snake_case = {v: k for k, v in self.lang_token_to_id.items()} _snake_case = src_lang if src_lang is not None else '''en''' _snake_case = tgt_lang _snake_case = self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) _snake_case = num_madeup_words @property def UpperCamelCase_ ( self : int ) -> int: return len(self.encoder ) + len(self.lang_token_to_id ) @property def UpperCamelCase_ ( self : Dict ) -> str: return self._src_lang @src_lang.setter def UpperCamelCase_ ( self : List[str] , A__ : str ) -> None: _snake_case = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def UpperCamelCase_ ( self : Any , A__ : str ) -> List[str]: return self.sp_model.encode(A__ , out_type=A__ ) def UpperCamelCase_ ( self : Optional[int] , A__ : Dict ) -> str: if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(A__ , self.encoder[self.unk_token] ) def UpperCamelCase_ ( self : Union[str, Any] , A__ : int ) -> str: if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(A__ , self.unk_token ) def UpperCamelCase_ ( self : Optional[int] , A__ : Optional[int] ) -> List[Any]: _snake_case = [] _snake_case = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(A__ ) + token _snake_case = [] else: current_sub_tokens.append(A__ ) out_string += self.sp_model.decode(A__ ) return out_string.strip() def UpperCamelCase_ ( self : str , A__ : List[int] , A__ : Optional[List[int]] = None , A__ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A__ , token_ids_a=A__ , already_has_special_tokens=A__ ) _snake_case = [1] * len(self.prefix_tokens ) _snake_case = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(A__ )) + suffix_ones return prefix_ones + ([0] * len(A__ )) + ([0] * len(A__ )) + suffix_ones def UpperCamelCase_ ( self : Tuple , A__ : List[int] , A__ : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCamelCase_ ( self : str ) -> Dict: _snake_case = {self.convert_ids_to_tokens(A__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : str ) -> Dict: _snake_case = self.__dict__.copy() _snake_case = None return state def __setstate__( self : Union[str, Any] , A__ : Dict ) -> None: _snake_case = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _snake_case = {} _snake_case = load_spm(self.spm_file , self.sp_model_kwargs ) def UpperCamelCase_ ( self : Any , A__ : str , A__ : Optional[str] = None ) -> Tuple[str]: _snake_case = Path(A__ ) if not save_dir.is_dir(): raise OSError(f"""{save_directory} should be a directory""" ) _snake_case = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''vocab_file'''] ) _snake_case = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''spm_file'''] ) save_json(self.encoder , A__ ) if os.path.abspath(self.spm_file ) != os.path.abspath(A__ ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , A__ ) elif not os.path.isfile(self.spm_file ): with open(A__ , '''wb''' ) as fi: _snake_case = self.sp_model.serialized_model_proto() fi.write(A__ ) return (str(A__ ), str(A__ )) def UpperCamelCase_ ( self : Optional[int] , A__ : List[str] , A__ : str = "en" , A__ : Optional[List[str]] = None , A__ : str = "ro" , **A__ : List[Any] , ) -> BatchEncoding: _snake_case = src_lang _snake_case = tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(A__ , A__ , **A__ ) def UpperCamelCase_ ( self : List[str] , A__ : int , A__ : Optional[str] , A__ : Optional[str] , **A__ : Union[str, Any] ) -> Tuple: if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) _snake_case = src_lang _snake_case = self(A__ , add_special_tokens=A__ , **A__ ) _snake_case = self.get_lang_id(A__ ) _snake_case = tgt_lang_id return inputs def UpperCamelCase_ ( self : Dict ) -> Optional[Any]: self.set_src_lang_special_tokens(self.src_lang ) def UpperCamelCase_ ( self : Optional[Any] ) -> Dict: self.set_tgt_lang_special_tokens(self.tgt_lang ) def UpperCamelCase_ ( self : List[Any] , A__ : str ) -> None: _snake_case = self.get_lang_token(A__ ) _snake_case = self.lang_token_to_id[lang_token] _snake_case = [self.cur_lang_id] _snake_case = [self.eos_token_id] def UpperCamelCase_ ( self : List[str] , A__ : str ) -> None: _snake_case = self.get_lang_token(A__ ) _snake_case = self.lang_token_to_id[lang_token] _snake_case = [self.cur_lang_id] _snake_case = [self.eos_token_id] def UpperCamelCase_ ( self : Dict , A__ : str ) -> str: return self.lang_code_to_token[lang] def UpperCamelCase_ ( self : Tuple , A__ : str ) -> int: _snake_case = self.get_lang_token(A__ ) return self.lang_token_to_id[lang_token] def snake_case_(_UpperCamelCase , _UpperCamelCase ) -> sentencepiece.SentencePieceProcessor: """simple docstring""" _snake_case = sentencepiece.SentencePieceProcessor(**_UpperCamelCase ) spm.Load(str(_UpperCamelCase ) ) return spm def snake_case_(_UpperCamelCase ) -> Union[Dict, List]: """simple docstring""" with open(_UpperCamelCase , '''r''' ) as f: return json.load(_UpperCamelCase ) def snake_case_(_UpperCamelCase , _UpperCamelCase ) -> None: """simple docstring""" with open(_UpperCamelCase , '''w''' ) as f: json.dump(_UpperCamelCase , _UpperCamelCase , indent=2 )
278
0
from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def lowerCamelCase__ ( ) -> Dict: UpperCamelCase_ = { """repo_name""": ["""test_repo1""", """test_repo2""", """test_repo3"""], """path""": ["""test_1.py""", """test_2.py""", """unit_test.py"""], """content""": ["""a """ * 20, """a """ * 30, """b """ * 7], } UpperCamelCase_ = Dataset.from_dict(a__ ) return dataset class lowercase_ ( __SCREAMING_SNAKE_CASE ): def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = get_dataset() UpperCamelCase_ = make_duplicate_clusters(__UpperCamelCase , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = get_dataset() UpperCamelCase_ , UpperCamelCase_ = deduplicate_dataset(__UpperCamelCase ) self.assertEqual(len(__UpperCamelCase ) , 2 ) print(__UpperCamelCase ) self.assertEqual(duplicate_clusters[0][0]["""copies"""] , 2 ) self.assertEqual(duplicate_clusters[0][0]["""is_extreme"""] , __UpperCamelCase )
122
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. _A = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''} @is_pipeline_test class lowercase_ ( unittest.TestCase ): A__ : List[str] = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING A__ : Union[str, Any] = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: A__ : Union[str, Any] = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: A__ : List[Any] = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = ZeroShotClassificationPipeline( model=__UpperCamelCase , tokenizer=__UpperCamelCase , candidate_labels=["""polics""", """health"""] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = classifier("""Who are you voting for in 2020?""" , candidate_labels="""politics""" ) self.assertEqual(__UpperCamelCase , {"""sequence""": ANY(__UpperCamelCase ), """labels""": [ANY(__UpperCamelCase )], """scores""": [ANY(__UpperCamelCase )]} ) # No kwarg UpperCamelCase_ = classifier("""Who are you voting for in 2020?""" , ["""politics"""] ) self.assertEqual(__UpperCamelCase , {"""sequence""": ANY(__UpperCamelCase ), """labels""": [ANY(__UpperCamelCase )], """scores""": [ANY(__UpperCamelCase )]} ) UpperCamelCase_ = classifier("""Who are you voting for in 2020?""" , candidate_labels=["""politics"""] ) self.assertEqual(__UpperCamelCase , {"""sequence""": ANY(__UpperCamelCase ), """labels""": [ANY(__UpperCamelCase )], """scores""": [ANY(__UpperCamelCase )]} ) UpperCamelCase_ = classifier("""Who are you voting for in 2020?""" , candidate_labels="""politics, public health""" ) self.assertEqual( __UpperCamelCase , {"""sequence""": ANY(__UpperCamelCase ), """labels""": [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )], """scores""": [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs["""scores"""] ) ) , 1.0 ) UpperCamelCase_ = classifier("""Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health"""] ) self.assertEqual( __UpperCamelCase , {"""sequence""": ANY(__UpperCamelCase ), """labels""": [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )], """scores""": [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs["""scores"""] ) ) , 1.0 ) UpperCamelCase_ = classifier( """Who are you voting for in 2020?""" , candidate_labels="""politics""" , hypothesis_template="""This text is about {}""" ) self.assertEqual(__UpperCamelCase , {"""sequence""": ANY(__UpperCamelCase ), """labels""": [ANY(__UpperCamelCase )], """scores""": [ANY(__UpperCamelCase )]} ) # https://github.com/huggingface/transformers/issues/13846 UpperCamelCase_ = classifier(["""I am happy"""] , ["""positive""", """negative"""] ) self.assertEqual( __UpperCamelCase , [ {"""sequence""": ANY(__UpperCamelCase ), """labels""": [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )], """scores""": [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )]} for i in range(1 ) ] , ) UpperCamelCase_ = classifier(["""I am happy""", """I am sad"""] , ["""positive""", """negative"""] ) self.assertEqual( __UpperCamelCase , [ {"""sequence""": ANY(__UpperCamelCase ), """labels""": [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )], """scores""": [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )]} for i in range(2 ) ] , ) with self.assertRaises(__UpperCamelCase ): classifier("""""" , candidate_labels="""politics""" ) with self.assertRaises(__UpperCamelCase ): classifier(__UpperCamelCase , candidate_labels="""politics""" ) with self.assertRaises(__UpperCamelCase ): classifier("""Who are you voting for in 2020?""" , candidate_labels="""""" ) with self.assertRaises(__UpperCamelCase ): classifier("""Who are you voting for in 2020?""" , candidate_labels=__UpperCamelCase ) with self.assertRaises(__UpperCamelCase ): classifier( """Who are you voting for in 2020?""" , candidate_labels="""politics""" , hypothesis_template="""Not formatting template""" , ) with self.assertRaises(__UpperCamelCase ): classifier( """Who are you voting for in 2020?""" , candidate_labels="""politics""" , hypothesis_template=__UpperCamelCase , ) self.run_entailment_id(__UpperCamelCase ) def lowerCamelCase_ ( self , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = zero_shot_classifier.model.config UpperCamelCase_ = config.labelaid UpperCamelCase_ = zero_shot_classifier.entailment_id UpperCamelCase_ = {"""LABEL_0""": 0, """LABEL_1""": 1, """LABEL_2""": 2} self.assertEqual(zero_shot_classifier.entailment_id , -1 ) UpperCamelCase_ = {"""entailment""": 0, """neutral""": 1, """contradiction""": 2} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) UpperCamelCase_ = {"""ENTAIL""": 0, """NON-ENTAIL""": 1} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) UpperCamelCase_ = {"""ENTAIL""": 2, """NEUTRAL""": 1, """CONTR""": 0} self.assertEqual(zero_shot_classifier.entailment_id , 2 ) UpperCamelCase_ = original_labelaid self.assertEqual(__UpperCamelCase , zero_shot_classifier.entailment_id ) @require_torch def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = pipeline( """zero-shot-classification""" , model="""sshleifer/tiny-distilbert-base-cased-distilled-squad""" , framework="""pt""" , ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( """Who are you voting for in 2020?""" * 1_0_0 , candidate_labels=["""politics""", """public health""", """science"""] ) @require_torch def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = pipeline( """zero-shot-classification""" , model="""sshleifer/tiny-distilbert-base-cased-distilled-squad""" , framework="""pt""" , ) UpperCamelCase_ = zero_shot_classifier( """Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health""", """science"""] ) self.assertEqual( nested_simplify(__UpperCamelCase ) , { """sequence""": """Who are you voting for in 2020?""", """labels""": ["""science""", """public health""", """politics"""], """scores""": [0.333, 0.333, 0.333], } , ) @require_tf def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = pipeline( """zero-shot-classification""" , model="""sshleifer/tiny-distilbert-base-cased-distilled-squad""" , framework="""tf""" , ) UpperCamelCase_ = zero_shot_classifier( """Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health""", """science"""] ) self.assertEqual( nested_simplify(__UpperCamelCase ) , { """sequence""": """Who are you voting for in 2020?""", """labels""": ["""science""", """public health""", """politics"""], """scores""": [0.333, 0.333, 0.333], } , ) @slow @require_torch def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = pipeline("""zero-shot-classification""" , model="""roberta-large-mnli""" , framework="""pt""" ) UpperCamelCase_ = zero_shot_classifier( """Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health""", """science"""] ) self.assertEqual( nested_simplify(__UpperCamelCase ) , { """sequence""": """Who are you voting for in 2020?""", """labels""": ["""politics""", """public health""", """science"""], """scores""": [0.976, 0.015, 0.009], } , ) UpperCamelCase_ = zero_shot_classifier( """The dominant sequence transduction models are based on complex recurrent or convolutional neural networks""" """ in an encoder-decoder configuration. The best performing models also connect the encoder and decoder""" """ through an attention mechanism. We propose a new simple network architecture, the Transformer, based""" """ solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two""" """ machine translation tasks show these models to be superior in quality while being more parallelizable""" """ and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014""" """ English-to-German translation task, improving over the existing best results, including ensembles by""" """ over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new""" """ single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small""" """ fraction of the training costs of the best models from the literature. We show that the Transformer""" """ generalizes well to other tasks by applying it successfully to English constituency parsing both with""" """ large and limited training data.""" , candidate_labels=["""machine learning""", """statistics""", """translation""", """vision"""] , multi_label=__UpperCamelCase , ) self.assertEqual( nested_simplify(__UpperCamelCase ) , { """sequence""": ( """The dominant sequence transduction models are based on complex recurrent or convolutional neural""" """ networks in an encoder-decoder configuration. The best performing models also connect the""" """ encoder and decoder through an attention mechanism. We propose a new simple network""" """ architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence""" """ and convolutions entirely. Experiments on two machine translation tasks show these models to be""" """ superior in quality while being more parallelizable and requiring significantly less time to""" """ train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,""" """ improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014""" """ English-to-French translation task, our model establishes a new single-model state-of-the-art""" """ BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training""" """ costs of the best models from the literature. We show that the Transformer generalizes well to""" """ other tasks by applying it successfully to English constituency parsing both with large and""" """ limited training data.""" ), """labels""": ["""translation""", """machine learning""", """vision""", """statistics"""], """scores""": [0.817, 0.713, 0.018, 0.018], } , ) @slow @require_tf def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = pipeline("""zero-shot-classification""" , model="""roberta-large-mnli""" , framework="""tf""" ) UpperCamelCase_ = zero_shot_classifier( """Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health""", """science"""] ) self.assertEqual( nested_simplify(__UpperCamelCase ) , { """sequence""": """Who are you voting for in 2020?""", """labels""": ["""politics""", """public health""", """science"""], """scores""": [0.976, 0.015, 0.009], } , ) UpperCamelCase_ = zero_shot_classifier( """The dominant sequence transduction models are based on complex recurrent or convolutional neural networks""" """ in an encoder-decoder configuration. The best performing models also connect the encoder and decoder""" """ through an attention mechanism. We propose a new simple network architecture, the Transformer, based""" """ solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two""" """ machine translation tasks show these models to be superior in quality while being more parallelizable""" """ and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014""" """ English-to-German translation task, improving over the existing best results, including ensembles by""" """ over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new""" """ single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small""" """ fraction of the training costs of the best models from the literature. We show that the Transformer""" """ generalizes well to other tasks by applying it successfully to English constituency parsing both with""" """ large and limited training data.""" , candidate_labels=["""machine learning""", """statistics""", """translation""", """vision"""] , multi_label=__UpperCamelCase , ) self.assertEqual( nested_simplify(__UpperCamelCase ) , { """sequence""": ( """The dominant sequence transduction models are based on complex recurrent or convolutional neural""" """ networks in an encoder-decoder configuration. The best performing models also connect the""" """ encoder and decoder through an attention mechanism. We propose a new simple network""" """ architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence""" """ and convolutions entirely. Experiments on two machine translation tasks show these models to be""" """ superior in quality while being more parallelizable and requiring significantly less time to""" """ train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,""" """ improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014""" """ English-to-French translation task, our model establishes a new single-model state-of-the-art""" """ BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training""" """ costs of the best models from the literature. We show that the Transformer generalizes well to""" """ other tasks by applying it successfully to English constituency parsing both with large and""" """ limited training data.""" ), """labels""": ["""translation""", """machine learning""", """vision""", """statistics"""], """scores""": [0.817, 0.713, 0.018, 0.018], } , )
122
1
from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class lowercase__ ( nn.Module ): '''simple docstring''' def __init__( self, __magic_name__ = 16, __magic_name__ = 88, __magic_name__ = None, __magic_name__ = 1, __magic_name__ = 0.0, __magic_name__ = 32, __magic_name__ = None, __magic_name__ = False, __magic_name__ = None, __magic_name__ = None, __magic_name__ = "geglu", __magic_name__ = None, ) -> Tuple: """simple docstring""" super().__init__() UpperCamelCase__ : str = nn.ModuleList( [ TransformeraDModel( num_attention_heads=__magic_name__, attention_head_dim=__magic_name__, in_channels=__magic_name__, num_layers=__magic_name__, dropout=__magic_name__, norm_num_groups=__magic_name__, cross_attention_dim=__magic_name__, attention_bias=__magic_name__, sample_size=__magic_name__, num_vector_embeds=__magic_name__, activation_fn=__magic_name__, num_embeds_ada_norm=__magic_name__, ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference UpperCamelCase__ : Any = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` UpperCamelCase__ : Optional[Any] = [77, 257] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` UpperCamelCase__ : int = [1, 0] def UpperCamelCase__ ( self, __magic_name__, __magic_name__, __magic_name__=None, __magic_name__=None, __magic_name__=None, __magic_name__ = True, ) -> Any: """simple docstring""" UpperCamelCase__ : Optional[Any] = hidden_states UpperCamelCase__ : Tuple = [] UpperCamelCase__ : int = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens UpperCamelCase__ : List[Any] = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] UpperCamelCase__ : List[str] = self.transformer_index_for_condition[i] UpperCamelCase__ : List[str] = self.transformers[transformer_index]( __magic_name__, encoder_hidden_states=__magic_name__, timestep=__magic_name__, cross_attention_kwargs=__magic_name__, return_dict=__magic_name__, )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] UpperCamelCase__ : List[str] = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) UpperCamelCase__ : int = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=__magic_name__ )
247
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore UpperCAmelCase_ = '\nHuman: <<task>>\n\nAssistant: ' UpperCAmelCase_ = 'huggingface-tools/default-prompts' UpperCAmelCase_ = {'chat': 'chat_prompt_template.txt', 'run': 'run_prompt_template.txt'} def lowerCAmelCase_ ( __UpperCAmelCase: Optional[Any] , __UpperCAmelCase: List[Any] , __UpperCAmelCase: Optional[Any]="run" ) -> int: if prompt_or_repo_id is None: UpperCamelCase__ : List[Any] = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search('''\\s''' , __UpperCAmelCase ) is not None: return prompt_or_repo_id UpperCamelCase__ : Any = cached_file( __UpperCAmelCase , PROMPT_FILES[mode] , repo_type='''dataset''' , user_agent={'''agent''': agent_name} ) with open(__UpperCAmelCase , '''r''' , encoding='''utf-8''' ) as f: return f.read()
247
1
from __future__ import annotations def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' return [ord(SCREAMING_SNAKE_CASE ) - 96 for elem in plain] def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' return "".join(chr(elem + 96 ) for elem in encoded ) def lowerCamelCase ( ): '''simple docstring''' __UpperCamelCase :List[Any] = encode(input('''-> ''' ).strip().lower() ) print('''Encoded: ''' , SCREAMING_SNAKE_CASE ) print('''Decoded:''' , decode(SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": main()
43
'''simple docstring''' import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def lowercase__ ( __lowercase : Features ) -> Optional[int]: """simple docstring""" __UpperCamelCase = np.inf def set_batch_size(__lowercase : FeatureType ) -> None: nonlocal batch_size if isinstance(__lowercase , __lowercase ): __UpperCamelCase = min(__lowercase , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(__lowercase , __lowercase ): __UpperCamelCase = min(__lowercase , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(__lowercase , __lowercase ) and feature.dtype == "binary": __UpperCamelCase = min(__lowercase , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(__lowercase , __lowercase ) return None if batch_size is np.inf else batch_size class snake_case ( __lowerCamelCase ): """simple docstring""" def __init__( self : List[str] , __A : NestedDataStructureLike[PathLike] , __A : Optional[NamedSplit] = None , __A : Optional[Features] = None , __A : str = None , __A : bool = False , __A : bool = False , __A : Optional[int] = None , **__A : Dict , ): super().__init__( __A , split=__A , features=__A , cache_dir=__A , keep_in_memory=__A , streaming=__A , num_proc=__A , **__A , ) __UpperCamelCase = path_or_paths if isinstance(__A , __A ) else {self.split: path_or_paths} __UpperCamelCase = _PACKAGED_DATASETS_MODULES['parquet'][1] __UpperCamelCase = Parquet( cache_dir=__A , data_files=__A , features=__A , hash=__A , **__A , ) def _lowerCamelCase ( self : Optional[int] ): # Build iterable dataset if self.streaming: __UpperCamelCase = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None self.builder.download_and_prepare( download_config=__A , download_mode=__A , verification_mode=__A , base_path=__A , num_proc=self.num_proc , ) __UpperCamelCase = self.builder.as_dataset( split=self.split , verification_mode=__A , in_memory=self.keep_in_memory ) return dataset class snake_case : """simple docstring""" def __init__( self : List[str] , __A : Dataset , __A : Union[PathLike, BinaryIO] , __A : Optional[int] = None , **__A : Dict , ): __UpperCamelCase = dataset __UpperCamelCase = path_or_buf __UpperCamelCase = batch_size or get_writer_batch_size(dataset.features ) __UpperCamelCase = parquet_writer_kwargs def _lowerCamelCase ( self : Optional[int] ): __UpperCamelCase = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with open(self.path_or_buf , 'wb+' ) as buffer: __UpperCamelCase = self._write(file_obj=__A , batch_size=__A , **self.parquet_writer_kwargs ) else: __UpperCamelCase = self._write(file_obj=self.path_or_buf , batch_size=__A , **self.parquet_writer_kwargs ) return written def _lowerCamelCase ( self : List[str] , __A : BinaryIO , __A : int , **__A : List[str] ): __UpperCamelCase = 0 __UpperCamelCase = parquet_writer_kwargs.pop('path_or_buf' , __A ) __UpperCamelCase = self.dataset.features.arrow_schema __UpperCamelCase = pq.ParquetWriter(__A , schema=__A , **__A ) for offset in logging.tqdm( range(0 , len(self.dataset ) , __A ) , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating parquet from Arrow format' , ): __UpperCamelCase = query_table( table=self.dataset._data , key=slice(__A , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(__A ) written += batch.nbytes writer.close() return written
53
0
'''simple docstring''' import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class __lowerCamelCase : """simple docstring""" def __init__( self : Tuple , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Any=13 , SCREAMING_SNAKE_CASE : Optional[int]=2 , SCREAMING_SNAKE_CASE : List[str]=24 , SCREAMING_SNAKE_CASE : Union[str, Any]=16 , SCREAMING_SNAKE_CASE : Tuple=True , SCREAMING_SNAKE_CASE : Union[str, Any]=True , SCREAMING_SNAKE_CASE : Dict=32 , SCREAMING_SNAKE_CASE : List[Any]=5 , SCREAMING_SNAKE_CASE : List[str]=4 , SCREAMING_SNAKE_CASE : Optional[int]=37 , SCREAMING_SNAKE_CASE : Any="gelu" , SCREAMING_SNAKE_CASE : Optional[int]=0.1 , SCREAMING_SNAKE_CASE : Optional[int]=0.1 , SCREAMING_SNAKE_CASE : Optional[Any]=10 , SCREAMING_SNAKE_CASE : Any=0.02 , SCREAMING_SNAKE_CASE : int=None , SCREAMING_SNAKE_CASE : List[str]=2 , SCREAMING_SNAKE_CASE : Union[str, Any]=2 , ): _A : Any = parent _A : str = batch_size _A : List[str] = patch_size _A : Union[str, Any] = max_length _A : Union[str, Any] = num_mel_bins _A : Optional[Any] = is_training _A : Any = use_labels _A : Optional[Any] = hidden_size _A : List[str] = num_hidden_layers _A : List[str] = num_attention_heads _A : Union[str, Any] = intermediate_size _A : str = hidden_act _A : Union[str, Any] = hidden_dropout_prob _A : str = attention_probs_dropout_prob _A : Optional[Any] = type_sequence_label_size _A : List[Any] = initializer_range _A : int = scope _A : Union[str, Any] = frequency_stride _A : Union[str, Any] = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) _A : List[str] = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 _A : List[Any] = (self.max_length - self.patch_size) // self.time_stride + 1 _A : Optional[int] = frequency_out_dimension * time_out_dimension _A : List[str] = num_patches + 2 def A ( self : str): _A : str = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins]) _A : int = None if self.use_labels: _A : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size) _A : str = self.get_config() return config, input_values, labels def A ( self : Tuple): return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def A ( self : Optional[int] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[Any]): _A : int = ASTModel(config=SCREAMING_SNAKE_CASE) model.to(SCREAMING_SNAKE_CASE) model.eval() _A : Dict = model(SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def A ( self : Tuple): _A : Any = self.prepare_config_and_inputs() ( ( _A ) , ( _A ) , ( _A ) , ) : Optional[Any] = config_and_inputs _A : Dict = {'input_values': input_values} return config, inputs_dict @require_torch class __lowerCamelCase ( a_ , a_ , unittest.TestCase ): """simple docstring""" a = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) a = ( {"audio-classification": ASTForAudioClassification, "feature-extraction": ASTModel} if is_torch_available() else {} ) a = False a = False a = False a = False def A ( self : Optional[int] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Dict): if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def A ( self : Tuple): _A : Optional[Any] = ASTModelTester(self) _A : List[str] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , has_text_modality=SCREAMING_SNAKE_CASE , hidden_size=37) def A ( self : List[str]): self.config_tester.run_common_tests() @unittest.skip(reason='AST does not use inputs_embeds') def A ( self : List[str]): pass def A ( self : Optional[Any]): _A , _A : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : Any = model_class(SCREAMING_SNAKE_CASE) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) _A : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE , nn.Linear)) def A ( self : Optional[Any]): _A , _A : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : str = model_class(SCREAMING_SNAKE_CASE) _A : Tuple = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A : List[str] = [*signature.parameters.keys()] _A : Any = ['input_values'] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE) def A ( self : str): _A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE) @slow def A ( self : Tuple): for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A : Dict = ASTModel.from_pretrained(SCREAMING_SNAKE_CASE) self.assertIsNotNone(SCREAMING_SNAKE_CASE) def lowerCAmelCase__ ( ): _A : List[str] = hf_hub_download( repo_id='nielsr/audio-spectogram-transformer-checkpoint' ,filename='sample_audio.flac' ,repo_type='dataset' ) _A , _A : Dict = torchaudio.load(lowerCamelCase ) return audio, sampling_rate @require_torch @require_torchaudio class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" @cached_property def A ( self : Optional[Any]): return ( ASTFeatureExtractor.from_pretrained('MIT/ast-finetuned-audioset-10-10-0.4593') if is_torchaudio_available() else None ) @slow def A ( self : Tuple): _A : Optional[Any] = self.default_feature_extractor _A : Tuple = ASTForAudioClassification.from_pretrained('MIT/ast-finetuned-audioset-10-10-0.4593').to(SCREAMING_SNAKE_CASE) _A : List[Any] = self.default_feature_extractor _A , _A : Dict = prepare_audio() _A : int = audio.squeeze().numpy() _A : str = feature_extractor(SCREAMING_SNAKE_CASE , sampling_rate=SCREAMING_SNAKE_CASE , return_tensors='pt').to(SCREAMING_SNAKE_CASE) # forward pass with torch.no_grad(): _A : Tuple = model(**SCREAMING_SNAKE_CASE) # verify the logits _A : Optional[Any] = torch.Size((1, 527)) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE) _A : Union[str, Any] = torch.tensor([-0.8760, -7.0042, -8.6602]).to(SCREAMING_SNAKE_CASE) self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1e-4))
227
'''simple docstring''' import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch A : Any = logging.get_logger(__name__) class __lowerCamelCase : """simple docstring""" def __init__( self : Dict , SCREAMING_SNAKE_CASE : str = None , SCREAMING_SNAKE_CASE : uuid.UUID = None , SCREAMING_SNAKE_CASE : List[Any]=None , SCREAMING_SNAKE_CASE : Optional[int]=None): if not conversation_id: _A : str = uuid.uuida() if past_user_inputs is None: _A : List[Any] = [] if generated_responses is None: _A : Union[str, Any] = [] _A : uuid.UUID = conversation_id _A : List[str] = past_user_inputs _A : List[str] = generated_responses _A : Optional[str] = text def __eq__( self : List[str] , SCREAMING_SNAKE_CASE : Optional[int]): if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def A ( self : Any , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : bool = False): if self.new_user_input: if overwrite: logger.warning( F'User input added while unprocessed input was existing: "{self.new_user_input}" was overwritten ' F'with: "{text}".') _A : Optional[Any] = text else: logger.warning( F'User input added while unprocessed input was existing: "{self.new_user_input}" new input ' F'ignored: "{text}". Set `overwrite` to True to overwrite unprocessed user input') else: _A : Optional[Any] = text def A ( self : Optional[int]): if self.new_user_input: self.past_user_inputs.append(self.new_user_input) _A : Optional[Any] = None def A ( self : List[Any] , SCREAMING_SNAKE_CASE : str): self.generated_responses.append(SCREAMING_SNAKE_CASE) def A ( self : str): for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self : Dict): _A : Any = F'Conversation id: {self.uuid} \n' for is_user, text in self.iter_texts(): _A : Optional[int] = 'user' if is_user else 'bot' output += F'{name} >> {text} \n' return output @add_end_docstrings( a_ , R"\n min_length_for_response (`int`, *optional*, defaults to 32):\n The minimum length (in number of tokens) for a response.\n minimum_tokens (`int`, *optional*, defaults to 10):\n The minimum length of tokens to leave for a response.\n " , ) class __lowerCamelCase ( a_ ): """simple docstring""" def __init__( self : Optional[int] , *SCREAMING_SNAKE_CASE : Any , **SCREAMING_SNAKE_CASE : str): super().__init__(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE) if self.tokenizer.pad_token_id is None: _A : Any = self.tokenizer.eos_token def A ( self : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any]=None , SCREAMING_SNAKE_CASE : Optional[int]=None , SCREAMING_SNAKE_CASE : Optional[Any]=None , **SCREAMING_SNAKE_CASE : str): _A : str = {} _A : Union[str, Any] = {} _A : List[str] = {} if min_length_for_response is not None: _A : Optional[Any] = min_length_for_response if minimum_tokens is not None: _A : Tuple = minimum_tokens if "max_length" in generate_kwargs: _A : List[Any] = generate_kwargs['max_length'] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: _A : List[str] = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(SCREAMING_SNAKE_CASE) return preprocess_params, forward_params, postprocess_params def __call__( self : Any , SCREAMING_SNAKE_CASE : Union[Conversation, List[Conversation]] , SCREAMING_SNAKE_CASE : Any=0 , **SCREAMING_SNAKE_CASE : Tuple): _A : Any = super().__call__(SCREAMING_SNAKE_CASE , num_workers=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) and len(SCREAMING_SNAKE_CASE) == 1: return outputs[0] return outputs def A ( self : Any , SCREAMING_SNAKE_CASE : Conversation , SCREAMING_SNAKE_CASE : Union[str, Any]=32): if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE): raise ValueError('ConversationalPipeline, expects Conversation as inputs') if conversation.new_user_input is None: raise ValueError( F'Conversation with UUID {type(conversation.uuid)} does not contain new user input to process. ' 'Add user inputs with the conversation\'s `add_user_input` method') if hasattr(self.tokenizer , '_build_conversation_input_ids'): _A : Optional[Any] = self.tokenizer._build_conversation_input_ids(SCREAMING_SNAKE_CASE) else: # If the tokenizer cannot handle conversations, we default to only the old version _A : Dict = self._legacy_parse_and_tokenize(SCREAMING_SNAKE_CASE) if self.framework == "pt": _A : Union[str, Any] = torch.LongTensor([input_ids]) elif self.framework == "tf": _A : Optional[Any] = tf.constant([input_ids]) return {"input_ids": input_ids, "conversation": conversation} def A ( self : Union[str, Any] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : List[str]=10 , **SCREAMING_SNAKE_CASE : Tuple): _A : str = generate_kwargs.get('max_length' , self.model.config.max_length) _A : Any = model_inputs['input_ids'].shape[1] if max_length - minimum_tokens < n: logger.warning(F'Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})') _A : Dict = max_length - minimum_tokens _A : int = model_inputs['input_ids'][:, -trim:] if "attention_mask" in model_inputs: _A : str = model_inputs['attention_mask'][:, -trim:] _A : Any = model_inputs.pop('conversation') _A : Optional[Any] = max_length _A : int = self.model.generate(**SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE) if self.model.config.is_encoder_decoder: _A : int = 1 else: _A : List[Any] = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def A ( self : Any , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : List[Any]=True): _A : Optional[Any] = model_outputs['output_ids'] _A : Optional[int] = self.tokenizer.decode( output_ids[0] , skip_special_tokens=SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE , ) _A : Any = model_outputs['conversation'] conversation.mark_processed() conversation.append_response(SCREAMING_SNAKE_CASE) return conversation def A ( self : str , SCREAMING_SNAKE_CASE : Conversation): _A : Optional[Any] = self.tokenizer.eos_token_id _A : List[Any] = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE) + [eos_token_id]) else: input_ids.extend(self.tokenizer.encode(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE)) if len(SCREAMING_SNAKE_CASE) > self.tokenizer.model_max_length: _A : Dict = input_ids[-self.tokenizer.model_max_length :] return input_ids
227
1
from typing import Any def lowerCAmelCase ( lowerCAmelCase_ )-> List[str]: if not input_list: return [] lowerCAmelCase_ : int = [input_list.count(a_ ) for value in input_list] lowerCAmelCase_ : str = max(a_ ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(a_ ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
262
class UpperCamelCase_ : '''simple docstring''' def __init__( self , a ) -> None: snake_case_ = set_counts snake_case_ = max(a ) snake_case_ = len(a ) snake_case_ = [1] * num_sets snake_case_ = list(range(a ) ) def _UpperCamelCase ( self , a , a ) -> bool: snake_case_ = self.get_parent(a ) snake_case_ = self.get_parent(a ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] snake_case_ = 0 snake_case_ = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 snake_case_ = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] snake_case_ = 0 snake_case_ = src_parent snake_case_ = self.set_counts[src_parent] snake_case_ = max(self.max_set , a ) return True def _UpperCamelCase ( self , a ) -> int: if self.parents[disj_set] == disj_set: return disj_set snake_case_ = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
178
0
"""simple docstring""" import warnings warnings.warn( '''memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: ''' '''`from accelerate import find_executable_batch_size` to avoid this warning.''', FutureWarning, )
363
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig a : Optional[int] = { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/config.json''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/config.json''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/config.json''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/config.json''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/config.json''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/config.json''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json''', } class __UpperCamelCase ( a__ ): lowerCamelCase : Union[str, Any] ="""albert""" def __init__( self , lowerCAmelCase__=3_0000 , lowerCAmelCase__=128 , lowerCAmelCase__=4096 , lowerCAmelCase__=12 , lowerCAmelCase__=1 , lowerCAmelCase__=64 , lowerCAmelCase__=1_6384 , lowerCAmelCase__=1 , lowerCAmelCase__="gelu_new" , lowerCAmelCase__=0 , lowerCAmelCase__=0 , lowerCAmelCase__=512 , lowerCAmelCase__=2 , lowerCAmelCase__=0.02 , lowerCAmelCase__=1E-12 , lowerCAmelCase__=0.1 , lowerCAmelCase__="absolute" , lowerCAmelCase__=0 , lowerCAmelCase__=2 , lowerCAmelCase__=3 , **lowerCAmelCase__ , ) -> List[str]: super().__init__(pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) a : str = vocab_size a : Optional[Any] = embedding_size a : List[str] = hidden_size a : Optional[int] = num_hidden_layers a : Optional[Any] = num_hidden_groups a : str = num_attention_heads a : Optional[int] = inner_group_num a : List[Any] = hidden_act a : str = intermediate_size a : List[Any] = hidden_dropout_prob a : int = attention_probs_dropout_prob a : Tuple = max_position_embeddings a : Optional[int] = type_vocab_size a : str = initializer_range a : int = layer_norm_eps a : List[str] = classifier_dropout_prob a : int = position_embedding_type class __UpperCamelCase ( a__ ): @property def __a ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": a : str = {0: "batch", 1: "choice", 2: "sequence"} else: a : Optional[Any] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
79
0
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""image_processor""", """tokenizer"""] snake_case_ : List[Any] = """CLIPImageProcessor""" snake_case_ : List[Any] = ("""XLMRobertaTokenizer""", """XLMRobertaTokenizerFast""") def __init__( self : Tuple , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Any=None , **lowerCAmelCase : Any) -> Optional[Any]: """simple docstring""" _snake_case : int = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , lowerCAmelCase , ) _snake_case : str = kwargs.pop("""feature_extractor""") _snake_case : List[str] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""") if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""") super().__init__(lowerCAmelCase , lowerCAmelCase) def __call__( self : Optional[int] , lowerCAmelCase : Dict=None , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : List[Any]=None , **lowerCAmelCase : str) -> Optional[int]: """simple docstring""" if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""") if text is not None: _snake_case : Optional[int] = self.tokenizer(lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase) if images is not None: _snake_case : int = self.image_processor(lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase) if text is not None and images is not None: _snake_case : Optional[Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowerCAmelCase) , tensor_type=lowerCAmelCase) def UpperCamelCase_ ( self : Union[str, Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Tuple) -> int: """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase , **lowerCAmelCase) def UpperCamelCase_ ( self : Any , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : int) -> Optional[Any]: """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase , **lowerCAmelCase) @property def UpperCamelCase_ ( self : Union[str, Any]) -> List[str]: """simple docstring""" _snake_case : Optional[Any] = self.tokenizer.model_input_names _snake_case : Dict = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
317
import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : Optional[int] , lowerCAmelCase : NestedDataStructureLike[PathLike] , lowerCAmelCase : Optional[NamedSplit] = None , lowerCAmelCase : Optional[Features] = None , lowerCAmelCase : str = None , lowerCAmelCase : bool = False , lowerCAmelCase : bool = False , lowerCAmelCase : Optional[str] = None , lowerCAmelCase : Optional[int] = None , **lowerCAmelCase : Optional[Any] , ) -> int: """simple docstring""" super().__init__( lowerCAmelCase , split=lowerCAmelCase , features=lowerCAmelCase , cache_dir=lowerCAmelCase , keep_in_memory=lowerCAmelCase , streaming=lowerCAmelCase , num_proc=lowerCAmelCase , **lowerCAmelCase , ) _snake_case : Tuple = field _snake_case : str = path_or_paths if isinstance(lowerCAmelCase , lowerCAmelCase) else {self.split: path_or_paths} _snake_case : int = Json( cache_dir=lowerCAmelCase , data_files=lowerCAmelCase , features=lowerCAmelCase , field=lowerCAmelCase , **lowerCAmelCase , ) def UpperCamelCase_ ( self : Any) -> Tuple: """simple docstring""" if self.streaming: _snake_case : int = self.builder.as_streaming_dataset(split=self.split) # Build regular (map-style) dataset else: _snake_case : Dict = None _snake_case : Optional[int] = None _snake_case : Optional[Any] = None _snake_case : str = None self.builder.download_and_prepare( download_config=lowerCAmelCase , download_mode=lowerCAmelCase , verification_mode=lowerCAmelCase , base_path=lowerCAmelCase , num_proc=self.num_proc , ) _snake_case : List[str] = self.builder.as_dataset( split=self.split , verification_mode=lowerCAmelCase , in_memory=self.keep_in_memory) return dataset class snake_case : '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase : Dataset , lowerCAmelCase : Union[PathLike, BinaryIO] , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : Optional[int] = None , **lowerCAmelCase : Any , ) -> Optional[int]: """simple docstring""" if num_proc is not None and num_proc <= 0: raise ValueError(F'''num_proc {num_proc} must be an integer > 0.''') _snake_case : Optional[Any] = dataset _snake_case : str = path_or_buf _snake_case : Optional[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE _snake_case : Tuple = num_proc _snake_case : Dict = """utf-8""" _snake_case : str = to_json_kwargs def UpperCamelCase_ ( self : Optional[Any]) -> int: """simple docstring""" _snake_case : Optional[Any] = self.to_json_kwargs.pop("""path_or_buf""" , lowerCAmelCase) _snake_case : Any = self.to_json_kwargs.pop("""orient""" , """records""") _snake_case : List[str] = self.to_json_kwargs.pop("""lines""" , True if orient == """records""" else False) _snake_case : List[Any] = self.to_json_kwargs.pop("""index""" , False if orient in ["""split""", """table"""] else True) _snake_case : Union[str, Any] = self.to_json_kwargs.pop("""compression""" , lowerCAmelCase) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(F'''`datasets` currently does not support {compression} compression''') if isinstance(self.path_or_buf , (str, bytes, os.PathLike)): with fsspec.open(self.path_or_buf , """wb""" , compression=lowerCAmelCase) as buffer: _snake_case : List[str] = self._write(file_obj=lowerCAmelCase , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **self.to_json_kwargs) else: if compression: raise NotImplementedError( F'''The compression parameter is not supported when writing to a buffer, but compression={compression}''' """ was passed. Please provide a local path instead.""") _snake_case : Tuple = self._write( file_obj=self.path_or_buf , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **self.to_json_kwargs) return written def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : Optional[int]) -> Optional[Any]: """simple docstring""" _snake_case , _snake_case , _snake_case , _snake_case , _snake_case : int = args _snake_case : int = query_table( table=self.dataset.data , key=slice(lowerCAmelCase , offset + self.batch_size) , indices=self.dataset._indices , ) _snake_case : Optional[Any] = batch.to_pandas().to_json( path_or_buf=lowerCAmelCase , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **lowerCAmelCase) if not json_str.endswith("""\n"""): json_str += "\n" return json_str.encode(self.encoding) def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : BinaryIO , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict , **lowerCAmelCase : List[Any] , ) -> int: """simple docstring""" _snake_case : Optional[int] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset) , self.batch_size) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ): _snake_case : Tuple = self._batch_json((offset, orient, lines, index, to_json_kwargs)) written += file_obj.write(lowerCAmelCase) else: _snake_case , _snake_case : str = len(self.dataset), self.batch_size with multiprocessing.Pool(self.num_proc) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , lowerCAmelCase , lowerCAmelCase)] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ): written += file_obj.write(lowerCAmelCase) return written
317
1
'''simple docstring''' import argparse import torch from transformers import ( WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForAudioFrameClassification, WavaVecaForSequenceClassification, WavaVecaForXVector, logging, ) logging.set_verbosity_info() A__ : str = logging.get_logger(__name__) def a_ ( _UpperCAmelCase : Union[str, Any] ,_UpperCAmelCase : str ,_UpperCAmelCase : Any ) -> List[str]: __snake_case : List[Any] = WavaVecaForSequenceClassification.from_pretrained(_snake_case ,config=_snake_case ) __snake_case : Union[str, Any] = downstream_dict['''projector.weight'''] __snake_case : Dict = downstream_dict['''projector.bias'''] __snake_case : Union[str, Any] = downstream_dict['''model.post_net.linear.weight'''] __snake_case : Optional[int] = downstream_dict['''model.post_net.linear.bias'''] return model def a_ ( _UpperCAmelCase : Optional[Any] ,_UpperCAmelCase : str ,_UpperCAmelCase : str ) -> int: __snake_case : str = WavaVecaForAudioFrameClassification.from_pretrained(_snake_case ,config=_snake_case ) __snake_case : Dict = downstream_dict['''model.linear.weight'''] __snake_case : Any = downstream_dict['''model.linear.bias'''] return model def a_ ( _UpperCAmelCase : Union[str, Any] ,_UpperCAmelCase : Dict ,_UpperCAmelCase : Optional[int] ) -> List[Any]: __snake_case : int = WavaVecaForXVector.from_pretrained(_snake_case ,config=_snake_case ) __snake_case : Optional[Any] = downstream_dict['''connector.weight'''] __snake_case : Dict = downstream_dict['''connector.bias'''] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): __snake_case : List[Any] = downstream_dict[ f'''model.framelevel_feature_extractor.module.{i}.kernel.weight''' ] __snake_case : Union[str, Any] = downstream_dict[f'''model.framelevel_feature_extractor.module.{i}.kernel.bias'''] __snake_case : Union[str, Any] = downstream_dict['''model.utterancelevel_feature_extractor.linear1.weight'''] __snake_case : int = downstream_dict['''model.utterancelevel_feature_extractor.linear1.bias'''] __snake_case : List[str] = downstream_dict['''model.utterancelevel_feature_extractor.linear2.weight'''] __snake_case : str = downstream_dict['''model.utterancelevel_feature_extractor.linear2.bias'''] __snake_case : List[str] = downstream_dict['''objective.W'''] return model @torch.no_grad() def a_ ( _UpperCAmelCase : Union[str, Any] ,_UpperCAmelCase : Optional[Any] ,_UpperCAmelCase : Optional[Any] ,_UpperCAmelCase : int ) -> List[str]: __snake_case : Tuple = torch.load(_snake_case ,map_location='cpu' ) __snake_case : Tuple = checkpoint['''Downstream'''] __snake_case : Tuple = WavaVecaConfig.from_pretrained(_snake_case ) __snake_case : str = WavaVecaFeatureExtractor.from_pretrained( _snake_case ,return_attention_mask=_snake_case ,do_normalize=_snake_case ) __snake_case : Tuple = hf_config.architectures[0] if arch.endswith('ForSequenceClassification' ): __snake_case : str = convert_classification(_snake_case ,_snake_case ,_snake_case ) elif arch.endswith('ForAudioFrameClassification' ): __snake_case : Tuple = convert_diarization(_snake_case ,_snake_case ,_snake_case ) elif arch.endswith('ForXVector' ): __snake_case : Dict = convert_xvector(_snake_case ,_snake_case ,_snake_case ) else: raise NotImplementedError(f'''S3PRL weights conversion is not supported for {arch}''' ) if hf_config.use_weighted_layer_sum: __snake_case : Dict = checkpoint['''Featurizer''']['''weights'''] hf_feature_extractor.save_pretrained(_snake_case ) hf_model.save_pretrained(_snake_case ) if __name__ == "__main__": A__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '''--base_model_name''', default=None, type=str, help='''Name of the huggingface pretrained base model.''' ) parser.add_argument('''--config_path''', default=None, type=str, help='''Path to the huggingface classifier config.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to the s3prl checkpoint.''') parser.add_argument('''--model_dump_path''', default=None, type=str, help='''Path to the final converted model.''') A__ : List[str] = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
351
'''simple docstring''' import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) A__ : Dict = logging.getLogger() def a_ ( ) -> Tuple: __snake_case : List[Any] = argparse.ArgumentParser() parser.add_argument('-f' ) __snake_case : Any = parser.parse_args() return args.f def a_ ( _UpperCAmelCase : Optional[int] ) -> List[Any]: __snake_case : Tuple = {} __snake_case : Union[str, Any] = os.path.join(_UpperCAmelCase ,'all_results.json' ) if os.path.exists(_UpperCAmelCase ): with open(_UpperCAmelCase ,'r' ) as f: __snake_case : List[str] = json.load(_UpperCAmelCase ) else: raise ValueError(f'''can\'t find {path}''' ) return results def a_ ( ) -> Union[str, Any]: __snake_case : Union[str, Any] = torch.cuda.is_available() and torch_device == 'cuda' return is_using_cuda and is_apex_available() A__ : str = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class snake_case__ ( SCREAMING_SNAKE_CASE_ ): @classmethod def A_ ( cls : Any ) -> List[str]: '''simple docstring''' # Write Accelerate config, will pick up on CPU, GPU, and multi-GPU __snake_case : Optional[int] = tempfile.mkdtemp() __snake_case : Dict = os.path.join(cls.tmpdir , 'default_config.yml' ) write_basic_config(save_location=cls.configPath ) __snake_case : List[Any] = ['accelerate', 'launch', '--config_file', cls.configPath] @classmethod def A_ ( cls : List[str] ) -> List[str]: '''simple docstring''' shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} ) def A_ ( self : Any ) -> Optional[Any]: '''simple docstring''' __snake_case : List[Any] = self.get_auto_remove_tmp_dir() __snake_case : Dict = f''' {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --seed=42 --checkpointing_steps epoch --with_tracking '''.split() if is_cuda_and_apex_available(): testargs.append('--fp16' ) run_command(self._launch_args + testargs ) __snake_case : List[Any] = get_results(__a ) self.assertGreaterEqual(result['eval_accuracy'] , 0.7_5 ) self.assertTrue(os.path.exists(os.path.join(__a , 'epoch_0' ) ) ) self.assertTrue(os.path.exists(os.path.join(__a , 'glue_no_trainer' ) ) ) @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} ) def A_ ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' __snake_case : Tuple = self.get_auto_remove_tmp_dir() __snake_case : str = f''' {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --block_size 128 --per_device_train_batch_size 5 --per_device_eval_batch_size 5 --num_train_epochs 2 --output_dir {tmp_dir} --checkpointing_steps epoch --with_tracking '''.split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) __snake_case : str = get_results(__a ) self.assertLess(result['perplexity'] , 100 ) self.assertTrue(os.path.exists(os.path.join(__a , 'epoch_0' ) ) ) self.assertTrue(os.path.exists(os.path.join(__a , 'clm_no_trainer' ) ) ) @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} ) def A_ ( self : str ) -> List[str]: '''simple docstring''' __snake_case : int = self.get_auto_remove_tmp_dir() __snake_case : List[str] = f''' {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --num_train_epochs=1 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) __snake_case : List[str] = get_results(__a ) self.assertLess(result['perplexity'] , 42 ) self.assertTrue(os.path.exists(os.path.join(__a , 'epoch_0' ) ) ) self.assertTrue(os.path.exists(os.path.join(__a , 'mlm_no_trainer' ) ) ) @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} ) def A_ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu __snake_case : Any = 7 if get_gpu_count() > 1 else 2 __snake_case : Any = self.get_auto_remove_tmp_dir() __snake_case : int = f''' {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) __snake_case : Dict = get_results(__a ) self.assertGreaterEqual(result['eval_accuracy'] , 0.7_5 ) self.assertLess(result['train_loss'] , 0.5 ) self.assertTrue(os.path.exists(os.path.join(__a , 'epoch_0' ) ) ) self.assertTrue(os.path.exists(os.path.join(__a , 'ner_no_trainer' ) ) ) @unittest.skip(reason='Fix me @muellerzr' ) @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} ) def A_ ( self : Any ) -> List[Any]: '''simple docstring''' __snake_case : Any = self.get_auto_remove_tmp_dir() __snake_case : Tuple = f''' {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --seed=42 --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) __snake_case : str = get_results(__a ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result['eval_f1'] , 28 ) self.assertGreaterEqual(result['eval_exact'] , 28 ) self.assertTrue(os.path.exists(os.path.join(__a , 'epoch_0' ) ) ) self.assertTrue(os.path.exists(os.path.join(__a , 'qa_no_trainer' ) ) ) @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} ) def A_ ( self : Dict ) -> List[Any]: '''simple docstring''' __snake_case : str = self.get_auto_remove_tmp_dir() __snake_case : Any = f''' {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/swag/sample.json --validation_file tests/fixtures/tests_samples/swag/sample.json --output_dir {tmp_dir} --max_train_steps=20 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --with_tracking '''.split() run_command(self._launch_args + testargs ) __snake_case : str = get_results(__a ) self.assertGreaterEqual(result['eval_accuracy'] , 0.8 ) self.assertTrue(os.path.exists(os.path.join(__a , 'swag_no_trainer' ) ) ) @slow @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} ) def A_ ( self : Any ) -> Union[str, Any]: '''simple docstring''' __snake_case : Tuple = self.get_auto_remove_tmp_dir() __snake_case : List[str] = f''' {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) __snake_case : int = get_results(__a ) self.assertGreaterEqual(result['eval_rouge1'] , 10 ) self.assertGreaterEqual(result['eval_rouge2'] , 2 ) self.assertGreaterEqual(result['eval_rougeL'] , 7 ) self.assertGreaterEqual(result['eval_rougeLsum'] , 7 ) self.assertTrue(os.path.exists(os.path.join(__a , 'epoch_0' ) ) ) self.assertTrue(os.path.exists(os.path.join(__a , 'summarization_no_trainer' ) ) ) @slow @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} ) def A_ ( self : Union[str, Any] ) -> int: '''simple docstring''' __snake_case : Tuple = self.get_auto_remove_tmp_dir() __snake_case : str = f''' {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py --model_name_or_path sshleifer/student_marian_en_ro_6_1 --source_lang en --target_lang ro --train_file tests/fixtures/tests_samples/wmt16/sample.json --validation_file tests/fixtures/tests_samples/wmt16/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --num_beams=6 --learning_rate=3e-3 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --source_lang en_XX --target_lang ro_RO --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) __snake_case : Dict = get_results(__a ) self.assertGreaterEqual(result['eval_bleu'] , 30 ) self.assertTrue(os.path.exists(os.path.join(__a , 'epoch_0' ) ) ) self.assertTrue(os.path.exists(os.path.join(__a , 'translation_no_trainer' ) ) ) @slow def A_ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' __snake_case : Union[str, Any] = logging.StreamHandler(sys.stdout ) logger.addHandler(__a ) __snake_case : List[str] = self.get_auto_remove_tmp_dir() __snake_case : int = f''' {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py --dataset_name huggingface/semantic-segmentation-test-sample --output_dir {tmp_dir} --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch '''.split() run_command(self._launch_args + testargs ) __snake_case : List[str] = get_results(__a ) self.assertGreaterEqual(result['eval_overall_accuracy'] , 0.1_0 ) @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} ) def A_ ( self : Tuple ) -> Any: '''simple docstring''' __snake_case : Dict = self.get_auto_remove_tmp_dir() __snake_case : Dict = f''' {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py --model_name_or_path google/vit-base-patch16-224-in21k --dataset_name hf-internal-testing/cats_vs_dogs_sample --learning_rate 1e-4 --per_device_train_batch_size 2 --per_device_eval_batch_size 1 --max_train_steps 2 --train_val_split 0.1 --seed 42 --output_dir {tmp_dir} --with_tracking --checkpointing_steps 1 '''.split() if is_cuda_and_apex_available(): testargs.append('--fp16' ) run_command(self._launch_args + testargs ) __snake_case : Optional[int] = get_results(__a ) # The base model scores a 25% self.assertGreaterEqual(result['eval_accuracy'] , 0.6 ) self.assertTrue(os.path.exists(os.path.join(__a , 'step_1' ) ) ) self.assertTrue(os.path.exists(os.path.join(__a , 'image_classification_no_trainer' ) ) )
0
0