code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class UpperCamelCase ( unittest.TestCase ): def __init__( self : Tuple , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : str=7 , UpperCAmelCase__ : Tuple=3 , UpperCAmelCase__ : List[str]=30 , UpperCAmelCase__ : Optional[int]=400 , UpperCAmelCase__ : Union[str, Any]=True , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : Union[str, Any]=[0.5, 0.5, 0.5] , UpperCAmelCase__ : List[str]=[0.5, 0.5, 0.5] , UpperCAmelCase__ : List[str]=True , UpperCAmelCase__ : Tuple=1 / 255 , UpperCAmelCase__ : Union[str, Any]=True , ) -> Tuple: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p _a : Optional[Any] = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333} _a : Optional[Any] = parent _a : List[str] = batch_size _a : Optional[Any] = num_channels _a : Optional[Any] = min_resolution _a : str = max_resolution _a : Tuple = do_resize _a : Any = size _a : List[Any] = do_normalize _a : List[Any] = image_mean _a : Union[str, Any] = image_std _a : int = do_rescale _a : Optional[int] = rescale_factor _a : List[Any] = do_pad def _lowercase ( self : Optional[Any] ) -> Dict: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _lowercase ( self : Optional[int] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : int=False ) -> int: if not batched: _a : Tuple = image_inputs[0] if isinstance(UpperCAmelCase__ , Image.Image ): _a , _a : Union[str, Any] = image.size else: _a , _a : Tuple = image.shape[1], image.shape[2] if w < h: _a : Any = int(self.size["""shortest_edge"""] * h / w ) _a : Optional[int] = self.size["""shortest_edge"""] elif w > h: _a : Optional[Any] = self.size["""shortest_edge"""] _a : List[Any] = int(self.size["""shortest_edge"""] * w / h ) else: _a : List[Any] = self.size["""shortest_edge"""] _a : str = self.size["""shortest_edge"""] else: _a : int = [] for image in image_inputs: _a , _a : Any = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _a : Dict = max(UpperCAmelCase__ , key=lambda UpperCAmelCase__ : item[0] )[0] _a : Optional[int] = max(UpperCAmelCase__ , key=lambda UpperCAmelCase__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class UpperCamelCase ( snake_case_ , unittest.TestCase ): UpperCamelCase : int = YolosImageProcessor if is_vision_available() else None def _lowercase ( self : Dict ) -> Union[str, Any]: _a : int = YolosImageProcessingTester(self ) @property def _lowercase ( self : Any ) -> List[Any]: return self.image_processor_tester.prepare_image_processor_dict() def _lowercase ( self : Optional[Any] ) -> Optional[Any]: _a : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase__ , """image_mean""" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , """image_std""" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , """do_normalize""" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , """do_resize""" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , """size""" ) ) def _lowercase ( self : Tuple ) -> List[Any]: _a : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333} ) self.assertEqual(image_processor.do_pad , UpperCAmelCase__ ) _a : Optional[int] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=UpperCAmelCase__ ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad , UpperCAmelCase__ ) def _lowercase ( self : int ) -> Optional[int]: pass def _lowercase ( self : Union[str, Any] ) -> Dict: # Initialize image_processing _a : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _a : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , Image.Image ) # Test not batched input _a : str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values _a , _a : Dict = self.image_processor_tester.get_expected_values(UpperCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _a , _a : Union[str, Any] = self.image_processor_tester.get_expected_values(UpperCAmelCase__ , batched=UpperCAmelCase__ ) _a : List[str] = image_processing(UpperCAmelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self : Optional[Any] ) -> Tuple: # Initialize image_processing _a : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _a : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , numpify=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , np.ndarray ) # Test not batched input _a : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values _a , _a : Optional[int] = self.image_processor_tester.get_expected_values(UpperCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _a : int = image_processing(UpperCAmelCase__ , return_tensors="""pt""" ).pixel_values _a , _a : Tuple = self.image_processor_tester.get_expected_values(UpperCAmelCase__ , batched=UpperCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self : List[str] ) -> Dict: # Initialize image_processing _a : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _a : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , torchify=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , torch.Tensor ) # Test not batched input _a : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values _a , _a : Any = self.image_processor_tester.get_expected_values(UpperCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _a : str = image_processing(UpperCAmelCase__ , return_tensors="""pt""" ).pixel_values _a , _a : Dict = self.image_processor_tester.get_expected_values(UpperCAmelCase__ , batched=UpperCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self : Union[str, Any] ) -> Optional[Any]: # Initialize image_processings _a : List[Any] = self.image_processing_class(**self.image_processor_dict ) _a : Any = self.image_processing_class(do_resize=UpperCAmelCase__ , do_normalize=UpperCAmelCase__ , do_rescale=UpperCAmelCase__ ) # create random PyTorch tensors _a : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , torchify=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors _a : Optional[Any] = image_processing_a.pad(UpperCAmelCase__ , return_tensors="""pt""" ) _a : str = image_processing_a(UpperCAmelCase__ , return_tensors="""pt""" ) self.assertTrue( torch.allclose(encoded_images_with_method["""pixel_values"""] , encoded_images["""pixel_values"""] , atol=1E-4 ) ) @slow def _lowercase ( self : Optional[Any] ) -> Tuple: # prepare image and target _a : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: _a : List[str] = json.loads(f.read() ) _a : Optional[int] = {"""image_id""": 39769, """annotations""": target} # encode them _a : Any = YolosImageProcessor.from_pretrained("""hustvl/yolos-small""" ) _a : List[Any] = image_processing(images=UpperCAmelCase__ , annotations=UpperCAmelCase__ , return_tensors="""pt""" ) # verify pixel values _a : Any = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , UpperCAmelCase__ ) _a : Optional[int] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , UpperCAmelCase__ , atol=1E-4 ) ) # verify area _a : int = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , UpperCAmelCase__ ) ) # verify boxes _a : Dict = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , UpperCAmelCase__ ) _a : List[Any] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , UpperCAmelCase__ , atol=1E-3 ) ) # verify image_id _a : Optional[int] = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , UpperCAmelCase__ ) ) # verify is_crowd _a : Optional[Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , UpperCAmelCase__ ) ) # verify class_labels _a : Optional[Any] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , UpperCAmelCase__ ) ) # verify orig_size _a : Optional[int] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , UpperCAmelCase__ ) ) # verify size _a : List[Any] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , UpperCAmelCase__ ) ) @slow def _lowercase ( self : Union[str, Any] ) -> Dict: # prepare image, target and masks_path _a : Dict = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: _a : Optional[Any] = json.loads(f.read() ) _a : Optional[Any] = {"""file_name""": """000000039769.png""", """image_id""": 39769, """segments_info""": target} _a : List[Any] = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them _a : Dict = YolosImageProcessor(format="""coco_panoptic""" ) _a : Union[str, Any] = image_processing(images=UpperCAmelCase__ , annotations=UpperCAmelCase__ , masks_path=UpperCAmelCase__ , return_tensors="""pt""" ) # verify pixel values _a : str = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , UpperCAmelCase__ ) _a : Tuple = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , UpperCAmelCase__ , atol=1E-4 ) ) # verify area _a : Union[str, Any] = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , UpperCAmelCase__ ) ) # verify boxes _a : List[str] = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , UpperCAmelCase__ ) _a : List[str] = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , UpperCAmelCase__ , atol=1E-3 ) ) # verify image_id _a : str = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , UpperCAmelCase__ ) ) # verify is_crowd _a : List[str] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , UpperCAmelCase__ ) ) # verify class_labels _a : Any = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , UpperCAmelCase__ ) ) # verify masks _a : int = 822873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , UpperCAmelCase__ ) # verify orig_size _a : Any = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , UpperCAmelCase__ ) ) # verify size _a : Any = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , UpperCAmelCase__ ) )
294
"""simple docstring""" import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class UpperCamelCase ( unittest.TestCase ): def _lowercase ( self : int ) -> List[str]: _a : Any = """laion/clap-htsat-unfused""" _a : Union[str, Any] = tempfile.mkdtemp() def _lowercase ( self : List[Any] , **UpperCAmelCase__ : Any ) -> Dict: return RobertaTokenizer.from_pretrained(self.checkpoint , **UpperCAmelCase__ ) def _lowercase ( self : List[Any] , **UpperCAmelCase__ : List[str] ) -> int: return ClapFeatureExtractor.from_pretrained(self.checkpoint , **UpperCAmelCase__ ) def _lowercase ( self : List[Any] ) -> Tuple: shutil.rmtree(self.tmpdirname ) def _lowercase ( self : List[str] ) -> Optional[int]: _a : List[str] = self.get_tokenizer() _a : Any = self.get_feature_extractor() _a : Optional[Any] = ClapProcessor(tokenizer=UpperCAmelCase__ , feature_extractor=UpperCAmelCase__ ) processor.save_pretrained(self.tmpdirname ) _a : List[str] = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase__ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , UpperCAmelCase__ ) def _lowercase ( self : Dict ) -> Optional[int]: _a : Tuple = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) _a : Dict = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) _a : Union[str, Any] = self.get_feature_extractor(do_normalize=UpperCAmelCase__ , padding_value=1.0 ) _a : Union[str, Any] = ClapProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=UpperCAmelCase__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase__ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , UpperCAmelCase__ ) def _lowercase ( self : List[str] ) -> Optional[Any]: _a : Optional[int] = self.get_feature_extractor() _a : Tuple = self.get_tokenizer() _a : List[Any] = ClapProcessor(tokenizer=UpperCAmelCase__ , feature_extractor=UpperCAmelCase__ ) _a : Any = floats_list((3, 1000) ) _a : List[Any] = feature_extractor(UpperCAmelCase__ , return_tensors="""np""" ) _a : List[str] = processor(audios=UpperCAmelCase__ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _lowercase ( self : Tuple ) -> Optional[int]: _a : List[str] = self.get_feature_extractor() _a : Any = self.get_tokenizer() _a : Any = ClapProcessor(tokenizer=UpperCAmelCase__ , feature_extractor=UpperCAmelCase__ ) _a : Optional[int] = """This is a test string""" _a : Tuple = processor(text=UpperCAmelCase__ ) _a : int = tokenizer(UpperCAmelCase__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _lowercase ( self : List[Any] ) -> Any: _a : str = self.get_feature_extractor() _a : List[str] = self.get_tokenizer() _a : List[Any] = ClapProcessor(tokenizer=UpperCAmelCase__ , feature_extractor=UpperCAmelCase__ ) _a : Any = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _a : Dict = processor.batch_decode(UpperCAmelCase__ ) _a : Any = tokenizer.batch_decode(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def _lowercase ( self : Dict ) -> List[str]: _a : str = self.get_feature_extractor() _a : Optional[Any] = self.get_tokenizer() _a : Union[str, Any] = ClapProcessor(tokenizer=UpperCAmelCase__ , feature_extractor=UpperCAmelCase__ ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , )
294
1
"""simple docstring""" import string def _snake_case ( _snake_case : str ): lowerCAmelCase : Any = '''''' for i in sequence: lowerCAmelCase : str = ord(_snake_case ) if 65 <= extract <= 90: output += chr(155 - extract ) elif 97 <= extract <= 122: output += chr(219 - extract ) else: output += i return output def _snake_case ( _snake_case : str ): lowerCAmelCase : int = string.ascii_letters lowerCAmelCase : Dict = string.ascii_lowercase[::-1] + string.ascii_uppercase[::-1] return "".join( letters_reversed[letters.index(_snake_case )] if c in letters else c for c in sequence ) def _snake_case ( ): from timeit import timeit print('''Running performance benchmarks...''' ) lowerCAmelCase : Union[str, Any] = '''from string import printable ; from __main__ import atbash, atbash_slow''' print(f'''> atbash_slow(): {timeit("atbash_slow(printable)" , setup=_snake_case )} seconds''' ) print(f'''> atbash(): {timeit("atbash(printable)" , setup=_snake_case )} seconds''' ) if __name__ == "__main__": for example in ("ABCDEFGH", "123GGjj", "testStringtest", "with space"): print(f"""{example} encrypted in atbash: {atbash(example)}""") benchmark()
314
"""simple docstring""" def _snake_case ( _snake_case : int ): assert isinstance(_snake_case , _snake_case ), f'''The input value of [n={number}] is not an integer''' if number == 1: return 2 elif number < 1: lowerCAmelCase : Tuple = f'''The input value of [n={number}] has to be > 0''' raise ValueError(_snake_case ) else: lowerCAmelCase : str = sylvester(number - 1 ) lowerCAmelCase : Optional[Any] = num - 1 lowerCAmelCase : Optional[Any] = num return lower * upper + 1 if __name__ == "__main__": print(f"""The 8th number in Sylvester's sequence: {sylvester(8)}""")
314
1
def __lowerCAmelCase ( a__ ) -> List[Any]: __a = 0 __a = len(a__ ) for i in range(n - 1 ): for j in range(i + 1 , a__ ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def __lowerCAmelCase ( a__ ) -> Dict: if len(a__ ) <= 1: return arr, 0 __a = len(a__ ) // 2 __a = arr[0:mid] __a = arr[mid:] __a , __a = count_inversions_recursive(a__ ) __a , __a = count_inversions_recursive(a__ ) __a , __a = _count_cross_inversions(a__ , a__ ) __a = inversion_p + inversions_q + cross_inversions return c, num_inversions def __lowerCAmelCase ( a__ , a__ ) -> Optional[Any]: __a = [] __a = __a = __a = 0 while i < len(a__ ) and j < len(a__ ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(a__ ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(a__ ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def __lowerCAmelCase ( ) -> Any: __a = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) __a = count_inversions_bf(a__ ) __a , __a = count_inversions_recursive(a__ ) assert num_inversions_bf == num_inversions_recursive == 8 print('''number of inversions = ''' , a__ ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() __a = count_inversions_bf(a__ ) __a , __a = count_inversions_recursive(a__ ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , a__ ) # an empty list should also have zero inversions __a = [] __a = count_inversions_bf(a__ ) __a , __a = count_inversions_recursive(a__ ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , a__ ) if __name__ == "__main__": main()
6
import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class __A( a , a , unittest.TestCase ): snake_case_ = AutoencoderKL snake_case_ = '''sample''' snake_case_ = 1E-2 @property def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' __a = 4 __a = 3 __a = (32, 32) __a = floats_tensor((batch_size, num_channels) + sizes ).to(_snake_case ) return {"sample": image} @property def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' return (3, 32, 32) @property def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' return (3, 32, 32) def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' __a = { '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 4, } __a = self.dummy_input return init_dict, inputs_dict def SCREAMING_SNAKE_CASE_ ( self ) -> Tuple: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' pass @unittest.skipIf(torch_device == '''mps''' , '''Gradient checkpointing skipped on MPS''' ) def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' __a , __a = self.prepare_init_args_and_inputs_for_common() __a = self.model_class(**_snake_case ) model.to(_snake_case ) assert not model.is_gradient_checkpointing and model.training __a = model(**_snake_case ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() __a = torch.randn_like(_snake_case ) __a = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing __a = self.model_class(**_snake_case ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(_snake_case ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training __a = model_a(**_snake_case ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() __a = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1E-5 ) __a = dict(model.named_parameters() ) __a = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5E-5 ) ) def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' __a , __a = AutoencoderKL.from_pretrained('''fusing/autoencoder-kl-dummy''' , output_loading_info=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(_snake_case ) __a = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' __a = AutoencoderKL.from_pretrained('''fusing/autoencoder-kl-dummy''' ) __a = model.to(_snake_case ) model.eval() if torch_device == "mps": __a = torch.manual_seed(0 ) else: __a = torch.Generator(device=_snake_case ).manual_seed(0 ) __a = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) __a = image.to(_snake_case ) with torch.no_grad(): __a = model(_snake_case , sample_posterior=_snake_case , generator=_snake_case ).sample __a = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": __a = torch.tensor( [ -4.0_078E-01, -3.8_323E-04, -1.2_681E-01, -1.1_462E-01, 2.0_095E-01, 1.0_893E-01, -8.8_247E-02, -3.0_361E-01, -9.8_644E-03, ] ) elif torch_device == "cpu": __a = torch.tensor( [-0.1352, 0.0878, 0.0419, -0.0818, -0.1069, 0.0688, -0.1458, -0.4446, -0.0026] ) else: __a = torch.tensor( [-0.2421, 0.4642, 0.2507, -0.0438, 0.0682, 0.3160, -0.2018, -0.0727, 0.2485] ) self.assertTrue(torch_all_close(_snake_case , _snake_case , rtol=1E-2 ) ) @slow class __A( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Optional[Any]: '''simple docstring''' return F"""gaussian_noise_s={seed}_shape={'_'.join([str(_snake_case ) for s in shape] )}.npy""" def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE_ ( self , _snake_case=0 , _snake_case=(4, 3, 512, 512) , _snake_case=False ) -> Any: '''simple docstring''' __a = torch.floataa if fpaa else torch.floataa __a = torch.from_numpy(load_hf_numpy(self.get_file_format(_snake_case , _snake_case ) ) ).to(_snake_case ).to(_snake_case ) return image def SCREAMING_SNAKE_CASE_ ( self , _snake_case="CompVis/stable-diffusion-v1-4" , _snake_case=False ) -> Optional[Any]: '''simple docstring''' __a = '''fp16''' if fpaa else None __a = torch.floataa if fpaa else torch.floataa __a = AutoencoderKL.from_pretrained( _snake_case , subfolder='''vae''' , torch_dtype=_snake_case , revision=_snake_case , ) model.to(_snake_case ).eval() return model def SCREAMING_SNAKE_CASE_ ( self , _snake_case=0 ) -> Tuple: '''simple docstring''' if torch_device == "mps": return torch.manual_seed(_snake_case ) return torch.Generator(device=_snake_case ).manual_seed(_snake_case ) @parameterized.expand( [ # fmt: off [33, [-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case ) -> List[Any]: '''simple docstring''' __a = self.get_sd_vae_model() __a = self.get_sd_image(_snake_case ) __a = self.get_generator(_snake_case ) with torch.no_grad(): __a = model(_snake_case , generator=_snake_case , sample_posterior=_snake_case ).sample assert sample.shape == image.shape __a = sample[-1, -2:, -2:, :2].flatten().float().cpu() __a = torch.tensor(expected_slice_mps if torch_device == '''mps''' else expected_slice ) assert torch_all_close(_snake_case , _snake_case , atol=3E-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0513, 0.0289, 1.3799, 0.2166, -0.2573, -0.0871, 0.5103, -0.0999]], [47, [-0.4128, -0.1320, -0.3704, 0.1965, -0.4116, -0.2332, -0.3340, 0.2247]], # fmt: on ] ) @require_torch_gpu def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Tuple: '''simple docstring''' __a = self.get_sd_vae_model(fpaa=_snake_case ) __a = self.get_sd_image(_snake_case , fpaa=_snake_case ) __a = self.get_generator(_snake_case ) with torch.no_grad(): __a = model(_snake_case , generator=_snake_case , sample_posterior=_snake_case ).sample assert sample.shape == image.shape __a = sample[-1, -2:, :2, -2:].flatten().float().cpu() __a = torch.tensor(_snake_case ) assert torch_all_close(_snake_case , _snake_case , atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1609, 0.9866, -0.0487, -0.0777, -0.2716, 0.8368, -0.2055, -0.0814], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2377, 0.1147, 0.1333, -0.4841, -0.2506, -0.0805, -0.0491, -0.4085], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case ) -> Optional[int]: '''simple docstring''' __a = self.get_sd_vae_model() __a = self.get_sd_image(_snake_case ) with torch.no_grad(): __a = model(_snake_case ).sample assert sample.shape == image.shape __a = sample[-1, -2:, -2:, :2].flatten().float().cpu() __a = torch.tensor(expected_slice_mps if torch_device == '''mps''' else expected_slice ) assert torch_all_close(_snake_case , _snake_case , atol=3E-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2051, -0.1803, -0.2311, -0.2114, -0.3292, -0.3574, -0.2953, -0.3323]], [37, [-0.2632, -0.2625, -0.2199, -0.2741, -0.4539, -0.4990, -0.3720, -0.4925]], # fmt: on ] ) @require_torch_gpu def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Optional[int]: '''simple docstring''' __a = self.get_sd_vae_model() __a = self.get_sd_image(_snake_case , shape=(3, 4, 64, 64) ) with torch.no_grad(): __a = model.decode(_snake_case ).sample assert list(sample.shape ) == [3, 3, 512, 512] __a = sample[-1, -2:, :2, -2:].flatten().cpu() __a = torch.tensor(_snake_case ) assert torch_all_close(_snake_case , _snake_case , atol=1E-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0369, 0.0207, -0.0776, -0.0682, -0.1747, -0.1930, -0.1465, -0.2039]], [16, [-0.1628, -0.2134, -0.2747, -0.2642, -0.3774, -0.4404, -0.3687, -0.4277]], # fmt: on ] ) @require_torch_gpu def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Optional[Any]: '''simple docstring''' __a = self.get_sd_vae_model(fpaa=_snake_case ) __a = self.get_sd_image(_snake_case , shape=(3, 4, 64, 64) , fpaa=_snake_case ) with torch.no_grad(): __a = model.decode(_snake_case ).sample assert list(sample.shape ) == [3, 3, 512, 512] __a = sample[-1, -2:, :2, -2:].flatten().float().cpu() __a = torch.tensor(_snake_case ) assert torch_all_close(_snake_case , _snake_case , atol=5E-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='''xformers is not required when using PyTorch 2.0.''' ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Union[str, Any]: '''simple docstring''' __a = self.get_sd_vae_model(fpaa=_snake_case ) __a = self.get_sd_image(_snake_case , shape=(3, 4, 64, 64) , fpaa=_snake_case ) with torch.no_grad(): __a = model.decode(_snake_case ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __a = model.decode(_snake_case ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(_snake_case , _snake_case , atol=1E-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='''xformers is not required when using PyTorch 2.0.''' ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> List[str]: '''simple docstring''' __a = self.get_sd_vae_model() __a = self.get_sd_image(_snake_case , shape=(3, 4, 64, 64) ) with torch.no_grad(): __a = model.decode(_snake_case ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __a = model.decode(_snake_case ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(_snake_case , _snake_case , atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]], [47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]], # fmt: on ] ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Optional[int]: '''simple docstring''' __a = self.get_sd_vae_model() __a = self.get_sd_image(_snake_case ) __a = self.get_generator(_snake_case ) with torch.no_grad(): __a = model.encode(_snake_case ).latent_dist __a = dist.sample(generator=_snake_case ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] __a = sample[0, -1, -3:, -3:].flatten().cpu() __a = torch.tensor(_snake_case ) __a = 3E-3 if torch_device != '''mps''' else 1E-2 assert torch_all_close(_snake_case , _snake_case , atol=_snake_case )
6
1
import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() A__ = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) A__ = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", f"""encoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (f"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", f"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.weight""", f"""encoder.layers.{i}.fc1.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.bias""", f"""encoder.layers.{i}.fc1.bias""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.weight""", f"""encoder.layers.{i}.fc2.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.bias""", f"""encoder.layers.{i}.fc2.bias""")) rename_keys.append( (f"""transformer.encoder.layers.{i}.norm1.weight""", f"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm1.bias""", f"""encoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.weight""", f"""encoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.bias""", f"""encoder.layers.{i}.final_layer_norm.bias""")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", f"""decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", f"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( f"""transformer.decoder.layers.{i}.multihead_attn.out_proj.weight""", f"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( f"""transformer.decoder.layers.{i}.multihead_attn.out_proj.bias""", f"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.weight""", f"""decoder.layers.{i}.fc1.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.bias""", f"""decoder.layers.{i}.fc1.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.weight""", f"""decoder.layers.{i}.fc2.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.bias""", f"""decoder.layers.{i}.fc2.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm1.weight""", f"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm1.bias""", f"""decoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.weight""", f"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.bias""", f"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.weight""", f"""decoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.bias""", f"""decoder.layers.{i}.final_layer_norm.bias""")) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('''input_proj.weight''', '''input_projection.weight'''), ('''input_proj.bias''', '''input_projection.bias'''), ('''query_embed.weight''', '''query_position_embeddings.weight'''), ('''transformer.encoder.norm.weight''', '''encoder.layernorm.weight'''), ('''transformer.encoder.norm.bias''', '''encoder.layernorm.bias'''), ('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''), ('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''), ('''class_embed.weight''', '''class_labels_classifier.weight'''), ('''class_embed.bias''', '''class_labels_classifier.bias'''), ('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''), ('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''), ('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''), ('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''), ('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''), ('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''), ] ) def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[str]: """simple docstring""" snake_case__ = state_dict.pop(_UpperCAmelCase ) snake_case__ = val def _lowerCAmelCase ( __lowerCAmelCase ) -> Optional[int]: """simple docstring""" snake_case__ = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: snake_case__ = key.replace('''backbone.0.body''' , '''backbone.conv_encoder.model''' ) snake_case__ = value else: snake_case__ = value return new_state_dict def _lowerCAmelCase ( __lowerCAmelCase ) -> List[Any]: """simple docstring""" snake_case__ = "" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) snake_case__ = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) snake_case__ = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict snake_case__ = in_proj_weight[:256, :] snake_case__ = in_proj_bias[:256] snake_case__ = in_proj_weight[256:512, :] snake_case__ = in_proj_bias[256:512] snake_case__ = in_proj_weight[-256:, :] snake_case__ = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention snake_case__ = state_dict.pop(f"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight""" ) snake_case__ = state_dict.pop(f"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict snake_case__ = in_proj_weight[:256, :] snake_case__ = in_proj_bias[:256] snake_case__ = in_proj_weight[256:512, :] snake_case__ = in_proj_bias[256:512] snake_case__ = in_proj_weight[-256:, :] snake_case__ = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention snake_case__ = state_dict.pop( f"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight""" ) snake_case__ = state_dict.pop(f"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) of cross-attention to the state dict snake_case__ = in_proj_weight_cross_attn[:256, :] snake_case__ = in_proj_bias_cross_attn[:256] snake_case__ = in_proj_weight_cross_attn[256:512, :] snake_case__ = in_proj_bias_cross_attn[256:512] snake_case__ = in_proj_weight_cross_attn[-256:, :] snake_case__ = in_proj_bias_cross_attn[-256:] def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase ) -> Any: """simple docstring""" snake_case__ = image.size snake_case__ = max(_UpperCAmelCase , _UpperCAmelCase ) snake_case__ = 800 if "detection" in checkpoint_url else 1000 snake_case__ = target_max_size / current_max_size snake_case__ = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def _lowerCAmelCase ( __lowerCAmelCase ) -> Tuple: """simple docstring""" snake_case__ = F.to_tensor(_UpperCAmelCase ) snake_case__ = F.normalize(_UpperCAmelCase , mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ) return image @torch.no_grad() def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Dict: """simple docstring""" logger.info('''Converting model...''' ) # load original state dict snake_case__ = torch.hub.load_state_dict_from_url(_UpperCAmelCase , map_location='''cpu''' ) # rename keys for src, dest in rename_keys: rename_key(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) snake_case__ = rename_backbone_keys(_UpperCAmelCase ) # query, key and value matrices need special treatment read_in_q_k_v(_UpperCAmelCase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them snake_case__ = "model." for key in state_dict.copy().keys(): if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): snake_case__ = state_dict.pop(_UpperCAmelCase ) snake_case__ = val # create HuggingFace model and load state dict snake_case__ = TableTransformerConfig( backbone='''resnet18''' , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: snake_case__ = 15 snake_case__ = 2 snake_case__ = {0: "table", 1: "table rotated"} snake_case__ = idalabel snake_case__ = {v: k for k, v in idalabel.items()} else: snake_case__ = 125 snake_case__ = 6 snake_case__ = { 0: "table", 1: "table column", 2: "table row", 3: "table column header", 4: "table projected row header", 5: "table spanning cell", } snake_case__ = idalabel snake_case__ = {v: k for k, v in idalabel.items()} snake_case__ = DetrImageProcessor( format='''coco_detection''' , max_size=800 if '''detection''' in checkpoint_url else 1000 ) snake_case__ = TableTransformerForObjectDetection(_UpperCAmelCase ) model.load_state_dict(_UpperCAmelCase ) model.eval() # verify our conversion snake_case__ = "example_pdf.png" if "detection" in checkpoint_url else "example_table.png" snake_case__ = hf_hub_download(repo_id='''nielsr/example-pdf''' , repo_type='''dataset''' , filename=_UpperCAmelCase ) snake_case__ = Image.open(_UpperCAmelCase ).convert('''RGB''' ) snake_case__ = normalize(resize(_UpperCAmelCase , _UpperCAmelCase ) ).unsqueeze(0 ) snake_case__ = model(_UpperCAmelCase ) if "detection" in checkpoint_url: snake_case__ = (1, 15, 3) snake_case__ = torch.tensor( [[-6.7_897, -16.9_985, 6.7_937], [-8.0_186, -22.2_192, 6.9_677], [-7.3_117, -21.0_708, 7.4_055]] ) snake_case__ = torch.tensor([[0.4_867, 0.1_767, 0.6_732], [0.6_718, 0.4_479, 0.3_830], [0.4_716, 0.1_760, 0.6_364]] ) else: snake_case__ = (1, 125, 7) snake_case__ = torch.tensor( [[-18.1_430, -8.3_214, 4.8_274], [-18.4_685, -7.1_361, -4.2_667], [-26.3_693, -9.3_429, -4.9_962]] ) snake_case__ = torch.tensor([[0.4_983, 0.5_595, 0.9_440], [0.4_916, 0.6_315, 0.5_954], [0.6_108, 0.8_637, 0.1_135]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , _UpperCAmelCase , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , _UpperCAmelCase , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) model.save_pretrained(_UpperCAmelCase ) image_processor.save_pretrained(_UpperCAmelCase ) if push_to_hub: # Push model to HF hub logger.info('''Pushing model to the hub...''' ) snake_case__ = ( "microsoft/table-transformer-detection" if "detection" in checkpoint_url else "microsoft/table-transformer-structure-recognition" ) model.push_to_hub(_UpperCAmelCase ) image_processor.push_to_hub(_UpperCAmelCase ) if __name__ == "__main__": A__ = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth''', type=str, choices=[ '''https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth''', '''https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth''', ], help='''URL of the Table Transformer checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) A__ = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
365
import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging A__ = logging.get_logger(__name__) A__ = {'''vocab_file''': '''vocab.txt'''} A__ = { '''vocab_file''': { '''openbmb/cpm-ant-10b''': '''https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt''', }, } A__ = { '''openbmb/cpm-ant-10b''': 1024, } def _lowerCAmelCase ( __lowerCAmelCase ) -> str: """simple docstring""" snake_case__ : str = collections.OrderedDict() with open(__lowerCAmelCase , '''r''' , encoding='''utf-8''' ) as reader: snake_case__ : List[Any] = reader.readlines() for index, token in enumerate(__lowerCAmelCase ): snake_case__ : str = token.rstrip('''\n''' ) snake_case__ : int = index return vocab class a ( __lowerCamelCase ): def __init__( self :str ,__lowercase :str ,__lowercase :int="<unk>" ,__lowercase :Tuple=2_0_0 ): snake_case__ : Union[str, Any] = vocab snake_case__ : str = unk_token snake_case__ : Dict = max_input_chars_per_word def __lowerCamelCase ( self :Tuple ,__lowercase :Dict ): snake_case__ : Optional[Any] = list(__lowercase ) if len(__lowercase ) > self.max_input_chars_per_word: return [self.unk_token] snake_case__ : List[Any] = 0 snake_case__ : List[str] = [] while start < len(__lowercase ): snake_case__ : Any = len(__lowercase ) snake_case__ : Any = None while start < end: snake_case__ : Tuple = ''''''.join(chars[start:end] ) if substr in self.vocab: snake_case__ : Union[str, Any] = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(__lowercase ) snake_case__ : Union[str, Any] = end return sub_tokens class a ( __lowerCamelCase ): __lowerCAmelCase : List[str] = VOCAB_FILES_NAMES __lowerCAmelCase : Any = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase : Tuple = ["""input_ids""", """attention_mask"""] __lowerCAmelCase : Optional[Any] = False def __init__( self :str ,__lowercase :Optional[Any] ,__lowercase :Dict="<d>" ,__lowercase :List[Any]="</d>" ,__lowercase :Union[str, Any]="<s>" ,__lowercase :List[str]="</s>" ,__lowercase :str="<pad>" ,__lowercase :Tuple="<unk>" ,__lowercase :Tuple="</n>" ,__lowercase :List[Any]="</_>" ,__lowercase :str="left" ,**__lowercase :Optional[Any] ,): requires_backends(self ,['''jieba'''] ) super().__init__( bod_token=__lowercase ,eod_token=__lowercase ,bos_token=__lowercase ,eos_token=__lowercase ,pad_token=__lowercase ,unk_token=__lowercase ,line_token=__lowercase ,space_token=__lowercase ,padding_side=__lowercase ,**__lowercase ,) snake_case__ : List[str] = bod_token snake_case__ : List[Any] = eod_token snake_case__ : List[Any] = load_vocab(__lowercase ) snake_case__ : Any = self.encoder[space_token] snake_case__ : Dict = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] snake_case__ : Union[str, Any] = collections.OrderedDict(sorted(self.encoder.items() ,key=lambda __lowercase : x[1] ) ) snake_case__ : Any = {v: k for k, v in self.encoder.items()} snake_case__ : Any = WordpieceTokenizer(vocab=self.encoder ,unk_token=self.unk_token ) @property def __lowerCamelCase ( self :Optional[int] ): return self.encoder[self.bod_token] @property def __lowerCamelCase ( self :Union[str, Any] ): return self.encoder[self.eod_token] @property def __lowerCamelCase ( self :List[str] ): return self.encoder["\n"] @property def __lowerCamelCase ( self :Tuple ): return len(self.encoder ) def __lowerCamelCase ( self :Any ): return dict(self.encoder ,**self.added_tokens_encoder ) def __lowerCamelCase ( self :str ,__lowercase :Dict ): snake_case__ : Tuple = [] for x in jieba.cut(__lowercase ,cut_all=__lowercase ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(__lowercase ) ) return output_tokens def __lowerCamelCase ( self :Optional[Any] ,__lowercase :Optional[Any] ,**__lowercase :Union[str, Any] ): snake_case__ : Dict = [i for i in token_ids if i >= 0] snake_case__ : Optional[int] = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(__lowercase ,**__lowercase ) def __lowerCamelCase ( self :int ,__lowercase :List[str] ): return token in self.encoder def __lowerCamelCase ( self :int ,__lowercase :List[str] ): return "".join(__lowercase ) def __lowerCamelCase ( self :Optional[int] ,__lowercase :Optional[int] ): return self.encoder.get(__lowercase ,self.encoder.get(self.unk_token ) ) def __lowerCamelCase ( self :Tuple ,__lowercase :int ): return self.decoder.get(__lowercase ,self.unk_token ) def __lowerCamelCase ( self :Optional[Any] ,__lowercase :str ,__lowercase :Optional[str] = None ): if os.path.isdir(__lowercase ): snake_case__ : int = os.path.join( __lowercase ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) else: snake_case__ : str = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory snake_case__ : List[str] = 0 if " " in self.encoder: snake_case__ : Dict = self.encoder[''' '''] del self.encoder[" "] if "\n" in self.encoder: snake_case__ : Union[str, Any] = self.encoder['''\n'''] del self.encoder["\n"] snake_case__ : Dict = collections.OrderedDict(sorted(self.encoder.items() ,key=lambda __lowercase : x[1] ) ) with open(__lowercase ,'''w''' ,encoding='''utf-8''' ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( F"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ''' Please check that the vocabulary is not corrupted!''' ) snake_case__ : str = token_index writer.write(token + '''\n''' ) index += 1 return (vocab_file,) def __lowerCamelCase ( self :Tuple ,__lowercase :List[int] ,__lowercase :List[int] = None ): if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def __lowerCamelCase ( self :int ,__lowercase :List[int] ,__lowercase :Optional[List[int]] = None ,__lowercase :bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowercase ,token_ids_a=__lowercase ,already_has_special_tokens=__lowercase ) if token_ids_a is not None: return [1] + ([0] * len(__lowercase )) + [1] + ([0] * len(__lowercase )) return [1] + ([0] * len(__lowercase ))
44
0
"""simple docstring""" def lowercase ( A_ , A_ )-> int: '''simple docstring''' return number | (1 << position) def lowercase ( A_ , A_ )-> int: '''simple docstring''' return number & ~(1 << position) def lowercase ( A_ , A_ )-> int: '''simple docstring''' return number ^ (1 << position) def lowercase ( A_ , A_ )-> bool: '''simple docstring''' return ((number >> position) & 1) == 1 def lowercase ( A_ , A_ )-> int: '''simple docstring''' return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
40
"""simple docstring""" import os import sys import unittest __lowercase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path __lowercase = os.path.join(git_repo_path, """src""", """diffusers""") class _A ( unittest.TestCase ): """simple docstring""" def __snake_case ( self : Any): a : List[Any] = find_backend(" if not is_torch_available():") self.assertEqual(__UpperCAmelCase , "torch") # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") a : Dict = find_backend(" if not (is_torch_available() and is_transformers_available()):") self.assertEqual(__UpperCAmelCase , "torch_and_transformers") # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") a : int = find_backend( " if not (is_torch_available() and is_transformers_available() and is_onnx_available()):") self.assertEqual(__UpperCAmelCase , "torch_and_transformers_and_onnx") def __snake_case ( self : Union[str, Any]): a : Dict = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("torch" , __UpperCAmelCase) self.assertIn("torch_and_transformers" , __UpperCAmelCase) self.assertIn("flax_and_transformers" , __UpperCAmelCase) self.assertIn("torch_and_transformers_and_onnx" , __UpperCAmelCase) # Likewise, we can't assert on the exact content of a key self.assertIn("UNet2DModel" , objects["torch"]) self.assertIn("FlaxUNet2DConditionModel" , objects["flax"]) self.assertIn("StableDiffusionPipeline" , objects["torch_and_transformers"]) self.assertIn("FlaxStableDiffusionPipeline" , objects["flax_and_transformers"]) self.assertIn("LMSDiscreteScheduler" , objects["torch_and_scipy"]) self.assertIn("OnnxStableDiffusionPipeline" , objects["torch_and_transformers_and_onnx"]) def __snake_case ( self : Tuple): a : Optional[int] = create_dummy_object("CONSTANT" , "'torch'") self.assertEqual(__UpperCAmelCase , "\nCONSTANT = None\n") a : Dict = create_dummy_object("function" , "'torch'") self.assertEqual( __UpperCAmelCase , "\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n") a : Optional[Any] = "\nclass FakeClass(metaclass=DummyObject):\n _backends = 'torch'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, 'torch')\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n" a : int = create_dummy_object("FakeClass" , "'torch'") self.assertEqual(__UpperCAmelCase , __UpperCAmelCase) def __snake_case ( self : List[str]): a : List[str] = "# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, [\"torch\"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = [\"torch\"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, [\"torch\"])\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n" a : Tuple = create_dummy_files({"torch": ["CONSTANT", "function", "FakeClass"]}) self.assertEqual(dummy_files["torch"] , __UpperCAmelCase)
40
1
"""simple docstring""" import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class snake_case ( UpperCAmelCase ): def lowerCamelCase__ ( self : Any , A : str ): '''simple docstring''' with open(A , encoding='utf-8' ) as input_file: a : Any = re.compile(R'(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)' ) a : Optional[int] = input_file.read() a : int = regexp.search(A ) return match def lowerCamelCase__ ( self : Optional[Any] , A : str ): '''simple docstring''' with open(A , encoding='utf-8' ) as input_file: a : Union[str, Any] = re.compile(R'#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()' , re.DOTALL ) a : str = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` a : Optional[Any] = regexp.finditer(A ) a : int = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def lowerCamelCase__ ( self : int ): '''simple docstring''' a : Optional[int] = Path('./datasets' ) a : Tuple = list(dataset_paths.absolute().glob('**/*.py' ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(A ) ): raise AssertionError(F'''open(...) must use utf-8 encoding in {dataset}''' ) def lowerCamelCase__ ( self : str ): '''simple docstring''' a : Tuple = Path('./datasets' ) a : List[str] = list(dataset_paths.absolute().glob('**/*.py' ) ) for dataset in dataset_files: if self._no_print_statements(str(A ) ): raise AssertionError(F'''print statement found in {dataset}. Use datasets.logger/logging instead.''' )
186
"""simple docstring""" def snake_case (A_ :str , A_ :bool = False ): '''simple docstring''' if not isinstance(A_ , A_ ): a : Union[str, Any] = f'''Expected string as input, found {type(A_ )}''' raise ValueError(A_ ) if not isinstance(A_ , A_ ): a : Optional[int] = f'''Expected boolean as use_pascal parameter, found {type(A_ )}''' raise ValueError(A_ ) a : Tuple = input_str.split('_' ) a : Dict = 0 if use_pascal else 1 a : int = words[start_index:] a : int = [word[0].upper() + word[1:] for word in words_to_capitalize] a : List[str] = '' if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
186
1
'''simple docstring''' import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A ( __lowerCAmelCase , unittest.TestCase ): lowerCamelCase : Any = None lowerCamelCase : Dict = BloomTokenizerFast lowerCamelCase : Any = BloomTokenizerFast lowerCamelCase : int = True lowerCamelCase : Union[str, Any] = False lowerCamelCase : Tuple = """tokenizer_file""" lowerCamelCase : Optional[int] = {"""bos_token""": """<s>""", """eos_token""": """</s>""", """unk_token""": """<unk>""", """pad_token""": """<pad>"""} def A__ ( self ) -> List[str]: '''simple docstring''' super().setUp() lowercase__ = BloomTokenizerFast.from_pretrained("""bigscience/tokenizer""" ) tokenizer.save_pretrained(self.tmpdirname ) def A__ ( self , **lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **lowerCamelCase__ ) def A__ ( self ) -> List[Any]: '''simple docstring''' lowercase__ = self.get_rust_tokenizer() lowercase__ = ['The quick brown fox</s>', 'jumps over the lazy dog</s>'] lowercase__ = [[2_175, 23_714, 73_173, 144_252, 2], [77, 132_619, 3_478, 368, 109_586, 35_433, 2]] lowercase__ = tokenizer.batch_encode_plus(lowerCamelCase__ )['input_ids'] self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) lowercase__ = tokenizer.batch_decode(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) def A__ ( self , lowerCamelCase__=6 ) -> Tuple: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowercase__ = self.rust_tokenizer_class.from_pretrained(lowerCamelCase__ , **lowerCamelCase__ ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input lowercase__ = 'This is a simple input' lowercase__ = ['This is a simple input 1', 'This is a simple input 2'] lowercase__ = ('This is a simple input', 'This is a pair') lowercase__ = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests try: tokenizer_r.encode(lowerCamelCase__ , max_length=lowerCamelCase__ ) tokenizer_r.encode_plus(lowerCamelCase__ , max_length=lowerCamelCase__ ) tokenizer_r.batch_encode_plus(lowerCamelCase__ , max_length=lowerCamelCase__ ) tokenizer_r.encode(lowerCamelCase__ , max_length=lowerCamelCase__ ) tokenizer_r.batch_encode_plus(lowerCamelCase__ , max_length=lowerCamelCase__ ) except ValueError: self.fail("""Bloom Tokenizer should be able to deal with padding""" ) lowercase__ = None # Hotfixing padding = None self.assertRaises(lowerCamelCase__ , tokenizer_r.encode , lowerCamelCase__ , max_length=lowerCamelCase__ , padding="""max_length""" ) # Simple input self.assertRaises(lowerCamelCase__ , tokenizer_r.encode_plus , lowerCamelCase__ , max_length=lowerCamelCase__ , padding="""max_length""" ) # Simple input self.assertRaises( lowerCamelCase__ , tokenizer_r.batch_encode_plus , lowerCamelCase__ , max_length=lowerCamelCase__ , padding="""max_length""" , ) # Pair input self.assertRaises(lowerCamelCase__ , tokenizer_r.encode , lowerCamelCase__ , max_length=lowerCamelCase__ , padding="""max_length""" ) # Pair input self.assertRaises(lowerCamelCase__ , tokenizer_r.encode_plus , lowerCamelCase__ , max_length=lowerCamelCase__ , padding="""max_length""" ) # Pair input self.assertRaises( lowerCamelCase__ , tokenizer_r.batch_encode_plus , lowerCamelCase__ , max_length=lowerCamelCase__ , padding="""max_length""" , ) def A__ ( self ) -> List[str]: '''simple docstring''' lowercase__ = self.get_rust_tokenizer() lowercase__ = load_dataset("""xnli""" , """all_languages""" , split="""test""" , streaming=lowerCamelCase__ ) lowercase__ = next(iter(lowerCamelCase__ ) )['premise'] # pick up one data lowercase__ = list(sample_data.values() ) lowercase__ = list(map(tokenizer.encode , lowerCamelCase__ ) ) lowercase__ = [tokenizer.decode(lowerCamelCase__ , clean_up_tokenization_spaces=lowerCamelCase__ ) for x in output_tokens] self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) def A__ ( self ) -> List[str]: '''simple docstring''' self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
164
"""simple docstring""" class __snake_case : def __init__( self , lowercase , lowercase=None , lowercase=None) -> List[str]: '''simple docstring''' a__: Dict = data a__: List[Any] = previous a__: Any = next_node def __str__( self) -> str: '''simple docstring''' return f'{self.data}' def lowerCamelCase_ ( self) -> int: '''simple docstring''' return self.data def lowerCamelCase_ ( self) -> Union[str, Any]: '''simple docstring''' return self.next def lowerCamelCase_ ( self) -> Optional[Any]: '''simple docstring''' return self.previous class __snake_case : def __init__( self , lowercase) -> Dict: '''simple docstring''' a__: List[Any] = head def __iter__( self) -> List[Any]: '''simple docstring''' return self def lowerCamelCase_ ( self) -> Optional[Any]: '''simple docstring''' if not self.current: raise StopIteration else: a__: Dict = self.current.get_data() a__: Optional[Any] = self.current.get_next() return value class __snake_case : def __init__( self) -> Dict: '''simple docstring''' a__: List[Any] = None # First node in list a__: Optional[int] = None # Last node in list def __str__( self) -> Optional[Any]: '''simple docstring''' a__: Dict = self.head a__: Optional[Any] = [] while current is not None: nodes.append(current.get_data()) a__: str = current.get_next() return " ".join(str(lowercase) for node in nodes) def __contains__( self , lowercase) -> Optional[int]: '''simple docstring''' a__: Optional[int] = self.head while current: if current.get_data() == value: return True a__: Dict = current.get_next() return False def __iter__( self) -> int: '''simple docstring''' return LinkedListIterator(self.head) def lowerCamelCase_ ( self) -> List[Any]: '''simple docstring''' if self.head: return self.head.get_data() return None def lowerCamelCase_ ( self) -> Optional[Any]: '''simple docstring''' if self.tail: return self.tail.get_data() return None def lowerCamelCase_ ( self , lowercase) -> None: '''simple docstring''' if self.head is None: a__: Optional[Any] = node a__: Optional[Any] = node else: self.insert_before_node(self.head , lowercase) def lowerCamelCase_ ( self , lowercase) -> None: '''simple docstring''' if self.head is None: self.set_head(lowercase) else: self.insert_after_node(self.tail , lowercase) def lowerCamelCase_ ( self , lowercase) -> None: '''simple docstring''' a__: Tuple = Node(lowercase) if self.head is None: self.set_head(lowercase) else: self.set_tail(lowercase) def lowerCamelCase_ ( self , lowercase , lowercase) -> None: '''simple docstring''' a__: Union[str, Any] = node a__: Optional[Any] = node.previous if node.get_previous() is None: a__: Tuple = node_to_insert else: a__: int = node_to_insert a__: Optional[int] = node_to_insert def lowerCamelCase_ ( self , lowercase , lowercase) -> None: '''simple docstring''' a__: Optional[int] = node a__: Tuple = node.next if node.get_next() is None: a__: Optional[int] = node_to_insert else: a__: Any = node_to_insert a__: str = node_to_insert def lowerCamelCase_ ( self , lowercase , lowercase) -> None: '''simple docstring''' a__: Any = 1 a__: Tuple = Node(lowercase) a__: Tuple = self.head while node: if current_position == position: self.insert_before_node(lowercase , lowercase) return current_position += 1 a__: List[Any] = node.next self.insert_after_node(self.tail , lowercase) def lowerCamelCase_ ( self , lowercase) -> Node: '''simple docstring''' a__: Tuple = self.head while node: if node.get_data() == item: return node a__: List[str] = node.get_next() raise Exception('Node not found') def lowerCamelCase_ ( self , lowercase) -> Any: '''simple docstring''' if (node := self.get_node(lowercase)) is not None: if node == self.head: a__: Any = self.head.get_next() if node == self.tail: a__: List[Any] = self.tail.get_previous() self.remove_node_pointers(lowercase) @staticmethod def lowerCamelCase_ ( lowercase) -> None: '''simple docstring''' if node.get_next(): a__: Any = node.previous if node.get_previous(): a__: List[str] = node.next a__: int = None a__: Union[str, Any] = None def lowerCamelCase_ ( self) -> str: '''simple docstring''' return self.head is None def __a ( ) ->None: pass if __name__ == "__main__": import doctest doctest.testmod()
290
0
"""simple docstring""" import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class snake_case_( a__ ): def __init__( self : Tuple , UpperCamelCase_ : NestedDataStructureLike[PathLike] , UpperCamelCase_ : Optional[NamedSplit] = None , UpperCamelCase_ : Optional[Features] = None , UpperCamelCase_ : str = None , UpperCamelCase_ : bool = False , UpperCamelCase_ : bool = False , UpperCamelCase_ : Optional[str] = None , UpperCamelCase_ : Optional[int] = None , **UpperCamelCase_ : List[Any] , ): super().__init__( UpperCamelCase_ , split=UpperCamelCase_ , features=UpperCamelCase_ , cache_dir=UpperCamelCase_ , keep_in_memory=UpperCamelCase_ , streaming=UpperCamelCase_ , num_proc=UpperCamelCase_ , **UpperCamelCase_ , ) lowerCAmelCase : List[str] = field lowerCAmelCase : int = path_or_paths if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else {self.split: path_or_paths} lowerCAmelCase : Dict = Json( cache_dir=UpperCamelCase_ , data_files=UpperCamelCase_ , features=UpperCamelCase_ , field=UpperCamelCase_ , **UpperCamelCase_ , ) def lowerCamelCase__ ( self : str ): # Build iterable dataset if self.streaming: lowerCAmelCase : str = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: lowerCAmelCase : List[str] = None lowerCAmelCase : Tuple = None lowerCAmelCase : List[Any] = None lowerCAmelCase : Optional[Any] = None self.builder.download_and_prepare( download_config=UpperCamelCase_ , download_mode=UpperCamelCase_ , verification_mode=UpperCamelCase_ , base_path=UpperCamelCase_ , num_proc=self.num_proc , ) lowerCAmelCase : Optional[Any] = self.builder.as_dataset( split=self.split , verification_mode=UpperCamelCase_ , in_memory=self.keep_in_memory ) return dataset class snake_case_: def __init__( self : Optional[Any] , UpperCamelCase_ : Dataset , UpperCamelCase_ : Union[PathLike, BinaryIO] , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : Optional[int] = None , **UpperCamelCase_ : Optional[Any] , ): if num_proc is not None and num_proc <= 0: raise ValueError(F'''num_proc {num_proc} must be an integer > 0.''' ) lowerCAmelCase : List[Any] = dataset lowerCAmelCase : Optional[Any] = path_or_buf lowerCAmelCase : List[str] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE lowerCAmelCase : Union[str, Any] = num_proc lowerCAmelCase : Dict = '''utf-8''' lowerCAmelCase : Union[str, Any] = to_json_kwargs def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : Tuple = self.to_json_kwargs.pop('''path_or_buf''' , UpperCamelCase_ ) lowerCAmelCase : str = self.to_json_kwargs.pop('''orient''' , '''records''' ) lowerCAmelCase : List[str] = self.to_json_kwargs.pop('''lines''' , True if orient == '''records''' else False ) lowerCAmelCase : Dict = self.to_json_kwargs.pop('''index''' , False if orient in ['''split''', '''table'''] else True ) lowerCAmelCase : Optional[Any] = self.to_json_kwargs.pop('''compression''' , UpperCamelCase_ ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(F'''`datasets` currently does not support {compression} compression''' ) if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf , '''wb''' , compression=UpperCamelCase_ ) as buffer: lowerCAmelCase : Optional[int] = self._write(file_obj=UpperCamelCase_ , orient=UpperCamelCase_ , lines=UpperCamelCase_ , index=UpperCamelCase_ , **self.to_json_kwargs ) else: if compression: raise NotImplementedError( F'''The compression parameter is not supported when writing to a buffer, but compression={compression}''' ''' was passed. Please provide a local path instead.''' ) lowerCAmelCase : List[str] = self._write( file_obj=self.path_or_buf , orient=UpperCamelCase_ , lines=UpperCamelCase_ , index=UpperCamelCase_ , **self.to_json_kwargs ) return written def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : str ): lowerCAmelCase : int = args lowerCAmelCase : Union[str, Any] = query_table( table=self.dataset.data , key=slice(UpperCamelCase_ , offset + self.batch_size ) , indices=self.dataset._indices , ) lowerCAmelCase : int = batch.to_pandas().to_json( path_or_buf=UpperCamelCase_ , orient=UpperCamelCase_ , lines=UpperCamelCase_ , index=UpperCamelCase_ , **UpperCamelCase_ ) if not json_str.endswith('''\n''' ): json_str += "\n" return json_str.encode(self.encoding ) def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : BinaryIO , UpperCamelCase_ : Any , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Union[str, Any] , **UpperCamelCase_ : Optional[Any] , ): lowerCAmelCase : Dict = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating json from Arrow format''' , ): lowerCAmelCase : Optional[Any] = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(UpperCamelCase_ ) else: lowerCAmelCase : Tuple = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , UpperCamelCase_ , UpperCamelCase_ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating json from Arrow format''' , ): written += file_obj.write(UpperCamelCase_ ) return written
369
"""simple docstring""" import collections import importlib.util import os import re from pathlib import Path snake_case__ : Union[str, Any] = '''src/transformers''' # Matches is_xxx_available() snake_case__ : int = re.compile(R'''is\_([a-z_]*)_available()''') # Catches a one-line _import_struct = {xxx} snake_case__ : List[str] = re.compile(R'''^_import_structure\s+=\s+\{([^\}]+)\}''') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] snake_case__ : List[str] = re.compile(R'''\s+"\S*":\s+\[([^\]]*)\]''') # Catches a line if not is_foo_available snake_case__ : Optional[Any] = re.compile(R'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''') # Catches a line _import_struct["bla"].append("foo") snake_case__ : Union[str, Any] = re.compile(R'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] snake_case__ : Any = re.compile(R'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''') # Catches a line with an object between quotes and a comma: "MyModel", snake_case__ : Union[str, Any] = re.compile('''^\s+"([^"]+)",''') # Catches a line with objects between brackets only: ["foo", "bar"], snake_case__ : Optional[Any] = re.compile('''^\s+\[([^\]]+)\]''') # Catches a line with from foo import bar, bla, boo snake_case__ : Optional[Any] = re.compile(R'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') # Catches a line with try: snake_case__ : Dict = re.compile(R'''^\s*try:''') # Catches a line with else: snake_case__ : int = re.compile(R'''^\s*else:''') def _snake_case ( _snake_case : Optional[Any] ): if _re_test_backend.search(_snake_case ) is None: return None lowerCAmelCase : Tuple = [b[0] for b in _re_backend.findall(_snake_case )] backends.sort() return "_and_".join(_snake_case ) def _snake_case ( _snake_case : Optional[Any] ): with open(_snake_case , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: lowerCAmelCase : int = f.readlines() lowerCAmelCase : Tuple = 0 while line_index < len(_snake_case ) and not lines[line_index].startswith('''_import_structure = {''' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(_snake_case ): return None # First grab the objects without a specific backend in _import_structure lowerCAmelCase : List[str] = [] while not lines[line_index].startswith('''if TYPE_CHECKING''' ) and find_backend(lines[line_index] ) is None: lowerCAmelCase : List[str] = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(_snake_case ): lowerCAmelCase : str = _re_one_line_import_struct.search(_snake_case ).groups()[0] lowerCAmelCase : Dict = re.findall('''\[([^\]]+)\]''' , _snake_case ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(''', ''' )] ) line_index += 1 continue lowerCAmelCase : Tuple = _re_import_struct_key_value.search(_snake_case ) if single_line_import_search is not None: lowerCAmelCase : str = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(''', ''' ) if len(_snake_case ) > 0] objects.extend(_snake_case ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) line_index += 1 lowerCAmelCase : str = {'''none''': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('''if TYPE_CHECKING''' ): # If the line is an if not is_backend_available, we grab all objects associated. lowerCAmelCase : Tuple = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCAmelCase : List[Any] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCAmelCase : Union[str, Any] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 4 ): lowerCAmelCase : int = lines[line_index] if _re_import_struct_add_one.search(_snake_case ) is not None: objects.append(_re_import_struct_add_one.search(_snake_case ).groups()[0] ) elif _re_import_struct_add_many.search(_snake_case ) is not None: lowerCAmelCase : str = _re_import_struct_add_many.search(_snake_case ).groups()[0].split(''', ''' ) lowerCAmelCase : Dict = [obj[1:-1] for obj in imports if len(_snake_case ) > 0] objects.extend(_snake_case ) elif _re_between_brackets.search(_snake_case ) is not None: lowerCAmelCase : Any = _re_between_brackets.search(_snake_case ).groups()[0].split(''', ''' ) lowerCAmelCase : List[str] = [obj[1:-1] for obj in imports if len(_snake_case ) > 0] objects.extend(_snake_case ) elif _re_quote_object.search(_snake_case ) is not None: objects.append(_re_quote_object.search(_snake_case ).groups()[0] ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) elif line.startswith(''' ''' * 12 + '''"''' ): objects.append(line[13:-3] ) line_index += 1 lowerCAmelCase : List[Any] = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend lowerCAmelCase : Optional[Any] = [] while ( line_index < len(_snake_case ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('''else''' ) ): lowerCAmelCase : Optional[Any] = lines[line_index] lowerCAmelCase : List[Any] = _re_import.search(_snake_case ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 lowerCAmelCase : List[str] = {'''none''': objects} # Let's continue with backend-specific objects while line_index < len(_snake_case ): # If the line is an if is_backend_available, we grab all objects associated. lowerCAmelCase : str = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCAmelCase : int = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCAmelCase : str = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 8 ): lowerCAmelCase : Any = lines[line_index] lowerCAmelCase : Tuple = _re_import.search(_snake_case ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 12 ): objects.append(line[12:-2] ) line_index += 1 lowerCAmelCase : Optional[Any] = objects else: line_index += 1 return import_dict_objects, type_hint_objects def _snake_case ( _snake_case : Dict , _snake_case : Optional[Any] ): def find_duplicates(_snake_case : Tuple ): return [k for k, v in collections.Counter(_snake_case ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] lowerCAmelCase : Any = [] for key in import_dict_objects.keys(): lowerCAmelCase : int = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(f'''Duplicate _import_structure definitions for: {duplicate_imports}''' ) lowerCAmelCase : Optional[Any] = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(f'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): lowerCAmelCase : Tuple = '''base imports''' if key == '''none''' else f'''{key} backend''' errors.append(f'''Differences for {name}:''' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f''' {a} in TYPE_HINT but not in _import_structure.''' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f''' {a} in _import_structure but not in TYPE_HINT.''' ) return errors def _snake_case ( ): lowerCAmelCase : int = [] for root, _, files in os.walk(_snake_case ): if "__init__.py" in files: lowerCAmelCase : List[Any] = os.path.join(_snake_case , '''__init__.py''' ) lowerCAmelCase : List[Any] = parse_init(_snake_case ) if objects is not None: lowerCAmelCase : Tuple = analyze_results(*_snake_case ) if len(_snake_case ) > 0: lowerCAmelCase : int = f'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}''' failures.append('''\n'''.join(_snake_case ) ) if len(_snake_case ) > 0: raise ValueError('''\n\n'''.join(_snake_case ) ) def _snake_case ( ): lowerCAmelCase : Optional[Any] = [] for path, directories, files in os.walk(_snake_case ): for folder in directories: # Ignore private modules if folder.startswith('''_''' ): directories.remove(_snake_case ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(_snake_case ) / folder).glob('''*.py''' ) ) ) == 0: continue lowerCAmelCase : Dict = str((Path(_snake_case ) / folder).relative_to(_snake_case ) ) lowerCAmelCase : Optional[int] = short_path.replace(os.path.sep , '''.''' ) submodules.append(_snake_case ) for fname in files: if fname == "__init__.py": continue lowerCAmelCase : Optional[Any] = str((Path(_snake_case ) / fname).relative_to(_snake_case ) ) lowerCAmelCase : Any = short_path.replace('''.py''' , '''''' ).replace(os.path.sep , '''.''' ) if len(submodule.split('''.''' ) ) == 1: submodules.append(_snake_case ) return submodules snake_case__ : str = [ '''convert_pytorch_checkpoint_to_tf2''', '''modeling_flax_pytorch_utils''', ] def _snake_case ( ): # This is to make sure the transformers module imported is the one in the repo. lowerCAmelCase : Any = importlib.util.spec_from_file_location( '''transformers''' , os.path.join(_snake_case , '''__init__.py''' ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) lowerCAmelCase : Any = spec.loader.load_module() lowerCAmelCase : Optional[Any] = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(_snake_case ) > 0: lowerCAmelCase : Dict = '''\n'''.join(f'''- {module}''' for module in module_not_registered ) raise ValueError( '''The following submodules are not properly registered in the main init of Transformers:\n''' f'''{list_of_modules}\n''' '''Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.''' ) if __name__ == "__main__": check_all_inits() check_submodules()
314
0
'''simple docstring''' import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class __lowerCAmelCase ( unittest.TestCase , __magic_name__ ): """simple docstring""" def snake_case__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' _UpperCamelCase = load_tool('''text-to-speech''' ) self.tool.setup() def snake_case__ ( self : Any ) -> int: '''simple docstring''' torch.manual_seed(0 ) _UpperCamelCase = self.tool('''hey''' ) _UpperCamelCase = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0005966668832115829, -0.0003657640190795064, -0.00013439502799883485] ) , ) ) def snake_case__ ( self : int ) -> int: '''simple docstring''' torch.manual_seed(0 ) _UpperCamelCase = self.tool('''hey''' ) _UpperCamelCase = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0005966668832115829, -0.0003657640190795064, -0.00013439502799883485] ) , ) )
324
'''simple docstring''' import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def a__ ( lowercase : Union[str, Any] ) -> Tuple: """simple docstring""" if isinstance(lowercase, collections.abc.Iterable ): return x return (x, x) @require_flax class __lowerCAmelCase : """simple docstring""" def snake_case__ ( self : Any , lowerCAmelCase__ : Dict , lowerCAmelCase__ : str ) -> List[Any]: '''simple docstring''' pass def snake_case__ ( self : Tuple ) -> int: '''simple docstring''' pass def snake_case__ ( self : Any ) -> Optional[int]: '''simple docstring''' pass def snake_case__ ( self : int , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : float ) -> str: '''simple docstring''' _UpperCamelCase = np.abs((a - b) ).max() self.assertLessEqual(lowerCAmelCase__ , lowerCAmelCase__ , f"""Difference between torch and flax is {diff} (>= {tol}).""" ) def snake_case__ ( self : List[str] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : str=None , **lowerCAmelCase__ : Union[str, Any] ) -> Dict: '''simple docstring''' _UpperCamelCase = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = FlaxVisionTextDualEncoderModel(lowerCAmelCase__ ) _UpperCamelCase = model(input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], config.projection_dim) ) def snake_case__ ( self : str , lowerCAmelCase__ : str , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : str , lowerCAmelCase__ : List[Any]=None , **lowerCAmelCase__ : Any ) -> List[Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.get_vision_text_model(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = {'''vision_model''': vision_model, '''text_model''': text_model} _UpperCamelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCAmelCase__ ) _UpperCamelCase = model(input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], model.config.projection_dim) ) def snake_case__ ( self : str , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[Any]=None , **lowerCAmelCase__ : Union[str, Any] ) -> Dict: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.get_vision_text_model(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = {'''vision_model''': vision_model, '''text_model''': text_model} _UpperCamelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCAmelCase__ ) _UpperCamelCase = model(input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) _UpperCamelCase = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCAmelCase__ ) _UpperCamelCase = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase__ ) _UpperCamelCase = model(input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) _UpperCamelCase = after_output[0] _UpperCamelCase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCAmelCase__ , 1e-3 ) def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : str=None , **lowerCAmelCase__ : Optional[int] ) -> Any: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.get_vision_text_model(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = {'''vision_model''': vision_model, '''text_model''': text_model} _UpperCamelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCAmelCase__ ) _UpperCamelCase = model( input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , output_attentions=lowerCAmelCase__ ) _UpperCamelCase = output.vision_model_output.attentions self.assertEqual(len(lowerCAmelCase__ ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) _UpperCamelCase = to_atuple(vision_model.config.image_size ) _UpperCamelCase = to_atuple(vision_model.config.patch_size ) _UpperCamelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _UpperCamelCase = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) _UpperCamelCase = output.text_model_output.attentions self.assertEqual(len(lowerCAmelCase__ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def snake_case__ ( self : List[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : int ) -> Tuple: '''simple docstring''' pt_model.to(lowerCAmelCase__ ) pt_model.eval() # prepare inputs _UpperCamelCase = inputs_dict _UpperCamelCase = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): _UpperCamelCase = pt_model(**lowerCAmelCase__ ).to_tuple() _UpperCamelCase = fx_model(**lowerCAmelCase__ ).to_tuple() self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(lowerCAmelCase__ , pt_output.numpy() , 4e-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(lowerCAmelCase__ ) _UpperCamelCase = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase__ , from_pt=lowerCAmelCase__ ) _UpperCamelCase = fx_model_loaded(**lowerCAmelCase__ ).to_tuple() self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(lowerCAmelCase__ , pt_output.numpy() , 4e-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(lowerCAmelCase__ ) _UpperCamelCase = VisionTextDualEncoderModel.from_pretrained(lowerCAmelCase__ , from_flax=lowerCAmelCase__ ) pt_model_loaded.to(lowerCAmelCase__ ) pt_model_loaded.eval() with torch.no_grad(): _UpperCamelCase = pt_model_loaded(**lowerCAmelCase__ ).to_tuple() self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(lowerCAmelCase__ , pt_output_loaded.numpy() , 4e-2 ) def snake_case__ ( self : Dict , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int ) -> Any: '''simple docstring''' _UpperCamelCase = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = VisionTextDualEncoderModel(lowerCAmelCase__ ) _UpperCamelCase = FlaxVisionTextDualEncoderModel(lowerCAmelCase__ ) _UpperCamelCase = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowerCAmelCase__ ) _UpperCamelCase = fx_state self.check_pt_flax_equivalence(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def snake_case__ ( self : Any , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[Any] ) -> str: '''simple docstring''' _UpperCamelCase = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = VisionTextDualEncoderModel(lowerCAmelCase__ ) _UpperCamelCase = FlaxVisionTextDualEncoderModel(lowerCAmelCase__ ) _UpperCamelCase = load_flax_weights_in_pytorch_model(lowerCAmelCase__ , fx_model.params ) self.check_pt_flax_equivalence(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def snake_case__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**lowerCAmelCase__ ) def snake_case__ ( self : List[Any] ) -> int: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**lowerCAmelCase__ ) def snake_case__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() self.check_save_load(**lowerCAmelCase__ ) def snake_case__ ( self : Any ) -> Tuple: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**lowerCAmelCase__ ) @is_pt_flax_cross_test def snake_case__ ( self : int ) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase = config_inputs_dict.pop('''vision_config''' ) _UpperCamelCase = config_inputs_dict.pop('''text_config''' ) _UpperCamelCase = config_inputs_dict self.check_equivalence_pt_to_flax(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) self.check_equivalence_flax_to_pt(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) @slow def snake_case__ ( self : List[Any] ) -> Any: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.get_pretrained_model_and_inputs() _UpperCamelCase = model_a(**lowerCAmelCase__ ) _UpperCamelCase = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(lowerCAmelCase__ ) _UpperCamelCase = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase__ ) _UpperCamelCase = model_a(**lowerCAmelCase__ ) _UpperCamelCase = after_outputs[0] _UpperCamelCase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCAmelCase__ , 1e-5 ) @require_flax class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" def snake_case__ ( self : Tuple ) -> List[str]: '''simple docstring''' _UpperCamelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( '''hf-internal-testing/tiny-random-vit''' , '''hf-internal-testing/tiny-bert''' , vision_from_pt=lowerCAmelCase__ , text_from_pt=lowerCAmelCase__ , ) _UpperCamelCase = 13 _UpperCamelCase = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) _UpperCamelCase = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) _UpperCamelCase = random_attention_mask([batch_size, 4] ) _UpperCamelCase = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def snake_case__ ( self : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any] ) -> Any: '''simple docstring''' _UpperCamelCase = FlaxViTModel(lowerCAmelCase__ ) _UpperCamelCase = FlaxBertModel(lowerCAmelCase__ ) return vision_model, text_model def snake_case__ ( self : str ) -> Tuple: '''simple docstring''' _UpperCamelCase = FlaxViTModelTester(self ) _UpperCamelCase = FlaxBertModelTester(self ) _UpperCamelCase = vit_model_tester.prepare_config_and_inputs() _UpperCamelCase = bert_model_tester.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase = vision_config_and_inputs _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" def snake_case__ ( self : List[str] ) -> List[str]: '''simple docstring''' _UpperCamelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( '''hf-internal-testing/tiny-random-clip''' , '''hf-internal-testing/tiny-bert''' , vision_from_pt=lowerCAmelCase__ , text_from_pt=lowerCAmelCase__ , ) _UpperCamelCase = 13 _UpperCamelCase = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) _UpperCamelCase = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) _UpperCamelCase = random_attention_mask([batch_size, 4] ) _UpperCamelCase = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Union[str, Any] ) -> List[str]: '''simple docstring''' _UpperCamelCase = FlaxCLIPVisionModel(lowerCAmelCase__ ) _UpperCamelCase = FlaxBertModel(lowerCAmelCase__ ) return vision_model, text_model def snake_case__ ( self : List[str] ) -> Dict: '''simple docstring''' _UpperCamelCase = FlaxCLIPVisionModelTester(self ) _UpperCamelCase = FlaxBertModelTester(self ) _UpperCamelCase = clip_model_tester.prepare_config_and_inputs() _UpperCamelCase = bert_model_tester.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase = vision_config_and_inputs _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def snake_case__ ( self : List[Any] ) -> Any: '''simple docstring''' _UpperCamelCase = FlaxVisionTextDualEncoderModel.from_pretrained('''clip-italian/clip-italian''' , logit_scale_init_value=1.0 ) _UpperCamelCase = VisionTextDualEncoderProcessor.from_pretrained('''clip-italian/clip-italian''' ) _UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) _UpperCamelCase = processor( text=['''una foto di un gatto''', '''una foto di un cane'''] , images=lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors='''np''' ) _UpperCamelCase = model(**lowerCAmelCase__ ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) _UpperCamelCase = np.array([[1.2284727, 0.3104122]] ) self.assertTrue(np.allclose(outputs.logits_per_image , lowerCAmelCase__ , atol=1e-3 ) )
324
1
"""simple docstring""" import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class lowerCAmelCase__ ( __magic_name__ ): # to overwrite at feature extractactor specific tests SCREAMING_SNAKE_CASE_ =None SCREAMING_SNAKE_CASE_ =None @property def __a ( self : List[Any] ): '''simple docstring''' return self.feat_extract_tester.prepare_feat_extract_dict() def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : int = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(snake_case__ , "feature_size" ) ) self.assertTrue(hasattr(snake_case__ , "sampling_rate" ) ) self.assertTrue(hasattr(snake_case__ , "padding_value" ) ) def __a ( self : int ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.feat_extract_tester.prepare_inputs_for_common() UpperCAmelCase__ : Tuple = self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase__ : Tuple = feat_extract.model_input_names[0] UpperCAmelCase__ : List[str] = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(snake_case__ ) == len(snake_case__ ) for x, y in zip(snake_case__ , processed_features[input_name] ) ) ) UpperCAmelCase__ : Optional[Any] = self.feat_extract_tester.prepare_inputs_for_common(equal_length=snake_case__ ) UpperCAmelCase__ : Optional[int] = BatchFeature({input_name: speech_inputs} , tensor_type="np" ) UpperCAmelCase__ : List[Any] = processed_features[input_name] if len(batch_features_input.shape ) < 3: UpperCAmelCase__ : Union[str, Any] = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_torch def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ : List[str] = self.feat_extract_tester.prepare_inputs_for_common(equal_length=snake_case__ ) UpperCAmelCase__ : Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase__ : Optional[Any] = feat_extract.model_input_names[0] UpperCAmelCase__ : int = BatchFeature({input_name: speech_inputs} , tensor_type="pt" ) UpperCAmelCase__ : str = processed_features[input_name] if len(batch_features_input.shape ) < 3: UpperCAmelCase__ : List[Any] = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_tf def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.feat_extract_tester.prepare_inputs_for_common(equal_length=snake_case__ ) UpperCAmelCase__ : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase__ : Tuple = feat_extract.model_input_names[0] UpperCAmelCase__ : str = BatchFeature({input_name: speech_inputs} , tensor_type="tf" ) UpperCAmelCase__ : Dict = processed_features[input_name] if len(batch_features_input.shape ) < 3: UpperCAmelCase__ : Optional[Any] = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) def __a ( self : Union[str, Any] , snake_case__ : Any=False ): '''simple docstring''' def _inputs_have_equal_length(snake_case__ : Union[str, Any] ): UpperCAmelCase__ : Union[str, Any] = len(input[0] ) for input_slice in input[1:]: if len(snake_case__ ) != length: return False return True def _inputs_are_equal(snake_case__ : str , snake_case__ : List[str] ): if len(snake_case__ ) != len(snake_case__ ): return False for input_slice_a, input_slice_a in zip(snake_case__ , snake_case__ ): if not np.allclose(np.asarray(snake_case__ ) , np.asarray(snake_case__ ) , atol=1e-3 ): return False return True UpperCAmelCase__ : Dict = self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase__ : List[Any] = self.feat_extract_tester.prepare_inputs_for_common(numpify=snake_case__ ) UpperCAmelCase__ : Any = feat_extract.model_input_names[0] UpperCAmelCase__ : Optional[int] = BatchFeature({input_name: speech_inputs} ) UpperCAmelCase__ : List[str] = self.feat_extract_tester.seq_length_diff UpperCAmelCase__ : Union[str, Any] = self.feat_extract_tester.max_seq_length + pad_diff UpperCAmelCase__ : Dict = self.feat_extract_tester.min_seq_length UpperCAmelCase__ : Dict = self.feat_extract_tester.batch_size UpperCAmelCase__ : Tuple = self.feat_extract_tester.feature_size # test padding for List[int] + numpy UpperCAmelCase__ : List[Any] = feat_extract.pad(snake_case__ , padding=snake_case__ ) UpperCAmelCase__ : Any = input_a[input_name] UpperCAmelCase__ : Dict = feat_extract.pad(snake_case__ , padding="longest" ) UpperCAmelCase__ : List[Any] = input_a[input_name] UpperCAmelCase__ : Dict = feat_extract.pad(snake_case__ , padding="max_length" , max_length=len(speech_inputs[-1] ) ) UpperCAmelCase__ : Optional[int] = input_a[input_name] UpperCAmelCase__ : Dict = feat_extract.pad(snake_case__ , padding="longest" , return_tensors="np" ) UpperCAmelCase__ : Dict = input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(snake_case__ ): feat_extract.pad(snake_case__ , padding="max_length" )[input_name] UpperCAmelCase__ : Optional[Any] = feat_extract.pad( snake_case__ , padding="max_length" , max_length=snake_case__ , return_tensors="np" ) UpperCAmelCase__ : Any = input_a[input_name] self.assertFalse(_inputs_have_equal_length(snake_case__ ) ) self.assertTrue(_inputs_have_equal_length(snake_case__ ) ) self.assertTrue(_inputs_have_equal_length(snake_case__ ) ) self.assertTrue(_inputs_are_equal(snake_case__ , snake_case__ ) ) self.assertTrue(len(input_a[0] ) == pad_min_length ) self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff ) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) ) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size ) # test padding for `pad_to_multiple_of` for List[int] + numpy UpperCAmelCase__ : List[Any] = feat_extract.pad(snake_case__ , pad_to_multiple_of=1_0 ) UpperCAmelCase__ : str = input_a[input_name] UpperCAmelCase__ : int = feat_extract.pad(snake_case__ , padding="longest" , pad_to_multiple_of=1_0 ) UpperCAmelCase__ : List[str] = input_a[input_name] UpperCAmelCase__ : Optional[int] = feat_extract.pad( snake_case__ , padding="max_length" , pad_to_multiple_of=1_0 , max_length=snake_case__ ) UpperCAmelCase__ : int = input_a[input_name] UpperCAmelCase__ : str = feat_extract.pad( snake_case__ , padding="max_length" , pad_to_multiple_of=1_0 , max_length=snake_case__ , return_tensors="np" , ) UpperCAmelCase__ : List[Any] = input_a[input_name] self.assertTrue(all(len(snake_case__ ) % 1_0 == 0 for x in input_a ) ) self.assertTrue(_inputs_are_equal(snake_case__ , snake_case__ ) ) UpperCAmelCase__ : Tuple = pad_max_length if pad_max_length % 1_0 == 0 else (pad_max_length // 1_0 + 1) * 1_0 self.assertTrue(all(len(snake_case__ ) == expected_mult_pad_length for x in input_a ) ) self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size ) # Check padding value is correct UpperCAmelCase__ : str = (np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 ) self.assertTrue( abs( np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) ) < 1e-3 ) self.assertTrue( abs( np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) ) < 1e-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) ) < 1e-3 ) def __a ( self : List[Any] , snake_case__ : Dict=False ): '''simple docstring''' def _inputs_have_equal_length(snake_case__ : Optional[int] ): UpperCAmelCase__ : Dict = len(input[0] ) for input_slice in input[1:]: if len(snake_case__ ) != length: return False return True def _inputs_are_equal(snake_case__ : Optional[int] , snake_case__ : str ): if len(snake_case__ ) != len(snake_case__ ): return False for input_slice_a, input_slice_a in zip(snake_case__ , snake_case__ ): if not np.allclose(np.asarray(snake_case__ ) , np.asarray(snake_case__ ) , atol=1e-3 ): return False return True UpperCAmelCase__ : Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase__ : Union[str, Any] = self.feat_extract_tester.prepare_inputs_for_common(numpify=snake_case__ ) UpperCAmelCase__ : Tuple = feat_extract.model_input_names[0] UpperCAmelCase__ : Tuple = BatchFeature({input_name: speech_inputs} ) # truncate to smallest UpperCAmelCase__ : List[Any] = feat_extract.pad( snake_case__ , padding="max_length" , max_length=len(speech_inputs[0] ) , truncation=snake_case__ ) UpperCAmelCase__ : Any = input_a[input_name] UpperCAmelCase__ : Dict = feat_extract.pad(snake_case__ , padding="max_length" , max_length=len(speech_inputs[0] ) ) UpperCAmelCase__ : Optional[int] = input_a[input_name] self.assertTrue(_inputs_have_equal_length(snake_case__ ) ) self.assertFalse(_inputs_have_equal_length(snake_case__ ) ) # truncate to smallest with np UpperCAmelCase__ : Tuple = feat_extract.pad( snake_case__ , padding="max_length" , max_length=len(speech_inputs[0] ) , return_tensors="np" , truncation=snake_case__ , ) UpperCAmelCase__ : Dict = input_a[input_name] UpperCAmelCase__ : Dict = feat_extract.pad( snake_case__ , padding="max_length" , max_length=len(speech_inputs[0] ) , return_tensors="np" ) UpperCAmelCase__ : Optional[int] = input_a[input_name] self.assertTrue(_inputs_have_equal_length(snake_case__ ) ) self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(snake_case__ ) ) # truncate to middle UpperCAmelCase__ : Union[str, Any] = feat_extract.pad( snake_case__ , padding="max_length" , max_length=len(speech_inputs[1] ) , truncation=snake_case__ , return_tensors="np" , ) UpperCAmelCase__ : int = input_a[input_name] UpperCAmelCase__ : Dict = feat_extract.pad( snake_case__ , padding="max_length" , max_length=len(speech_inputs[1] ) , truncation=snake_case__ ) UpperCAmelCase__ : int = input_a[input_name] UpperCAmelCase__ : List[Any] = feat_extract.pad( snake_case__ , padding="max_length" , max_length=len(speech_inputs[1] ) , return_tensors="np" ) UpperCAmelCase__ : Optional[Any] = input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) ) self.assertTrue(_inputs_have_equal_length(snake_case__ ) ) self.assertTrue(_inputs_have_equal_length(snake_case__ ) ) self.assertTrue(_inputs_are_equal(snake_case__ , snake_case__ ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(snake_case__ ) ) self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) ) # padding has to be max_length when setting `truncation=True` with self.assertRaises(snake_case__ ): feat_extract.pad(snake_case__ , truncation=snake_case__ )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(snake_case__ ): feat_extract.pad(snake_case__ , padding="longest" , truncation=snake_case__ )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(snake_case__ ): feat_extract.pad(snake_case__ , padding="longest" , truncation=snake_case__ )[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(snake_case__ ): feat_extract.pad(snake_case__ , padding="max_length" , truncation=snake_case__ )[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy UpperCAmelCase__ : List[Any] = 1_2 UpperCAmelCase__ : Any = feat_extract.pad( snake_case__ , padding="max_length" , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=snake_case__ , truncation=snake_case__ , ) UpperCAmelCase__ : Tuple = input_a[input_name] UpperCAmelCase__ : str = feat_extract.pad( snake_case__ , padding="max_length" , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=snake_case__ , ) UpperCAmelCase__ : Any = input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of UpperCAmelCase__ : str = len(speech_inputs[0] ) if expected_length % pad_to_multiple_of != 0: UpperCAmelCase__ : Optional[int] = ((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0] ) == expected_length ) self.assertTrue(_inputs_have_equal_length(snake_case__ ) ) self.assertFalse(_inputs_have_equal_length(snake_case__ ) ) def __a ( self : Dict ): '''simple docstring''' self._check_padding(numpify=snake_case__ ) def __a ( self : Optional[Any] ): '''simple docstring''' self._check_padding(numpify=snake_case__ ) def __a ( self : Tuple ): '''simple docstring''' self._check_truncation(numpify=snake_case__ ) def __a ( self : List[Any] ): '''simple docstring''' self._check_truncation(numpify=snake_case__ ) @require_torch def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : str = self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase__ : Any = self.feat_extract_tester.prepare_inputs_for_common() UpperCAmelCase__ : List[str] = feat_extract.model_input_names[0] UpperCAmelCase__ : int = BatchFeature({input_name: speech_inputs} ) UpperCAmelCase__ : List[Any] = feat_extract.pad(snake_case__ , padding="longest" , return_tensors="np" )[input_name] UpperCAmelCase__ : List[str] = feat_extract.pad(snake_case__ , padding="longest" , return_tensors="pt" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 ) @require_tf def __a ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Any = self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase__ : List[str] = self.feat_extract_tester.prepare_inputs_for_common() UpperCAmelCase__ : int = feat_extract.model_input_names[0] UpperCAmelCase__ : Dict = BatchFeature({input_name: speech_inputs} ) UpperCAmelCase__ : Dict = feat_extract.pad(snake_case__ , padding="longest" , return_tensors="np" )[input_name] UpperCAmelCase__ : int = feat_extract.pad(snake_case__ , padding="longest" , return_tensors="tf" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1e-2 ) def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Tuple = self.feat_extract_dict UpperCAmelCase__ : Tuple = True UpperCAmelCase__ : Tuple = self.feature_extraction_class(**snake_case__ ) UpperCAmelCase__ : Tuple = self.feat_extract_tester.prepare_inputs_for_common() UpperCAmelCase__ : str = [len(snake_case__ ) for x in speech_inputs] UpperCAmelCase__ : Union[str, Any] = feat_extract.model_input_names[0] UpperCAmelCase__ : str = BatchFeature({input_name: speech_inputs} ) UpperCAmelCase__ : List[str] = feat_extract.pad(snake_case__ , padding="longest" , return_tensors="np" ) self.assertIn("attention_mask" , snake_case__ ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , snake_case__ ) def __a ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.feat_extract_dict UpperCAmelCase__ : str = True UpperCAmelCase__ : Dict = self.feature_extraction_class(**snake_case__ ) UpperCAmelCase__ : Dict = self.feat_extract_tester.prepare_inputs_for_common() UpperCAmelCase__ : Optional[Any] = [len(snake_case__ ) for x in speech_inputs] UpperCAmelCase__ : Optional[int] = feat_extract.model_input_names[0] UpperCAmelCase__ : Dict = BatchFeature({input_name: speech_inputs} ) UpperCAmelCase__ : Optional[int] = min(snake_case__ ) UpperCAmelCase__ : Dict = feat_extract.pad( snake_case__ , padding="max_length" , max_length=snake_case__ , truncation=snake_case__ , return_tensors="np" ) self.assertIn("attention_mask" , snake_case__ ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] )
298
"""simple docstring""" import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger _lowerCAmelCase : Optional[int] = get_logger(__name__) _lowerCAmelCase : Any = Path(__file__).parent / """model_card_template.md""" _lowerCAmelCase : Dict = uuida().hex _lowerCAmelCase : Optional[int] = os.getenv("""HF_HUB_OFFLINE""", """""").upper() in ENV_VARS_TRUE_VALUES _lowerCAmelCase : Optional[int] = os.getenv("""DISABLE_TELEMETRY""", """""").upper() in ENV_VARS_TRUE_VALUES _lowerCAmelCase : int = HUGGINGFACE_CO_RESOLVE_ENDPOINT + """/api/telemetry/""" def SCREAMING_SNAKE_CASE__ ( snake_case : Union[Dict, str, None] = None )-> str: '''simple docstring''' UpperCAmelCase__ : Optional[int] = f'diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}' if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += f'; torch/{_torch_version}' if is_flax_available(): ua += f'; jax/{_jax_version}' ua += f'; flax/{_flax_version}' if is_onnx_available(): ua += f'; onnxruntime/{_onnxruntime_version}' # CI will set this value to True if os.environ.get("DIFFUSERS_IS_CI" , "" ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(snake_case , snake_case ): ua += "; " + "; ".join(f'{k}/{v}' for k, v in user_agent.items() ) elif isinstance(snake_case , snake_case ): ua += "; " + user_agent return ua def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : Optional[str] = None , snake_case : Optional[str] = None )-> List[str]: '''simple docstring''' if token is None: UpperCAmelCase__ : Optional[Any] = HfFolder.get_token() if organization is None: UpperCAmelCase__ : Tuple = whoami(snake_case )["name"] return f'{username}/{model_id}' else: return f'{organization}/{model_id}' def SCREAMING_SNAKE_CASE__ ( snake_case : int , snake_case : List[Any] )-> List[Any]: '''simple docstring''' if not is_jinja_available(): raise ValueError( "Modelcard rendering is based on Jinja templates." " Please make sure to have `jinja` installed before using `create_model_card`." " To install it, please run `pip install Jinja2`." ) if hasattr(snake_case , "local_rank" ) and args.local_rank not in [-1, 0]: return UpperCAmelCase__ : int = args.hub_token if hasattr(snake_case , "hub_token" ) else None UpperCAmelCase__ : Optional[Any] = get_full_repo_name(snake_case , token=snake_case ) UpperCAmelCase__ : Tuple = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language="en" , license="apache-2.0" , library_name="diffusers" , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=snake_case , model_name=snake_case , repo_name=snake_case , dataset_name=args.dataset_name if hasattr(snake_case , "dataset_name" ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(snake_case , "gradient_accumulation_steps" ) else None ) , adam_betaa=args.adam_betaa if hasattr(snake_case , "adam_beta1" ) else None , adam_betaa=args.adam_betaa if hasattr(snake_case , "adam_beta2" ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(snake_case , "adam_weight_decay" ) else None , adam_epsilon=args.adam_epsilon if hasattr(snake_case , "adam_epsilon" ) else None , lr_scheduler=args.lr_scheduler if hasattr(snake_case , "lr_scheduler" ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(snake_case , "lr_warmup_steps" ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(snake_case , "ema_inv_gamma" ) else None , ema_power=args.ema_power if hasattr(snake_case , "ema_power" ) else None , ema_max_decay=args.ema_max_decay if hasattr(snake_case , "ema_max_decay" ) else None , mixed_precision=args.mixed_precision , ) UpperCAmelCase__ : List[str] = os.path.join(args.output_dir , "README.md" ) model_card.save(snake_case ) def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[str] , snake_case : Optional[str] = None )-> Tuple: '''simple docstring''' if resolved_file is None or commit_hash is not None: return commit_hash UpperCAmelCase__ : Dict = str(Path(snake_case ).as_posix() ) UpperCAmelCase__ : Optional[int] = re.search(r"snapshots/([^/]+)/" , snake_case ) if search is None: return None UpperCAmelCase__ : Dict = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(snake_case ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. _lowerCAmelCase : Dict = os.path.expanduser( os.getenv("""HF_HOME""", os.path.join(os.getenv("""XDG_CACHE_HOME""", """~/.cache"""), """huggingface""")) ) _lowerCAmelCase : List[Any] = os.path.join(hf_cache_home, """diffusers""") def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[str] = None , snake_case : Optional[str] = None )-> None: '''simple docstring''' if new_cache_dir is None: UpperCAmelCase__ : Union[str, Any] = DIFFUSERS_CACHE if old_cache_dir is None: UpperCAmelCase__ : str = old_diffusers_cache UpperCAmelCase__ : List[str] = Path(snake_case ).expanduser() UpperCAmelCase__ : Any = Path(snake_case ).expanduser() for old_blob_path in old_cache_dir.glob("**/blobs/*" ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): UpperCAmelCase__ : Dict = new_cache_dir / old_blob_path.relative_to(snake_case ) new_blob_path.parent.mkdir(parents=snake_case , exist_ok=snake_case ) os.replace(snake_case , snake_case ) try: os.symlink(snake_case , snake_case ) except OSError: logger.warning( "Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded." ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). _lowerCAmelCase : Tuple = os.path.join(DIFFUSERS_CACHE, """version_diffusers_cache.txt""") if not os.path.isfile(cache_version_file): _lowerCAmelCase : Any = 0 else: with open(cache_version_file) as f: try: _lowerCAmelCase : List[str] = int(f.read()) except ValueError: _lowerCAmelCase : Optional[int] = 0 if cache_version < 1: _lowerCAmelCase : List[str] = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( """The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your """ """existing cached models. This is a one-time operation, you can interrupt it or run it """ """later by calling `diffusers.utils.hub_utils.move_cache()`.""" ) try: move_cache() except Exception as e: _lowerCAmelCase : Dict = """\n""".join(traceback.format_tb(e.__traceback__)) logger.error( F"""There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease """ """file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole """ """message and we will do our best to help.""" ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, """w""") as f: f.write("""1""") except Exception: logger.warning( F"""There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure """ """the directory exists and can be written to.""" ) def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : Optional[str] = None )-> str: '''simple docstring''' if variant is not None: UpperCAmelCase__ : int = weights_name.split("." ) UpperCAmelCase__ : Optional[Any] = splits[:-1] + [variant] + splits[-1:] UpperCAmelCase__ : Optional[int] = ".".join(snake_case ) return weights_name def SCREAMING_SNAKE_CASE__ ( snake_case : Tuple , *, snake_case : Union[str, Any] , snake_case : Optional[Any] , snake_case : str , snake_case : List[str] , snake_case : Dict , snake_case : Any , snake_case : Any , snake_case : Tuple , snake_case : List[str] , snake_case : Any , snake_case : Optional[int]=None , )-> Tuple: '''simple docstring''' UpperCAmelCase__ : List[str] = str(snake_case ) if os.path.isfile(snake_case ): return pretrained_model_name_or_path elif os.path.isdir(snake_case ): if os.path.isfile(os.path.join(snake_case , snake_case ) ): # Load from a PyTorch checkpoint UpperCAmelCase__ : Any = os.path.join(snake_case , snake_case ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(snake_case , snake_case , snake_case ) ): UpperCAmelCase__ : str = os.path.join(snake_case , snake_case , snake_case ) return model_file else: raise EnvironmentError( f'Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.' ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(snake_case ).base_version ) >= version.parse("0.20.0" ) ): try: UpperCAmelCase__ : List[Any] = hf_hub_download( snake_case , filename=_add_variant(snake_case , snake_case ) , cache_dir=snake_case , force_download=snake_case , proxies=snake_case , resume_download=snake_case , local_files_only=snake_case , use_auth_token=snake_case , user_agent=snake_case , subfolder=snake_case , revision=revision or commit_hash , ) warnings.warn( f'Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.' , snake_case , ) return model_file except: # noqa: E722 warnings.warn( f'You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(snake_case , snake_case )} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(snake_case , snake_case )}\' so that the correct variant file can be added.' , snake_case , ) try: # 2. Load model file as usual UpperCAmelCase__ : Dict = hf_hub_download( snake_case , filename=snake_case , cache_dir=snake_case , force_download=snake_case , proxies=snake_case , resume_download=snake_case , local_files_only=snake_case , use_auth_token=snake_case , user_agent=snake_case , subfolder=snake_case , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( f'{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier ' "listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a " "token having permission to this repo with `use_auth_token` or log in with `huggingface-cli " "login`." ) except RevisionNotFoundError: raise EnvironmentError( f'{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for ' "this model name. Check the model page at " f'\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.' ) except EntryNotFoundError: raise EnvironmentError( f'{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.' ) except HTTPError as err: raise EnvironmentError( f'There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}' ) except ValueError: raise EnvironmentError( f'We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it' f' in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a' f' directory containing a file named {weights_name} or' " \nCheckout your internet connection or see how to run the library in" " offline mode at 'https://huggingface.co/docs/diffusers/installation#offline-mode'." ) except EnvironmentError: raise EnvironmentError( f'Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from ' "'https://huggingface.co/models', make sure you don't have a local directory with the same name. " f'Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory ' f'containing a file named {weights_name}' )
298
1
import logging import os from .state import PartialState class a_ ( logging.LoggerAdapter ): """simple docstring""" @staticmethod def _lowerCAmelCase ( snake_case : Dict ): SCREAMING_SNAKE_CASE =PartialState() return not main_process_only or (main_process_only and state.is_main_process) def _lowerCAmelCase ( self : int ,snake_case : Dict ,snake_case : int ,*snake_case : str ,**snake_case : List[str] ): if PartialState._shared_state == {}: raise RuntimeError( 'You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.' ) SCREAMING_SNAKE_CASE =kwargs.pop('main_process_only' ,snake_case ) SCREAMING_SNAKE_CASE =kwargs.pop('in_order' ,snake_case ) if self.isEnabledFor(snake_case ): if self._should_log(snake_case ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.process(snake_case ,snake_case ) self.logger.log(snake_case ,snake_case ,*snake_case ,**snake_case ) elif in_order: SCREAMING_SNAKE_CASE =PartialState() for i in range(state.num_processes ): if i == state.process_index: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.process(snake_case ,snake_case ) self.logger.log(snake_case ,snake_case ,*snake_case ,**snake_case ) state.wait_for_everyone() def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ = None ): """simple docstring""" if log_level is None: SCREAMING_SNAKE_CASE =os.environ.get('ACCELERATE_LOG_LEVEL', lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =logging.getLogger(lowerCAmelCase_ ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(lowerCAmelCase_, {} )
334
import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class a_ : """simple docstring""" def __init__( self : Optional[int] ,snake_case : Any ,snake_case : Dict=100 ,snake_case : List[Any]=13 ,snake_case : str=30 ,snake_case : List[str]=2 ,snake_case : List[Any]=3 ,snake_case : Tuple=True ,snake_case : Optional[Any]=True ,snake_case : int=32 ,snake_case : Tuple=4 ,snake_case : List[Any]=4 ,snake_case : Optional[Any]=37 ,snake_case : Optional[Any]="gelu" ,snake_case : Tuple=0.1 ,snake_case : Union[str, Any]=0.1 ,snake_case : List[Any]=10 ,snake_case : Tuple=0.02 ,snake_case : List[str]=3 ,snake_case : Any=None ,snake_case : int=[0, 1, 2, 3] ,): SCREAMING_SNAKE_CASE =parent SCREAMING_SNAKE_CASE =100 SCREAMING_SNAKE_CASE =batch_size SCREAMING_SNAKE_CASE =image_size SCREAMING_SNAKE_CASE =patch_size SCREAMING_SNAKE_CASE =num_channels SCREAMING_SNAKE_CASE =is_training SCREAMING_SNAKE_CASE =use_labels SCREAMING_SNAKE_CASE =hidden_size SCREAMING_SNAKE_CASE =num_hidden_layers SCREAMING_SNAKE_CASE =num_attention_heads SCREAMING_SNAKE_CASE =intermediate_size SCREAMING_SNAKE_CASE =hidden_act SCREAMING_SNAKE_CASE =hidden_dropout_prob SCREAMING_SNAKE_CASE =attention_probs_dropout_prob SCREAMING_SNAKE_CASE =type_sequence_label_size SCREAMING_SNAKE_CASE =initializer_range SCREAMING_SNAKE_CASE =scope SCREAMING_SNAKE_CASE =out_indices SCREAMING_SNAKE_CASE =num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE =(image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE =num_patches + 1 def _lowerCAmelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE =None SCREAMING_SNAKE_CASE =None if self.use_labels: SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] ,self.type_sequence_label_size ) SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels ) SCREAMING_SNAKE_CASE =self.get_config() return config, pixel_values, labels, pixel_labels def _lowerCAmelCase ( self : Dict ): return BeitConfig( vocab_size=self.vocab_size ,image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=snake_case ,initializer_range=self.initializer_range ,out_indices=self.out_indices ,) def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Tuple ,snake_case : Optional[Any] ,snake_case : Union[str, Any] ,snake_case : Optional[int] ): SCREAMING_SNAKE_CASE =BeitModel(config=snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Optional[int] ,snake_case : Dict ,snake_case : Any ,snake_case : List[str] ): SCREAMING_SNAKE_CASE =BeitForMaskedImageModeling(config=snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length - 1, self.vocab_size) ) def _lowerCAmelCase ( self : Optional[Any] ,snake_case : Any ,snake_case : str ,snake_case : Any ,snake_case : str ): SCREAMING_SNAKE_CASE =self.type_sequence_label_size SCREAMING_SNAKE_CASE =BeitForImageClassification(snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ,labels=snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images SCREAMING_SNAKE_CASE =1 SCREAMING_SNAKE_CASE =BeitForImageClassification(snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE =model(snake_case ,labels=snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def _lowerCAmelCase ( self : List[str] ,snake_case : Tuple ,snake_case : str ,snake_case : Optional[int] ,snake_case : int ): SCREAMING_SNAKE_CASE =self.num_labels SCREAMING_SNAKE_CASE =BeitForSemanticSegmentation(snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) SCREAMING_SNAKE_CASE =model(snake_case ,labels=snake_case ) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def _lowerCAmelCase ( self : str ): SCREAMING_SNAKE_CASE =self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =config_and_inputs SCREAMING_SNAKE_CASE ={'pixel_values': pixel_values} return config, inputs_dict @require_torch class a_ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) __UpperCAmelCase = ( { 'feature-extraction': BeitModel, 'image-classification': BeitForImageClassification, 'image-segmentation': BeitForSemanticSegmentation, } if is_torch_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False def _lowerCAmelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE =BeitModelTester(self ) SCREAMING_SNAKE_CASE =ConfigTester(self ,config_class=snake_case ,has_text_modality=snake_case ,hidden_size=37 ) def _lowerCAmelCase ( self : List[str] ): self.config_tester.run_common_tests() @unittest.skip(reason='BEiT does not use inputs_embeds' ) def _lowerCAmelCase ( self : List[Any] ): pass @require_torch_multi_gpu @unittest.skip(reason='BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def _lowerCAmelCase ( self : Union[str, Any] ): pass def _lowerCAmelCase ( self : Tuple ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE =model_class(snake_case ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) SCREAMING_SNAKE_CASE =model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case ,nn.Linear ) ) def _lowerCAmelCase ( self : int ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE =model_class(snake_case ) SCREAMING_SNAKE_CASE =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE =[*signature.parameters.keys()] SCREAMING_SNAKE_CASE =['pixel_values'] self.assertListEqual(arg_names[:1] ,snake_case ) def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def _lowerCAmelCase ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case ) def _lowerCAmelCase ( self : Dict ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case ) def _lowerCAmelCase ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*snake_case ) def _lowerCAmelCase ( self : Any ): if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE =True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(snake_case ), BeitForMaskedImageModeling]: continue SCREAMING_SNAKE_CASE =model_class(snake_case ) model.to(snake_case ) model.train() SCREAMING_SNAKE_CASE =self._prepare_for_class(snake_case ,snake_case ,return_labels=snake_case ) SCREAMING_SNAKE_CASE =model(**snake_case ).loss loss.backward() def _lowerCAmelCase ( self : int ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE =False SCREAMING_SNAKE_CASE =True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(snake_case ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue SCREAMING_SNAKE_CASE =model_class(snake_case ) model.gradient_checkpointing_enable() model.to(snake_case ) model.train() SCREAMING_SNAKE_CASE =self._prepare_for_class(snake_case ,snake_case ,return_labels=snake_case ) SCREAMING_SNAKE_CASE =model(**snake_case ).loss loss.backward() def _lowerCAmelCase ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE =_config_zero_init(snake_case ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE =model_class(config=snake_case ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() ,[0.0, 1.0] ,msg=f'Parameter {name} of model {model_class} seems not properly initialized' ,) @slow def _lowerCAmelCase ( self : List[str] ): for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE =BeitModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) def snake_case__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class a_ ( unittest.TestCase ): """simple docstring""" @cached_property def _lowerCAmelCase ( self : Tuple ): return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None @slow def _lowerCAmelCase ( self : int ): SCREAMING_SNAKE_CASE =BeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ).to(snake_case ) SCREAMING_SNAKE_CASE =self.default_image_processor SCREAMING_SNAKE_CASE =prepare_img() SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).pixel_values.to(snake_case ) # prepare bool_masked_pos SCREAMING_SNAKE_CASE =torch.ones((1, 196) ,dtype=torch.bool ).to(snake_case ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE =model(pixel_values=snake_case ,bool_masked_pos=snake_case ) SCREAMING_SNAKE_CASE =outputs.logits # verify the logits SCREAMING_SNAKE_CASE =torch.Size((1, 196, 8192) ) self.assertEqual(logits.shape ,snake_case ) SCREAMING_SNAKE_CASE =torch.tensor( [[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ).to(snake_case ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] ,snake_case ,atol=1e-2 ) ) @slow def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ).to(snake_case ) SCREAMING_SNAKE_CASE =self.default_image_processor SCREAMING_SNAKE_CASE =prepare_img() SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).to(snake_case ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE =model(**snake_case ) SCREAMING_SNAKE_CASE =outputs.logits # verify the logits SCREAMING_SNAKE_CASE =torch.Size((1, 1000) ) self.assertEqual(logits.shape ,snake_case ) SCREAMING_SNAKE_CASE =torch.tensor([-1.2_385, -1.0_987, -1.0_108] ).to(snake_case ) self.assertTrue(torch.allclose(logits[0, :3] ,snake_case ,atol=1e-4 ) ) SCREAMING_SNAKE_CASE =281 self.assertEqual(logits.argmax(-1 ).item() ,snake_case ) @slow def _lowerCAmelCase ( self : int ): SCREAMING_SNAKE_CASE =BeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ).to( snake_case ) SCREAMING_SNAKE_CASE =self.default_image_processor SCREAMING_SNAKE_CASE =prepare_img() SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).to(snake_case ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE =model(**snake_case ) SCREAMING_SNAKE_CASE =outputs.logits # verify the logits SCREAMING_SNAKE_CASE =torch.Size((1, 21841) ) self.assertEqual(logits.shape ,snake_case ) SCREAMING_SNAKE_CASE =torch.tensor([1.6_881, -0.2_787, 0.5_901] ).to(snake_case ) self.assertTrue(torch.allclose(logits[0, :3] ,snake_case ,atol=1e-4 ) ) SCREAMING_SNAKE_CASE =2396 self.assertEqual(logits.argmax(-1 ).item() ,snake_case ) @slow def _lowerCAmelCase ( self : Tuple ): SCREAMING_SNAKE_CASE =BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) SCREAMING_SNAKE_CASE =model.to(snake_case ) SCREAMING_SNAKE_CASE =BeitImageProcessor(do_resize=snake_case ,size=640 ,do_center_crop=snake_case ) SCREAMING_SNAKE_CASE =load_dataset('hf-internal-testing/fixtures_ade20k' ,split='test' ) SCREAMING_SNAKE_CASE =Image.open(ds[0]['file'] ) SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).to(snake_case ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE =model(**snake_case ) SCREAMING_SNAKE_CASE =outputs.logits # verify the logits SCREAMING_SNAKE_CASE =torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape ,snake_case ) SCREAMING_SNAKE_CASE =version.parse(PIL.__version__ ) < version.parse('9.0.0' ) if is_pillow_less_than_a: SCREAMING_SNAKE_CASE =torch.tensor( [ [[-4.9_225, -2.3_954, -3.0_522], [-2.8_822, -1.0_046, -1.7_561], [-2.9_549, -1.3_228, -2.1_347]], [[-5.8_168, -3.4_129, -4.0_778], [-3.8_651, -2.2_214, -3.0_277], [-3.8_356, -2.4_643, -3.3_535]], [[-0.0_078, 3.9_952, 4.0_754], [2.9_856, 4.6_944, 5.0_035], [3.2_413, 4.7_813, 4.9_969]], ] ,device=snake_case ,) else: SCREAMING_SNAKE_CASE =torch.tensor( [ [[-4.8_960, -2.3_688, -3.0_355], [-2.8_478, -0.9_836, -1.7_418], [-2.9_449, -1.3_332, -2.1_456]], [[-5.8_081, -3.4_124, -4.1_006], [-3.8_561, -2.2_081, -3.0_323], [-3.8_365, -2.4_601, -3.3_669]], [[-0.0_309, 3.9_868, 4.0_540], [2.9_640, 4.6_877, 4.9_976], [3.2_081, 4.7_690, 4.9_942]], ] ,device=snake_case ,) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] ,snake_case ,atol=1e-4 ) ) @slow def _lowerCAmelCase ( self : int ): SCREAMING_SNAKE_CASE =BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) SCREAMING_SNAKE_CASE =model.to(snake_case ) SCREAMING_SNAKE_CASE =BeitImageProcessor(do_resize=snake_case ,size=640 ,do_center_crop=snake_case ) SCREAMING_SNAKE_CASE =load_dataset('hf-internal-testing/fixtures_ade20k' ,split='test' ) SCREAMING_SNAKE_CASE =Image.open(ds[0]['file'] ) SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).to(snake_case ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE =model(**snake_case ) SCREAMING_SNAKE_CASE =outputs.logits.detach().cpu() SCREAMING_SNAKE_CASE =image_processor.post_process_semantic_segmentation(outputs=snake_case ,target_sizes=[(500, 300)] ) SCREAMING_SNAKE_CASE =torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape ,snake_case ) SCREAMING_SNAKE_CASE =image_processor.post_process_semantic_segmentation(outputs=snake_case ) SCREAMING_SNAKE_CASE =torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape ,snake_case )
334
1
'''simple docstring''' import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def a__ ( lowercase : Union[str, Any], lowercase : Any, lowercase : Optional[Any], lowercase : int ) -> int: """simple docstring""" _UpperCamelCase = FunnelConfig.from_json_file(lowercase ) print(F"""Building PyTorch model from configuration: {config}""" ) _UpperCamelCase = FunnelBaseModel(lowercase ) if base_model else FunnelModel(lowercase ) # Load weights from tf checkpoint load_tf_weights_in_funnel(lowercase, lowercase, lowercase ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict(), lowercase ) if __name__ == "__main__": lowercase__ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--base_model', action='store_true', help='Whether you want just the base model (no decoder) or not.' ) lowercase__ : int = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
287
'''simple docstring''' import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowercase__ : Any = logging.getLogger(__name__) def a__ ( lowercase : Optional[Any], lowercase : Tuple ) -> Any: """simple docstring""" return (preds == labels).mean() @dataclass class __lowerCAmelCase : """simple docstring""" _snake_case : str = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) _snake_case : Optional[str] = field( default=__magic_name__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) _snake_case : Optional[str] = field( default=__magic_name__ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) _snake_case : Optional[str] = field( default=__magic_name__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) @dataclass class __lowerCAmelCase : """simple docstring""" _snake_case : str = field(metadata={'help': 'The name of the task to train on: ' + ', '.join(processors.keys() )} ) _snake_case : str = field(metadata={'help': 'Should contain the data files for the task.'} ) _snake_case : int = field( default=1_2_8 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) _snake_case : bool = field( default=__magic_name__ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def a__ ( ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN, ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''', training_args.local_rank, training_args.device, training_args.n_gpu, bool(training_args.local_rank != -1 ), training_args.fpaa, ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''', lowercase ) # Set seed set_seed(training_args.seed ) try: _UpperCamelCase = processors[data_args.task_name]() _UpperCamelCase = processor.get_labels() _UpperCamelCase = len(lowercase ) except KeyError: raise ValueError('''Task not found: %s''' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCamelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, num_labels=lowercase, finetuning_task=data_args.task_name, cache_dir=model_args.cache_dir, ) _UpperCamelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, ) _UpperCamelCase = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path, from_tf=bool('''.ckpt''' in model_args.model_name_or_path ), config=lowercase, cache_dir=model_args.cache_dir, ) # Get datasets _UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir, tokenizer=lowercase, task=data_args.task_name, max_seq_length=data_args.max_seq_length, overwrite_cache=data_args.overwrite_cache, mode=Split.train, ) if training_args.do_train else None ) _UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir, tokenizer=lowercase, task=data_args.task_name, max_seq_length=data_args.max_seq_length, overwrite_cache=data_args.overwrite_cache, mode=Split.dev, ) if training_args.do_eval else None ) def compute_metrics(lowercase : EvalPrediction ) -> Dict: _UpperCamelCase = np.argmax(p.predictions, axis=1 ) return {"acc": simple_accuracy(lowercase, p.label_ids )} # Data collator _UpperCamelCase = DataCollatorWithPadding(lowercase, pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer _UpperCamelCase = Trainer( model=lowercase, args=lowercase, train_dataset=lowercase, eval_dataset=lowercase, compute_metrics=lowercase, data_collator=lowercase, ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _UpperCamelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) _UpperCamelCase = trainer.evaluate() _UpperCamelCase = os.path.join(training_args.output_dir, '''eval_results.txt''' ) if trainer.is_world_master(): with open(lowercase, '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''', lowercase, lowercase ) writer.write('''%s = %s\n''' % (key, value) ) results.update(lowercase ) return results def a__ ( lowercase : Tuple ) -> List[Any]: """simple docstring""" main() if __name__ == "__main__": main()
287
1
'''simple docstring''' from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class _a ( __a ): __a : Dict = """""" __a : str = """hf-legacy""" # "hf://"" is reserved for hffs def __init__( self : str , lowercase : Optional[DatasetInfo] = None , lowercase : Optional[str] = None , **lowercase : Tuple , ): '''simple docstring''' super().__init__(self , **lowercase ) UpperCAmelCase = repo_info UpperCAmelCase = token UpperCAmelCase = None def A ( self : Optional[int] ): '''simple docstring''' if self.dir_cache is None: UpperCAmelCase = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes UpperCAmelCase = { '''name''': hf_file.rfilename, '''size''': None, '''type''': '''file''', } self.dir_cache.update( { str(lowercase ): {'''name''': str(lowercase ), '''size''': None, '''type''': '''directory'''} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def A ( self : Tuple , lowercase : str , lowercase : str = "rb" , **lowercase : Dict , ): '''simple docstring''' if not isinstance(self.repo_info , lowercase ): raise NotImplementedError(f"Open is only implemented for dataset repositories, but got {self.repo_info}" ) UpperCAmelCase = hf_hub_url(self.repo_info.id , lowercase , revision=self.repo_info.sha ) return fsspec.open( lowercase , mode=lowercase , headers=get_authentication_headers_for_url(lowercase , use_auth_token=self.token ) , client_kwargs={'''trust_env''': True} , ).open() def A ( self : List[str] , lowercase : Optional[int] , **lowercase : List[Any] ): '''simple docstring''' self._get_dirs() UpperCAmelCase = self._strip_protocol(lowercase ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(lowercase ) def A ( self : List[Any] , lowercase : Union[str, Any] , lowercase : Optional[Any]=False , **lowercase : Any ): '''simple docstring''' self._get_dirs() UpperCAmelCase = PurePosixPath(path.strip('''/''' ) ) UpperCAmelCase = {} for p, f in self.dir_cache.items(): UpperCAmelCase = PurePosixPath(p.strip('''/''' ) ) UpperCAmelCase = p.parent if root == path: UpperCAmelCase = f UpperCAmelCase = list(paths.values() ) if detail: return out else: return sorted(f['''name'''] for f in out )
34
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging A =logging.get_logger(__name__) A ={ 'Helsinki-NLP/opus-mt-en-de': 'https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json', # See all Marian models at https://huggingface.co/models?filter=marian } class _a ( __a ): __a : List[Any] = """marian""" __a : Union[str, Any] = ["""past_key_values"""] __a : List[str] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : List[Any] , lowercase : Union[str, Any]=58_101 , lowercase : Tuple=None , lowercase : str=1_024 , lowercase : Optional[int]=12 , lowercase : Optional[int]=4_096 , lowercase : int=16 , lowercase : List[Any]=12 , lowercase : int=4_096 , lowercase : Optional[int]=16 , lowercase : int=0.0 , lowercase : Tuple=0.0 , lowercase : Tuple=True , lowercase : Union[str, Any]=True , lowercase : List[Any]="gelu" , lowercase : Tuple=1_024 , lowercase : str=0.1 , lowercase : str=0.0 , lowercase : Optional[int]=0.0 , lowercase : Dict=0.02 , lowercase : Union[str, Any]=58_100 , lowercase : List[str]=False , lowercase : str=58_100 , lowercase : Any=0 , lowercase : Optional[Any]=0 , lowercase : Tuple=True , **lowercase : Optional[int] , ): '''simple docstring''' UpperCAmelCase = vocab_size UpperCAmelCase = decoder_vocab_size or vocab_size UpperCAmelCase = max_position_embeddings UpperCAmelCase = d_model UpperCAmelCase = encoder_ffn_dim UpperCAmelCase = encoder_layers UpperCAmelCase = encoder_attention_heads UpperCAmelCase = decoder_ffn_dim UpperCAmelCase = decoder_layers UpperCAmelCase = decoder_attention_heads UpperCAmelCase = dropout UpperCAmelCase = attention_dropout UpperCAmelCase = activation_dropout UpperCAmelCase = activation_function UpperCAmelCase = init_std UpperCAmelCase = encoder_layerdrop UpperCAmelCase = decoder_layerdrop UpperCAmelCase = use_cache UpperCAmelCase = encoder_layers UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase = share_encoder_decoder_embeddings super().__init__( pad_token_id=lowercase , eos_token_id=lowercase , is_encoder_decoder=lowercase , decoder_start_token_id=lowercase , forced_eos_token_id=lowercase , **lowercase , ) class _a ( __a ): @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def A ( self : int ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: UpperCAmelCase = {0: '''batch'''} UpperCAmelCase = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: UpperCAmelCase = {0: '''batch''', 1: '''decoder_sequence'''} UpperCAmelCase = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(lowercase , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. UpperCAmelCase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: UpperCAmelCase , UpperCAmelCase = self.num_layers for i in range(lowercase ): UpperCAmelCase = {0: '''batch''', 2: '''past_sequence + sequence'''} UpperCAmelCase = {0: '''batch''', 2: '''past_sequence + sequence'''} else: UpperCAmelCase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def A ( self : Any ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase = super().outputs else: UpperCAmelCase = super(lowercase , self ).outputs if self.use_past: UpperCAmelCase , UpperCAmelCase = self.num_layers for i in range(lowercase ): UpperCAmelCase = {0: '''batch''', 2: '''past_sequence + sequence'''} UpperCAmelCase = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def A ( self : Dict , lowercase : PreTrainedTokenizer , lowercase : int = -1 , lowercase : int = -1 , lowercase : bool = False , lowercase : Optional[TensorType] = None , ): '''simple docstring''' UpperCAmelCase = self._generate_dummy_inputs_for_encoder_and_decoder( lowercase , lowercase , lowercase , lowercase , lowercase ) # Generate decoder inputs UpperCAmelCase = seq_length if not self.use_past else 1 UpperCAmelCase = self._generate_dummy_inputs_for_encoder_and_decoder( lowercase , lowercase , lowercase , lowercase , lowercase ) UpperCAmelCase = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} UpperCAmelCase = dict(**lowercase , **lowercase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch UpperCAmelCase , UpperCAmelCase = common_inputs['''input_ids'''].shape UpperCAmelCase = common_inputs['''decoder_input_ids'''].shape[1] UpperCAmelCase , UpperCAmelCase = self.num_attention_heads UpperCAmelCase = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCAmelCase = decoder_seq_length + 3 UpperCAmelCase = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) UpperCAmelCase = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(lowercase , lowercase )] , dim=1 ) UpperCAmelCase = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered UpperCAmelCase , UpperCAmelCase = self.num_layers UpperCAmelCase = min(lowercase , lowercase ) UpperCAmelCase = max(lowercase , lowercase ) - min_num_layers UpperCAmelCase = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(lowercase ): common_inputs["past_key_values"].append( ( torch.zeros(lowercase ), torch.zeros(lowercase ), torch.zeros(lowercase ), torch.zeros(lowercase ), ) ) # TODO: test this. UpperCAmelCase = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(lowercase , lowercase ): common_inputs["past_key_values"].append((torch.zeros(lowercase ), torch.zeros(lowercase )) ) return common_inputs def A ( self : int , lowercase : PreTrainedTokenizer , lowercase : int = -1 , lowercase : int = -1 , lowercase : bool = False , lowercase : Optional[TensorType] = None , ): '''simple docstring''' UpperCAmelCase = self._generate_dummy_inputs_for_encoder_and_decoder( lowercase , lowercase , lowercase , lowercase , lowercase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch UpperCAmelCase , UpperCAmelCase = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values UpperCAmelCase = seqlen + 2 UpperCAmelCase , UpperCAmelCase = self.num_layers UpperCAmelCase , UpperCAmelCase = self.num_attention_heads UpperCAmelCase = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCAmelCase = common_inputs['''attention_mask'''].dtype UpperCAmelCase = torch.cat( [common_inputs['''attention_mask'''], torch.ones(lowercase , lowercase , dtype=lowercase )] , dim=1 ) UpperCAmelCase = [ (torch.zeros(lowercase ), torch.zeros(lowercase )) for _ in range(lowercase ) ] return common_inputs def A ( self : str , lowercase : PreTrainedTokenizer , lowercase : int = -1 , lowercase : int = -1 , lowercase : bool = False , lowercase : Optional[TensorType] = None , ): '''simple docstring''' UpperCAmelCase = compute_effective_axis_dimension( lowercase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCAmelCase = tokenizer.num_special_tokens_to_add(lowercase ) UpperCAmelCase = compute_effective_axis_dimension( lowercase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowercase ) # Generate dummy inputs according to compute batch and sequence UpperCAmelCase = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size UpperCAmelCase = dict(tokenizer(lowercase , return_tensors=lowercase ) ) return common_inputs def A ( self : List[str] , lowercase : PreTrainedTokenizer , lowercase : int = -1 , lowercase : int = -1 , lowercase : bool = False , lowercase : Optional[TensorType] = None , ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase = self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowercase , batch_size=lowercase , seq_length=lowercase , is_pair=lowercase , framework=lowercase ) else: UpperCAmelCase = self._generate_dummy_inputs_for_causal_lm( lowercase , batch_size=lowercase , seq_length=lowercase , is_pair=lowercase , framework=lowercase ) return common_inputs def A ( self : List[Any] , lowercase : Any , lowercase : Tuple , lowercase : Any , lowercase : Any ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase = super()._flatten_past_key_values_(lowercase , lowercase , lowercase , lowercase ) else: UpperCAmelCase = super(lowercase , self )._flatten_past_key_values_( lowercase , lowercase , lowercase , lowercase ) @property def A ( self : Any ): '''simple docstring''' return 1E-4
34
1
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _lowerCamelCase = 16 _lowerCamelCase = 32 def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Accelerator , __UpperCamelCase : int = 16 ) -> Union[str, Any]: UpperCAmelCase_ = AutoTokenizer.from_pretrained('''bert-base-cased''' ) UpperCAmelCase_ = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__UpperCamelCase : int ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase_ = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__UpperCamelCase , max_length=__UpperCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCAmelCase_ = datasets.map( __UpperCamelCase , batched=__UpperCamelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase_ = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__UpperCamelCase : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCAmelCase_ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCAmelCase_ = 16 elif accelerator.mixed_precision != "no": UpperCAmelCase_ = 8 else: UpperCAmelCase_ = None return tokenizer.pad( __UpperCamelCase , padding='''longest''' , max_length=__UpperCamelCase , pad_to_multiple_of=__UpperCamelCase , return_tensors='''pt''' , ) # Instantiate dataloaders. UpperCAmelCase_ = DataLoader( tokenized_datasets['''train'''] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase ) UpperCAmelCase_ = DataLoader( tokenized_datasets['''validation'''] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders _lowerCamelCase = mocked_dataloaders # noqa: F811 def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[int] , __UpperCamelCase : Union[str, Any] ) -> Any: # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __UpperCamelCase ) == "1": UpperCAmelCase_ = 2 # New Code # UpperCAmelCase_ = int(args.gradient_accumulation_steps ) UpperCAmelCase_ = int(args.local_sgd_steps ) # Initialize accelerator UpperCAmelCase_ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__UpperCamelCase ) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError('''LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)''' ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase_ = config['''lr'''] UpperCAmelCase_ = int(config['''num_epochs'''] ) UpperCAmelCase_ = int(config['''seed'''] ) UpperCAmelCase_ = int(config['''batch_size'''] ) UpperCAmelCase_ = evaluate.load('''glue''' , '''mrpc''' ) set_seed(__UpperCamelCase ) UpperCAmelCase_ , UpperCAmelCase_ = get_dataloaders(__UpperCamelCase , __UpperCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase_ = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__UpperCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCAmelCase_ = model.to(accelerator.device ) # Instantiate optimizer UpperCAmelCase_ = AdamW(params=model.parameters() , lr=__UpperCamelCase ) # Instantiate scheduler UpperCAmelCase_ = get_linear_schedule_with_warmup( optimizer=__UpperCamelCase , num_warmup_steps=100 , num_training_steps=(len(__UpperCamelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = accelerator.prepare( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Now we train the model for epoch in range(__UpperCamelCase ): model.train() with LocalSGD( accelerator=__UpperCamelCase , model=__UpperCamelCase , local_sgd_steps=__UpperCamelCase , enabled=local_sgd_steps is not None ) as local_sgd: for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(__UpperCamelCase ): UpperCAmelCase_ = model(**__UpperCamelCase ) UpperCAmelCase_ = output.loss accelerator.backward(__UpperCamelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase_ = model(**__UpperCamelCase ) UpperCAmelCase_ = outputs.logits.argmax(dim=-1 ) UpperCAmelCase_ , UpperCAmelCase_ = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=__UpperCamelCase , references=__UpperCamelCase , ) UpperCAmelCase_ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'epoch {epoch}:' , __UpperCamelCase ) def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: UpperCAmelCase_ = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=__UpperCamelCase , default=__UpperCamelCase , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) # New Code # parser.add_argument( '''--gradient_accumulation_steps''' , type=__UpperCamelCase , default=1 , help='''The number of minibatches to be ran before gradients are accumulated.''' , ) parser.add_argument( '''--local_sgd_steps''' , type=__UpperCamelCase , default=8 , help='''Number of local SGD steps or None to disable local SGD''' ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) UpperCAmelCase_ = parser.parse_args() UpperCAmelCase_ = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": main()
177
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = { 'facebook/data2vec-text-base': 'https://huggingface.co/data2vec/resolve/main/config.json', } class a ( _A ): '''simple docstring''' lowerCAmelCase : Optional[Any] = 'data2vec-text' def __init__( self : Optional[Any] , __snake_case : Optional[int]=3_05_22 , __snake_case : List[str]=7_68 , __snake_case : Tuple=12 , __snake_case : int=12 , __snake_case : Union[str, Any]=30_72 , __snake_case : List[Any]="gelu" , __snake_case : Any=0.1 , __snake_case : Union[str, Any]=0.1 , __snake_case : Tuple=5_12 , __snake_case : str=2 , __snake_case : str=0.02 , __snake_case : List[Any]=1E-12 , __snake_case : Any=1 , __snake_case : List[Any]=0 , __snake_case : Dict=2 , __snake_case : Any="absolute" , __snake_case : Union[str, Any]=True , __snake_case : Any=None , **__snake_case : List[Any] , ): super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = position_embedding_type UpperCAmelCase_ = use_cache UpperCAmelCase_ = classifier_dropout class a ( _A ): '''simple docstring''' @property def lowerCamelCase_ ( self : str ): if self.task == "multiple-choice": UpperCAmelCase_ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: UpperCAmelCase_ = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
177
1
import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def lowerCamelCase_ ( UpperCamelCase__ : List[str] ) -> int: """simple docstring""" if ( (cp >= 0x4_e00 and cp <= 0x9_fff) or (cp >= 0x3_400 and cp <= 0x4_dbf) # or (cp >= 0x20_000 and cp <= 0x2a_6df) # or (cp >= 0x2a_700 and cp <= 0x2b_73f) # or (cp >= 0x2b_740 and cp <= 0x2b_81f) # or (cp >= 0x2b_820 and cp <= 0x2c_eaf) # or (cp >= 0xf_900 and cp <= 0xf_aff) or (cp >= 0x2f_800 and cp <= 0x2f_a1f) # ): # return True return False def lowerCamelCase_ ( UpperCamelCase__ : str ) -> List[Any]: """simple docstring""" for char in word: __lowerCamelCase = ord(UpperCamelCase__ ) if not _is_chinese_char(UpperCamelCase__ ): return 0 return 1 def lowerCamelCase_ ( UpperCamelCase__ : List[str] ) -> Dict: """simple docstring""" __lowerCamelCase = set() for token in tokens: __lowerCamelCase = len(UpperCamelCase__ ) > 1 and is_chinese(UpperCamelCase__ ) if chinese_word: word_set.add(UpperCamelCase__ ) __lowerCamelCase = list(UpperCamelCase__ ) return word_list def lowerCamelCase_ ( UpperCamelCase__ : List[str] , UpperCamelCase__ : set() ) -> str: """simple docstring""" if not chinese_word_set: return bert_tokens __lowerCamelCase = max([len(UpperCamelCase__ ) for w in chinese_word_set] ) __lowerCamelCase = bert_tokens __lowerCamelCase , __lowerCamelCase = 0, len(UpperCamelCase__ ) while start < end: __lowerCamelCase = True if is_chinese(bert_word[start] ): __lowerCamelCase = min(end - start , UpperCamelCase__ ) for i in range(UpperCamelCase__ , 1 , -1 ): __lowerCamelCase = ''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): __lowerCamelCase = '##' + bert_word[j] __lowerCamelCase = start + i __lowerCamelCase = False break if single_word: start += 1 return bert_word def lowerCamelCase_ ( UpperCamelCase__ : List[str] , UpperCamelCase__ : LTP , UpperCamelCase__ : BertTokenizer ) -> int: """simple docstring""" __lowerCamelCase = [] for i in range(0 , len(UpperCamelCase__ ) , 100 ): __lowerCamelCase = ltp_tokenizer.pipeline(lines[i : i + 100] , tasks=['cws'] ).cws __lowerCamelCase = [get_chinese_word(UpperCamelCase__ ) for r in res] ltp_res.extend(UpperCamelCase__ ) assert len(UpperCamelCase__ ) == len(UpperCamelCase__ ) __lowerCamelCase = [] for i in range(0 , len(UpperCamelCase__ ) , 100 ): __lowerCamelCase = bert_tokenizer(lines[i : i + 100] , add_special_tokens=UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=512 ) bert_res.extend(res['input_ids'] ) assert len(UpperCamelCase__ ) == len(UpperCamelCase__ ) __lowerCamelCase = [] for input_ids, chinese_word in zip(UpperCamelCase__ , UpperCamelCase__ ): __lowerCamelCase = [] for id in input_ids: __lowerCamelCase = bert_tokenizer._convert_id_to_token(UpperCamelCase__ ) input_tokens.append(UpperCamelCase__ ) __lowerCamelCase = add_sub_symbol(UpperCamelCase__ , UpperCamelCase__ ) __lowerCamelCase = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(UpperCamelCase__ ): if token[:2] == "##": __lowerCamelCase = token[2:] # save chinese tokens' pos if len(UpperCamelCase__ ) == 1 and _is_chinese_char(ord(UpperCamelCase__ ) ): ref_id.append(UpperCamelCase__ ) ref_ids.append(UpperCamelCase__ ) assert len(UpperCamelCase__ ) == len(UpperCamelCase__ ) return ref_ids def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ) -> Optional[Any]: """simple docstring""" with open(args.file_name , 'r' , encoding='utf-8' ) as f: __lowerCamelCase = f.readlines() __lowerCamelCase = [line.strip() for line in data if len(UpperCamelCase__ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' __lowerCamelCase = LTP(args.ltp ) # faster in GPU device __lowerCamelCase = BertTokenizer.from_pretrained(args.bert ) __lowerCamelCase = prepare_ref(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) with open(args.save_path , 'w' , encoding='utf-8' ) as f: __lowerCamelCase = [json.dumps(UpperCamelCase__ ) + '\n' for ref in ref_ids] f.writelines(UpperCamelCase__ ) if __name__ == "__main__": __A = argparse.ArgumentParser(description="prepare_chinese_ref") parser.add_argument( "--file_name", required=False, type=str, default="./resources/chinese-demo.txt", help="file need process, same as training data in lm", ) parser.add_argument( "--ltp", required=False, type=str, default="./resources/ltp", help="resources for LTP tokenizer, usually a path", ) parser.add_argument( "--bert", required=False, type=str, default="./resources/robert", help="resources for Bert tokenizer", ) parser.add_argument( "--save_path", required=False, type=str, default="./resources/ref.txt", help="path to save res", ) __A = parser.parse_args() main(args)
90
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) a__ : List[Any] = { "configuration_vision_text_dual_encoder": ["VisionTextDualEncoderConfig"], "processing_vision_text_dual_encoder": ["VisionTextDualEncoderProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Tuple = ["VisionTextDualEncoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Union[str, Any] = ["FlaxVisionTextDualEncoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[int] = ["TFVisionTextDualEncoderModel"] if TYPE_CHECKING: from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel else: import sys a__ : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure)
161
0
'''simple docstring''' import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel a_ : Optional[int] = """0.12""" # assumed parallelism: 8 @require_flax @is_staging_test class __UpperCamelCase ( unittest.TestCase ): @classmethod def lowercase__ ( cls ): """simple docstring""" lowerCamelCase_ =TOKEN HfFolder.save_token(lowerCAmelCase ) @classmethod def lowercase__ ( cls ): """simple docstring""" try: delete_repo(token=cls._token, repo_id='''test-model-flax''' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='''valid_org/test-model-flax-org''' ) except HTTPError: pass def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =BertConfig( vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37 ) lowerCamelCase_ =FlaxBertModel(lowerCAmelCase ) model.push_to_hub('''test-model-flax''', use_auth_token=self._token ) lowerCamelCase_ =FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' ) lowerCamelCase_ =flatten_dict(unfreeze(model.params ) ) lowerCamelCase_ =flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): lowerCamelCase_ =(base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowerCAmelCase, 1e-3, msg=f'''{key} not identical''' ) # Reset repo delete_repo(token=self._token, repo_id='''test-model-flax''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(lowerCAmelCase, repo_id='''test-model-flax''', push_to_hub=lowerCAmelCase, use_auth_token=self._token ) lowerCamelCase_ =FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' ) lowerCamelCase_ =flatten_dict(unfreeze(model.params ) ) lowerCamelCase_ =flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): lowerCamelCase_ =(base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowerCAmelCase, 1e-3, msg=f'''{key} not identical''' ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =BertConfig( vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37 ) lowerCamelCase_ =FlaxBertModel(lowerCAmelCase ) model.push_to_hub('''valid_org/test-model-flax-org''', use_auth_token=self._token ) lowerCamelCase_ =FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) lowerCamelCase_ =flatten_dict(unfreeze(model.params ) ) lowerCamelCase_ =flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): lowerCamelCase_ =(base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowerCAmelCase, 1e-3, msg=f'''{key} not identical''' ) # Reset repo delete_repo(token=self._token, repo_id='''valid_org/test-model-flax-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( lowerCAmelCase, repo_id='''valid_org/test-model-flax-org''', push_to_hub=lowerCAmelCase, use_auth_token=self._token ) lowerCamelCase_ =FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) lowerCamelCase_ =flatten_dict(unfreeze(model.params ) ) lowerCamelCase_ =flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): lowerCamelCase_ =(base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowerCAmelCase, 1e-3, msg=f'''{key} not identical''' ) def a_ ( __snake_case : List[str] , __snake_case : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ =True lowerCamelCase_ =flatten_dict(modela.params ) lowerCamelCase_ =flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: lowerCamelCase_ =False return models_are_equal @require_flax class __UpperCamelCase ( unittest.TestCase ): def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) lowerCamelCase_ =FlaxBertModel(lowerCAmelCase ) lowerCamelCase_ ='''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(lowerCAmelCase, lowerCAmelCase ) ) with self.assertRaises(lowerCAmelCase ): lowerCamelCase_ =FlaxBertModel.from_pretrained(lowerCAmelCase ) lowerCamelCase_ =FlaxBertModel.from_pretrained(lowerCAmelCase, subfolder=lowerCAmelCase ) self.assertTrue(check_models_equal(lowerCAmelCase, lowerCAmelCase ) ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) lowerCamelCase_ =FlaxBertModel(lowerCAmelCase ) lowerCamelCase_ ='''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(lowerCAmelCase, lowerCAmelCase ), max_shard_size='''10KB''' ) with self.assertRaises(lowerCAmelCase ): lowerCamelCase_ =FlaxBertModel.from_pretrained(lowerCAmelCase ) lowerCamelCase_ =FlaxBertModel.from_pretrained(lowerCAmelCase, subfolder=lowerCAmelCase ) self.assertTrue(check_models_equal(lowerCAmelCase, lowerCAmelCase ) ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ ='''bert''' lowerCamelCase_ ='''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(lowerCAmelCase ): lowerCamelCase_ =FlaxBertModel.from_pretrained(lowerCAmelCase ) lowerCamelCase_ =FlaxBertModel.from_pretrained(lowerCAmelCase, subfolder=lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ ='''bert''' lowerCamelCase_ ='''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(lowerCAmelCase ): lowerCamelCase_ =FlaxBertModel.from_pretrained(lowerCAmelCase ) lowerCamelCase_ =FlaxBertModel.from_pretrained(lowerCAmelCase, subfolder=lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase )
368
'''simple docstring''' import math import random from typing import Any from .hill_climbing import SearchProblem def a_ ( __snake_case : str , __snake_case : bool = True , __snake_case : float = math.inf , __snake_case : float = -math.inf , __snake_case : float = math.inf , __snake_case : float = -math.inf , __snake_case : bool = False , __snake_case : float = 100 , __snake_case : float = 0.0_1 , __snake_case : float = 1 , ) -> Any: """simple docstring""" lowerCamelCase_ =False lowerCamelCase_ =search_prob lowerCamelCase_ =start_temperate lowerCamelCase_ =[] lowerCamelCase_ =0 lowerCamelCase_ =None while not search_end: lowerCamelCase_ =current_state.score() if best_state is None or current_score > best_state.score(): lowerCamelCase_ =current_state scores.append(__snake_case ) iterations += 1 lowerCamelCase_ =None lowerCamelCase_ =current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to lowerCamelCase_ =random.randint(0 , len(__snake_case ) - 1 ) # picking a random neighbor lowerCamelCase_ =neighbors.pop(__snake_case ) lowerCamelCase_ =picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: lowerCamelCase_ =change * -1 # in case we are finding minimum if change > 0: # improves the solution lowerCamelCase_ =picked_neighbor else: lowerCamelCase_ =(math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability lowerCamelCase_ =picked_neighbor lowerCamelCase_ =current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor lowerCamelCase_ =True else: lowerCamelCase_ =next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(__snake_case ) , __snake_case ) plt.xlabel('''Iterations''' ) plt.ylabel('''Function values''' ) plt.show() return best_state if __name__ == "__main__": def a_ ( __snake_case : List[str] , __snake_case : Optional[int] ) -> str: """simple docstring""" return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) a_ : str = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) a_ : Optional[int] = simulated_annealing( prob, find_max=False, max_x=1_00, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) # starting the problem with initial coordinates (12, 47) a_ : str = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) a_ : List[str] = simulated_annealing( prob, find_max=True, max_x=1_00, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) def a_ ( __snake_case : Dict , __snake_case : Optional[Any] ) -> Union[str, Any]: """simple docstring""" return (3 * x**2) - (6 * y) a_ : Tuple = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) a_ : Optional[Any] = simulated_annealing(prob, find_max=False, visualization=True) print( """The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F"""{local_min.score()}""" ) a_ : Dict = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) a_ : Optional[int] = simulated_annealing(prob, find_max=True, visualization=True) print( """The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F"""{local_min.score()}""" )
6
0
import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=1_024 , _lowerCamelCase=1_024 , _lowerCamelCase=False , **_lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = AutoTokenizer.from_pretrained(_lowerCamelCase ) _lowerCAmelCase : List[str] = SeqaSeqDataset(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , type_path="train" , **_lowerCamelCase ) _lowerCAmelCase : List[Any] = tok.pad_token_id def get_lens(_lowerCamelCase ): _lowerCAmelCase : List[Any] = tqdm( DataLoader(_lowerCamelCase , batch_size=512 , num_workers=8 , shuffle=_lowerCamelCase , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) _lowerCAmelCase : str = [] for batch in dl: _lowerCAmelCase : List[Any] = batch["input_ids"].ne(_lowerCamelCase ).sum(1 ).tolist() _lowerCAmelCase : Union[str, Any] = batch["labels"].ne(_lowerCamelCase ).sum(1 ).tolist() if consider_target: for src, tgt in zip(_lowerCamelCase , _lowerCamelCase ): max_lens.append(max(_lowerCamelCase , _lowerCamelCase ) ) else: max_lens.extend(_lowerCamelCase ) return max_lens _lowerCAmelCase : Optional[int] = get_lens(_lowerCamelCase ) _lowerCAmelCase : Any = SeqaSeqDataset(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , type_path="val" , **_lowerCamelCase ) _lowerCAmelCase : str = get_lens(_lowerCamelCase ) pickle_save(_lowerCamelCase , train_ds.len_file ) pickle_save(_lowerCamelCase , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
36
"""simple docstring""" import numpy as np import qiskit def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int = 8 ,_lowerCamelCase : int | None = None ) -> str: _lowerCAmelCase : int = np.random.default_rng(seed=_lowerCamelCase ) # Roughly 25% of the qubits will contribute to the key. # So we take more than we need. _lowerCAmelCase : Tuple = 6 * key_len # Measurement basis for Alice's qubits. _lowerCAmelCase : Dict = rng.integers(2 ,size=_lowerCamelCase ) # The set of states Alice will prepare. _lowerCAmelCase : Tuple = rng.integers(2 ,size=_lowerCamelCase ) # Measurement basis for Bob's qubits. _lowerCAmelCase : Union[str, Any] = rng.integers(2 ,size=_lowerCamelCase ) # Quantum Circuit to simulate BB84 _lowerCAmelCase : Dict = qiskit.QuantumCircuit(_lowerCamelCase ,name="""BB84""" ) # Alice prepares her qubits according to rules above. for index, _ in enumerate(_lowerCamelCase ): if alice_state[index] == 1: bbaa_circ.x(_lowerCamelCase ) if alice_basis[index] == 1: bbaa_circ.h(_lowerCamelCase ) bbaa_circ.barrier() # Bob measures the received qubits according to rules above. for index, _ in enumerate(_lowerCamelCase ): if bob_basis[index] == 1: bbaa_circ.h(_lowerCamelCase ) bbaa_circ.barrier() bbaa_circ.measure_all() # Simulate the quantum circuit. _lowerCAmelCase : int = qiskit.Aer.get_backend("""aer_simulator""" ) # We only need to run one shot because the key is unique. # Multiple shots will produce the same key. _lowerCAmelCase : List[str] = qiskit.execute(_lowerCamelCase ,_lowerCamelCase ,shots=1 ,seed_simulator=_lowerCamelCase ) # Returns the result of measurement. _lowerCAmelCase : List[Any] = job.result().get_counts(_lowerCamelCase ).most_frequent() # Extracting the generated key from the simulation results. # Only keep measurement results where Alice and Bob chose the same basis. _lowerCAmelCase : str = """""".join( [ result_bit for alice_basis_bit, bob_basis_bit, result_bit in zip( _lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) if alice_basis_bit == bob_basis_bit ] ) # Get final key. Pad with 0 if too short, otherwise truncate. _lowerCAmelCase : List[Any] = gen_key[:key_len] if len(_lowerCamelCase ) >= key_len else gen_key.ljust(_lowerCamelCase ,"""0""" ) return key if __name__ == "__main__": print(F"""The generated key is : {bbaa(8, seed=0)}""") from doctest import testmod testmod()
44
0
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCamelCase__ ( __UpperCamelCase ): _SCREAMING_SNAKE_CASE : List[str] = ["""image_processor""", """tokenizer"""] _SCREAMING_SNAKE_CASE : Any = """LayoutLMv2ImageProcessor""" _SCREAMING_SNAKE_CASE : Optional[Any] = ("""LayoutXLMTokenizer""", """LayoutXLMTokenizerFast""") def __init__(self : Union[str, Any] , snake_case_ : Dict=None , snake_case_ : Optional[Any]=None , **snake_case_ : Union[str, Any] ): if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , snake_case_ , ) __a : List[str] = kwargs.pop('''feature_extractor''' ) __a : int = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(snake_case_ , snake_case_ ) def __call__(self : Tuple , snake_case_ : List[str] , snake_case_ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , snake_case_ : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , snake_case_ : Union[List[List[int]], List[List[List[int]]]] = None , snake_case_ : Optional[Union[List[int], List[List[int]]]] = None , snake_case_ : bool = True , snake_case_ : Union[bool, str, PaddingStrategy] = False , snake_case_ : Union[bool, str, TruncationStrategy] = None , snake_case_ : Optional[int] = None , snake_case_ : int = 0 , snake_case_ : Optional[int] = None , snake_case_ : Optional[bool] = None , snake_case_ : Optional[bool] = None , snake_case_ : bool = False , snake_case_ : bool = False , snake_case_ : bool = False , snake_case_ : bool = False , snake_case_ : bool = True , snake_case_ : Optional[Union[str, TensorType]] = None , **snake_case_ : Any , ): # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes ''' '''if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' ) # first, apply the image processor __a : List[Any] = self.image_processor(images=snake_case_ , return_tensors=snake_case_ ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(snake_case_ , snake_case_ ): __a : Optional[Any] = [text] # add batch dimension (as the image processor always adds a batch dimension) __a : Any = features["""words"""] __a : str = self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=snake_case_ , add_special_tokens=snake_case_ , padding=snake_case_ , truncation=snake_case_ , max_length=snake_case_ , stride=snake_case_ , pad_to_multiple_of=snake_case_ , return_token_type_ids=snake_case_ , return_attention_mask=snake_case_ , return_overflowing_tokens=snake_case_ , return_special_tokens_mask=snake_case_ , return_offsets_mapping=snake_case_ , return_length=snake_case_ , verbose=snake_case_ , return_tensors=snake_case_ , **snake_case_ , ) # add pixel values __a : List[Any] = features.pop('''pixel_values''' ) if return_overflowing_tokens is True: __a : Optional[Any] = self.get_overflowing_images(snake_case_ , encoded_inputs['''overflow_to_sample_mapping'''] ) __a : List[str] = images return encoded_inputs def lowerCAmelCase (self : Tuple , snake_case_ : List[str] , snake_case_ : str ): # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image __a : List[str] = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(snake_case_ ) != len(snake_case_ ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f" {len(snake_case_ )} and {len(snake_case_ )}" ) return images_with_overflow def lowerCAmelCase (self : List[Any] , *snake_case_ : List[str] , **snake_case_ : str ): return self.tokenizer.batch_decode(*snake_case_ , **snake_case_ ) def lowerCAmelCase (self : Any , *snake_case_ : Union[str, Any] , **snake_case_ : Dict ): return self.tokenizer.decode(*snake_case_ , **snake_case_ ) @property def lowerCAmelCase (self : str ): return ["input_ids", "bbox", "attention_mask", "image"] @property def lowerCAmelCase (self : Dict ): warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , snake_case_ , ) return self.image_processor_class @property def lowerCAmelCase (self : List[str] ): warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , snake_case_ , ) return self.image_processor
356
# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class UpperCamelCase__ : _SCREAMING_SNAKE_CASE : CommonSchedulerState # setable values _SCREAMING_SNAKE_CASE : jnp.ndarray _SCREAMING_SNAKE_CASE : jnp.ndarray _SCREAMING_SNAKE_CASE : Optional[int] = None @classmethod def lowerCAmelCase (cls : int , snake_case_ : CommonSchedulerState , snake_case_ : jnp.ndarray , snake_case_ : jnp.ndarray ): return cls(common=snake_case_ , init_noise_sigma=snake_case_ , timesteps=snake_case_ ) @dataclass class UpperCamelCase__ ( __lowercase ): _SCREAMING_SNAKE_CASE : DDPMSchedulerState class UpperCamelCase__ ( __lowercase ,__lowercase ): _SCREAMING_SNAKE_CASE : str = [e.name for e in FlaxKarrasDiffusionSchedulers] _SCREAMING_SNAKE_CASE : jnp.dtype @property def lowerCAmelCase (self : Optional[Any] ): return True @register_to_config def __init__(self : Any , snake_case_ : int = 1_0_0_0 , snake_case_ : float = 0.0001 , snake_case_ : float = 0.02 , snake_case_ : str = "linear" , snake_case_ : Optional[jnp.ndarray] = None , snake_case_ : str = "fixed_small" , snake_case_ : bool = True , snake_case_ : str = "epsilon" , snake_case_ : jnp.dtype = jnp.floataa , ): __a : str = dtype def lowerCAmelCase (self : Any , snake_case_ : Optional[CommonSchedulerState] = None ): if common is None: __a : Optional[Any] = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution __a : int = jnp.array(1.0 , dtype=self.dtype ) __a : List[Any] = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=snake_case_ , init_noise_sigma=snake_case_ , timesteps=snake_case_ , ) def lowerCAmelCase (self : Dict , snake_case_ : DDPMSchedulerState , snake_case_ : jnp.ndarray , snake_case_ : Optional[int] = None ): return sample def lowerCAmelCase (self : List[Any] , snake_case_ : DDPMSchedulerState , snake_case_ : int , snake_case_ : Tuple = () ): __a : Tuple = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 __a : Any = (jnp.arange(0 , snake_case_ ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=snake_case_ , timesteps=snake_case_ , ) def lowerCAmelCase (self : List[Any] , snake_case_ : DDPMSchedulerState , snake_case_ : Optional[Any] , snake_case_ : List[str]=None , snake_case_ : Union[str, Any]=None ): __a : Optional[Any] = state.common.alphas_cumprod[t] __a : List[str] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample __a : Optional[int] = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: __a : List[str] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": __a : Optional[Any] = jnp.clip(snake_case_ , a_min=1E-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": __a : int = jnp.log(jnp.clip(snake_case_ , a_min=1E-20 ) ) elif variance_type == "fixed_large": __a : List[str] = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log __a : Union[str, Any] = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": __a : Any = variance __a : Dict = state.common.betas[t] __a : Any = (predicted_variance + 1) / 2 __a : Optional[Any] = frac * max_log + (1 - frac) * min_log return variance def lowerCAmelCase (self : Any , snake_case_ : DDPMSchedulerState , snake_case_ : jnp.ndarray , snake_case_ : int , snake_case_ : jnp.ndarray , snake_case_ : Optional[jax.random.KeyArray] = None , snake_case_ : bool = True , ): __a : int = timestep if key is None: __a : Any = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: __a , __a : List[str] = jnp.split(snake_case_ , sample.shape[1] , axis=1 ) else: __a : int = None # 1. compute alphas, betas __a : Optional[int] = state.common.alphas_cumprod[t] __a : Tuple = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) __a : Optional[int] = 1 - alpha_prod_t __a : Union[str, Any] = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": __a : int = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": __a : Union[str, Any] = model_output elif self.config.prediction_type == "v_prediction": __a : Tuple = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` " ''' for the FlaxDDPMScheduler.''' ) # 3. Clip "predicted x_0" if self.config.clip_sample: __a : Dict = jnp.clip(snake_case_ , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __a : str = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t __a : str = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __a : Tuple = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): __a : Optional[int] = jax.random.split(snake_case_ , num=1 ) __a : Union[str, Any] = jax.random.normal(snake_case_ , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(snake_case_ , snake_case_ , predicted_variance=snake_case_ ) ** 0.5) * noise __a : Dict = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) __a : Tuple = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=snake_case_ , state=snake_case_ ) def lowerCAmelCase (self : List[str] , snake_case_ : DDPMSchedulerState , snake_case_ : jnp.ndarray , snake_case_ : jnp.ndarray , snake_case_ : jnp.ndarray , ): return add_noise_common(state.common , snake_case_ , snake_case_ , snake_case_ ) def lowerCAmelCase (self : str , snake_case_ : DDPMSchedulerState , snake_case_ : jnp.ndarray , snake_case_ : jnp.ndarray , snake_case_ : jnp.ndarray , ): return get_velocity_common(state.common , snake_case_ , snake_case_ , snake_case_ ) def __len__(self : List[str] ): return self.config.num_train_timesteps
90
0
"""simple docstring""" from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class __A : def __init__( self , a__ = None ): if components is None: _lowerCAmelCase : List[str] = [] _lowerCAmelCase : str = list(a__ ) def __len__( self ): return len(self.__components ) def __str__( self ): return "(" + ",".join(map(a__ , self.__components ) ) + ")" def __add__( self , a__ ): _lowerCAmelCase : List[str] = len(self ) if size == len(a__ ): _lowerCAmelCase : str = [self.__components[i] + other.component(a__ ) for i in range(a__ )] return Vector(a__ ) else: raise Exception("""must have the same size""" ) def __sub__( self , a__ ): _lowerCAmelCase : int = len(self ) if size == len(a__ ): _lowerCAmelCase : Optional[Any] = [self.__components[i] - other.component(a__ ) for i in range(a__ )] return Vector(a__ ) else: # error case raise Exception("""must have the same size""" ) @overload def __mul__( self , a__ ): ... @overload def __mul__( self , a__ ): ... def __mul__( self , a__ ): if isinstance(a__ , (float, int) ): _lowerCAmelCase : List[Any] = [c * other for c in self.__components] return Vector(a__ ) elif isinstance(a__ , a__ ) and len(self ) == len(a__ ): _lowerCAmelCase : List[Any] = len(self ) _lowerCAmelCase : List[str] = [self.__components[i] * other.component(a__ ) for i in range(a__ )] return sum(a__ ) else: # error case raise Exception("""invalid operand!""" ) def __A ( self ): return Vector(self.__components ) def __A ( self , a__ ): if isinstance(a__ , a__ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception("""index out of range""" ) def __A ( self , a__ , a__ ): assert -len(self.__components ) <= pos < len(self.__components ) _lowerCAmelCase : int = value def __A ( self ): if len(self.__components ) == 0: raise Exception("""Vector is empty""" ) _lowerCAmelCase : int = [c**2 for c in self.__components] return math.sqrt(sum(a__ ) ) def __A ( self , a__ , a__ = False ): _lowerCAmelCase : List[Any] = self * other _lowerCAmelCase : int = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ) -> Vector: assert isinstance(_lowerCamelCase ,_lowerCamelCase ) return Vector([0] * dimension ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ,_lowerCamelCase : int ) -> Vector: assert isinstance(_lowerCamelCase ,_lowerCamelCase ) and (isinstance(_lowerCamelCase ,_lowerCamelCase )) _lowerCAmelCase : Union[str, Any] = [0] * dimension _lowerCAmelCase : List[Any] = 1 return Vector(_lowerCamelCase ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : float ,_lowerCamelCase : Vector ,_lowerCamelCase : Vector ) -> Vector: assert ( isinstance(_lowerCamelCase ,_lowerCamelCase ) and isinstance(_lowerCamelCase ,_lowerCamelCase ) and (isinstance(_lowerCamelCase ,(int, float) )) ) return x * scalar + y def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ,_lowerCamelCase : int ,_lowerCamelCase : int ) -> Vector: random.seed(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = [random.randint(_lowerCamelCase ,_lowerCamelCase ) for _ in range(_lowerCamelCase )] return Vector(_lowerCamelCase ) class __A : def __init__( self , a__ , a__ , a__ ): _lowerCAmelCase : List[Any] = matrix _lowerCAmelCase : Dict = w _lowerCAmelCase : Optional[int] = h def __str__( self ): _lowerCAmelCase : Tuple = """""" for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self , a__ ): if self.__width == other.width() and self.__height == other.height(): _lowerCAmelCase : str = [] for i in range(self.__height ): _lowerCAmelCase : List[Any] = [ self.__matrix[i][j] + other.component(a__ , a__ ) for j in range(self.__width ) ] matrix.append(a__ ) return Matrix(a__ , self.__width , self.__height ) else: raise Exception("""matrix must have the same dimension!""" ) def __sub__( self , a__ ): if self.__width == other.width() and self.__height == other.height(): _lowerCAmelCase : Any = [] for i in range(self.__height ): _lowerCAmelCase : Any = [ self.__matrix[i][j] - other.component(a__ , a__ ) for j in range(self.__width ) ] matrix.append(a__ ) return Matrix(a__ , self.__width , self.__height ) else: raise Exception("""matrices must have the same dimension!""" ) @overload def __mul__( self , a__ ): ... @overload def __mul__( self , a__ ): ... def __mul__( self , a__ ): if isinstance(a__ , a__ ): # matrix-vector if len(a__ ) == self.__width: _lowerCAmelCase : int = zero_vector(self.__height ) for i in range(self.__height ): _lowerCAmelCase : Dict = [ self.__matrix[i][j] * other.component(a__ ) for j in range(self.__width ) ] ans.change_component(a__ , sum(a__ ) ) return ans else: raise Exception( """vector must have the same size as the """ """number of columns of the matrix!""" ) elif isinstance(a__ , (int, float) ): # matrix-scalar _lowerCAmelCase : Union[str, Any] = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(a__ , self.__width , self.__height ) return None def __A ( self ): return self.__height def __A ( self ): return self.__width def __A ( self , a__ , a__ ): if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception("""change_component: indices out of bounds""" ) def __A ( self , a__ , a__ , a__ ): if 0 <= x < self.__height and 0 <= y < self.__width: _lowerCAmelCase : List[str] = value else: raise Exception("""change_component: indices out of bounds""" ) def __A ( self , a__ , a__ ): if self.__height != self.__width: raise Exception("""Matrix is not square""" ) _lowerCAmelCase : Optional[Any] = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(a__ ) ): _lowerCAmelCase : Any = minor[i][:y] + minor[i][y + 1 :] return Matrix(a__ , self.__width - 1 , self.__height - 1 ).determinant() def __A ( self , a__ , a__ ): if self.__height != self.__width: raise Exception("""Matrix is not square""" ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(a__ , a__ ) else: raise Exception("""Indices out of bounds""" ) def __A ( self ): if self.__height != self.__width: raise Exception("""Matrix is not square""" ) if self.__height < 1: raise Exception("""Matrix has no element""" ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: _lowerCAmelCase : Dict = [ self.__matrix[0][y] * self.cofactor(0 , a__ ) for y in range(self.__width ) ] return sum(a__ ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ) -> Matrix: _lowerCAmelCase : list[list[float]] = [[0] * n for _ in range(_lowerCamelCase )] return Matrix(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ,_lowerCamelCase : int ,_lowerCamelCase : int ,_lowerCamelCase : int ) -> Matrix: random.seed(_lowerCamelCase ) _lowerCAmelCase : list[list[float]] = [ [random.randint(_lowerCamelCase ,_lowerCamelCase ) for _ in range(_lowerCamelCase )] for _ in range(_lowerCamelCase ) ] return Matrix(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase )
44
'''simple docstring''' import math def A_ ( snake_case , snake_case ): if initial_intensity < 0: raise ValueError("The value of intensity cannot be negative" ) # handling of negative values of initial intensity if angle < 0 or angle > 360: raise ValueError("In Malus Law, the angle is in the range 0-360 degrees" ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(snake_case ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name="malus_law")
139
0
'''simple docstring''' import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : dict ): '''simple docstring''' return (data["data"], data["target"]) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : np.ndarray ): '''simple docstring''' UpperCAmelCase__ = XGBRegressor(verbosity=0 , random_state=42 ) xgb.fit(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Predict target for test data UpperCAmelCase__ = xgb.predict(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = predictions.reshape(len(SCREAMING_SNAKE_CASE__ ) , 1 ) return predictions def _UpperCamelCase ( ): '''simple docstring''' UpperCAmelCase__ = fetch_california_housing() UpperCAmelCase__ , UpperCAmelCase__ = data_handling(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = train_test_split( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , test_size=0.25 , random_state=1 ) UpperCAmelCase__ = xgboost(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Error printing print(F'''Mean Absolute Error : {mean_absolute_error(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )}''' ) print(F'''Mean Square Error : {mean_squared_error(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )}''' ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
354
'''simple docstring''' def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : bool = False ): '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): UpperCAmelCase__ = F'''Expected string as input, found {type(SCREAMING_SNAKE_CASE__ )}''' raise ValueError(SCREAMING_SNAKE_CASE__ ) if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): UpperCAmelCase__ = F'''Expected boolean as use_pascal parameter, found {type(SCREAMING_SNAKE_CASE__ )}''' raise ValueError(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = input_str.split("""_""" ) UpperCAmelCase__ = 0 if use_pascal else 1 UpperCAmelCase__ = words[start_index:] UpperCAmelCase__ = [word[0].upper() + word[1:] for word in words_to_capitalize] UpperCAmelCase__ = """""" if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
61
0
def __UpperCamelCase ( _lowerCAmelCase = 50 ) -> Optional[Any]: """simple docstring""" A : Dict = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(F"""{solution() = }""")
116
'''simple docstring''' import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase = get_tests_dir("""fixtures/spiece.model""") @require_sentencepiece @require_tokenizers class _UpperCamelCase ( A , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = AlbertTokenizer lowerCAmelCase__ = AlbertTokenizerFast lowerCAmelCase__ = True lowerCAmelCase__ = True lowerCAmelCase__ = True def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __lowercase =AlbertTokenizer(_lowerCAmelCase) tokenizer.save_pretrained(self.tmpdirname) def __lowerCamelCase ( self : Optional[Any] , _lowerCAmelCase : Tuple): '''simple docstring''' __lowercase ='this is a test' __lowercase ='this is a test' return input_text, output_text def __lowerCamelCase ( self : int): '''simple docstring''' __lowercase ='<pad>' __lowercase =0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCAmelCase) , _lowerCAmelCase) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCAmelCase) , _lowerCAmelCase) def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __lowercase =list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '<pad>') self.assertEqual(vocab_keys[1] , '<unk>') self.assertEqual(vocab_keys[-1] , '▁eloquent') self.assertEqual(len(_lowerCAmelCase) , 3_0_0_0_0) def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 3_0_0_0_0) def __lowerCamelCase ( self : int): '''simple docstring''' if not self.test_rust_tokenizer: return __lowercase =self.get_tokenizer() __lowercase =self.get_rust_tokenizer() __lowercase ='I was born in 92000, and this is falsé.' __lowercase =tokenizer.tokenize(_lowerCAmelCase) __lowercase =rust_tokenizer.tokenize(_lowerCAmelCase) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase) __lowercase =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase) __lowercase =rust_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase) __lowercase =self.get_rust_tokenizer() __lowercase =tokenizer.encode(_lowerCAmelCase) __lowercase =rust_tokenizer.encode(_lowerCAmelCase) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase) def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __lowercase =AlbertTokenizer(_lowerCAmelCase , keep_accents=_lowerCAmelCase) __lowercase =tokenizer.tokenize('This is a test') self.assertListEqual(_lowerCAmelCase , ['▁this', '▁is', '▁a', '▁test']) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase) , [4_8, 2_5, 2_1, 1_2_8_9]) __lowercase =tokenizer.tokenize('I was born in 92000, and this is falsé.') self.assertListEqual( _lowerCAmelCase , ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', 'é', '.']) __lowercase =tokenizer.convert_tokens_to_ids(_lowerCAmelCase) self.assertListEqual(_lowerCAmelCase , [3_1, 2_3, 3_8_6, 1_9, 5_6_1, 3_0_5_0, 1_5, 1_7, 4_8, 2_5, 8_2_5_6, 1_8, 1, 9]) __lowercase =tokenizer.convert_ids_to_tokens(_lowerCAmelCase) self.assertListEqual( _lowerCAmelCase , ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.'] , ) def __lowerCamelCase ( self : List[Any]): '''simple docstring''' __lowercase =AlbertTokenizer(_lowerCAmelCase) __lowercase =tokenizer.encode('sequence builders') __lowercase =tokenizer.encode('multi-sequence build') __lowercase =tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase) __lowercase =tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase , _lowerCAmelCase) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def __lowerCamelCase ( self : str): '''simple docstring''' __lowercase ={'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'input_ids': [[2, 2_1_9_7_0, 1_3, 5, 6_0_9_2, 1_6_7, 2_8, 7_1_0_3, 2_1_5_3, 6_7_3, 8, 7_0_2_8, 1_2_0_5_1, 1_8, 1_7, 7_1_0_3, 2_1_5_3, 6_7_3, 8, 3_5_1_5, 1_8_6_8_4, 8, 4_4_6_1, 6, 1_9_2_7, 2_9_7, 8, 1_2_0_6_0, 2_6_0_7, 1_8, 1_3, 5, 4_4_6_1, 1_5, 1_0_5_3_8, 3_8, 8, 1_3_5, 1_5, 8_2_2, 5_8, 1_5, 9_9_3, 1_0_3_6_3, 1_5, 1_4_6_0, 8_0_0_5, 4_4_6_1, 1_5, 9_9_3, 2_5_5, 2_3_2_8, 9, 9, 9, 6, 2_6, 1_1_1_2, 8_1_6, 3_2_6_0, 1_3, 5, 1_0_3, 2_3_7_7, 6, 1_7, 1_1_1_2, 8_1_6, 2_7_8_2, 1_3, 5, 1_0_3, 1_0_6_4_1, 6, 2_9, 8_4, 2_5_1_2, 2_4_3_0, 7_8_2, 1_8_6_8_4, 2_7_6_1, 1_9, 8_0_8, 2_4_3_0, 2_5_5_6, 1_7, 8_5_5, 1_4_8_0, 9_4_7_7, 4_0_9_1, 1_2_8, 1_1_7_1_2, 1_5, 7_1_0_3, 2_1_5_3, 6_7_3, 1_7, 2_4_8_8_3, 9_9_9_0, 9, 3], [2, 1_1_5_0_2, 2_5, 1_0_0_6, 2_0, 7_8_2, 8, 1_1_8_0_9, 8_5_5, 1_7_3_2, 1_9_3_9_3, 1_8_6_6_7, 3_7, 3_6_7, 2_1_0_1_8, 6_9, 1_8_5_4, 3_4, 1_1_8_6_0, 1_9_1_2_4, 2_7, 1_5_6, 2_2_5, 1_7, 1_9_3, 4_1_4_1, 1_9, 6_5, 9_1_2_4, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 1_4, 2_2_3_1, 8_8_6, 2_3_8_5, 1_7_6_5_9, 8_4, 1_4, 1_6_7_9_2, 1_9_5_2, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCAmelCase , model_name='albert-base-v2' , revision='6b6560eaf5ff2e250b00c50f380c5389a9c2d82e' , )
166
0
"""simple docstring""" from __future__ import annotations from collections import namedtuple def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = namedtuple("""result""" ,"""name value""" ) if (voltage, current, power).count(0 ) != 1: raise ValueError("""Only one argument must be 0""" ) elif power < 0: raise ValueError( """Power cannot be negative in any electrical/electronics system""" ) elif voltage == 0: return result("""voltage""" ,power / current ) elif current == 0: return result("""current""" ,power / voltage ) elif power == 0: return result("""power""" ,float(round(abs(voltage * current ) ,2 ) ) ) else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
360
"""simple docstring""" import string from math import logaa def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = document.translate( str.maketrans("""""" ,"""""" ,string.punctuation ) ).replace("""\n""" ,"""""" ) _UpperCAmelCase = document_without_punctuation.split(""" """ ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = corpus.lower().translate( str.maketrans("""""" ,"""""" ,string.punctuation ) ) # strip all punctuation and replace it with '' _UpperCAmelCase = corpus_without_punctuation.split("""\n""" ) _UpperCAmelCase = term.lower() return (len([doc for doc in docs if term in doc] ), len(lowercase )) def __UpperCAmelCase ( lowercase ,lowercase ,lowercase=False ): """simple docstring""" if smoothing: if n == 0: raise ValueError("""log10(0) is undefined.""" ) return round(1 + logaa(n / (1 + df) ) ,3 ) if df == 0: raise ZeroDivisionError("""df must be > 0""" ) elif n == 0: raise ValueError("""log10(0) is undefined.""" ) return round(logaa(n / df ) ,3 ) def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" return round(tf * idf ,3 )
30
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _lowerCAmelCase = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = ['''MLukeTokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
298
'''simple docstring''' import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class A ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A = ["image_processor", "tokenizer"] A = "OwlViTImageProcessor" A = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__(self , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase ) -> str: __UpperCamelCase : Tuple = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , _UpperCAmelCase , ) __UpperCamelCase : str = kwargs.pop("feature_extractor" ) __UpperCamelCase : Tuple = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(_UpperCAmelCase , _UpperCAmelCase ) def __call__(self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="max_length" , _UpperCAmelCase="np" , **_UpperCAmelCase ) -> str: if text is None and query_images is None and images is None: raise ValueError( "You have to specify at least one text or query image or image. All three cannot be none." ) if text is not None: if isinstance(_UpperCAmelCase , _UpperCAmelCase ) or (isinstance(_UpperCAmelCase , _UpperCAmelCase ) and not isinstance(text[0] , _UpperCAmelCase )): __UpperCamelCase : Tuple = [self.tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase )] elif isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(text[0] , _UpperCAmelCase ): __UpperCamelCase : List[str] = [] # Maximum number of queries across batch __UpperCamelCase : List[str] = max([len(_UpperCAmelCase ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(_UpperCAmelCase ) != max_num_queries: __UpperCamelCase : Any = t + [" "] * (max_num_queries - len(_UpperCAmelCase )) __UpperCamelCase : int = self.tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ) encodings.append(_UpperCAmelCase ) else: raise TypeError("Input text should be a string, a list of strings or a nested list of strings" ) if return_tensors == "np": __UpperCamelCase : List[str] = np.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) __UpperCamelCase : int = np.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp __UpperCamelCase : Tuple = jnp.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) __UpperCamelCase : Optional[Any] = jnp.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch __UpperCamelCase : Any = torch.cat([encoding["input_ids"] for encoding in encodings] , dim=0 ) __UpperCamelCase : List[Any] = torch.cat([encoding["attention_mask"] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf __UpperCamelCase : Any = tf.stack([encoding["input_ids"] for encoding in encodings] , axis=0 ) __UpperCamelCase : Optional[Any] = tf.stack([encoding["attention_mask"] for encoding in encodings] , axis=0 ) else: raise ValueError("Target return tensor type could not be returned" ) __UpperCamelCase : Optional[Any] = BatchEncoding() __UpperCamelCase : Union[str, Any] = input_ids __UpperCamelCase : List[str] = attention_mask if query_images is not None: __UpperCamelCase : str = BatchEncoding() __UpperCamelCase : Any = self.image_processor( _UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ).pixel_values __UpperCamelCase : List[Any] = query_pixel_values if images is not None: __UpperCamelCase : Dict = self.image_processor(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ) if text is not None and images is not None: __UpperCamelCase : Optional[Any] = image_features.pixel_values return encoding elif query_images is not None and images is not None: __UpperCamelCase : Union[str, Any] = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**_UpperCAmelCase ) , tensor_type=_UpperCAmelCase ) def a_ (self , *_UpperCAmelCase , **_UpperCAmelCase ) -> Optional[int]: return self.image_processor.post_process(*_UpperCAmelCase , **_UpperCAmelCase ) def a_ (self , *_UpperCAmelCase , **_UpperCAmelCase ) -> List[str]: return self.image_processor.post_process_object_detection(*_UpperCAmelCase , **_UpperCAmelCase ) def a_ (self , *_UpperCAmelCase , **_UpperCAmelCase ) -> Optional[int]: return self.image_processor.post_process_image_guided_detection(*_UpperCAmelCase , **_UpperCAmelCase ) def a_ (self , *_UpperCAmelCase , **_UpperCAmelCase ) -> Union[str, Any]: return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase ) def a_ (self , *_UpperCAmelCase , **_UpperCAmelCase ) -> int: return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase ) @property def a_ (self ) -> Tuple: warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , _UpperCAmelCase , ) return self.image_processor_class @property def a_ (self ) -> Union[str, Any]: warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , _UpperCAmelCase , ) return self.image_processor
298
1
'''simple docstring''' import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class lowerCamelCase ( unittest.TestCase ): def _lowerCamelCase ( self ) -> Union[str, Any]: snake_case = '| <pad> <unk> <s> </s> a b c d e f g h i j k'.split() snake_case = dict(zip(lowercase_, range(len(lowercase_ ) ) ) ) snake_case = { 'unk_token': '<unk>', 'bos_token': '<s>', 'eos_token': '</s>', } snake_case = { 'feature_size': 1, 'padding_value': 0.0, 'sampling_rate': 16000, 'return_attention_mask': False, 'do_normalize': True, } snake_case = tempfile.mkdtemp() snake_case = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file'] ) snake_case = os.path.join(self.tmpdirname, lowercase_ ) with open(self.vocab_file, 'w', encoding='utf-8' ) as fp: fp.write(json.dumps(lowercase_ ) + '\n' ) with open(self.feature_extraction_file, 'w', encoding='utf-8' ) as fp: fp.write(json.dumps(lowercase_ ) + '\n' ) # load decoder from hub snake_case = 'hf-internal-testing/ngram-beam-search-decoder' def _lowerCamelCase ( self, **lowercase_ ) -> List[Any]: snake_case = self.add_kwargs_tokens_map.copy() kwargs.update(lowercase_ ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname, **lowercase_ ) def _lowerCamelCase ( self, **lowercase_ ) -> Optional[Any]: return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname, **lowercase_ ) def _lowerCamelCase ( self, **lowercase_ ) -> List[str]: return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name, **lowercase_ ) def _lowerCamelCase ( self ) -> Tuple: shutil.rmtree(self.tmpdirname ) def _lowerCamelCase ( self ) -> List[Any]: snake_case = self.get_tokenizer() snake_case = self.get_feature_extractor() snake_case = self.get_decoder() snake_case = WavaVecaProcessorWithLM(tokenizer=lowercase_, feature_extractor=lowercase_, decoder=lowercase_ ) processor.save_pretrained(self.tmpdirname ) snake_case = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab(), tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer, lowercase_ ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor, lowercase_ ) # decoder self.assertEqual(processor.decoder._alphabet.labels, decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set, decoder.model_container[decoder._model_key]._unigram_set, ) self.assertIsInstance(processor.decoder, lowercase_ ) def _lowerCamelCase ( self ) -> Optional[int]: snake_case = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer(), feature_extractor=self.get_feature_extractor(), decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match snake_case = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname, alpha=5.0, beta=3.0, score_boundary=-7.0, unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha, 5.0 ) self.assertEqual(processor.language_model.beta, 3.0 ) self.assertEqual(processor.language_model.score_boundary, -7.0 ) self.assertEqual(processor.language_model.unk_score_offset, 3 ) def _lowerCamelCase ( self ) -> int: snake_case = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['xx'] ) with self.assertRaisesRegex(lowercase_, 'include' ): WavaVecaProcessorWithLM( tokenizer=lowercase_, feature_extractor=self.get_feature_extractor(), decoder=self.get_decoder() ) def _lowerCamelCase ( self ) -> int: snake_case = self.get_feature_extractor() snake_case = self.get_tokenizer() snake_case = self.get_decoder() snake_case = WavaVecaProcessorWithLM(tokenizer=lowercase_, feature_extractor=lowercase_, decoder=lowercase_ ) snake_case = floats_list((3, 1000) ) snake_case = feature_extractor(lowercase_, return_tensors='np' ) snake_case = processor(lowercase_, return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1E-2 ) def _lowerCamelCase ( self ) -> Union[str, Any]: snake_case = self.get_feature_extractor() snake_case = self.get_tokenizer() snake_case = self.get_decoder() snake_case = WavaVecaProcessorWithLM(tokenizer=lowercase_, feature_extractor=lowercase_, decoder=lowercase_ ) snake_case = 'This is a test string' snake_case = processor(text=lowercase_ ) snake_case = tokenizer(lowercase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key] ) def _lowerCamelCase ( self, lowercase_=(2, 10, 16), lowercase_=77 ) -> List[str]: np.random.seed(lowercase_ ) return np.random.rand(*lowercase_ ) def _lowerCamelCase ( self ) -> Dict: snake_case = self.get_feature_extractor() snake_case = self.get_tokenizer() snake_case = self.get_decoder() snake_case = WavaVecaProcessorWithLM(tokenizer=lowercase_, feature_extractor=lowercase_, decoder=lowercase_ ) snake_case = self._get_dummy_logits(shape=(10, 16), seed=13 ) snake_case = processor.decode(lowercase_ ) snake_case = decoder.decode_beams(lowercase_ )[0] self.assertEqual(decoded_decoder[0], decoded_processor.text ) self.assertEqual('</s> <s> </s>', decoded_processor.text ) self.assertEqual(decoded_decoder[-2], decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1], decoded_processor.lm_score ) @parameterized.expand([[None], ['fork'], ['spawn']] ) def _lowerCamelCase ( self, lowercase_ ) -> Tuple: snake_case = self.get_feature_extractor() snake_case = self.get_tokenizer() snake_case = self.get_decoder() snake_case = WavaVecaProcessorWithLM(tokenizer=lowercase_, feature_extractor=lowercase_, decoder=lowercase_ ) snake_case = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: snake_case = processor.batch_decode(lowercase_ ) else: with get_context(lowercase_ ).Pool() as pool: snake_case = processor.batch_decode(lowercase_, lowercase_ ) snake_case = list(lowercase_ ) with get_context('fork' ).Pool() as p: snake_case = decoder.decode_beams_batch(lowercase_, lowercase_ ) snake_case , snake_case , snake_case = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(lowercase_, decoded_processor.text ) self.assertListEqual(['<s> <s> </s>', '<s> <s> <s>'], decoded_processor.text ) self.assertListEqual(lowercase_, decoded_processor.logit_score ) self.assertListEqual(lowercase_, decoded_processor.lm_score ) def _lowerCamelCase ( self ) -> Tuple: snake_case = self.get_feature_extractor() snake_case = self.get_tokenizer() snake_case = self.get_decoder() snake_case = WavaVecaProcessorWithLM(tokenizer=lowercase_, feature_extractor=lowercase_, decoder=lowercase_ ) snake_case = self._get_dummy_logits() snake_case = 15 snake_case = -20.0 snake_case = -4.0 snake_case = processor.batch_decode( lowercase_, beam_width=lowercase_, beam_prune_logp=lowercase_, token_min_logp=lowercase_, ) snake_case = decoded_processor_out.text snake_case = list(lowercase_ ) with get_context('fork' ).Pool() as pool: snake_case = decoder.decode_beams_batch( lowercase_, lowercase_, beam_width=lowercase_, beam_prune_logp=lowercase_, token_min_logp=lowercase_, ) snake_case = [d[0][0] for d in decoded_decoder_out] snake_case = [d[0][2] for d in decoded_decoder_out] snake_case = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(lowercase_, lowercase_ ) self.assertListEqual(['</s> <s> <s>', '<s> <s> <s>'], lowercase_ ) self.assertTrue(np.array_equal(lowercase_, decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447], lowercase_, atol=1E-3 ) ) self.assertTrue(np.array_equal(lowercase_, decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9_474], lowercase_, atol=1E-3 ) ) def _lowerCamelCase ( self ) -> Union[str, Any]: snake_case = self.get_feature_extractor() snake_case = self.get_tokenizer() snake_case = self.get_decoder() snake_case = WavaVecaProcessorWithLM(tokenizer=lowercase_, feature_extractor=lowercase_, decoder=lowercase_ ) snake_case = self._get_dummy_logits() snake_case = 2.0 snake_case = 5.0 snake_case = -20.0 snake_case = True snake_case = processor.batch_decode( lowercase_, alpha=lowercase_, beta=lowercase_, unk_score_offset=lowercase_, lm_score_boundary=lowercase_, ) snake_case = decoded_processor_out.text snake_case = list(lowercase_ ) decoder.reset_params( alpha=lowercase_, beta=lowercase_, unk_score_offset=lowercase_, lm_score_boundary=lowercase_, ) with get_context('fork' ).Pool() as pool: snake_case = decoder.decode_beams_batch( lowercase_, lowercase_, ) snake_case = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(lowercase_, lowercase_ ) self.assertListEqual(['<s> </s> <s> </s> </s>', '</s> </s> <s> </s> </s>'], lowercase_ ) snake_case = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha, 2.0 ) self.assertEqual(lm_model.beta, 5.0 ) self.assertEqual(lm_model.unk_score_offset, -20.0 ) self.assertEqual(lm_model.score_boundary, lowercase_ ) def _lowerCamelCase ( self ) -> Optional[Any]: snake_case = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) snake_case = processor.decoder.model_container[processor.decoder._model_key] snake_case = Path(language_model._kenlm_model.path.decode('utf-8' ) ).parent.parent.absolute() snake_case = os.listdir(lowercase_ ) snake_case = ['alphabet.json', 'language_model'] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(lowercase_, lowercase_ ) def _lowerCamelCase ( self ) -> List[str]: snake_case = snapshot_download('hf-internal-testing/processor_with_lm' ) snake_case = WavaVecaProcessorWithLM.from_pretrained(lowercase_ ) snake_case = processor.decoder.model_container[processor.decoder._model_key] snake_case = Path(language_model._kenlm_model.path.decode('utf-8' ) ).parent.parent.absolute() snake_case = os.listdir(lowercase_ ) snake_case = os.listdir(lowercase_ ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(lowercase_, lowercase_ ) def _lowerCamelCase ( self ) -> Tuple: snake_case = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) snake_case = AutoProcessor.from_pretrained('hf-internal-testing/processor_with_lm' ) snake_case = floats_list((3, 1000) ) snake_case = processor_wavaveca(lowercase_, return_tensors='np' ) snake_case = processor_auto(lowercase_, return_tensors='np' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum(), input_auto[key].sum(), delta=1E-2 ) snake_case = self._get_dummy_logits() snake_case = processor_wavaveca.batch_decode(lowercase_ ) snake_case = processor_auto.batch_decode(lowercase_ ) self.assertListEqual(decoded_wavaveca.text, decoded_auto.text ) def _lowerCamelCase ( self ) -> Optional[Any]: snake_case = self.get_feature_extractor() snake_case = self.get_tokenizer() snake_case = self.get_decoder() snake_case = WavaVecaProcessorWithLM(tokenizer=lowercase_, feature_extractor=lowercase_, decoder=lowercase_ ) self.assertListEqual( processor.model_input_names, feature_extractor.model_input_names, msg='`processor` and `feature_extractor` model input names do not match', ) @staticmethod def _lowerCamelCase ( lowercase_, lowercase_ ) -> Dict: snake_case = [d[key] for d in offsets] return retrieved_list def _lowerCamelCase ( self ) -> List[str]: snake_case = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) snake_case = self._get_dummy_logits()[0] snake_case = processor.decode(lowercase_, output_word_offsets=lowercase_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ), 4 ) self.assertTrue('text' in outputs ) self.assertTrue('word_offsets' in outputs ) self.assertTrue(isinstance(lowercase_, lowercase_ ) ) self.assertEqual(' '.join(self.get_from_offsets(outputs['word_offsets'], 'word' ) ), outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'], 'word' ), ['<s>', '<s>', '</s>'] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'], 'start_offset' ), [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'], 'end_offset' ), [1, 3, 5] ) def _lowerCamelCase ( self ) -> str: snake_case = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) snake_case = self._get_dummy_logits() snake_case = processor.batch_decode(lowercase_, output_word_offsets=lowercase_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ), 4 ) self.assertTrue('text' in outputs ) self.assertTrue('word_offsets' in outputs ) self.assertTrue(isinstance(lowercase_, lowercase_ ) ) self.assertListEqual( [' '.join(self.get_from_offsets(lowercase_, 'word' ) ) for o in outputs['word_offsets']], outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0], 'word' ), ['<s>', '<s>', '</s>'] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0], 'start_offset' ), [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0], 'end_offset' ), [1, 3, 5] ) @slow @require_torch @require_torchaudio def _lowerCamelCase ( self ) -> int: import torch snake_case = load_dataset('common_voice', 'en', split='train', streaming=lowercase_ ) snake_case = ds.cast_column('audio', datasets.Audio(sampling_rate=16000 ) ) snake_case = iter(lowercase_ ) snake_case = next(lowercase_ ) snake_case = AutoProcessor.from_pretrained('patrickvonplaten/wav2vec2-base-100h-with-lm' ) snake_case = WavaVecaForCTC.from_pretrained('patrickvonplaten/wav2vec2-base-100h-with-lm' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train snake_case = processor(sample['audio']['array'], return_tensors='pt' ).input_values with torch.no_grad(): snake_case = model(lowercase_ ).logits.cpu().numpy() snake_case = processor.decode(logits[0], output_word_offsets=lowercase_ ) snake_case = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate snake_case = [ { 'start_time': d['start_offset'] * time_offset, 'end_time': d['end_offset'] * time_offset, 'word': d['word'], } for d in output['word_offsets'] ] snake_case = 'WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL' # output words self.assertEqual(' '.join(self.get_from_offsets(lowercase_, 'word' ) ), lowercase_ ) self.assertEqual(' '.join(self.get_from_offsets(lowercase_, 'word' ) ), output.text ) # output times snake_case = torch.tensor(self.get_from_offsets(lowercase_, 'start_time' ) ) snake_case = torch.tensor(self.get_from_offsets(lowercase_, 'end_time' ) ) # fmt: off snake_case = torch.tensor([1.4_199, 1.6_599, 2.2_599, 3.0, 3.24, 3.5_999, 3.7_999, 4.0_999, 4.26, 4.94, 5.28, 5.6_599, 5.78, 5.94, 6.32, 6.5_399, 6.6_599] ) snake_case = torch.tensor([1.5_399, 1.8_999, 2.9, 3.16, 3.5_399, 3.72, 4.0_199, 4.1_799, 4.76, 5.1_599, 5.5_599, 5.6_999, 5.86, 6.1_999, 6.38, 6.6_199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(lowercase_, lowercase_, atol=0.01 ) ) self.assertTrue(torch.allclose(lowercase_, lowercase_, atol=0.01 ) )
332
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) lowerCAmelCase_ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class lowerCamelCase : snake_case_ = field( default=__lowerCAmelCase , metadata={'''help''': '''Model type selected in the list: ''' + ''', '''.join(__lowerCAmelCase )} ) snake_case_ = field( default=__lowerCAmelCase , metadata={'''help''': '''The input data dir. Should contain the .json files for the SQuAD task.'''} ) snake_case_ = field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) snake_case_ = field( default=128 , metadata={'''help''': '''When splitting up a long document into chunks, how much stride to take between chunks.'''} , ) snake_case_ = field( default=64 , metadata={ '''help''': ( '''The maximum number of tokens for the question. Questions longer than this will ''' '''be truncated to this length.''' ) } , ) snake_case_ = field( default=30 , metadata={ '''help''': ( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ) } , ) snake_case_ = field( default=__lowerCAmelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) snake_case_ = field( default=__lowerCAmelCase , metadata={'''help''': '''If true, the SQuAD examples contain some that do not have an answer.'''} ) snake_case_ = field( default=0.0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) snake_case_ = field( default=20 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) snake_case_ = field( default=0 , metadata={ '''help''': ( '''language id of input for language-specific xlm models (see''' ''' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)''' ) } , ) snake_case_ = field(default=1 , metadata={'''help''': '''multiple threads for converting example to features'''} ) class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''train''' snake_case_ = '''dev''' class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 def __init__( self, lowercase_, lowercase_, lowercase_ = None, lowercase_ = Split.train, lowercase_ = False, lowercase_ = None, lowercase_ = "pt", ) -> int: snake_case = args snake_case = is_language_sensitive snake_case = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(lowercase_, lowercase_ ): try: snake_case = Split[mode] except KeyError: raise KeyError('mode is not a valid split name' ) snake_case = mode # Load data features from cache or dataset file snake_case = 'v2' if args.version_2_with_negative else 'v1' snake_case = os.path.join( cache_dir if cache_dir is not None else args.data_dir, F'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}''', ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. snake_case = cached_features_file + '.lock' with FileLock(lowercase_ ): if os.path.exists(lowercase_ ) and not args.overwrite_cache: snake_case = time.time() snake_case = torch.load(lowercase_ ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. snake_case = self.old_features['features'] snake_case = self.old_features.get('dataset', lowercase_ ) snake_case = self.old_features.get('examples', lowercase_ ) logger.info( F'''Loading features from cached file {cached_features_file} [took %.3f s]''', time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( F'''Deleting cached file {cached_features_file} will allow dataset and examples to be cached in''' ' future run' ) else: if mode == Split.dev: snake_case = self.processor.get_dev_examples(args.data_dir ) else: snake_case = self.processor.get_train_examples(args.data_dir ) snake_case , snake_case = squad_convert_examples_to_features( examples=self.examples, tokenizer=lowercase_, max_seq_length=args.max_seq_length, doc_stride=args.doc_stride, max_query_length=args.max_query_length, is_training=mode == Split.train, threads=args.threads, return_dataset=lowercase_, ) snake_case = time.time() torch.save( {'features': self.features, 'dataset': self.dataset, 'examples': self.examples}, lowercase_, ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__( self ) -> Tuple: return len(self.features ) def __getitem__( self, lowercase_ ) -> Dict[str, torch.Tensor]: # Convert to Tensors and build dataset snake_case = self.features[i] snake_case = torch.tensor(feature.input_ids, dtype=torch.long ) snake_case = torch.tensor(feature.attention_mask, dtype=torch.long ) snake_case = torch.tensor(feature.token_type_ids, dtype=torch.long ) snake_case = torch.tensor(feature.cls_index, dtype=torch.long ) snake_case = torch.tensor(feature.p_mask, dtype=torch.float ) snake_case = torch.tensor(feature.is_impossible, dtype=torch.float ) snake_case = { 'input_ids': input_ids, 'attention_mask': attention_mask, 'token_type_ids': token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({'cls_index': cls_index, 'p_mask': p_mask} ) if self.args.version_2_with_negative: inputs.update({'is_impossible': is_impossible} ) if self.is_language_sensitive: inputs.update({'langs': (torch.ones(input_ids.shape, dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: snake_case = torch.tensor(feature.start_position, dtype=torch.long ) snake_case = torch.tensor(feature.end_position, dtype=torch.long ) inputs.update({'start_positions': start_positions, 'end_positions': end_positions} ) return inputs
332
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class lowerCamelCase_ (metaclass=__lowerCAmelCase ): '''simple docstring''' __UpperCamelCase: Tuple = ["onnx"] def __init__( self : Optional[int] , *A : List[Any] , **A : Dict ): requires_backends(self , ["onnx"] ) @classmethod def _A ( cls : str , *A : Any , **A : Tuple ): requires_backends(cls , ["onnx"] ) @classmethod def _A ( cls : Any , *A : Dict , **A : List[Any] ): requires_backends(cls , ["onnx"] )
31
"""simple docstring""" import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) ->Optional[int]: a__: int = None if token is not None: a__: Tuple = {'Accept': 'application/vnd.github+json', 'Authorization': F'Bearer {token}'} a__: Optional[Any] = F'https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100' a__: str = requests.get(_SCREAMING_SNAKE_CASE , headers=_SCREAMING_SNAKE_CASE ).json() a__: str = {} try: job_links.update({job['name']: job['html_url'] for job in result['jobs']} ) a__: int = math.ceil((result['total_count'] - 100) / 100 ) for i in range(_SCREAMING_SNAKE_CASE ): a__: Dict = requests.get(url + F'&page={i + 2}' , headers=_SCREAMING_SNAKE_CASE ).json() job_links.update({job['name']: job['html_url'] for job in result['jobs']} ) return job_links except Exception: print(F'Unknown error, could not fetch links:\n{traceback.format_exc()}' ) return {} def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) ->Dict: a__: Dict = None if token is not None: a__: List[str] = {'Accept': 'application/vnd.github+json', 'Authorization': F'Bearer {token}'} a__: Dict = F'https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100' a__: Union[str, Any] = requests.get(_SCREAMING_SNAKE_CASE , headers=_SCREAMING_SNAKE_CASE ).json() a__: List[Any] = {} try: artifacts.update({artifact['name']: artifact['archive_download_url'] for artifact in result['artifacts']} ) a__: Dict = math.ceil((result['total_count'] - 100) / 100 ) for i in range(_SCREAMING_SNAKE_CASE ): a__: Optional[int] = requests.get(url + F'&page={i + 2}' , headers=_SCREAMING_SNAKE_CASE ).json() artifacts.update({artifact['name']: artifact['archive_download_url'] for artifact in result['artifacts']} ) return artifacts except Exception: print(F'Unknown error, could not fetch links:\n{traceback.format_exc()}' ) return {} def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->str: a__: List[Any] = None if token is not None: a__: Optional[int] = {'Accept': 'application/vnd.github+json', 'Authorization': F'Bearer {token}'} a__: Union[str, Any] = requests.get(_SCREAMING_SNAKE_CASE , headers=_SCREAMING_SNAKE_CASE , allow_redirects=_SCREAMING_SNAKE_CASE ) a__: Optional[Any] = result.headers['Location'] a__: Optional[int] = requests.get(_SCREAMING_SNAKE_CASE , allow_redirects=_SCREAMING_SNAKE_CASE ) a__: int = os.path.join(_SCREAMING_SNAKE_CASE , F'{artifact_name}.zip' ) with open(_SCREAMING_SNAKE_CASE , 'wb' ) as fp: fp.write(response.content ) def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) ->List[Any]: a__: List[Any] = [] a__: Optional[Any] = [] a__: List[Any] = None with zipfile.ZipFile(_SCREAMING_SNAKE_CASE ) as z: for filename in z.namelist(): if not os.path.isdir(_SCREAMING_SNAKE_CASE ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(_SCREAMING_SNAKE_CASE ) as f: for line in f: a__: Optional[int] = line.decode('UTF-8' ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs a__: Union[str, Any] = line[: line.index(': ' )] a__: Union[str, Any] = line[line.index(': ' ) + len(': ' ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith('FAILED ' ): # `test` is the test method that failed a__: Optional[int] = line[len('FAILED ' ) :] failed_tests.append(_SCREAMING_SNAKE_CASE ) elif filename == "job_name.txt": a__: Union[str, Any] = line if len(_SCREAMING_SNAKE_CASE ) != len(_SCREAMING_SNAKE_CASE ): raise ValueError( F'`errors` and `failed_tests` should have the same number of elements. Got {len(_SCREAMING_SNAKE_CASE )} for `errors` ' F'and {len(_SCREAMING_SNAKE_CASE )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some' ' problem.' ) a__: Tuple = None if job_name and job_links: a__: Dict = job_links.get(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # A list with elements of the form (line of error, error, failed test) a__: int = [x + [y] + [job_link] for x, y in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )] return result def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) ->str: a__: int = [] a__: Optional[int] = [os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for p in os.listdir(_SCREAMING_SNAKE_CASE ) if p.endswith('.zip' )] for p in paths: errors.extend(get_errors_from_single_artifact(_SCREAMING_SNAKE_CASE , job_links=_SCREAMING_SNAKE_CASE ) ) return errors def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) ->Any: a__: str = Counter() counter.update([x[1] for x in logs] ) a__: int = counter.most_common() a__: Any = {} for error, count in counts: if error_filter is None or error not in error_filter: a__: List[str] = {'count': count, 'failed_tests': [(x[2], x[0]) for x in logs if x[1] == error]} a__: Optional[Any] = dict(sorted(r.items() , key=lambda _SCREAMING_SNAKE_CASE : item[1]["count"] , reverse=_SCREAMING_SNAKE_CASE ) ) return r def __a ( _SCREAMING_SNAKE_CASE ) ->Union[str, Any]: a__: List[str] = test.split('::' )[0] if test.startswith('tests/models/' ): a__: Dict = test.split('/' )[2] else: a__: Any = None return test def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) ->List[str]: a__: int = [(x[0], x[1], get_model(x[2] )) for x in logs] a__: List[Any] = [x for x in logs if x[2] is not None] a__: Optional[Any] = {x[2] for x in logs} a__: Dict = {} for test in tests: a__: Union[str, Any] = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) a__: Union[str, Any] = counter.most_common() a__: List[str] = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} a__: List[Any] = sum(error_counts.values() ) if n_errors > 0: a__: Any = {'count': n_errors, 'errors': error_counts} a__: Optional[int] = dict(sorted(r.items() , key=lambda _SCREAMING_SNAKE_CASE : item[1]["count"] , reverse=_SCREAMING_SNAKE_CASE ) ) return r def __a ( _SCREAMING_SNAKE_CASE ) ->Union[str, Any]: a__: Any = '| no. | error | status |' a__: Any = '|-:|:-|:-|' a__: str = [header, sep] for error in reduced_by_error: a__: int = reduced_by_error[error]['count'] a__: Tuple = F'| {count} | {error[:100]} | |' lines.append(_SCREAMING_SNAKE_CASE ) return "\n".join(_SCREAMING_SNAKE_CASE ) def __a ( _SCREAMING_SNAKE_CASE ) ->str: a__: List[str] = '| model | no. of errors | major error | count |' a__: str = '|-:|-:|-:|-:|' a__: int = [header, sep] for model in reduced_by_model: a__: Tuple = reduced_by_model[model]['count'] a__ , a__: Dict = list(reduced_by_model[model]['errors'].items() )[0] a__: Dict = F'| {model} | {count} | {error[:60]} | {_count} |' lines.append(_SCREAMING_SNAKE_CASE ) return "\n".join(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') parser.add_argument( '--output_dir', type=str, required=True, help='Where to store the downloaded artifacts and other result files.', ) parser.add_argument('--token', default=None, type=str, help='A token that has actions:read permission.') lowercase__ = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) lowercase__ = get_job_links(args.workflow_run_id, token=args.token) lowercase__ = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: lowercase__ = k.find(' / ') lowercase__ = k[index + len(' / ') :] lowercase__ = v with open(os.path.join(args.output_dir, 'job_links.json'), 'w', encoding='UTF-8') as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) lowercase__ = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, 'artifacts.json'), 'w', encoding='UTF-8') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) lowercase__ = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error lowercase__ = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors lowercase__ = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, 'errors.json'), 'w', encoding='UTF-8') as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) lowercase__ = reduce_by_error(errors) lowercase__ = reduce_by_model(errors) lowercase__ = make_github_table(reduced_by_error) lowercase__ = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, 'reduced_by_error.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa) with open(os.path.join(args.output_dir, 'reduced_by_model.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa)
290
0
import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint a_ : Optional[int] = { '169M': 12, '430M': 24, '1B5': 24, '3B': 32, '7B': 32, '14B': 40, } a_ : Optional[int] = { '169M': 7_68, '430M': 10_24, '1B5': 20_48, '3B': 25_60, '7B': 40_96, '14B': 51_20, } def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = list(state_dict.keys()) for name in state_dict_keys: SCREAMING_SNAKE_CASE = state_dict.pop(_UpperCAmelCase) # emb -> embedding if name.startswith('emb.'): SCREAMING_SNAKE_CASE = name.replace('emb.' , 'embeddings.') # ln_0 -> pre_ln (only present at block 0) if name.startswith('blocks.0.ln0'): SCREAMING_SNAKE_CASE = name.replace('blocks.0.ln0' , 'blocks.0.pre_ln') # att -> attention SCREAMING_SNAKE_CASE = re.sub(R'blocks\.(\d+)\.att' , R'blocks.\1.attention' , _UpperCAmelCase) # ffn -> feed_forward SCREAMING_SNAKE_CASE = re.sub(R'blocks\.(\d+)\.ffn' , R'blocks.\1.feed_forward' , _UpperCAmelCase) # time_mix_k -> time_mix_key and reshape if name.endswith('.time_mix_k'): SCREAMING_SNAKE_CASE = name.replace('.time_mix_k' , '.time_mix_key') # time_mix_v -> time_mix_value and reshape if name.endswith('.time_mix_v'): SCREAMING_SNAKE_CASE = name.replace('.time_mix_v' , '.time_mix_value') # time_mix_r -> time_mix_key and reshape if name.endswith('.time_mix_r'): SCREAMING_SNAKE_CASE = name.replace('.time_mix_r' , '.time_mix_receptance') if name != "head.weight": SCREAMING_SNAKE_CASE = 'rwkv.' + name SCREAMING_SNAKE_CASE = weight return state_dict def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=False , _UpperCAmelCase=None): # 1. If possible, build the tokenizer. if tokenizer_file is None: print('No `--tokenizer_file` provided, we will use the default tokenizer.') SCREAMING_SNAKE_CASE = 5_0277 SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained('EleutherAI/gpt-neox-20b') else: SCREAMING_SNAKE_CASE = PreTrainedTokenizerFast(tokenizer_file=_UpperCAmelCase) SCREAMING_SNAKE_CASE = len(_UpperCAmelCase) tokenizer.save_pretrained(_UpperCAmelCase) # 2. Build the config SCREAMING_SNAKE_CASE = list(NUM_HIDDEN_LAYERS_MAPPING.keys()) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: SCREAMING_SNAKE_CASE = candidate break if size is None: raise ValueError('Could not infer the size, please provide it with the `--size` argument.') if size not in possible_sizes: raise ValueError(F'''`size` should be one of {possible_sizes}, got {size}.''') SCREAMING_SNAKE_CASE = RwkvConfig( vocab_size=_UpperCAmelCase , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(_UpperCAmelCase) # 3. Download model file then convert state_dict SCREAMING_SNAKE_CASE = hf_hub_download(_UpperCAmelCase , _UpperCAmelCase) SCREAMING_SNAKE_CASE = torch.load(_UpperCAmelCase , map_location='cpu') SCREAMING_SNAKE_CASE = convert_state_dict(_UpperCAmelCase) # 4. Split in shards and save SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = shard_checkpoint(_UpperCAmelCase) for shard_file, shard in shards.items(): torch.save(_UpperCAmelCase , os.path.join(_UpperCAmelCase , _UpperCAmelCase)) if index is not None: SCREAMING_SNAKE_CASE = os.path.join(_UpperCAmelCase , _UpperCAmelCase) # Save the index as well with open(_UpperCAmelCase , 'w' , encoding='utf-8') as f: SCREAMING_SNAKE_CASE = json.dumps(_UpperCAmelCase , indent=2 , sort_keys=_UpperCAmelCase) + '\n' f.write(_UpperCAmelCase) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( 'Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model.') SCREAMING_SNAKE_CASE = list(shards.keys()) del state_dict del shards gc.collect() for shard_file in shard_files: SCREAMING_SNAKE_CASE = torch.load(os.path.join(_UpperCAmelCase , _UpperCAmelCase)) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(_UpperCAmelCase , _UpperCAmelCase)) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError('Please provide a `model_name` to push the model to the Hub.') SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained(_UpperCAmelCase) model.push_to_hub(_UpperCAmelCase , max_shard_size='2GB') tokenizer.push_to_hub(_UpperCAmelCase) if __name__ == "__main__": a_ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--repo_id', default=None, type=str, required=True, help='Repo ID from which to pull the checkpoint.' ) parser.add_argument( '--checkpoint_file', default=None, type=str, required=True, help='Name of the checkpoint file in the repo.' ) parser.add_argument( '--output_dir', default=None, type=str, required=True, help='Where to save the converted model.' ) parser.add_argument( '--tokenizer_file', default=None, type=str, help='Path to the tokenizer file to use (if not provided, only the model is converted).', ) parser.add_argument( '--size', default=None, type=str, help='Size of the model. Will be inferred from the `checkpoint_file` if not passed.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Push to the Hub the converted model.', ) parser.add_argument( '--model_name', default=None, type=str, help='Name of the pushed model on the Hub, including the username / organization.', ) a_ : Tuple = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
367
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a_ : Optional[Any] = { 'configuration_efficientnet': [ 'EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EfficientNetConfig', 'EfficientNetOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : List[str] = ['EfficientNetImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Union[str, Any] = [ 'EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'EfficientNetForImageClassification', 'EfficientNetModel', 'EfficientNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys a_ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure)
327
0
"""simple docstring""" import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _UpperCAmelCase ( unittest.TestCase): def __snake_case ( self ) -> Tuple: '''simple docstring''' super().tearDown() gc.collect() def __snake_case ( self ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = FlaxStableDiffusionPipeline.from_pretrained( """stabilityai/stable-diffusion-2""" , revision="""bf16""" , dtype=jnp.bfloataa , ) _UpperCAmelCase : Dict = 'A painting of a squirrel eating a burger' _UpperCAmelCase : List[Any] = jax.device_count() _UpperCAmelCase : Dict = num_samples * [prompt] _UpperCAmelCase : Tuple = sd_pipe.prepare_inputs(__UpperCAmelCase ) _UpperCAmelCase : Tuple = replicate(__UpperCAmelCase ) _UpperCAmelCase : Dict = shard(__UpperCAmelCase ) _UpperCAmelCase : Optional[int] = jax.random.PRNGKey(0 ) _UpperCAmelCase : Optional[Any] = jax.random.split(__UpperCAmelCase , jax.device_count() ) _UpperCAmelCase : List[Any] = sd_pipe(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , num_inference_steps=25 , jit=__UpperCAmelCase )[0] assert images.shape == (jax.device_count(), 1, 7_68, 7_68, 3) _UpperCAmelCase : str = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) _UpperCAmelCase : Any = images[0, 2_53:2_56, 2_53:2_56, -1] _UpperCAmelCase : Tuple = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _UpperCAmelCase : Any = jnp.array([0.4238, 0.4414, 0.4395, 0.4453, 0.4629, 0.4590, 0.4531, 0.45508, 0.4512] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def __snake_case ( self ) -> Dict: '''simple docstring''' _UpperCAmelCase : Dict = 'stabilityai/stable-diffusion-2' _UpperCAmelCase : int = FlaxDPMSolverMultistepScheduler.from_pretrained(__UpperCAmelCase , subfolder="""scheduler""" ) _UpperCAmelCase : Optional[int] = FlaxStableDiffusionPipeline.from_pretrained( __UpperCAmelCase , scheduler=__UpperCAmelCase , revision="""bf16""" , dtype=jnp.bfloataa , ) _UpperCAmelCase : Union[str, Any] = scheduler_params _UpperCAmelCase : Dict = 'A painting of a squirrel eating a burger' _UpperCAmelCase : Optional[Any] = jax.device_count() _UpperCAmelCase : Dict = num_samples * [prompt] _UpperCAmelCase : Dict = sd_pipe.prepare_inputs(__UpperCAmelCase ) _UpperCAmelCase : List[Any] = replicate(__UpperCAmelCase ) _UpperCAmelCase : List[Any] = shard(__UpperCAmelCase ) _UpperCAmelCase : Dict = jax.random.PRNGKey(0 ) _UpperCAmelCase : Optional[int] = jax.random.split(__UpperCAmelCase , jax.device_count() ) _UpperCAmelCase : str = sd_pipe(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , num_inference_steps=25 , jit=__UpperCAmelCase )[0] assert images.shape == (jax.device_count(), 1, 7_68, 7_68, 3) _UpperCAmelCase : Union[str, Any] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) _UpperCAmelCase : Dict = images[0, 2_53:2_56, 2_53:2_56, -1] _UpperCAmelCase : List[Any] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _UpperCAmelCase : Optional[int] = jnp.array([0.4336, 0.42969, 0.4453, 0.4199, 0.4297, 0.4531, 0.4434, 0.4434, 0.4297] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
246
"""simple docstring""" from __future__ import annotations __A = 1.6_021e-19 # units = C def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) ->tuple[str, float]: """simple docstring""" if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError('You cannot supply more or less than 2 values' ) elif conductivity < 0: raise ValueError('Conductivity cannot be negative' ) elif electron_conc < 0: raise ValueError('Electron concentration cannot be negative' ) elif mobility < 0: raise ValueError('mobility cannot be negative' ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
293
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING __SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : int = { 'microsoft/table-transformer-detection': ( 'https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json' ), } class lowercase_ ( __snake_case ): _lowerCamelCase = 'table-transformer' _lowerCamelCase = ['past_key_values'] _lowerCamelCase = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , lowercase_=True , lowercase_=None , lowercase_=3 , lowercase_=100 , lowercase_=6 , lowercase_=2_048 , lowercase_=8 , lowercase_=6 , lowercase_=2_048 , lowercase_=8 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=True , lowercase_="relu" , lowercase_=256 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.02 , lowercase_=1.0 , lowercase_=False , lowercase_="sine" , lowercase_="resnet50" , lowercase_=True , lowercase_=False , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=1 , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=0.1 , **lowercase_ , ): if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) _snake_case : List[Any] = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(lowercase_ , lowercase_ ): _snake_case : str = backbone_config.get("model_type" ) _snake_case : Tuple = CONFIG_MAPPING[backbone_model_type] _snake_case : List[str] = config_class.from_dict(lowercase_ ) # set timm attributes to None _snake_case : Dict = None, None, None _snake_case : Optional[int] = use_timm_backbone _snake_case : List[Any] = backbone_config _snake_case : Tuple = num_channels _snake_case : Dict = num_queries _snake_case : Any = d_model _snake_case : Union[str, Any] = encoder_ffn_dim _snake_case : Optional[int] = encoder_layers _snake_case : Optional[Any] = encoder_attention_heads _snake_case : str = decoder_ffn_dim _snake_case : str = decoder_layers _snake_case : str = decoder_attention_heads _snake_case : Optional[int] = dropout _snake_case : Union[str, Any] = attention_dropout _snake_case : Tuple = activation_dropout _snake_case : Tuple = activation_function _snake_case : str = init_std _snake_case : Dict = init_xavier_std _snake_case : Any = encoder_layerdrop _snake_case : int = decoder_layerdrop _snake_case : Any = encoder_layers _snake_case : List[str] = auxiliary_loss _snake_case : List[str] = position_embedding_type _snake_case : List[Any] = backbone _snake_case : Any = use_pretrained_backbone _snake_case : int = dilation # Hungarian matcher _snake_case : str = class_cost _snake_case : int = bbox_cost _snake_case : Tuple = giou_cost # Loss coefficients _snake_case : Union[str, Any] = mask_loss_coefficient _snake_case : Optional[Any] = dice_loss_coefficient _snake_case : str = bbox_loss_coefficient _snake_case : Union[str, Any] = giou_loss_coefficient _snake_case : int = eos_coefficient super().__init__(is_encoder_decoder=lowercase_ , **lowercase_ ) @property def UpperCamelCase ( self ): return self.encoder_attention_heads @property def UpperCamelCase ( self ): return self.d_model class lowercase_ ( __snake_case ): _lowerCamelCase = version.parse('1.11' ) @property def UpperCamelCase ( self ): return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def UpperCamelCase ( self ): return 1e-5 @property def UpperCamelCase ( self ): return 12
350
from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class lowercase_ : _lowerCamelCase = 42 _lowerCamelCase = 42 class lowercase_ : def __init__( self , lowercase_ ): _snake_case : list[list[Edge]] = [[] for _ in range(lowercase_ )] _snake_case : Union[str, Any] = size def __getitem__( self , lowercase_ ): return iter(self._graph[vertex] ) @property def UpperCamelCase ( self ): return self._size def UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ ): if weight not in (0, 1): raise ValueError("Edge weight must be either 0 or 1." ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError("Vertex indexes must be in [0; size)." ) self._graph[from_vertex].append(Edge(lowercase_ , lowercase_ ) ) def UpperCamelCase ( self , lowercase_ , lowercase_ ): _snake_case : Optional[int] = deque([start_vertex] ) _snake_case : list[int | None] = [None] * self.size _snake_case : Tuple = 0 while queue: _snake_case : List[Any] = queue.popleft() _snake_case : Tuple = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: _snake_case : Dict = current_distance + edge.weight _snake_case : str = distances[edge.destination_vertex] if ( isinstance(lowercase_ , lowercase_ ) and new_distance >= dest_vertex_distance ): continue _snake_case : List[Any] = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError("No path from start_vertex to finish_vertex." ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
284
0
"""simple docstring""" from __future__ import annotations from collections.abc import Sequence from typing import Literal def lowerCamelCase__ ( __snake_case, __snake_case ) -> str | Literal[False]: """simple docstring""" _UpperCamelCase = list(a__ ) _UpperCamelCase = list(a__ ) _UpperCamelCase = 0 for i in range(len(a__ ) ): if lista[i] != lista[i]: count += 1 _UpperCamelCase = '''_''' if count > 1: return False else: return "".join(a__ ) def lowerCamelCase__ ( __snake_case ) -> list[str]: """simple docstring""" _UpperCamelCase = [] while True: _UpperCamelCase = ['''$'''] * len(a__ ) _UpperCamelCase = [] for i in range(len(a__ ) ): for j in range(i + 1, len(a__ ) ): _UpperCamelCase = compare_string(binary[i], binary[j] ) if k is False: _UpperCamelCase = '''*''' _UpperCamelCase = '''*''' temp.append('''X''' ) for i in range(len(a__ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(a__ ) == 0: return pi _UpperCamelCase = list(set(a__ ) ) def lowerCamelCase__ ( __snake_case, __snake_case ) -> list[str]: """simple docstring""" _UpperCamelCase = [] for minterm in minterms: _UpperCamelCase = '''''' for _ in range(a__ ): _UpperCamelCase = str(minterm % 2 ) + string minterm //= 2 temp.append(a__ ) return temp def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> bool: """simple docstring""" _UpperCamelCase = list(a__ ) _UpperCamelCase = list(a__ ) _UpperCamelCase = 0 for i in range(len(a__ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def lowerCamelCase__ ( __snake_case, __snake_case ) -> list[str]: """simple docstring""" _UpperCamelCase = [] _UpperCamelCase = [0] * len(a__ ) for i in range(len(chart[0] ) ): _UpperCamelCase = 0 _UpperCamelCase = -1 for j in range(len(a__ ) ): if chart[j][i] == 1: count += 1 _UpperCamelCase = j if count == 1: _UpperCamelCase = 1 for i in range(len(a__ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(a__ ) ): _UpperCamelCase = 0 temp.append(prime_implicants[i] ) while True: _UpperCamelCase = 0 _UpperCamelCase = -1 _UpperCamelCase = 0 for i in range(len(a__ ) ): _UpperCamelCase = chart[i].count(1 ) if count_n > max_n: _UpperCamelCase = count_n _UpperCamelCase = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(a__ ) ): _UpperCamelCase = 0 def lowerCamelCase__ ( __snake_case, __snake_case ) -> list[list[int]]: """simple docstring""" _UpperCamelCase = [[0 for x in range(len(a__ ) )] for x in range(len(a__ ) )] for i in range(len(a__ ) ): _UpperCamelCase = prime_implicants[i].count('''_''' ) for j in range(len(a__ ) ): if is_for_table(prime_implicants[i], binary[j], a__ ): _UpperCamelCase = 1 return chart def lowerCamelCase__ ( ) -> None: """simple docstring""" _UpperCamelCase = int(input('''Enter the no. of variables\n''' ) ) _UpperCamelCase = [ float(a__ ) for x in input( '''Enter the decimal representation of Minterms \'Spaces Separated\'\n''' ).split() ] _UpperCamelCase = decimal_to_binary(a__, a__ ) _UpperCamelCase = check(a__ ) print('''Prime Implicants are:''' ) print(a__ ) _UpperCamelCase = prime_implicant_chart(a__, a__ ) _UpperCamelCase = selection(a__, a__ ) print('''Essential Prime Implicants are:''' ) print(a__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
194
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path A : Optional[Any] = Path(__file__).resolve().parents[3] / 'src' sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(4_2) A : List[str] = {'base': 'patrickvonplaten/wav2vec2_tiny_random', 'robust': 'patrickvonplaten/wav2vec2_tiny_random_robust'} A : Optional[int] = 'zero2' A : str = 'zero3' A : Tuple = [ZEROa, ZEROa] def __lowerCAmelCase ( a__ , a__ , a__ ) -> Tuple: # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param __a = parameterized.to_safe_name('''_'''.join(str(a__ ) for x in param.args ) ) return F"""{func.__name__}_{param_based_name}""" # Cartesian-product of zero stages with models to test A : Union[str, Any] = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class __A( a ): @parameterized.expand(_snake_case , name_func=_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Any: '''simple docstring''' self.run_and_check( stage=_snake_case , model=_snake_case , distributed=_snake_case , fpaa=_snake_case , ) @require_torch_multi_gpu @parameterized.expand(_snake_case , name_func=_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> int: '''simple docstring''' self.run_and_check( stage=_snake_case , model=_snake_case , distributed=_snake_case , fpaa=_snake_case , ) @parameterized.expand(_snake_case , name_func=_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> str: '''simple docstring''' self.run_and_check( stage=_snake_case , model=_snake_case , distributed=_snake_case , fpaa=_snake_case , ) @require_torch_multi_gpu @parameterized.expand(_snake_case , name_func=_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Optional[Any]: '''simple docstring''' self.run_and_check( stage=_snake_case , model=_snake_case , distributed=_snake_case , fpaa=_snake_case , ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Tuple: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case = 10 , _snake_case = True , _snake_case = True , _snake_case = True , ) -> Any: '''simple docstring''' __a = models[model] __a = self.run_trainer( stage=_snake_case , model_name=_snake_case , eval_steps=_snake_case , num_train_epochs=1 , distributed=_snake_case , fpaa=_snake_case , ) self.do_checks(_snake_case ) return output_dir def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case = 10 , _snake_case = 1 , _snake_case = True , _snake_case = True , ) -> Union[str, Any]: '''simple docstring''' __a = self.get_auto_remove_tmp_dir('''./xxx''' , after=_snake_case ) __a = F""" --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(_snake_case )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none """.split() if fpaa: args.extend(['''--fp16'''] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files __a = F"""--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json""".split() __a = [F"""{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"""] __a = self.get_launcher(_snake_case ) __a = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(_snake_case , env=self.get_env() ) return output_dir def SCREAMING_SNAKE_CASE_ ( self , _snake_case=False ) -> List[str]: '''simple docstring''' __a = min(2 , get_gpu_count() ) if distributed else 1 return F"""deepspeed --num_nodes 1 --num_gpus {num_gpus}""".split()
6
0
'''simple docstring''' import mpmath # for roots of unity import numpy as np class UpperCAmelCase : '''simple docstring''' def __init__( self , __lowerCAmelCase=None , __lowerCAmelCase=None ) -> Union[str, Any]: # Input as list lowercase__ : Tuple = list(poly_a or [0] )[:] lowercase__ : int = list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() lowercase__ : Any = len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() lowercase__ : List[str] = len(self.polyB ) # Add 0 to make lengths equal a power of 2 lowercase__ : str = int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform lowercase__ : List[Any] = complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product lowercase__ : List[str] = self.__multiply() def _lowerCAmelCase( self , __lowerCAmelCase ) -> Any: lowercase__ : List[str] = [[x] for x in self.polyA] if which == '''A''' else [[x] for x in self.polyB] # Corner case if len(__lowerCAmelCase ) <= 1: return dft[0] # lowercase__ : Optional[int] = self.c_max_length // 2 while next_ncol > 0: lowercase__ : int = [[] for i in range(__lowerCAmelCase )] lowercase__ : Any = self.root**next_ncol # First half of next step lowercase__ : List[str] = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(__lowerCAmelCase ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step lowercase__ : Dict = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(__lowerCAmelCase ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update lowercase__ : Dict = new_dft lowercase__ : str = next_ncol // 2 return dft[0] def _lowerCAmelCase( self ) -> int: lowercase__ : List[Any] = self.__dft('''A''' ) lowercase__ : Union[str, Any] = self.__dft('''B''' ) lowercase__ : Optional[Any] = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT lowercase__ : int = 2 while next_ncol <= self.c_max_length: lowercase__ : str = [[] for i in range(__lowerCAmelCase )] lowercase__ : str = self.root ** (next_ncol // 2) lowercase__ : int = 1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update lowercase__ : List[str] = new_inverse_c next_ncol *= 2 # Unpack lowercase__ : Dict = [round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1j for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self ) -> Union[str, Any]: lowercase__ : List[str] = '''A = ''' + ''' + '''.join( F"""{coef}*x^{i}""" for coef, i in enumerate(self.polyA[: self.len_A] ) ) lowercase__ : str = '''B = ''' + ''' + '''.join( F"""{coef}*x^{i}""" for coef, i in enumerate(self.polyB[: self.len_B] ) ) lowercase__ : Union[str, Any] = '''A*B = ''' + ''' + '''.join( F"""{coef}*x^{i}""" for coef, i in enumerate(self.product ) ) return F"""{a}\n{b}\n{c}""" # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
214
'''simple docstring''' import qiskit def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): lowercase__ : Dict = qiskit.Aer.get_backend('''aer_simulator''' ) # Create a Quantum Circuit acting on the q register lowercase__ : Any = qiskit.QuantumCircuit(UpperCAmelCase , UpperCAmelCase ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator lowercase__ : Any = qiskit.execute(UpperCAmelCase , UpperCAmelCase , shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(UpperCAmelCase ) if __name__ == "__main__": print(F'Total count for various states are: {single_qubit_measure(1, 1)}')
214
1
"""simple docstring""" import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class SCREAMING_SNAKE_CASE__ : """simple docstring""" @staticmethod def lowercase__ ( *snake_case__ , **snake_case__ ): """simple docstring""" pass @is_pipeline_test @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" a : Tuple =MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : List[str] = pipeline("visual-question-answering" , model="hf-internal-testing/tiny-vilt-random-vqa" ) lowerCAmelCase : Optional[int] = [ { "image": Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "question": "How many cats are there?", }, { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "question": "How many cats are there?", }, ] return vqa_pipeline, examples def lowercase__ ( self , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Tuple = vqa_pipeline(__lowerCamelCase , top_k=1 ) self.assertEqual( __lowerCamelCase , [ [{"score": ANY(__lowerCamelCase ), "answer": ANY(__lowerCamelCase )}], [{"score": ANY(__lowerCamelCase ), "answer": ANY(__lowerCamelCase )}], ] , ) @require_torch def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Any = pipeline("visual-question-answering" , model="hf-internal-testing/tiny-vilt-random-vqa" ) lowerCAmelCase : str = "./tests/fixtures/tests_samples/COCO/000000039769.png" lowerCAmelCase : Optional[Any] = "How many cats are there?" lowerCAmelCase : Any = vqa_pipeline(image=__lowerCamelCase , question="How many cats are there?" , top_k=2 ) self.assertEqual( __lowerCamelCase , [{"score": ANY(__lowerCamelCase ), "answer": ANY(__lowerCamelCase )}, {"score": ANY(__lowerCamelCase ), "answer": ANY(__lowerCamelCase )}] ) lowerCAmelCase : List[str] = vqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( __lowerCamelCase , [{"score": ANY(__lowerCamelCase ), "answer": ANY(__lowerCamelCase )}, {"score": ANY(__lowerCamelCase ), "answer": ANY(__lowerCamelCase )}] ) @slow @require_torch def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[int] = pipeline("visual-question-answering" , model="dandelin/vilt-b32-finetuned-vqa" ) lowerCAmelCase : Union[str, Any] = "./tests/fixtures/tests_samples/COCO/000000039769.png" lowerCAmelCase : List[str] = "How many cats are there?" lowerCAmelCase : int = vqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [{"score": 0.8799, "answer": "2"}, {"score": 0.296, "answer": "1"}] ) lowerCAmelCase : str = vqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [{"score": 0.8799, "answer": "2"}, {"score": 0.296, "answer": "1"}] ) lowerCAmelCase : List[Any] = vqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [[{"score": 0.8799, "answer": "2"}, {"score": 0.296, "answer": "1"}]] * 2 , ) @require_tf @unittest.skip("Visual question answering not implemented in TF" ) def lowercase__ ( self ): """simple docstring""" pass
108
from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class _snake_case ( _lowercase , _lowercase , unittest.TestCase ): lowerCamelCase__: str = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) lowerCamelCase__: Optional[Any] = ( { "feature-extraction": TFMobileBertModel, "fill-mask": TFMobileBertForMaskedLM, "question-answering": TFMobileBertForQuestionAnswering, "text-classification": TFMobileBertForSequenceClassification, "token-classification": TFMobileBertForTokenClassification, "zero-shot": TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) lowerCamelCase__: Union[str, Any] = False lowerCamelCase__: Any = False def _lowerCamelCase ( self: Tuple , __lowerCamelCase: List[Any] , __lowerCamelCase: Any , __lowerCamelCase: List[str]=False ) -> Dict: __UpperCAmelCase : Dict = super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) if return_labels: if model_class in get_values(__lowerCamelCase ): __UpperCAmelCase : List[str] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class _snake_case ( _lowercase ): def __init__( self: str , __lowerCamelCase: Optional[int] , __lowerCamelCase: str=13 , __lowerCamelCase: Any=7 , __lowerCamelCase: int=True , __lowerCamelCase: List[Any]=True , __lowerCamelCase: Any=True , __lowerCamelCase: Optional[Any]=True , __lowerCamelCase: Tuple=99 , __lowerCamelCase: str=32 , __lowerCamelCase: Union[str, Any]=32 , __lowerCamelCase: Dict=2 , __lowerCamelCase: Dict=4 , __lowerCamelCase: Optional[int]=37 , __lowerCamelCase: Optional[int]="gelu" , __lowerCamelCase: Tuple=0.1 , __lowerCamelCase: Optional[int]=0.1 , __lowerCamelCase: int=5_12 , __lowerCamelCase: Optional[int]=16 , __lowerCamelCase: Dict=2 , __lowerCamelCase: List[Any]=0.02 , __lowerCamelCase: List[str]=3 , __lowerCamelCase: List[Any]=4 , __lowerCamelCase: Union[str, Any]=None , ) -> Optional[int]: __UpperCAmelCase : str = parent __UpperCAmelCase : Optional[int] = batch_size __UpperCAmelCase : Any = seq_length __UpperCAmelCase : Dict = is_training __UpperCAmelCase : str = use_input_mask __UpperCAmelCase : Optional[int] = use_token_type_ids __UpperCAmelCase : Dict = use_labels __UpperCAmelCase : int = vocab_size __UpperCAmelCase : Union[str, Any] = hidden_size __UpperCAmelCase : int = num_hidden_layers __UpperCAmelCase : Optional[Any] = num_attention_heads __UpperCAmelCase : Tuple = intermediate_size __UpperCAmelCase : List[Any] = hidden_act __UpperCAmelCase : Optional[Any] = hidden_dropout_prob __UpperCAmelCase : int = attention_probs_dropout_prob __UpperCAmelCase : Tuple = max_position_embeddings __UpperCAmelCase : List[str] = type_vocab_size __UpperCAmelCase : Optional[Any] = type_sequence_label_size __UpperCAmelCase : str = initializer_range __UpperCAmelCase : int = num_labels __UpperCAmelCase : Optional[Any] = num_choices __UpperCAmelCase : Optional[int] = scope __UpperCAmelCase : List[str] = embedding_size def _lowerCamelCase ( self: Tuple ) -> Optional[Any]: __UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : Union[str, Any] = None if self.use_input_mask: __UpperCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : Tuple = None if self.use_token_type_ids: __UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : Tuple = None __UpperCAmelCase : Any = None if self.use_labels: __UpperCAmelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase : Tuple = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase : Dict = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCamelCase ( self: Tuple , __lowerCamelCase: List[str] , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Dict , __lowerCamelCase: List[Any] , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Any , __lowerCamelCase: Optional[Any] ) -> Optional[int]: __UpperCAmelCase : Any = TFMobileBertModel(config=__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __UpperCAmelCase : Tuple = model(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = [input_ids, input_mask] __UpperCAmelCase : List[str] = model(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = model(__lowerCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _lowerCamelCase ( self: Optional[Any] , __lowerCamelCase: Any , __lowerCamelCase: List[Any] , __lowerCamelCase: List[Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Dict ) -> Optional[int]: __UpperCAmelCase : List[str] = TFMobileBertForMaskedLM(config=__lowerCamelCase ) __UpperCAmelCase : Tuple = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __UpperCAmelCase : Tuple = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self: Tuple , __lowerCamelCase: str , __lowerCamelCase: Dict , __lowerCamelCase: List[str] , __lowerCamelCase: List[str] , __lowerCamelCase: Optional[int] , __lowerCamelCase: Tuple , __lowerCamelCase: Union[str, Any] ) -> Any: __UpperCAmelCase : Optional[int] = TFMobileBertForNextSentencePrediction(config=__lowerCamelCase ) __UpperCAmelCase : List[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __UpperCAmelCase : str = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: Dict , __lowerCamelCase: Dict , __lowerCamelCase: Any , __lowerCamelCase: List[Any] , __lowerCamelCase: Any , __lowerCamelCase: Any ) -> List[str]: __UpperCAmelCase : Optional[Any] = TFMobileBertForPreTraining(config=__lowerCamelCase ) __UpperCAmelCase : List[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __UpperCAmelCase : List[str] = model(__lowerCamelCase ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def _lowerCamelCase ( self: Optional[int] , __lowerCamelCase: Dict , __lowerCamelCase: List[Any] , __lowerCamelCase: List[str] , __lowerCamelCase: int , __lowerCamelCase: List[str] , __lowerCamelCase: Any , __lowerCamelCase: Dict ) -> Dict: __UpperCAmelCase : Tuple = self.num_labels __UpperCAmelCase : Tuple = TFMobileBertForSequenceClassification(config=__lowerCamelCase ) __UpperCAmelCase : Optional[int] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __UpperCAmelCase : Optional[int] = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self: Optional[int] , __lowerCamelCase: Dict , __lowerCamelCase: str , __lowerCamelCase: List[str] , __lowerCamelCase: Any , __lowerCamelCase: str , __lowerCamelCase: List[str] , __lowerCamelCase: Union[str, Any] ) -> Optional[int]: __UpperCAmelCase : Union[str, Any] = self.num_choices __UpperCAmelCase : Tuple = TFMobileBertForMultipleChoice(config=__lowerCamelCase ) __UpperCAmelCase : Dict = tf.tile(tf.expand_dims(__lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCAmelCase : str = tf.tile(tf.expand_dims(__lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCAmelCase : Optional[Any] = tf.tile(tf.expand_dims(__lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCAmelCase : Any = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } __UpperCAmelCase : Dict = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCamelCase ( self: Optional[Any] , __lowerCamelCase: List[Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: str , __lowerCamelCase: Tuple , __lowerCamelCase: Dict , __lowerCamelCase: str , __lowerCamelCase: Optional[int] ) -> Dict: __UpperCAmelCase : List[Any] = self.num_labels __UpperCAmelCase : Optional[int] = TFMobileBertForTokenClassification(config=__lowerCamelCase ) __UpperCAmelCase : Dict = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __UpperCAmelCase : Optional[Any] = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCamelCase ( self: int , __lowerCamelCase: Optional[int] , __lowerCamelCase: int , __lowerCamelCase: List[str] , __lowerCamelCase: Any , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Dict , __lowerCamelCase: int ) -> Tuple: __UpperCAmelCase : Tuple = TFMobileBertForQuestionAnswering(config=__lowerCamelCase ) __UpperCAmelCase : Dict = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __UpperCAmelCase : str = model(__lowerCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCamelCase ( self: Tuple ) -> Optional[Any]: __UpperCAmelCase : Tuple = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : Any = config_and_inputs __UpperCAmelCase : List[str] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict def _lowerCamelCase ( self: List[str] ) -> int: __UpperCAmelCase : List[str] = TFMobileBertModelTest.TFMobileBertModelTester(self ) __UpperCAmelCase : Optional[int] = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=37 ) def _lowerCamelCase ( self: Any ) -> Optional[Any]: self.config_tester.run_common_tests() def _lowerCamelCase ( self: int ) -> int: __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*__lowerCamelCase ) def _lowerCamelCase ( self: int ) -> List[str]: __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*__lowerCamelCase ) def _lowerCamelCase ( self: Optional[Any] ) -> Optional[Any]: __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__lowerCamelCase ) def _lowerCamelCase ( self: List[Any] ) -> List[Any]: __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__lowerCamelCase ) def _lowerCamelCase ( self: Tuple ) -> Any: __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*__lowerCamelCase ) def _lowerCamelCase ( self: Optional[Any] ) -> Any: __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*__lowerCamelCase ) def _lowerCamelCase ( self: str ) -> str: __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__lowerCamelCase ) def _lowerCamelCase ( self: Union[str, Any] ) -> str: __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*__lowerCamelCase ) @slow def _lowerCamelCase ( self: List[Any] ) -> Union[str, Any]: # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["google/mobilebert-uncased"]: __UpperCAmelCase : Dict = TFMobileBertModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) @require_tf class _snake_case ( unittest.TestCase ): @slow def _lowerCamelCase ( self: Union[str, Any] ) -> str: __UpperCAmelCase : Any = TFMobileBertForPreTraining.from_pretrained("google/mobilebert-uncased" ) __UpperCAmelCase : Union[str, Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) __UpperCAmelCase : str = model(__lowerCamelCase )[0] __UpperCAmelCase : Any = [1, 6, 3_05_22] self.assertEqual(output.shape , __lowerCamelCase ) __UpperCAmelCase : str = tf.constant( [ [ [-4.5_91_95_47, -9.24_82_95, -9.64_52_56], [-6.7_30_61_75, -6.44_02_84, -6.6_05_28_37], [-7.2_74_35_06, -6.7_84_79_15, -6.02_46_73], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __lowerCamelCase , atol=1e-4 )
157
0
"""simple docstring""" def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = len(_UpperCamelCase ) __lowerCAmelCase = len(_UpperCamelCase ) __lowerCAmelCase = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] __lowerCAmelCase = True for i in range(_UpperCamelCase ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: __lowerCAmelCase = True if a[i].islower(): __lowerCAmelCase = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
259
"""simple docstring""" import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' if is_torch_version("<" , "2.0.0" ) or not hasattr(_UpperCamelCase , "_dynamo" ): return False return isinstance(_UpperCamelCase , torch._dynamo.eval_frame.OptimizedModule ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase = True ): '''simple docstring''' __lowerCAmelCase = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) __lowerCAmelCase = is_compiled_module(_UpperCamelCase ) if is_compiled: __lowerCAmelCase = model __lowerCAmelCase = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(_UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase = model.module if not keep_fpaa_wrapper: __lowerCAmelCase = getattr(_UpperCamelCase , "forward" ) __lowerCAmelCase = model.__dict__.pop("_original_forward" , _UpperCamelCase ) if original_forward is not None: while hasattr(_UpperCamelCase , "__wrapped__" ): __lowerCAmelCase = forward.__wrapped__ if forward == original_forward: break __lowerCAmelCase = forward if getattr(_UpperCamelCase , "_converted_to_transformer_engine" , _UpperCamelCase ): convert_model(_UpperCamelCase , to_transformer_engine=_UpperCamelCase ) if is_compiled: __lowerCAmelCase = model __lowerCAmelCase = compiled_model return model def _lowerCamelCase ( ): '''simple docstring''' PartialState().wait_for_everyone() def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' if PartialState().distributed_type == DistributedType.TPU: xm.save(_UpperCamelCase , _UpperCamelCase ) elif PartialState().local_process_index == 0: torch.save(_UpperCamelCase , _UpperCamelCase ) @contextmanager def _lowerCamelCase ( **_UpperCamelCase ): '''simple docstring''' for key, value in kwargs.items(): __lowerCAmelCase = str(_UpperCamelCase ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' if not hasattr(_UpperCamelCase , "__qualname__" ) and not hasattr(_UpperCamelCase , "__name__" ): __lowerCAmelCase = getattr(_UpperCamelCase , "__class__" , _UpperCamelCase ) if hasattr(_UpperCamelCase , "__qualname__" ): return obj.__qualname__ if hasattr(_UpperCamelCase , "__name__" ): return obj.__name__ return str(_UpperCamelCase ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' for key, value in source.items(): if isinstance(_UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase = destination.setdefault(_UpperCamelCase , {} ) merge_dicts(_UpperCamelCase , _UpperCamelCase ) else: __lowerCAmelCase = value return destination def _lowerCamelCase ( _UpperCamelCase = None ): '''simple docstring''' if port is None: __lowerCAmelCase = 2_9500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(("localhost", port) ) == 0
259
1
"""simple docstring""" from __future__ import annotations def _SCREAMING_SNAKE_CASE ( _lowercase : Optional[Any] ) ->Optional[int]: '''simple docstring''' a : Union[str, Any] = 0.00 a : List[str] = 0 for resistor in resistors: if resistor <= 0: a : Optional[Any] = F"""Resistor at index {index} has a negative or zero value!""" raise ValueError(_A ) first_sum += 1 / float(_A ) index += 1 return 1 / first_sum def _SCREAMING_SNAKE_CASE ( _lowercase : Dict ) ->Optional[Any]: '''simple docstring''' a : int = 0.00 a : List[Any] = 0 for resistor in resistors: sum_r += resistor if resistor < 0: a : Any = F"""Resistor at index {index} has a negative value!""" raise ValueError(_A ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
105
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case__ : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=32 , lowerCAmelCase__=2 , lowerCAmelCase__=3 , lowerCAmelCase__=16 , lowerCAmelCase__=[32, 64, 1_28] , lowerCAmelCase__=[1, 2, 1] , lowerCAmelCase__=[2, 2, 4] , lowerCAmelCase__=2 , lowerCAmelCase__=2.0 , lowerCAmelCase__=True , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.1 , lowerCAmelCase__="gelu" , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=1e-5 , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=10 , lowerCAmelCase__=8 , lowerCAmelCase__=["stage1", "stage2"] , lowerCAmelCase__=[1, 2] , ) -> str: __magic_name__ : Optional[int] = parent __magic_name__ : Any = batch_size __magic_name__ : Union[str, Any] = image_size __magic_name__ : Optional[int] = patch_size __magic_name__ : Union[str, Any] = num_channels __magic_name__ : str = embed_dim __magic_name__ : int = hidden_sizes __magic_name__ : Union[str, Any] = depths __magic_name__ : List[str] = num_heads __magic_name__ : str = window_size __magic_name__ : Optional[Any] = mlp_ratio __magic_name__ : Dict = qkv_bias __magic_name__ : Dict = hidden_dropout_prob __magic_name__ : Optional[Any] = attention_probs_dropout_prob __magic_name__ : List[Any] = drop_path_rate __magic_name__ : Optional[Any] = hidden_act __magic_name__ : int = use_absolute_embeddings __magic_name__ : Dict = patch_norm __magic_name__ : Tuple = layer_norm_eps __magic_name__ : List[str] = initializer_range __magic_name__ : Optional[int] = is_training __magic_name__ : Optional[Any] = scope __magic_name__ : Union[str, Any] = use_labels __magic_name__ : Optional[Any] = type_sequence_label_size __magic_name__ : Union[str, Any] = encoder_stride __magic_name__ : List[Any] = out_features __magic_name__ : Union[str, Any] = out_indices def __magic_name__ ( self ) -> str: __magic_name__ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __magic_name__ : Optional[Any] = None if self.use_labels: __magic_name__ : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ : Dict = self.get_config() return config, pixel_values, labels def __magic_name__ ( self ) -> List[Any]: return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: __magic_name__ : Any = FocalNetModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Optional[int] = model(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __magic_name__ : Optional[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: __magic_name__ : List[str] = FocalNetBackbone(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Tuple = model(lowerCAmelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None __magic_name__ : Optional[Any] = None __magic_name__ : List[str] = FocalNetBackbone(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Union[str, Any] = model(lowerCAmelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Union[str, Any]: __magic_name__ : Optional[int] = FocalNetForMaskedImageModeling(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : str = model(lowerCAmelCase__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __magic_name__ : Optional[int] = 1 __magic_name__ : int = FocalNetForMaskedImageModeling(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __magic_name__ : List[Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: __magic_name__ : int = self.type_sequence_label_size __magic_name__ : Tuple = FocalNetForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : int = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __magic_name__ : Optional[int] = 1 __magic_name__ : Dict = FocalNetForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __magic_name__ : Dict = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __magic_name__ ( self ) -> int: __magic_name__ : int = self.prepare_config_and_inputs() __magic_name__ ,__magic_name__ ,__magic_name__ : Dict = config_and_inputs __magic_name__ : Optional[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class snake_case__ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): lowercase__ : str = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowercase__ : Any = ( {'''feature-extraction''': FocalNetModel, '''image-classification''': FocalNetForImageClassification} if is_torch_available() else {} ) lowercase__ : Dict = False lowercase__ : Dict = False lowercase__ : int = False lowercase__ : Tuple = False lowercase__ : Optional[Any] = False def __magic_name__ ( self ) -> Dict: __magic_name__ : Optional[Any] = FocalNetModelTester(self ) __magic_name__ : int = ConfigTester(self , config_class=lowerCAmelCase__ , embed_dim=37 , has_text_modality=lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __magic_name__ ( self ) -> List[str]: return def __magic_name__ ( self ) -> Tuple: __magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def __magic_name__ ( self ) -> Tuple: __magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[str]: __magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[Any]: __magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) @unittest.skip(reason="""FocalNet does not use inputs_embeds""" ) def __magic_name__ ( self ) -> List[str]: pass @unittest.skip(reason="""FocalNet does not use feedforward chunking""" ) def __magic_name__ ( self ) -> List[Any]: pass def __magic_name__ ( self ) -> List[Any]: __magic_name__ ,__magic_name__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: __magic_name__ : Dict = model_class(lowerCAmelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __magic_name__ : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear ) ) def __magic_name__ ( self ) -> Tuple: __magic_name__ ,__magic_name__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: __magic_name__ : str = model_class(lowerCAmelCase__ ) __magic_name__ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ : Tuple = [*signature.parameters.keys()] __magic_name__ : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: __magic_name__ : List[Any] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : List[str] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __magic_name__ : Optional[Any] = outputs.hidden_states __magic_name__ : Union[str, Any] = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) # FocalNet has a different seq_length __magic_name__ : List[str] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __magic_name__ : Optional[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) __magic_name__ : str = outputs.reshaped_hidden_states self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) __magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ : Tuple = reshaped_hidden_states[0].shape __magic_name__ : Union[str, Any] = ( reshaped_hidden_states[0].view(lowerCAmelCase__ , lowerCAmelCase__ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def __magic_name__ ( self ) -> str: __magic_name__ ,__magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Optional[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: __magic_name__ : List[Any] = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __magic_name__ : Optional[Any] = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__ ( self ) -> str: __magic_name__ ,__magic_name__ : int = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Optional[Any] = 3 __magic_name__ : Union[str, Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __magic_name__ : Dict = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __magic_name__ : List[Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __magic_name__ : Tuple = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: __magic_name__ : Optional[int] = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __magic_name__ : str = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , (padded_height, padded_width) ) @slow def __magic_name__ ( self ) -> Union[str, Any]: for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : Optional[int] = FocalNetModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def __magic_name__ ( self ) -> Optional[int]: __magic_name__ ,__magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Dict = _config_zero_init(lowerCAmelCase__ ) for model_class in self.all_model_classes: __magic_name__ : Any = model_class(config=lowerCAmelCase__ ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @require_vision @require_torch class snake_case__ ( unittest.TestCase ): @cached_property def __magic_name__ ( self ) -> Optional[int]: # TODO update organization return AutoImageProcessor.from_pretrained("""microsoft/focalnet-tiny""" ) if is_vision_available() else None @slow def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ : int = FocalNetForImageClassification.from_pretrained("""microsoft/focalnet-tiny""" ).to(lowerCAmelCase__ ) __magic_name__ : Optional[Any] = self.default_image_processor __magic_name__ : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __magic_name__ : Union[str, Any] = image_processor(images=lowerCAmelCase__ , return_tensors="""pt""" ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): __magic_name__ : List[Any] = model(**lowerCAmelCase__ ) # verify the logits __magic_name__ : Union[str, Any] = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) __magic_name__ : Dict = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 2_81 ) @require_torch class snake_case__ ( _lowerCAmelCase , unittest.TestCase ): lowercase__ : Any = (FocalNetBackbone,) if is_torch_available() else () lowercase__ : Optional[int] = FocalNetConfig lowercase__ : Dict = False def __magic_name__ ( self ) -> int: __magic_name__ : Dict = FocalNetModelTester(self )
342
0
'''simple docstring''' from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput __lowerCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCAmelCase__ ( lowercase__ , lowercase__ ): """simple docstring""" @register_to_config def __init__( self : Optional[int] ,_a : bool ,_a : Optional[int] = None ,_a : Optional[int] = None ): '''simple docstring''' super().__init__() _a : List[Any] = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" _a : Optional[Any] = torch.zeros(_a ,_a ) else: _a : Tuple = None _a : Tuple = torch.nn.Parameter(_a ) class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" __UpperCAmelCase : VQModel __UpperCAmelCase : CLIPTextModel __UpperCAmelCase : CLIPTokenizer __UpperCAmelCase : TransformeraDModel __UpperCAmelCase : LearnedClassifierFreeSamplingEmbeddings __UpperCAmelCase : VQDiffusionScheduler def __init__( self : Tuple ,_a : VQModel ,_a : CLIPTextModel ,_a : CLIPTokenizer ,_a : TransformeraDModel ,_a : VQDiffusionScheduler ,_a : LearnedClassifierFreeSamplingEmbeddings ,): '''simple docstring''' super().__init__() self.register_modules( vqvae=_a ,transformer=_a ,text_encoder=_a ,tokenizer=_a ,scheduler=_a ,learned_classifier_free_sampling_embeddings=_a ,) def __lowercase ( self : Union[str, Any] ,_a : Union[str, Any] ,_a : Optional[int] ,_a : Optional[int] ): '''simple docstring''' _a : Optional[int] = len(_a ) if isinstance(_a ,_a ) else 1 # get prompt text embeddings _a : Optional[int] = self.tokenizer( _a ,padding='max_length' ,max_length=self.tokenizer.model_max_length ,return_tensors='pt' ,) _a : List[str] = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: _a : Optional[int] = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' F""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) _a : Tuple = text_input_ids[:, : self.tokenizer.model_max_length] _a : Optional[Any] = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 _a : List[Any] = prompt_embeds / prompt_embeds.norm(dim=-1 ,keepdim=_a ) # duplicate text embeddings for each generation per prompt _a : int = prompt_embeds.repeat_interleave(_a ,dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: _a : List[Any] = self.learned_classifier_free_sampling_embeddings.embeddings _a : Union[str, Any] = negative_prompt_embeds.unsqueeze(0 ).repeat(_a ,1 ,1 ) else: _a : int = [''] * batch_size _a : str = text_input_ids.shape[-1] _a : Any = self.tokenizer( _a ,padding='max_length' ,max_length=_a ,truncation=_a ,return_tensors='pt' ,) _a : List[Any] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings _a : int = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 ,keepdim=_a ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method _a : Union[str, Any] = negative_prompt_embeds.shape[1] _a : List[Any] = negative_prompt_embeds.repeat(1 ,_a ,1 ) _a : Optional[int] = negative_prompt_embeds.view(batch_size * num_images_per_prompt ,_a ,-1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _a : str = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self : Tuple ,_a : Union[str, List[str]] ,_a : int = 100 ,_a : float = 5.0 ,_a : float = 1.0 ,_a : int = 1 ,_a : Optional[Union[torch.Generator, List[torch.Generator]]] = None ,_a : Optional[torch.FloatTensor] = None ,_a : Optional[str] = "pil" ,_a : bool = True ,_a : Optional[Callable[[int, int, torch.FloatTensor], None]] = None ,_a : int = 1 ,): '''simple docstring''' if isinstance(_a ,_a ): _a : Dict = 1 elif isinstance(_a ,_a ): _a : Optional[Any] = len(_a ) else: raise ValueError(F"""`prompt` has to be of type `str` or `list` but is {type(_a )}""" ) _a : Tuple = batch_size * num_images_per_prompt _a : Any = guidance_scale > 1.0 _a : Union[str, Any] = self._encode_prompt(_a ,_a ,_a ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_a ,_a ) or callback_steps <= 0) ): raise ValueError( F"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" F""" {type(_a )}.""" ) # get the initial completely masked latents unless the user supplied it _a : Optional[int] = (batch_size, self.transformer.num_latent_pixels) if latents is None: _a : Dict = self.transformer.num_vector_embeds - 1 _a : Tuple = torch.full(_a ,_a ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( 'Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,' F""" {self.transformer.num_vector_embeds - 1} (inclusive).""" ) _a : Any = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(_a ,device=self.device ) _a : Union[str, Any] = self.scheduler.timesteps.to(self.device ) _a : Tuple = latents for i, t in enumerate(self.progress_bar(_a ) ): # expand the sample if we are doing classifier free guidance _a : List[str] = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` _a : Tuple = self.transformer(_a ,encoder_hidden_states=_a ,timestep=_a ).sample if do_classifier_free_guidance: _a, _a : List[Any] = model_output.chunk(2 ) _a : List[str] = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(_a ,dim=1 ,keepdim=_a ) _a : Dict = self.truncate(_a ,_a ) # remove `log(0)`'s (`-inf`s) _a : Dict = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 _a : Dict = self.scheduler.step(_a ,timestep=_a ,sample=_a ,generator=_a ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_a ,_a ,_a ) _a : str = self.vqvae.config.vq_embed_dim _a : Tuple = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) _a : int = self.vqvae.quantize.get_codebook_entry(_a ,shape=_a ) _a : Union[str, Any] = self.vqvae.decode(_a ,force_not_quantize=_a ).sample _a : Dict = (image / 2 + 0.5).clamp(0 ,1 ) _a : Optional[Any] = image.cpu().permute(0 ,2 ,3 ,1 ).numpy() if output_type == "pil": _a : List[str] = self.numpy_to_pil(_a ) if not return_dict: return (image,) return ImagePipelineOutput(images=_a ) def __lowercase ( self : Dict ,_a : torch.FloatTensor ,_a : float ): '''simple docstring''' _a, _a : int = torch.sort(_a ,1 ,descending=_a ) _a : str = torch.exp(_a ) _a : List[str] = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out _a : Union[str, Any] = torch.full_like(keep_mask[:, 0:1, :] ,_a ) _a : Optional[int] = torch.cat((all_true, keep_mask) ,dim=1 ) _a : int = keep_mask[:, :-1, :] _a : Any = keep_mask.gather(1 ,indices.argsort(1 ) ) _a : Any = log_p_x_0.clone() _a : List[Any] = -torch.inf # -inf = log(0) return rv
5
'''simple docstring''' import sys def UpperCAmelCase_ (__a : List[str] ): """simple docstring""" _a : List[str] = len(__a ) _a : Dict = [[0 for x in range(__a )] for x in range(__a )] _a : Union[str, Any] = [[0 for x in range(__a )] for x in range(__a )] for chain_length in range(2 , __a ): for a in range(1 , n - chain_length + 1 ): _a : Tuple = a + chain_length - 1 _a : Any = sys.maxsize for c in range(__a , __a ): _a : Optional[Any] = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: _a : Dict = cost _a : Any = c return matrix, sol def UpperCAmelCase_ (__a : Tuple , __a : List[str] , __a : Dict ): """simple docstring""" if i == j: print('A' + str(__a ) , end=' ' ) else: print('(' , end=' ' ) print_optiomal_solution(__a , __a , optimal_solution[i][j] ) print_optiomal_solution(__a , optimal_solution[i][j] + 1 , __a ) print(')' , end=' ' ) def UpperCAmelCase_ (): """simple docstring""" _a : Any = [3_0, 3_5, 1_5, 5, 1_0, 2_0, 2_5] _a : Any = len(__a ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 _a, _a : Union[str, Any] = matrix_chain_order(__a ) print('No. of Operation required: ' + str(matrix[1][n - 1] ) ) print_optiomal_solution(__a , 1 , n - 1 ) if __name__ == "__main__": main()
5
1
"""simple docstring""" import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class UpperCamelCase_ ( UpperCamelCase , UpperCamelCase , unittest.TestCase): """simple docstring""" snake_case__ : Any = IFImgaImgSuperResolutionPipeline snake_case__ : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"width", "height"} snake_case__ : str = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"original_image"}) snake_case__ : int = PipelineTesterMixin.required_optional_params - {"latents"} def UpperCAmelCase_ ( self : Any ) -> Any: return self._get_superresolution_dummy_components() def UpperCAmelCase_ ( self : Optional[int] , UpperCAmelCase__ : str , UpperCAmelCase__ : Dict=0 ) -> Optional[Any]: if str(UpperCAmelCase__ ).startswith("mps" ): __SCREAMING_SNAKE_CASE = torch.manual_seed(UpperCAmelCase__ ) else: __SCREAMING_SNAKE_CASE = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 1_6, 1_6) , rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def UpperCAmelCase_ ( self : Dict ) -> int: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def UpperCAmelCase_ ( self : List[str] ) -> str: self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[int]: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def UpperCAmelCase_ ( self : List[Any] ) -> Optional[int]: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def UpperCAmelCase_ ( self : Optional[int] ) -> Tuple: self._test_save_load_local() def UpperCAmelCase_ ( self : Optional[int] ) -> str: self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
54
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __a = { 'configuration_rembert': ['REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RemBertConfig', 'RemBertOnnxConfig'] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['RemBertTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['RemBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RemBertForCausalLM', 'RemBertForMaskedLM', 'RemBertForMultipleChoice', 'RemBertForQuestionAnswering', 'RemBertForSequenceClassification', 'RemBertForTokenClassification', 'RemBertLayer', 'RemBertModel', 'RemBertPreTrainedModel', 'load_tf_weights_in_rembert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRemBertForCausalLM', 'TFRemBertForMaskedLM', 'TFRemBertForMultipleChoice', 'TFRemBertForQuestionAnswering', 'TFRemBertForSequenceClassification', 'TFRemBertForTokenClassification', 'TFRemBertLayer', 'TFRemBertModel', 'TFRemBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
30
0
"""simple docstring""" import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class _lowerCamelCase ( unittest.TestCase ): def __init__(self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=32 , __a=5 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=5_12 , __a=16 , __a=2 , __a=0.02 , __a=4 , ) -> List[Any]: UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = seq_length UpperCamelCase = is_training UpperCamelCase = use_attention_mask UpperCamelCase = use_token_type_ids UpperCamelCase = use_labels UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = num_choices def snake_case_ (self ) -> Optional[Any]: UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase = None if self.use_attention_mask: UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=__a , ) return config, input_ids, attention_mask def snake_case_ (self ) -> Dict: UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = {"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class _lowerCamelCase ( _lowercase , unittest.TestCase ): UpperCAmelCase_ = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def snake_case_ (self ) -> Union[str, Any]: UpperCamelCase = FlaxDistilBertModelTester(self ) @slow def snake_case_ (self ) -> Optional[Any]: for model_class_name in self.all_model_classes: UpperCamelCase = model_class_name.from_pretrained("distilbert-base-uncased" ) UpperCamelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(__a ) @require_flax class _lowerCamelCase ( unittest.TestCase ): @slow def snake_case_ (self ) -> List[str]: UpperCamelCase = FlaxDistilBertModel.from_pretrained("distilbert-base-uncased" ) UpperCamelCase = np.array([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) UpperCamelCase = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) UpperCamelCase = model(__a , attention_mask=__a )[0] UpperCamelCase = (1, 11, 7_68) self.assertEqual(output.shape , __a ) UpperCamelCase = np.array([[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , __a , atol=1e-4 ) )
244
"""simple docstring""" from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING lowerCAmelCase__ = logging.get_logger(__name__) @add_end_docstrings(_lowercase ) class _lowerCamelCase ( _lowercase ): def __init__(self , **__a ) -> Optional[int]: super().__init__(**__a ) requires_backends(self , "vision" ) requires_backends(self , "torch" ) if self.framework != "pt": raise ValueError(F"The {self.__class__} is only available in PyTorch." ) self.check_model_type(__a ) def snake_case_ (self , **__a ) -> List[Any]: UpperCamelCase = {} UpperCamelCase = {} UpperCamelCase = {} # preprocess args if "points_per_batch" in kwargs: UpperCamelCase = kwargs["points_per_batch"] if "points_per_crop" in kwargs: UpperCamelCase = kwargs["points_per_crop"] if "crops_n_layers" in kwargs: UpperCamelCase = kwargs["crops_n_layers"] if "crop_overlap_ratio" in kwargs: UpperCamelCase = kwargs["crop_overlap_ratio"] if "crop_n_points_downscale_factor" in kwargs: UpperCamelCase = kwargs["crop_n_points_downscale_factor"] # postprocess args if "pred_iou_thresh" in kwargs: UpperCamelCase = kwargs["pred_iou_thresh"] if "stability_score_offset" in kwargs: UpperCamelCase = kwargs["stability_score_offset"] if "mask_threshold" in kwargs: UpperCamelCase = kwargs["mask_threshold"] if "stability_score_thresh" in kwargs: UpperCamelCase = kwargs["stability_score_thresh"] if "crops_nms_thresh" in kwargs: UpperCamelCase = kwargs["crops_nms_thresh"] if "output_rle_mask" in kwargs: UpperCamelCase = kwargs["output_rle_mask"] if "output_bboxes_mask" in kwargs: UpperCamelCase = kwargs["output_bboxes_mask"] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__(self , __a , *__a , __a=None , __a=None , **__a ) -> str: return super().__call__(__a , *__a , num_workers=__a , batch_size=__a , **__a ) def snake_case_ (self , __a , __a=64 , __a = 0 , __a = 5_12 / 15_00 , __a = 32 , __a = 1 , ) -> List[str]: UpperCamelCase = load_image(__a ) UpperCamelCase = self.image_processor.size["longest_edge"] UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = self.image_processor.generate_crop_boxes( __a , __a , __a , __a , __a , __a ) UpperCamelCase = self.image_processor(images=__a , return_tensors="pt" ) with self.device_placement(): if self.framework == "pt": UpperCamelCase = self.get_inference_context() with inference_context(): UpperCamelCase = self._ensure_tensor_on_device(__a , device=self.device ) UpperCamelCase = self.model.get_image_embeddings(model_inputs.pop("pixel_values" ) ) UpperCamelCase = image_embeddings UpperCamelCase = grid_points.shape[1] UpperCamelCase = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( "Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. " "To return all points at once, set points_per_batch to None" ) for i in range(0 , __a , __a ): UpperCamelCase = grid_points[:, i : i + points_per_batch, :, :] UpperCamelCase = input_labels[:, i : i + points_per_batch] UpperCamelCase = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def snake_case_ (self , __a , __a=0.88 , __a=0.95 , __a=0 , __a=1 , ) -> int: UpperCamelCase = model_inputs.pop("input_boxes" ) UpperCamelCase = model_inputs.pop("is_last" ) UpperCamelCase = model_inputs.pop("original_sizes" ).tolist() UpperCamelCase = model_inputs.pop("reshaped_input_sizes" ).tolist() UpperCamelCase = self.model(**__a ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks UpperCamelCase = model_outputs["pred_masks"] UpperCamelCase = self.image_processor.post_process_masks( __a , __a , __a , __a , binarize=__a ) UpperCamelCase = model_outputs["iou_scores"] UpperCamelCase , UpperCamelCase , UpperCamelCase = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , __a , __a , __a , __a , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def snake_case_ (self , __a , __a=False , __a=False , __a=0.7 , ) -> Optional[int]: UpperCamelCase = [] UpperCamelCase = [] UpperCamelCase = [] for model_output in model_outputs: all_scores.append(model_output.pop("iou_scores" ) ) all_masks.extend(model_output.pop("masks" ) ) all_boxes.append(model_output.pop("boxes" ) ) UpperCamelCase = torch.cat(__a ) UpperCamelCase = torch.cat(__a ) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = self.image_processor.post_process_for_mask_generation( __a , __a , __a , __a ) UpperCamelCase = defaultdict(__a ) for output in model_outputs: for k, v in output.items(): extra[k].append(__a ) UpperCamelCase = {} if output_rle_mask: UpperCamelCase = rle_mask if output_bboxes_mask: UpperCamelCase = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
244
1
'''simple docstring''' import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class a__( unittest.TestCase ): '''simple docstring''' @parameterized.expand([(None,), ("""foo.json""",)]) def a_ ( self , __lowerCAmelCase): """simple docstring""" lowerCAmelCase = GenerationConfig( do_sample=__lowerCAmelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__lowerCAmelCase , config_name=__lowerCAmelCase) lowerCAmelCase = GenerationConfig.from_pretrained(__lowerCAmelCase , config_name=__lowerCAmelCase) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , __lowerCAmelCase) self.assertEqual(loaded_config.temperature , 0.7) self.assertEqual(loaded_config.length_penalty , 1.0) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]]) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50) self.assertEqual(loaded_config.max_length , 20) self.assertEqual(loaded_config.max_time , __lowerCAmelCase) def a_ ( self): """simple docstring""" lowerCAmelCase = AutoConfig.from_pretrained("""gpt2""") lowerCAmelCase = GenerationConfig.from_model_config(__lowerCAmelCase) lowerCAmelCase = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(__lowerCAmelCase , __lowerCAmelCase) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id) def a_ ( self): """simple docstring""" lowerCAmelCase = GenerationConfig() lowerCAmelCase = { """max_new_tokens""": 1024, """foo""": """bar""", } lowerCAmelCase = copy.deepcopy(__lowerCAmelCase) lowerCAmelCase = generation_config.update(**__lowerCAmelCase) # update_kwargs was not modified (no side effects) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1024) # `.update()` returns a dictionary of unused kwargs self.assertEqual(__lowerCAmelCase , {"""foo""": """bar"""}) def a_ ( self): """simple docstring""" lowerCAmelCase = GenerationConfig() lowerCAmelCase = """bar""" with tempfile.TemporaryDirectory("""test-generation-config""") as tmp_dir: generation_config.save_pretrained(__lowerCAmelCase) lowerCAmelCase = GenerationConfig.from_pretrained(__lowerCAmelCase) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , """bar""") lowerCAmelCase = GenerationConfig.from_model_config(__lowerCAmelCase) assert not hasattr(__lowerCAmelCase , """foo""") # no new kwargs should be initialized if from config def a_ ( self): """simple docstring""" lowerCAmelCase = GenerationConfig() self.assertEqual(default_config.temperature , 1.0) self.assertEqual(default_config.do_sample , __lowerCAmelCase) self.assertEqual(default_config.num_beams , 1) lowerCAmelCase = GenerationConfig( do_sample=__lowerCAmelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7) self.assertEqual(config.do_sample , __lowerCAmelCase) self.assertEqual(config.num_beams , 1) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__lowerCAmelCase) lowerCAmelCase = GenerationConfig.from_pretrained(__lowerCAmelCase , temperature=1.0) self.assertEqual(loaded_config.temperature , 1.0) self.assertEqual(loaded_config.do_sample , __lowerCAmelCase) self.assertEqual(loaded_config.num_beams , 1) # default value @is_staging_test class a__( unittest.TestCase ): '''simple docstring''' @classmethod def a_ ( cls): """simple docstring""" lowerCAmelCase = TOKEN HfFolder.save_token(__lowerCAmelCase) @classmethod def a_ ( cls): """simple docstring""" try: delete_repo(token=cls._token , repo_id="""test-generation-config""") except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-generation-config-org""") except HTTPError: pass def a_ ( self): """simple docstring""" lowerCAmelCase = GenerationConfig( do_sample=__lowerCAmelCase , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("""test-generation-config""" , use_auth_token=self._token) lowerCAmelCase = GenerationConfig.from_pretrained(f"{USER}/test-generation-config") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__lowerCAmelCase , getattr(__lowerCAmelCase , __lowerCAmelCase)) # Reset repo delete_repo(token=self._token , repo_id="""test-generation-config""") # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __lowerCAmelCase , repo_id="""test-generation-config""" , push_to_hub=__lowerCAmelCase , use_auth_token=self._token) lowerCAmelCase = GenerationConfig.from_pretrained(f"{USER}/test-generation-config") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__lowerCAmelCase , getattr(__lowerCAmelCase , __lowerCAmelCase)) def a_ ( self): """simple docstring""" lowerCAmelCase = GenerationConfig( do_sample=__lowerCAmelCase , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("""valid_org/test-generation-config-org""" , use_auth_token=self._token) lowerCAmelCase = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__lowerCAmelCase , getattr(__lowerCAmelCase , __lowerCAmelCase)) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-generation-config-org""") # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __lowerCAmelCase , repo_id="""valid_org/test-generation-config-org""" , push_to_hub=__lowerCAmelCase , use_auth_token=self._token) lowerCAmelCase = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__lowerCAmelCase , getattr(__lowerCAmelCase , __lowerCAmelCase))
272
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowercase = { '''configuration_nezha''': ['''NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''NezhaConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ '''NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''NezhaForNextSentencePrediction''', '''NezhaForMaskedLM''', '''NezhaForPreTraining''', '''NezhaForMultipleChoice''', '''NezhaForQuestionAnswering''', '''NezhaForSequenceClassification''', '''NezhaForTokenClassification''', '''NezhaModel''', '''NezhaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys __lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
272
1
"""simple docstring""" import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class __lowerCamelCase : '''simple docstring''' def __init__( self : Optional[int] , a_ : Optional[int] , a_ : str=13 , a_ : str=7 , a_ : List[Any]=True , a_ : Tuple=True , a_ : Union[str, Any]=True , a_ : Optional[int]=True , a_ : Optional[Any]=99 , a_ : Tuple=32 , a_ : Dict=5 , a_ : List[Any]=4 , a_ : int=37 , a_ : Dict="gelu" , a_ : List[str]=0.1 , a_ : Union[str, Any]=0.1 , a_ : Optional[Any]=5_12 , a_ : List[str]=16 , a_ : Union[str, Any]=2 , a_ : Optional[int]=0.02 , a_ : Optional[Any]=3 , a_ : Union[str, Any]=4 , a_ : List[Any]=None , ): lowerCAmelCase_ : Union[str, Any] = parent lowerCAmelCase_ : List[str] = batch_size lowerCAmelCase_ : str = seq_length lowerCAmelCase_ : Union[str, Any] = is_training lowerCAmelCase_ : int = use_input_mask lowerCAmelCase_ : str = use_token_type_ids lowerCAmelCase_ : List[str] = use_labels lowerCAmelCase_ : Optional[Any] = vocab_size lowerCAmelCase_ : Tuple = hidden_size lowerCAmelCase_ : str = num_hidden_layers lowerCAmelCase_ : Union[str, Any] = num_attention_heads lowerCAmelCase_ : Tuple = intermediate_size lowerCAmelCase_ : List[Any] = hidden_act lowerCAmelCase_ : Any = hidden_dropout_prob lowerCAmelCase_ : Dict = attention_probs_dropout_prob lowerCAmelCase_ : str = max_position_embeddings lowerCAmelCase_ : List[str] = type_vocab_size lowerCAmelCase_ : List[str] = type_sequence_label_size lowerCAmelCase_ : Dict = initializer_range lowerCAmelCase_ : Optional[int] = num_labels lowerCAmelCase_ : Optional[Any] = num_choices lowerCAmelCase_ : str = scope def lowerCamelCase ( self : Optional[int] ): lowerCAmelCase_ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase_ : List[str] = None if self.use_input_mask: lowerCAmelCase_ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase_ : List[Any] = None if self.use_token_type_ids: lowerCAmelCase_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase_ : List[str] = None lowerCAmelCase_ : str = None lowerCAmelCase_ : Dict = None if self.use_labels: lowerCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase_ : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase_ : Dict = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase_ : List[str] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase ( self : Union[str, Any] ): return NystromformerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a_ , initializer_range=self.initializer_range , ) def lowerCamelCase ( self : List[Any] , a_ : Optional[int] , a_ : List[Any] , a_ : Union[str, Any] , a_ : List[Any] , a_ : Optional[Any] , a_ : int , a_ : Any ): lowerCAmelCase_ : Any = NystromformerModel(config=a_ ) model.to(a_ ) model.eval() lowerCAmelCase_ : Any = model(a_ , attention_mask=a_ , token_type_ids=a_ ) lowerCAmelCase_ : List[Any] = model(a_ , token_type_ids=a_ ) lowerCAmelCase_ : Dict = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase ( self : List[Any] , a_ : Dict , a_ : int , a_ : Union[str, Any] , a_ : List[Any] , a_ : Union[str, Any] , a_ : str , a_ : str ): lowerCAmelCase_ : Any = NystromformerForMaskedLM(config=a_ ) model.to(a_ ) model.eval() lowerCAmelCase_ : Tuple = model(a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase ( self : Optional[Any] , a_ : Union[str, Any] , a_ : Any , a_ : Optional[Any] , a_ : Union[str, Any] , a_ : Union[str, Any] , a_ : Tuple , a_ : Any ): lowerCAmelCase_ : Any = NystromformerForQuestionAnswering(config=a_ ) model.to(a_ ) model.eval() lowerCAmelCase_ : Any = model( a_ , attention_mask=a_ , token_type_ids=a_ , start_positions=a_ , end_positions=a_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase ( self : Any , a_ : List[str] , a_ : Any , a_ : Tuple , a_ : Optional[int] , a_ : List[str] , a_ : Tuple , a_ : Any ): lowerCAmelCase_ : Tuple = self.num_labels lowerCAmelCase_ : Dict = NystromformerForSequenceClassification(a_ ) model.to(a_ ) model.eval() lowerCAmelCase_ : Any = model(a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase ( self : Optional[int] , a_ : str , a_ : Any , a_ : Optional[Any] , a_ : List[Any] , a_ : str , a_ : Union[str, Any] , a_ : Union[str, Any] ): lowerCAmelCase_ : str = self.num_labels lowerCAmelCase_ : List[str] = NystromformerForTokenClassification(config=a_ ) model.to(a_ ) model.eval() lowerCAmelCase_ : Optional[int] = model(a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase ( self : Union[str, Any] , a_ : List[Any] , a_ : Tuple , a_ : Optional[int] , a_ : Any , a_ : List[str] , a_ : str , a_ : Optional[int] ): lowerCAmelCase_ : List[Any] = self.num_choices lowerCAmelCase_ : Tuple = NystromformerForMultipleChoice(config=a_ ) model.to(a_ ) model.eval() lowerCAmelCase_ : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase_ : Tuple = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase_ : List[str] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase_ : List[Any] = model( a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase ( self : Any ): lowerCAmelCase_ : Any = self.prepare_config_and_inputs() ( lowerCAmelCase_ ) : Dict = config_and_inputs lowerCAmelCase_ : Dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class __lowerCamelCase ( A__ , A__ , unittest.TestCase ): '''simple docstring''' a_ : int = ( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) a_ : Optional[Any] = ( { """feature-extraction""": NystromformerModel, """fill-mask""": NystromformerForMaskedLM, """question-answering""": NystromformerForQuestionAnswering, """text-classification""": NystromformerForSequenceClassification, """token-classification""": NystromformerForTokenClassification, """zero-shot""": NystromformerForSequenceClassification, } if is_torch_available() else {} ) a_ : int = False a_ : int = False def lowerCamelCase ( self : Union[str, Any] ): lowerCAmelCase_ : Optional[Any] = NystromformerModelTester(self ) lowerCAmelCase_ : str = ConfigTester(self , config_class=a_ , hidden_size=37 ) def lowerCamelCase ( self : List[Any] ): self.config_tester.run_common_tests() def lowerCamelCase ( self : Union[str, Any] ): lowerCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def lowerCamelCase ( self : int ): lowerCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCAmelCase_ : str = type self.model_tester.create_and_check_model(*a_ ) def lowerCamelCase ( self : int ): lowerCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*a_ ) def lowerCamelCase ( self : Union[str, Any] ): lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*a_ ) def lowerCamelCase ( self : Tuple ): lowerCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a_ ) def lowerCamelCase ( self : Optional[int] ): lowerCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*a_ ) def lowerCamelCase ( self : int ): lowerCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a_ ) @slow def lowerCamelCase ( self : int ): for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ : Optional[Any] = NystromformerModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) @require_torch class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCamelCase ( self : Optional[Any] ): lowerCAmelCase_ : Optional[int] = NystromformerModel.from_pretrained("uw-madison/nystromformer-512" ) lowerCAmelCase_ : str = torch.tensor([[0, 1, 2, 3, 4, 5]] ) with torch.no_grad(): lowerCAmelCase_ : Optional[int] = model(a_ )[0] lowerCAmelCase_ : List[str] = torch.Size((1, 6, 7_68) ) self.assertEqual(output.shape , a_ ) lowerCAmelCase_ : Union[str, Any] = torch.tensor( [[[-0.4532, -0.0936, 0.5137], [-0.2676, 0.0628, 0.6186], [-0.3629, -0.1726, 0.4716]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , a_ , atol=1e-4 ) ) @slow def lowerCamelCase ( self : Optional[Any] ): lowerCAmelCase_ : Union[str, Any] = "the [MASK] of Belgium is Brussels" lowerCAmelCase_ : Dict = AutoTokenizer.from_pretrained("uw-madison/nystromformer-512" ) lowerCAmelCase_ : Any = NystromformerForMaskedLM.from_pretrained("uw-madison/nystromformer-512" ) lowerCAmelCase_ : int = tokenizer(a_ , return_tensors="pt" ) with torch.no_grad(): lowerCAmelCase_ : Optional[int] = model(encoding.input_ids ).logits lowerCAmelCase_ : Optional[Any] = token_logits[:, 2, :].argmax(-1 )[0] self.assertEqual(tokenizer.decode(a_ ) , "capital" )
369
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { """SCUT-DLVCLab/lilt-roberta-en-base""": ( """https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json""" ), } class __lowerCamelCase ( A__ ): '''simple docstring''' a_ : List[Any] = """lilt""" def __init__( self : Any , a_ : List[str]=3_05_22 , a_ : List[Any]=7_68 , a_ : Tuple=12 , a_ : Tuple=12 , a_ : str=30_72 , a_ : Union[str, Any]="gelu" , a_ : Union[str, Any]=0.1 , a_ : List[Any]=0.1 , a_ : List[Any]=5_12 , a_ : List[str]=2 , a_ : int=0.02 , a_ : Optional[int]=1e-1_2 , a_ : Any=0 , a_ : str="absolute" , a_ : List[Any]=None , a_ : Optional[int]=4 , a_ : str=10_24 , **a_ : Union[str, Any] , ): super().__init__(pad_token_id=a_ , **a_ ) lowerCAmelCase_ : List[str] = vocab_size lowerCAmelCase_ : List[str] = hidden_size lowerCAmelCase_ : int = num_hidden_layers lowerCAmelCase_ : Any = num_attention_heads lowerCAmelCase_ : str = hidden_act lowerCAmelCase_ : str = intermediate_size lowerCAmelCase_ : List[str] = hidden_dropout_prob lowerCAmelCase_ : Any = attention_probs_dropout_prob lowerCAmelCase_ : int = max_position_embeddings lowerCAmelCase_ : Any = type_vocab_size lowerCAmelCase_ : List[Any] = initializer_range lowerCAmelCase_ : str = layer_norm_eps lowerCAmelCase_ : Tuple = position_embedding_type lowerCAmelCase_ : Union[str, Any] = classifier_dropout lowerCAmelCase_ : Optional[Any] = channel_shrink_ratio lowerCAmelCase_ : Dict = max_ad_position_embeddings
161
0
'''simple docstring''' from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class UpperCamelCase__ ( lowercase_ ): """simple docstring""" def __init__( self : Dict , lowerCamelCase_ : NestedDataStructureLike[PathLike] , lowerCamelCase_ : Optional[NamedSplit] = None , lowerCamelCase_ : Optional[Features] = None , lowerCamelCase_ : str = None , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[int] = None , **lowerCamelCase_ : Union[str, Any] , ): '''simple docstring''' super().__init__( lowerCamelCase_ , split=lowerCamelCase_ , features=lowerCamelCase_ , cache_dir=lowerCamelCase_ , keep_in_memory=lowerCamelCase_ , streaming=lowerCamelCase_ , num_proc=lowerCamelCase_ , **lowerCamelCase_ , ) SCREAMING_SNAKE_CASE : int = path_or_paths if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else {self.split: path_or_paths} SCREAMING_SNAKE_CASE : Optional[int] = Text( cache_dir=lowerCamelCase_ , data_files=lowerCamelCase_ , features=lowerCamelCase_ , **lowerCamelCase_ , ) def lowerCamelCase_ ( self : Dict ): '''simple docstring''' if self.streaming: SCREAMING_SNAKE_CASE : int = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: SCREAMING_SNAKE_CASE : List[str] = None SCREAMING_SNAKE_CASE : Union[str, Any] = None SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : List[str] = None self.builder.download_and_prepare( download_config=lowerCamelCase_ , download_mode=lowerCamelCase_ , verification_mode=lowerCamelCase_ , base_path=lowerCamelCase_ , num_proc=self.num_proc , ) SCREAMING_SNAKE_CASE : int = self.builder.as_dataset( split=self.split , verification_mode=lowerCamelCase_ , in_memory=self.keep_in_memory ) return dataset
323
'''simple docstring''' from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean __UpperCAmelCase = 0 __UpperCAmelCase = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __UpperCAmelCase = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right __UpperCAmelCase = tuple[int, int] class UpperCamelCase__ : """simple docstring""" def __init__( self : Optional[Any] , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : Node | None , ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = pos_x SCREAMING_SNAKE_CASE : Any = pos_y SCREAMING_SNAKE_CASE : Optional[int] = (pos_y, pos_x) SCREAMING_SNAKE_CASE : Tuple = goal_x SCREAMING_SNAKE_CASE : List[str] = goal_y SCREAMING_SNAKE_CASE : Optional[Any] = g_cost SCREAMING_SNAKE_CASE : Tuple = parent SCREAMING_SNAKE_CASE : int = self.calculate_heuristic() SCREAMING_SNAKE_CASE : Tuple = self.g_cost + self.h_cost def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.pos_x - self.goal_x SCREAMING_SNAKE_CASE : List[str] = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(lowerCamelCase_ ) + abs(lowerCamelCase_ ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self : Optional[Any] , lowerCamelCase_ : Node ): '''simple docstring''' return self.f_cost < other.f_cost class UpperCamelCase__ : """simple docstring""" def __init__( self : int , lowerCamelCase_ : TPosition , lowerCamelCase_ : TPosition ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_99_99 , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = [self.start] SCREAMING_SNAKE_CASE : list[Node] = [] SCREAMING_SNAKE_CASE : str = False def lowerCamelCase_ ( self : Any ): '''simple docstring''' while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() SCREAMING_SNAKE_CASE : Optional[Any] = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(lowerCamelCase_ ) self.closed_nodes.append(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = self.get_successors(lowerCamelCase_ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(lowerCamelCase_ ) else: # retrieve the best current path SCREAMING_SNAKE_CASE : int = self.open_nodes.pop(self.open_nodes.index(lowerCamelCase_ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(lowerCamelCase_ ) else: self.open_nodes.append(lowerCamelCase_ ) return [self.start.pos] def lowerCamelCase_ ( self : int , lowerCamelCase_ : Node ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = [] for action in delta: SCREAMING_SNAKE_CASE : Dict = parent.pos_x + action[1] SCREAMING_SNAKE_CASE : List[str] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(lowerCamelCase_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( lowerCamelCase_ , lowerCamelCase_ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , lowerCamelCase_ , ) ) return successors def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : Node | None ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = node SCREAMING_SNAKE_CASE : List[str] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) SCREAMING_SNAKE_CASE : Optional[Any] = current_node.parent path.reverse() return path class UpperCamelCase__ : """simple docstring""" def __init__( self : int , lowerCamelCase_ : TPosition , lowerCamelCase_ : TPosition ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = AStar(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = AStar(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = False def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() SCREAMING_SNAKE_CASE : List[str] = self.fwd_astar.open_nodes.pop(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( lowerCamelCase_ , lowerCamelCase_ ) self.fwd_astar.closed_nodes.append(lowerCamelCase_ ) self.bwd_astar.closed_nodes.append(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = current_bwd_node SCREAMING_SNAKE_CASE : Any = current_fwd_node SCREAMING_SNAKE_CASE : Dict = { self.fwd_astar: self.fwd_astar.get_successors(lowerCamelCase_ ), self.bwd_astar: self.bwd_astar.get_successors(lowerCamelCase_ ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(lowerCamelCase_ ) else: # retrieve the best current path SCREAMING_SNAKE_CASE : int = astar.open_nodes.pop( astar.open_nodes.index(lowerCamelCase_ ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(lowerCamelCase_ ) else: astar.open_nodes.append(lowerCamelCase_ ) return [self.fwd_astar.start.pos] def lowerCamelCase_ ( self : str , lowerCamelCase_ : Node , lowerCamelCase_ : Node ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.fwd_astar.retrace_path(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = self.bwd_astar.retrace_path(lowerCamelCase_ ) bwd_path.pop() bwd_path.reverse() SCREAMING_SNAKE_CASE : str = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] __UpperCAmelCase = (0, 0) __UpperCAmelCase = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) __UpperCAmelCase = time.time() __UpperCAmelCase = AStar(init, goal) __UpperCAmelCase = a_star.search() __UpperCAmelCase = time.time() - start_time print(f'''AStar execution time = {end_time:f} seconds''') __UpperCAmelCase = time.time() __UpperCAmelCase = BidirectionalAStar(init, goal) __UpperCAmelCase = time.time() - bd_start_time print(f'''BidirectionalAStar execution time = {bd_end_time:f} seconds''')
323
1
"""simple docstring""" def __UpperCAmelCase ( lowercase = 1_00 ): """simple docstring""" _UpperCAmelCase = (n * (n + 1) // 2) ** 2 _UpperCAmelCase = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(F'''{solution() = }''')
364
"""simple docstring""" from itertools import product def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = sides_number _UpperCAmelCase = max_face_number * dice_number _UpperCAmelCase = [0] * (max_total + 1) _UpperCAmelCase = 1 _UpperCAmelCase = range(lowercase ,max_face_number + 1 ) for dice_numbers in product(lowercase ,repeat=lowercase ): _UpperCAmelCase = sum(lowercase ) totals_frequencies[total] += 1 return totals_frequencies def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = total_frequency_distribution( sides_number=4 ,dice_number=9 ) _UpperCAmelCase = total_frequency_distribution( sides_number=6 ,dice_number=6 ) _UpperCAmelCase = 0 _UpperCAmelCase = 9 _UpperCAmelCase = 4 * 9 _UpperCAmelCase = 6 for peter_total in range(lowercase ,max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) _UpperCAmelCase = (4**9) * (6**6) _UpperCAmelCase = peter_wins_count / total_games_number _UpperCAmelCase = round(lowercase ,ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F'''{solution() = }''')
30
0
'''simple docstring''' import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer lowercase_ = logging.get_logger(__name__) lowercase_ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} lowercase_ = { "vocab_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json", }, "merges_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt", }, "tokenizer_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json", }, } lowercase_ = { "allenai/led-base-16384": 16_384, } class __A ( A ): '''simple docstring''' __lowerCamelCase : Optional[Any] = VOCAB_FILES_NAMES __lowerCamelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : Optional[Any] = LEDTokenizer __lowerCamelCase : int = ['input_ids', 'attention_mask'] def __init__(self , A=None , A=None , A=None , A="replace" , A="<s>" , A="</s>" , A="</s>" , A="<s>" , A="<unk>" , A="<pad>" , A="<mask>" , A=False , A=True , **A , ) -> Optional[Any]: """simple docstring""" super().__init__( A , A , tokenizer_file=A , errors=A , bos_token=A , eos_token=A , sep_token=A , cls_token=A , unk_token=A , pad_token=A , mask_token=A , add_prefix_space=A , trim_offsets=A , **A , ) _a = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , A ) != add_prefix_space: _a = getattr(A , pre_tok_state.pop('''type''' ) ) _a = add_prefix_space _a = pre_tok_class(**A ) _a = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` _a = '''post_processor''' _a = getattr(self.backend_tokenizer , A , A ) if tokenizer_component_instance: _a = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _a = tuple(state['''sep'''] ) if "cls" in state: _a = tuple(state['''cls'''] ) _a = False if state.get('''add_prefix_space''' , A ) != add_prefix_space: _a = add_prefix_space _a = True if state.get('''trim_offsets''' , A ) != trim_offsets: _a = trim_offsets _a = True if changes_to_apply: _a = getattr(A , state.pop('''type''' ) ) _a = component_class(**A ) setattr(self.backend_tokenizer , A , A ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def a__ (self ) -> str: """simple docstring""" if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def a__ (self , A ) -> Any: """simple docstring""" _a = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else value _a = value def a__ (self , *A , **A ) -> BatchEncoding: """simple docstring""" _a = kwargs.get('''is_split_into_words''' , A ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' '''to use it with pretokenized inputs.''' ) return super()._batch_encode_plus(*A , **A ) def a__ (self , *A , **A ) -> BatchEncoding: """simple docstring""" _a = kwargs.get('''is_split_into_words''' , A ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' '''to use it with pretokenized inputs.''' ) return super()._encode_plus(*A , **A ) def a__ (self , A , A = None ) -> Tuple[str]: """simple docstring""" _a = self._tokenizer.model.save(A , name=A ) return tuple(A ) def a__ (self , A , A=None ) -> str: """simple docstring""" _a = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def a__ (self , A , A = None ) -> List[int]: """simple docstring""" _a = [self.sep_token_id] _a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def a__ (self , A , A = None , A = PaddingStrategy.DO_NOT_PAD , A = None , A = None , ) -> dict: """simple docstring""" _a = super()._pad( encoded_inputs=A , max_length=A , padding_strategy=A , pad_to_multiple_of=A , return_attention_mask=A , ) # Load from model defaults if return_attention_mask is None: _a = '''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: _a = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. _a = len(encoded_inputs['''global_attention_mask'''] ) != len(A ) if needs_to_be_padded: _a = len(A ) - len(encoded_inputs['''global_attention_mask'''] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` _a = ( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": _a = [-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return encoded_inputs
211
'''simple docstring''' from typing import Dict, Optional import numpy as np import datasets lowercase_ = "\nIoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union\nbetween the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,\nthe mean IoU of the image is calculated by taking the IoU of each class and averaging them.\n" lowercase_ = "\nArgs:\n predictions (`List[ndarray]`):\n List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n references (`List[ndarray]`):\n List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n num_labels (`int`):\n Number of classes (categories).\n ignore_index (`int`):\n Index that will be ignored during evaluation.\n nan_to_num (`int`, *optional*):\n If specified, NaN values will be replaced by the number defined by the user.\n label_map (`dict`, *optional*):\n If specified, dictionary mapping old label indices to new label indices.\n reduce_labels (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,\n and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.\n\nReturns:\n `Dict[str, float | ndarray]` comprising various elements:\n - *mean_iou* (`float`):\n Mean Intersection-over-Union (IoU averaged over all categories).\n - *mean_accuracy* (`float`):\n Mean accuracy (averaged over all categories).\n - *overall_accuracy* (`float`):\n Overall accuracy on all images.\n - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):\n Per category accuracy.\n - *per_category_iou* (`ndarray` of shape `(num_labels,)`):\n Per category IoU.\n\nExamples:\n\n >>> import numpy as np\n\n >>> mean_iou = datasets.load_metric(\"mean_iou\")\n\n >>> # suppose one has 3 different segmentation maps predicted\n >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])\n >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])\n\n >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])\n >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])\n\n >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])\n >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])\n\n >>> predicted = [predicted_1, predicted_2, predicted_3]\n >>> ground_truth = [actual_1, actual_2, actual_3]\n\n >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}\n" lowercase_ = "\\n@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,\nauthor = {{MMSegmentation Contributors}},\nlicense = {Apache-2.0},\nmonth = {7},\ntitle = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},\nurl = {https://github.com/open-mmlab/mmsegmentation},\nyear = {2020}\n}" def lowerCAmelCase (__A , __A , __A , __A , __A = None , __A = False , ): """simple docstring""" if label_map is not None: for old_id, new_id in label_map.items(): _a = new_id # turn into Numpy arrays _a = np.array(__A) _a = np.array(__A) if reduce_labels: _a = 255 _a = label - 1 _a = 255 _a = label != ignore_index _a = np.not_equal(__A , __A) _a = pred_label[mask] _a = np.array(__A)[mask] _a = pred_label[pred_label == label] _a = np.histogram(__A , bins=__A , range=(0, num_labels - 1))[0] _a = np.histogram(__A , bins=__A , range=(0, num_labels - 1))[0] _a = np.histogram(__A , bins=__A , range=(0, num_labels - 1))[0] _a = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def lowerCAmelCase (__A , __A , __A , __A , __A = None , __A = False , ): """simple docstring""" _a = np.zeros((num_labels,) , dtype=np.floataa) _a = np.zeros((num_labels,) , dtype=np.floataa) _a = np.zeros((num_labels,) , dtype=np.floataa) _a = np.zeros((num_labels,) , dtype=np.floataa) for result, gt_seg_map in zip(__A , __A): _a , _a , _a , _a = intersect_and_union( __A , __A , __A , __A , __A , __A) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def lowerCAmelCase (__A , __A , __A , __A , __A = None , __A = None , __A = False , ): """simple docstring""" _a , _a , _a , _a = total_intersect_and_union( __A , __A , __A , __A , __A , __A) # compute metrics _a = {} _a = total_area_intersect.sum() / total_area_label.sum() _a = total_area_intersect / total_area_union _a = total_area_intersect / total_area_label _a = np.nanmean(__A) _a = np.nanmean(__A) _a = all_acc _a = iou _a = acc if nan_to_num is not None: _a = {metric: np.nan_to_num(__A , nan=__A) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): '''simple docstring''' def a__ (self ) -> List[str]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { '''predictions''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16''' ) ) ), '''references''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16''' ) ) ), } ) , reference_urls=[ '''https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py''' ] , ) def a__ (self , A , A , A , A , A = None , A = None , A = False , ) -> List[Any]: """simple docstring""" _a = mean_iou( results=A , gt_seg_maps=A , num_labels=A , ignore_index=A , nan_to_num=A , label_map=A , reduce_labels=A , ) return iou_result
211
1
import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def lowerCamelCase__ ( snake_case_ : str , snake_case_ : Tuple=None ) -> Optional[Any]: __snake_case = None if token is not None: __snake_case = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': f"""Bearer {token}"""} __snake_case = f"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100""" __snake_case = requests.get(snake_case_ , headers=snake_case_ ).json() __snake_case = {} try: job_links.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) __snake_case = math.ceil((result['''total_count'''] - 100) / 100 ) for i in range(snake_case_ ): __snake_case = requests.get(url + f"""&page={i + 2}""" , headers=snake_case_ ).json() job_links.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) return job_links except Exception: print(f"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def lowerCamelCase__ ( snake_case_ : List[Any] , snake_case_ : Any=None ) -> List[Any]: __snake_case = None if token is not None: __snake_case = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': f"""Bearer {token}"""} __snake_case = f"""https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100""" __snake_case = requests.get(snake_case_ , headers=snake_case_ ).json() __snake_case = {} try: artifacts.update({artifact['''name''']: artifact['''archive_download_url'''] for artifact in result['''artifacts''']} ) __snake_case = math.ceil((result['''total_count'''] - 100) / 100 ) for i in range(snake_case_ ): __snake_case = requests.get(url + f"""&page={i + 2}""" , headers=snake_case_ ).json() artifacts.update({artifact['''name''']: artifact['''archive_download_url'''] for artifact in result['''artifacts''']} ) return artifacts except Exception: print(f"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def lowerCamelCase__ ( snake_case_ : Union[str, Any] , snake_case_ : List[str] , snake_case_ : int , snake_case_ : Union[str, Any] ) -> Union[str, Any]: __snake_case = None if token is not None: __snake_case = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': f"""Bearer {token}"""} __snake_case = requests.get(snake_case_ , headers=snake_case_ , allow_redirects=snake_case_ ) __snake_case = result.headers['''Location'''] __snake_case = requests.get(snake_case_ , allow_redirects=snake_case_ ) __snake_case = os.path.join(snake_case_ , f"""{artifact_name}.zip""" ) with open(snake_case_ , '''wb''' ) as fp: fp.write(response.content ) def lowerCamelCase__ ( snake_case_ : Union[str, Any] , snake_case_ : List[Any]=None ) -> str: __snake_case = [] __snake_case = [] __snake_case = None with zipfile.ZipFile(snake_case_ ) as z: for filename in z.namelist(): if not os.path.isdir(snake_case_ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(snake_case_ ) as f: for line in f: __snake_case = line.decode('''UTF-8''' ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs __snake_case = line[: line.index(''': ''' )] __snake_case = line[line.index(''': ''' ) + len(''': ''' ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith('''FAILED ''' ): # `test` is the test method that failed __snake_case = line[len('''FAILED ''' ) :] failed_tests.append(snake_case_ ) elif filename == "job_name.txt": __snake_case = line if len(snake_case_ ) != len(snake_case_ ): raise ValueError( f"""`errors` and `failed_tests` should have the same number of elements. Got {len(snake_case_ )} for `errors` """ f"""and {len(snake_case_ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some""" ''' problem.''' ) __snake_case = None if job_name and job_links: __snake_case = job_links.get(snake_case_ , snake_case_ ) # A list with elements of the form (line of error, error, failed test) __snake_case = [x + [y] + [job_link] for x, y in zip(snake_case_ , snake_case_ )] return result def lowerCamelCase__ ( snake_case_ : Dict , snake_case_ : List[Any]=None ) -> Dict: __snake_case = [] __snake_case = [os.path.join(snake_case_ , snake_case_ ) for p in os.listdir(snake_case_ ) if p.endswith('''.zip''' )] for p in paths: errors.extend(get_errors_from_single_artifact(snake_case_ , job_links=snake_case_ ) ) return errors def lowerCamelCase__ ( snake_case_ : List[Any] , snake_case_ : Optional[Any]=None ) -> str: __snake_case = Counter() counter.update([x[1] for x in logs] ) __snake_case = counter.most_common() __snake_case = {} for error, count in counts: if error_filter is None or error not in error_filter: __snake_case = {'''count''': count, '''failed_tests''': [(x[2], x[0]) for x in logs if x[1] == error]} __snake_case = dict(sorted(r.items() , key=lambda snake_case_ : item[1]["count"] , reverse=snake_case_ ) ) return r def lowerCamelCase__ ( snake_case_ : List[Any] ) -> Tuple: __snake_case = test.split('''::''' )[0] if test.startswith('''tests/models/''' ): __snake_case = test.split('''/''' )[2] else: __snake_case = None return test def lowerCamelCase__ ( snake_case_ : int , snake_case_ : Union[str, Any]=None ) -> Optional[int]: __snake_case = [(x[0], x[1], get_model(x[2] )) for x in logs] __snake_case = [x for x in logs if x[2] is not None] __snake_case = {x[2] for x in logs} __snake_case = {} for test in tests: __snake_case = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) __snake_case = counter.most_common() __snake_case = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} __snake_case = sum(error_counts.values() ) if n_errors > 0: __snake_case = {'''count''': n_errors, '''errors''': error_counts} __snake_case = dict(sorted(r.items() , key=lambda snake_case_ : item[1]["count"] , reverse=snake_case_ ) ) return r def lowerCamelCase__ ( snake_case_ : Any ) -> Union[str, Any]: __snake_case = '''| no. | error | status |''' __snake_case = '''|-:|:-|:-|''' __snake_case = [header, sep] for error in reduced_by_error: __snake_case = reduced_by_error[error]['''count'''] __snake_case = f"""| {count} | {error[:100]} | |""" lines.append(snake_case_ ) return "\n".join(snake_case_ ) def lowerCamelCase__ ( snake_case_ : List[Any] ) -> Tuple: __snake_case = '''| model | no. of errors | major error | count |''' __snake_case = '''|-:|-:|-:|-:|''' __snake_case = [header, sep] for model in reduced_by_model: __snake_case = reduced_by_model[model]['''count'''] __snake_case , __snake_case = list(reduced_by_model[model]['''errors'''].items() )[0] __snake_case = f"""| {model} | {count} | {error[:60]} | {_count} |""" lines.append(snake_case_ ) return "\n".join(snake_case_ ) if __name__ == "__main__": snake_case_ = argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') parser.add_argument( '--output_dir', type=str, required=True, help='Where to store the downloaded artifacts and other result files.', ) parser.add_argument('--token', default=None, type=str, help='A token that has actions:read permission.') snake_case_ = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) snake_case_ = get_job_links(args.workflow_run_id, token=args.token) snake_case_ = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: snake_case_ = k.find(' / ') snake_case_ = k[index + len(' / ') :] snake_case_ = v with open(os.path.join(args.output_dir, 'job_links.json'), 'w', encoding='UTF-8') as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) snake_case_ = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, 'artifacts.json'), 'w', encoding='UTF-8') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) snake_case_ = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error snake_case_ = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors snake_case_ = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, 'errors.json'), 'w', encoding='UTF-8') as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) snake_case_ = reduce_by_error(errors) snake_case_ = reduce_by_model(errors) snake_case_ = make_github_table(reduced_by_error) snake_case_ = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, 'reduced_by_error.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa) with open(os.path.join(args.output_dir, 'reduced_by_model.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa)
238
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation snake_case_ = logging.get_logger(__name__) snake_case_ = {'tokenizer_file': 'tokenizer.json'} snake_case_ = { 'tokenizer_file': { 'bigscience/tokenizer': 'https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json', 'bigscience/bloom-560m': 'https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json', 'bigscience/bloom-1b1': 'https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json', 'bigscience/bloom-1b7': 'https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json', 'bigscience/bloom-3b': 'https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json', 'bigscience/bloom-7b1': 'https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json', 'bigscience/bloom': 'https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json', }, } class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): A_ : List[str] = VOCAB_FILES_NAMES A_ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP A_ : str = ['input_ids', 'attention_mask'] A_ : Optional[Any] = None def __init__(self : Optional[int] , a__ : int=None , a__ : str=None , a__ : Any=None , a__ : List[Any]="<unk>" , a__ : List[Any]="<s>" , a__ : Optional[int]="</s>" , a__ : List[str]="<pad>" , a__ : Union[str, Any]=False , a__ : str=False , **a__ : Optional[Any] , ): """simple docstring""" super().__init__( a__ , a__ , tokenizer_file=a__ , unk_token=a__ , bos_token=a__ , eos_token=a__ , pad_token=a__ , add_prefix_space=a__ , clean_up_tokenization_spaces=a__ , **a__ , ) __snake_case = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , a__ ) != add_prefix_space: __snake_case = getattr(a__ , pre_tok_state.pop('''type''' ) ) __snake_case = add_prefix_space __snake_case = pre_tok_class(**a__ ) __snake_case = add_prefix_space def a (self : int , *a__ : Tuple , **a__ : Optional[Any] ): """simple docstring""" __snake_case = kwargs.get('''is_split_into_words''' , a__ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with""" ''' pretokenized inputs.''' ) return super()._batch_encode_plus(*a__ , **a__ ) def a (self : List[str] , *a__ : List[str] , **a__ : List[str] ): """simple docstring""" __snake_case = kwargs.get('''is_split_into_words''' , a__ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with""" ''' pretokenized inputs.''' ) return super()._encode_plus(*a__ , **a__ ) def a (self : List[Any] , a__ : str , a__ : Optional[str] = None ): """simple docstring""" __snake_case = self._tokenizer.model.save(a__ , name=a__ ) return tuple(a__ ) def a (self : Tuple , a__ : "Conversation" ): """simple docstring""" __snake_case = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(a__ , add_special_tokens=a__ ) + [self.eos_token_id] ) if len(a__ ) > self.model_max_length: __snake_case = input_ids[-self.model_max_length :] return input_ids
238
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" __UpperCAmelCase : str = '''timm_backbone''' def __init__( self : int ,_a : Union[str, Any]=None ,_a : Union[str, Any]=3 ,_a : str=True ,_a : str=True ,_a : List[str]=None ,**_a : Optional[int] ,): '''simple docstring''' super().__init__(**_a ) _a : Union[str, Any] = backbone _a : Union[str, Any] = num_channels _a : List[Any] = features_only _a : Tuple = use_pretrained_backbone _a : Any = True _a : Optional[int] = out_indices if out_indices is not None else (-1,)
271
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar __lowerCAmelCase = TypeVar("""T""") class UpperCAmelCase__ ( Generic[T] ): """simple docstring""" def __init__( self : Tuple ,_a : T ): '''simple docstring''' _a : List[str] = data _a : Node[T] | None = None def __str__( self : Dict ): '''simple docstring''' return F"""{self.data}""" class UpperCAmelCase__ ( Generic[T] ): """simple docstring""" def __init__( self : Optional[int] ): '''simple docstring''' _a : Node[T] | None = None def __iter__( self : str ): '''simple docstring''' _a : Tuple = self.top while node: yield node.data _a : int = node.next def __str__( self : str ): '''simple docstring''' return "->".join([str(_a ) for item in self] ) def __len__( self : Optional[Any] ): '''simple docstring''' return len(tuple(iter(self ) ) ) def __lowercase ( self : str ): '''simple docstring''' return self.top is None def __lowercase ( self : List[Any] ,_a : T ): '''simple docstring''' _a : int = Node(_a ) if not self.is_empty(): _a : Optional[Any] = self.top _a : List[str] = node def __lowercase ( self : Tuple ): '''simple docstring''' if self.is_empty(): raise IndexError('pop from empty stack' ) assert isinstance(self.top ,_a ) _a : List[Any] = self.top _a : int = self.top.next return pop_node.data def __lowercase ( self : List[str] ): '''simple docstring''' if self.is_empty(): raise IndexError('peek from empty stack' ) assert self.top is not None return self.top.data def __lowercase ( self : List[str] ): '''simple docstring''' _a : Optional[int] = None if __name__ == "__main__": from doctest import testmod testmod()
271
1
"""simple docstring""" from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def _snake_case ( ) -> int: '''simple docstring''' _A = { 'repo_name': ['test_repo1', 'test_repo2', 'test_repo3'], 'path': ['test_1.py', 'test_2.py', 'unit_test.py'], 'content': ['a ' * 20, 'a ' * 30, 'b ' * 7], } _A = Dataset.from_dict(_snake_case ) return dataset class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def lowerCAmelCase_ ( self : Union[str, Any] ): _A = get_dataset() _A = make_duplicate_clusters(_UpperCAmelCase , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def lowerCAmelCase_ ( self : str ): _A = get_dataset() _A , _A = deduplicate_dataset(_UpperCAmelCase ) self.assertEqual(len(_UpperCAmelCase ) , 2 ) print(_UpperCAmelCase ) self.assertEqual(duplicate_clusters[0][0]['copies'] , 2 ) self.assertEqual(duplicate_clusters[0][0]['is_extreme'] , _UpperCAmelCase )
364
"""simple docstring""" import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def _snake_case ( _snake_case : int ) -> Any: '''simple docstring''' random.seed(_snake_case ) np.random.seed(_snake_case ) torch.manual_seed(_snake_case ) torch.cuda.manual_seed_all(_snake_case ) # ^^ safe to call this function even if cuda is not available class lowercase_ : '''simple docstring''' def __init__( self : Tuple , _UpperCAmelCase : Iterable[torch.nn.Parameter] , _UpperCAmelCase : float = 0.9999 , _UpperCAmelCase : float = 0.0 , _UpperCAmelCase : int = 0 , _UpperCAmelCase : bool = False , _UpperCAmelCase : Union[float, int] = 1.0 , _UpperCAmelCase : Union[float, int] = 2 / 3 , _UpperCAmelCase : Optional[Any] = None , _UpperCAmelCase : Dict[str, Any] = None , **_UpperCAmelCase : Optional[int] , ): if isinstance(_UpperCAmelCase , torch.nn.Module ): _A = ( 'Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. ' 'Please pass the parameters of the module instead.' ) deprecate( 'passing a `torch.nn.Module` to `ExponentialMovingAverage`' , '1.0.0' , _UpperCAmelCase , standard_warn=_UpperCAmelCase , ) _A = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility _A = True if kwargs.get('max_value' , _UpperCAmelCase ) is not None: _A = 'The `max_value` argument is deprecated. Please use `decay` instead.' deprecate('max_value' , '1.0.0' , _UpperCAmelCase , standard_warn=_UpperCAmelCase ) _A = kwargs['max_value'] if kwargs.get('min_value' , _UpperCAmelCase ) is not None: _A = 'The `min_value` argument is deprecated. Please use `min_decay` instead.' deprecate('min_value' , '1.0.0' , _UpperCAmelCase , standard_warn=_UpperCAmelCase ) _A = kwargs['min_value'] _A = list(_UpperCAmelCase ) _A = [p.clone().detach() for p in parameters] if kwargs.get('device' , _UpperCAmelCase ) is not None: _A = 'The `device` argument is deprecated. Please use `to` instead.' deprecate('device' , '1.0.0' , _UpperCAmelCase , standard_warn=_UpperCAmelCase ) self.to(device=kwargs['device'] ) _A = None _A = decay _A = min_decay _A = update_after_step _A = use_ema_warmup _A = inv_gamma _A = power _A = 0 _A = None # set in `step()` _A = model_cls _A = model_config @classmethod def lowerCAmelCase_ ( cls : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] ): _A , _A = model_cls.load_config(_UpperCAmelCase , return_unused_kwargs=_UpperCAmelCase ) _A = model_cls.from_pretrained(_UpperCAmelCase ) _A = cls(model.parameters() , model_cls=_UpperCAmelCase , model_config=model.config ) ema_model.load_state_dict(_UpperCAmelCase ) return ema_model def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Tuple ): if self.model_cls is None: raise ValueError('`save_pretrained` can only be used if `model_cls` was defined at __init__.' ) if self.model_config is None: raise ValueError('`save_pretrained` can only be used if `model_config` was defined at __init__.' ) _A = self.model_cls.from_config(self.model_config ) _A = self.state_dict() state_dict.pop('shadow_params' , _UpperCAmelCase ) model.register_to_config(**_UpperCAmelCase ) self.copy_to(model.parameters() ) model.save_pretrained(_UpperCAmelCase ) def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : int ): _A = max(0 , optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: _A = 1 - (1 + step / self.inv_gamma) ** -self.power else: _A = (1 + step) / (10 + step) _A = min(_UpperCAmelCase , self.decay ) # make sure decay is not smaller than min_decay _A = max(_UpperCAmelCase , self.min_decay ) return cur_decay_value @torch.no_grad() def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : Iterable[torch.nn.Parameter] ): if isinstance(_UpperCAmelCase , torch.nn.Module ): _A = ( 'Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. ' 'Please pass the parameters of the module instead.' ) deprecate( 'passing a `torch.nn.Module` to `ExponentialMovingAverage.step`' , '1.0.0' , _UpperCAmelCase , standard_warn=_UpperCAmelCase , ) _A = parameters.parameters() _A = list(_UpperCAmelCase ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. _A = self.get_decay(self.optimization_step ) _A = decay _A = 1 - decay _A = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params , _UpperCAmelCase ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): _A = deepspeed.zero.GatheredParameters(_UpperCAmelCase , modifier_rank=_UpperCAmelCase ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(_UpperCAmelCase ) def lowerCAmelCase_ ( self : str , _UpperCAmelCase : Iterable[torch.nn.Parameter] ): _A = list(_UpperCAmelCase ) for s_param, param in zip(self.shadow_params , _UpperCAmelCase ): param.data.copy_(s_param.to(param.device ).data ) def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Dict=None ): _A = [ p.to(device=_UpperCAmelCase , dtype=_UpperCAmelCase ) if p.is_floating_point() else p.to(device=_UpperCAmelCase ) for p in self.shadow_params ] def lowerCAmelCase_ ( self : Dict ): return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : Iterable[torch.nn.Parameter] ): _A = [param.detach().cpu().clone() for param in parameters] def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : Iterable[torch.nn.Parameter] ): if self.temp_stored_params is None: raise RuntimeError('This ExponentialMovingAverage has no `store()`ed weights ' 'to `restore()`' ) for c_param, param in zip(self.temp_stored_params , _UpperCAmelCase ): param.data.copy_(c_param.data ) # Better memory-wise. _A = None def lowerCAmelCase_ ( self : int , _UpperCAmelCase : dict ): _A = copy.deepcopy(_UpperCAmelCase ) _A = state_dict.get('decay' , self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError('Decay must be between 0 and 1' ) _A = state_dict.get('min_decay' , self.min_decay ) if not isinstance(self.min_decay , _UpperCAmelCase ): raise ValueError('Invalid min_decay' ) _A = state_dict.get('optimization_step' , self.optimization_step ) if not isinstance(self.optimization_step , _UpperCAmelCase ): raise ValueError('Invalid optimization_step' ) _A = state_dict.get('update_after_step' , self.update_after_step ) if not isinstance(self.update_after_step , _UpperCAmelCase ): raise ValueError('Invalid update_after_step' ) _A = state_dict.get('use_ema_warmup' , self.use_ema_warmup ) if not isinstance(self.use_ema_warmup , _UpperCAmelCase ): raise ValueError('Invalid use_ema_warmup' ) _A = state_dict.get('inv_gamma' , self.inv_gamma ) if not isinstance(self.inv_gamma , (float, int) ): raise ValueError('Invalid inv_gamma' ) _A = state_dict.get('power' , self.power ) if not isinstance(self.power , (float, int) ): raise ValueError('Invalid power' ) _A = state_dict.get('shadow_params' , _UpperCAmelCase ) if shadow_params is not None: _A = shadow_params if not isinstance(self.shadow_params , _UpperCAmelCase ): raise ValueError('shadow_params must be a list' ) if not all(isinstance(_UpperCAmelCase , torch.Tensor ) for p in self.shadow_params ): raise ValueError('shadow_params must all be Tensors' )
271
0
import torch def A_ ( ) -> Optional[int]: '''simple docstring''' if torch.cuda.is_available(): __UpperCamelCase = torch.cuda.device_count() else: __UpperCamelCase = 0 print(f"Successfully ran on {num_gpus} GPUs" ) if __name__ == "__main__": main()
328
"""simple docstring""" import pickle import numpy as np from matplotlib import pyplot as plt class UpperCAmelCase_ : def __init__( self , a , a , a , a , a , a=0.2 , a=0.2 ) -> Dict: lowercase__ : Any = bp_numa lowercase__ : Optional[int] = bp_numa lowercase__ : Tuple = bp_numa lowercase__ : Optional[Any] = conva_get[:2] lowercase__ : Optional[int] = conva_get[2] lowercase__ : Optional[Any] = size_pa lowercase__ : Union[str, Any] = rate_w lowercase__ : Union[str, Any] = rate_t lowercase__ : List[Any] = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] lowercase__ : Optional[Any] = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) lowercase__ : int = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) lowercase__ : Any = -2 * np.random.rand(self.conva[1] ) + 1 lowercase__ : int = -2 * np.random.rand(self.num_bpa ) + 1 lowercase__ : int = -2 * np.random.rand(self.num_bpa ) + 1 def _UpperCAmelCase ( self , a ) -> Union[str, Any]: # save model dict with pickle lowercase__ : Optional[Any] = { 'num_bp1': self.num_bpa, 'num_bp2': self.num_bpa, 'num_bp3': self.num_bpa, 'conv1': self.conva, 'step_conv1': self.step_conva, 'size_pooling1': self.size_poolinga, 'rate_weight': self.rate_weight, 'rate_thre': self.rate_thre, 'w_conv1': self.w_conva, 'wkj': self.wkj, 'vji': self.vji, 'thre_conv1': self.thre_conva, 'thre_bp2': self.thre_bpa, 'thre_bp3': self.thre_bpa, } with open(a , 'wb' ) as f: pickle.dump(a , a ) print(f"""Model saved: {save_path}""" ) @classmethod def _UpperCAmelCase ( cls , a ) -> Any: # read saved model with open(a , 'rb' ) as f: lowercase__ : Optional[int] = pickle.load(a ) # noqa: S301 lowercase__ : Optional[int] = model_dic.get('conv1' ) conv_get.append(model_dic.get('step_conv1' ) ) lowercase__ : List[Any] = model_dic.get('size_pooling1' ) lowercase__ : Tuple = model_dic.get('num_bp1' ) lowercase__ : int = model_dic.get('num_bp2' ) lowercase__ : int = model_dic.get('num_bp3' ) lowercase__ : Union[str, Any] = model_dic.get('rate_weight' ) lowercase__ : Tuple = model_dic.get('rate_thre' ) # create model instance lowercase__ : Tuple = CNN(a , a , a , a , a , a , a ) # modify model parameter lowercase__ : str = model_dic.get('w_conv1' ) lowercase__ : Optional[int] = model_dic.get('wkj' ) lowercase__ : Tuple = model_dic.get('vji' ) lowercase__ : str = model_dic.get('thre_conv1' ) lowercase__ : Union[str, Any] = model_dic.get('thre_bp2' ) lowercase__ : List[str] = model_dic.get('thre_bp3' ) return conv_ins def _UpperCAmelCase ( self , a ) -> str: return 1 / (1 + np.exp(-1 * x )) def _UpperCAmelCase ( self , a ) -> Any: return round(a , 3 ) def _UpperCAmelCase ( self , a , a , a , a , a ) -> List[str]: # convolution process lowercase__ : int = convs[0] lowercase__ : Optional[Any] = convs[1] lowercase__ : int = np.shape(a )[0] # get the data slice of original image data, data_focus lowercase__ : Optional[Any] = [] for i_focus in range(0 , size_data - size_conv + 1 , a ): for j_focus in range(0 , size_data - size_conv + 1 , a ): lowercase__ : Optional[int] = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(a ) # calculate the feature map of every single kernel, and saved as list of matrix lowercase__ : Union[str, Any] = [] lowercase__ : Dict = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(a ): lowercase__ : Any = [] for i_focus in range(len(a ) ): lowercase__ : Tuple = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(a ) ) lowercase__ : Optional[Any] = np.asmatrix(a ).reshape( a , a ) data_featuremap.append(a ) # expanding the data slice to One dimenssion lowercase__ : str = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(a ) ) lowercase__ : int = np.asarray(a ) return focus_list, data_featuremap def _UpperCAmelCase ( self , a , a , a="average_pool" ) -> str: # pooling process lowercase__ : List[str] = len(featuremaps[0] ) lowercase__ : List[str] = int(size_map / size_pooling ) lowercase__ : str = [] for i_map in range(len(a ) ): lowercase__ : List[str] = featuremaps[i_map] lowercase__ : Optional[int] = [] for i_focus in range(0 , a , a ): for j_focus in range(0 , a , a ): lowercase__ : List[Any] = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(a ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(a ) ) lowercase__ : List[Any] = np.asmatrix(a ).reshape(a , a ) featuremap_pooled.append(a ) return featuremap_pooled def _UpperCAmelCase ( self , a ) -> List[str]: # expanding three dimension data to one dimension list lowercase__ : Any = [] for i in range(len(a ) ): lowercase__ : Optional[int] = np.shape(data[i] ) lowercase__ : int = data[i].reshape(1 , shapes[0] * shapes[1] ) lowercase__ : str = data_listed.getA().tolist()[0] data_expanded.extend(a ) lowercase__ : int = np.asarray(a ) return data_expanded def _UpperCAmelCase ( self , a ) -> Dict: # expanding matrix to one dimension list lowercase__ : Dict = np.asarray(a ) lowercase__ : Union[str, Any] = np.shape(a ) lowercase__ : Optional[Any] = data_mat.reshape(1 , shapes[0] * shapes[1] ) return data_expanded def _UpperCAmelCase ( self , a , a , a , a , a ) -> List[Any]: lowercase__ : Dict = [] lowercase__ : int = 0 for i_map in range(a ): lowercase__ : str = np.ones((size_map, size_map) ) for i in range(0 , a , a ): for j in range(0 , a , a ): lowercase__ : Optional[Any] = pd_pool[ i_pool ] lowercase__ : Union[str, Any] = i_pool + 1 lowercase__ : List[Any] = np.multiply( a , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) ) pd_all.append(a ) return pd_all def _UpperCAmelCase ( self , a , a , a , a , a , a=bool ) -> str: # model traning print('----------------------Start Training-------------------------' ) print((' - - Shape: Train_Data ', np.shape(a )) ) print((' - - Shape: Teach_Data ', np.shape(a )) ) lowercase__ : int = 0 lowercase__ : List[Any] = [] lowercase__ : Union[str, Any] = 1_0_0_0_0 while rp < n_repeat and mse >= error_accuracy: lowercase__ : List[Any] = 0 print(f"""-------------Learning Time {rp}--------------""" ) for p in range(len(a ) ): # print('------------Learning Image: %d--------------'%p) lowercase__ : Optional[int] = np.asmatrix(datas_train[p] ) lowercase__ : int = np.asarray(datas_teach[p] ) lowercase__ , lowercase__ : Union[str, Any] = self.convolute( a , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) lowercase__ : Optional[Any] = self.pooling(a , self.size_poolinga ) lowercase__ : Tuple = np.shape(a ) lowercase__ : List[str] = self._expand(a ) lowercase__ : Optional[int] = data_bp_input lowercase__ : Optional[Any] = np.dot(a , self.vji.T ) - self.thre_bpa lowercase__ : str = self.sig(a ) lowercase__ : Tuple = np.dot(a , self.wkj.T ) - self.thre_bpa lowercase__ : Any = self.sig(a ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- lowercase__ : int = np.multiply( (data_teach - bp_outa) , np.multiply(a , (1 - bp_outa) ) ) lowercase__ : Any = np.multiply( np.dot(a , self.wkj ) , np.multiply(a , (1 - bp_outa) ) ) lowercase__ : Optional[int] = np.dot(a , self.vji ) lowercase__ : Union[str, Any] = pd_i_all / (self.size_poolinga * self.size_poolinga) lowercase__ : Any = pd_conva_pooled.T.getA().tolist() lowercase__ : List[str] = self._calculate_gradient_from_pool( a , a , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): lowercase__ : Optional[int] = self._expand_mat(pd_conva_all[k_conv] ) lowercase__ : Tuple = self.rate_weight * np.dot(a , a ) lowercase__ : Union[str, Any] = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) lowercase__ : Any = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer lowercase__ : Tuple = self.wkj + pd_k_all.T * bp_outa * self.rate_weight lowercase__ : Tuple = self.vji + pd_j_all.T * bp_outa * self.rate_weight lowercase__ : Tuple = self.thre_bpa - pd_k_all * self.rate_thre lowercase__ : Optional[Any] = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image lowercase__ : Dict = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) lowercase__ : str = rp + 1 lowercase__ : List[str] = error_count / patterns all_mse.append(a ) def draw_error(): lowercase__ : Any = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(a , '+-' ) plt.plot(a , 'r--' ) plt.xlabel('Learning Times' ) plt.ylabel('All_mse' ) plt.grid(a , alpha=0.5 ) plt.show() print('------------------Training Complished---------------------' ) print((' - - Training epoch: ', rp, f""" - - Mse: {mse:.6f}""") ) if draw_e: draw_error() return mse def _UpperCAmelCase ( self , a ) -> List[Any]: # model predict lowercase__ : Optional[int] = [] print('-------------------Start Testing-------------------------' ) print((' - - Shape: Test_Data ', np.shape(a )) ) for p in range(len(a ) ): lowercase__ : List[str] = np.asmatrix(datas_test[p] ) lowercase__ , lowercase__ : Tuple = self.convolute( a , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) lowercase__ : Any = self.pooling(a , self.size_poolinga ) lowercase__ : Union[str, Any] = self._expand(a ) lowercase__ : Optional[Any] = data_bp_input lowercase__ : str = bp_outa * self.vji.T - self.thre_bpa lowercase__ : Optional[Any] = self.sig(a ) lowercase__ : Dict = bp_outa * self.wkj.T - self.thre_bpa lowercase__ : List[str] = self.sig(a ) produce_out.extend(bp_outa.getA().tolist() ) lowercase__ : Optional[int] = [list(map(self.do_round , a ) ) for each in produce_out] return np.asarray(a ) def _UpperCAmelCase ( self , a ) -> List[str]: # return the data of image after convoluting process so we can check it out lowercase__ : Any = np.asmatrix(a ) lowercase__ , lowercase__ : str = self.convolute( a , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) lowercase__ : Tuple = self.pooling(a , self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
77
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Tuple = tempfile.mkdtemp() # fmt: off SCREAMING_SNAKE_CASE : Any = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on SCREAMING_SNAKE_CASE : Tuple = dict(zip(_lowerCamelCase , range(len(_lowerCamelCase ) ) ) ) SCREAMING_SNAKE_CASE : List[Any] = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] SCREAMING_SNAKE_CASE : Optional[int] = {'''unk_token''': '''<unk>'''} SCREAMING_SNAKE_CASE : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) SCREAMING_SNAKE_CASE : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_lowerCamelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : Optional[int] = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], '''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } SCREAMING_SNAKE_CASE : str = os.path.join(self.tmpdirname , _lowerCamelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(_lowerCamelCase , _lowerCamelCase ) def __lowerCAmelCase ( self , **_lowerCamelCase ) ->Dict: return CLIPTokenizer.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def __lowerCAmelCase ( self , **_lowerCamelCase ) ->Dict: return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def __lowerCAmelCase ( self , **_lowerCamelCase ) ->List[str]: return CLIPImageProcessor.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Optional[int]: shutil.rmtree(self.tmpdirname ) def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE : Dict = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] SCREAMING_SNAKE_CASE : List[Any] = [Image.fromarray(np.moveaxis(_lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE : Tuple = self.get_tokenizer() SCREAMING_SNAKE_CASE : Any = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE : Any = self.get_image_processor() SCREAMING_SNAKE_CASE : Any = CLIPProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) processor_slow.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE : str = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = CLIPProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) processor_fast.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE : str = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _lowerCamelCase ) self.assertIsInstance(processor_fast.tokenizer , _lowerCamelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _lowerCamelCase ) self.assertIsInstance(processor_fast.image_processor , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE : str = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE : List[Any] = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) SCREAMING_SNAKE_CASE : int = self.get_image_processor(do_normalize=_lowerCamelCase , padding_value=1.0 ) SCREAMING_SNAKE_CASE : str = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_lowerCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : List[Any] = self.get_image_processor() SCREAMING_SNAKE_CASE : List[str] = self.get_tokenizer() SCREAMING_SNAKE_CASE : Dict = CLIPProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.prepare_image_inputs() SCREAMING_SNAKE_CASE : Tuple = image_processor(_lowerCamelCase , return_tensors='''np''' ) SCREAMING_SNAKE_CASE : List[Any] = processor(images=_lowerCamelCase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : Optional[Any] = self.get_image_processor() SCREAMING_SNAKE_CASE : List[Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE : int = CLIPProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = '''lower newer''' SCREAMING_SNAKE_CASE : int = processor(text=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer(_lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : str = self.get_image_processor() SCREAMING_SNAKE_CASE : Any = self.get_tokenizer() SCREAMING_SNAKE_CASE : List[str] = CLIPProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = '''lower newer''' SCREAMING_SNAKE_CASE : Tuple = self.prepare_image_inputs() SCREAMING_SNAKE_CASE : List[str] = processor(text=_lowerCamelCase , images=_lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(_lowerCamelCase ): processor() def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : Tuple = self.get_image_processor() SCREAMING_SNAKE_CASE : Optional[Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE : Dict = CLIPProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE : Optional[int] = processor.batch_decode(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = tokenizer.batch_decode(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : Optional[int] = self.get_image_processor() SCREAMING_SNAKE_CASE : Optional[Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE : List[Any] = CLIPProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = '''lower newer''' SCREAMING_SNAKE_CASE : List[str] = self.prepare_image_inputs() SCREAMING_SNAKE_CASE : List[str] = processor(text=_lowerCamelCase , images=_lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
19
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a__ : Tuple = '''▁''' a__ : List[Any] = {'''vocab_file''': '''spiece.model'''} a__ : Optional[Any] = { '''vocab_file''': {'''google/pegasus-xsum''': '''https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'''} } a__ : str = { '''google/pegasus-xsum''': 512, } a__ : str = logging.get_logger(__name__) class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : str = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : str = ['input_ids', 'attention_mask'] def __init__( self , _lowerCamelCase , _lowerCamelCase="<pad>" , _lowerCamelCase="</s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<mask_2>" , _lowerCamelCase="<mask_1>" , _lowerCamelCase=None , _lowerCamelCase=103 , _lowerCamelCase = None , **_lowerCamelCase , ) ->None: SCREAMING_SNAKE_CASE : Dict = offset if additional_special_tokens is not None: if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError( F"""additional_special_tokens should be of type {type(_lowerCamelCase )}, but is""" F""" {type(_lowerCamelCase )}""" ) SCREAMING_SNAKE_CASE : List[Any] = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F"""<unk_{i}>""" for i in range(len(_lowerCamelCase ) , self.offset - 1 ) ] if len(set(_lowerCamelCase ) ) != len(_lowerCamelCase ): raise ValueError( '''Please make sure that the provided additional_special_tokens do not contain an incorrectly''' F""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""" ) SCREAMING_SNAKE_CASE : Dict = additional_special_tokens_extended else: SCREAMING_SNAKE_CASE : str = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F"""<unk_{i}>""" for i in range(2 , self.offset )] SCREAMING_SNAKE_CASE : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , mask_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token_sent=_lowerCamelCase , offset=_lowerCamelCase , additional_special_tokens=_lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCamelCase , ) SCREAMING_SNAKE_CASE : List[str] = mask_token_sent SCREAMING_SNAKE_CASE : Optional[int] = vocab_file SCREAMING_SNAKE_CASE : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCamelCase ) # add special tokens to encoder dict SCREAMING_SNAKE_CASE : Dict[int, str] = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) SCREAMING_SNAKE_CASE : Dict[str, int] = {v: k for k, v in self.encoder.items()} @property def __lowerCAmelCase ( self ) ->int: return len(self.sp_model ) + self.offset def __lowerCAmelCase ( self ) ->Dict[str, int]: SCREAMING_SNAKE_CASE : Union[str, Any] = {self.convert_ids_to_tokens(_lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Optional[int] = self.__dict__.copy() SCREAMING_SNAKE_CASE : str = None return state def __setstate__( self , _lowerCamelCase ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Optional[Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): SCREAMING_SNAKE_CASE : List[str] = {} SCREAMING_SNAKE_CASE : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[str]: return self.sp_model.encode(_lowerCamelCase , out_type=_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] SCREAMING_SNAKE_CASE : List[str] = self.sp_model.piece_to_id(_lowerCamelCase ) return sp_id + self.offset def __lowerCAmelCase ( self , _lowerCamelCase ) ->str: if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: SCREAMING_SNAKE_CASE : Dict = self.sp_model.IdToPiece(index - self.offset ) return token def __lowerCAmelCase ( self , _lowerCamelCase ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Dict = [] SCREAMING_SNAKE_CASE : int = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_lowerCamelCase ) + token SCREAMING_SNAKE_CASE : Optional[Any] = [] else: current_sub_tokens.append(_lowerCamelCase ) out_string += self.sp_model.decode(_lowerCamelCase ) return out_string.strip() def __lowerCAmelCase ( self , _lowerCamelCase=False ) ->str: return 1 def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: SCREAMING_SNAKE_CASE : Dict = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = False ) ->List[int]: if already_has_special_tokens: return self._special_token_mask(_lowerCamelCase ) elif token_ids_a is None: return self._special_token_mask(_lowerCamelCase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=None ) ->List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: if not os.path.isdir(_lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return SCREAMING_SNAKE_CASE : int = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCamelCase , '''wb''' ) as fi: SCREAMING_SNAKE_CASE : Tuple = self.sp_model.serialized_model_proto() fi.write(_lowerCamelCase ) return (out_vocab_file,)
19
1
from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput UpperCAmelCase__ = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCamelCase__ ( lowerCAmelCase , lowerCAmelCase): @register_to_config def __init__(self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None ) -> str: super().__init__() _lowercase =learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" _lowercase =torch.zeros(UpperCAmelCase , UpperCAmelCase ) else: _lowercase =None _lowercase =torch.nn.Parameter(UpperCAmelCase ) class lowerCamelCase__ ( lowerCAmelCase): SCREAMING_SNAKE_CASE__ = 42 SCREAMING_SNAKE_CASE__ = 42 SCREAMING_SNAKE_CASE__ = 42 SCREAMING_SNAKE_CASE__ = 42 SCREAMING_SNAKE_CASE__ = 42 SCREAMING_SNAKE_CASE__ = 42 def __init__(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> int: super().__init__() self.register_modules( vqvae=UpperCAmelCase , transformer=UpperCAmelCase , text_encoder=UpperCAmelCase , tokenizer=UpperCAmelCase , scheduler=UpperCAmelCase , learned_classifier_free_sampling_embeddings=UpperCAmelCase , ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: _lowercase =len(UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else 1 # get prompt text embeddings _lowercase =self.tokenizer( UpperCAmelCase , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , ) _lowercase =text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: _lowercase =self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) _lowercase =text_input_ids[:, : self.tokenizer.model_max_length] _lowercase =self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 _lowercase =prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=UpperCAmelCase ) # duplicate text embeddings for each generation per prompt _lowercase =prompt_embeds.repeat_interleave(UpperCAmelCase , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: _lowercase =self.learned_classifier_free_sampling_embeddings.embeddings _lowercase =negative_prompt_embeds.unsqueeze(0 ).repeat(UpperCAmelCase , 1 , 1 ) else: _lowercase =[''''''] * batch_size _lowercase =text_input_ids.shape[-1] _lowercase =self.tokenizer( UpperCAmelCase , padding='''max_length''' , max_length=UpperCAmelCase , truncation=UpperCAmelCase , return_tensors='''pt''' , ) _lowercase =self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings _lowercase =negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=UpperCAmelCase ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method _lowercase =negative_prompt_embeds.shape[1] _lowercase =negative_prompt_embeds.repeat(1 , UpperCAmelCase , 1 ) _lowercase =negative_prompt_embeds.view(batch_size * num_images_per_prompt , UpperCAmelCase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _lowercase =torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__(self , UpperCAmelCase , UpperCAmelCase = 1_0_0 , UpperCAmelCase = 5.0 , UpperCAmelCase = 1.0 , UpperCAmelCase = 1 , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = "pil" , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = 1 , ) -> Union[ImagePipelineOutput, Tuple]: if isinstance(UpperCAmelCase , UpperCAmelCase ): _lowercase =1 elif isinstance(UpperCAmelCase , UpperCAmelCase ): _lowercase =len(UpperCAmelCase ) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(UpperCAmelCase )}" ) _lowercase =batch_size * num_images_per_prompt _lowercase =guidance_scale > 1.0 _lowercase =self._encode_prompt(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(UpperCAmelCase , UpperCAmelCase ) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(UpperCAmelCase )}." ) # get the initial completely masked latents unless the user supplied it _lowercase =(batch_size, self.transformer.num_latent_pixels) if latents is None: _lowercase =self.transformer.num_vector_embeds - 1 _lowercase =torch.full(UpperCAmelCase , UpperCAmelCase ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( '''Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,''' f" {self.transformer.num_vector_embeds - 1} (inclusive)." ) _lowercase =latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(UpperCAmelCase , device=self.device ) _lowercase =self.scheduler.timesteps.to(self.device ) _lowercase =latents for i, t in enumerate(self.progress_bar(UpperCAmelCase ) ): # expand the sample if we are doing classifier free guidance _lowercase =torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` _lowercase =self.transformer(UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , timestep=UpperCAmelCase ).sample if do_classifier_free_guidance: _lowercase , _lowercase =model_output.chunk(2 ) _lowercase =model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(UpperCAmelCase , dim=1 , keepdim=UpperCAmelCase ) _lowercase =self.truncate(UpperCAmelCase , UpperCAmelCase ) # remove `log(0)`'s (`-inf`s) _lowercase =model_output.clamp(-7_0 ) # compute the previous noisy sample x_t -> x_t-1 _lowercase =self.scheduler.step(UpperCAmelCase , timestep=UpperCAmelCase , sample=UpperCAmelCase , generator=UpperCAmelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) _lowercase =self.vqvae.config.vq_embed_dim _lowercase =(batch_size, self.transformer.height, self.transformer.width, embedding_channels) _lowercase =self.vqvae.quantize.get_codebook_entry(UpperCAmelCase , shape=UpperCAmelCase ) _lowercase =self.vqvae.decode(UpperCAmelCase , force_not_quantize=UpperCAmelCase ).sample _lowercase =(image / 2 + 0.5).clamp(0 , 1 ) _lowercase =image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _lowercase =self.numpy_to_pil(UpperCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCAmelCase ) def __A (self , UpperCAmelCase , UpperCAmelCase ) -> torch.FloatTensor: _lowercase , _lowercase =torch.sort(UpperCAmelCase , 1 , descending=UpperCAmelCase ) _lowercase =torch.exp(UpperCAmelCase ) _lowercase =sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out _lowercase =torch.full_like(keep_mask[:, 0:1, :] , UpperCAmelCase ) _lowercase =torch.cat((all_true, keep_mask) , dim=1 ) _lowercase =keep_mask[:, :-1, :] _lowercase =keep_mask.gather(1 , indices.argsort(1 ) ) _lowercase =log_p_x_0.clone() _lowercase =-torch.inf # -inf = log(0) return rv
5
def UpperCAmelCase_ ( __snake_case ) -> str: """simple docstring""" _lowercase =0 # if input_string is "aba" than new_input_string become "a|b|a" _lowercase ='''''' _lowercase ='''''' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(__snake_case ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring _lowercase , _lowercase =0, 0 # length[i] shows the length of palindromic substring with center i _lowercase =[1 for i in range(len(__snake_case ) )] # for each character in new_string find corresponding palindromic string _lowercase =0 for j in range(len(__snake_case ) ): _lowercase =1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(__snake_case ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 _lowercase =2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: _lowercase =j - k + 1 # noqa: E741 _lowercase =j + k - 1 # update max_length and start position if max_length < length[j]: _lowercase =length[j] _lowercase =j # create that string _lowercase =new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
5
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available __UpperCAmelCase : str = { "configuration_ernie": ["ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP", "ErnieConfig", "ErnieOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : Optional[int] = [ "ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST", "ErnieForCausalLM", "ErnieForMaskedLM", "ErnieForMultipleChoice", "ErnieForNextSentencePrediction", "ErnieForPreTraining", "ErnieForQuestionAnswering", "ErnieForSequenceClassification", "ErnieForTokenClassification", "ErnieModel", "ErniePreTrainedModel", ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys __UpperCAmelCase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
293
import argparse from collections import defaultdict import yaml __UpperCAmelCase : int = "docs/source/en/_toctree.yml" def A__ ( SCREAMING_SNAKE_CASE__) -> Dict: __snake_case: Union[str, Any] = defaultdict(SCREAMING_SNAKE_CASE__) for doc in model_doc: counts[doc["local"]] += 1 __snake_case: Dict = [key for key, value in counts.items() if value > 1] __snake_case: Optional[Any] = [] for duplicate_key in duplicates: __snake_case: Tuple = list({doc["""title"""] for doc in model_doc if doc["""local"""] == duplicate_key}) if len(SCREAMING_SNAKE_CASE__) > 1: raise ValueError( F'''{duplicate_key} is present several times in the documentation table of content at ''' """`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the """ """others.""") # Only add this once new_doc.append({"""local""": duplicate_key, """title""": titles[0]}) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc["""local"""]] == 1]) # Sort return sorted(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__: s["title"].lower()) def A__ ( SCREAMING_SNAKE_CASE__=False) -> List[str]: with open(SCREAMING_SNAKE_CASE__ , encoding="""utf-8""") as f: __snake_case: Optional[int] = yaml.safe_load(f.read()) # Get to the API doc __snake_case: Dict = 0 while content[api_idx]["title"] != "API": api_idx += 1 __snake_case: str = content[api_idx]["""sections"""] # Then to the model doc __snake_case: List[Any] = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 __snake_case: Dict = api_doc[model_idx]["""sections"""] __snake_case: int = [(idx, section) for idx, section in enumerate(SCREAMING_SNAKE_CASE__) if """sections""" in section] __snake_case: Optional[int] = False for idx, modality_doc in modalities_docs: __snake_case: Dict = modality_doc["""sections"""] __snake_case: List[str] = clean_model_doc_toc(SCREAMING_SNAKE_CASE__) if old_modality_doc != new_modality_doc: __snake_case: List[str] = True if overwrite: __snake_case: Dict = new_modality_doc if diff: if overwrite: __snake_case: Dict = model_doc __snake_case: int = api_doc with open(SCREAMING_SNAKE_CASE__ , """w""" , encoding="""utf-8""") as f: f.write(yaml.dump(SCREAMING_SNAKE_CASE__ , allow_unicode=SCREAMING_SNAKE_CASE__)) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""") if __name__ == "__main__": __UpperCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") __UpperCAmelCase : str = parser.parse_args() check_model_doc(args.fix_and_overwrite)
293
1
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
245
from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class a__ ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Union[str, Any] ) ->List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = tf.convert_to_tensor( [ [ 8.2_22_09_91, # 3rd highest value; idx. 0 -0.5_62_00_44, 5.23_22_97_52, 4.0_38_63_93, -6.8_79_83_78, -0.54_78_58_02, -3.2_01_21_53, 2.92_77_71_76, 1.88_17_19_53, 7.35_34_12_76, # 5th highest value; idx. 9 8.43_20_78_33, # 2nd highest value; idx. 10 -9.85_71_18_36, -5.96_20_92_36, -1.13_03_91_61, -7.1_11_52_94, -0.8_36_96_33, -5.3_18_64_08, 7.06_42_74_07, 0.81_36_93_44, -0.82_02_38_17, -5.9_17_97_96, 0.58_81_34_43, -6.99_77_84_38, 4.71_55_11_89, -0.18_77_16_37, 7.44_02_07_59, # 4th highest value; idx. 25 9.38_45_09_87, # 1st highest value; idx. 26 2.12_66_29_41, -9.32_56_20_38, 2.35_65_25_22, ], # cummulative prob of 5 highest values <= 0.6 [ 0.58_42_55_18, 4.53_13_92_38, -5.57_51_04_64, -6.28_03_06_99, -7.19_52_95_03, -4.02_12_25_51, 1.39_33_70_37, -6.06_70_70_57, 1.59_48_05_17, -9.64_31_19, 0.03_90_77_99, 0.67_23_17_62, -8.88_20_67_26, 6.27_11_59_22, # 4th highest value; idx. 13 2.28_52_07_23, 4.82_76_75_06, 4.30_42_13_68, 8.8_27_53_13, # 2nd highest value; idx. 17 5.44_02_99_58, # 5th highest value; idx. 18 -4.4_73_57_94, 7.38_57_95_36, # 3rd highest value; idx. 20 -2.91_05_16_63, 2.61_94_60_77, -2.5_67_47_62, -9.48_95_93_02, -4.02_92_26_45, -1.35_41_69_18, 9.67_70_23_23, # 1st highest value; idx. 27 -5.89_47_85_53, 1.85_37_04_67, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) SCREAMING_SNAKE_CASE : List[Any] = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 1_0], [0, 2_5], [0, 2_6], [1, 1_3], [1, 1_7], [1, 1_8], [1, 2_0], [1, 2_7]] , dtype=tf.intaa , ) # expected non filtered idx as noted above SCREAMING_SNAKE_CASE : Optional[int] = tf.convert_to_tensor( [8.22_20_99, 7.3_53_41_26, 8.43_20_78, 7.4_40_20_75, 9.3_84_51, 6.27_11_59, 8.82_75_31, 5.4_40_29_95, 7.3_85_79_56, 9.67_70_23] , dtype=tf.floataa , ) # expected non filtered values as noted above SCREAMING_SNAKE_CASE : Dict = tf_top_k_top_p_filtering(UpperCAmelCase__ , top_k=1_0 , top_p=0.6 , min_tokens_to_keep=4 ) SCREAMING_SNAKE_CASE : str = output[output != -float("""inf""" )] SCREAMING_SNAKE_CASE : Optional[int] = tf.cast( tf.where(tf.not_equal(UpperCAmelCase__ , tf.constant(-float("""inf""" ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(UpperCAmelCase__ , UpperCAmelCase__ , rtol=1e-12 ) tf.debugging.assert_equal(UpperCAmelCase__ , UpperCAmelCase__ ) @require_tf class a__ ( unittest.TestCase , UpperCAmelCase ): """simple docstring""" if is_tf_available(): UpperCAmelCase__ : Optional[Any] ={ """AutoModelForCausalLM""": TFAutoModelForCausalLM, """AutoModelForSpeechSeq2Seq""": TFAutoModelForSpeechSeqaSeq, """AutoModelForSeq2SeqLM""": TFAutoModelForSeqaSeqLM, """AutoModelForVision2Seq""": TFAutoModelForVisionaSeq, """LogitsProcessorList""": TFLogitsProcessorList, """MinLengthLogitsProcessor""": TFMinLengthLogitsProcessor, """create_tensor_fn""": tf.convert_to_tensor, """floats_tensor""": floats_tensor, """return_tensors""": """tf""", } @slow def _lowercase ( self : int ) ->List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) SCREAMING_SNAKE_CASE : str = 2 SCREAMING_SNAKE_CASE : Tuple = 2 class a__ ( tf.Module ): """simple docstring""" def __init__( self : Tuple , UpperCAmelCase__ : Optional[int] ) ->str: """simple docstring""" super(UpperCAmelCase__ , self ).__init__() SCREAMING_SNAKE_CASE : Optional[int] = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name="""input_ids""" ), tf.TensorSpec((None, input_length) , tf.intaa , name="""attention_mask""" ), ) , jit_compile=UpperCAmelCase__ , ) def _lowercase ( self : List[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : List[str] ) ->List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = self.model.generate( input_ids=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , max_new_tokens=UpperCAmelCase__ , return_dict_in_generate=UpperCAmelCase__ , ) return {"sequences": outputs["sequences"]} SCREAMING_SNAKE_CASE : Any = [[2, 0], [1_0_2, 1_0_3]] SCREAMING_SNAKE_CASE : Tuple = [[1, 0], [1, 1]] SCREAMING_SNAKE_CASE : Dict = DummyModel(model=UpperCAmelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(UpperCAmelCase__ , UpperCAmelCase__ , signatures={"""serving_default""": dummy_model.serving} ) SCREAMING_SNAKE_CASE : Optional[int] = tf.saved_model.load(UpperCAmelCase__ ).signatures["""serving_default"""] for batch_size in range(1 , len(UpperCAmelCase__ ) + 1 ): SCREAMING_SNAKE_CASE : int = { """input_ids""": tf.constant(dummy_input_ids[:batch_size] ), """attention_mask""": tf.constant(dummy_attention_masks[:batch_size] ), } SCREAMING_SNAKE_CASE : Tuple = serving_func(**UpperCAmelCase__ )["""sequences"""] SCREAMING_SNAKE_CASE : List[str] = test_model.generate(**UpperCAmelCase__ , max_new_tokens=UpperCAmelCase__ ) tf.debugging.assert_equal(UpperCAmelCase__ , UpperCAmelCase__ ) @slow def _lowercase ( self : Dict ) ->int: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) SCREAMING_SNAKE_CASE : Any = 1 SCREAMING_SNAKE_CASE : int = 2 class a__ ( tf.Module ): """simple docstring""" def __init__( self : List[Any] , UpperCAmelCase__ : Optional[Any] ) ->Optional[int]: """simple docstring""" super(UpperCAmelCase__ , self ).__init__() SCREAMING_SNAKE_CASE : List[str] = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name="""input_ids""" ), tf.TensorSpec((batch_size, None) , tf.intaa , name="""attention_mask""" ), ) , jit_compile=UpperCAmelCase__ , ) def _lowercase ( self : List[Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : str ) ->Any: """simple docstring""" SCREAMING_SNAKE_CASE : int = self.model.generate( input_ids=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , max_new_tokens=UpperCAmelCase__ , return_dict_in_generate=UpperCAmelCase__ , ) return {"sequences": outputs["sequences"]} SCREAMING_SNAKE_CASE : List[Any] = [[2], [1_0_2, 1_0_3]] SCREAMING_SNAKE_CASE : List[Any] = [[1], [1, 1]] SCREAMING_SNAKE_CASE : Union[str, Any] = DummyModel(model=UpperCAmelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(UpperCAmelCase__ , UpperCAmelCase__ , signatures={"""serving_default""": dummy_model.serving} ) SCREAMING_SNAKE_CASE : int = tf.saved_model.load(UpperCAmelCase__ ).signatures["""serving_default"""] for input_row in range(len(UpperCAmelCase__ ) ): SCREAMING_SNAKE_CASE : str = { """input_ids""": tf.constant([dummy_input_ids[input_row]] ), """attention_mask""": tf.constant([dummy_attention_masks[input_row]] ), } SCREAMING_SNAKE_CASE : List[str] = serving_func(**UpperCAmelCase__ )["""sequences"""] SCREAMING_SNAKE_CASE : List[Any] = test_model.generate(**UpperCAmelCase__ , max_new_tokens=UpperCAmelCase__ ) tf.debugging.assert_equal(UpperCAmelCase__ , UpperCAmelCase__ ) @slow @require_tensorflow_text def _lowercase ( self : Optional[Any] ) ->Tuple: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id="""google/flan-t5-small""" , filename="""spiece.model""" , local_dir=UpperCAmelCase__ ) class a__ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : Optional[Any] ) ->List[str]: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE : Any = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(UpperCAmelCase__ , """spiece.model""" ) , """rb""" ).read() ) SCREAMING_SNAKE_CASE : Dict = TFAutoModelForSeqaSeqLM.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) def _lowercase ( self : int , UpperCAmelCase__ : Any , *UpperCAmelCase__ : Optional[Any] , **UpperCAmelCase__ : str ) ->int: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = self.tokenizer.tokenize(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = text.pad_model_inputs( UpperCAmelCase__ , max_seq_length=6_4 , pad_value=self.model.config.pad_token_id ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.model.generate(input_ids=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ ) return self.tokenizer.detokenize(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : str = CompleteSentenceTransformer() SCREAMING_SNAKE_CASE : Tuple = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name="""inputs""" ) SCREAMING_SNAKE_CASE : str = complete_model(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Optional[int] = tf.keras.Model(UpperCAmelCase__ , UpperCAmelCase__ ) keras_model.save(UpperCAmelCase__ ) def _lowercase ( self : Optional[Any] ) ->List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = { """do_sample""": True, """num_beams""": 1, """top_p""": 0.7, """top_k""": 1_0, """temperature""": 0.7, } SCREAMING_SNAKE_CASE : Tuple = 1_4 SCREAMING_SNAKE_CASE : List[Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) SCREAMING_SNAKE_CASE : List[Any] = """Hello, my dog is cute and""" SCREAMING_SNAKE_CASE : Tuple = tokenizer(UpperCAmelCase__ , return_tensors="""tf""" ) SCREAMING_SNAKE_CASE : Optional[int] = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) SCREAMING_SNAKE_CASE : Dict = 6_3_8 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(""":/CPU:0""" ): tf.random.set_seed(0 ) SCREAMING_SNAKE_CASE : int = model.generate(**UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , **UpperCAmelCase__ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) SCREAMING_SNAKE_CASE : Dict = [6_3_8, 1_9_8] with tf.device(""":/CPU:0""" ): tf.random.set_seed(0 ) SCREAMING_SNAKE_CASE : Dict = model.generate(**UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , **UpperCAmelCase__ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def _lowercase ( self : str ) ->List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) SCREAMING_SNAKE_CASE : List[Any] = """Hugging Face is a technology company based in New York and Paris.""" SCREAMING_SNAKE_CASE : Optional[int] = bart_tokenizer(UpperCAmelCase__ , return_tensors="""tf""" ).input_ids SCREAMING_SNAKE_CASE : int = TFBartForConditionalGeneration.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) SCREAMING_SNAKE_CASE : Optional[int] = bart_model.generate(UpperCAmelCase__ ).numpy() class a__ ( UpperCAmelCase ): """simple docstring""" def _lowercase ( self : Any , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Dict=None , **UpperCAmelCase__ : Dict ) ->List[str]: """simple docstring""" return super().call(UpperCAmelCase__ , **UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Optional[int] = FakeBart.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) SCREAMING_SNAKE_CASE : Optional[int] = bart_model.generate(UpperCAmelCase__ , foo="""bar""" ).numpy() self.assertTrue(np.array_equal(UpperCAmelCase__ , UpperCAmelCase__ ) ) class a__ ( bart_model.model.encoder.__class__ ): """simple docstring""" def _lowercase ( self : List[Any] , UpperCAmelCase__ : List[Any] , **UpperCAmelCase__ : Optional[int] ) ->Union[str, Any]: """simple docstring""" return super().call(UpperCAmelCase__ , **UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = FakeEncoder(bart_model.config , bart_model.model.shared ) SCREAMING_SNAKE_CASE : Tuple = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) SCREAMING_SNAKE_CASE : Tuple = bart_model.generate(UpperCAmelCase__ ).numpy() with self.assertRaises(UpperCAmelCase__ ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(UpperCAmelCase__ , foo="""bar""" )
245
1
'''simple docstring''' import inspect from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel, VQModel from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): def __init__( self : Any, a_ : VQModel, a_ : UNetaDModel, a_ : DDIMScheduler ): """simple docstring""" super().__init__() self.register_modules(vqvae=a_, unet=a_, scheduler=a_ ) @torch.no_grad() def __call__( self : Union[str, Any], a_ : int = 1, a_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None, a_ : float = 0.0, a_ : int = 50, a_ : Optional[str] = "pil", a_ : bool = True, **a_ : Tuple, ): """simple docstring""" UpperCamelCase__ = randn_tensor( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size), generator=a_, ) UpperCamelCase__ = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler UpperCamelCase__ = latents * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(a_ ) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature UpperCamelCase__ = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCamelCase__ = {} if accepts_eta: UpperCamelCase__ = eta for t in self.progress_bar(self.scheduler.timesteps ): UpperCamelCase__ = self.scheduler.scale_model_input(a_, a_ ) # predict the noise residual UpperCamelCase__ = self.unet(a_, a_ ).sample # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase__ = self.scheduler.step(a_, a_, a_, **a_ ).prev_sample # decode the image latents with the VAE UpperCamelCase__ = self.vqvae.decode(a_ ).sample UpperCamelCase__ = (image / 2 + 0.5).clamp(0, 1 ) UpperCamelCase__ = image.cpu().permute(0, 2, 3, 1 ).numpy() if output_type == "pil": UpperCamelCase__ = self.numpy_to_pil(a_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=a_ )
357
'''simple docstring''' import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase): _lowerCamelCase : Union[str, Any] = CLIPTokenizer _lowerCamelCase : Dict = CLIPTokenizerFast _lowerCamelCase : int = True _lowerCamelCase : Tuple = {} _lowerCamelCase : Tuple = False def lowercase_ ( self : Tuple ): """simple docstring""" super().setUp() # fmt: off UpperCamelCase__ = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on UpperCamelCase__ = dict(zip(a_, range(len(a_ ) ) ) ) UpperCamelCase__ = ["#version: 0.2", "l o", "lo w</w>", "e r</w>"] UpperCamelCase__ = {"unk_token": "<unk>"} UpperCamelCase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"] ) UpperCamelCase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file, "w", encoding="utf-8" ) as fp: fp.write(json.dumps(a_ ) + "\n" ) with open(self.merges_file, "w", encoding="utf-8" ) as fp: fp.write("\n".join(a_ ) ) def lowercase_ ( self : Optional[Any], **a_ : str ): """simple docstring""" kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname, **a_ ) def lowercase_ ( self : str, **a_ : str ): """simple docstring""" kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname, **a_ ) def lowercase_ ( self : List[Any], a_ : Dict ): """simple docstring""" UpperCamelCase__ = "lower newer" UpperCamelCase__ = "lower newer" return input_text, output_text def lowercase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase__ = CLIPTokenizer(self.vocab_file, self.merges_file, **self.special_tokens_map ) UpperCamelCase__ = "lower newer" UpperCamelCase__ = ["lo", "w", "er</w>", "n", "e", "w", "er</w>"] UpperCamelCase__ = tokenizer.tokenize(a_ ) self.assertListEqual(a_, a_ ) UpperCamelCase__ = tokens + [tokenizer.unk_token] UpperCamelCase__ = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(a_ ), a_ ) @require_ftfy def lowercase_ ( self : Dict ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): UpperCamelCase__ = self.tokenizer_class.from_pretrained(a_, **a_ ) UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained(a_, **a_ ) UpperCamelCase__ = "A\n'll 11p223RF☆ho!!to?'d'd''d of a cat to-$''d." UpperCamelCase__ = tokenizer_s.tokenize(a_ ) UpperCamelCase__ = tokenizer_r.tokenize(a_ ) self.assertListEqual(a_, a_ ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways UpperCamelCase__ = "xa\u0303y" + " " + "x\xe3y" UpperCamelCase__ = tokenizer_s.tokenize(a_ ) UpperCamelCase__ = tokenizer_r.tokenize(a_ ) self.assertListEqual(a_, a_ ) # Test that the tokenization is identical on unicode of space type UpperCamelCase__ = [ "\u0009", # (horizontal tab, '\t') "\u000B", # (vertical tab) "\u000C", # (form feed) "\u0020", # (space, ' ') "\u200E", # (left-to-right mark):w "\u200F", # (right-to-left mark) ] for unicode_seq in spaces_unicodes: UpperCamelCase__ = tokenizer_s.tokenize(a_ ) UpperCamelCase__ = tokenizer_r.tokenize(a_ ) self.assertListEqual(a_, a_ ) # Test that the tokenization is identical on unicode of line break type UpperCamelCase__ = [ "\u000A", # (line feed, '\n') "\r\n", # (carriage return and line feed, '\r\n') "\u000D", # (carriage return, '\r') "\r", # (carriage return, '\r') "\u000D", # (carriage return, '\r') "\u2028", # (line separator) "\u2029", # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: UpperCamelCase__ = tokenizer_s.tokenize(a_ ) UpperCamelCase__ = tokenizer_r.tokenize(a_ ) self.assertListEqual(a_, a_ ) def lowercase_ ( self : Tuple ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): UpperCamelCase__ = "hello" # `hello` is a token in the vocabulary of `pretrained_name` UpperCamelCase__ = f'{text_of_1_token} {text_of_1_token}' UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained( a_, use_fast=a_, ) UpperCamelCase__ = tokenizer_r(a_, return_offsets_mapping=a_, add_special_tokens=a_ ) self.assertEqual(encoding.offset_mapping[0], (0, len(a_ )) ) self.assertEqual( encoding.offset_mapping[1], (len(a_ ) + 1, len(a_ ) + 1 + len(a_ )), ) UpperCamelCase__ = f' {text}' UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained( a_, use_fast=a_, ) UpperCamelCase__ = tokenizer_r(a_, return_offsets_mapping=a_, add_special_tokens=a_ ) self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(a_ )) ) self.assertEqual( encoding.offset_mapping[1], (1 + len(a_ ) + 1, 1 + len(a_ ) + 1 + len(a_ )), ) def lowercase_ ( self : Tuple ): """simple docstring""" with self.assertRaises(a_ ) as context: self.rust_tokenizer_class.from_pretrained("robot-test/old-clip-tokenizer" ) self.assertTrue( context.exception.args[0].startswith( "The `backend_tokenizer` provided does not match the expected format." ) ) @require_ftfy def lowercase_ ( self : Union[str, Any] ): """simple docstring""" super().test_tokenization_python_rust_equals() def lowercase_ ( self : List[str] ): """simple docstring""" pass
31
0
'''simple docstring''' def _SCREAMING_SNAKE_CASE (A , A , A , A , A , ) -> float: """simple docstring""" lowercase__ = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError('''All input parameters must be positive''' ) if any(p > 1 for p in parameters[1:4] ): raise ValueError('''Relative densities cannot be greater than one''' ) else: lowercase__ = 1 - (matter_density + radiation_density + dark_energy) lowercase__ = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) lowercase__ = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation lowerCamelCase : int = 0.3 print( hubble_parameter( hubble_constant=6_8.3, radiation_density=1e-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
2
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if discount_rate < 0: raise ValueError("""Discount rate cannot be negative""" ) if not cash_flows: raise ValueError("""Cash flows list cannot be empty""" ) _snake_case = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(_SCREAMING_SNAKE_CASE ) ) return round(_SCREAMING_SNAKE_CASE , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
341
0
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=__lowerCamelCase ) class lowerCamelCase (__lowerCamelCase ): """simple docstring""" UpperCAmelCase_ = field(default="automatic-speech-recognition" , metadata={"include_in_asdict_even_if_is_default": True} ) UpperCAmelCase_ = Features({"audio": Audio()} ) UpperCAmelCase_ = Features({"transcription": Value("string" )} ) UpperCAmelCase_ = "audio" UpperCAmelCase_ = "transcription" def A_ ( self : List[str], _UpperCAmelCase : Tuple ) -> Any: """simple docstring""" if self.audio_column not in features: raise ValueError(F'''Column {self.audio_column} is not present in features.''' ) if not isinstance(features[self.audio_column], _UpperCAmelCase ): raise ValueError(F'''Column {self.audio_column} is not an Audio type.''' ) SCREAMING_SNAKE_CASE__ : str = copy.deepcopy(self ) SCREAMING_SNAKE_CASE__ : List[Any] = self.input_schema.copy() SCREAMING_SNAKE_CASE__ : int = features[self.audio_column] SCREAMING_SNAKE_CASE__ : Dict = input_schema return task_template @property def A_ ( self : Optional[Any] ) -> Dict[str, str]: """simple docstring""" return {self.audio_column: "audio", self.transcription_column: "transcription"}
361
class lowerCamelCase : """simple docstring""" def __init__( self : int, _UpperCAmelCase : Dict, _UpperCAmelCase : str ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = name SCREAMING_SNAKE_CASE__ : Tuple = val def __str__( self : str ) -> List[Any]: """simple docstring""" return F'''{self.__class__.__name__}({self.name}, {self.val})''' def __lt__( self : str, _UpperCAmelCase : Dict ) -> Union[str, Any]: """simple docstring""" return self.val < other.val class lowerCamelCase : """simple docstring""" def __init__( self : Optional[Any], _UpperCAmelCase : str ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = {} SCREAMING_SNAKE_CASE__ : str = {} SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.build_heap(_UpperCAmelCase ) def __getitem__( self : Union[str, Any], _UpperCAmelCase : Any ) -> Dict: """simple docstring""" return self.get_value(_UpperCAmelCase ) def A_ ( self : int, _UpperCAmelCase : Optional[int] ) -> Any: """simple docstring""" return (idx - 1) // 2 def A_ ( self : Optional[Any], _UpperCAmelCase : Any ) -> Dict: """simple docstring""" return idx * 2 + 1 def A_ ( self : str, _UpperCAmelCase : List[str] ) -> Union[str, Any]: """simple docstring""" return idx * 2 + 2 def A_ ( self : Tuple, _UpperCAmelCase : int ) -> Optional[int]: """simple docstring""" return self.heap_dict[key] def A_ ( self : Optional[int], _UpperCAmelCase : Dict ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = len(_UpperCAmelCase ) - 1 SCREAMING_SNAKE_CASE__ : Optional[int] = self.get_parent_idx(_UpperCAmelCase ) for idx, i in enumerate(_UpperCAmelCase ): SCREAMING_SNAKE_CASE__ : Optional[int] = idx SCREAMING_SNAKE_CASE__ : Optional[Any] = i.val for i in range(_UpperCAmelCase, -1, -1 ): self.sift_down(_UpperCAmelCase, _UpperCAmelCase ) return array def A_ ( self : List[Any], _UpperCAmelCase : Dict, _UpperCAmelCase : Tuple ) -> Tuple: """simple docstring""" while True: SCREAMING_SNAKE_CASE__ : str = self.get_left_child_idx(_UpperCAmelCase ) # noqa: E741 SCREAMING_SNAKE_CASE__ : Tuple = self.get_right_child_idx(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Tuple = idx if l < len(_UpperCAmelCase ) and array[l] < array[idx]: SCREAMING_SNAKE_CASE__ : List[Any] = l if r < len(_UpperCAmelCase ) and array[r] < array[smallest]: SCREAMING_SNAKE_CASE__ : int = r if smallest != idx: SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Any = array[smallest], array[idx] ( ( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) , ) : Optional[Any] = ( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) SCREAMING_SNAKE_CASE__ : Optional[Any] = smallest else: break def A_ ( self : Union[str, Any], _UpperCAmelCase : str ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = self.get_parent_idx(_UpperCAmelCase ) while p >= 0 and self.heap[p] > self.heap[idx]: SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Any = self.heap[idx], self.heap[p] SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : int = ( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) SCREAMING_SNAKE_CASE__ : Dict = p SCREAMING_SNAKE_CASE__ : List[str] = self.get_parent_idx(_UpperCAmelCase ) def A_ ( self : str ) -> List[str]: """simple docstring""" return self.heap[0] def A_ ( self : Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Optional[int] = self.heap[-1], self.heap[0] SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : List[Any] = ( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) SCREAMING_SNAKE_CASE__ : Any = self.heap.pop() del self.idx_of_element[x] self.sift_down(0, self.heap ) return x def A_ ( self : Union[str, Any], _UpperCAmelCase : str ) -> Optional[Any]: """simple docstring""" self.heap.append(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : str = len(self.heap ) - 1 SCREAMING_SNAKE_CASE__ : Optional[Any] = node.val self.sift_up(len(self.heap ) - 1 ) def A_ ( self : Optional[int] ) -> int: """simple docstring""" return len(self.heap ) == 0 def A_ ( self : Any, _UpperCAmelCase : Tuple, _UpperCAmelCase : str ) -> Dict: """simple docstring""" assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" SCREAMING_SNAKE_CASE__ : Tuple = new_value SCREAMING_SNAKE_CASE__ : List[Any] = new_value self.sift_up(self.idx_of_element[node] ) _lowerCamelCase : Tuple = Node('''R''', -1) _lowerCamelCase : int = Node('''B''', 6) _lowerCamelCase : str = Node('''A''', 3) _lowerCamelCase : Optional[Any] = Node('''X''', 1) _lowerCamelCase : str = Node('''E''', 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array _lowerCamelCase : int = MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print('''Min Heap - before decrease key''') for i in my_min_heap.heap: print(i) print('''Min Heap - After decrease key of node [B -> -17]''') my_min_heap.decrease_key(b, -1_7) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
191
0
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer __lowerCamelCase : int = logging.get_logger(__name__) # pylint: disable=invalid-name __lowerCamelCase : Dict = """\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n\n >>> repo = \"openai/shap-e-img2img\"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = \"https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png\"\n >>> image = load_image(image_url).convert(\"RGB\")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], \"corgi_3d.gif\")\n ```\n""" @dataclass class A__ ( __snake_case ): _UpperCAmelCase :Union[PIL.Image.Image, np.ndarray] class A__ ( __snake_case ): def __init__( self , A_ , A_ , A_ , A_ , A_ , ): '''simple docstring''' super().__init__() self.register_modules( prior=SCREAMING_SNAKE_CASE_ , image_encoder=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ , renderer=SCREAMING_SNAKE_CASE_ , ) def __UpperCamelCase( self , A_ , A_ , A_ , A_ , A_ , A_ ): '''simple docstring''' if latents is None: UpperCamelCase : Optional[Any] = randn_tensor(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device=SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ ) else: if latents.shape != shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) UpperCamelCase : Dict = latents.to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = latents * scheduler.init_noise_sigma return latents def __UpperCamelCase( self , A_=0 ): '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) UpperCamelCase : Union[str, Any] = torch.device(F"""cuda:{gpu_id}""" ) UpperCamelCase : str = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @property def __UpperCamelCase( self ): '''simple docstring''' if self.device != torch.device("meta" ) or not hasattr(self.image_encoder , "_hf_hook" ): return self.device for module in self.image_encoder.modules(): if ( hasattr(SCREAMING_SNAKE_CASE_ , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def __UpperCamelCase( self , A_ , A_ , A_ , A_ , ): '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and isinstance(image[0] , torch.Tensor ): UpperCamelCase : Dict = torch.cat(SCREAMING_SNAKE_CASE_ , axis=0 ) if image[0].ndim == 4 else torch.stack(SCREAMING_SNAKE_CASE_ , axis=0 ) if not isinstance(SCREAMING_SNAKE_CASE_ , torch.Tensor ): UpperCamelCase : Tuple = self.image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="pt" ).pixel_values[0].unsqueeze(0 ) UpperCamelCase : List[str] = image.to(dtype=self.image_encoder.dtype , device=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = self.image_encoder(SCREAMING_SNAKE_CASE_ )["last_hidden_state"] UpperCamelCase : Any = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 UpperCamelCase : Optional[Any] = image_embeds.repeat_interleave(SCREAMING_SNAKE_CASE_ , dim=0 ) if do_classifier_free_guidance: UpperCamelCase : List[str] = torch.zeros_like(SCREAMING_SNAKE_CASE_ ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCamelCase : Optional[Any] = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(SCREAMING_SNAKE_CASE_ ) def __call__( self , A_ , A_ = 1 , A_ = 25 , A_ = None , A_ = None , A_ = 4.0 , A_ = 64 , A_ = "pil" , A_ = True , ): '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE_ , PIL.Image.Image ): UpperCamelCase : Tuple = 1 elif isinstance(SCREAMING_SNAKE_CASE_ , torch.Tensor ): UpperCamelCase : str = image.shape[0] elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): UpperCamelCase : str = len(SCREAMING_SNAKE_CASE_ ) else: raise ValueError( F"""`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(SCREAMING_SNAKE_CASE_ )}""" ) UpperCamelCase : int = self._execution_device UpperCamelCase : Optional[Any] = batch_size * num_images_per_prompt UpperCamelCase : int = guidance_scale > 1.0 UpperCamelCase : Optional[Any] = self._encode_image(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # prior self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ , device=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = self.scheduler.timesteps UpperCamelCase : Optional[int] = self.prior.config.num_embeddings UpperCamelCase : int = self.prior.config.embedding_dim UpperCamelCase : Dict = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim UpperCamelCase : Union[str, Any] = latents.reshape(latents.shape[0] , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for i, t in enumerate(self.progress_bar(SCREAMING_SNAKE_CASE_ ) ): # expand the latents if we are doing classifier free guidance UpperCamelCase : Tuple = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCamelCase : Optional[int] = self.scheduler.scale_model_input(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = self.prior( SCREAMING_SNAKE_CASE_ , timestep=SCREAMING_SNAKE_CASE_ , proj_embedding=SCREAMING_SNAKE_CASE_ , ).predicted_image_embedding # remove the variance UpperCamelCase , UpperCamelCase : Optional[int] = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: UpperCamelCase , UpperCamelCase : int = noise_pred.chunk(2 ) UpperCamelCase : List[str] = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) UpperCamelCase : str = self.scheduler.step( SCREAMING_SNAKE_CASE_ , timestep=SCREAMING_SNAKE_CASE_ , sample=SCREAMING_SNAKE_CASE_ , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = [] for i, latent in enumerate(SCREAMING_SNAKE_CASE_ ): print() UpperCamelCase : Dict = self.renderer.decode( latent[None, :] , SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , ray_batch_size=4096 , n_coarse_samples=64 , n_fine_samples=128 , ) images.append(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = torch.stack(SCREAMING_SNAKE_CASE_ ) if output_type not in ["np", "pil"]: raise ValueError(F"""Only the output types `pil` and `np` are supported not output_type={output_type}""" ) UpperCamelCase : List[str] = images.cpu().numpy() if output_type == "pil": UpperCamelCase : List[str] = [self.numpy_to_pil(SCREAMING_SNAKE_CASE_ ) for image in images] # Offload last model to CPU if hasattr(self , "final_offload_hook" ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=SCREAMING_SNAKE_CASE_ )
52
import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters __a = logging.get_logger(__name__) def a ( snake_case__: Optional[int] , snake_case__: Dict , snake_case__: int , snake_case__: List[str]=None , snake_case__: List[Any]=None ): '''simple docstring''' # Recurse if needed if "." in tensor_name: lowercase_ = tensor_name.split('''.''' ) for split in splits[:-1]: lowercase_ = getattr(snake_case__ , snake_case__ ) if new_module is None: raise ValueError(F'''{module} has no attribute {split}.''' ) lowercase_ = new_module lowercase_ = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(F'''{module} does not have a parameter or a buffer named {tensor_name}.''' ) lowercase_ = tensor_name in module._buffers lowercase_ = getattr(snake_case__ , snake_case__ ) if old_value.device == torch.device('''meta''' ) and device not in ["meta", torch.device('''meta''' )] and value is None: raise ValueError(F'''{tensor_name} is on the meta device, we need a `value` to put in on {device}.''' ) lowercase_ = False lowercase_ = False if is_buffer or not is_bitsandbytes_available(): lowercase_ = False lowercase_ = False else: lowercase_ = hasattr(bnb.nn , '''Params4bit''' ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit ) lowercase_ = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams ) if is_abit or is_abit: lowercase_ = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: lowercase_ = old_value.to(snake_case__ ) elif isinstance(snake_case__ , torch.Tensor ): lowercase_ = value.to('''cpu''' ) if value.dtype == torch.inta: lowercase_ = version.parse(importlib.metadata.version('''bitsandbytes''' ) ) > version.parse( '''0.37.2''' ) if not is_abit_serializable: raise ValueError( '''Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. ''' '''Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.''' ) else: lowercase_ = torch.tensor(snake_case__ , device='''cpu''' ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls , snake_case__ ) and fpaa_statistics is None: lowercase_ = new_value.T lowercase_ = old_value.__dict__ if is_abit: lowercase_ = bnb.nn.IntaParams(snake_case__ , requires_grad=snake_case__ , **snake_case__ ).to(snake_case__ ) elif is_abit: lowercase_ = bnb.nn.Paramsabit(snake_case__ , requires_grad=snake_case__ , **snake_case__ ).to(snake_case__ ) lowercase_ = new_value if fpaa_statistics is not None: setattr(module.weight , '''SCB''' , fpaa_statistics.to(snake_case__ ) ) else: if value is None: lowercase_ = old_value.to(snake_case__ ) elif isinstance(snake_case__ , torch.Tensor ): lowercase_ = value.to(snake_case__ ) else: lowercase_ = torch.tensor(snake_case__ , device=snake_case__ ) if is_buffer: lowercase_ = new_value else: lowercase_ = nn.Parameter(snake_case__ , requires_grad=old_value.requires_grad ) lowercase_ = new_value def a ( snake_case__: str , snake_case__: Union[str, Any]=None , snake_case__: Any=None , snake_case__: List[str]=None , snake_case__: Optional[Any]=False ): '''simple docstring''' for name, module in model.named_children(): if current_key_name is None: lowercase_ = [] current_key_name.append(snake_case__ ) if (isinstance(snake_case__ , nn.Linear ) or isinstance(snake_case__ , snake_case__ )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in '''.'''.join(snake_case__ ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(snake_case__ , snake_case__ ): lowercase_ , lowercase_ = module.weight.shape else: lowercase_ = module.in_features lowercase_ = module.out_features if quantization_config.quantization_method() == "llm_int8": lowercase_ = bnb.nn.LinearabitLt( snake_case__ , snake_case__ , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , ) lowercase_ = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: lowercase_ = bnb.nn.Linearabit( snake_case__ , snake_case__ , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , ) lowercase_ = True # Store the module class in case we need to transpose the weight later lowercase_ = type(snake_case__ ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(snake_case__ ) if len(list(module.children() ) ) > 0: lowercase_ , lowercase_ = _replace_with_bnb_linear( snake_case__ , snake_case__ , snake_case__ , snake_case__ , has_been_replaced=snake_case__ , ) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def a ( snake_case__: Any , snake_case__: Any=None , snake_case__: Union[str, Any]=None , snake_case__: str=None ): '''simple docstring''' lowercase_ = ['''lm_head'''] if modules_to_not_convert is None else modules_to_not_convert lowercase_ , lowercase_ = _replace_with_bnb_linear( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) if not has_been_replaced: logger.warning( '''You are loading your model in 8bit or 4bit but no linear modules were found in your model.''' ''' Please double check your model architecture, or submit an issue on github if you think this is''' ''' a bug.''' ) return model def a ( *snake_case__: str , **snake_case__: Dict ): '''simple docstring''' warnings.warn( '''`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead''' , snake_case__ , ) return replace_with_bnb_linear(*snake_case__ , **snake_case__ ) def a ( *snake_case__: Any , **snake_case__: List[Any] ): '''simple docstring''' warnings.warn( '''`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead''' , snake_case__ , ) return set_module_quantized_tensor_to_device(*snake_case__ , **snake_case__ ) def a ( snake_case__: Optional[Any] ): '''simple docstring''' lowercase_ = deepcopy(snake_case__ ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() lowercase_ = find_tied_parameters(snake_case__ ) # For compatibility with Accelerate < 0.18 if isinstance(snake_case__ , snake_case__ ): lowercase_ = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: lowercase_ = sum(snake_case__ , [] ) lowercase_ = len(snake_case__ ) > 0 # Check if it is a base model lowercase_ = not hasattr(snake_case__ , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head lowercase_ = list(model.named_children() ) lowercase_ = [list_modules[-1][0]] # add last module together with tied weights lowercase_ = set(snake_case__ ) - set(snake_case__ ) lowercase_ = list(set(snake_case__ ) ) + list(snake_case__ ) # remove ".weight" from the keys lowercase_ = ['''.weight''', '''.bias'''] lowercase_ = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: lowercase_ = name.replace(snake_case__ , '''''' ) filtered_module_names.append(snake_case__ ) return filtered_module_names
30
0
"""simple docstring""" import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" @slow def snake_case_ ( self): for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(lowerCAmelCase__): __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(lowerCAmelCase__) self.assertIsNotNone(lowerCAmelCase__) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__) __SCREAMING_SNAKE_CASE = FlaxAutoModel.from_pretrained(lowerCAmelCase__) self.assertIsNotNone(lowerCAmelCase__) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__) @slow def snake_case_ ( self): for model_name in ["roberta-base", "roberta-large"]: with self.subTest(lowerCAmelCase__): __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(lowerCAmelCase__) self.assertIsNotNone(lowerCAmelCase__) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__) __SCREAMING_SNAKE_CASE = FlaxAutoModel.from_pretrained(lowerCAmelCase__) self.assertIsNotNone(lowerCAmelCase__) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__) @slow def snake_case_ ( self): for model_name in ["bert-base-cased", "bert-large-uncased"]: __SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer("""Do you support jax jitted function?""" , return_tensors=TensorType.JAX) @jax.jit def eval(**lowerCAmelCase__): return model(**lowerCAmelCase__) eval(**lowerCAmelCase__).block_until_ready() @slow def snake_case_ ( self): for model_name in ["roberta-base", "roberta-large"]: __SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = FlaxRobertaModel.from_pretrained(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer("""Do you support jax jitted function?""" , return_tensors=TensorType.JAX) @jax.jit def eval(**lowerCAmelCase__): return model(**lowerCAmelCase__) eval(**lowerCAmelCase__).block_until_ready() def snake_case_ ( self): with self.assertRaisesRegex( lowerCAmelCase__ , """bert-base is not a local folder and is not a valid model identifier"""): __SCREAMING_SNAKE_CASE = FlaxAutoModel.from_pretrained("""bert-base""") def snake_case_ ( self): with self.assertRaisesRegex( lowerCAmelCase__ , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)"""): __SCREAMING_SNAKE_CASE = FlaxAutoModel.from_pretrained(lowerCAmelCase__ , revision="""aaaaaa""") def snake_case_ ( self): with self.assertRaisesRegex( lowerCAmelCase__ , """hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack""" , ): __SCREAMING_SNAKE_CASE = FlaxAutoModel.from_pretrained("""hf-internal-testing/config-no-model""") def snake_case_ ( self): with self.assertRaisesRegex(lowerCAmelCase__ , """Use `from_pt=True` to load this model"""): __SCREAMING_SNAKE_CASE = FlaxAutoModel.from_pretrained("""hf-internal-testing/tiny-bert-pt-only""")
255
"""simple docstring""" import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class SCREAMING_SNAKE_CASE_ ( __a , unittest.TestCase ): """simple docstring""" __lowercase : Any = RoCBertTokenizer __lowercase : List[str] = None __lowercase : Union[str, Any] = False __lowercase : Optional[Any] = True __lowercase : int = filter_non_english def snake_case_ ( self): super().setUp() __SCREAMING_SNAKE_CASE = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """你""", """好""", """是""", """谁""", """a""", """b""", """c""", """d"""] __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = {} for i, value in enumerate(lowerCAmelCase__): __SCREAMING_SNAKE_CASE = i __SCREAMING_SNAKE_CASE = i __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""]) __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""word_shape_file"""]) __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""word_pronunciation_file"""]) with open(self.vocab_file , """w""" , encoding="""utf-8""") as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens])) with open(self.word_shape_file , """w""" , encoding="""utf-8""") as word_shape_writer: json.dump(lowerCAmelCase__ , lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__) with open(self.word_pronunciation_file , """w""" , encoding="""utf-8""") as word_pronunciation_writer: json.dump(lowerCAmelCase__ , lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file) __SCREAMING_SNAKE_CASE = tokenizer.tokenize("""你好[SEP]你是谁""") self.assertListEqual(lowerCAmelCase__ , ["""你""", """好""", """[SEP]""", """你""", """是""", """谁"""]) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__) , [5, 6, 2, 5, 7, 8]) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(lowerCAmelCase__) , [5, 6, 2, 5, 7, 8]) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(lowerCAmelCase__) , [5, 6, 2, 5, 7, 8]) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""") , ["""ah""", """\u535A""", """\u63A8""", """zz"""]) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = RoCBertBasicTokenizer(do_lower_case=lowerCAmelCase__) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """) , ["""hello""", """!""", """how""", """are""", """you""", """?"""]) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""hello"""]) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = RoCBertBasicTokenizer(do_lower_case=lowerCAmelCase__ , strip_accents=lowerCAmelCase__) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""hällo""", """!""", """how""", """are""", """you""", """?"""]) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""h\u00E9llo"""]) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = RoCBertBasicTokenizer(do_lower_case=lowerCAmelCase__ , strip_accents=lowerCAmelCase__) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""]) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""hello"""]) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = RoCBertBasicTokenizer(do_lower_case=lowerCAmelCase__) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""]) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""hello"""]) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = RoCBertBasicTokenizer(do_lower_case=lowerCAmelCase__) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""]) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = RoCBertBasicTokenizer(do_lower_case=lowerCAmelCase__ , strip_accents=lowerCAmelCase__) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""]) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = RoCBertBasicTokenizer(do_lower_case=lowerCAmelCase__ , strip_accents=lowerCAmelCase__) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""]) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = RoCBertBasicTokenizer(do_lower_case=lowerCAmelCase__ , never_split=["""[UNK]"""]) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""") , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""]) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""] __SCREAMING_SNAKE_CASE = {} for i, token in enumerate(lowerCAmelCase__): __SCREAMING_SNAKE_CASE = i __SCREAMING_SNAKE_CASE = RoCBertWordpieceTokenizer(vocab=lowerCAmelCase__ , unk_token="""[UNK]""") self.assertListEqual(tokenizer.tokenize("""""") , []) self.assertListEqual(tokenizer.tokenize("""unwanted running""") , ["""un""", """##want""", """##ed""", """runn""", """##ing"""]) self.assertListEqual(tokenizer.tokenize("""unwantedX running""") , ["""[UNK]""", """runn""", """##ing"""]) def snake_case_ ( self): self.assertTrue(_is_whitespace(""" """)) self.assertTrue(_is_whitespace("""\t""")) self.assertTrue(_is_whitespace("""\r""")) self.assertTrue(_is_whitespace("""\n""")) self.assertTrue(_is_whitespace("""\u00A0""")) self.assertFalse(_is_whitespace("""A""")) self.assertFalse(_is_whitespace("""-""")) def snake_case_ ( self): self.assertTrue(_is_control("""\u0005""")) self.assertFalse(_is_control("""A""")) self.assertFalse(_is_control(""" """)) self.assertFalse(_is_control("""\t""")) self.assertFalse(_is_control("""\r""")) def snake_case_ ( self): self.assertTrue(_is_punctuation("""-""")) self.assertTrue(_is_punctuation("""$""")) self.assertTrue(_is_punctuation("""`""")) self.assertTrue(_is_punctuation(""".""")) self.assertFalse(_is_punctuation("""A""")) self.assertFalse(_is_punctuation(""" """)) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(lowerCAmelCase__) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]]) if self.test_rust_tokenizer: __SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(lowerCAmelCase__) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]]) def snake_case_ ( self): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): __SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__) __SCREAMING_SNAKE_CASE = f"A, naïve {tokenizer_r.mask_token} AllenNLP sentence." __SCREAMING_SNAKE_CASE = tokenizer_r.encode_plus( lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE = tokenizer_r.do_lower_case if hasattr(lowerCAmelCase__ , """do_lower_case""") else False __SCREAMING_SNAKE_CASE = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """A"""), ((1, 2), ""","""), ((3, 5), """na"""), ((5, 6), """##ï"""), ((6, 8), """##ve"""), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), """Allen"""), ((2_1, 2_3), """##NL"""), ((2_3, 2_4), """##P"""), ((2_5, 3_3), """sentence"""), ((3_3, 3_4), """."""), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """a"""), ((1, 2), ""","""), ((3, 8), """naive"""), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), """allen"""), ((2_1, 2_3), """##nl"""), ((2_3, 2_4), """##p"""), ((2_5, 3_3), """sentence"""), ((3_3, 3_4), """."""), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["""input_ids"""])) self.assertEqual([e[0] for e in expected_results] , tokens["""offset_mapping"""]) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = ["""的""", """人""", """有"""] __SCREAMING_SNAKE_CASE = """""".join(lowerCAmelCase__) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__) __SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer_p.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer_r.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer_r.convert_ids_to_tokens(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer_p.convert_ids_to_tokens(lowerCAmelCase__) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__) __SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer_r.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer_p.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer_r.convert_ids_to_tokens(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer_p.convert_ids_to_tokens(lowerCAmelCase__) # it is expected that only the first Chinese character is not preceded by "##". __SCREAMING_SNAKE_CASE = [ f"##{token}" if idx != 0 else token for idx, token in enumerate(lowerCAmelCase__) ] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) @slow def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file) __SCREAMING_SNAKE_CASE = tokenizer.encode("""你好""" , add_special_tokens=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer.encode("""你是谁""" , add_special_tokens=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__ , lowerCAmelCase__) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.get_tokenizers(do_lower_case=lowerCAmelCase__) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): __SCREAMING_SNAKE_CASE = """你好,你是谁""" __SCREAMING_SNAKE_CASE = tokenizer.tokenize(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_shape_ids(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_pronunciation_ids(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer.prepare_for_model( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer.encode_plus(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__)
255
1
def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> int: """simple docstring""" return int(input_a == input_a == 0 ) def __UpperCamelCase ( ) -> None: """simple docstring""" print("""Truth Table of NOR Gate:""" ) print("""| Input 1 | Input 2 | Output |""" ) print(f'''| 0 | 0 | {nor_gate(0 , 0 )} |''' ) print(f'''| 0 | 1 | {nor_gate(0 , 1 )} |''' ) print(f'''| 1 | 0 | {nor_gate(1 , 0 )} |''' ) print(f'''| 1 | 1 | {nor_gate(1 , 1 )} |''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
116
from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__=0.0, lowerCamelCase__ = None, lowerCamelCase__ = "geglu", lowerCamelCase__ = None, lowerCamelCase__ = False, lowerCamelCase__ = False, lowerCamelCase__ = False, lowerCamelCase__ = False, lowerCamelCase__ = True, lowerCamelCase__ = "layer_norm", lowerCamelCase__ = False, ): super().__init__() A : Dict = only_cross_attention A : Tuple = (num_embeds_ada_norm is not None) and norm_type == """ada_norm_zero""" A : Union[str, Any] = (num_embeds_ada_norm is not None) and norm_type == """ada_norm""" if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( f'''`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to''' f''' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.''' ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: A : Dict = AdaLayerNorm(lowerCamelCase__, lowerCamelCase__ ) elif self.use_ada_layer_norm_zero: A : List[str] = AdaLayerNormZero(lowerCamelCase__, lowerCamelCase__ ) else: A : Tuple = nn.LayerNorm(lowerCamelCase__, elementwise_affine=lowerCamelCase__ ) A : Any = Attention( query_dim=lowerCamelCase__, heads=lowerCamelCase__, dim_head=lowerCamelCase__, dropout=lowerCamelCase__, bias=lowerCamelCase__, cross_attention_dim=cross_attention_dim if only_cross_attention else None, upcast_attention=lowerCamelCase__, ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. A : int = ( AdaLayerNorm(lowerCamelCase__, lowerCamelCase__ ) if self.use_ada_layer_norm else nn.LayerNorm(lowerCamelCase__, elementwise_affine=lowerCamelCase__ ) ) A : Dict = Attention( query_dim=lowerCamelCase__, cross_attention_dim=cross_attention_dim if not double_self_attention else None, heads=lowerCamelCase__, dim_head=lowerCamelCase__, dropout=lowerCamelCase__, bias=lowerCamelCase__, upcast_attention=lowerCamelCase__, ) # is self-attn if encoder_hidden_states is none else: A : Dict = None A : Dict = None # 3. Feed-forward A : Optional[Any] = nn.LayerNorm(lowerCamelCase__, elementwise_affine=lowerCamelCase__ ) A : int = FeedForward(lowerCamelCase__, dropout=lowerCamelCase__, activation_fn=lowerCamelCase__, final_dropout=lowerCamelCase__ ) # let chunk size default to None A : Optional[Any] = None A : int = 0 def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__ ): # Sets chunk feed-forward A : List[str] = chunk_size A : int = dim def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = None, ): # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention if self.use_ada_layer_norm: A : Optional[int] = self.norma(lowerCamelCase__, lowerCamelCase__ ) elif self.use_ada_layer_norm_zero: A , A , A , A , A : Tuple = self.norma( lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, hidden_dtype=hidden_states.dtype ) else: A : Tuple = self.norma(lowerCamelCase__ ) A : Dict = cross_attention_kwargs if cross_attention_kwargs is not None else {} A : str = self.attna( lowerCamelCase__, encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, attention_mask=lowerCamelCase__, **lowerCamelCase__, ) if self.use_ada_layer_norm_zero: A : List[Any] = gate_msa.unsqueeze(1 ) * attn_output A : str = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: A : Optional[int] = ( self.norma(lowerCamelCase__, lowerCamelCase__ ) if self.use_ada_layer_norm else self.norma(lowerCamelCase__ ) ) A : Optional[Any] = self.attna( lowerCamelCase__, encoder_hidden_states=lowerCamelCase__, attention_mask=lowerCamelCase__, **lowerCamelCase__, ) A : Dict = attn_output + hidden_states # 3. Feed-forward A : str = self.norma(lowerCamelCase__ ) if self.use_ada_layer_norm_zero: A : Tuple = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( f'''`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.''' ) A : Any = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size A : Optional[Any] = torch.cat( [self.ff(lowerCamelCase__ ) for hid_slice in norm_hidden_states.chunk(lowerCamelCase__, dim=self._chunk_dim )], dim=self._chunk_dim, ) else: A : Dict = self.ff(lowerCamelCase__ ) if self.use_ada_layer_norm_zero: A : Optional[Any] = gate_mlp.unsqueeze(1 ) * ff_output A : Optional[int] = ff_output + hidden_states return hidden_states class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self, lowerCamelCase__, lowerCamelCase__ = None, lowerCamelCase__ = 4, lowerCamelCase__ = 0.0, lowerCamelCase__ = "geglu", lowerCamelCase__ = False, ): super().__init__() A : str = int(dim * mult ) A : Optional[Any] = dim_out if dim_out is not None else dim if activation_fn == "gelu": A : Dict = GELU(lowerCamelCase__, lowerCamelCase__ ) if activation_fn == "gelu-approximate": A : Optional[int] = GELU(lowerCamelCase__, lowerCamelCase__, approximate="""tanh""" ) elif activation_fn == "geglu": A : Any = GEGLU(lowerCamelCase__, lowerCamelCase__ ) elif activation_fn == "geglu-approximate": A : Optional[Any] = ApproximateGELU(lowerCamelCase__, lowerCamelCase__ ) A : Dict = nn.ModuleList([] ) # project in self.net.append(lowerCamelCase__ ) # project dropout self.net.append(nn.Dropout(lowerCamelCase__ ) ) # project out self.net.append(nn.Linear(lowerCamelCase__, lowerCamelCase__ ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(lowerCamelCase__ ) ) def _lowerCAmelCase ( self, lowerCamelCase__ ): for module in self.net: A : int = module(lowerCamelCase__ ) return hidden_states class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ = "none" ): super().__init__() A : Optional[int] = nn.Linear(lowerCamelCase__, lowerCamelCase__ ) A : int = approximate def _lowerCAmelCase ( self, lowerCamelCase__ ): if gate.device.type != "mps": return F.gelu(lowerCamelCase__, approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ), approximate=self.approximate ).to(dtype=gate.dtype ) def _lowerCAmelCase ( self, lowerCamelCase__ ): A : List[Any] = self.proj(lowerCamelCase__ ) A : Union[str, Any] = self.gelu(lowerCamelCase__ ) return hidden_states class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self, lowerCamelCase__, lowerCamelCase__ ): super().__init__() A : Union[str, Any] = nn.Linear(lowerCamelCase__, dim_out * 2 ) def _lowerCAmelCase ( self, lowerCamelCase__ ): if gate.device.type != "mps": return F.gelu(lowerCamelCase__ ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def _lowerCAmelCase ( self, lowerCamelCase__ ): A , A : Any = self.proj(lowerCamelCase__ ).chunk(2, dim=-1 ) return hidden_states * self.gelu(lowerCamelCase__ ) class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self, lowerCamelCase__, lowerCamelCase__ ): super().__init__() A : Union[str, Any] = nn.Linear(lowerCamelCase__, lowerCamelCase__ ) def _lowerCAmelCase ( self, lowerCamelCase__ ): A : List[Any] = self.proj(lowerCamelCase__ ) return x * torch.sigmoid(1.702 * x ) class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self, lowerCamelCase__, lowerCamelCase__ ): super().__init__() A : Dict = nn.Embedding(lowerCamelCase__, lowerCamelCase__ ) A : Tuple = nn.SiLU() A : Tuple = nn.Linear(lowerCamelCase__, embedding_dim * 2 ) A : List[str] = nn.LayerNorm(lowerCamelCase__, elementwise_affine=lowerCamelCase__ ) def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__ ): A : int = self.linear(self.silu(self.emb(lowerCamelCase__ ) ) ) A , A : Optional[int] = torch.chunk(lowerCamelCase__, 2 ) A : Tuple = self.norm(lowerCamelCase__ ) * (1 + scale) + shift return x class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self, lowerCamelCase__, lowerCamelCase__ ): super().__init__() A : Union[str, Any] = CombinedTimestepLabelEmbeddings(lowerCamelCase__, lowerCamelCase__ ) A : List[Any] = nn.SiLU() A : str = nn.Linear(lowerCamelCase__, 6 * embedding_dim, bias=lowerCamelCase__ ) A : List[Any] = nn.LayerNorm(lowerCamelCase__, elementwise_affine=lowerCamelCase__, eps=1e-6 ) def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__=None ): A : Tuple = self.linear(self.silu(self.emb(lowerCamelCase__, lowerCamelCase__, hidden_dtype=lowerCamelCase__ ) ) ) A , A , A , A , A , A : Optional[Any] = emb.chunk(6, dim=1 ) A : List[str] = self.norm(lowerCamelCase__ ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ = None, lowerCamelCase__ = 1e-5 ): super().__init__() A : int = num_groups A : Dict = eps if act_fn is None: A : Union[str, Any] = None else: A : Optional[int] = get_activation(lowerCamelCase__ ) A : Dict = nn.Linear(lowerCamelCase__, out_dim * 2 ) def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__ ): if self.act: A : Dict = self.act(lowerCamelCase__ ) A : Optional[int] = self.linear(lowerCamelCase__ ) A : int = emb[:, :, None, None] A , A : Tuple = emb.chunk(2, dim=1 ) A : Any = F.group_norm(lowerCamelCase__, self.num_groups, eps=self.eps ) A : List[str] = x * (1 + scale) + shift return x
116
1
import random def lowerCAmelCase__ ( _a : Optional[Any] , _a : Optional[int] , _a : str ): snake_case_ : Optional[int] = a[left_index] snake_case_ : Optional[Any] = left_index + 1 for j in range(left_index + 1 , _a ): if a[j] < pivot: snake_case_ , snake_case_ : str = a[i], a[j] i += 1 snake_case_ , snake_case_ : Union[str, Any] = a[i - 1], a[left_index] return i - 1 def lowerCAmelCase__ ( _a : Tuple , _a : Optional[int] , _a : Tuple ): if left < right: snake_case_ : List[str] = random.randint(_a , right - 1 ) snake_case_ , snake_case_ : List[str] = ( a[left], a[pivot], ) # switches the pivot with the left most bound snake_case_ : Tuple = partition(_a , _a , _a ) quick_sort_random( _a , _a , _a ) # recursive quicksort to the left of the pivot point quick_sort_random( _a , pivot_index + 1 , _a ) # recursive quicksort to the right of the pivot point def lowerCAmelCase__ ( ): snake_case_ : Tuple = input("Enter numbers separated by a comma:\n" ).strip() snake_case_ : Any = [int(_a ) for item in user_input.split("," )] quick_sort_random(_a , 0 , len(_a ) ) print(_a ) if __name__ == "__main__": main()
363
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowercase : Dict = logging.get_logger(__name__) lowercase : Tuple = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowercase : Optional[int] = { '''vocab_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/vocab.json''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/vocab.json''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/vocab.json''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/vocab.json''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/vocab.json''', }, '''merges_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/merges.txt''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/merges.txt''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/merges.txt''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/merges.txt''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/tokenizer.json''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/tokenizer.json''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/tokenizer.json''', }, } lowercase : Dict = { '''gpt2''': 10_24, '''gpt2-medium''': 10_24, '''gpt2-large''': 10_24, '''gpt2-xl''': 10_24, '''distilgpt2''': 10_24, } class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : Union[str, Any] = VOCAB_FILES_NAMES A : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP A : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : Optional[Any] = ['input_ids', 'attention_mask'] A : Dict = GPTaTokenizer def __init__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="<|endoftext|>" , _SCREAMING_SNAKE_CASE="<|endoftext|>" , _SCREAMING_SNAKE_CASE="<|endoftext|>" , _SCREAMING_SNAKE_CASE=False , **_SCREAMING_SNAKE_CASE , ) -> Dict: super().__init__( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , tokenizer_file=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , add_prefix_space=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) snake_case_ : Tuple = kwargs.pop("add_bos_token" , _SCREAMING_SNAKE_CASE ) snake_case_ : Union[str, Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , _SCREAMING_SNAKE_CASE ) != add_prefix_space: snake_case_ : Optional[int] = getattr(_SCREAMING_SNAKE_CASE , pre_tok_state.pop("type" ) ) snake_case_ : int = add_prefix_space snake_case_ : str = pre_tok_class(**_SCREAMING_SNAKE_CASE ) snake_case_ : Tuple = add_prefix_space def _lowerCAmelCase ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> BatchEncoding: snake_case_ : Dict = kwargs.get("is_split_into_words" , _SCREAMING_SNAKE_CASE ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> BatchEncoding: snake_case_ : Dict = kwargs.get("is_split_into_words" , _SCREAMING_SNAKE_CASE ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: snake_case_ : str = self._tokenizer.model.save(_SCREAMING_SNAKE_CASE , name=_SCREAMING_SNAKE_CASE ) return tuple(_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE ) -> List[int]: snake_case_ : List[str] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) + [self.eos_token_id] ) if len(_SCREAMING_SNAKE_CASE ) > self.model_max_length: snake_case_ : Dict = input_ids[-self.model_max_length :] return input_ids
36
0
# Lint as: python3 import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union _lowerCamelCase : Tuple = re.compile(r"""^(?P<major>\d+)""" r"""\.(?P<minor>\d+)""" r"""\.(?P<patch>\d+)$""") @total_ordering @dataclass class UpperCamelCase_ : '''simple docstring''' UpperCAmelCase__ = 42 UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None def SCREAMING_SNAKE_CASE ( self : Any) ->Any: '''simple docstring''' A__ , A__ , A__ = _str_to_version_tuple(self.version_str) def __repr__( self : Dict) ->List[str]: '''simple docstring''' return f"""{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}""" @property def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->List[str]: '''simple docstring''' return self.major, self.minor, self.patch def SCREAMING_SNAKE_CASE ( self : Optional[int] , UpperCAmelCase__ : Union[str, Any]) ->List[Any]: '''simple docstring''' if isinstance(UpperCAmelCase__ , UpperCAmelCase__): return Version(UpperCAmelCase__) elif isinstance(UpperCAmelCase__ , UpperCAmelCase__): return other raise TypeError(f"""{other} (type {type(UpperCAmelCase__)}) cannot be compared to version.""") def __eq__( self : Tuple , UpperCAmelCase__ : int) ->Union[str, Any]: '''simple docstring''' try: A__ = self._validate_operand(UpperCAmelCase__) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self : List[Any] , UpperCAmelCase__ : Union[str, Any]) ->List[str]: '''simple docstring''' A__ = self._validate_operand(UpperCAmelCase__) return self.tuple < other.tuple def __hash__( self : int) ->Any: '''simple docstring''' return hash(_version_tuple_to_str(self.tuple)) @classmethod def SCREAMING_SNAKE_CASE ( cls : Optional[int] , UpperCAmelCase__ : int) ->List[str]: '''simple docstring''' A__ = {f.name for f in dataclasses.fields(cls)} return cls(**{k: v for k, v in dic.items() if k in field_names}) def SCREAMING_SNAKE_CASE ( self : Dict) ->str: '''simple docstring''' return self.version_str def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Union[str, Any]: """simple docstring""" A__ = _VERSION_REG.match(lowercase_ ) if not res: raise ValueError(f"""Invalid version '{version_str}'. Format should be x.y.z with {{x,y,z}} being digits.""" ) return tuple(int(lowercase_ ) for v in [res.group('''major''' ), res.group('''minor''' ), res.group('''patch''' )] ) def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Union[str, Any]: """simple docstring""" return ".".join(str(lowercase_ ) for v in version_tuple )
14
def UpperCamelCase ( __magic_name__ : str ) -> int: """simple docstring""" assert column_title.isupper() lowercase__ = 0 lowercase__ = len(__magic_name__ ) - 1 lowercase__ = 0 while index >= 0: lowercase__ = (ord(column_title[index] ) - 64) * pow(26 , __magic_name__ ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
305
0
'''simple docstring''' import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def A__ ( UpperCAmelCase_ ): monkeypatch.setattr('datasets.utils.deprecation_utils._emitted_deprecation_warnings' , set() ) @pytest.fixture def A__ ( UpperCAmelCase_ ): class lowercase__ : def __init__( self : Any ,lowerCamelCase__ : Any ): '''simple docstring''' _UpperCamelCase : int = metric_id class lowercase__ : lowercase__ = [MetricMock(__a ) for metric_id in ["""accuracy""", """mse""", """precision""", """codeparrot/apps_metric"""]] def UpperCamelCase_ ( self : int ): '''simple docstring''' return self._metrics monkeypatch.setattr('datasets.inspect.huggingface_hub' , HfhMock() ) @pytest.mark.parametrize( 'func, args' , [(load_metric, ('metrics/mse',)), (list_metrics, ()), (inspect_metric, ('metrics/mse', 'tmp_path'))] ) def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): if "tmp_path" in args: _UpperCamelCase : List[Any] = tuple(arg if arg != 'tmp_path' else tmp_path for arg in args ) with pytest.warns(UpperCAmelCase_ , match='https://huggingface.co/docs/evaluate' ): func(*UpperCAmelCase_ )
360
'''simple docstring''' from __future__ import annotations import numpy as np def A__ ( UpperCAmelCase_ ): _UpperCamelCase , _UpperCamelCase : Optional[int] = np.shape(UpperCAmelCase_ ) if rows != columns: _UpperCamelCase : Union[str, Any] = ( '\'table\' has to be of square shaped array but got a ' f'{rows}x{columns} array:\n{table}' ) raise ValueError(UpperCAmelCase_ ) _UpperCamelCase : Optional[Any] = np.zeros((rows, columns) ) _UpperCamelCase : Tuple = np.zeros((rows, columns) ) for i in range(UpperCAmelCase_ ): for j in range(UpperCAmelCase_ ): _UpperCamelCase : Optional[Any] = sum(lower[i][k] * upper[k][j] for k in range(UpperCAmelCase_ ) ) if upper[j][j] == 0: raise ArithmeticError('No LU decomposition exists' ) _UpperCamelCase : Optional[Any] = (table[i][j] - total) / upper[j][j] _UpperCamelCase : int = 1 for j in range(UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCamelCase : Optional[int] = sum(lower[i][k] * upper[k][j] for k in range(UpperCAmelCase_ ) ) _UpperCamelCase : Tuple = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
236
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __A =logging.get_logger(__name__) def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__=False , lowerCamelCase__=False ): lowerCamelCase_ = "backbone." if is_semantic else "" lowerCamelCase_ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'{prefix}blocks.{i}.norm1.weight', F'beit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'{prefix}blocks.{i}.norm1.bias', F'beit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append( (F'{prefix}blocks.{i}.attn.proj.weight', F'beit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append( (F'{prefix}blocks.{i}.attn.proj.bias', F'beit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'{prefix}blocks.{i}.norm2.weight', F'beit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'{prefix}blocks.{i}.norm2.bias', F'beit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'{prefix}blocks.{i}.mlp.fc1.weight', F'beit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'{prefix}blocks.{i}.mlp.fc1.bias', F'beit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'{prefix}blocks.{i}.mlp.fc2.weight', F'beit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'{prefix}blocks.{i}.mlp.fc2.bias', F'beit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ (F'{prefix}cls_token', "beit.embeddings.cls_token"), (F'{prefix}patch_embed.proj.weight', "beit.embeddings.patch_embeddings.projection.weight"), (F'{prefix}patch_embed.proj.bias', "beit.embeddings.patch_embeddings.projection.bias"), (F'{prefix}pos_embed', "beit.embeddings.position_embeddings"), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ("mask_token", "beit.embeddings.mask_token"), ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ] ) else: # layernorm + classification head rename_keys.extend( [ ("fc_norm.weight", "beit.pooler.layernorm.weight"), ("fc_norm.bias", "beit.pooler.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=False , lowerCamelCase__=False ): for i in range(config.num_hidden_layers ): lowerCamelCase_ = "backbone." if is_semantic else "" # queries, keys and values lowerCamelCase_ = state_dict.pop(F'{prefix}blocks.{i}.attn.qkv.weight' ) lowerCamelCase_ = state_dict.pop(F'{prefix}blocks.{i}.attn.q_bias' ) lowerCamelCase_ = state_dict.pop(F'{prefix}blocks.{i}.attn.v_bias' ) lowerCamelCase_ = in_proj_weight[ : config.hidden_size, : ] lowerCamelCase_ = q_bias lowerCamelCase_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase_ = in_proj_weight[ -config.hidden_size :, : ] lowerCamelCase_ = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained lowerCamelCase_ = state_dict.pop(F'{prefix}blocks.{i}.gamma_1' ) lowerCamelCase_ = state_dict.pop(F'{prefix}blocks.{i}.gamma_2' ) lowerCamelCase_ = gamma_a lowerCamelCase_ = gamma_a def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = dct.pop(lowerCamelCase__ ) lowerCamelCase_ = val def lowerCamelCase_ ( ): lowerCamelCase_ = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCamelCase_ = Image.open(requests.get(lowerCamelCase__ , stream=lowerCamelCase__ ).raw ) return im @torch.no_grad() def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=False ): lowerCamelCase_ = False if "rvlcdip" in checkpoint_url else True lowerCamelCase_ = BeitConfig(use_absolute_position_embeddings=lowerCamelCase__ , use_mask_token=lowerCamelCase__ ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: lowerCamelCase_ = 1_0_2_4 lowerCamelCase_ = 4_0_9_6 lowerCamelCase_ = 2_4 lowerCamelCase_ = 1_6 # labels if "rvlcdip" in checkpoint_url: lowerCamelCase_ = 1_6 lowerCamelCase_ = "huggingface/label-files" lowerCamelCase_ = "rvlcdip-id2label.json" lowerCamelCase_ = json.load(open(hf_hub_download(lowerCamelCase__ , lowerCamelCase__ , repo_type="dataset" ) , "r" ) ) lowerCamelCase_ = {int(lowerCamelCase__ ): v for k, v in idalabel.items()} lowerCamelCase_ = idalabel lowerCamelCase_ = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys lowerCamelCase_ = torch.hub.load_state_dict_from_url(lowerCamelCase__ , map_location="cpu" )["model"] lowerCamelCase_ = create_rename_keys(lowerCamelCase__ , has_lm_head=lowerCamelCase__ ) for src, dest in rename_keys: rename_key(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) read_in_q_k_v(lowerCamelCase__ , lowerCamelCase__ , has_lm_head=lowerCamelCase__ ) # load HuggingFace model lowerCamelCase_ = BeitForMaskedImageModeling(lowerCamelCase__ ) if has_lm_head else BeitForImageClassification(lowerCamelCase__ ) model.eval() model.load_state_dict(lowerCamelCase__ ) # Check outputs on an image lowerCamelCase_ = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=lowerCamelCase__ ) lowerCamelCase_ = prepare_img() lowerCamelCase_ = image_processor(images=lowerCamelCase__ , return_tensors="pt" ) lowerCamelCase_ = encoding["pixel_values"] lowerCamelCase_ = model(lowerCamelCase__ ) lowerCamelCase_ = outputs.logits # verify logits lowerCamelCase_ = [1, 1_6] if "rvlcdip" in checkpoint_url else [1, 1_9_6, 8_1_9_2] assert logits.shape == torch.Size(lowerCamelCase__ ), "Shape of logits not as expected" Path(lowerCamelCase__ ).mkdir(exist_ok=lowerCamelCase__ ) print(F'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCamelCase__ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowerCamelCase__ ) if push_to_hub: if has_lm_head: lowerCamelCase_ = "dit-base" if "base" in checkpoint_url else "dit-large" else: lowerCamelCase_ = "dit-base-finetuned-rvlcdip" if "dit-b" in checkpoint_url else "dit-large-finetuned-rvlcdip" image_processor.push_to_hub( repo_path_or_name=Path(lowerCamelCase__ , lowerCamelCase__ ) , organization="nielsr" , commit_message="Add image processor" , use_temp_dir=lowerCamelCase__ , ) model.push_to_hub( repo_path_or_name=Path(lowerCamelCase__ , lowerCamelCase__ ) , organization="nielsr" , commit_message="Add model" , use_temp_dir=lowerCamelCase__ , ) if __name__ == "__main__": __A =argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth''', type=str, help='''URL to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) __A =parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
19
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: __A =None __A =logging.get_logger(__name__) __A ={'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} __A ={ '''vocab_file''': { '''facebook/mbart-large-en-ro''': ( '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model''' ), '''facebook/mbart-large-cc25''': ( '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/mbart-large-en-ro''': '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json''', '''facebook/mbart-large-cc25''': '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json''', }, } __A ={ '''facebook/mbart-large-en-ro''': 1_0_2_4, '''facebook/mbart-large-cc25''': 1_0_2_4, } # fmt: off __A =['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN'''] class _SCREAMING_SNAKE_CASE ( snake_case_ ): lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = ['input_ids', 'attention_mask'] lowerCAmelCase__ = MBartTokenizer lowerCAmelCase__ = [] lowerCAmelCase__ = [] def __init__( self , lowercase=None , lowercase=None , lowercase="<s>" , lowercase="</s>" , lowercase="</s>" , lowercase="<s>" , lowercase="<unk>" , lowercase="<pad>" , lowercase="<mask>" , lowercase=None , lowercase=None , lowercase=None , **lowercase , ) -> Dict: # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase_ = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase ) if isinstance(lowercase , lowercase ) else mask_token super().__init__( vocab_file=lowercase , tokenizer_file=lowercase , bos_token=lowercase , eos_token=lowercase , sep_token=lowercase , cls_token=lowercase , unk_token=lowercase , pad_token=lowercase , mask_token=lowercase , src_lang=lowercase , tgt_lang=lowercase , additional_special_tokens=lowercase , **lowercase , ) lowerCamelCase_ = vocab_file lowerCamelCase_ = False if not self.vocab_file else True lowerCamelCase_ = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"additional_special_tokens": _additional_special_tokens} ) lowerCamelCase_ = { lang_code: self.convert_tokens_to_ids(lowercase ) for lang_code in FAIRSEQ_LANGUAGE_CODES } lowerCamelCase_ = src_lang if src_lang is not None else "en_XX" lowerCamelCase_ = self.convert_tokens_to_ids(self._src_lang ) lowerCamelCase_ = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def SCREAMING_SNAKE_CASE_( self ) -> str: return self._src_lang @src_lang.setter def SCREAMING_SNAKE_CASE_( self , lowercase ) -> None: lowerCamelCase_ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase = None ) -> List[int]: lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , **lowercase ) -> List[Any]: if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) lowerCamelCase_ = src_lang lowerCamelCase_ = self(lowercase , add_special_tokens=lowercase , return_tensors=lowercase , **lowercase ) lowerCamelCase_ = self.convert_tokens_to_ids(lowercase ) lowerCamelCase_ = tgt_lang_id return inputs def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase = "en_XX" , lowercase = None , lowercase = "ro_RO" , **lowercase , ) -> BatchEncoding: lowerCamelCase_ = src_lang lowerCamelCase_ = tgt_lang return super().prepare_seqaseq_batch(lowercase , lowercase , **lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Dict: return self.set_src_lang_special_tokens(self.src_lang ) def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def SCREAMING_SNAKE_CASE_( self , lowercase ) -> None: lowerCamelCase_ = self.convert_tokens_to_ids(lowercase ) lowerCamelCase_ = [] lowerCamelCase_ = [self.eos_token_id, self.cur_lang_code] lowerCamelCase_ = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCamelCase_ = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCamelCase_ = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def SCREAMING_SNAKE_CASE_( self , lowercase ) -> None: lowerCamelCase_ = self.convert_tokens_to_ids(lowercase ) lowerCamelCase_ = [] lowerCamelCase_ = [self.eos_token_id, self.cur_lang_code] lowerCamelCase_ = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCamelCase_ = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCamelCase_ = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(lowercase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory.' ) return lowerCamelCase_ = os.path.join( lowercase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase ): copyfile(self.vocab_file , lowercase ) return (out_vocab_file,)
19
1
"""simple docstring""" import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging A__ : str = logging.get_logger(__name__) A__ : List[str] = { 'vocab_file': 'vocab.json', 'tokenizer_config_file': 'tokenizer_config.json', 'merges_file': 'merges.txt', } A__ : List[Any] = { 'vocab_file': { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json' ), }, 'tokenizer_config_file': { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json' ), }, 'merges_file': { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt' ), }, } A__ : Optional[Any] = '</w>' A__ : int = '@@ ' def _snake_case ( lowerCamelCase__ : Any ) -> Optional[int]: lowerCamelCase_ : Union[str, Any] =set() lowerCamelCase_ : int =word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCamelCase_ : List[Any] =char return pairs # Speech2Text2 has no max input length A__ : int = {'facebook/s2t-wav2vec2-large-en-de': 1_024} class snake_case__ ( _A ): _UpperCAmelCase :Any = VOCAB_FILES_NAMES _UpperCAmelCase :Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase :str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase :Optional[int] = ["input_ids", "attention_mask"] def __init__( self : Tuple , snake_case__ : int , snake_case__ : Optional[Any]="<s>" , snake_case__ : str="<pad>" , snake_case__ : Any="</s>" , snake_case__ : Optional[int]="<unk>" , snake_case__ : Dict=False , snake_case__ : str=None , **snake_case__ : Union[str, Any] , ): super().__init__( unk_token=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , do_lower_case=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) lowerCamelCase_ : Optional[Any] =do_lower_case with open(__SCREAMING_SNAKE_CASE , encoding="utf-8" ) as vocab_handle: lowerCamelCase_ : Any =json.load(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ : Union[str, Any] ={v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(F"""No merges files provided. {self.__class__.__name__} can only be used for decoding.""" ) lowerCamelCase_ : Tuple =None lowerCamelCase_ : Union[str, Any] =None else: with open(__SCREAMING_SNAKE_CASE , encoding="utf-8" ) as merges_handle: lowerCamelCase_ : List[Any] =merges_handle.read().split("\n" )[:-1] lowerCamelCase_ : Any =[tuple(merge.split()[:2] ) for merge in merges] lowerCamelCase_ : Tuple =dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) ) lowerCamelCase_ : int ={} @property def UpperCAmelCase__ ( self : str ): return len(self.decoder ) def UpperCAmelCase__ ( self : Any ): return dict(self.encoder , **self.added_tokens_encoder ) def UpperCAmelCase__ ( self : List[Any] , snake_case__ : str ): lowerCamelCase_ : Any =tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] lowerCamelCase_ : Dict =get_pairs(__SCREAMING_SNAKE_CASE ) if not pairs: return token while True: lowerCamelCase_ : int =min(__SCREAMING_SNAKE_CASE , key=lambda snake_case__ : self.bpe_ranks.get(__SCREAMING_SNAKE_CASE , float("inf" ) ) ) if bigram not in self.bpe_ranks: break lowerCamelCase_ , lowerCamelCase_ : str =bigram lowerCamelCase_ : Union[str, Any] =[] lowerCamelCase_ : Optional[int] =0 while i < len(__SCREAMING_SNAKE_CASE ): try: lowerCamelCase_ : Optional[int] =word.index(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCamelCase_ : List[Any] =j if word[i] == first and i < len(__SCREAMING_SNAKE_CASE ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCamelCase_ : int =tuple(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ : Any =new_word if len(__SCREAMING_SNAKE_CASE ) == 1: break else: lowerCamelCase_ : int =get_pairs(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ : str =" ".join(__SCREAMING_SNAKE_CASE ) if word == "\n " + BPE_TOKEN_MERGES: lowerCamelCase_ : Tuple ="\n" + BPE_TOKEN_MERGES if word.endswith(__SCREAMING_SNAKE_CASE ): lowerCamelCase_ : List[str] =word.replace(__SCREAMING_SNAKE_CASE , "" ) lowerCamelCase_ : List[Any] =word.replace(" " , __SCREAMING_SNAKE_CASE ) lowerCamelCase_ : Optional[Any] =word return word def UpperCAmelCase__ ( self : List[str] , snake_case__ : List[str] ): if self.bpe_ranks is None: raise ValueError( "This tokenizer was instantiated without a `merges.txt` file, so" " that it can only be used for decoding, not for encoding." "Make sure to provide `merges.txt` file at instantiation to enable " "encoding." ) if self.do_lower_case: lowerCamelCase_ : Any =text.lower() lowerCamelCase_ : str =text.split() lowerCamelCase_ : Optional[int] =[] for token in text: if token: split_tokens.extend(list(self.bpe(__SCREAMING_SNAKE_CASE ).split(" " ) ) ) return split_tokens def UpperCAmelCase__ ( self : Tuple , snake_case__ : str ): return self.encoder.get(__SCREAMING_SNAKE_CASE , self.encoder.get(self.unk_token ) ) def UpperCAmelCase__ ( self : Tuple , snake_case__ : int ): lowerCamelCase_ : int =self.decoder.get(__SCREAMING_SNAKE_CASE , self.unk_token ) return result def UpperCAmelCase__ ( self : Tuple , snake_case__ : List[str] ): lowerCamelCase_ : Optional[Any] =" ".join(__SCREAMING_SNAKE_CASE ) # make sure @@ tokens are concatenated lowerCamelCase_ : Dict ="".join(string.split(__SCREAMING_SNAKE_CASE ) ) return string def UpperCAmelCase__ ( self : str , snake_case__ : str , snake_case__ : Optional[str] = None ): if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCamelCase_ : Any =os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) lowerCamelCase_ : str =os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__SCREAMING_SNAKE_CASE , ensure_ascii=__SCREAMING_SNAKE_CASE ) + "\n" ) lowerCamelCase_ : str =0 if self.bpe_ranks is None: return (vocab_file,) with open(__SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda snake_case__ : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.""" " Please check that the tokenizer is not corrupted!" ) lowerCamelCase_ : Tuple =token_index writer.write(" ".join(__SCREAMING_SNAKE_CASE ) + "\n" ) index += 1 return (vocab_file, merges_file)
363
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) A__ : Optional[int] = { 'configuration_speech_to_text': ['SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Speech2TextConfig'], 'processing_speech_to_text': ['Speech2TextProcessor'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Dict = ['Speech2TextTokenizer'] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Optional[Any] = ['Speech2TextFeatureExtractor'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Dict = [ 'TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFSpeech2TextForConditionalGeneration', 'TFSpeech2TextModel', 'TFSpeech2TextPreTrainedModel', ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Optional[int] = [ 'SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Speech2TextForConditionalGeneration', 'Speech2TextModel', 'Speech2TextPreTrainedModel', ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys A__ : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
209
0
'''simple docstring''' from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=lowercase_ ) class _snake_case ( lowercase_ ): lowerCAmelCase_ : str = field(default="language-modeling" , metadata={"include_in_asdict_even_if_is_default": True} ) lowerCAmelCase_ : ClassVar[Features] = Features({"text": Value("string" )} ) lowerCAmelCase_ : ClassVar[Features] = Features({} ) lowerCAmelCase_ : str = "text" @property def lowerCAmelCase__ ( self ) -> Dict[str, str]: '''simple docstring''' return {self.text_column: "text"}
85
from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def __magic_name__ ( __a : Dict[str, torch.Tensor] ): '''simple docstring''' UpperCamelCase__ = [] UpperCamelCase__ = [] UpperCamelCase__ = [] for rt in rc.restypes: UpperCamelCase__ = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) UpperCamelCase__ = {name: i for i, name in enumerate(__a )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) UpperCamelCase__ = torch.tensor( __a , dtype=torch.intaa , device=protein["""aatype"""].device , ) UpperCamelCase__ = torch.tensor( __a , dtype=torch.intaa , device=protein["""aatype"""].device , ) UpperCamelCase__ = torch.tensor( __a , dtype=torch.floataa , device=protein["""aatype"""].device , ) UpperCamelCase__ = protein["""aatype"""].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein UpperCamelCase__ = restype_atomaa_to_atomaa[protein_aatype] UpperCamelCase__ = restype_atomaa_mask[protein_aatype] UpperCamelCase__ = residx_atomaa_mask UpperCamelCase__ = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back UpperCamelCase__ = restype_atomaa_to_atomaa[protein_aatype] UpperCamelCase__ = residx_atomaa_to_atomaa.long() # create the corresponding mask UpperCamelCase__ = torch.zeros([21, 37] , dtype=torch.floataa , device=protein["""aatype"""].device ) for restype, restype_letter in enumerate(rc.restypes ): UpperCamelCase__ = rc.restype_atoa[restype_letter] UpperCamelCase__ = rc.residue_atoms[restype_name] for atom_name in atom_names: UpperCamelCase__ = rc.atom_order[atom_name] UpperCamelCase__ = 1 UpperCamelCase__ = restype_atomaa_mask[protein_aatype] UpperCamelCase__ = residx_atomaa_mask return protein def __magic_name__ ( __a : Dict[str, torch.Tensor] ): '''simple docstring''' UpperCamelCase__ = tree_map(lambda __a : torch.tensor(__a , device=batch["""aatype"""].device ) , __a , np.ndarray ) UpperCamelCase__ = tensor_tree_map(lambda __a : np.array(__a ) , make_atomaa_masks(__a ) ) return out
244
0
import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) SCREAMING_SNAKE_CASE :Tuple = [ """cross_validation.py""", """gradient_accumulation.py""", """local_sgd.py""", """multi_process_metrics.py""", """memory.py""", """automatic_gradient_accumulation.py""", """fsdp_with_peak_mem_tracking.py""", """deepspeed_with_config_support.py""", """megatron_lm_gpt_pretraining.py""", ] class __magic_name__ ( unittest.TestCase ): def UpperCAmelCase_ ( self , _lowercase , _lowercase , _lowercase = None , _lowercase = None )-> Any: UpperCamelCase_ = None UpperCamelCase_ = os.path.abspath(os.path.join("examples" , "by_feature" ) ) UpperCamelCase_ = os.path.abspath("examples" ) for item in os.listdir(_lowercase ): if item not in EXCLUDE_EXAMPLES: UpperCamelCase_ = os.path.join(_lowercase , _lowercase ) if os.path.isfile(_lowercase ) and ".py" in item_path: with self.subTest( tested_script=_lowercase , feature_script=_lowercase , tested_section="main()" if parser_only else "training_function()" , ): UpperCamelCase_ = compare_against_test( os.path.join(_lowercase , _lowercase ) , _lowercase , _lowercase , _lowercase ) UpperCamelCase_ = "\n".join(_lowercase ) if special_strings is not None: for string in special_strings: UpperCamelCase_ = diff.replace(_lowercase , "" ) self.assertEqual(_lowercase , "" ) def UpperCAmelCase_ ( self )-> Union[str, Any]: self.one_complete_example("complete_nlp_example.py" , _lowercase ) self.one_complete_example("complete_nlp_example.py" , _lowercase ) def UpperCAmelCase_ ( self )-> Any: UpperCamelCase_ = os.path.abspath(os.path.join("examples" , "cv_example.py" ) ) UpperCamelCase_ = [ " " * 16 + "{\n\n", " " * 20 + "\"accuracy\": eval_metric[\"accuracy\"],\n\n", " " * 20 + "\"f1\": eval_metric[\"f1\"],\n\n", " " * 20 + "\"train_loss\": total_loss.item() / len(train_dataloader),\n\n", " " * 20 + "\"epoch\": epoch,\n\n", " " * 16 + "},\n\n", " " * 16 + "step=epoch,\n", " " * 12, " " * 8 + "for step, batch in enumerate(active_dataloader):\n", ] self.one_complete_example("complete_cv_example.py" , _lowercase , _lowercase , _lowercase ) self.one_complete_example("complete_cv_example.py" , _lowercase , _lowercase , _lowercase ) @mock.patch.dict(os.environ , {"""TESTING_MOCKED_DATALOADERS""": """1"""} ) class __magic_name__ ( snake_case ): UpperCamelCase_ :Optional[int] = False @classmethod def UpperCAmelCase_ ( cls )-> List[str]: super().setUpClass() UpperCamelCase_ = tempfile.mkdtemp() UpperCamelCase_ = os.path.join(cls._tmpdir , "default_config.yml" ) write_basic_config(save_location=cls.configPath ) UpperCamelCase_ = ["accelerate", "launch", "--config_file", cls.configPath] @classmethod def UpperCAmelCase_ ( cls )-> List[Any]: super().tearDownClass() shutil.rmtree(cls._tmpdir ) def UpperCAmelCase_ ( self )-> Optional[int]: UpperCamelCase_ = F"\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n ".split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , "epoch_0" ) ) ) def UpperCAmelCase_ ( self )-> Optional[Any]: UpperCamelCase_ = F"\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n ".split() UpperCamelCase_ = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , "step_2" ) ) ) def UpperCAmelCase_ ( self )-> int: UpperCamelCase_ = F"\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0' )}\n ".split() UpperCamelCase_ = run_command(self._launch_args + testargs , return_stdout=_lowercase ) self.assertNotIn("epoch 0:" , _lowercase ) self.assertIn("epoch 1:" , _lowercase ) def UpperCAmelCase_ ( self )-> str: UpperCamelCase_ = F"\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2' )}\n ".split() UpperCamelCase_ = run_command(self._launch_args + testargs , return_stdout=_lowercase ) if torch.cuda.is_available(): UpperCamelCase_ = torch.cuda.device_count() else: UpperCamelCase_ = 1 if num_processes > 1: self.assertNotIn("epoch 0:" , _lowercase ) self.assertIn("epoch 1:" , _lowercase ) else: self.assertIn("epoch 0:" , _lowercase ) self.assertIn("epoch 1:" , _lowercase ) @slow def UpperCAmelCase_ ( self )-> Optional[int]: UpperCamelCase_ = "\n examples/by_feature/cross_validation.py\n --num_folds 2\n ".split() with mock.patch.dict(os.environ , {"TESTING_MOCKED_DATALOADERS": "0"} ): UpperCamelCase_ = run_command(self._launch_args + testargs , return_stdout=_lowercase ) UpperCamelCase_ = re.findall("({.+})" , _lowercase ) UpperCamelCase_ = [r for r in results if "accuracy" in r][-1] UpperCamelCase_ = ast.literal_eval(_lowercase ) self.assertGreaterEqual(results["accuracy"] , 0.75 ) def UpperCAmelCase_ ( self )-> Optional[Any]: UpperCamelCase_ = ["examples/by_feature/multi_process_metrics.py"] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def UpperCAmelCase_ ( self )-> Optional[Any]: with tempfile.TemporaryDirectory() as tmpdir: UpperCamelCase_ = F"\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n ".split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(_lowercase , "tracking" ) ) ) def UpperCAmelCase_ ( self )-> List[str]: UpperCamelCase_ = ["examples/by_feature/gradient_accumulation.py"] run_command(self._launch_args + testargs ) def UpperCAmelCase_ ( self )-> Optional[int]: UpperCamelCase_ = ["examples/by_feature/local_sgd.py"] run_command(self._launch_args + testargs )
60
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler SCREAMING_SNAKE_CASE :Tuple = 16 SCREAMING_SNAKE_CASE :Optional[Any] = 32 def lowerCAmelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 1_6 , SCREAMING_SNAKE_CASE_ = "bert-base-cased" )-> Optional[int]: """simple docstring""" UpperCamelCase_ = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = load_dataset("glue" , "mrpc" ) def tokenize_function(SCREAMING_SNAKE_CASE_ ): # max_length=None => use the model max length (it's actually the default) UpperCamelCase_ = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset UpperCamelCase_ = datasets.map( SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ , remove_columns=["idx", "sentence1", "sentence2"] , load_from_cache_file=SCREAMING_SNAKE_CASE_ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCamelCase_ = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(SCREAMING_SNAKE_CASE_ ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(SCREAMING_SNAKE_CASE_ , padding="max_length" , max_length=1_2_8 , return_tensors="pt" ) return tokenizer.pad(SCREAMING_SNAKE_CASE_ , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. UpperCamelCase_ = DataLoader( tokenized_datasets["train"] , shuffle=SCREAMING_SNAKE_CASE_ , collate_fn=SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = DataLoader( tokenized_datasets["validation"] , shuffle=SCREAMING_SNAKE_CASE_ , collate_fn=SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ ) return train_dataloader, eval_dataloader def lowerCAmelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Any: """simple docstring""" model.eval() UpperCamelCase_ = 0 for step, batch in enumerate(SCREAMING_SNAKE_CASE_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCamelCase_ = model(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times UpperCamelCase_ , UpperCamelCase_ = accelerator.gather( (predictions, batch["labels"]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(SCREAMING_SNAKE_CASE_ ) - 1: UpperCamelCase_ = predictions[: len(eval_dataloader.dataset ) - samples_seen] UpperCamelCase_ = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=SCREAMING_SNAKE_CASE_ , references=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase_ = metric.compute() return eval_metric["accuracy"] def lowerCAmelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Optional[Any]: """simple docstring""" UpperCamelCase_ = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCamelCase_ = config["lr"] UpperCamelCase_ = int(config["num_epochs"] ) UpperCamelCase_ = int(config["seed"] ) UpperCamelCase_ = int(config["batch_size"] ) UpperCamelCase_ = args.model_name_or_path set_seed(SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ , UpperCamelCase_ = get_dataloaders(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCamelCase_ = AutoModelForSequenceClassification.from_pretrained(SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ ) # Instantiate optimizer UpperCamelCase_ = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) UpperCamelCase_ = optimizer_cls(params=model.parameters() , lr=SCREAMING_SNAKE_CASE_ ) if accelerator.state.deepspeed_plugin is not None: UpperCamelCase_ = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: UpperCamelCase_ = 1 UpperCamelCase_ = (len(SCREAMING_SNAKE_CASE_ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): UpperCamelCase_ = get_linear_schedule_with_warmup( optimizer=SCREAMING_SNAKE_CASE_ , num_warmup_steps=0 , num_training_steps=SCREAMING_SNAKE_CASE_ , ) else: UpperCamelCase_ = DummyScheduler(SCREAMING_SNAKE_CASE_ , total_num_steps=SCREAMING_SNAKE_CASE_ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # We need to keep track of how many total steps we have iterated over UpperCamelCase_ = 0 # We also need to keep track of the stating epoch so files are named properly UpperCamelCase_ = 0 UpperCamelCase_ = evaluate.load("glue" , "mrpc" ) UpperCamelCase_ = num_epochs if args.partial_train_epoch is not None: UpperCamelCase_ = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) UpperCamelCase_ = args.resume_from_checkpoint.split("epoch_" )[1] UpperCamelCase_ = "" for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break UpperCamelCase_ = int(SCREAMING_SNAKE_CASE_ ) + 1 UpperCamelCase_ = evaluation_loop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) accelerator.print("resumed checkpoint performance:" , SCREAMING_SNAKE_CASE_ ) accelerator.print("resumed checkpoint's scheduler's lr:" , lr_scheduler.get_lr()[0] ) accelerator.print("resumed optimizers's lr:" , optimizer.param_groups[0]["lr"] ) with open(os.path.join(args.output_dir , f"state_{starting_epoch-1}.json" ) , "r" ) as f: UpperCamelCase_ = json.load(SCREAMING_SNAKE_CASE_ ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model UpperCamelCase_ = {} for epoch in range(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): model.train() for step, batch in enumerate(SCREAMING_SNAKE_CASE_ ): UpperCamelCase_ = model(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = outputs.loss UpperCamelCase_ = loss / gradient_accumulation_steps accelerator.backward(SCREAMING_SNAKE_CASE_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 UpperCamelCase_ = f"epoch_{epoch}" UpperCamelCase_ = os.path.join(args.output_dir , SCREAMING_SNAKE_CASE_ ) accelerator.save_state(SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = evaluation_loop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = accuracy UpperCamelCase_ = lr_scheduler.get_lr()[0] UpperCamelCase_ = optimizer.param_groups[0]["lr"] UpperCamelCase_ = epoch UpperCamelCase_ = overall_step accelerator.print(f"epoch {epoch}:" , SCREAMING_SNAKE_CASE_ ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , f"state_{epoch}.json" ) , "w" ) as f: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase( )-> Union[str, Any]: """simple docstring""" UpperCamelCase_ = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." ) parser.add_argument( "--model_name_or_path" , type=SCREAMING_SNAKE_CASE_ , default="bert-base-cased" , help="Path to pretrained model or model identifier from huggingface.co/models." , required=SCREAMING_SNAKE_CASE_ , ) parser.add_argument( "--output_dir" , type=SCREAMING_SNAKE_CASE_ , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--resume_from_checkpoint" , type=SCREAMING_SNAKE_CASE_ , default=SCREAMING_SNAKE_CASE_ , help="If the training should continue from a checkpoint folder." , ) parser.add_argument( "--partial_train_epoch" , type=SCREAMING_SNAKE_CASE_ , default=SCREAMING_SNAKE_CASE_ , help="If passed, the training will stop after this number of epochs." , ) parser.add_argument( "--num_epochs" , type=SCREAMING_SNAKE_CASE_ , default=2 , help="Number of train epochs." , ) UpperCamelCase_ = parser.parse_args() UpperCamelCase_ = {"lr": 2E-5, "num_epochs": args.num_epochs, "seed": 4_2, "batch_size": 1_6} training_function(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": main()
60
1
import math from numpy import inf from scipy.integrate import quad def _snake_case ( lowerCAmelCase : float ): """simple docstring""" if num <= 0: raise ValueError("math domain error" ) return quad(_UpperCAmelCase , 0 , _UpperCAmelCase , args=(_UpperCAmelCase) )[0] def _snake_case ( lowerCAmelCase : float , lowerCAmelCase : float ): """simple docstring""" return math.pow(_UpperCAmelCase , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
18
'''simple docstring''' def UpperCamelCase_ ( _UpperCAmelCase : list ) -> list: """simple docstring""" _UpperCAmelCase : List[Any] = len(_UpperCAmelCase ) for _ in range(_UpperCAmelCase ): for i in range(_ % 2 , arr_size - 1 , 2 ): if arr[i + 1] < arr[i]: _UpperCAmelCase , _UpperCAmelCase : int = arr[i + 1], arr[i] return arr if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Optional[Any] = list(range(10, 0, -1)) print(F'Original: {arr}. Sorted: {odd_even_transposition(arr)}')
31
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A_ : List[Any] ={ """configuration_bloom""": ["""BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BloomConfig""", """BloomOnnxConfig"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : str =["""BloomTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : int =[ """BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST""", """BloomForCausalLM""", """BloomModel""", """BloomPreTrainedModel""", """BloomForSequenceClassification""", """BloomForTokenClassification""", """BloomForQuestionAnswering""", ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys A_ : Any =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
80
"""simple docstring""" import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor A_ : Union[str, Any] =logging.get_logger(__name__) class __a ( lowerCAmelCase__ ): def __init__( self , *a__ , **a__ ): warnings.warn( 'The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use DPTImageProcessor instead.' , a__ , ) super().__init__(*a__ , **a__ )
80
1
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING UpperCAmelCase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( lowerCamelCase__ ): __a = '''upernet''' def __init__( self : Dict , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : Any=512 , _lowerCamelCase : Optional[Any]=0.0_2 , _lowerCamelCase : List[str]=[1, 2, 3, 6] , _lowerCamelCase : int=True , _lowerCamelCase : str=0.4 , _lowerCamelCase : Optional[Any]=384 , _lowerCamelCase : int=256 , _lowerCamelCase : Union[str, Any]=1 , _lowerCamelCase : Optional[int]=False , _lowerCamelCase : Optional[Any]=255 , **_lowerCamelCase : Any , ): super().__init__(**lowerCAmelCase__ ) if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) _snake_case = CONFIG_MAPPING["""resnet"""](out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _snake_case = backbone_config.get('''model_type''' ) _snake_case = CONFIG_MAPPING[backbone_model_type] _snake_case = config_class.from_dict(lowerCAmelCase__ ) _snake_case = backbone_config _snake_case = hidden_size _snake_case = initializer_range _snake_case = pool_scales _snake_case = use_auxiliary_head _snake_case = auxiliary_loss_weight _snake_case = auxiliary_in_channels _snake_case = auxiliary_channels _snake_case = auxiliary_num_convs _snake_case = auxiliary_concat_input _snake_case = loss_ignore_index def lowercase ( self : List[str] ): _snake_case = copy.deepcopy(self.__dict__ ) _snake_case = self.backbone_config.to_dict() _snake_case = self.__class__.model_type return output
288
'''simple docstring''' UpperCamelCase__ : Optional[Any] = [ (10_00, '''M'''), (9_00, '''CM'''), (5_00, '''D'''), (4_00, '''CD'''), (1_00, '''C'''), (90, '''XC'''), (50, '''L'''), (40, '''XL'''), (10, '''X'''), (9, '''IX'''), (5, '''V'''), (4, '''IV'''), (1, '''I'''), ] def lowerCAmelCase_ ( _lowerCamelCase: str ): __SCREAMING_SNAKE_CASE : List[Any] = {"""I""": 1, """V""": 5, """X""": 10, """L""": 50, """C""": 1_00, """D""": 5_00, """M""": 10_00} __SCREAMING_SNAKE_CASE : Tuple = 0 __SCREAMING_SNAKE_CASE : str = 0 while place < len(_lowerCamelCase ): if (place + 1 < len(_lowerCamelCase )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def lowerCAmelCase_ ( _lowerCamelCase: int ): __SCREAMING_SNAKE_CASE : Any = [] for arabic, roman in ROMAN: ((__SCREAMING_SNAKE_CASE) , (__SCREAMING_SNAKE_CASE)) : str = divmod(_lowerCamelCase , _lowerCamelCase ) result.append(roman * factor ) if number == 0: break return "".join(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
112
0
import numpy as np class __lowercase : """simple docstring""" def __init__( self ) -> Union[str, Any]: snake_case : str = (0, 0) snake_case : int = None snake_case : Tuple = 0 snake_case : int = 0 snake_case : Union[str, Any] = 0 def __eq__( self , A ) -> Dict: return self.position == cell.position def UpperCAmelCase ( self ) -> Dict: print(self.position ) class __lowercase : """simple docstring""" def __init__( self , A=(5, 5) ) -> Dict: snake_case : Union[str, Any] = np.zeros(A ) snake_case : int = world_size[0] snake_case : Any = world_size[1] def UpperCAmelCase ( self ) -> Any: print(self.w ) def UpperCAmelCase ( self , A ) -> Tuple: snake_case : Any = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] snake_case : Dict = cell.position[0] snake_case : Optional[Any] = cell.position[1] snake_case : Union[str, Any] = [] for n in neughbour_cord: snake_case : List[Any] = current_x + n[0] snake_case : Optional[int] = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: snake_case : Optional[Any] = Cell() snake_case : Dict = (x, y) snake_case : List[Any] = cell neighbours.append(A ) return neighbours def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> List[str]: snake_case : Any = [] snake_case : Optional[Any] = [] _open.append(lowercase ) while _open: snake_case : Optional[Any] = np.argmin([n.f for n in _open] ) snake_case : Union[str, Any] = _open[min_f] _closed.append(_open.pop(lowercase ) ) if current == goal: break for n in world.get_neigbours(lowercase ): for c in _closed: if c == n: continue snake_case : str = current.g + 1 snake_case : Any = n.position snake_case : Tuple = goal.position snake_case : int = (ya - ya) ** 2 + (xa - xa) ** 2 snake_case : Optional[int] = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(lowercase ) snake_case : Any = [] while current.parent is not None: path.append(current.position ) snake_case : Tuple = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": lowerCamelCase : List[Any] = Gridworld() # Start position and goal lowerCamelCase : Optional[Any] = Cell() lowerCamelCase : List[Any] = (0, 0) lowerCamelCase : Optional[Any] = Cell() lowerCamelCase : Optional[Any] = (4, 4) print(f"""path from {start.position} to {goal.position}""") lowerCamelCase : Union[str, Any] = astar(world, start, goal) # Just for visual reasons. for i in s: lowerCamelCase : Optional[Any] = 1 print(world.w)
364
import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __lowercase (UpperCamelCase__ , unittest.TestCase ): """simple docstring""" _snake_case = ConsistencyModelPipeline _snake_case = UNCONDITIONAL_IMAGE_GENERATION_PARAMS _snake_case = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt _snake_case = frozenset( [ """num_inference_steps""", """generator""", """latents""", """output_type""", """return_dict""", """callback""", """callback_steps""", ] ) @property def UpperCAmelCase ( self ) -> List[str]: snake_case : Dict = UNetaDModel.from_pretrained( """diffusers/consistency-models-test""" , subfolder="""test_unet""" , ) return unet @property def UpperCAmelCase ( self ) -> Any: snake_case : Optional[int] = UNetaDModel.from_pretrained( """diffusers/consistency-models-test""" , subfolder="""test_unet_class_cond""" , ) return unet def UpperCAmelCase ( self , A=False ) -> Optional[Any]: if class_cond: snake_case : List[str] = self.dummy_cond_unet else: snake_case : Optional[Any] = self.dummy_uncond_unet # Default to CM multistep sampler snake_case : Optional[Any] = CMStochasticIterativeScheduler( num_train_timesteps=4_0 , sigma_min=0.0_02 , sigma_max=80.0 , ) snake_case : Dict = { """unet""": unet, """scheduler""": scheduler, } return components def UpperCAmelCase ( self , A , A=0 ) -> Optional[int]: if str(A ).startswith("""mps""" ): snake_case : Union[str, Any] = torch.manual_seed(A ) else: snake_case : Dict = torch.Generator(device=A ).manual_seed(A ) snake_case : Tuple = { """batch_size""": 1, """num_inference_steps""": None, """timesteps""": [2_2, 0], """generator""": generator, """output_type""": """np""", } return inputs def UpperCAmelCase ( self ) -> List[Any]: snake_case : Union[str, Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator snake_case : List[Any] = self.get_dummy_components() snake_case : Dict = ConsistencyModelPipeline(**A ) snake_case : int = pipe.to(A ) pipe.set_progress_bar_config(disable=A ) snake_case : Any = self.get_dummy_inputs(A ) snake_case : Tuple = pipe(**A ).images assert image.shape == (1, 3_2, 3_2, 3) snake_case : Dict = image[0, -3:, -3:, -1] snake_case : Tuple = np.array([0.35_72, 0.62_73, 0.40_31, 0.39_61, 0.43_21, 0.57_30, 0.52_66, 0.47_80, 0.50_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def UpperCAmelCase ( self ) -> List[Any]: snake_case : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator snake_case : Tuple = self.get_dummy_components(class_cond=A ) snake_case : Dict = ConsistencyModelPipeline(**A ) snake_case : List[Any] = pipe.to(A ) pipe.set_progress_bar_config(disable=A ) snake_case : str = self.get_dummy_inputs(A ) snake_case : Optional[int] = 0 snake_case : List[Any] = pipe(**A ).images assert image.shape == (1, 3_2, 3_2, 3) snake_case : Optional[int] = image[0, -3:, -3:, -1] snake_case : Dict = np.array([0.35_72, 0.62_73, 0.40_31, 0.39_61, 0.43_21, 0.57_30, 0.52_66, 0.47_80, 0.50_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def UpperCAmelCase ( self ) -> Dict: snake_case : str = """cpu""" # ensure determinism for the device-dependent torch.Generator snake_case : Optional[int] = self.get_dummy_components() snake_case : List[str] = ConsistencyModelPipeline(**A ) snake_case : Dict = pipe.to(A ) pipe.set_progress_bar_config(disable=A ) snake_case : Dict = self.get_dummy_inputs(A ) snake_case : Tuple = 1 snake_case : Optional[Any] = None snake_case : List[Any] = pipe(**A ).images assert image.shape == (1, 3_2, 3_2, 3) snake_case : Optional[Any] = image[0, -3:, -3:, -1] snake_case : List[str] = np.array([0.50_04, 0.50_04, 0.49_94, 0.50_08, 0.49_76, 0.50_18, 0.49_90, 0.49_82, 0.49_87] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def UpperCAmelCase ( self ) -> Optional[Any]: snake_case : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator snake_case : Dict = self.get_dummy_components(class_cond=A ) snake_case : List[Any] = ConsistencyModelPipeline(**A ) snake_case : List[Any] = pipe.to(A ) pipe.set_progress_bar_config(disable=A ) snake_case : Optional[Any] = self.get_dummy_inputs(A ) snake_case : Optional[Any] = 1 snake_case : Any = None snake_case : Optional[int] = 0 snake_case : List[Any] = pipe(**A ).images assert image.shape == (1, 3_2, 3_2, 3) snake_case : Optional[int] = image[0, -3:, -3:, -1] snake_case : List[str] = np.array([0.50_04, 0.50_04, 0.49_94, 0.50_08, 0.49_76, 0.50_18, 0.49_90, 0.49_82, 0.49_87] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> Dict: super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase ( self , A=0 , A=False , A="cpu" , A=torch.floataa , A=(1, 3, 6_4, 6_4) ) -> int: snake_case : Union[str, Any] = torch.manual_seed(A ) snake_case : Tuple = { """num_inference_steps""": None, """timesteps""": [2_2, 0], """class_labels""": 0, """generator""": generator, """output_type""": """np""", } if get_fixed_latents: snake_case : Optional[int] = self.get_fixed_latents(seed=A , device=A , dtype=A , shape=A ) snake_case : int = latents return inputs def UpperCAmelCase ( self , A=0 , A="cpu" , A=torch.floataa , A=(1, 3, 6_4, 6_4) ) -> Any: if type(A ) == str: snake_case : List[str] = torch.device(A ) snake_case : Any = torch.Generator(device=A ).manual_seed(A ) snake_case : Dict = randn_tensor(A , generator=A , device=A , dtype=A ) return latents def UpperCAmelCase ( self ) -> Dict: snake_case : List[Any] = UNetaDModel.from_pretrained("""diffusers/consistency_models""" , subfolder="""diffusers_cd_imagenet64_l2""" ) snake_case : Optional[int] = CMStochasticIterativeScheduler( num_train_timesteps=4_0 , sigma_min=0.0_02 , sigma_max=80.0 , ) snake_case : Any = ConsistencyModelPipeline(unet=A , scheduler=A ) pipe.to(torch_device=A ) pipe.set_progress_bar_config(disable=A ) snake_case : Tuple = self.get_inputs() snake_case : List[str] = pipe(**A ).images assert image.shape == (1, 6_4, 6_4, 3) snake_case : Optional[Any] = image[0, -3:, -3:, -1] snake_case : Union[str, Any] = np.array([0.08_88, 0.08_81, 0.06_66, 0.04_79, 0.02_92, 0.01_95, 0.02_01, 0.01_63, 0.02_54] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def UpperCAmelCase ( self ) -> Tuple: snake_case : Tuple = UNetaDModel.from_pretrained("""diffusers/consistency_models""" , subfolder="""diffusers_cd_imagenet64_l2""" ) snake_case : int = CMStochasticIterativeScheduler( num_train_timesteps=4_0 , sigma_min=0.0_02 , sigma_max=80.0 , ) snake_case : List[str] = ConsistencyModelPipeline(unet=A , scheduler=A ) pipe.to(torch_device=A ) pipe.set_progress_bar_config(disable=A ) snake_case : Union[str, Any] = self.get_inputs() snake_case : Tuple = 1 snake_case : List[str] = None snake_case : Any = pipe(**A ).images assert image.shape == (1, 6_4, 6_4, 3) snake_case : List[Any] = image[0, -3:, -3:, -1] snake_case : Union[str, Any] = np.array([0.03_40, 0.01_52, 0.00_63, 0.02_67, 0.02_21, 0.01_07, 0.04_16, 0.01_86, 0.02_17] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 @require_torch_a def UpperCAmelCase ( self ) -> Optional[int]: snake_case : List[Any] = UNetaDModel.from_pretrained("""diffusers/consistency_models""" , subfolder="""diffusers_cd_imagenet64_l2""" ) snake_case : Optional[Any] = CMStochasticIterativeScheduler( num_train_timesteps=4_0 , sigma_min=0.0_02 , sigma_max=80.0 , ) snake_case : List[Any] = ConsistencyModelPipeline(unet=A , scheduler=A ) pipe.to(torch_device=A , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=A ) snake_case : List[str] = self.get_inputs(get_fixed_latents=A , device=A ) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=A , enable_math=A , enable_mem_efficient=A ): snake_case : Tuple = pipe(**A ).images assert image.shape == (1, 6_4, 6_4, 3) snake_case : Union[str, Any] = image[0, -3:, -3:, -1] snake_case : int = np.array([0.18_75, 0.14_28, 0.12_89, 0.21_51, 0.20_92, 0.14_77, 0.18_77, 0.16_41, 0.13_53] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @require_torch_a def UpperCAmelCase ( self ) -> Optional[Any]: snake_case : Optional[Any] = UNetaDModel.from_pretrained("""diffusers/consistency_models""" , subfolder="""diffusers_cd_imagenet64_l2""" ) snake_case : Any = CMStochasticIterativeScheduler( num_train_timesteps=4_0 , sigma_min=0.0_02 , sigma_max=80.0 , ) snake_case : Dict = ConsistencyModelPipeline(unet=A , scheduler=A ) pipe.to(torch_device=A , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=A ) snake_case : Optional[int] = self.get_inputs(get_fixed_latents=A , device=A ) snake_case : Union[str, Any] = 1 snake_case : Dict = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=A , enable_math=A , enable_mem_efficient=A ): snake_case : List[Any] = pipe(**A ).images assert image.shape == (1, 6_4, 6_4, 3) snake_case : List[Any] = image[0, -3:, -3:, -1] snake_case : Dict = np.array([0.16_63, 0.19_48, 0.22_75, 0.16_80, 0.12_04, 0.12_45, 0.18_58, 0.13_38, 0.20_95] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
176
0
import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class __lowerCAmelCase ( tf.keras.optimizers.schedules.LearningRateSchedule ): """simple docstring""" def __init__( self : List[str] , _lowerCAmelCase : float , _lowerCAmelCase : Callable , _lowerCAmelCase : int , _lowerCAmelCase : float = 1.0 , _lowerCAmelCase : str = None , ) -> List[Any]: """simple docstring""" super().__init__() snake_case_ = initial_learning_rate snake_case_ = warmup_steps snake_case_ = power snake_case_ = decay_schedule_fn snake_case_ = name def __call__( self : List[Any] , _lowerCAmelCase : str ) -> int: """simple docstring""" with tf.name_scope(self.name or "WarmUp" ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. snake_case_ = tf.cast(_lowerCAmelCase , tf.floataa ) snake_case_ = tf.cast(self.warmup_steps , tf.floataa ) snake_case_ = global_step_float / warmup_steps_float snake_case_ = self.initial_learning_rate * tf.math.pow(_lowerCAmelCase , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=_lowerCAmelCase , ) def lowerCAmelCase__ ( self : int ) -> Optional[int]: """simple docstring""" return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def _lowerCAmelCase ( lowerCAmelCase_ :float , lowerCAmelCase_ :int , lowerCAmelCase_ :int , lowerCAmelCase_ :float = 0.0 , lowerCAmelCase_ :float = 0.9 , lowerCAmelCase_ :float = 0.9_9_9 , lowerCAmelCase_ :float = 1e-8 , lowerCAmelCase_ :Optional[float] = None , lowerCAmelCase_ :Optional[float] = None , lowerCAmelCase_ :float = 0.0 , lowerCAmelCase_ :float = 1.0 , lowerCAmelCase_ :Optional[List[str]] = None , )->Dict: '''simple docstring''' snake_case_ = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=lowerCAmelCase_ , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=lowerCAmelCase_ , ) if num_warmup_steps: snake_case_ = WarmUp( initial_learning_rate=lowerCAmelCase_ , decay_schedule_fn=lowerCAmelCase_ , warmup_steps=lowerCAmelCase_ , ) if weight_decay_rate > 0.0: snake_case_ = AdamWeightDecay( learning_rate=lowerCAmelCase_ , weight_decay_rate=lowerCAmelCase_ , beta_a=lowerCAmelCase_ , beta_a=lowerCAmelCase_ , epsilon=lowerCAmelCase_ , clipnorm=lowerCAmelCase_ , global_clipnorm=lowerCAmelCase_ , exclude_from_weight_decay=["LayerNorm", "layer_norm", "bias"] , include_in_weight_decay=lowerCAmelCase_ , ) else: snake_case_ = tf.keras.optimizers.Adam( learning_rate=lowerCAmelCase_ , beta_a=lowerCAmelCase_ , beta_a=lowerCAmelCase_ , epsilon=lowerCAmelCase_ , clipnorm=lowerCAmelCase_ , global_clipnorm=lowerCAmelCase_ , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class __lowerCAmelCase ( a ): """simple docstring""" def __init__( self : Union[str, Any] , _lowerCAmelCase : Union[float, tf.keras.optimizers.schedules.LearningRateSchedule] = 0.001 , _lowerCAmelCase : float = 0.9 , _lowerCAmelCase : float = 0.999 , _lowerCAmelCase : float = 1e-7 , _lowerCAmelCase : bool = False , _lowerCAmelCase : float = 0.0 , _lowerCAmelCase : Optional[List[str]] = None , _lowerCAmelCase : Optional[List[str]] = None , _lowerCAmelCase : str = "AdamWeightDecay" , **_lowerCAmelCase : List[Any] , ) -> Any: """simple docstring""" super().__init__(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ) snake_case_ = weight_decay_rate snake_case_ = include_in_weight_decay snake_case_ = exclude_from_weight_decay @classmethod def lowerCAmelCase__ ( cls : Optional[int] , _lowerCAmelCase : Any ) -> Optional[int]: """simple docstring""" snake_case_ = {"WarmUp": WarmUp} return super(_lowerCAmelCase , cls ).from_config(_lowerCAmelCase , custom_objects=_lowerCAmelCase ) def lowerCAmelCase__ ( self : Optional[int] , _lowerCAmelCase : int , _lowerCAmelCase : Any , _lowerCAmelCase : str ) -> Optional[Any]: """simple docstring""" super(_lowerCAmelCase , self )._prepare_local(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) snake_case_ = tf.constant( self.weight_decay_rate , name="adam_weight_decay_rate" ) def lowerCAmelCase__ ( self : int , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[int] ) -> int: """simple docstring""" snake_case_ = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]["weight_decay_rate"] , use_locking=self._use_locking , ) return tf.no_op() def lowerCAmelCase__ ( self : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : Union[str, Any]=None , **_lowerCAmelCase : Optional[int] ) -> List[str]: """simple docstring""" snake_case_ , snake_case_ = list(zip(*_lowerCAmelCase ) ) return super(_lowerCAmelCase , self ).apply_gradients(zip(_lowerCAmelCase , _lowerCAmelCase ) , name=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self : Tuple , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[str] ) -> str: """simple docstring""" if apply_state is None: return self._decayed_lr_t[var_dtype], {} snake_case_ = apply_state or {} snake_case_ = apply_state.get((var_device, var_dtype) ) if coefficients is None: snake_case_ = self._fallback_apply_state(_lowerCAmelCase , _lowerCAmelCase ) snake_case_ = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def lowerCAmelCase__ ( self : int , _lowerCAmelCase : str , _lowerCAmelCase : Tuple , _lowerCAmelCase : Tuple=None ) -> Optional[int]: """simple docstring""" snake_case_ , snake_case_ = self._get_lr(var.device , var.dtype.base_dtype , _lowerCAmelCase ) snake_case_ = self._decay_weights_op(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) with tf.control_dependencies([decay] ): return super(_lowerCAmelCase , self )._resource_apply_dense(_lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self : int , _lowerCAmelCase : str , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[str]=None ) -> Optional[Any]: """simple docstring""" snake_case_ , snake_case_ = self._get_lr(var.device , var.dtype.base_dtype , _lowerCAmelCase ) snake_case_ = self._decay_weights_op(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) with tf.control_dependencies([decay] ): return super(_lowerCAmelCase , self )._resource_apply_sparse(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" snake_case_ = super().get_config() config.update({"weight_decay_rate": self.weight_decay_rate} ) return config def lowerCAmelCase__ ( self : int , _lowerCAmelCase : Union[str, Any] ) -> int: """simple docstring""" if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(_lowerCAmelCase , _lowerCAmelCase ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(_lowerCAmelCase , _lowerCAmelCase ) is not None: return False return True class __lowerCAmelCase ( a ): """simple docstring""" def __init__( self : int ) -> Union[str, Any]: """simple docstring""" snake_case_ = [] snake_case_ = None @property def lowerCAmelCase__ ( self : Dict ) -> int: """simple docstring""" if self._accum_steps is None: snake_case_ = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=_lowerCAmelCase , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def lowerCAmelCase__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" if not self._gradients: raise ValueError("The accumulator should be called first to initialize the gradients" ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self : List[str] , _lowerCAmelCase : Optional[Any] ) -> str: """simple docstring""" if not self._gradients: snake_case_ = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(_lowerCAmelCase ) , trainable=_lowerCAmelCase , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(_lowerCAmelCase ) != len(self._gradients ): raise ValueError(F'''Expected {len(self._gradients )} gradients, but got {len(_lowerCAmelCase )}''' ) for accum_gradient, gradient in zip(self._gradients , _lowerCAmelCase ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(_lowerCAmelCase ) self._accum_steps.assign_add(1 ) def lowerCAmelCase__ ( self : int ) -> List[Any]: """simple docstring""" if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(_lowerCAmelCase ) )
159
from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
159
1
import warnings from ...utils import logging from .image_processing_imagegpt import ImageGPTImageProcessor UpperCamelCase__ = logging.get_logger(__name__) class A ( UpperCAmelCase_ ): def __init__(self : Dict , *__UpperCAmelCase : str , **__UpperCAmelCase : str ) -> None: """simple docstring""" warnings.warn( "The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use ImageGPTImageProcessor instead." , __UpperCAmelCase , ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
354
import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase__ = '▁' UpperCamelCase__ = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class A ( UpperCAmelCase_ , unittest.TestCase ): __UpperCAmelCase : int = BigBirdTokenizer __UpperCAmelCase : Optional[int] = BigBirdTokenizerFast __UpperCAmelCase : Union[str, Any] = True __UpperCAmelCase : List[Any] = True def lowercase_ (self : Dict ) -> List[str]: """simple docstring""" super().setUp() UpperCAmelCase__ = self.tokenizer_class(__UpperCAmelCase , keep_accents=__UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase_ (self : int ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = "<s>" UpperCAmelCase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCAmelCase ) , __UpperCAmelCase ) def lowercase_ (self : Any ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "[MASK]" ) self.assertEqual(len(__UpperCAmelCase ) , 1_0_0_4 ) def lowercase_ (self : Optional[Any] ) -> Optional[Any]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_0 ) def lowercase_ (self : Union[str, Any] ) -> Any: """simple docstring""" if not self.test_rust_tokenizer: return UpperCAmelCase__ = self.get_tokenizer() UpperCAmelCase__ = self.get_rust_tokenizer() UpperCAmelCase__ = "I was born in 92000, and this is falsé." UpperCAmelCase__ = tokenizer.tokenize(__UpperCAmelCase ) UpperCAmelCase__ = rust_tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) UpperCAmelCase__ = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) UpperCAmelCase__ = rust_tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) UpperCAmelCase__ = self.get_rust_tokenizer() UpperCAmelCase__ = tokenizer.encode(__UpperCAmelCase ) UpperCAmelCase__ = rust_tokenizer.encode(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def lowercase_ (self : str ) -> Tuple: """simple docstring""" UpperCAmelCase__ = BigBirdTokenizer(__UpperCAmelCase , keep_accents=__UpperCAmelCase ) UpperCAmelCase__ = tokenizer.tokenize("This is a test" ) self.assertListEqual(__UpperCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2] , ) UpperCAmelCase__ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) UpperCAmelCase__ = tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) self.assertListEqual( __UpperCAmelCase , [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 0, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 0, 4] , ) UpperCAmelCase__ = tokenizer.convert_ids_to_tokens(__UpperCAmelCase ) self.assertListEqual( __UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def lowercase_ (self : Optional[int] ) -> Union[str, Any]: """simple docstring""" return BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base" ) @slow def lowercase_ (self : str ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = "Hello World!" UpperCAmelCase__ = [6_5, 1_8_5_3_6, 2_2_6_0, 1_0_1, 6_6] self.assertListEqual(__UpperCAmelCase , self.big_tokenizer.encode(__UpperCAmelCase ) ) @slow def lowercase_ (self : List[Any] ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) # fmt: off UpperCAmelCase__ = [6_5, 8_7_1, 4_1_9, 3_5_8, 9_4_6, 9_9_1, 2_5_2_1, 4_5_2, 3_5_8, 1_3_5_7, 3_8_7, 7_7_5_1, 3_5_3_6, 1_1_2, 9_8_5, 4_5_6, 1_2_6, 8_6_5, 9_3_8, 5_4_0_0, 5_7_3_4, 4_5_8, 1_3_6_8, 4_6_7, 7_8_6, 2_4_6_2, 5_2_4_6, 1_1_5_9, 6_3_3, 8_6_5, 4_5_1_9, 4_5_7, 5_8_2, 8_5_2, 2_5_5_7, 4_2_7, 9_1_6, 5_0_8, 4_0_5, 3_4_3_2_4, 4_9_7, 3_9_1, 4_0_8, 1_1_3_4_2, 1_2_4_4, 3_8_5, 1_0_0, 9_3_8, 9_8_5, 4_5_6, 5_7_4, 3_6_2, 1_2_5_9_7, 3_2_0_0, 3_1_2_9, 1_1_7_2, 6_6] # noqa: E231 # fmt: on self.assertListEqual(__UpperCAmelCase , self.big_tokenizer.encode(__UpperCAmelCase ) ) @require_torch @slow def lowercase_ (self : List[str] ) -> int: """simple docstring""" import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence UpperCAmelCase__ = list(self.big_tokenizer.get_vocab().keys() )[:1_0] UpperCAmelCase__ = " ".join(__UpperCAmelCase ) UpperCAmelCase__ = self.big_tokenizer.encode_plus(__UpperCAmelCase , return_tensors="pt" , return_token_type_ids=__UpperCAmelCase ) UpperCAmelCase__ = self.big_tokenizer.batch_encode_plus( [sequence + " " + sequence] , return_tensors="pt" , return_token_type_ids=__UpperCAmelCase ) UpperCAmelCase__ = BigBirdConfig(attention_type="original_full" ) UpperCAmelCase__ = BigBirdModel(__UpperCAmelCase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**__UpperCAmelCase ) model(**__UpperCAmelCase ) @slow def lowercase_ (self : str ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base" ) UpperCAmelCase__ = tokenizer.decode(tokenizer("Paris is the [MASK]." ).input_ids ) self.assertTrue(decoded_text == "[CLS] Paris is the[MASK].[SEP]" ) @slow def lowercase_ (self : Optional[Any] ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = {"input_ids": [[6_5, 3_9_2_8_6, 4_5_8, 3_6_3_3_5, 2_0_0_1, 4_5_6, 1_3_0_7_3, 1_3_2_6_6, 4_5_5, 1_1_3, 7_7_4_6, 1_7_4_1, 1_1_1_5_7, 3_9_1, 1_3_0_7_3, 1_3_2_6_6, 4_5_5, 1_1_3, 3_9_6_7, 3_5_4_1_2, 1_1_3, 4_9_3_6, 1_0_9, 3_8_7_0, 2_3_7_7, 1_1_3, 3_0_0_8_4, 4_5_7_2_0, 4_5_8, 1_3_4, 1_7_4_9_6, 1_1_2, 5_0_3, 1_1_6_7_2, 1_1_3, 1_1_8, 1_1_2, 5_6_6_5, 1_3_3_4_7, 3_8_6_8_7, 1_1_2, 1_4_9_6, 3_1_3_8_9, 1_1_2, 3_2_6_8, 4_7_2_6_4, 1_3_4, 9_6_2, 1_1_2, 1_6_3_7_7, 8_0_3_5, 2_3_1_3_0, 4_3_0, 1_2_1_6_9, 1_5_5_1_8, 2_8_5_9_2, 4_5_8, 1_4_6, 4_1_6_9_7, 1_0_9, 3_9_1, 1_2_1_6_9, 1_5_5_1_8, 1_6_6_8_9, 4_5_8, 1_4_6, 4_1_3_5_8, 1_0_9, 4_5_2, 7_2_6, 4_0_3_4, 1_1_1, 7_6_3, 3_5_4_1_2, 5_0_8_2, 3_8_8, 1_9_0_3, 1_1_1, 9_0_5_1, 3_9_1, 2_8_7_0, 4_8_9_1_8, 1_9_0_0, 1_1_2_3, 5_5_0, 9_9_8, 1_1_2, 9_5_8_6, 1_5_9_8_5, 4_5_5, 3_9_1, 4_1_0, 2_2_9_5_5, 3_7_6_3_6, 1_1_4, 6_6], [6_5, 4_4_8, 1_7_4_9_6, 4_1_9, 3_6_6_3, 3_8_5, 7_6_3, 1_1_3, 2_7_5_3_3, 2_8_7_0, 3_2_8_3, 1_3_0_4_3, 1_6_3_9, 2_4_7_1_3, 5_2_3, 6_5_6, 2_4_0_1_3, 1_8_5_5_0, 2_5_2_1, 5_1_7, 2_7_0_1_4, 2_1_2_4_4, 4_2_0, 1_2_1_2, 1_4_6_5, 3_9_1, 9_2_7, 4_8_3_3, 3_8_8, 5_7_8, 1_1_7_8_6, 1_1_4, 6_6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [6_5, 4_8_4, 2_1_6_9, 7_6_8_7, 2_1_9_3_2, 1_8_1_4_6, 7_2_6, 3_6_3, 1_7_0_3_2, 3_3_9_1, 1_1_4, 6_6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__UpperCAmelCase , model_name="google/bigbird-roberta-base" , revision="215c99f1600e06f83acce68422f2035b2b5c3510" , )
143
0
'''simple docstring''' from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING lowerCamelCase_ = logging.get_logger(__name__) @add_end_docstrings(snake_case_ ) class _UpperCAmelCase ( snake_case_ ): """simple docstring""" def __init__( self : List[str] , *__UpperCAmelCase : str , **__UpperCAmelCase : Optional[int] ): '''simple docstring''' super().__init__(*__UpperCAmelCase , **__UpperCAmelCase ) requires_backends(self , "vision" ) self.check_model_type(__UpperCAmelCase ) def __call__( self : List[Any] , __UpperCAmelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **__UpperCAmelCase : Any ): '''simple docstring''' return super().__call__(__UpperCAmelCase , **__UpperCAmelCase ) def lowerCAmelCase ( self : Tuple , **__UpperCAmelCase : str ): '''simple docstring''' return {}, {}, {} def lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : Optional[Any] ): '''simple docstring''' _A = load_image(__UpperCAmelCase ) _A = image.size _A = self.image_processor(images=__UpperCAmelCase , return_tensors=self.framework ) return model_inputs def lowerCAmelCase ( self : List[str] , __UpperCAmelCase : int ): '''simple docstring''' _A = self.model(**__UpperCAmelCase ) return model_outputs def lowerCAmelCase ( self : Dict , __UpperCAmelCase : List[Any] ): '''simple docstring''' _A = model_outputs.predicted_depth _A = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode="bicubic" , align_corners=__UpperCAmelCase ) _A = prediction.squeeze().cpu().numpy() _A = (output * 255 / np.max(__UpperCAmelCase )).astype("uint8" ) _A = Image.fromarray(__UpperCAmelCase ) _A = {} _A = predicted_depth _A = depth return output_dict
79
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 _snake_case = get_tests_dir("fixtures") class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = mock.Mock() _lowerCAmelCase : int = 500 _lowerCAmelCase : Tuple = {} _lowerCAmelCase : str = HTTPError _lowerCAmelCase : Union[str, Any] = {} # Download this model to make sure it's in the cache. _lowerCAmelCase : Tuple = ViTImageProcessor.from_pretrained("hf-internal-testing/tiny-random-vit") # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request", return_value=__a) as mock_head: _lowerCAmelCase : Optional[int] = ViTImageProcessor.from_pretrained("hf-internal-testing/tiny-random-vit") # This check we did call the fake head request mock_head.assert_called() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = ViTImageProcessor.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json") def snake_case__ ( self): '''simple docstring''' with self.assertRaises(__a): # config is in subfolder, the following should not work without specifying the subfolder _lowerCAmelCase : int = AutoImageProcessor.from_pretrained("hf-internal-testing/stable-diffusion-all-variants") _lowerCAmelCase : Optional[Any] = AutoImageProcessor.from_pretrained( "hf-internal-testing/stable-diffusion-all-variants", subfolder="feature_extractor") self.assertIsNotNone(__a) @is_staging_test class UpperCAmelCase_ ( unittest.TestCase): @classmethod def snake_case__ ( cls): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = TOKEN HfFolder.save_token(__a) @classmethod def snake_case__ ( cls): '''simple docstring''' try: delete_repo(token=cls._token, repo_id="test-image-processor") except HTTPError: pass try: delete_repo(token=cls._token, repo_id="valid_org/test-image-processor-org") except HTTPError: pass try: delete_repo(token=cls._token, repo_id="test-dynamic-image-processor") except HTTPError: pass def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = ViTImageProcessor.from_pretrained(__a) image_processor.push_to_hub("test-image-processor", use_auth_token=self._token) _lowerCAmelCase : str = ViTImageProcessor.from_pretrained(f"{USER}/test-image-processor") for k, v in image_processor.__dict__.items(): self.assertEqual(__a, getattr(__a, __a)) # Reset repo delete_repo(token=self._token, repo_id="test-image-processor") # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( __a, repo_id="test-image-processor", push_to_hub=__a, use_auth_token=self._token) _lowerCAmelCase : Optional[int] = ViTImageProcessor.from_pretrained(f"{USER}/test-image-processor") for k, v in image_processor.__dict__.items(): self.assertEqual(__a, getattr(__a, __a)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = ViTImageProcessor.from_pretrained(__a) image_processor.push_to_hub("valid_org/test-image-processor", use_auth_token=self._token) _lowerCAmelCase : Tuple = ViTImageProcessor.from_pretrained("valid_org/test-image-processor") for k, v in image_processor.__dict__.items(): self.assertEqual(__a, getattr(__a, __a)) # Reset repo delete_repo(token=self._token, repo_id="valid_org/test-image-processor") # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( __a, repo_id="valid_org/test-image-processor-org", push_to_hub=__a, use_auth_token=self._token) _lowerCAmelCase : Optional[int] = ViTImageProcessor.from_pretrained("valid_org/test-image-processor-org") for k, v in image_processor.__dict__.items(): self.assertEqual(__a, getattr(__a, __a)) def snake_case__ ( self): '''simple docstring''' CustomImageProcessor.register_for_auto_class() _lowerCAmelCase : List[str] = CustomImageProcessor.from_pretrained(__a) image_processor.push_to_hub("test-dynamic-image-processor", use_auth_token=self._token) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map, {"AutoImageProcessor": "custom_image_processing.CustomImageProcessor"}, ) _lowerCAmelCase : Tuple = AutoImageProcessor.from_pretrained( f"{USER}/test-dynamic-image-processor", trust_remote_code=__a) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__, "CustomImageProcessor")
36
0
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): _snake_case = len(_SCREAMING_SNAKE_CASE ) _snake_case = len(matrix[0] ) _snake_case = min(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for row in range(_SCREAMING_SNAKE_CASE ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , _SCREAMING_SNAKE_CASE ): _snake_case = matrix[col][row] / matrix[row][row] for i in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows _snake_case = True for i in range(row + 1 , _SCREAMING_SNAKE_CASE ): if matrix[i][row] != 0: _snake_case, _snake_case = matrix[i], matrix[row] _snake_case = False break if reduce: rank -= 1 for i in range(_SCREAMING_SNAKE_CASE ): _snake_case = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
352
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { 'shi-labs/nat-mini-in1k-224': 'https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json', # See all Nat models at https://huggingface.co/models?filter=nat } class _lowerCAmelCase ( __snake_case , __snake_case ): '''simple docstring''' lowerCAmelCase_ = "nat" lowerCAmelCase_ = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__(self , UpperCAmelCase=4 , UpperCAmelCase=3 , UpperCAmelCase=64 , UpperCAmelCase=[3, 4, 6, 5] , UpperCAmelCase=[2, 4, 8, 16] , UpperCAmelCase=7 , UpperCAmelCase=3.0 , UpperCAmelCase=True , UpperCAmelCase=0.0 , UpperCAmelCase=0.0 , UpperCAmelCase=0.1 , UpperCAmelCase="gelu" , UpperCAmelCase=0.02 , UpperCAmelCase=1e-5 , UpperCAmelCase=0.0 , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase , ) -> str: super().__init__(**UpperCAmelCase ) _snake_case = patch_size _snake_case = num_channels _snake_case = embed_dim _snake_case = depths _snake_case = len(UpperCAmelCase ) _snake_case = num_heads _snake_case = kernel_size _snake_case = mlp_ratio _snake_case = qkv_bias _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = drop_path_rate _snake_case = hidden_act _snake_case = layer_norm_eps _snake_case = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _snake_case = int(embed_dim * 2 ** (len(UpperCAmelCase ) - 1) ) _snake_case = layer_scale_init_value _snake_case = ["""stem"""] + [f"""stage{idx}""" for idx in range(1 , len(UpperCAmelCase ) + 1 )] _snake_case, _snake_case = get_aligned_output_features_output_indices( out_features=UpperCAmelCase , out_indices=UpperCAmelCase , stage_names=self.stage_names )
270
0
import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 lowercase_ : Union[str, Any] = data_utils.TransfoXLTokenizer lowercase_ : int = data_utils.TransfoXLCorpus lowercase_ : Dict = data_utils lowercase_ : Dict = data_utils def __SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(snake_case_ , "rb" ) as fp: _UpperCAmelCase = pickle.load(snake_case_ , encoding="latin1" ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) _UpperCAmelCase = pytorch_dump_folder_path + "/" + VOCAB_FILES_NAMES["pretrained_vocab_file"] print(f"""Save vocabulary to {pytorch_vocab_dump_path}""" ) _UpperCAmelCase = corpus.vocab.__dict__ torch.save(snake_case_ , snake_case_ ) _UpperCAmelCase = corpus.__dict__ corpus_dict_no_vocab.pop("vocab" , snake_case_ ) _UpperCAmelCase = pytorch_dump_folder_path + "/" + CORPUS_NAME print(f"""Save dataset to {pytorch_dataset_dump_path}""" ) torch.save(snake_case_ , snake_case_ ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model _UpperCAmelCase = os.path.abspath(snake_case_ ) _UpperCAmelCase = os.path.abspath(snake_case_ ) print(f"""Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.""" ) # Initialise PyTorch model if transfo_xl_config_file == "": _UpperCAmelCase = TransfoXLConfig() else: _UpperCAmelCase = TransfoXLConfig.from_json_file(snake_case_ ) print(f"""Building PyTorch model from configuration: {config}""" ) _UpperCAmelCase = TransfoXLLMHeadModel(snake_case_ ) _UpperCAmelCase = load_tf_weights_in_transfo_xl(snake_case_ , snake_case_ , snake_case_ ) # Save pytorch-model _UpperCAmelCase = os.path.join(snake_case_ , snake_case_ ) _UpperCAmelCase = os.path.join(snake_case_ , snake_case_ ) print(f"""Save PyTorch model to {os.path.abspath(snake_case_ )}""" ) torch.save(model.state_dict() , snake_case_ ) print(f"""Save configuration file to {os.path.abspath(snake_case_ )}""" ) with open(snake_case_ , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowercase_ : Optional[int] = argparse.ArgumentParser() parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the folder to store the PyTorch model or dataset/vocab.', ) parser.add_argument( '--tf_checkpoint_path', default='', type=str, help='An optional path to a TensorFlow checkpoint path to be converted.', ) parser.add_argument( '--transfo_xl_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--transfo_xl_dataset_file', default='', type=str, help='An optional dataset file to be converted in a vocabulary.', ) lowercase_ : List[Any] = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
133
from typing import Any class __lowerCAmelCase : def __init__( self : List[Any] , snake_case__ : Any ): """simple docstring""" _UpperCAmelCase = data _UpperCAmelCase = None class __lowerCAmelCase : def __init__( self : Optional[Any] ): """simple docstring""" _UpperCAmelCase = None def UpperCamelCase ( self : List[Any] ): """simple docstring""" _UpperCAmelCase = self.head while temp is not None: print(temp.data , end=" " ) _UpperCAmelCase = temp.next print() def UpperCamelCase ( self : Any , snake_case__ : Any ): """simple docstring""" _UpperCAmelCase = Node(snake_case__ ) _UpperCAmelCase = self.head _UpperCAmelCase = new_node def UpperCamelCase ( self : List[str] , snake_case__ : int , snake_case__ : Optional[Any] ): """simple docstring""" if node_data_a == node_data_a: return else: _UpperCAmelCase = self.head while node_a is not None and node_a.data != node_data_a: _UpperCAmelCase = node_a.next _UpperCAmelCase = self.head while node_a is not None and node_a.data != node_data_a: _UpperCAmelCase = node_a.next if node_a is None or node_a is None: return _UpperCAmelCase , _UpperCAmelCase = node_a.data, node_a.data if __name__ == "__main__": lowercase_ : Union[str, Any] = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print('After swapping') ll.print_list()
133
1
"""simple docstring""" import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.17.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") SCREAMING_SNAKE_CASE__ = logging.getLogger(__name__) @dataclass class lowerCAmelCase_ : """simple docstring""" _lowerCAmelCase : Optional[str] = field( default="""tab_fact""" , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) _lowerCAmelCase : Optional[str] = field( default="""tab_fact""" , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} , ) _lowerCAmelCase : int = field( default=1024 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) _lowerCAmelCase : bool = field( default=lowerCAmelCase , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} ) _lowerCAmelCase : bool = field( default=lowerCAmelCase , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) _lowerCAmelCase : Optional[int] = field( default=lowerCAmelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) _lowerCAmelCase : Optional[int] = field( default=lowerCAmelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) _lowerCAmelCase : Optional[int] = field( default=lowerCAmelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of prediction examples to this """ """value if set.""" ) } , ) _lowerCAmelCase : Optional[str] = field( default=lowerCAmelCase , metadata={"""help""": """A csv or a json file containing the training data."""} ) _lowerCAmelCase : Optional[str] = field( default=lowerCAmelCase , metadata={"""help""": """A csv or a json file containing the validation data."""} ) _lowerCAmelCase : Optional[str] = field(default=lowerCAmelCase , metadata={"""help""": """A csv or a json file containing the test data."""} ) def snake_case ( self ): """simple docstring""" if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError('Need either a GLUE task, a training/validation file or a dataset name.' ) else: snake_case = self.train_file.split('.' )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." snake_case = self.validation_file.split('.' )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class lowerCAmelCase_ : """simple docstring""" _lowerCAmelCase : str = field( default=lowerCAmelCase , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) _lowerCAmelCase : Optional[str] = field( default=lowerCAmelCase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) _lowerCAmelCase : Optional[str] = field( default=lowerCAmelCase , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) _lowerCAmelCase : Optional[str] = field( default=lowerCAmelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) _lowerCAmelCase : bool = field( default=lowerCAmelCase , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) _lowerCAmelCase : str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) _lowerCAmelCase : bool = field( default=lowerCAmelCase , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) def lowerCAmelCase__ ( ) -> int: """simple docstring""" snake_case = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. snake_case ,snake_case ,snake_case = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: snake_case ,snake_case ,snake_case = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) snake_case = training_args.get_process_log_level() logger.setLevel(_UpperCamelCase ) datasets.utils.logging.set_verbosity(_UpperCamelCase ) transformers.utils.logging.set_verbosity(_UpperCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. snake_case = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: snake_case = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. snake_case = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. snake_case = {'train': data_args.train_file, 'validation': data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: snake_case = data_args.train_file.split('.' )[-1] snake_case = data_args.test_file.split('.' )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." snake_case = data_args.test_file else: raise ValueError('Need either a GLUE task or a test file for `do_predict`.' ) for key in data_files.keys(): logger.info(f"""load a local file for {key}: {data_files[key]}""" ) if data_args.train_file.endswith('.csv' ): # Loading a dataset from local csv files snake_case = load_dataset('csv' , data_files=_UpperCamelCase , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files snake_case = load_dataset('json' , data_files=_UpperCamelCase , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels snake_case = raw_datasets['train'].features['label'].names snake_case = len(_UpperCamelCase ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_UpperCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer snake_case = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=_UpperCamelCase , ) snake_case = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_UpperCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: snake_case = 'max_length' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch snake_case = False # Some models have set the order of the labels to use, so let's make sure we do use it. snake_case = {'Refused': 0, 'Entailed': 1} snake_case = {0: 'Refused', 1: 'Entailed'} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) snake_case = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(_UpperCamelCase : Optional[Any] ): # Tokenize the texts def _convert_table_text_to_pandas(_UpperCamelCase : Tuple ): snake_case = [_table_row.split('#' ) for _table_row in _table_text.strip('\n' ).split('\n' )] snake_case = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd snake_case = examples['statement'] snake_case = list(map(_convert_table_text_to_pandas , examples['table_text'] ) ) snake_case = tokenizer(_UpperCamelCase , _UpperCamelCase , padding=_UpperCamelCase , max_length=_UpperCamelCase , truncation=_UpperCamelCase ) snake_case = examples['label'] return result with training_args.main_process_first(desc='dataset map pre-processing' ): snake_case = raw_datasets.map( _UpperCamelCase , batched=_UpperCamelCase , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on dataset' , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) snake_case = raw_datasets['train'] if data_args.max_train_samples is not None: snake_case = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) snake_case = raw_datasets['validation'] if data_args.max_eval_samples is not None: snake_case = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError('--do_predict requires a test dataset' ) snake_case = raw_datasets['test'] if data_args.max_predict_samples is not None: snake_case = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(_UpperCamelCase ) ) , 3 ): logger.info(f"""Sample {index} of the training set: {train_dataset[index]}.""" ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(_UpperCamelCase : EvalPrediction ): snake_case = p.predictions[0] if isinstance(p.predictions , _UpperCamelCase ) else p.predictions snake_case = np.argmax(_UpperCamelCase , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: snake_case = default_data_collator elif training_args.fpaa: snake_case = DataCollatorWithPadding(_UpperCamelCase , pad_to_multiple_of=8 ) else: snake_case = None # Initialize our Trainer snake_case = Trainer( model=_UpperCamelCase , args=_UpperCamelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=_UpperCamelCase , tokenizer=_UpperCamelCase , data_collator=_UpperCamelCase , ) # Training if training_args.do_train: snake_case = None if training_args.resume_from_checkpoint is not None: snake_case = training_args.resume_from_checkpoint elif last_checkpoint is not None: snake_case = last_checkpoint snake_case = trainer.train(resume_from_checkpoint=_UpperCamelCase ) snake_case = train_result.metrics snake_case = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(_UpperCamelCase ) ) snake_case = min(_UpperCamelCase , len(_UpperCamelCase ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('train' , _UpperCamelCase ) trainer.save_metrics('train' , _UpperCamelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) snake_case = trainer.evaluate(eval_dataset=_UpperCamelCase ) snake_case = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_UpperCamelCase ) snake_case = min(_UpperCamelCase , len(_UpperCamelCase ) ) trainer.log_metrics('eval' , _UpperCamelCase ) trainer.save_metrics('eval' , _UpperCamelCase ) if training_args.do_predict: logger.info('*** Predict ***' ) # Removing the `label` columns because it contains -1 and Trainer won't like that. snake_case = predict_dataset.remove_columns('label' ) snake_case = trainer.predict(_UpperCamelCase , metric_key_prefix='predict' ).predictions snake_case = np.argmax(_UpperCamelCase , axis=1 ) snake_case = os.path.join(training_args.output_dir , 'predict_results_tabfact.txt' ) if trainer.is_world_process_zero(): with open(_UpperCamelCase , 'w' ) as writer: logger.info('***** Predict Results *****' ) writer.write('index\tprediction\n' ) for index, item in enumerate(_UpperCamelCase ): snake_case = label_list[item] writer.write(f"""{index}\t{item}\n""" ) snake_case = {'finetuned_from': model_args.model_name_or_path, 'tasks': 'text-classification'} if training_args.push_to_hub: trainer.push_to_hub(**_UpperCamelCase ) else: trainer.create_model_card(**_UpperCamelCase ) def lowerCAmelCase__ ( _UpperCamelCase : Tuple ) -> Union[str, Any]: """simple docstring""" main() if __name__ == "__main__": main()
361
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available SCREAMING_SNAKE_CASE__ = { "configuration_data2vec_audio": ["DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP", "Data2VecAudioConfig"], "configuration_data2vec_text": [ "DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Data2VecTextConfig", "Data2VecTextOnnxConfig", ], "configuration_data2vec_vision": [ "DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP", "Data2VecVisionConfig", "Data2VecVisionOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ "DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST", "Data2VecAudioForAudioFrameClassification", "Data2VecAudioForCTC", "Data2VecAudioForSequenceClassification", "Data2VecAudioForXVector", "Data2VecAudioModel", "Data2VecAudioPreTrainedModel", ] SCREAMING_SNAKE_CASE__ = [ "DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "Data2VecTextForCausalLM", "Data2VecTextForMaskedLM", "Data2VecTextForMultipleChoice", "Data2VecTextForQuestionAnswering", "Data2VecTextForSequenceClassification", "Data2VecTextForTokenClassification", "Data2VecTextModel", "Data2VecTextPreTrainedModel", ] SCREAMING_SNAKE_CASE__ = [ "DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST", "Data2VecVisionForImageClassification", "Data2VecVisionForMaskedImageModeling", "Data2VecVisionForSemanticSegmentation", "Data2VecVisionModel", "Data2VecVisionPreTrainedModel", ] if is_tf_available(): SCREAMING_SNAKE_CASE__ = [ "TFData2VecVisionForImageClassification", "TFData2VecVisionForSemanticSegmentation", "TFData2VecVisionModel", "TFData2VecVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
149
0
'''simple docstring''' import math import random def __lowerCamelCase ( _lowercase , _lowercase = False ) -> float: if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value a : Union[str, Any] = 0.0_2 def __lowerCamelCase ( _lowercase , _lowercase ) -> float: UpperCAmelCase : Any = float(2 * (random.randint(1 , 1_0_0 )) - 1 ) for _ in range(_lowercase ): # Forward propagation UpperCAmelCase : str = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? UpperCAmelCase : List[str] = (expected / 1_0_0) - layer_a # Error delta UpperCAmelCase : Dict = layer_1_error * sigmoid_function(_lowercase , _lowercase ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 1_0_0 if __name__ == "__main__": import doctest doctest.testmod() a : List[str] = int(input("""Expected value: """)) a : List[str] = int(input("""Number of propagations: """)) print(forward_propagation(expected, number_propagations))
265
'''simple docstring''' from itertools import count def __lowerCamelCase ( _lowercase = 5_0 ) -> int: UpperCAmelCase : Any = [1] * min_block_length for n in count(_lowercase ): fill_count_functions.append(1 ) for block_length in range(_lowercase , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 1_0_0_0_0_0_0: break return n if __name__ == "__main__": print(F'''{solution() = }''')
265
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer __lowerCamelCase : Optional[int] = logging.get_logger(__name__) __lowerCamelCase : Any = {'vocab_file': 'vocab.txt'} __lowerCamelCase : Union[str, Any] = { 'vocab_file': { 'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt', 'YituTech/conv-bert-medium-small': ( 'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt' ), 'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt', } } __lowerCamelCase : int = { 'YituTech/conv-bert-base': 512, 'YituTech/conv-bert-medium-small': 512, 'YituTech/conv-bert-small': 512, } __lowerCamelCase : List[str] = { 'YituTech/conv-bert-base': {'do_lower_case': True}, 'YituTech/conv-bert-medium-small': {'do_lower_case': True}, 'YituTech/conv-bert-small': {'do_lower_case': True}, } class A__ ( lowerCAmelCase__ ): _UpperCAmelCase :int = VOCAB_FILES_NAMES _UpperCAmelCase :int = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase :Optional[int] = PRETRAINED_INIT_CONFIGURATION _UpperCAmelCase :Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase :List[Any] = ConvBertTokenizer def __init__( self , A_=None , A_=None , A_=True , A_="[UNK]" , A_="[SEP]" , A_="[PAD]" , A_="[CLS]" , A_="[MASK]" , A_=True , A_=None , **A_ , ): '''simple docstring''' super().__init__( _SCREAMING_SNAKE_CASE , tokenizer_file=_SCREAMING_SNAKE_CASE , do_lower_case=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , tokenize_chinese_chars=_SCREAMING_SNAKE_CASE , strip_accents=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) UpperCamelCase : List[str] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , _SCREAMING_SNAKE_CASE ) != do_lower_case or normalizer_state.get("strip_accents" , _SCREAMING_SNAKE_CASE ) != strip_accents or normalizer_state.get("handle_chinese_chars" , _SCREAMING_SNAKE_CASE ) != tokenize_chinese_chars ): UpperCamelCase : Union[str, Any] = getattr(_SCREAMING_SNAKE_CASE , normalizer_state.pop("type" ) ) UpperCamelCase : Any = do_lower_case UpperCamelCase : Dict = strip_accents UpperCamelCase : int = tokenize_chinese_chars UpperCamelCase : str = normalizer_class(**_SCREAMING_SNAKE_CASE ) UpperCamelCase : Tuple = do_lower_case def __UpperCamelCase( self , A_ , A_=None ): '''simple docstring''' UpperCamelCase : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __UpperCamelCase( self , A_ , A_ = None ): '''simple docstring''' UpperCamelCase : List[Any] = [self.sep_token_id] UpperCamelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __UpperCamelCase( self , A_ , A_ = None ): '''simple docstring''' UpperCamelCase : Any = self._tokenizer.model.save(_SCREAMING_SNAKE_CASE , name=_SCREAMING_SNAKE_CASE ) return tuple(_SCREAMING_SNAKE_CASE )
355
import os def A_ ( ) -> int: UpperCamelCase : List[str] = os.path.dirname(os.path.realpath(_lowerCAmelCase ) ) UpperCamelCase : Any = os.path.join(_lowerCAmelCase , "triangle.txt" ) with open(_lowerCAmelCase ) as f: UpperCamelCase : Optional[Any] = f.readlines() UpperCamelCase : Tuple = [] for line in triangle: UpperCamelCase : List[str] = [] for number in line.strip().split(" " ): numbers_from_line.append(int(_lowerCAmelCase ) ) a.append(_lowerCAmelCase ) for i in range(1 , len(_lowerCAmelCase ) ): for j in range(len(a[i] ) ): UpperCamelCase : List[Any] = a[i - 1][j] if j != len(a[i - 1] ) else 0 UpperCamelCase : Dict = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(_lowerCAmelCase , _lowerCAmelCase ) return max(a[-1] ) if __name__ == "__main__": print(solution())
140
0
import re from filelock import FileLock try: import nltk _lowerCamelCase =True except (ImportError, ModuleNotFoundError): _lowerCamelCase =False if NLTK_AVAILABLE: with FileLock(""".lock""") as lock: nltk.download("""punkt""", quiet=True) def _a ( lowerCamelCase ): re.sub("""<n>""", """""", lowerCamelCase ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(lowerCamelCase ) )
287
from __future__ import annotations import collections import pprint from pathlib import Path def _a ( lowerCamelCase ): return "".join(sorted(lowerCamelCase ) ) def _a ( lowerCamelCase ): return word_by_signature[signature(lowerCamelCase )] _lowerCamelCase =Path(__file__).parent.joinpath("""words.txt""").read_text(encoding="""utf-8""") _lowerCamelCase =sorted({word.strip().lower() for word in data.splitlines()}) _lowerCamelCase =collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": _lowerCamelCase ={word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open("""anagrams.txt""", """w""") as file: file.write("""all_anagrams = \n """) file.write(pprint.pformat(all_anagrams))
287
1
"""simple docstring""" import numpy as np import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = CLIPConfig __UpperCamelCase = ["CLIPEncoderLayer"] def __init__( self : str , lowercase_ : CLIPConfig): '''simple docstring''' super().__init__(lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = CLIPVisionModelWithProjection(config.vision_config) SCREAMING_SNAKE_CASE_ : str = nn.Linear(config.vision_config.projection_dim , 1) SCREAMING_SNAKE_CASE_ : Optional[Any] = nn.Linear(config.vision_config.projection_dim , 1) @torch.no_grad() def _SCREAMING_SNAKE_CASE ( self : List[str] , lowercase_ : Dict , lowercase_ : Any , lowercase_ : Union[str, Any]=0.5 , lowercase_ : Optional[int]=0.5): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = self.vision_model(lowercase_)[0] SCREAMING_SNAKE_CASE_ : Any = self.p_head(lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = nsfw_detected.flatten() SCREAMING_SNAKE_CASE_ : Union[str, Any] = nsfw_detected > p_threshold SCREAMING_SNAKE_CASE_ : int = nsfw_detected.tolist() if any(lowercase_): logger.warning( '''Potential NSFW content was detected in one or more images. A black image will be returned instead.''' ''' Try again with a different prompt and/or seed.''') for idx, nsfw_detected_ in enumerate(lowercase_): if nsfw_detected_: SCREAMING_SNAKE_CASE_ : Optional[int] = np.zeros(images[idx].shape) SCREAMING_SNAKE_CASE_ : List[str] = self.w_head(lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = watermark_detected.flatten() SCREAMING_SNAKE_CASE_ : str = watermark_detected > w_threshold SCREAMING_SNAKE_CASE_ : Optional[int] = watermark_detected.tolist() if any(lowercase_): logger.warning( '''Potential watermarked content was detected in one or more images. A black image will be returned instead.''' ''' Try again with a different prompt and/or seed.''') for idx, watermark_detected_ in enumerate(lowercase_): if watermark_detected_: SCREAMING_SNAKE_CASE_ : Any = np.zeros(images[idx].shape) return images, nsfw_detected, watermark_detected
361
"""simple docstring""" from collections import defaultdict def _A (__a , __a ) -> bool: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = first_str.lower().strip() SCREAMING_SNAKE_CASE_ : List[Any] = second_str.lower().strip() # Remove whitespace SCREAMING_SNAKE_CASE_ : Dict = first_str.replace(''' ''' , '''''' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = second_str.replace(''' ''' , '''''' ) # Strings of different lengths are not anagrams if len(__a ) != len(__a ): return False # Default values for count should be 0 SCREAMING_SNAKE_CASE_ : defaultdict[str, int] = defaultdict(__a ) # For each character in input strings, # increment count in the corresponding for i in range(len(__a ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() UpperCAmelCase_ : Any = input("""Enter the first string """).strip() UpperCAmelCase_ : Optional[int] = input("""Enter the second string """).strip() UpperCAmelCase_ : Union[str, Any] = check_anagrams(input_a, input_b) print(f'''{input_a} and {input_b} are {'' if status else 'not '}anagrams.''')
318
0
'''simple docstring''' # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. a__ : List[Any] = abspath(join(dirname(dirname(__file__)), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def _UpperCamelCase ( __A ) -> Any: '''simple docstring''' from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(__A ) def _UpperCamelCase ( __A ) -> Dict: '''simple docstring''' from diffusers.utils.testing_utils import pytest_terminal_summary_main UpperCamelCase__ = terminalreporter.config.getoption("--make-reports" ) if make_reports: pytest_terminal_summary_main(__A , id=__A )
80
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a__ : Union[str, Any] = {'configuration_mbart': ['MBART_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MBartConfig', 'MBartOnnxConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : int = ['MBartTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[Any] = ['MBartTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[str] = [ 'MBART_PRETRAINED_MODEL_ARCHIVE_LIST', 'MBartForCausalLM', 'MBartForConditionalGeneration', 'MBartForQuestionAnswering', 'MBartForSequenceClassification', 'MBartModel', 'MBartPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[str] = [ 'TFMBartForConditionalGeneration', 'TFMBartModel', 'TFMBartPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : str = [ 'FlaxMBartForConditionalGeneration', 'FlaxMBartForQuestionAnswering', 'FlaxMBartForSequenceClassification', 'FlaxMBartModel', 'FlaxMBartPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys a__ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
80
1
'''simple docstring''' import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def UpperCAmelCase_ (__a : Optional[Any] , __a : Tuple=1 ): if n_shave_prefix_segments >= 0: return ".".join(path.split('.' )[n_shave_prefix_segments:] ) else: return ".".join(path.split('.' )[:n_shave_prefix_segments] ) def UpperCAmelCase_ (__a : Optional[int] , __a : Union[str, Any]=0 ): _a : Dict = [] for old_item in old_list: _a : List[str] = old_item.replace('in_layers.0' , 'norm1' ) _a : Any = new_item.replace('in_layers.2' , 'conv1' ) _a : Dict = new_item.replace('out_layers.0' , 'norm2' ) _a : str = new_item.replace('out_layers.3' , 'conv2' ) _a : Tuple = new_item.replace('emb_layers.1' , 'time_emb_proj' ) _a : Dict = new_item.replace('skip_connection' , 'conv_shortcut' ) _a : List[Any] = shave_segments(__a , n_shave_prefix_segments=__a ) mapping.append({'old': old_item, 'new': new_item} ) return mapping def UpperCAmelCase_ (__a : List[str] , __a : Tuple=0 ): _a : int = [] for old_item in old_list: _a : List[str] = old_item _a : Union[str, Any] = new_item.replace('norm.weight' , 'group_norm.weight' ) _a : Tuple = new_item.replace('norm.bias' , 'group_norm.bias' ) _a : Dict = new_item.replace('proj_out.weight' , 'proj_attn.weight' ) _a : Dict = new_item.replace('proj_out.bias' , 'proj_attn.bias' ) _a : Optional[Any] = shave_segments(__a , n_shave_prefix_segments=__a ) mapping.append({'old': old_item, 'new': new_item} ) return mapping def UpperCAmelCase_ (__a : Optional[Any] , __a : str , __a : Tuple , __a : Union[str, Any]=None , __a : Any=None , __a : Optional[Any]=None ): assert isinstance(__a , __a ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): _a : str = old_checkpoint[path] _a : List[Any] = old_tensor.shape[0] // 3 _a : Union[str, Any] = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) _a : List[Any] = old_tensor.shape[0] // config['num_head_channels'] // 3 _a : str = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) _a : Any = old_tensor.split(channels // num_heads , dim=1 ) _a : Dict = query.reshape(__a ) _a : Tuple = key.reshape(__a ) _a : List[str] = value.reshape(__a ) for path in paths: _a : List[str] = path['new'] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here _a : int = new_path.replace('middle_block.0' , 'mid_block.resnets.0' ) _a : Optional[Any] = new_path.replace('middle_block.1' , 'mid_block.attentions.0' ) _a : Tuple = new_path.replace('middle_block.2' , 'mid_block.resnets.1' ) if additional_replacements is not None: for replacement in additional_replacements: _a : Optional[Any] = new_path.replace(replacement['old'] , replacement['new'] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: _a : Dict = old_checkpoint[path['old']][:, :, 0] else: _a : int = old_checkpoint[path['old']] def UpperCAmelCase_ (__a : List[str] , __a : str ): _a : Tuple = {} _a : Any = checkpoint['time_embed.0.weight'] _a : Dict = checkpoint['time_embed.0.bias'] _a : Dict = checkpoint['time_embed.2.weight'] _a : List[Any] = checkpoint['time_embed.2.bias'] _a : Union[str, Any] = checkpoint['input_blocks.0.0.weight'] _a : Tuple = checkpoint['input_blocks.0.0.bias'] _a : int = checkpoint['out.0.weight'] _a : List[str] = checkpoint['out.0.bias'] _a : List[str] = checkpoint['out.2.weight'] _a : str = checkpoint['out.2.bias'] # Retrieves the keys for the input blocks only _a : int = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'input_blocks' in layer} ) _a : Optional[Any] = { layer_id: [key for key in checkpoint if f"""input_blocks.{layer_id}""" in key] for layer_id in range(__a ) } # Retrieves the keys for the middle blocks only _a : Dict = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'middle_block' in layer} ) _a : Union[str, Any] = { layer_id: [key for key in checkpoint if f"""middle_block.{layer_id}""" in key] for layer_id in range(__a ) } # Retrieves the keys for the output blocks only _a : List[str] = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'output_blocks' in layer} ) _a : Optional[Any] = { layer_id: [key for key in checkpoint if f"""output_blocks.{layer_id}""" in key] for layer_id in range(__a ) } for i in range(1 , __a ): _a : Union[str, Any] = (i - 1) // (config['num_res_blocks'] + 1) _a : int = (i - 1) % (config['num_res_blocks'] + 1) _a : List[Any] = [key for key in input_blocks[i] if f"""input_blocks.{i}.0""" in key] _a : Union[str, Any] = [key for key in input_blocks[i] if f"""input_blocks.{i}.1""" in key] if f"""input_blocks.{i}.0.op.weight""" in checkpoint: _a : List[Any] = checkpoint[ f"""input_blocks.{i}.0.op.weight""" ] _a : Optional[Any] = checkpoint[ f"""input_blocks.{i}.0.op.bias""" ] continue _a : Dict = renew_resnet_paths(__a ) _a : List[Any] = {'old': f"""input_blocks.{i}.0""", 'new': f"""down_blocks.{block_id}.resnets.{layer_in_block_id}"""} _a : Optional[int] = {'old': 'resnets.2.op', 'new': 'downsamplers.0.op'} assign_to_checkpoint( __a , __a , __a , additional_replacements=[meta_path, resnet_op] , config=__a ) if len(__a ): _a : List[str] = renew_attention_paths(__a ) _a : Optional[Any] = { 'old': f"""input_blocks.{i}.1""", 'new': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}""", } _a : int = { f"""input_blocks.{i}.1.qkv.bias""": { 'key': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias""", 'query': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias""", 'value': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias""", }, f"""input_blocks.{i}.1.qkv.weight""": { 'key': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight""", 'query': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight""", 'value': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight""", }, } assign_to_checkpoint( __a , __a , __a , additional_replacements=[meta_path] , attention_paths_to_split=__a , config=__a , ) _a : List[str] = middle_blocks[0] _a : Any = middle_blocks[1] _a : Tuple = middle_blocks[2] _a : str = renew_resnet_paths(__a ) assign_to_checkpoint(__a , __a , __a , config=__a ) _a : Union[str, Any] = renew_resnet_paths(__a ) assign_to_checkpoint(__a , __a , __a , config=__a ) _a : Tuple = renew_attention_paths(__a ) _a : Optional[Any] = { 'middle_block.1.qkv.bias': { 'key': 'mid_block.attentions.0.key.bias', 'query': 'mid_block.attentions.0.query.bias', 'value': 'mid_block.attentions.0.value.bias', }, 'middle_block.1.qkv.weight': { 'key': 'mid_block.attentions.0.key.weight', 'query': 'mid_block.attentions.0.query.weight', 'value': 'mid_block.attentions.0.value.weight', }, } assign_to_checkpoint( __a , __a , __a , attention_paths_to_split=__a , config=__a ) for i in range(__a ): _a : Any = i // (config['num_res_blocks'] + 1) _a : List[str] = i % (config['num_res_blocks'] + 1) _a : Optional[Any] = [shave_segments(__a , 2 ) for name in output_blocks[i]] _a : Tuple = {} for layer in output_block_layers: _a : int = layer.split('.' )[0], shave_segments(__a , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(__a ) else: _a : Optional[int] = [layer_name] if len(__a ) > 1: _a : Any = [key for key in output_blocks[i] if f"""output_blocks.{i}.0""" in key] _a : Dict = [key for key in output_blocks[i] if f"""output_blocks.{i}.1""" in key] _a : Optional[Any] = renew_resnet_paths(__a ) _a : Union[str, Any] = renew_resnet_paths(__a ) _a : List[Any] = {'old': f"""output_blocks.{i}.0""", 'new': f"""up_blocks.{block_id}.resnets.{layer_in_block_id}"""} assign_to_checkpoint(__a , __a , __a , additional_replacements=[meta_path] , config=__a ) if ["conv.weight", "conv.bias"] in output_block_list.values(): _a : Dict = list(output_block_list.values() ).index(['conv.weight', 'conv.bias'] ) _a : Tuple = checkpoint[ f"""output_blocks.{i}.{index}.conv.weight""" ] _a : List[Any] = checkpoint[ f"""output_blocks.{i}.{index}.conv.bias""" ] # Clear attentions as they have been attributed above. if len(__a ) == 2: _a : Tuple = [] if len(__a ): _a : Optional[int] = renew_attention_paths(__a ) _a : Dict = { 'old': f"""output_blocks.{i}.1""", 'new': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}""", } _a : str = { f"""output_blocks.{i}.1.qkv.bias""": { 'key': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias""", 'query': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias""", 'value': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias""", }, f"""output_blocks.{i}.1.qkv.weight""": { 'key': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight""", 'query': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight""", 'value': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight""", }, } assign_to_checkpoint( __a , __a , __a , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any('qkv' in key for key in attentions ) else None , config=__a , ) else: _a : Dict = renew_resnet_paths(__a , n_shave_prefix_segments=1 ) for path in resnet_0_paths: _a : List[Any] = '.'.join(['output_blocks', str(__a ), path['old']] ) _a : Tuple = '.'.join(['up_blocks', str(__a ), 'resnets', str(__a ), path['new']] ) _a : Any = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the architecture.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") __lowerCAmelCase = parser.parse_args() __lowerCAmelCase = torch.load(args.checkpoint_path) with open(args.config_file) as f: __lowerCAmelCase = json.loads(f.read()) __lowerCAmelCase = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] __lowerCAmelCase = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: __lowerCAmelCase = DDPMScheduler.from_config("""/""".join(args.checkpoint_path.split("""/""")[:-1])) __lowerCAmelCase = VQModel.from_pretrained("""/""".join(args.checkpoint_path.split("""/""")[:-1])) __lowerCAmelCase = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
350
'''simple docstring''' import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint __lowerCAmelCase = { """169M""": 1_2, """430M""": 2_4, """1B5""": 2_4, """3B""": 3_2, """7B""": 3_2, """14B""": 4_0, } __lowerCAmelCase = { """169M""": 7_6_8, """430M""": 1_0_2_4, """1B5""": 2_0_4_8, """3B""": 2_5_6_0, """7B""": 4_0_9_6, """14B""": 5_1_2_0, } def UpperCAmelCase_ (__a : Dict ): """simple docstring""" _a : List[Any] = list(state_dict.keys() ) for name in state_dict_keys: _a : List[Any] = state_dict.pop(__a ) # emb -> embedding if name.startswith('emb.' ): _a : List[str] = name.replace('emb.' , 'embeddings.' ) # ln_0 -> pre_ln (only present at block 0) if name.startswith('blocks.0.ln0' ): _a : Dict = name.replace('blocks.0.ln0' , 'blocks.0.pre_ln' ) # att -> attention _a : int = re.sub(R'blocks\.(\d+)\.att' , R'blocks.\1.attention' , __a ) # ffn -> feed_forward _a : str = re.sub(R'blocks\.(\d+)\.ffn' , R'blocks.\1.feed_forward' , __a ) # time_mix_k -> time_mix_key and reshape if name.endswith('.time_mix_k' ): _a : Any = name.replace('.time_mix_k' , '.time_mix_key' ) # time_mix_v -> time_mix_value and reshape if name.endswith('.time_mix_v' ): _a : int = name.replace('.time_mix_v' , '.time_mix_value' ) # time_mix_r -> time_mix_key and reshape if name.endswith('.time_mix_r' ): _a : Tuple = name.replace('.time_mix_r' , '.time_mix_receptance' ) if name != "head.weight": _a : Tuple = 'rwkv.' + name _a : List[Any] = weight return state_dict def UpperCAmelCase_ (__a : Tuple , __a : Union[str, Any] , __a : List[str] , __a : str=None , __a : List[str]=None , __a : int=False , __a : int=None ): """simple docstring""" if tokenizer_file is None: print('No `--tokenizer_file` provided, we will use the default tokenizer.' ) _a : List[Any] = 5_0_2_7_7 _a : Optional[Any] = AutoTokenizer.from_pretrained('EleutherAI/gpt-neox-20b' ) else: _a : Optional[Any] = PreTrainedTokenizerFast(tokenizer_file=__a ) _a : List[Any] = len(__a ) tokenizer.save_pretrained(__a ) # 2. Build the config _a : List[str] = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: _a : str = candidate break if size is None: raise ValueError('Could not infer the size, please provide it with the `--size` argument.' ) if size not in possible_sizes: raise ValueError(f"""`size` should be one of {possible_sizes}, got {size}.""" ) _a : str = RwkvConfig( vocab_size=__a , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(__a ) # 3. Download model file then convert state_dict _a : Tuple = hf_hub_download(__a , __a ) _a : Optional[int] = torch.load(__a , map_location='cpu' ) _a : Dict = convert_state_dict(__a ) # 4. Split in shards and save _a, _a : List[Any] = shard_checkpoint(__a ) for shard_file, shard in shards.items(): torch.save(__a , os.path.join(__a , __a ) ) if index is not None: _a : Dict = os.path.join(__a , __a ) # Save the index as well with open(__a , 'w' , encoding='utf-8' ) as f: _a : List[Any] = json.dumps(__a , indent=2 , sort_keys=__a ) + '\n' f.write(__a ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( 'Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model.' ) _a : List[Any] = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: _a : Optional[Any] = torch.load(os.path.join(__a , __a ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(__a , __a ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError('Please provide a `model_name` to push the model to the Hub.' ) _a : List[str] = AutoModelForCausalLM.from_pretrained(__a ) model.push_to_hub(__a , max_shard_size='2GB' ) tokenizer.push_to_hub(__a ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--repo_id""", default=None, type=str, required=True, help="""Repo ID from which to pull the checkpoint.""" ) parser.add_argument( """--checkpoint_file""", default=None, type=str, required=True, help="""Name of the checkpoint file in the repo.""" ) parser.add_argument( """--output_dir""", default=None, type=str, required=True, help="""Where to save the converted model.""" ) parser.add_argument( """--tokenizer_file""", default=None, type=str, help="""Path to the tokenizer file to use (if not provided, only the model is converted).""", ) parser.add_argument( """--size""", default=None, type=str, help="""Size of the model. Will be inferred from the `checkpoint_file` if not passed.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Push to the Hub the converted model.""", ) parser.add_argument( """--model_name""", default=None, type=str, help="""Name of the pushed model on the Hub, including the username / organization.""", ) __lowerCAmelCase = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
5
0
"""simple docstring""" def lowercase ( __snake_case : str ): lowercase_ : Any = 1 lowercase_ : int = 2 while i * i <= n: lowercase_ : Tuple = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def lowercase ( ): lowercase_ : int = 1 lowercase_ : Any = 1 while True: i += 1 t_num += i if count_divisors(_A ) > 5_0_0: break return t_num if __name__ == "__main__": print(solution())
33
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { '''google/vit-base-patch16-224''': '''https://huggingface.co/vit-base-patch16-224/resolve/main/config.json''', # See all ViT models at https://huggingface.co/models?filter=vit } class A ( __UpperCAmelCase ): __snake_case = 'vit' def __init__( self, UpperCamelCase__=768, UpperCamelCase__=12, UpperCamelCase__=12, UpperCamelCase__=3072, UpperCamelCase__="gelu", UpperCamelCase__=0.0, UpperCamelCase__=0.0, UpperCamelCase__=0.02, UpperCamelCase__=1E-12, UpperCamelCase__=224, UpperCamelCase__=16, UpperCamelCase__=3, UpperCamelCase__=True, UpperCamelCase__=16, **UpperCamelCase__, ): """simple docstring""" super().__init__(**UpperCamelCase__ ) lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_act lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = initializer_range lowerCAmelCase_ = layer_norm_eps lowerCAmelCase_ = image_size lowerCAmelCase_ = patch_size lowerCAmelCase_ = num_channels lowerCAmelCase_ = qkv_bias lowerCAmelCase_ = encoder_stride class A ( __UpperCAmelCase ): __snake_case = version.parse('1.11' ) @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return 1E-4
278
0
"""simple docstring""" from math import factorial, pi def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = 30 ) -> float: if not isinstance(__lowerCamelCase , (int, float) ): raise ValueError('''maclaurin_sin() requires either an int or float for theta''' ) if not isinstance(__lowerCamelCase , __lowerCamelCase ) or accuracy <= 0: raise ValueError('''maclaurin_sin() requires a positive int for accuracy''' ) lowercase__ : Union[str, Any] = float(__lowerCamelCase ) lowercase__ : Any = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(__lowerCamelCase ) ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = 30 ) -> float: if not isinstance(__lowerCamelCase , (int, float) ): raise ValueError('''maclaurin_cos() requires either an int or float for theta''' ) if not isinstance(__lowerCamelCase , __lowerCamelCase ) or accuracy <= 0: raise ValueError('''maclaurin_cos() requires a positive int for accuracy''' ) lowercase__ : int = float(__lowerCamelCase ) lowercase__ : Tuple = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(__lowerCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
302
"""simple docstring""" import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets lowerCAmelCase_ = '\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n' lowerCAmelCase_ = '\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n' lowerCAmelCase_ = '\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: \'auto\' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default \'gpt2-large\' Use one of [\'gpt2\', \'gpt2-medium\', \'gpt2-large\', \'gpt2-xl\'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: "c" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric(\'mauve\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): '''simple docstring''' def UpperCAmelCase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,homepage='''https://github.com/krishnap25/mauve''' ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''predictions''': datasets.Value('''string''' ,id='''sequence''' ), '''references''': datasets.Value('''string''' ,id='''sequence''' ), } ) ,codebase_urls=['''https://github.com/krishnap25/mauve'''] ,reference_urls=[ '''https://arxiv.org/abs/2102.01454''', '''https://github.com/krishnap25/mauve''', ] ,) def UpperCAmelCase ( self : Dict ,_snake_case : Optional[Any] ,_snake_case : Any ,_snake_case : List[str]=None ,_snake_case : Tuple=None ,_snake_case : List[Any]=None ,_snake_case : Any=None ,_snake_case : Optional[int]="auto" ,_snake_case : Optional[int]=-1 ,_snake_case : Optional[int]=0.9 ,_snake_case : Any=5 ,_snake_case : Dict=500 ,_snake_case : Optional[int]="gpt2-large" ,_snake_case : Optional[Any]=-1 ,_snake_case : Tuple=1_024 ,_snake_case : Optional[int]=25 ,_snake_case : Dict=5 ,_snake_case : int=True ,_snake_case : Union[str, Any]=25 ,) -> Any: """simple docstring""" lowercase__ : Any = compute_mauve( p_text=_snake_case ,q_text=_snake_case ,p_features=_snake_case ,q_features=_snake_case ,p_tokens=_snake_case ,q_tokens=_snake_case ,num_buckets=_snake_case ,pca_max_data=_snake_case ,kmeans_explained_var=_snake_case ,kmeans_num_redo=_snake_case ,kmeans_max_iter=_snake_case ,featurize_model_name=_snake_case ,device_id=_snake_case ,max_text_length=_snake_case ,divergence_curve_discretization_size=_snake_case ,mauve_scaling_factor=_snake_case ,verbose=_snake_case ,seed=_snake_case ,) return out
302
1
'''simple docstring''' import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int snake_case_ : Tuple = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class lowercase__ ( datasets.BuilderConfig ): lowercase__ = None def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , ): import pyspark def generate_fn(): _UpperCamelCase : List[str] = df.select('*' , pyspark.sql.functions.spark_partition_id().alias('part_id' ) ) for partition_id in partition_order: _UpperCamelCase : int = df_with_partition_id.select('*' ).where(f'part_id = {partition_id}' ).drop('part_id' ) _UpperCamelCase : int = partition_df.collect() _UpperCamelCase : List[Any] = 0 for row in rows: yield f'{partition_id}_{row_id}', row.asDict() row_id += 1 return generate_fn class lowercase__ ( _BaseExamplesIterable ): def __init__( self : List[Any] ,lowerCamelCase__ : "pyspark.sql.DataFrame" ,lowerCamelCase__ : Dict=None ,): '''simple docstring''' _UpperCamelCase : Union[str, Any] = df _UpperCamelCase : Optional[int] = partition_order or range(self.df.rdd.getNumPartitions() ) _UpperCamelCase : str = _generate_iterable_examples(self.df ,self.partition_order ) def __iter__( self : Optional[Any] ): '''simple docstring''' yield from self.generate_examples_fn() def UpperCamelCase_ ( self : int ,lowerCamelCase__ : np.random.Generator ): '''simple docstring''' _UpperCamelCase : Tuple = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(lowerCamelCase__ ) return SparkExamplesIterable(self.df ,partition_order=lowerCamelCase__ ) def UpperCamelCase_ ( self : List[str] ,lowerCamelCase__ : int ,lowerCamelCase__ : int ): '''simple docstring''' _UpperCamelCase : str = self.split_shard_indices_by_worker(lowerCamelCase__ ,lowerCamelCase__ ) return SparkExamplesIterable(self.df ,partition_order=lowerCamelCase__ ) @property def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return len(self.partition_order ) class lowercase__ ( datasets.DatasetBuilder ): lowercase__ = SparkConfig def __init__( self : Tuple ,lowerCamelCase__ : "pyspark.sql.DataFrame" ,lowerCamelCase__ : str = None ,lowerCamelCase__ : str = None ,**lowerCamelCase__ : Optional[Any] ,): '''simple docstring''' import pyspark _UpperCamelCase : Union[str, Any] = pyspark.sql.SparkSession.builder.getOrCreate() _UpperCamelCase : Dict = df _UpperCamelCase : Optional[Any] = working_dir super().__init__( cache_dir=lowerCamelCase__ ,config_name=str(self.df.semanticHash() ) ,**lowerCamelCase__ ,) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' # Returns the path of the created file. def create_cache_and_write_probe(lowerCamelCase__ : int ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir ,exist_ok=lowerCamelCase__ ) _UpperCamelCase : Union[str, Any] = os.path.join(self._cache_dir ,'fs_test' + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(lowerCamelCase__ ,'a' ) return [probe_file] if self._spark.conf.get('spark.master' ,'' ).startswith('local' ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: _UpperCamelCase : Any = ( self._spark.sparkContext.parallelize(range(1 ) ,1 ).mapPartitions(lowerCamelCase__ ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( 'When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir' ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def UpperCamelCase_ ( self : Tuple ,lowerCamelCase__ : datasets.download.download_manager.DownloadManager ): '''simple docstring''' return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def UpperCamelCase_ ( self : Optional[Any] ,lowerCamelCase__ : List[Any] ): '''simple docstring''' import pyspark def get_arrow_batch_size(lowerCamelCase__ : List[str] ): for batch in it: yield pa.RecordBatch.from_pydict({'batch_bytes': [batch.nbytes]} ) _UpperCamelCase : List[Any] = self.df.count() _UpperCamelCase : int = df_num_rows if df_num_rows <= 100 else 100 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. _UpperCamelCase : Dict = ( self.df.limit(lowerCamelCase__ ) .repartition(1 ) .mapInArrow(lowerCamelCase__ ,'batch_bytes: long' ) .agg(pyspark.sql.functions.sum('batch_bytes' ).alias('sample_bytes' ) ) .collect()[0] .sample_bytes / sample_num_rows ) _UpperCamelCase : Union[str, Any] = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. _UpperCamelCase : Dict = min(lowerCamelCase__ ,int(approx_total_size / max_shard_size ) ) _UpperCamelCase : str = self.df.repartition(lowerCamelCase__ ) def UpperCamelCase_ ( self : str ,lowerCamelCase__ : str ,lowerCamelCase__ : str ,lowerCamelCase__ : int ,): '''simple docstring''' import pyspark _UpperCamelCase : List[Any] = ParquetWriter if file_format == 'parquet' else ArrowWriter _UpperCamelCase : List[str] = os.path.join(self._working_dir ,os.path.basename(lowerCamelCase__ ) ) if self._working_dir else fpath _UpperCamelCase : Optional[Any] = file_format == 'parquet' # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. _UpperCamelCase : str = self.config.features _UpperCamelCase : Dict = self._writer_batch_size _UpperCamelCase : str = self._fs.storage_options def write_arrow(lowerCamelCase__ : List[str] ): # Within the same SparkContext, no two task attempts will share the same attempt ID. _UpperCamelCase : Dict = pyspark.TaskContext().taskAttemptId() _UpperCamelCase : Optional[int] = next(lowerCamelCase__ ,lowerCamelCase__ ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] ,names=['task_id', 'num_examples', 'num_bytes'] ,) _UpperCamelCase : Optional[int] = 0 _UpperCamelCase : Any = writer_class( features=lowerCamelCase__ ,path=working_fpath.replace('SSSSS' ,F'{shard_id:05d}' ).replace('TTTTT' ,F'{task_id:05d}' ) ,writer_batch_size=lowerCamelCase__ ,storage_options=lowerCamelCase__ ,embed_local_files=lowerCamelCase__ ,) _UpperCamelCase : Any = pa.Table.from_batches([first_batch] ) writer.write_table(lowerCamelCase__ ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: _UpperCamelCase , _UpperCamelCase : Tuple = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] ,names=['task_id', 'num_examples', 'num_bytes'] ,) shard_id += 1 _UpperCamelCase : str = writer_class( features=writer._features ,path=working_fpath.replace('SSSSS' ,F'{shard_id:05d}' ).replace('TTTTT' ,F'{task_id:05d}' ) ,writer_batch_size=lowerCamelCase__ ,storage_options=lowerCamelCase__ ,embed_local_files=lowerCamelCase__ ,) _UpperCamelCase : Dict = pa.Table.from_batches([batch] ) writer.write_table(lowerCamelCase__ ) if writer._num_bytes > 0: _UpperCamelCase , _UpperCamelCase : Union[str, Any] = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] ,names=['task_id', 'num_examples', 'num_bytes'] ,) if working_fpath != fpath: for file in os.listdir(os.path.dirname(lowerCamelCase__ ) ): _UpperCamelCase : List[str] = os.path.join(os.path.dirname(lowerCamelCase__ ) ,os.path.basename(lowerCamelCase__ ) ) shutil.move(lowerCamelCase__ ,lowerCamelCase__ ) _UpperCamelCase : str = ( self.df.mapInArrow(lowerCamelCase__ ,'task_id: long, num_examples: long, num_bytes: long' ) .groupBy('task_id' ) .agg( pyspark.sql.functions.sum('num_examples' ).alias('total_num_examples' ) ,pyspark.sql.functions.sum('num_bytes' ).alias('total_num_bytes' ) ,pyspark.sql.functions.count('num_bytes' ).alias('num_shards' ) ,pyspark.sql.functions.collect_list('num_examples' ).alias('shard_lengths' ) ,) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def UpperCamelCase_ ( self : List[str] ,lowerCamelCase__ : "datasets.SplitGenerator" ,lowerCamelCase__ : str = "arrow" ,lowerCamelCase__ : Optional[Union[str, int]] = None ,lowerCamelCase__ : Optional[int] = None ,**lowerCamelCase__ : Optional[Any] ,): '''simple docstring''' self._validate_cache_dir() _UpperCamelCase : Tuple = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(lowerCamelCase__ ) _UpperCamelCase : Optional[Any] = not is_remote_filesystem(self._fs ) _UpperCamelCase : Optional[int] = os.path.join if is_local else posixpath.join _UpperCamelCase : Dict = '-TTTTT-SSSSS-of-NNNNN' _UpperCamelCase : Union[str, Any] = F'{self.name}-{split_generator.name}{SUFFIX}.{file_format}' _UpperCamelCase : Tuple = path_join(self._output_dir ,lowerCamelCase__ ) _UpperCamelCase : int = 0 _UpperCamelCase : Any = 0 _UpperCamelCase : str = 0 _UpperCamelCase : Dict = [] _UpperCamelCase : List[str] = [] for task_id, content in self._prepare_split_single(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ): ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) : Optional[Any] = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(lowerCamelCase__ ) _UpperCamelCase : Optional[Any] = total_num_examples _UpperCamelCase : Optional[int] = total_num_bytes # should rename everything at the end logger.debug(F'Renaming {total_shards} shards.' ) if total_shards > 1: _UpperCamelCase : str = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. _UpperCamelCase : Optional[Any] = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( lowerCamelCase__ : int ,lowerCamelCase__ : int ,lowerCamelCase__ : int ,): rename( lowerCamelCase__ ,fpath.replace('SSSSS' ,F'{shard_id:05d}' ).replace('TTTTT' ,F'{task_id:05d}' ) ,fpath.replace('TTTTT-SSSSS' ,F'{global_shard_id:05d}' ).replace('NNNNN' ,F'{total_shards:05d}' ) ,) _UpperCamelCase : List[Any] = [] _UpperCamelCase : Optional[int] = 0 for i in range(len(lowerCamelCase__ ) ): _UpperCamelCase , _UpperCamelCase : str = task_id_and_num_shards[i] for shard_id in range(lowerCamelCase__ ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(lowerCamelCase__ ,len(lowerCamelCase__ ) ).map(lambda lowerCamelCase__ : _rename_shard(*lowerCamelCase__ ) ).collect() else: # don't use any pattern _UpperCamelCase : Dict = 0 _UpperCamelCase : Dict = task_id_and_num_shards[0][0] self._rename( fpath.replace('SSSSS' ,F'{shard_id:05d}' ).replace('TTTTT' ,F'{task_id:05d}' ) ,fpath.replace(lowerCamelCase__ ,'' ) ,) def UpperCamelCase_ ( self : List[Any] ,lowerCamelCase__ : "datasets.SplitGenerator" ,): '''simple docstring''' return SparkExamplesIterable(self.df )
83
"""simple docstring""" import operator def _lowerCamelCase( a , a = False , a = None ): __a = operator.lt if reverse else operator.gt __a = solution or [] if not arr: return solution __a = [arr.pop(0 )] for i, item in enumerate(a ): if _operator(a , sublist[-1] ): sublist.append(a ) arr.pop(a ) # merging sublist into solution list if not solution: solution.extend(a ) else: while sublist: __a = sublist.pop(0 ) for i, xx in enumerate(a ): if not _operator(a , a ): solution.insert(a , a ) break else: solution.append(a ) strand_sort(a , a , a ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
261
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A__ ( snake_case__ , unittest.TestCase ): """simple docstring""" __magic_name__ = KandinskyImgaImgPipeline __magic_name__ = ['prompt', 'image_embeds', 'negative_image_embeds', 'image'] __magic_name__ = [ 'prompt', 'negative_prompt', 'image_embeds', 'negative_image_embeds', 'image', ] __magic_name__ = [ 'generator', 'height', 'width', 'strength', 'guidance_scale', 'negative_prompt', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] __magic_name__ = False @property def a_ ( self ): return 3_2 @property def a_ ( self ): return 3_2 @property def a_ ( self ): return self.time_input_dim @property def a_ ( self ): return self.time_input_dim * 4 @property def a_ ( self ): return 1_0_0 @property def a_ ( self ): snake_case = XLMRobertaTokenizerFast.from_pretrained('''YiYiXu/tiny-random-mclip-base''' ) return tokenizer @property def a_ ( self ): torch.manual_seed(0 ) snake_case = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_0_0_5 , ) snake_case = MultilingualCLIP(__snake_case ) snake_case = text_encoder.eval() return text_encoder @property def a_ ( self ): torch.manual_seed(0 ) snake_case = { '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''text_image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''text_image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } snake_case = UNetaDConditionModel(**__snake_case ) return model @property def a_ ( self ): return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def a_ ( self ): torch.manual_seed(0 ) snake_case = VQModel(**self.dummy_movq_kwargs ) return model def a_ ( self ): snake_case = self.dummy_text_encoder snake_case = self.dummy_tokenizer snake_case = self.dummy_unet snake_case = self.dummy_movq snake_case = { '''num_train_timesteps''': 1_0_0_0, '''beta_schedule''': '''linear''', '''beta_start''': 0.0_0085, '''beta_end''': 0.012, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } snake_case = DDIMScheduler(**__snake_case ) snake_case = { '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def a_ ( self , __snake_case , __snake_case=0 ): snake_case = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__snake_case ) ).to(__snake_case ) snake_case = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__snake_case ) # create init_image snake_case = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(__snake_case ) ).to(__snake_case ) snake_case = image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case = Image.fromarray(np.uinta(__snake_case ) ).convert('''RGB''' ).resize((2_5_6, 2_5_6) ) if str(__snake_case ).startswith('''mps''' ): snake_case = torch.manual_seed(__snake_case ) else: snake_case = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) snake_case = { '''prompt''': '''horse''', '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 6_4, '''width''': 6_4, '''num_inference_steps''': 1_0, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def a_ ( self ): snake_case = '''cpu''' snake_case = self.get_dummy_components() snake_case = self.pipeline_class(**__snake_case ) snake_case = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) snake_case = pipe(**self.get_dummy_inputs(__snake_case ) ) snake_case = output.images snake_case = pipe( **self.get_dummy_inputs(__snake_case ) , return_dict=__snake_case , )[0] snake_case = image[0, -3:, -3:, -1] snake_case = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) snake_case = np.array( [0.6147_4943, 0.607_3539, 0.4330_8544, 0.592_8269, 0.4749_3595, 0.4675_5973, 0.461_3838, 0.4536_8797, 0.5011_9233] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class A__ ( unittest.TestCase ): """simple docstring""" def a_ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a_ ( self ): snake_case = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/kandinsky_img2img_frog.npy''' ) snake_case = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) snake_case = '''A red cartoon frog, 4k''' snake_case = KandinskyPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(__snake_case ) snake_case = KandinskyImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1''' , torch_dtype=torch.floataa ) snake_case = pipeline.to(__snake_case ) pipeline.set_progress_bar_config(disable=__snake_case ) snake_case = torch.Generator(device='''cpu''' ).manual_seed(0 ) snake_case , snake_case = pipe_prior( __snake_case , generator=__snake_case , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() snake_case = pipeline( __snake_case , image=__snake_case , image_embeds=__snake_case , negative_image_embeds=__snake_case , generator=__snake_case , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , strength=0.2 , output_type='''np''' , ) snake_case = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(__snake_case , __snake_case )
360
import re from filelock import FileLock try: import nltk _SCREAMING_SNAKE_CASE : Union[str, Any] = True except (ImportError, ModuleNotFoundError): _SCREAMING_SNAKE_CASE : Optional[Any] = False if NLTK_AVAILABLE: with FileLock(".lock") as lock: nltk.download("punkt", quiet=True) def UpperCAmelCase__ (UpperCamelCase_ ): """simple docstring""" re.sub('''<n>''' ,'''''' ,UpperCamelCase_ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(UpperCamelCase_ ) )
213
0
'''simple docstring''' from typing import List from .keymap import KEYMAP, get_character def __snake_case ( UpperCAmelCase_ : str ): def decorator(UpperCAmelCase_ : List[Any] ): lowerCamelCase_ = getattr(UpperCAmelCase_ , "handle_key" , [] ) handle += [key] setattr(UpperCAmelCase_ , "handle_key" , UpperCAmelCase_ ) return func return decorator def __snake_case ( *UpperCAmelCase_ : List[str] ): def decorator(UpperCAmelCase_ : List[str] ): lowerCamelCase_ = getattr(UpperCAmelCase_ , "handle_key" , [] ) handle += keys setattr(UpperCAmelCase_ , "handle_key" , UpperCAmelCase_ ) return func return decorator class snake_case ( lowercase ): """simple docstring""" def __new__( cls , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = super().__new__(cls , UpperCamelCase , UpperCamelCase , UpperCamelCase ) if not hasattr(UpperCamelCase , "key_handler" ): setattr(UpperCamelCase , "key_handler" , {} ) setattr(UpperCamelCase , "handle_input" , KeyHandler.handle_input ) for value in attrs.values(): lowerCamelCase_ = getattr(UpperCamelCase , "handle_key" , [] ) for key in handled_keys: lowerCamelCase_ = value return new_cls @staticmethod def snake_case ( cls ): """simple docstring""" lowerCamelCase_ = get_character() if char != KEYMAP["undefined"]: lowerCamelCase_ = ord(UpperCamelCase ) lowerCamelCase_ = cls.key_handler.get(UpperCamelCase ) if handler: lowerCamelCase_ = char return handler(cls ) else: return None def __snake_case ( cls : int ): return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
55
'''simple docstring''' import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class snake_case : """simple docstring""" @staticmethod def snake_case ( *UpperCamelCase , **UpperCamelCase ): """simple docstring""" pass def __snake_case ( UpperCAmelCase_ : List[Any] ): return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. a_ : Dict = ( """https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png""" ) @is_pipeline_test @require_torch @require_vision class snake_case ( unittest.TestCase ): """simple docstring""" _lowerCamelCase = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = pipeline( "document-question-answering" , model=UpperCamelCase , tokenizer=UpperCamelCase , image_processor=UpperCamelCase ) lowerCamelCase_ = INVOICE_URL lowerCamelCase_ = list(zip(*apply_tesseract(load_image(UpperCamelCase ) , UpperCamelCase , "" ) ) ) lowerCamelCase_ = "What is the placebo?" lowerCamelCase_ = [ { "image": load_image(UpperCamelCase ), "question": question, }, { "image": image, "question": question, }, { "image": image, "question": question, "word_boxes": word_boxes, }, ] return dqa_pipeline, examples def snake_case ( self , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = dqa_pipeline(UpperCamelCase , top_k=2 ) self.assertEqual( UpperCamelCase , [ [ {"score": ANY(UpperCamelCase ), "answer": ANY(UpperCamelCase ), "start": ANY(UpperCamelCase ), "end": ANY(UpperCamelCase )}, {"score": ANY(UpperCamelCase ), "answer": ANY(UpperCamelCase ), "start": ANY(UpperCamelCase ), "end": ANY(UpperCamelCase )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def snake_case ( self ): """simple docstring""" lowerCamelCase_ = pipeline("document-question-answering" , model="hf-internal-testing/tiny-random-layoutlmv2" ) lowerCamelCase_ = INVOICE_URL lowerCamelCase_ = "How many cats are there?" lowerCamelCase_ = [ {"score": 0.0_001, "answer": "oy 2312/2019", "start": 38, "end": 39}, {"score": 0.0_001, "answer": "oy 2312/2019 DUE", "start": 38, "end": 40}, ] lowerCamelCase_ = dqa_pipeline(image=UpperCamelCase , question=UpperCamelCase , top_k=2 ) self.assertEqual(nested_simplify(UpperCamelCase , decimals=4 ) , UpperCamelCase ) lowerCamelCase_ = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual(nested_simplify(UpperCamelCase , decimals=4 ) , UpperCamelCase ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably lowerCamelCase_ = "./tests/fixtures/tests_samples/COCO/000000039769.png" lowerCamelCase_ = dqa_pipeline(image=UpperCamelCase , question=UpperCamelCase , top_k=2 ) self.assertEqual(UpperCamelCase , [] ) # We can optionnally pass directly the words and bounding boxes lowerCamelCase_ = "./tests/fixtures/tests_samples/COCO/000000039769.png" lowerCamelCase_ = [] lowerCamelCase_ = [] lowerCamelCase_ = dqa_pipeline(image=UpperCamelCase , question=UpperCamelCase , words=UpperCamelCase , boxes=UpperCamelCase , top_k=2 ) self.assertEqual(UpperCamelCase , [] ) @slow @require_torch @require_detectrona @require_pytesseract def snake_case ( self ): """simple docstring""" lowerCamelCase_ = pipeline( "document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , ) lowerCamelCase_ = INVOICE_URL lowerCamelCase_ = "What is the invoice number?" lowerCamelCase_ = dqa_pipeline(image=UpperCamelCase , question=UpperCamelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ {"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16}, ] , ) lowerCamelCase_ = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ {"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16}, ] , ) lowerCamelCase_ = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ [ {"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def snake_case ( self ): """simple docstring""" lowerCamelCase_ = pipeline( "document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , max_seq_len=50 , ) lowerCamelCase_ = INVOICE_URL lowerCamelCase_ = "What is the invoice number?" lowerCamelCase_ = dqa_pipeline(image=UpperCamelCase , question=UpperCamelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ {"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16}, ] , ) lowerCamelCase_ = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ {"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16}, ] , ) lowerCamelCase_ = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ [ {"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def snake_case ( self ): """simple docstring""" lowerCamelCase_ = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=UpperCamelCase ) lowerCamelCase_ = pipeline( "document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=UpperCamelCase , revision="3dc6de3" , ) lowerCamelCase_ = INVOICE_URL lowerCamelCase_ = "What is the invoice number?" lowerCamelCase_ = dqa_pipeline(image=UpperCamelCase , question=UpperCamelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) lowerCamelCase_ = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) lowerCamelCase_ = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] ] * 2 , ) lowerCamelCase_ = list(zip(*apply_tesseract(load_image(UpperCamelCase ) , UpperCamelCase , "" ) ) ) # This model should also work if `image` is set to None lowerCamelCase_ = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def snake_case ( self ): """simple docstring""" lowerCamelCase_ = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=UpperCamelCase ) lowerCamelCase_ = pipeline( "document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=UpperCamelCase , revision="3dc6de3" , max_seq_len=50 , ) lowerCamelCase_ = INVOICE_URL lowerCamelCase_ = "What is the invoice number?" lowerCamelCase_ = dqa_pipeline(image=UpperCamelCase , question=UpperCamelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ {"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16}, ] , ) lowerCamelCase_ = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ [ {"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16}, ] ] * 2 , ) lowerCamelCase_ = list(zip(*apply_tesseract(load_image(UpperCamelCase ) , UpperCamelCase , "" ) ) ) # This model should also work if `image` is set to None lowerCamelCase_ = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ {"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16}, ] , ) @slow @require_torch def snake_case ( self ): """simple docstring""" lowerCamelCase_ = pipeline( "document-question-answering" , model="naver-clova-ix/donut-base-finetuned-docvqa" , tokenizer=AutoTokenizer.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa" ) , feature_extractor="naver-clova-ix/donut-base-finetuned-docvqa" , ) lowerCamelCase_ = INVOICE_URL lowerCamelCase_ = "What is the invoice number?" lowerCamelCase_ = dqa_pipeline(image=UpperCamelCase , question=UpperCamelCase , top_k=2 ) self.assertEqual(nested_simplify(UpperCamelCase , decimals=4 ) , [{"answer": "us-001"}] ) @require_tf @unittest.skip("Document question answering not implemented in TF" ) def snake_case ( self ): """simple docstring""" pass
55
1
'''simple docstring''' import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class __snake_case( unittest.TestCase ): '''simple docstring''' UpperCAmelCase : str = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def __snake_case ( self , A_ , A_ , A_ ) -> str: lowerCAmelCase = hf_hub_download( repo_id="""nateraw/video-demo""" , filename="""archery.mp4""" , repo_type="""dataset""" ) lowerCAmelCase = VideoClassificationPipeline(model=A_ , image_processor=A_ , top_k=2 ) lowerCAmelCase = [ example_video_filepath, """https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4""", ] return video_classifier, examples def __snake_case ( self , A_ , A_ ) -> Union[str, Any]: for example in examples: lowerCAmelCase = video_classifier(A_ ) self.assertEqual( A_ , [ {"""score""": ANY(A_ ), """label""": ANY(A_ )}, {"""score""": ANY(A_ ), """label""": ANY(A_ )}, ] , ) @require_torch def __snake_case ( self ) -> int: lowerCAmelCase = """hf-internal-testing/tiny-random-VideoMAEForVideoClassification""" lowerCAmelCase = VideoMAEFeatureExtractor( size={"""shortest_edge""": 10} , crop_size={"""height""": 10, """width""": 10} ) lowerCAmelCase = pipeline( """video-classification""" , model=A_ , feature_extractor=A_ , frame_sampling_rate=4 ) lowerCAmelCase = hf_hub_download(repo_id="""nateraw/video-demo""" , filename="""archery.mp4""" , repo_type="""dataset""" ) lowerCAmelCase = video_classifier(A_ , top_k=2 ) self.assertEqual( nested_simplify(A_ , decimals=4 ) , [{"""score""": 0.5_1_9_9, """label""": """LABEL_0"""}, {"""score""": 0.4_8_0_1, """label""": """LABEL_1"""}] , ) lowerCAmelCase = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(A_ , decimals=4 ) , [ [{"""score""": 0.5_1_9_9, """label""": """LABEL_0"""}, {"""score""": 0.4_8_0_1, """label""": """LABEL_1"""}], [{"""score""": 0.5_1_9_9, """label""": """LABEL_0"""}, {"""score""": 0.4_8_0_1, """label""": """LABEL_1"""}], ] , ) @require_tf def __snake_case ( self ) -> str: pass
362
'''simple docstring''' class __snake_case( _lowerCAmelCase ): '''simple docstring''' pass class __snake_case( _lowerCAmelCase ): '''simple docstring''' pass class __snake_case: '''simple docstring''' def __init__( self ) -> int: lowerCAmelCase = [ [], [], [], ] def __snake_case ( self , A_ , A_ ) -> None: try: if len(self.queues[priority] ) >= 100: raise OverflowError("""Maximum queue size is 100""" ) self.queues[priority].append(A_ ) except IndexError: raise ValueError("""Valid priorities are 0, 1, and 2""" ) def __snake_case ( self ) -> int: for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError("""All queues are empty""" ) def __str__( self ) -> str: return "\n".join(f'Priority {i}: {q}' for i, q in enumerate(self.queues ) ) class __snake_case: '''simple docstring''' def __init__( self ) -> Dict: lowerCAmelCase = [] def __snake_case ( self , A_ ) -> None: if len(self.queue ) == 100: raise OverFlowError("""Maximum queue size is 100""" ) self.queue.append(A_ ) def __snake_case ( self ) -> int: if not self.queue: raise UnderFlowError("""The queue is empty""" ) else: lowerCAmelCase = min(self.queue ) self.queue.remove(A_ ) return data def __str__( self ) -> str: return str(self.queue ) def _snake_case ( ) -> Tuple: """simple docstring""" lowerCAmelCase = FixedPriorityQueue() fpq.enqueue(0 , 10 ) fpq.enqueue(1 , 70 ) fpq.enqueue(0 , 100 ) fpq.enqueue(2 , 1 ) fpq.enqueue(2 , 5 ) fpq.enqueue(1 , 7 ) fpq.enqueue(2 , 4 ) fpq.enqueue(1 , 64 ) fpq.enqueue(0 , 128 ) print(_SCREAMING_SNAKE_CASE ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(_SCREAMING_SNAKE_CASE ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def _snake_case ( ) -> Optional[Any]: """simple docstring""" lowerCAmelCase = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(100 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(128 ) print(_SCREAMING_SNAKE_CASE ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(_SCREAMING_SNAKE_CASE ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
187
0
'''simple docstring''' import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class UpperCAmelCase ( unittest.TestCase ): def lowercase__ ( self : List[Any] ) -> Optional[Any]: _lowerCAmelCase = logging.get_logger() # the current default level is logging.WARNING _lowerCAmelCase = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(__snake_case ) def lowercase__ ( self : int ) -> str: _lowerCAmelCase = logging.get_verbosity() _lowerCAmelCase = logging.get_logger("""transformers.models.bart.tokenization_bart""" ) _lowerCAmelCase = """Testing 1, 2, 3""" # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(__snake_case ) as cl: logger.warning(__snake_case ) self.assertEqual(cl.out , msg + """\n""" ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(__snake_case ) as cl: logger.warning(__snake_case ) self.assertEqual(cl.out , """""" ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(__snake_case ) as cl: logger.warning(__snake_case ) self.assertEqual(cl.out , msg + """\n""" ) # restore to the original level logging.set_verbosity(__snake_case ) @mockenv(TRANSFORMERS_VERBOSITY="""error""" ) def lowercase__ ( self : Tuple ) -> Tuple: # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() # this action activates the env var _lowerCAmelCase = logging.get_logger("""transformers.models.bart.tokenization_bart""" ) _lowerCAmelCase = os.getenv("""TRANSFORMERS_VERBOSITY""" , __snake_case ) _lowerCAmelCase = logging.log_levels[env_level_str] _lowerCAmelCase = logging.get_verbosity() self.assertEqual( __snake_case , __snake_case , f"TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}" , ) # restore to the original level _lowerCAmelCase = """""" transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY="""super-error""" ) def lowercase__ ( self : Optional[int] ) -> Any: # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() _lowerCAmelCase = logging.logging.getLogger() with CaptureLogger(__snake_case ) as cl: # this action activates the env var logging.get_logger("""transformers.models.bart.tokenization_bart""" ) self.assertIn("""Unknown option TRANSFORMERS_VERBOSITY=super-error""" , cl.out ) # no need to restore as nothing was changed def lowercase__ ( self : Dict ) -> Any: # testing `logger.warning_advice()` transformers.utils.logging._reset_library_root_logger() _lowerCAmelCase = logging.get_logger("""transformers.models.bart.tokenization_bart""" ) _lowerCAmelCase = """Testing 1, 2, 3""" with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="""1""" ): # nothing should be logged as env var disables this method with CaptureLogger(__snake_case ) as cl: logger.warning_advice(__snake_case ) self.assertEqual(cl.out , """""" ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="""""" ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(__snake_case ) as cl: logger.warning_advice(__snake_case ) self.assertEqual(cl.out , msg + """\n""" ) def UpperCamelCase__ ( ): """simple docstring""" disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
70
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { """microsoft/markuplm-base""": """https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json""", """microsoft/markuplm-large""": """https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json""", } class A__ ( _lowerCamelCase): A_ : List[Any] = 'markuplm' def __init__( self , _SCREAMING_SNAKE_CASE=3_05_22 , _SCREAMING_SNAKE_CASE=7_68 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=30_72 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=5_12 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=1E-12 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=2_56 , _SCREAMING_SNAKE_CASE=10_24 , _SCREAMING_SNAKE_CASE=2_16 , _SCREAMING_SNAKE_CASE=10_01 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=50 , _SCREAMING_SNAKE_CASE="absolute" , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE , ): super().__init__( pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : Union[str, Any] = vocab_size __lowerCAmelCase : Any = hidden_size __lowerCAmelCase : List[Any] = num_hidden_layers __lowerCAmelCase : Tuple = num_attention_heads __lowerCAmelCase : Union[str, Any] = hidden_act __lowerCAmelCase : List[Any] = intermediate_size __lowerCAmelCase : List[str] = hidden_dropout_prob __lowerCAmelCase : List[str] = attention_probs_dropout_prob __lowerCAmelCase : Optional[int] = max_position_embeddings __lowerCAmelCase : int = type_vocab_size __lowerCAmelCase : Tuple = initializer_range __lowerCAmelCase : int = layer_norm_eps __lowerCAmelCase : List[str] = position_embedding_type __lowerCAmelCase : List[Any] = use_cache __lowerCAmelCase : Optional[Any] = classifier_dropout # additional properties __lowerCAmelCase : Optional[int] = max_depth __lowerCAmelCase : List[str] = max_xpath_tag_unit_embeddings __lowerCAmelCase : Optional[Any] = max_xpath_subs_unit_embeddings __lowerCAmelCase : Any = tag_pad_id __lowerCAmelCase : Union[str, Any] = subs_pad_id __lowerCAmelCase : int = xpath_unit_hidden_size
86
0
'''simple docstring''' from __future__ import annotations class __snake_case: '''simple docstring''' def __init__( self , A_ = 0 ) -> Dict: lowerCAmelCase = key def __snake_case ( self , A_ , A_ ) -> list[str]: assert isinstance(A_ , A_ ) and isinstance(A_ , A_ ) lowerCAmelCase = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(A_ ) ^ key ) for ch in content] def __snake_case ( self , A_ , A_ ) -> list[str]: assert isinstance(A_ , A_ ) and isinstance(A_ , A_ ) lowerCAmelCase = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(A_ ) ^ key ) for ch in content] def __snake_case ( self , A_ , A_ = 0 ) -> str: assert isinstance(A_ , A_ ) and isinstance(A_ , A_ ) lowerCAmelCase = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned lowerCAmelCase = """""" for ch in content: ans += chr(ord(A_ ) ^ key ) return ans def __snake_case ( self , A_ , A_ = 0 ) -> str: assert isinstance(A_ , A_ ) and isinstance(A_ , A_ ) lowerCAmelCase = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned lowerCAmelCase = """""" for ch in content: ans += chr(ord(A_ ) ^ key ) return ans def __snake_case ( self , A_ , A_ = 0 ) -> bool: assert isinstance(A_ , A_ ) and isinstance(A_ , A_ ) try: with open(A_ ) as fin, open("""encrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(A_ , A_ ) ) except OSError: return False return True def __snake_case ( self , A_ , A_ ) -> bool: assert isinstance(A_ , A_ ) and isinstance(A_ , A_ ) try: with open(A_ ) as fin, open("""decrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(A_ , A_ ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
187
'''simple docstring''' from __future__ import annotations def _snake_case ( _SCREAMING_SNAKE_CASE : int | str ) -> bool: """simple docstring""" lowerCAmelCase = str(_SCREAMING_SNAKE_CASE ) return n == n[::-1] def _snake_case ( _SCREAMING_SNAKE_CASE : int = 1_000_000 ) -> Dict: """simple docstring""" lowerCAmelCase = 0 for i in range(1 , _SCREAMING_SNAKE_CASE ): if is_palindrome(_SCREAMING_SNAKE_CASE ) and is_palindrome(bin(_SCREAMING_SNAKE_CASE ).split("""b""" )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
187
1
from math import sqrt def A ( _UpperCAmelCase : int ) -> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(_UpperCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A ( _UpperCAmelCase : int = 10_001 ) -> int: '''simple docstring''' _UpperCAmelCase = 0 _UpperCAmelCase = 1 while count != nth and number < 3: number += 1 if is_prime(_UpperCAmelCase ): count += 1 while count != nth: number += 2 if is_prime(_UpperCAmelCase ): count += 1 return number if __name__ == "__main__": print(f"""{solution() = }""")
339
def A ( _UpperCAmelCase : str ) -> bool: '''simple docstring''' return credit_card_number.startswith(('34', '35', '37', '4', '5', '6') ) def A ( _UpperCAmelCase : str ) -> bool: '''simple docstring''' _UpperCAmelCase = credit_card_number _UpperCAmelCase = 0 _UpperCAmelCase = len(_UpperCAmelCase ) - 2 for i in range(_UpperCAmelCase , -1 , -2 ): # double the value of every second digit _UpperCAmelCase = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 _UpperCAmelCase = cc_number[:i] + str(_UpperCAmelCase ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(_UpperCAmelCase ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 10 == 0 def A ( _UpperCAmelCase : str ) -> bool: '''simple docstring''' _UpperCAmelCase = F"{credit_card_number} is an invalid credit card number because" if not credit_card_number.isdigit(): print(F"{error_message} it has nonnumerical characters." ) return False if not 13 <= len(_UpperCAmelCase ) <= 16: print(F"{error_message} of its length." ) return False if not validate_initial_digits(_UpperCAmelCase ): print(F"{error_message} of its first two digits." ) return False if not luhn_validation(_UpperCAmelCase ): print(F"{error_message} it fails the Luhn check." ) return False print(F"{credit_card_number} is a valid credit card number." ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number("4111111111111111") validate_credit_card_number("32323")
339
1
'''simple docstring''' from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { '''snap-research/efficientformer-l1-300''': ( '''https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json''' ), } class lowerCamelCase_ ( __a ): lowerCAmelCase__ = 'efficientformer' def __init__( self : List[Any] , _A : List[int] = [3, 2, 6, 4] , _A : List[int] = [48, 96, 224, 448] , _A : List[bool] = [True, True, True, True] , _A : int = 448 , _A : int = 32 , _A : int = 4 , _A : int = 7 , _A : int = 5 , _A : int = 8 , _A : int = 4 , _A : float = 0.0 , _A : int = 16 , _A : int = 3 , _A : int = 3 , _A : int = 3 , _A : int = 2 , _A : int = 1 , _A : float = 0.0 , _A : int = 1 , _A : bool = True , _A : bool = True , _A : float = 1e-5 , _A : str = "gelu" , _A : float = 0.0_2 , _A : float = 1e-12 , _A : int = 224 , _A : float = 1e-05 , **_A : Tuple , ): '''simple docstring''' super().__init__(**_A ) UpperCAmelCase__ : Union[str, Any] = hidden_act UpperCAmelCase__ : List[Any] = hidden_dropout_prob UpperCAmelCase__ : List[Any] = hidden_sizes UpperCAmelCase__ : str = num_hidden_layers UpperCAmelCase__ : int = num_attention_heads UpperCAmelCase__ : Union[str, Any] = initializer_range UpperCAmelCase__ : str = layer_norm_eps UpperCAmelCase__ : Union[str, Any] = patch_size UpperCAmelCase__ : str = num_channels UpperCAmelCase__ : int = depths UpperCAmelCase__ : Union[str, Any] = mlp_expansion_ratio UpperCAmelCase__ : Tuple = downsamples UpperCAmelCase__ : Dict = dim UpperCAmelCase__ : Any = key_dim UpperCAmelCase__ : Optional[int] = attention_ratio UpperCAmelCase__ : Tuple = resolution UpperCAmelCase__ : Union[str, Any] = pool_size UpperCAmelCase__ : Optional[int] = downsample_patch_size UpperCAmelCase__ : int = downsample_stride UpperCAmelCase__ : Dict = downsample_pad UpperCAmelCase__ : str = drop_path_rate UpperCAmelCase__ : List[str] = num_metaad_blocks UpperCAmelCase__ : Optional[Any] = distillation UpperCAmelCase__ : Any = use_layer_scale UpperCAmelCase__ : Any = layer_scale_init_value UpperCAmelCase__ : List[str] = image_size UpperCAmelCase__ : int = batch_norm_eps
299
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class lowerCamelCase_ ( unittest.TestCase ): def __init__( self : List[str] , _A : List[Any] , _A : Union[str, Any]=7 , _A : List[str]=3 , _A : str=30 , _A : Tuple=400 , _A : Optional[int]=True , _A : List[str]=None , _A : int=True , _A : int=[0.5, 0.5, 0.5] , _A : Optional[int]=[0.5, 0.5, 0.5] , _A : List[Any]=True , _A : str=1 / 255 , _A : Tuple=True , ): '''simple docstring''' UpperCAmelCase__ : str = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1_333} UpperCAmelCase__ : Optional[Any] = parent UpperCAmelCase__ : Optional[Any] = batch_size UpperCAmelCase__ : List[str] = num_channels UpperCAmelCase__ : List[Any] = min_resolution UpperCAmelCase__ : List[str] = max_resolution UpperCAmelCase__ : Tuple = do_resize UpperCAmelCase__ : Union[str, Any] = size UpperCAmelCase__ : Dict = do_normalize UpperCAmelCase__ : Union[str, Any] = image_mean UpperCAmelCase__ : Optional[int] = image_std UpperCAmelCase__ : Dict = do_rescale UpperCAmelCase__ : Union[str, Any] = rescale_factor UpperCAmelCase__ : int = do_pad def lowercase_ ( self : Any ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowercase_ ( self : Any , _A : Union[str, Any] , _A : Union[str, Any]=False ): '''simple docstring''' if not batched: UpperCAmelCase__ : Optional[int] = image_inputs[0] if isinstance(_A , Image.Image ): UpperCAmelCase__ , UpperCAmelCase__ : str = image.size else: UpperCAmelCase__ , UpperCAmelCase__ : int = image.shape[1], image.shape[2] if w < h: UpperCAmelCase__ : Optional[Any] = int(self.size['''shortest_edge'''] * h / w ) UpperCAmelCase__ : List[Any] = self.size['''shortest_edge'''] elif w > h: UpperCAmelCase__ : int = self.size['''shortest_edge'''] UpperCAmelCase__ : Dict = int(self.size['''shortest_edge'''] * w / h ) else: UpperCAmelCase__ : List[str] = self.size['''shortest_edge'''] UpperCAmelCase__ : Dict = self.size['''shortest_edge'''] else: UpperCAmelCase__ : int = [] for image in image_inputs: UpperCAmelCase__ , UpperCAmelCase__ : str = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCAmelCase__ : Union[str, Any] = max(_A , key=lambda _A : item[0] )[0] UpperCAmelCase__ : Union[str, Any] = max(_A , key=lambda _A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowerCamelCase_ ( __a , unittest.TestCase ): lowerCAmelCase__ = DetaImageProcessor if is_vision_available() else None def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : List[Any] = DetaImageProcessingTester(self ) @property def lowercase_ ( self : int ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , '''image_mean''' ) ) self.assertTrue(hasattr(_A , '''image_std''' ) ) self.assertTrue(hasattr(_A , '''do_normalize''' ) ) self.assertTrue(hasattr(_A , '''do_resize''' ) ) self.assertTrue(hasattr(_A , '''do_rescale''' ) ) self.assertTrue(hasattr(_A , '''do_pad''' ) ) self.assertTrue(hasattr(_A , '''size''' ) ) def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1_333} ) self.assertEqual(image_processor.do_pad , _A ) def lowercase_ ( self : Dict ): '''simple docstring''' pass def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase__ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input UpperCAmelCase__ : List[str] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ : int = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ , UpperCAmelCase__ : str = self.image_processor_tester.get_expected_values(_A , batched=_A ) UpperCAmelCase__ : Union[str, Any] = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase__ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input UpperCAmelCase__ : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ : List[str] = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ : List[str] = image_processing(_A , return_tensors='''pt''' ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ : int = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase__ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input UpperCAmelCase__ : Optional[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ : List[Any] = image_processing(_A , return_tensors='''pt''' ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ : Any = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: UpperCAmelCase__ : str = json.loads(f.read() ) UpperCAmelCase__ : Tuple = {'''image_id''': 39_769, '''annotations''': target} # encode them UpperCAmelCase__ : Optional[int] = DetaImageProcessor() UpperCAmelCase__ : str = image_processing(images=_A , annotations=_A , return_tensors='''pt''' ) # verify pixel values UpperCAmelCase__ : Optional[int] = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding['''pixel_values'''].shape , _A ) UpperCAmelCase__ : Any = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _A , atol=1e-4 ) ) # verify area UpperCAmelCase__ : List[Any] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _A ) ) # verify boxes UpperCAmelCase__ : int = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _A ) UpperCAmelCase__ : List[Any] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _A , atol=1e-3 ) ) # verify image_id UpperCAmelCase__ : str = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _A ) ) # verify is_crowd UpperCAmelCase__ : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _A ) ) # verify class_labels UpperCAmelCase__ : Union[str, Any] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _A ) ) # verify orig_size UpperCAmelCase__ : int = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _A ) ) # verify size UpperCAmelCase__ : int = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _A ) ) @slow def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: UpperCAmelCase__ : int = json.loads(f.read() ) UpperCAmelCase__ : str = {'''file_name''': '''000000039769.png''', '''image_id''': 39_769, '''segments_info''': target} UpperCAmelCase__ : Dict = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them UpperCAmelCase__ : Any = DetaImageProcessor(format='''coco_panoptic''' ) UpperCAmelCase__ : str = image_processing(images=_A , annotations=_A , masks_path=_A , return_tensors='''pt''' ) # verify pixel values UpperCAmelCase__ : str = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding['''pixel_values'''].shape , _A ) UpperCAmelCase__ : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _A , atol=1e-4 ) ) # verify area UpperCAmelCase__ : Any = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _A ) ) # verify boxes UpperCAmelCase__ : Dict = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _A ) UpperCAmelCase__ : List[str] = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _A , atol=1e-3 ) ) # verify image_id UpperCAmelCase__ : Optional[int] = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _A ) ) # verify is_crowd UpperCAmelCase__ : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _A ) ) # verify class_labels UpperCAmelCase__ : Tuple = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _A ) ) # verify masks UpperCAmelCase__ : Dict = 822_873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , _A ) # verify orig_size UpperCAmelCase__ : str = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _A ) ) # verify size UpperCAmelCase__ : Optional[Any] = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _A ) )
299
1
'''simple docstring''' import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def a ( __a ) -> List[Any]: '''simple docstring''' UpperCamelCase__ :Union[str, Any] = {} UpperCamelCase__ :str = tokenizer(example['''content'''] , truncation=__a )['''input_ids'''] UpperCamelCase__ :str = len(example['''content'''] ) / len(output['''input_ids'''] ) return output __snake_case = HfArgumentParser(PretokenizationArguments) __snake_case = parser.parse_args() if args.num_workers is None: __snake_case = multiprocessing.cpu_count() __snake_case = AutoTokenizer.from_pretrained(args.tokenizer_dir) __snake_case = time.time() __snake_case = load_dataset(args.dataset_name, split='''train''') print(F"""Dataset loaded in {time.time()-t_start:.2f}s""") __snake_case = time.time() __snake_case = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ '''repo_name''', '''path''', '''copies''', '''size''', '''content''', '''license''', '''hash''', '''line_mean''', '''line_max''', '''alpha_frac''', '''autogenerated''', ], ) print(F"""Dataset tokenized in {time.time()-t_start:.2f}s""") __snake_case = time.time() ds.push_to_hub(args.tokenized_data_repo) print(F"""Data pushed to the hub in {time.time()-t_start:.2f}s""")
97
'''simple docstring''' import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def a ( __a , __a ) -> Optional[int]: '''simple docstring''' assert isinstance(__a , __a ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def a ( __a , __a , __a ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ :Union[str, Any] = tmp_path / '''cache''' UpperCamelCase__ :Dict = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCamelCase__ :Tuple = JsonDatasetReader(__a , cache_dir=__a , keep_in_memory=__a ).read() _check_json_dataset(__a , __a ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def a ( __a , __a , __a ) -> Any: '''simple docstring''' UpperCamelCase__ :Union[str, Any] = tmp_path / '''cache''' UpperCamelCase__ :Optional[Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} UpperCamelCase__ :Optional[Any] = features.copy() if features else default_expected_features UpperCamelCase__ :Tuple = ( Features({feature: Value(__a ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCamelCase__ :int = JsonDatasetReader(__a , features=__a , cache_dir=__a ).read() _check_json_dataset(__a , __a ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''}, ] , ) def a ( __a , __a , __a ) -> Tuple: '''simple docstring''' UpperCamelCase__ :int = tmp_path / '''cache''' UpperCamelCase__ :str = {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''} UpperCamelCase__ :Any = features.copy() if features else default_expected_features UpperCamelCase__ :Union[str, Any] = ( Features({feature: Value(__a ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCamelCase__ :Any = JsonDatasetReader(__a , features=__a , cache_dir=__a ).read() assert isinstance(__a , __a ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def a ( __a , __a ) -> List[Any]: '''simple docstring''' UpperCamelCase__ :Any = {'''col_2''': '''int64''', '''col_3''': '''float64''', '''col_1''': '''string'''} UpperCamelCase__ :int = features.copy() UpperCamelCase__ :List[Any] = ( Features({feature: Value(__a ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCamelCase__ :Optional[int] = tmp_path / '''cache''' UpperCamelCase__ :Dict = JsonDatasetReader(__a , features=__a , cache_dir=__a ).read() assert isinstance(__a , __a ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def a ( __a , __a , __a ) -> List[Any]: '''simple docstring''' UpperCamelCase__ :Union[str, Any] = tmp_path / '''cache''' UpperCamelCase__ :Optional[Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} UpperCamelCase__ :List[Any] = JsonDatasetReader(__a , cache_dir=__a , split=__a ).read() _check_json_dataset(__a , __a ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list] ) def a ( __a , __a , __a ) -> Any: '''simple docstring''' if issubclass(__a , __a ): UpperCamelCase__ :Union[str, Any] = jsonl_path elif issubclass(__a , __a ): UpperCamelCase__ :int = [jsonl_path] UpperCamelCase__ :Dict = tmp_path / '''cache''' UpperCamelCase__ :Any = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} UpperCamelCase__ :List[str] = JsonDatasetReader(__a , cache_dir=__a ).read() _check_json_dataset(__a , __a ) def a ( __a , __a , __a=("train",) ) -> Optional[Any]: '''simple docstring''' assert isinstance(__a , __a ) for split in splits: UpperCamelCase__ :Optional[int] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def a ( __a , __a , __a ) -> List[str]: '''simple docstring''' UpperCamelCase__ :List[str] = tmp_path / '''cache''' UpperCamelCase__ :Dict = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCamelCase__ :str = JsonDatasetReader({'''train''': jsonl_path} , cache_dir=__a , keep_in_memory=__a ).read() _check_json_datasetdict(__a , __a ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def a ( __a , __a , __a ) -> int: '''simple docstring''' UpperCamelCase__ :Tuple = tmp_path / '''cache''' UpperCamelCase__ :Any = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} UpperCamelCase__ :Optional[int] = features.copy() if features else default_expected_features UpperCamelCase__ :str = ( Features({feature: Value(__a ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCamelCase__ :Dict = JsonDatasetReader({'''train''': jsonl_path} , features=__a , cache_dir=__a ).read() _check_json_datasetdict(__a , __a ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def a ( __a , __a , __a ) -> str: '''simple docstring''' if split: UpperCamelCase__ :List[str] = {split: jsonl_path} else: UpperCamelCase__ :int = '''train''' UpperCamelCase__ :int = {'''train''': jsonl_path, '''test''': jsonl_path} UpperCamelCase__ :Any = tmp_path / '''cache''' UpperCamelCase__ :Union[str, Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} UpperCamelCase__ :Any = JsonDatasetReader(__a , cache_dir=__a ).read() _check_json_datasetdict(__a , __a , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def a ( __a ) -> Union[str, Any]: '''simple docstring''' return json.load(__a ) def a ( __a ) -> int: '''simple docstring''' return [json.loads(__a ) for line in buffer] class lowercase : """simple docstring""" @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase_ , UpperCamelCase_ , lines=UpperCamelCase_ ).write() buffer.seek(0 ) UpperCamelCase__ :List[Any] = load_json_function(UpperCamelCase_ ) assert isinstance(UpperCamelCase_ , UpperCamelCase_ ) assert isinstance(exported_content[0] , UpperCamelCase_ ) assert len(UpperCamelCase_ ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase_ , UpperCamelCase_ , lines=UpperCamelCase_ , orient=UpperCamelCase_ ).write() buffer.seek(0 ) UpperCamelCase__ :Optional[int] = load_json(UpperCamelCase_ ) assert isinstance(UpperCamelCase_ , UpperCamelCase_ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(UpperCamelCase_ , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(UpperCamelCase_ ) == 10 @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase_ , UpperCamelCase_ , lines=UpperCamelCase_ , num_proc=2 ).write() buffer.seek(0 ) UpperCamelCase__ :Union[str, Any] = load_json_function(UpperCamelCase_ ) assert isinstance(UpperCamelCase_ , UpperCamelCase_ ) assert isinstance(exported_content[0] , UpperCamelCase_ ) assert len(UpperCamelCase_ ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase_ , UpperCamelCase_ , lines=UpperCamelCase_ , orient=UpperCamelCase_ , num_proc=2 ).write() buffer.seek(0 ) UpperCamelCase__ :int = load_json(UpperCamelCase_ ) assert isinstance(UpperCamelCase_ , UpperCamelCase_ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(UpperCamelCase_ , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(UpperCamelCase_ ) == 10 def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' with pytest.raises(UpperCamelCase_ ): with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase_ , UpperCamelCase_ , num_proc=0 ) @pytest.mark.parametrize('''compression, extension''' , [('''gzip''', '''gz'''), ('''bz2''', '''bz2'''), ('''xz''', '''xz''')] ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :Tuple = tmp_path_factory.mktemp('''data''' ) / F'''test.json.{extension}''' UpperCamelCase__ :Union[str, Any] = str(shared_datadir / F'''test_file.json.{extension}''' ) JsonDatasetWriter(UpperCamelCase_ , UpperCamelCase_ , compression=UpperCamelCase_ ).write() with fsspec.open(UpperCamelCase_ , '''rb''' , compression='''infer''' ) as f: UpperCamelCase__ :Dict = f.read() with fsspec.open(UpperCamelCase_ , '''rb''' , compression='''infer''' ) as f: UpperCamelCase__ :int = f.read() assert exported_content == original_content
97
1
'''simple docstring''' import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = MODEL_FOR_MASKED_LM_MAPPING lowerCAmelCase__ = TF_MODEL_FOR_MASKED_LM_MAPPING def __lowerCamelCase ( self : List[Any]): '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def __lowerCamelCase ( self : Any): '''simple docstring''' __lowercase =pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , top_k=2 , framework='tf') __lowercase =unmasker('My name is <mask>') self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=6) , [ {'sequence': 'My name is grouped', 'score': 2.1e-05, 'token': 3_8_0_1_5, 'token_str': ' grouped'}, {'sequence': 'My name is accuser', 'score': 2.1e-05, 'token': 2_5_5_0_6, 'token_str': ' accuser'}, ] , ) __lowercase =unmasker('The largest city in France is <mask>') self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=6) , [ { 'sequence': 'The largest city in France is grouped', 'score': 2.1e-05, 'token': 3_8_0_1_5, 'token_str': ' grouped', }, { 'sequence': 'The largest city in France is accuser', 'score': 2.1e-05, 'token': 2_5_5_0_6, 'token_str': ' accuser', }, ] , ) __lowercase =unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=6) , [ {'sequence': 'My name is Clara', 'score': 2e-05, 'token': 1_3_6_0_6, 'token_str': ' Clara'}, {'sequence': 'My name is Patrick', 'score': 2e-05, 'token': 3_4_9_9, 'token_str': ' Patrick'}, {'sequence': 'My name is Te', 'score': 1.9e-05, 'token': 2_9_4_1, 'token_str': ' Te'}, ] , ) @require_torch def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __lowercase =pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , top_k=2 , framework='pt') __lowercase =unmasker('My name is <mask>') self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=6) , [ {'sequence': 'My name is Maul', 'score': 2.2e-05, 'token': 3_5_6_7_6, 'token_str': ' Maul'}, {'sequence': 'My name isELS', 'score': 2.2e-05, 'token': 1_6_4_1_6, 'token_str': 'ELS'}, ] , ) __lowercase =unmasker('The largest city in France is <mask>') self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=6) , [ { 'sequence': 'The largest city in France is Maul', 'score': 2.2e-05, 'token': 3_5_6_7_6, 'token_str': ' Maul', }, {'sequence': 'The largest city in France isELS', 'score': 2.2e-05, 'token': 1_6_4_1_6, 'token_str': 'ELS'}, ] , ) __lowercase =unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=6) , [ {'sequence': 'My name is Patrick', 'score': 2.1e-05, 'token': 3_4_9_9, 'token_str': ' Patrick'}, {'sequence': 'My name is Te', 'score': 2e-05, 'token': 2_9_4_1, 'token_str': ' Te'}, {'sequence': 'My name is Clara', 'score': 2e-05, 'token': 1_3_6_0_6, 'token_str': ' Clara'}, ] , ) __lowercase =unmasker('My name is <mask> <mask>' , top_k=2) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=6) , [ [ { 'score': 2.2e-05, 'token': 3_5_6_7_6, 'token_str': ' Maul', 'sequence': '<s>My name is Maul<mask></s>', }, {'score': 2.2e-05, 'token': 1_6_4_1_6, 'token_str': 'ELS', 'sequence': '<s>My name isELS<mask></s>'}, ], [ { 'score': 2.2e-05, 'token': 3_5_6_7_6, 'token_str': ' Maul', 'sequence': '<s>My name is<mask> Maul</s>', }, {'score': 2.2e-05, 'token': 1_6_4_1_6, 'token_str': 'ELS', 'sequence': '<s>My name is<mask>ELS</s>'}, ], ] , ) @require_torch_gpu def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' __lowercase =pipeline('fill-mask' , model='hf-internal-testing/tiny-random-distilbert' , device=0 , framework='pt') # convert model to fp16 pipe.model.half() __lowercase =pipe('Paris is the [MASK] of France.') # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase) @slow @require_torch def __lowerCamelCase ( self : List[str]): '''simple docstring''' __lowercase =pipeline(task='fill-mask' , model='distilroberta-base' , top_k=2 , framework='pt') self.run_large_test(_lowerCAmelCase) @slow @require_tf def __lowerCamelCase ( self : List[str]): '''simple docstring''' __lowercase =pipeline(task='fill-mask' , model='distilroberta-base' , top_k=2 , framework='tf') self.run_large_test(_lowerCAmelCase) def __lowerCamelCase ( self : Tuple , _lowerCAmelCase : Optional[int]): '''simple docstring''' __lowercase =unmasker('My name is <mask>') self.assertEqual( nested_simplify(_lowerCAmelCase) , [ {'sequence': 'My name is John', 'score': 0.008, 'token': 6_1_0, 'token_str': ' John'}, {'sequence': 'My name is Chris', 'score': 0.007, 'token': 1_5_7_3, 'token_str': ' Chris'}, ] , ) __lowercase =unmasker('The largest city in France is <mask>') self.assertEqual( nested_simplify(_lowerCAmelCase) , [ { 'sequence': 'The largest city in France is Paris', 'score': 0.251, 'token': 2_2_0_1, 'token_str': ' Paris', }, { 'sequence': 'The largest city in France is Lyon', 'score': 0.214, 'token': 1_2_7_9_0, 'token_str': ' Lyon', }, ] , ) __lowercase =unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3) self.assertEqual( nested_simplify(_lowerCAmelCase) , [ {'sequence': 'My name is Patrick', 'score': 0.005, 'token': 3_4_9_9, 'token_str': ' Patrick'}, {'sequence': 'My name is Clara', 'score': 0.000, 'token': 1_3_6_0_6, 'token_str': ' Clara'}, {'sequence': 'My name is Te', 'score': 0.000, 'token': 2_9_4_1, 'token_str': ' Te'}, ] , ) @require_torch def __lowerCamelCase ( self : Dict): '''simple docstring''' __lowercase =pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , framework='pt') __lowercase =None __lowercase =None self.run_pipeline_test(_lowerCAmelCase , []) @require_tf def __lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' __lowercase =pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , framework='tf') __lowercase =None __lowercase =None self.run_pipeline_test(_lowerCAmelCase , []) def __lowerCamelCase ( self : Tuple , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[Any]): '''simple docstring''' if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest('The provided tokenizer has no mask token, (probably reformer or wav2vec2)') __lowercase =FillMaskPipeline(model=_lowerCAmelCase , tokenizer=_lowerCAmelCase) __lowercase =[ f"""This is another {tokenizer.mask_token} test""", ] return fill_masker, examples def __lowerCamelCase ( self : Union[str, Any] , _lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any]): '''simple docstring''' __lowercase =fill_masker.tokenizer __lowercase =fill_masker.model __lowercase =fill_masker( f"""This is a {tokenizer.mask_token}""" , ) self.assertEqual( _lowerCAmelCase , [ {'sequence': ANY(_lowerCAmelCase), 'score': ANY(_lowerCAmelCase), 'token': ANY(_lowerCAmelCase), 'token_str': ANY(_lowerCAmelCase)}, {'sequence': ANY(_lowerCAmelCase), 'score': ANY(_lowerCAmelCase), 'token': ANY(_lowerCAmelCase), 'token_str': ANY(_lowerCAmelCase)}, {'sequence': ANY(_lowerCAmelCase), 'score': ANY(_lowerCAmelCase), 'token': ANY(_lowerCAmelCase), 'token_str': ANY(_lowerCAmelCase)}, {'sequence': ANY(_lowerCAmelCase), 'score': ANY(_lowerCAmelCase), 'token': ANY(_lowerCAmelCase), 'token_str': ANY(_lowerCAmelCase)}, {'sequence': ANY(_lowerCAmelCase), 'score': ANY(_lowerCAmelCase), 'token': ANY(_lowerCAmelCase), 'token_str': ANY(_lowerCAmelCase)}, ] , ) __lowercase =fill_masker([f"""This is a {tokenizer.mask_token}"""]) self.assertEqual( _lowerCAmelCase , [ {'sequence': ANY(_lowerCAmelCase), 'score': ANY(_lowerCAmelCase), 'token': ANY(_lowerCAmelCase), 'token_str': ANY(_lowerCAmelCase)}, {'sequence': ANY(_lowerCAmelCase), 'score': ANY(_lowerCAmelCase), 'token': ANY(_lowerCAmelCase), 'token_str': ANY(_lowerCAmelCase)}, {'sequence': ANY(_lowerCAmelCase), 'score': ANY(_lowerCAmelCase), 'token': ANY(_lowerCAmelCase), 'token_str': ANY(_lowerCAmelCase)}, {'sequence': ANY(_lowerCAmelCase), 'score': ANY(_lowerCAmelCase), 'token': ANY(_lowerCAmelCase), 'token_str': ANY(_lowerCAmelCase)}, {'sequence': ANY(_lowerCAmelCase), 'score': ANY(_lowerCAmelCase), 'token': ANY(_lowerCAmelCase), 'token_str': ANY(_lowerCAmelCase)}, ] , ) __lowercase =fill_masker([f"""This is a {tokenizer.mask_token}""", f"""Another {tokenizer.mask_token} great test."""]) self.assertEqual( _lowerCAmelCase , [ [ {'sequence': ANY(_lowerCAmelCase), 'score': ANY(_lowerCAmelCase), 'token': ANY(_lowerCAmelCase), 'token_str': ANY(_lowerCAmelCase)}, {'sequence': ANY(_lowerCAmelCase), 'score': ANY(_lowerCAmelCase), 'token': ANY(_lowerCAmelCase), 'token_str': ANY(_lowerCAmelCase)}, {'sequence': ANY(_lowerCAmelCase), 'score': ANY(_lowerCAmelCase), 'token': ANY(_lowerCAmelCase), 'token_str': ANY(_lowerCAmelCase)}, {'sequence': ANY(_lowerCAmelCase), 'score': ANY(_lowerCAmelCase), 'token': ANY(_lowerCAmelCase), 'token_str': ANY(_lowerCAmelCase)}, {'sequence': ANY(_lowerCAmelCase), 'score': ANY(_lowerCAmelCase), 'token': ANY(_lowerCAmelCase), 'token_str': ANY(_lowerCAmelCase)}, ], [ {'sequence': ANY(_lowerCAmelCase), 'score': ANY(_lowerCAmelCase), 'token': ANY(_lowerCAmelCase), 'token_str': ANY(_lowerCAmelCase)}, {'sequence': ANY(_lowerCAmelCase), 'score': ANY(_lowerCAmelCase), 'token': ANY(_lowerCAmelCase), 'token_str': ANY(_lowerCAmelCase)}, {'sequence': ANY(_lowerCAmelCase), 'score': ANY(_lowerCAmelCase), 'token': ANY(_lowerCAmelCase), 'token_str': ANY(_lowerCAmelCase)}, {'sequence': ANY(_lowerCAmelCase), 'score': ANY(_lowerCAmelCase), 'token': ANY(_lowerCAmelCase), 'token_str': ANY(_lowerCAmelCase)}, {'sequence': ANY(_lowerCAmelCase), 'score': ANY(_lowerCAmelCase), 'token': ANY(_lowerCAmelCase), 'token_str': ANY(_lowerCAmelCase)}, ], ] , ) with self.assertRaises(_lowerCAmelCase): fill_masker([None]) # No mask_token is not supported with self.assertRaises(_lowerCAmelCase): fill_masker('This is') self.run_test_top_k(_lowerCAmelCase , _lowerCAmelCase) self.run_test_targets(_lowerCAmelCase , _lowerCAmelCase) self.run_test_top_k_targets(_lowerCAmelCase , _lowerCAmelCase) self.fill_mask_with_duplicate_targets_and_top_k(_lowerCAmelCase , _lowerCAmelCase) self.fill_mask_with_multiple_masks(_lowerCAmelCase , _lowerCAmelCase) def __lowerCamelCase ( self : Dict , _lowerCAmelCase : str , _lowerCAmelCase : Tuple): '''simple docstring''' __lowercase =tokenizer.get_vocab() __lowercase =sorted(vocab.keys())[:2] # Pipeline argument __lowercase =FillMaskPipeline(model=_lowerCAmelCase , tokenizer=_lowerCAmelCase , targets=_lowerCAmelCase) __lowercase =fill_masker(f"""This is a {tokenizer.mask_token}""") self.assertEqual( _lowerCAmelCase , [ {'sequence': ANY(_lowerCAmelCase), 'score': ANY(_lowerCAmelCase), 'token': ANY(_lowerCAmelCase), 'token_str': ANY(_lowerCAmelCase)}, {'sequence': ANY(_lowerCAmelCase), 'score': ANY(_lowerCAmelCase), 'token': ANY(_lowerCAmelCase), 'token_str': ANY(_lowerCAmelCase)}, ] , ) __lowercase ={vocab[el] for el in targets} self.assertEqual({el['token'] for el in outputs} , _lowerCAmelCase) __lowercase =[tokenizer.decode([x]) for x in target_ids] self.assertEqual({el['token_str'] for el in outputs} , set(_lowerCAmelCase)) # Call argument __lowercase =FillMaskPipeline(model=_lowerCAmelCase , tokenizer=_lowerCAmelCase) __lowercase =fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=_lowerCAmelCase) self.assertEqual( _lowerCAmelCase , [ {'sequence': ANY(_lowerCAmelCase), 'score': ANY(_lowerCAmelCase), 'token': ANY(_lowerCAmelCase), 'token_str': ANY(_lowerCAmelCase)}, {'sequence': ANY(_lowerCAmelCase), 'score': ANY(_lowerCAmelCase), 'token': ANY(_lowerCAmelCase), 'token_str': ANY(_lowerCAmelCase)}, ] , ) __lowercase ={vocab[el] for el in targets} self.assertEqual({el['token'] for el in outputs} , _lowerCAmelCase) __lowercase =[tokenizer.decode([x]) for x in target_ids] self.assertEqual({el['token_str'] for el in outputs} , set(_lowerCAmelCase)) # Score equivalence __lowercase =fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=_lowerCAmelCase) __lowercase =[top_mask['token_str'] for top_mask in outputs] __lowercase =[top_mask['score'] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_lowerCAmelCase) == set(_lowerCAmelCase): __lowercase =fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=_lowerCAmelCase) __lowercase =[top_mask['score'] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(_lowerCAmelCase) , nested_simplify(_lowerCAmelCase)) # Raises with invalid with self.assertRaises(_lowerCAmelCase): __lowercase =fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=[]) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(_lowerCAmelCase): __lowercase =fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=['']) with self.assertRaises(_lowerCAmelCase): __lowercase =fill_masker(f"""This is a {tokenizer.mask_token}""" , targets='') def __lowerCamelCase ( self : Tuple , _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any]): '''simple docstring''' __lowercase =FillMaskPipeline(model=_lowerCAmelCase , tokenizer=_lowerCAmelCase , top_k=2) __lowercase =fill_masker(f"""This is a {tokenizer.mask_token}""") self.assertEqual( _lowerCAmelCase , [ {'sequence': ANY(_lowerCAmelCase), 'score': ANY(_lowerCAmelCase), 'token': ANY(_lowerCAmelCase), 'token_str': ANY(_lowerCAmelCase)}, {'sequence': ANY(_lowerCAmelCase), 'score': ANY(_lowerCAmelCase), 'token': ANY(_lowerCAmelCase), 'token_str': ANY(_lowerCAmelCase)}, ] , ) __lowercase =FillMaskPipeline(model=_lowerCAmelCase , tokenizer=_lowerCAmelCase) __lowercase =fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=2) self.assertEqual( _lowerCAmelCase , [ {'sequence': ANY(_lowerCAmelCase), 'score': ANY(_lowerCAmelCase), 'token': ANY(_lowerCAmelCase), 'token_str': ANY(_lowerCAmelCase)}, {'sequence': ANY(_lowerCAmelCase), 'score': ANY(_lowerCAmelCase), 'token': ANY(_lowerCAmelCase), 'token_str': ANY(_lowerCAmelCase)}, ] , ) self.assertEqual(nested_simplify(_lowerCAmelCase) , nested_simplify(_lowerCAmelCase)) def __lowerCamelCase ( self : List[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Any): '''simple docstring''' __lowercase =tokenizer.get_vocab() __lowercase =FillMaskPipeline(model=_lowerCAmelCase , tokenizer=_lowerCAmelCase) # top_k=2, ntargets=3 __lowercase =sorted(vocab.keys())[:3] __lowercase =fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=2 , targets=_lowerCAmelCase) # If we use the most probably targets, and filter differently, we should still # have the same results __lowercase =[el['token_str'] for el in sorted(_lowerCAmelCase , key=lambda _lowerCAmelCase: x["score"] , reverse=_lowerCAmelCase)] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_lowerCAmelCase).issubset(_lowerCAmelCase): __lowercase =fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=3 , targets=_lowerCAmelCase) # They should yield exactly the same result self.assertEqual(nested_simplify(_lowerCAmelCase) , nested_simplify(_lowerCAmelCase)) def __lowerCamelCase ( self : Union[str, Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any]): '''simple docstring''' __lowercase =FillMaskPipeline(model=_lowerCAmelCase , tokenizer=_lowerCAmelCase) __lowercase =tokenizer.get_vocab() # String duplicates + id duplicates __lowercase =sorted(vocab.keys())[:3] __lowercase =[targets[0], targets[1], targets[0], targets[2], targets[1]] __lowercase =fill_masker(f"""My name is {tokenizer.mask_token}""" , targets=_lowerCAmelCase , top_k=1_0) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(_lowerCAmelCase) , 3) def __lowerCamelCase ( self : List[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any]): '''simple docstring''' __lowercase =FillMaskPipeline(model=_lowerCAmelCase , tokenizer=_lowerCAmelCase) __lowercase =fill_masker( f"""This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}""" , top_k=2) self.assertEqual( _lowerCAmelCase , [ [ {'sequence': ANY(_lowerCAmelCase), 'score': ANY(_lowerCAmelCase), 'token': ANY(_lowerCAmelCase), 'token_str': ANY(_lowerCAmelCase)}, {'sequence': ANY(_lowerCAmelCase), 'score': ANY(_lowerCAmelCase), 'token': ANY(_lowerCAmelCase), 'token_str': ANY(_lowerCAmelCase)}, ], [ {'sequence': ANY(_lowerCAmelCase), 'score': ANY(_lowerCAmelCase), 'token': ANY(_lowerCAmelCase), 'token_str': ANY(_lowerCAmelCase)}, {'sequence': ANY(_lowerCAmelCase), 'score': ANY(_lowerCAmelCase), 'token': ANY(_lowerCAmelCase), 'token_str': ANY(_lowerCAmelCase)}, ], [ {'sequence': ANY(_lowerCAmelCase), 'score': ANY(_lowerCAmelCase), 'token': ANY(_lowerCAmelCase), 'token_str': ANY(_lowerCAmelCase)}, {'sequence': ANY(_lowerCAmelCase), 'score': ANY(_lowerCAmelCase), 'token': ANY(_lowerCAmelCase), 'token_str': ANY(_lowerCAmelCase)}, ], ] , )
354
'''simple docstring''' import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging lowerCamelCase = { """cola""": 2, """mnli""": 3, """mrpc""": 2, """sst-2""": 2, """sts-b""": 1, """qqp""": 2, """qnli""": 2, """rte""": 2, """wnli""": 2, } logging.set_verbosity_info() def _A ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None ): """simple docstring""" __lowercase =XLNetConfig.from_json_file(_lowerCAmelCase ) __lowercase =finetuning_task.lower() if finetuning_task is not None else '' if finetuning_task in GLUE_TASKS_NUM_LABELS: print(f"""Building PyTorch XLNetForSequenceClassification model from configuration: {config}""" ) __lowercase =finetuning_task __lowercase =GLUE_TASKS_NUM_LABELS[finetuning_task] __lowercase =XLNetForSequenceClassification(_lowerCAmelCase ) elif "squad" in finetuning_task: __lowercase =finetuning_task __lowercase =XLNetForQuestionAnswering(_lowerCAmelCase ) else: __lowercase =XLNetLMHeadModel(_lowerCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Save pytorch-model __lowercase =os.path.join(_lowerCAmelCase , _lowerCAmelCase ) __lowercase =os.path.join(_lowerCAmelCase , _lowerCAmelCase ) print(f"""Save PyTorch model to {os.path.abspath(_lowerCAmelCase )}""" ) torch.save(model.state_dict() , _lowerCAmelCase ) print(f"""Save configuration file to {os.path.abspath(_lowerCAmelCase )}""" ) with open(_lowerCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--xlnet_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained XLNet model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the folder to store the PyTorch model or dataset/vocab.""", ) parser.add_argument( """--finetuning_task""", default=None, type=str, help="""Name of a task on which the XLNet TensorFlow model was fine-tuned""", ) lowerCamelCase = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
48
0
import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : List[str] , UpperCAmelCase__ : str = "▁" , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Union[str, AddedToken] = "<unk>" , UpperCAmelCase__ : Union[str, AddedToken] = "</s>" , UpperCAmelCase__ : Union[str, AddedToken] = "<pad>" , ) ->Optional[Any]: '''simple docstring''' A__ = { '''pad''': {'''id''': 0, '''token''': pad_token}, '''eos''': {'''id''': 1, '''token''': eos_token}, '''unk''': {'''id''': 2, '''token''': unk_token}, } A__ = [None] * len(self.special_tokens) for token_dict in self.special_tokens.values(): A__ = token_dict['''token'''] A__ = Tokenizer(Unigram()) A__ = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(''' {2,}''') , ''' '''), normalizers.Lowercase(), ]) A__ = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__), pre_tokenizers.Digits(individual_digits=UpperCAmelCase__), pre_tokenizers.Punctuation(), ]) A__ = decoders.Metaspace(replacement=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__) A__ = TemplateProcessing( single=f"""$A {self.special_tokens["eos"]["token"]}""" , special_tokens=[(self.special_tokens['''eos''']['''token'''], self.special_tokens['''eos''']['''id'''])] , ) A__ = { '''model''': '''SentencePieceUnigram''', '''replacement''': replacement, '''add_prefix_space''': add_prefix_space, } super().__init__(UpperCAmelCase__ , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : Union[str, List[str]] , UpperCAmelCase__ : int = 8_000 , UpperCAmelCase__ : bool = True , ) ->Tuple: '''simple docstring''' A__ = trainers.UnigramTrainer( vocab_size=UpperCAmelCase__ , special_tokens=self.special_tokens_list , show_progress=UpperCAmelCase__ , ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__): A__ = [files] self._tokenizer.train(UpperCAmelCase__ , trainer=UpperCAmelCase__) self.add_unk_id() def SCREAMING_SNAKE_CASE ( self : Tuple , UpperCAmelCase__ : Union[Iterator[str], Iterator[Iterator[str]]] , UpperCAmelCase__ : int = 8_000 , UpperCAmelCase__ : bool = True , ) ->List[Any]: '''simple docstring''' A__ = trainers.UnigramTrainer( vocab_size=UpperCAmelCase__ , special_tokens=self.special_tokens_list , show_progress=UpperCAmelCase__ , ) self._tokenizer.train_from_iterator(UpperCAmelCase__ , trainer=UpperCAmelCase__) self.add_unk_id() def SCREAMING_SNAKE_CASE ( self : Any) ->str: '''simple docstring''' A__ = json.loads(self._tokenizer.to_str()) A__ = self.special_tokens['''unk''']['''id'''] A__ = Tokenizer.from_str(json.dumps(UpperCAmelCase__))
14
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Tuple = logging.get_logger(__name__) _lowerCamelCase : str = { """microsoft/git-base""": """https://huggingface.co/microsoft/git-base/resolve/main/config.json""", } class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = '''git_vision_model''' def __init__( self : Any , UpperCAmelCase__ : Any=768 , UpperCAmelCase__ : int=3_072 , UpperCAmelCase__ : List[str]=12 , UpperCAmelCase__ : Dict=12 , UpperCAmelCase__ : Optional[int]=3 , UpperCAmelCase__ : List[Any]=224 , UpperCAmelCase__ : Union[str, Any]=16 , UpperCAmelCase__ : Union[str, Any]="quick_gelu" , UpperCAmelCase__ : Dict=1e-5 , UpperCAmelCase__ : Union[str, Any]=0.0 , UpperCAmelCase__ : Any=0.02 , **UpperCAmelCase__ : Any , ) ->Optional[int]: '''simple docstring''' super().__init__(**UpperCAmelCase__) A__ = hidden_size A__ = intermediate_size A__ = num_hidden_layers A__ = num_attention_heads A__ = num_channels A__ = patch_size A__ = image_size A__ = initializer_range A__ = attention_dropout A__ = layer_norm_eps A__ = hidden_act @classmethod def SCREAMING_SNAKE_CASE ( cls : Any , UpperCAmelCase__ : Union[str, os.PathLike] , **UpperCAmelCase__ : int) ->"PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(UpperCAmelCase__) A__ , A__ = cls.get_config_dict(UpperCAmelCase__ , **UpperCAmelCase__) # get the vision config dict if we are loading from GITConfig if config_dict.get('''model_type''') == "git": A__ = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''') and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""") return cls.from_dict(UpperCAmelCase__ , **UpperCAmelCase__) class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = '''git''' def __init__( self : Dict , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : int=30_522 , UpperCAmelCase__ : Optional[int]=768 , UpperCAmelCase__ : Dict=6 , UpperCAmelCase__ : int=12 , UpperCAmelCase__ : List[str]=3_072 , UpperCAmelCase__ : str="gelu" , UpperCAmelCase__ : int=0.1 , UpperCAmelCase__ : Union[str, Any]=0.1 , UpperCAmelCase__ : List[Any]=1_024 , UpperCAmelCase__ : List[str]=0.02 , UpperCAmelCase__ : Any=1e-12 , UpperCAmelCase__ : Union[str, Any]=0 , UpperCAmelCase__ : List[Any]="absolute" , UpperCAmelCase__ : int=True , UpperCAmelCase__ : Any=False , UpperCAmelCase__ : int=101 , UpperCAmelCase__ : Tuple=102 , UpperCAmelCase__ : Dict=None , **UpperCAmelCase__ : List[str] , ) ->Any: '''simple docstring''' super().__init__(bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , pad_token_id=UpperCAmelCase__ , **UpperCAmelCase__) if vision_config is None: A__ = {} logger.info('''vision_config is None. initializing the GitVisionConfig with default values.''') A__ = GitVisionConfig(**UpperCAmelCase__) A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = hidden_act A__ = intermediate_size A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = initializer_range A__ = layer_norm_eps A__ = position_embedding_type A__ = use_cache A__ = tie_word_embeddings A__ = num_image_with_embedding A__ = bos_token_id A__ = eos_token_id def SCREAMING_SNAKE_CASE ( self : Any) ->List[Any]: '''simple docstring''' A__ = copy.deepcopy(self.__dict__) A__ = self.vision_config.to_dict() A__ = self.__class__.model_type return output
14
1
'''simple docstring''' import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : int = logging.get_logger() # the current default level is logging.WARNING UpperCAmelCase_ : Optional[int] = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(snake_case_ ) def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : Dict = logging.get_verbosity() UpperCAmelCase_ : Tuple = logging.get_logger('transformers.models.bart.tokenization_bart' ) UpperCAmelCase_ : List[Any] = 'Testing 1, 2, 3' # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(snake_case_ ) as cl: logger.warning(snake_case_ ) self.assertEqual(cl.out , msg + '\n' ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(snake_case_ ) as cl: logger.warning(snake_case_ ) self.assertEqual(cl.out , '' ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(snake_case_ ) as cl: logger.warning(snake_case_ ) self.assertEqual(cl.out , msg + '\n' ) # restore to the original level logging.set_verbosity(snake_case_ ) @mockenv(TRANSFORMERS_VERBOSITY='error' ) def _UpperCamelCase ( self ): '''simple docstring''' transformers.utils.logging._reset_library_root_logger() # this action activates the env var UpperCAmelCase_ : Any = logging.get_logger('transformers.models.bart.tokenization_bart' ) UpperCAmelCase_ : List[Any] = os.getenv('TRANSFORMERS_VERBOSITY' , snake_case_ ) UpperCAmelCase_ : int = logging.log_levels[env_level_str] UpperCAmelCase_ : int = logging.get_verbosity() self.assertEqual( snake_case_ , snake_case_ , F'''TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}''' , ) # restore to the original level UpperCAmelCase_ : List[str] = '' transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY='super-error' ) def _UpperCamelCase ( self ): '''simple docstring''' transformers.utils.logging._reset_library_root_logger() UpperCAmelCase_ : Union[str, Any] = logging.logging.getLogger() with CaptureLogger(snake_case_ ) as cl: # this action activates the env var logging.get_logger('transformers.models.bart.tokenization_bart' ) self.assertIn('Unknown option TRANSFORMERS_VERBOSITY=super-error' , cl.out ) # no need to restore as nothing was changed def _UpperCamelCase ( self ): '''simple docstring''' transformers.utils.logging._reset_library_root_logger() UpperCAmelCase_ : List[Any] = logging.get_logger('transformers.models.bart.tokenization_bart' ) UpperCAmelCase_ : List[Any] = 'Testing 1, 2, 3' with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='1' ): # nothing should be logged as env var disables this method with CaptureLogger(snake_case_ ) as cl: logger.warning_advice(snake_case_ ) self.assertEqual(cl.out , '' ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='' ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(snake_case_ ) as cl: logger.warning_advice(snake_case_ ) self.assertEqual(cl.out , msg + '\n' ) def _lowerCamelCase ( ): """simple docstring""" disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
274
'''simple docstring''' import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class __SCREAMING_SNAKE_CASE ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowerCamelCase_ :Union[str, Any] = 1 @register_to_config def __init__( self , snake_case_ = 1_0_0_0 , snake_case_ = None ): '''simple docstring''' self.set_timesteps(snake_case_ ) # standard deviation of the initial noise distribution UpperCAmelCase_ : Union[str, Any] = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. UpperCAmelCase_ : int = 4 # running values UpperCAmelCase_ : str = [] def _UpperCamelCase ( self , snake_case_ , snake_case_ = None ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = num_inference_steps UpperCAmelCase_ : int = torch.linspace(1 , 0 , num_inference_steps + 1 )[:-1] UpperCAmelCase_ : Tuple = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: UpperCAmelCase_ : Optional[int] = torch.tensor(self.config.trained_betas , dtype=torch.floataa ) else: UpperCAmelCase_ : Tuple = torch.sin(steps * math.pi / 2 ) ** 2 UpperCAmelCase_ : Dict = (1.0 - self.betas**2) ** 0.5 UpperCAmelCase_ : str = (torch.atana(self.betas , self.alphas ) / math.pi * 2)[:-1] UpperCAmelCase_ : str = timesteps.to(snake_case_ ) UpperCAmelCase_ : Any = [] def _UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ = True , ): '''simple docstring''' if self.num_inference_steps is None: raise ValueError( 'Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler' ) UpperCAmelCase_ : Any = (self.timesteps == timestep).nonzero().item() UpperCAmelCase_ : Optional[Any] = timestep_index + 1 UpperCAmelCase_ : Dict = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(snake_case_ ) if len(self.ets ) == 1: UpperCAmelCase_ : Tuple = self.ets[-1] elif len(self.ets ) == 2: UpperCAmelCase_ : Any = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: UpperCAmelCase_ : List[str] = (2_3 * self.ets[-1] - 1_6 * self.ets[-2] + 5 * self.ets[-3]) / 1_2 else: UpperCAmelCase_ : Union[str, Any] = (1 / 2_4) * (5_5 * self.ets[-1] - 5_9 * self.ets[-2] + 3_7 * self.ets[-3] - 9 * self.ets[-4]) UpperCAmelCase_ : Union[str, Any] = self._get_prev_sample(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=snake_case_ ) def _UpperCamelCase ( self , snake_case_ , *snake_case_ , **snake_case_ ): '''simple docstring''' return sample def _UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : int = self.alphas[timestep_index] UpperCAmelCase_ : Union[str, Any] = self.betas[timestep_index] UpperCAmelCase_ : Any = self.alphas[prev_timestep_index] UpperCAmelCase_ : Dict = self.betas[prev_timestep_index] UpperCAmelCase_ : List[Any] = (sample - sigma * ets) / max(snake_case_ , 1E-8 ) UpperCAmelCase_ : Tuple = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self ): '''simple docstring''' return self.config.num_train_timesteps
274
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _a = logging.get_logger(__name__) _a = { '''shi-labs/nat-mini-in1k-224''': '''https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json''', # See all Nat models at https://huggingface.co/models?filter=nat } class __lowerCamelCase ( snake_case__ , snake_case__): """simple docstring""" UpperCamelCase__ = "nat" UpperCamelCase__ = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , UpperCAmelCase=4 , UpperCAmelCase=3 , UpperCAmelCase=64 , UpperCAmelCase=[3, 4, 6, 5] , UpperCAmelCase=[2, 4, 8, 16] , UpperCAmelCase=7 , UpperCAmelCase=3.0 , UpperCAmelCase=True , UpperCAmelCase=0.0 , UpperCAmelCase=0.0 , UpperCAmelCase=0.1 , UpperCAmelCase="gelu" , UpperCAmelCase=0.02 , UpperCAmelCase=1e-5 , UpperCAmelCase=0.0 , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase , ): """simple docstring""" super().__init__(**UpperCAmelCase ) _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = embed_dim _UpperCAmelCase = depths _UpperCAmelCase = len(UpperCAmelCase ) _UpperCAmelCase = num_heads _UpperCAmelCase = kernel_size _UpperCAmelCase = mlp_ratio _UpperCAmelCase = qkv_bias _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = drop_path_rate _UpperCAmelCase = hidden_act _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _UpperCAmelCase = int(embed_dim * 2 ** (len(UpperCAmelCase ) - 1) ) _UpperCAmelCase = layer_scale_init_value _UpperCAmelCase = ['stem'] + [F"""stage{idx}""" for idx in range(1 , len(UpperCAmelCase ) + 1 )] _UpperCAmelCase , _UpperCAmelCase = get_aligned_output_features_output_indices( out_features=UpperCAmelCase , out_indices=UpperCAmelCase , stage_names=self.stage_names )
39
from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
99
0
from math import factorial def snake_case__ ( SCREAMING_SNAKE_CASE_ : int = 100 ): '''simple docstring''' return sum(map(SCREAMING_SNAKE_CASE_ , str(factorial(SCREAMING_SNAKE_CASE_ ) ) ) ) if __name__ == "__main__": print(solution(int(input('''Enter the Number: ''').strip())))
216
from __future__ import annotations class SCREAMING_SNAKE_CASE__ : def __init__( self , a , a): lowercase__ , lowercase__ : Dict = text, pattern lowercase__ , lowercase__ : Any = len(a), len(a) def snake_case_ ( self , a): for i in range(self.patLen - 1 , -1 , -1): if char == self.pattern[i]: return i return -1 def snake_case_ ( self , a): for i in range(self.patLen - 1 , -1 , -1): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def snake_case_ ( self): # searches pattern in text and returns index positions lowercase__ : Any = [] for i in range(self.textLen - self.patLen + 1): lowercase__ : Optional[Any] = self.mismatch_in_text(a) if mismatch_index == -1: positions.append(a) else: lowercase__ : Optional[int] = self.match_in_pattern(self.text[mismatch_index]) lowercase__ : Optional[Any] = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions snake_case_ = '''ABAABA''' snake_case_ = '''AB''' snake_case_ = BoyerMooreSearch(text, pattern) snake_case_ = bms.bad_character_heuristic() if len(positions) == 0: print('''No match found''') else: print('''Pattern found in following positions: ''') print(positions)
216
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase =logging.get_logger(__name__) __UpperCAmelCase ={ "camembert-base": "https://huggingface.co/camembert-base/resolve/main/config.json", "umberto-commoncrawl-cased-v1": ( "https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json" ), "umberto-wikipedia-uncased-v1": ( "https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json" ), } class a__ ( UpperCAmelCase__ ): lowerCamelCase : Union[str, Any] ="camembert" def __init__( self : int , a : Dict=3_05_22 , a : List[Any]=7_68 , a : int=12 , a : Union[str, Any]=12 , a : int=30_72 , a : Any="gelu" , a : Optional[Any]=0.1 , a : Any=0.1 , a : List[Any]=5_12 , a : List[str]=2 , a : Union[str, Any]=0.02 , a : List[Any]=1e-1_2 , a : Any=1 , a : List[str]=0 , a : Optional[int]=2 , a : Union[str, Any]="absolute" , a : Optional[int]=True , a : List[str]=None , **a : Any , ): """simple docstring""" super().__init__(pad_token_id=a , bos_token_id=a , eos_token_id=a , **a ) __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = hidden_act __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = initializer_range __lowerCamelCase = layer_norm_eps __lowerCamelCase = position_embedding_type __lowerCamelCase = use_cache __lowerCamelCase = classifier_dropout class a__ ( UpperCAmelCase__ ): @property def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" if self.task == "multiple-choice": __lowerCamelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __lowerCamelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
67
from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class __A : """simple docstring""" UpperCamelCase__ : int =XGLMConfig UpperCamelCase__ : Optional[Any] ={} UpperCamelCase__ : List[str] ="""gelu""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=14 , lowerCamelCase__=7 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=99 , lowerCamelCase__=32 , lowerCamelCase__=2 , lowerCamelCase__=4 , lowerCamelCase__=37 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=512 , lowerCamelCase__=0.02 , ): """simple docstring""" __UpperCamelCase : Tuple =parent __UpperCamelCase : List[str] =batch_size __UpperCamelCase : str =seq_length __UpperCamelCase : Dict =is_training __UpperCamelCase : Tuple =use_input_mask __UpperCamelCase : List[Any] =use_labels __UpperCamelCase : Any =vocab_size __UpperCamelCase : List[Any] =d_model __UpperCamelCase : Optional[int] =num_hidden_layers __UpperCamelCase : List[str] =num_attention_heads __UpperCamelCase : Optional[int] =ffn_dim __UpperCamelCase : str =activation_function __UpperCamelCase : Any =activation_dropout __UpperCamelCase : Optional[int] =attention_dropout __UpperCamelCase : Optional[int] =max_position_embeddings __UpperCamelCase : Any =initializer_range __UpperCamelCase : Dict =None __UpperCamelCase : Optional[int] =0 __UpperCamelCase : Optional[Any] =2 __UpperCamelCase : str =1 def __lowercase ( self ): """simple docstring""" return XGLMConfig.from_pretrained('facebook/xglm-564M' ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[Any] =tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) __UpperCamelCase : Union[str, Any] =None if self.use_input_mask: __UpperCamelCase : Dict =random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase : Any =self.get_config() __UpperCamelCase : Optional[Any] =floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def __lowercase ( self ): """simple docstring""" return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=lowerCamelCase__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=lowerCamelCase__ , ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[str] =self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) : int =config_and_inputs __UpperCamelCase : Optional[Any] ={ 'input_ids': input_ids, 'head_mask': head_mask, } return config, inputs_dict @require_tf class __A ( a , a , unittest.TestCase ): """simple docstring""" UpperCamelCase__ : Union[str, Any] =(TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () UpperCamelCase__ : str =(TFXGLMForCausalLM,) if is_tf_available() else () UpperCamelCase__ : Optional[Any] =( {"""feature-extraction""": TFXGLMModel, """text-generation""": TFXGLMForCausalLM} if is_tf_available() else {} ) UpperCamelCase__ : Tuple =False UpperCamelCase__ : Tuple =False UpperCamelCase__ : Optional[Any] =False def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Tuple =TFXGLMModelTester(self ) __UpperCamelCase : Dict =ConfigTester(self , config_class=lowerCamelCase__ , n_embd=37 ) def __lowercase ( self ): """simple docstring""" self.config_tester.run_common_tests() @slow def __lowercase ( self ): """simple docstring""" for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase : Optional[Any] =TFXGLMModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) @unittest.skip(reason='Currently, model embeddings are going to undergo a major refactor.' ) def __lowercase ( self ): """simple docstring""" super().test_resize_token_embeddings() @require_tf class __A ( unittest.TestCase ): """simple docstring""" @slow def __lowercase ( self , lowerCamelCase__=True ): """simple docstring""" __UpperCamelCase : int =TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase : List[str] =tf.convert_to_tensor([[2, 268, 9865]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off __UpperCamelCase : str =[2, 268, 9865, 67, 11, 1988, 57252, 9865, 5, 984, 67, 1988, 213838, 1658, 53, 70446, 33, 6657, 278, 1581] # fmt: on __UpperCamelCase : Optional[Any] =model.generate(lowerCamelCase__ , do_sample=lowerCamelCase__ , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , lowerCamelCase__ ) @slow def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[str] =XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase : Union[str, Any] =TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) tf.random.set_seed(0 ) __UpperCamelCase : str =tokenizer('Today is a nice day and' , return_tensors='tf' ) __UpperCamelCase : Union[str, Any] =tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(':/CPU:0' ): __UpperCamelCase : Any =model.generate(lowerCamelCase__ , do_sample=lowerCamelCase__ , seed=[7, 0] ) __UpperCamelCase : Tuple =tokenizer.decode(output_ids[0] , skip_special_tokens=lowerCamelCase__ ) __UpperCamelCase : List[Any] =( 'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due' ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) @slow def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Tuple =TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase : Optional[Any] =XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase : Optional[Any] ='left' # use different length sentences to test batching __UpperCamelCase : Optional[int] =[ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When', 'Hello, my dog is a little', ] __UpperCamelCase : List[Any] =tokenizer(lowerCamelCase__ , return_tensors='tf' , padding=lowerCamelCase__ ) __UpperCamelCase : Union[str, Any] =inputs['input_ids'] __UpperCamelCase : Dict =model.generate(input_ids=lowerCamelCase__ , attention_mask=inputs['attention_mask'] , max_new_tokens=12 ) __UpperCamelCase : List[Any] =tokenizer(sentences[0] , return_tensors='tf' ).input_ids __UpperCamelCase : Dict =model.generate(input_ids=lowerCamelCase__ , max_new_tokens=12 ) __UpperCamelCase : Any =tokenizer(sentences[1] , return_tensors='tf' ).input_ids __UpperCamelCase : Optional[Any] =model.generate(input_ids=lowerCamelCase__ , max_new_tokens=12 ) __UpperCamelCase : Optional[int] =tokenizer.batch_decode(lowerCamelCase__ , skip_special_tokens=lowerCamelCase__ ) __UpperCamelCase : Union[str, Any] =tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowerCamelCase__ ) __UpperCamelCase : int =tokenizer.decode(output_padded[0] , skip_special_tokens=lowerCamelCase__ ) __UpperCamelCase : Any =[ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ' 'a single', 'Hello, my dog is a little bit of a shy one, but he is very friendly', ] self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , [non_padded_sentence, padded_sentence] )
71
0
'''simple docstring''' import os from datetime import datetime as dt from github import Github A__ : Union[str, Any] = [ '''good first issue''', '''feature request''', '''wip''', ] def a_ ( ) -> Optional[int]: __snake_case : List[str] = Github(os.environ['GITHUB_TOKEN'] ) __snake_case : Any = g.get_repo('huggingface/accelerate' ) __snake_case : List[Any] = repo.get_issues(state='open' ) for issue in open_issues: __snake_case : Tuple = sorted([comment for comment in issue.get_comments()] ,key=lambda _UpperCAmelCase : i.created_at ,reverse=_UpperCAmelCase ) __snake_case : Tuple = comments[0] if len(_UpperCAmelCase ) > 0 else None __snake_case : Dict = dt.utcnow() __snake_case : Dict = (current_time - issue.updated_at).days __snake_case : str = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state='closed' ) elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) if __name__ == "__main__": main()
0
'''simple docstring''' def a_ ( _UpperCAmelCase : float ,_UpperCAmelCase : float ) -> float: return price * (1 + tax_rate) if __name__ == "__main__": print(F"""{price_plus_tax(1_0_0, 0.25) = }""") print(F"""{price_plus_tax(1_25.50, 0.05) = }""")
0
1
from __future__ import annotations from cmath import sqrt def __lowerCAmelCase ( a__ , a__ , a__ ) -> tuple[complex, complex]: if a == 0: raise ValueError('''Coefficient \'a\' must not be zero.''' ) __a = b * b - 4 * a * c __a = (-b + sqrt(a__ )) / (2 * a) __a = (-b - sqrt(a__ )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def __lowerCAmelCase ( ) -> Tuple: __a , __a = quadratic_roots(a=5 , b=6 , c=1 ) print(F"""The solutions are: {solutiona} and {solutiona}""" ) if __name__ == "__main__": main()
6
"""simple docstring""" import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertTrue(is_safetensors_compatible(lowercase_)) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = [ '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertTrue(is_safetensors_compatible(lowercase_)) def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', '''unet/diffusion_pytorch_model.bin''', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(lowercase_)) def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = [ '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', ] self.assertTrue(is_safetensors_compatible(lowercase_)) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', # Removed: 'text_encoder/model.safetensors', '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertFalse(is_safetensors_compatible(lowercase_)) def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] SCREAMING_SNAKE_CASE_ : Any = '''fp16''' self.assertTrue(is_safetensors_compatible(lowercase_ , variant=lowercase_)) def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = [ '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] SCREAMING_SNAKE_CASE_ : Dict = '''fp16''' self.assertTrue(is_safetensors_compatible(lowercase_ , variant=lowercase_)) def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = [ '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] SCREAMING_SNAKE_CASE_ : Any = '''fp16''' self.assertTrue(is_safetensors_compatible(lowercase_ , variant=lowercase_)) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', '''unet/diffusion_pytorch_model.fp16.bin''', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] SCREAMING_SNAKE_CASE_ : List[Any] = '''fp16''' self.assertFalse(is_safetensors_compatible(lowercase_ , variant=lowercase_)) def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = [ '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', ] SCREAMING_SNAKE_CASE_ : Any = '''fp16''' self.assertTrue(is_safetensors_compatible(lowercase_ , variant=lowercase_)) def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = [ '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', ] SCREAMING_SNAKE_CASE_ : List[Any] = '''fp16''' self.assertTrue(is_safetensors_compatible(lowercase_ , variant=lowercase_)) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', # 'text_encoder/model.fp16.safetensors', '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] SCREAMING_SNAKE_CASE_ : str = '''fp16''' self.assertFalse(is_safetensors_compatible(lowercase_ , variant=lowercase_))
91
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __magic_name__: Tuple = { "configuration_tapas": ["TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP", "TapasConfig"], "tokenization_tapas": ["TapasTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__: Dict = [ "TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TapasForMaskedLM", "TapasForQuestionAnswering", "TapasForSequenceClassification", "TapasModel", "TapasPreTrainedModel", "load_tf_weights_in_tapas", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__: int = [ "TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TFTapasForMaskedLM", "TFTapasForQuestionAnswering", "TFTapasForSequenceClassification", "TFTapasModel", "TFTapasPreTrainedModel", ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys __magic_name__: Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
138
from __future__ import annotations import math import numpy as np from numpy.linalg import norm def UpperCamelCase ( _A, _A ): """simple docstring""" return math.sqrt(sum(pow(a - b, 2 ) for a, b in zip(_A, _A ) ) ) def UpperCamelCase ( _A, _A ): """simple docstring""" if dataset.ndim != value_array.ndim: __magic_name__ : str = ( """Wrong input data's dimensions... """ f'dataset : {dataset.ndim}, value_array : {value_array.ndim}' ) raise ValueError(_A ) try: if dataset.shape[1] != value_array.shape[1]: __magic_name__ : Optional[Any] = ( """Wrong input data's shape... """ f'dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}' ) raise ValueError(_A ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError("""Wrong shape""" ) if dataset.dtype != value_array.dtype: __magic_name__ : List[Any] = ( """Input data have different datatype... """ f'dataset : {dataset.dtype}, value_array : {value_array.dtype}' ) raise TypeError(_A ) __magic_name__ : Dict = [] for value in value_array: __magic_name__ : Tuple = euclidean(_A, dataset[0] ) __magic_name__ : Any = dataset[0].tolist() for dataset_value in dataset[1:]: __magic_name__ : Any = euclidean(_A, _A ) if dist > temp_dist: __magic_name__ : Dict = temp_dist __magic_name__ : Any = dataset_value.tolist() answer.append([vector, dist] ) return answer def UpperCamelCase ( _A, _A ): """simple docstring""" return np.dot(_A, _A ) / (norm(_A ) * norm(_A )) if __name__ == "__main__": import doctest doctest.testmod()
138
1
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class a_ : """simple docstring""" @staticmethod def __lowerCAmelCase ( *_lowerCamelCase , **_lowerCamelCase ) ->str: pass @is_pipeline_test @require_vision class a_ ( unittest.TestCase ): """simple docstring""" @require_torch def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : Tuple = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , ) SCREAMING_SNAKE_CASE : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) SCREAMING_SNAKE_CASE : Any = image_classifier(_lowerCamelCase , candidate_labels=['''a''', '''b''', '''c'''] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(_lowerCamelCase ) , [ [{'''score''': 0.3_3_3, '''label''': '''a'''}, {'''score''': 0.3_3_3, '''label''': '''b'''}, {'''score''': 0.3_3_3, '''label''': '''c'''}], [{'''score''': 0.3_3_3, '''label''': '''a'''}, {'''score''': 0.3_3_3, '''label''': '''c'''}, {'''score''': 0.3_3_3, '''label''': '''b'''}], ] , ) SCREAMING_SNAKE_CASE : Optional[int] = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(_lowerCamelCase ) , [ [ {'''score''': 0.3_3_3, '''label''': ANY(_lowerCamelCase )}, {'''score''': 0.3_3_3, '''label''': ANY(_lowerCamelCase )}, {'''score''': 0.3_3_3, '''label''': ANY(_lowerCamelCase )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(_lowerCamelCase )}, {'''score''': 0.3_3_3, '''label''': ANY(_lowerCamelCase )}, {'''score''': 0.3_3_3, '''label''': ANY(_lowerCamelCase )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(_lowerCamelCase )}, {'''score''': 0.3_3_3, '''label''': ANY(_lowerCamelCase )}, {'''score''': 0.3_3_3, '''label''': ANY(_lowerCamelCase )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(_lowerCamelCase )}, {'''score''': 0.3_3_3, '''label''': ANY(_lowerCamelCase )}, {'''score''': 0.3_3_3, '''label''': ANY(_lowerCamelCase )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(_lowerCamelCase )}, {'''score''': 0.3_3_3, '''label''': ANY(_lowerCamelCase )}, {'''score''': 0.3_3_3, '''label''': ANY(_lowerCamelCase )}, ], ] , ) @require_tf def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : List[str] = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , framework='''tf''' ) SCREAMING_SNAKE_CASE : Tuple = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) SCREAMING_SNAKE_CASE : int = image_classifier(_lowerCamelCase , candidate_labels=['''a''', '''b''', '''c'''] ) self.assertEqual( nested_simplify(_lowerCamelCase ) , [{'''score''': 0.3_3_3, '''label''': '''a'''}, {'''score''': 0.3_3_3, '''label''': '''b'''}, {'''score''': 0.3_3_3, '''label''': '''c'''}] , ) SCREAMING_SNAKE_CASE : List[Any] = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(_lowerCamelCase ) , [ [ {'''score''': 0.3_3_3, '''label''': ANY(_lowerCamelCase )}, {'''score''': 0.3_3_3, '''label''': ANY(_lowerCamelCase )}, {'''score''': 0.3_3_3, '''label''': ANY(_lowerCamelCase )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(_lowerCamelCase )}, {'''score''': 0.3_3_3, '''label''': ANY(_lowerCamelCase )}, {'''score''': 0.3_3_3, '''label''': ANY(_lowerCamelCase )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(_lowerCamelCase )}, {'''score''': 0.3_3_3, '''label''': ANY(_lowerCamelCase )}, {'''score''': 0.3_3_3, '''label''': ANY(_lowerCamelCase )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(_lowerCamelCase )}, {'''score''': 0.3_3_3, '''label''': ANY(_lowerCamelCase )}, {'''score''': 0.3_3_3, '''label''': ANY(_lowerCamelCase )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(_lowerCamelCase )}, {'''score''': 0.3_3_3, '''label''': ANY(_lowerCamelCase )}, {'''score''': 0.3_3_3, '''label''': ANY(_lowerCamelCase )}, ], ] , ) @slow @require_torch def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : Any = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , ) # This is an image of 2 cats with remotes and no planes SCREAMING_SNAKE_CASE : Dict = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) SCREAMING_SNAKE_CASE : Optional[Any] = image_classifier(_lowerCamelCase , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(_lowerCamelCase ) , [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ] , ) SCREAMING_SNAKE_CASE : int = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(_lowerCamelCase ) , [ [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ], ] * 5 , ) @slow @require_tf def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Optional[int] = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , framework='''tf''' ) # This is an image of 2 cats with remotes and no planes SCREAMING_SNAKE_CASE : Union[str, Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) SCREAMING_SNAKE_CASE : List[Any] = image_classifier(_lowerCamelCase , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(_lowerCamelCase ) , [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ] , ) SCREAMING_SNAKE_CASE : List[Any] = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(_lowerCamelCase ) , [ [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ], ] * 5 , )
313
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ : Tuple = {'''configuration_wavlm''': ['''WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''WavLMConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Dict = [ '''WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''WavLMForAudioFrameClassification''', '''WavLMForCTC''', '''WavLMForSequenceClassification''', '''WavLMForXVector''', '''WavLMModel''', '''WavLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys a__ : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
313
1
"""simple docstring""" def A ( snake_case :Tuple = 6_0_0_8_5_1_4_7_5_1_4_3 ) -> Optional[int]: try: __UpperCamelCase = int(snake_case ) except (TypeError, ValueError): raise TypeError('Parameter n must be int or castable to int.' ) if n <= 0: raise ValueError('Parameter n must be greater than or equal to one.' ) __UpperCamelCase = 1 __UpperCamelCase = 2 while i * i <= n: while n % i == 0: __UpperCamelCase = i n //= i i += 1 if n > 1: __UpperCamelCase = n return int(snake_case ) if __name__ == "__main__": print(f'''{solution() = }''')
359
"""simple docstring""" from typing import Union import fire import torch from tqdm import tqdm def A ( snake_case :str , snake_case :str = "cpu" , snake_case :Union[str, None] = None ) -> None: __UpperCamelCase = torch.load(snake_case , map_location=snake_case ) for k, v in tqdm(state_dict.items() ): if not isinstance(snake_case , torch.Tensor ): raise TypeError('FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin' ) __UpperCamelCase = v.half() if save_path is None: # overwrite src_path __UpperCamelCase = src_path torch.save(snake_case , snake_case ) if __name__ == "__main__": fire.Fire(convert)
263
0