code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py A : Tuple = "src/transformers" A : Optional[Any] = "docs/source/en/tasks" def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): with open(__UpperCamelCase , "r" , encoding="utf-8" , newline="\n" ) as f: SCREAMING_SNAKE_CASE_ = f.readlines() # Find the start prompt. SCREAMING_SNAKE_CASE_ = 0 while not lines[start_index].startswith(__UpperCamelCase ): start_index += 1 start_index += 1 SCREAMING_SNAKE_CASE_ = start_index while not lines[end_index].startswith(__UpperCamelCase ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. A : List[str] = direct_transformers_import(TRANSFORMERS_PATH) A : List[Any] = { "asr.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, "audio_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, "language_modeling.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, "image_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, "masked_language_modeling.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, "multiple_choice.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, "object_detection.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, "question_answering.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, "semantic_segmentation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, "sequence_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, "summarization.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, "token_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, "translation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, "video_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, "document_question_answering.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, "monocular_depth_estimation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). A : Any = { "summarization.md": ("nllb",), "translation.md": ("nllb",), } def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = TASK_GUIDE_TO_MODELS[task_guide] SCREAMING_SNAKE_CASE_ = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(__UpperCamelCase , set() ) SCREAMING_SNAKE_CASE_ = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([F'''[{name}](../model_doc/{code})''' for code, name in model_names.items()] ) + "\n" def a__ ( __UpperCamelCase , __UpperCamelCase=False ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = _find_text_in_file( filename=os.path.join(__UpperCamelCase , __UpperCamelCase ) , start_prompt="<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->" , end_prompt="<!--End of the generated tip-->" , ) SCREAMING_SNAKE_CASE_ = get_model_list_for_task(__UpperCamelCase ) if current_list != new_list: if overwrite: with open(os.path.join(__UpperCamelCase , __UpperCamelCase ) , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( F'''The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`''' " to fix this." ) if __name__ == "__main__": A : Tuple = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") A : Dict = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
118
import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline A : Tuple = datasets.utils.logging.get_logger(__name__) @dataclass class lowerCamelCase (datasets.BuilderConfig ): """simple docstring""" lowerCamelCase__ = None lowerCamelCase__ = "utf-8" lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = True # deprecated lowerCamelCase__ = None # deprecated lowerCamelCase__ = 1_0 << 2_0 # 10MB lowerCamelCase__ = None class lowerCamelCase (datasets.ArrowBasedBuilder ): """simple docstring""" lowerCamelCase__ = JsonConfig def __A ( self : Optional[int] ) -> Optional[int]: if self.config.block_size is not None: logger.warning("The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead" ) SCREAMING_SNAKE_CASE_ = self.config.block_size if self.config.use_threads is not True: logger.warning( "The JSON loader parameter `use_threads` is deprecated and doesn't have any effect anymore." ) if self.config.newlines_in_values is not None: raise ValueError("The JSON loader parameter `newlines_in_values` is no longer supported" ) return datasets.DatasetInfo(features=self.config.features ) def __A ( self : List[str] , __magic_name__ : str ) -> Tuple: if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) SCREAMING_SNAKE_CASE_ = dl_manager.download_and_extract(self.config.data_files ) if isinstance(__magic_name__ , (str, list, tuple) ): SCREAMING_SNAKE_CASE_ = data_files if isinstance(__magic_name__ , __magic_name__ ): SCREAMING_SNAKE_CASE_ = [files] SCREAMING_SNAKE_CASE_ = [dl_manager.iter_files(__magic_name__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] SCREAMING_SNAKE_CASE_ = [] for split_name, files in data_files.items(): if isinstance(__magic_name__ , __magic_name__ ): SCREAMING_SNAKE_CASE_ = [files] SCREAMING_SNAKE_CASE_ = [dl_manager.iter_files(__magic_name__ ) for file in files] splits.append(datasets.SplitGenerator(name=__magic_name__ , gen_kwargs={"files": files} ) ) return splits def __A ( self : str , __magic_name__ : pa.Table ) -> pa.Table: if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): SCREAMING_SNAKE_CASE_ = self.config.features.arrow_schema.field(__magic_name__ ).type SCREAMING_SNAKE_CASE_ = pa_table.append_column(__magic_name__ , pa.array([None] * len(__magic_name__ ) , type=__magic_name__ ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example SCREAMING_SNAKE_CASE_ = table_cast(__magic_name__ , self.config.features.arrow_schema ) return pa_table def __A ( self : List[str] , __magic_name__ : List[str] ) -> int: for file_idx, file in enumerate(itertools.chain.from_iterable(__magic_name__ ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(__magic_name__ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: SCREAMING_SNAKE_CASE_ = json.load(__magic_name__ ) # We keep only the field we are interested in SCREAMING_SNAKE_CASE_ = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(__magic_name__ , (list, tuple) ): SCREAMING_SNAKE_CASE_ = set().union(*[row.keys() for row in dataset] ) SCREAMING_SNAKE_CASE_ = {col: [row.get(__magic_name__ ) for row in dataset] for col in keys} else: SCREAMING_SNAKE_CASE_ = dataset SCREAMING_SNAKE_CASE_ = pa.Table.from_pydict(__magic_name__ ) yield file_idx, self._cast_table(__magic_name__ ) # If the file has one json object per line else: with open(__magic_name__ , "rb" ) as f: SCREAMING_SNAKE_CASE_ = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small SCREAMING_SNAKE_CASE_ = max(self.config.chunksize // 32 , 16 << 10 ) SCREAMING_SNAKE_CASE_ = ( self.config.encoding_errors if self.config.encoding_errors is not None else "strict" ) while True: SCREAMING_SNAKE_CASE_ = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(__magic_name__ ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": SCREAMING_SNAKE_CASE_ = batch.decode(self.config.encoding , errors=__magic_name__ ).encode("utf-8" ) try: while True: try: SCREAMING_SNAKE_CASE_ = paj.read_json( io.BytesIO(__magic_name__ ) , read_options=paj.ReadOptions(block_size=__magic_name__ ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(__magic_name__ , pa.ArrowInvalid ) and "straddling" not in str(__magic_name__ ) or block_size > len(__magic_name__ ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( F'''Batch of {len(__magic_name__ )} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.''' ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( __magic_name__ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: SCREAMING_SNAKE_CASE_ = json.load(__magic_name__ ) except json.JSONDecodeError: logger.error(F'''Failed to read file \'{file}\' with error {type(__magic_name__ )}: {e}''' ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(__magic_name__ , __magic_name__ ): # list is the only sequence type supported in JSON try: SCREAMING_SNAKE_CASE_ = set().union(*[row.keys() for row in dataset] ) SCREAMING_SNAKE_CASE_ = {col: [row.get(__magic_name__ ) for row in dataset] for col in keys} SCREAMING_SNAKE_CASE_ = pa.Table.from_pydict(__magic_name__ ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(F'''Failed to read file \'{file}\' with error {type(__magic_name__ )}: {e}''' ) raise ValueError(F'''Not able to read records in the JSON file at {file}.''' ) from None yield file_idx, self._cast_table(__magic_name__ ) break else: logger.error(F'''Failed to read file \'{file}\' with error {type(__magic_name__ )}: {e}''' ) raise ValueError( F'''Not able to read records in the JSON file at {file}. ''' F'''You should probably indicate the field of the JSON file containing your records. ''' F'''This JSON file contain the following fields: {str(list(dataset.keys() ) )}. ''' F'''Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. ''' ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(__magic_name__ ) batch_idx += 1
118
1
import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller lowerCAmelCase__ = 3 def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" print("Generating primitive root of p" ) while True: lowercase__ : List[str] = random.randrange(3 , lowerCamelCase__ ) if pow(lowerCamelCase__ , 2 , lowerCamelCase__ ) == 1: continue if pow(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) == 1: continue return g def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" print("Generating prime p..." ) lowercase__ : List[Any] = rabin_miller.generate_large_prime(lowerCamelCase__ ) # select large prime number. lowercase__ : str = primitive_root(lowerCamelCase__ ) # one primitive root on modulo p. lowercase__ : List[str] = random.randrange(3 , lowerCamelCase__ ) # private_key -> have to be greater than 2 for safety. lowercase__ : Dict = cryptomath.find_mod_inverse(pow(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) , lowerCamelCase__ ) lowercase__ : List[Any] = (key_size, e_a, e_a, p) lowercase__ : List[Any] = (key_size, d) return public_key, private_key def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" if os.path.exists(F"""{name}_pubkey.txt""" ) or os.path.exists(F"""{name}_privkey.txt""" ): print("\nWARNING:" ) print( F"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" "Use a different name or delete these files and re-run this program." ) sys.exit() lowercase__ : Optional[int] = generate_key(lowerCamelCase__ ) print(F"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(F"""{name}_pubkey.txt""" , "w" ) as fo: fo.write(F"""{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}""" ) print(F"""Writing private key to file {name}_privkey.txt...""" ) with open(F"""{name}_privkey.txt""" , "w" ) as fo: fo.write(F"""{private_key[0]},{private_key[1]}""" ) def __lowerCamelCase ( ): """simple docstring""" print("Making key files..." ) make_key_files("elgamal" , 2_048 ) print("Key files generation successful" ) if __name__ == "__main__": main()
359
from math import ceil, sqrt def __lowerCamelCase ( lowerCamelCase__ = 1_000_000 ): """simple docstring""" lowercase__ : int = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: lowercase__ : List[str] = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: lowercase__ : List[str] = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f'''{solution() = }''')
121
0
import copy import os import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np import pyarrow as pa import pyarrow.parquet as pq import pytest from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence from datasets.features import ArrayaD, ClassLabel, Features, Image, Value from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects from datasets.keyhash import DuplicatedKeysError, InvalidKeyError from .utils import require_pil class A (SCREAMING_SNAKE_CASE ): '''simple docstring''' def a_ ( self : Optional[int] ) -> Dict: """simple docstring""" A__ = pa.array(TypedSequence([1, 2, 3] ) ) self.assertEqual(arr.type , pa.intaa() ) def a_ ( self : Dict ) -> Union[str, Any]: """simple docstring""" with self.assertRaises(__lowerCAmelCase ): A__ = pa.array(TypedSequence([1, 2, 3] ) , type=pa.intaa() ) def a_ ( self : int ) -> Any: """simple docstring""" with self.assertRaises(__lowerCAmelCase ): A__ = pa.array(TypedSequence([1, 2, 3] , try_type=Value("""bool""" ) , type=Value("""int64""" ) ) ) def a_ ( self : List[Any] ) -> Optional[int]: """simple docstring""" A__ = pa.array(TypedSequence([1, 2, 3] , type=Value("""int32""" ) ) ) self.assertEqual(arr.type , pa.intaa() ) def a_ ( self : Dict ) -> str: """simple docstring""" with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): A__ = pa.array(TypedSequence(["""foo""", """bar"""] , type=Value("""int64""" ) ) ) def a_ ( self : Dict ) -> Dict: """simple docstring""" A__ = pa.array(TypedSequence([1, 2, 3] , try_type=Value("""int32""" ) ) ) self.assertEqual(arr.type , pa.intaa() ) def a_ ( self : Union[str, Any] ) -> Any: """simple docstring""" A__ = pa.array(TypedSequence(["""foo""", """bar"""] , try_type=Value("""int64""" ) ) ) self.assertEqual(arr.type , pa.string() ) def a_ ( self : Dict ) -> Dict: """simple docstring""" A__ = pa.array(TypedSequence([[[1, 2, 3]]] , type=ArrayaD((1, 3) , """int64""" ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , """int64""" ) ) def a_ ( self : Dict ) -> str: """simple docstring""" with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): A__ = pa.array(TypedSequence(["""foo""", """bar"""] , type=ArrayaD((1, 3) , """int64""" ) ) ) def a_ ( self : List[str] ) -> str: """simple docstring""" A__ = pa.array(TypedSequence([[[1, 2, 3]]] , try_type=ArrayaD((1, 3) , """int64""" ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , """int64""" ) ) def a_ ( self : List[str] ) -> List[Any]: """simple docstring""" A__ = pa.array(TypedSequence(["""foo""", """bar"""] , try_type=ArrayaD((1, 3) , """int64""" ) ) ) self.assertEqual(arr.type , pa.string() ) @require_pil def a_ ( self : str ) -> str: """simple docstring""" import PIL.Image A__ = PIL.Image.fromarray(np.arange(10 , dtype=np.uinta ).reshape(2 , 5 ) ) with patch( """datasets.arrow_writer.cast_to_python_objects""" , side_effect=__lowerCAmelCase ) as mock_cast_to_python_objects: A__ = pa.array(TypedSequence([{"""path""": None, """bytes""": B"""image_bytes"""}, pil_image] , type=Image() ) ) A__ , A__ = mock_cast_to_python_objects.call_args_list[-1] self.assertIn("""optimize_list_casting""" , __lowerCAmelCase ) self.assertFalse(kwargs["""optimize_list_casting"""] ) def __lowerCamelCase ( __a :Optional[Any] , __a :int ) -> Optional[Any]: """simple docstring""" A__ = pa.BufferReader(__a ) if isinstance(__a , pa.Buffer ) else pa.memory_map(__a ) A__ = pa.ipc.open_stream(__a ) A__ = f.read_all() assert len(pa_table.to_batches() ) == expected_num_chunks assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} del pa_table @pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 1_0] ) @pytest.mark.parametrize( """fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] ) def __lowerCamelCase ( __a :Dict , __a :Optional[Any] ) -> List[str]: """simple docstring""" A__ = pa.BufferOutputStream() A__ = pa.schema(__a ) if fields else None with ArrowWriter(stream=__a , schema=__a , writer_batch_size=__a ) as writer: writer.write({"""col_1""": """foo""", """col_2""": 1} ) writer.write({"""col_1""": """bar""", """col_2""": 2} ) A__ , A__ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: A__ = {"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(__a , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def __lowerCamelCase ( ) -> int: """simple docstring""" A__ = pa.BufferOutputStream() A__ = Features({"""labels""": ClassLabel(names=["""neg""", """pos"""] )} ) with ArrowWriter(stream=__a , features=__a ) as writer: writer.write({"""labels""": 0} ) writer.write({"""labels""": 1} ) A__ , A__ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == features.arrow_schema assert writer._schema.metadata == features.arrow_schema.metadata A__ = pa.BufferReader(output.getvalue() ) A__ = pa.ipc.open_stream(__a ) A__ = f.read_all() A__ = pa_table.schema assert pa_table.num_rows == 2 assert schema == features.arrow_schema assert schema.metadata == features.arrow_schema.metadata assert features == Features.from_arrow_schema(__a ) @pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 1_0] ) def __lowerCamelCase ( __a :int ) -> Dict: """simple docstring""" A__ = pa.BufferOutputStream() with ArrowWriter( stream=__a , writer_batch_size=__a , hash_salt="""split_name""" , check_duplicates=__a , ) as writer: with pytest.raises(__a ): writer.write({"""col_1""": """foo""", """col_2""": 1} , key=[1, 2] ) A__ , A__ = writer.finalize() @pytest.mark.parametrize("""writer_batch_size""" , [None, 2, 1_0] ) def __lowerCamelCase ( __a :str ) -> Optional[int]: """simple docstring""" A__ = pa.BufferOutputStream() with ArrowWriter( stream=__a , writer_batch_size=__a , hash_salt="""split_name""" , check_duplicates=__a , ) as writer: with pytest.raises(__a ): writer.write({"""col_1""": """foo""", """col_2""": 1} , key=1_0 ) writer.write({"""col_1""": """bar""", """col_2""": 2} , key=1_0 ) A__ , A__ = writer.finalize() @pytest.mark.parametrize("""writer_batch_size""" , [None, 2, 1_0] ) def __lowerCamelCase ( __a :Union[str, Any] ) -> Optional[int]: """simple docstring""" A__ = pa.BufferOutputStream() with ArrowWriter( stream=__a , writer_batch_size=__a , hash_salt="""split_name""" , check_duplicates=__a , ) as writer: writer.write({"""col_1""": """foo""", """col_2""": 1} , key=1 ) writer.write({"""col_1""": """bar""", """col_2""": 2} , key=2 ) A__ , A__ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 1_0] ) @pytest.mark.parametrize( """fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] ) def __lowerCamelCase ( __a :Any , __a :Any ) -> Optional[int]: """simple docstring""" A__ = pa.BufferOutputStream() A__ = pa.schema(__a ) if fields else None with ArrowWriter(stream=__a , schema=__a , writer_batch_size=__a ) as writer: writer.write_batch({"""col_1""": ["""foo""", """bar"""], """col_2""": [1, 2]} ) writer.write_batch({"""col_1""": [], """col_2""": []} ) A__ , A__ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: A__ = {"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(__a , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 1_0] ) @pytest.mark.parametrize( """fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] ) def __lowerCamelCase ( __a :Tuple , __a :Optional[int] ) -> Union[str, Any]: """simple docstring""" A__ = pa.BufferOutputStream() A__ = pa.schema(__a ) if fields else None with ArrowWriter(stream=__a , schema=__a , writer_batch_size=__a ) as writer: writer.write_table(pa.Table.from_pydict({"""col_1""": ["""foo""", """bar"""], """col_2""": [1, 2]} ) ) A__ , A__ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: A__ = {"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(__a , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 1_0] ) @pytest.mark.parametrize( """fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] ) def __lowerCamelCase ( __a :List[str] , __a :str ) -> Tuple: """simple docstring""" A__ = pa.BufferOutputStream() A__ = pa.schema(__a ) if fields else None with ArrowWriter(stream=__a , schema=__a , writer_batch_size=__a ) as writer: writer.write_row(pa.Table.from_pydict({"""col_1""": ["""foo"""], """col_2""": [1]} ) ) writer.write_row(pa.Table.from_pydict({"""col_1""": ["""bar"""], """col_2""": [2]} ) ) A__ , A__ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: A__ = {"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(__a , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def __lowerCamelCase ( ) -> Tuple: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: A__ = {"""col_1""": pa.string(), """col_2""": pa.intaa()} A__ = os.path.join(__a , """test.arrow""" ) with ArrowWriter(path=__a , schema=pa.schema(__a ) ) as writer: writer.write_batch({"""col_1""": ["""foo""", """bar"""], """col_2""": [1, 2]} ) A__ , A__ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == pa.schema(__a , metadata=writer._schema.metadata ) _check_output(__a , 1 ) def __lowerCamelCase ( __a :Tuple ) -> List[str]: """simple docstring""" if pa.types.is_list(__a ): return get_base_dtype(arr_type.value_type ) else: return arr_type def __lowerCamelCase ( __a :Any , __a :Optional[int] ) -> int: """simple docstring""" if isinstance(lst[0] , __a ): change_first_primitive_element_in_list(lst[0] , __a ) else: A__ = value @pytest.mark.parametrize("""optimized_int_type, expected_dtype""" , [(None, pa.intaa()), (Value("""int32""" ), pa.intaa())] ) @pytest.mark.parametrize("""sequence""" , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def __lowerCamelCase ( __a :str , __a :Dict , __a :Dict ) -> Any: """simple docstring""" A__ = pa.array(TypedSequence(__a , optimized_int_type=__a ) ) assert get_base_dtype(arr.type ) == expected_dtype @pytest.mark.parametrize( """col, expected_dtype""" , [ ("""attention_mask""", pa.inta()), ("""special_tokens_mask""", pa.inta()), ("""token_type_ids""", pa.inta()), ("""input_ids""", pa.intaa()), ("""other""", pa.intaa()), ] , ) @pytest.mark.parametrize("""sequence""" , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def __lowerCamelCase ( __a :Tuple , __a :List[Any] , __a :Tuple ) -> Tuple: """simple docstring""" A__ = pa.array(OptimizedTypedSequence(__a , col=__a ) ) assert get_base_dtype(arr.type ) == expected_dtype # not in range if col != "other": # avoids errors due to in-place modifications A__ = copy.deepcopy(__a ) A__ = np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1 change_first_primitive_element_in_list(__a , __a ) A__ = pa.array(OptimizedTypedSequence(__a , col=__a ) ) assert get_base_dtype(arr.type ) == pa.intaa() @pytest.mark.parametrize("""raise_exception""" , [False, True] ) def __lowerCamelCase ( __a :Optional[Any] , __a :int ) -> List[str]: """simple docstring""" A__ = str(tmp_path / """dataset-train.arrow""" ) try: with ArrowWriter(path=__a ) as writer: if raise_exception: raise pa.lib.ArrowInvalid() else: writer.stream.close() except pa.lib.ArrowInvalid: pass finally: assert writer.stream.closed def __lowerCamelCase ( __a :Tuple ) -> List[str]: """simple docstring""" A__ = """mock://dataset-train.arrow""" with ArrowWriter(path=__a , storage_options=mockfs.storage_options ) as writer: assert isinstance(writer._fs , type(__a ) ) assert writer._fs.storage_options == mockfs.storage_options writer.write({"""col_1""": """foo""", """col_2""": 1} ) writer.write({"""col_1""": """bar""", """col_2""": 2} ) A__ , A__ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert mockfs.exists(__a ) def __lowerCamelCase ( ) -> int: """simple docstring""" A__ = pa.BufferOutputStream() with ParquetWriter(stream=__a ) as writer: writer.write({"""col_1""": """foo""", """col_2""": 1} ) writer.write({"""col_1""": """bar""", """col_2""": 2} ) A__ , A__ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 A__ = pa.BufferReader(output.getvalue() ) A__ = pq.read_table(__a ) assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} @require_pil @pytest.mark.parametrize("""embed_local_files""" , [False, True] ) def __lowerCamelCase ( __a :Dict , __a :Dict ) -> Union[str, Any]: """simple docstring""" import PIL.Image A__ = str(tmp_path / """test_image_rgb.jpg""" ) PIL.Image.fromarray(np.zeros((5, 5) , dtype=np.uinta ) ).save(__a , format="""png""" ) A__ = pa.BufferOutputStream() with ParquetWriter( stream=__a , features=Features({"""image""": Image()} ) , embed_local_files=__a ) as writer: writer.write({"""image""": image_path} ) writer.finalize() A__ = pa.BufferReader(output.getvalue() ) A__ = pq.read_table(__a ) A__ = pa_table.to_pydict() if embed_local_files: assert isinstance(out["""image"""][0]["""path"""] , __a ) with open(__a , """rb""" ) as f: assert out["image"][0]["bytes"] == f.read() else: assert out["image"][0]["path"] == image_path assert out["image"][0]["bytes"] is None def __lowerCamelCase ( ) -> Optional[Any]: """simple docstring""" A__ = pa.schema([pa.field("""col_1""" , pa.string() , nullable=__a )] ) A__ = pa.BufferOutputStream() with ArrowWriter(stream=__a ) as writer: writer._build_writer(inferred_schema=__a ) assert writer._schema == pa.schema([pa.field("""col_1""" , pa.string() )] )
274
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time A : Dict = Lock() def __lowerCamelCase ( __a :Dict , __a :List[str] , __a :Optional[int] , __a :Optional[int] , __a :Optional[Any] , __a :Optional[int] , __a :int ) -> Dict: """simple docstring""" global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 1_0 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(__a ) process_lock.release() # receive your right neighbor's value process_lock.acquire() A__ = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left A__ = min(__a , __a ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(__a ) process_lock.release() # receive your left neighbor's value process_lock.acquire() A__ = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right A__ = max(__a , __a ) # after all swaps are performed, send the values back to main result_pipe[1].send(__a ) def __lowerCamelCase ( __a :List[str] ) -> int: """simple docstring""" A__ = [] A__ = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop A__ = Pipe() A__ = Pipe() process_array_.append( Process( target=__a , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) A__ = temp_rs A__ = temp_rr for i in range(1 , len(__a ) - 1 ): A__ = Pipe() A__ = Pipe() process_array_.append( Process( target=__a , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) A__ = temp_rs A__ = temp_rr process_array_.append( Process( target=__a , args=( len(__a ) - 1, arr[len(__a ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(__a ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(__a ) ): A__ = result_pipe[p][0].recv() process_array_[p].join() return arr def __lowerCamelCase ( ) -> str: """simple docstring""" A__ = list(range(1_0 , 0 , -1 ) ) print("""Initial List""" ) print(*__a ) A__ = odd_even_transposition(__a ) print("""Sorted List\n""" ) print(*__a ) if __name__ == "__main__": main()
274
1
from __future__ import annotations import collections import pprint from pathlib import Path def _snake_case( SCREAMING_SNAKE_CASE__ ) -> str: return "".join(sorted(SCREAMING_SNAKE_CASE__ ) ) def _snake_case( SCREAMING_SNAKE_CASE__ ) -> list[str]: return word_by_signature[signature(SCREAMING_SNAKE_CASE__ )] lowercase : str = Path(__file__).parent.joinpath("""words.txt""").read_text(encoding="""utf-8""") lowercase : Dict = sorted({word.strip().lower() for word in data.splitlines()}) lowercase : Union[str, Any] = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": lowercase : int = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open("""anagrams.txt""", """w""") as file: file.write("""all_anagrams = \n """) file.write(pprint.pformat(all_anagrams))
350
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging lowercase : List[str] = logging.get_logger(__name__) lowercase : Tuple = { """google/umt5-small""": """https://huggingface.co/google/umt5-small/resolve/main/config.json""", # See all umt5 models at https://huggingface.co/models?filter=umt5 } class __snake_case ( lowerCAmelCase ): _a : List[str]= "umt5" _a : Optional[Any]= ["past_key_values"] def __init__( self ,snake_case=250112 ,snake_case=512 ,snake_case=64 ,snake_case=1024 ,snake_case=8 ,snake_case=None ,snake_case=6 ,snake_case=32 ,snake_case=128 ,snake_case=0.1 ,snake_case=1e-6 ,snake_case=1.0 ,snake_case="gated-gelu" ,snake_case=True ,snake_case=True ,snake_case="T5Tokenizer" ,snake_case=True ,snake_case=0 ,snake_case=1 ,snake_case=0 ,**snake_case ,): '''simple docstring''' super().__init__( is_encoder_decoder=snake_case ,tokenizer_class=snake_case ,tie_word_embeddings=snake_case ,pad_token_id=snake_case ,eos_token_id=snake_case ,decoder_start_token_id=snake_case ,**snake_case ,) lowercase : List[str] = vocab_size lowercase : Optional[Any] = d_model lowercase : int = d_kv lowercase : List[Any] = d_ff lowercase : Dict = num_layers lowercase : int = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry lowercase : List[Any] = num_heads lowercase : Optional[Any] = relative_attention_num_buckets lowercase : Dict = relative_attention_max_distance lowercase : Dict = dropout_rate lowercase : Any = layer_norm_epsilon lowercase : Any = initializer_factor lowercase : Union[str, Any] = feed_forward_proj lowercase : Optional[Any] = use_cache lowercase : Dict = self.feed_forward_proj.split("""-""" ) lowercase : List[Any] = act_info[-1] lowercase : Any = act_info[0] == """gated""" if len(snake_case ) > 1 and act_info[0] != "gated" or len(snake_case ) > 2: raise ValueError( f"`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer." """Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. """ """'gated-gelu' or 'relu'""" ) if feed_forward_proj == "gated-gelu": lowercase : int = """gelu_new""" @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return self.d_model @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return self.num_heads @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return self.num_layers class __snake_case ( lowerCAmelCase ): @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : int = { """input_ids""": {0: """batch""", 1: """encoder_sequence"""}, """attention_mask""": {0: """batch""", 1: """encoder_sequence"""}, } if self.use_past: lowercase : List[Any] = """past_encoder_sequence + sequence""" lowercase : Dict = {0: """batch"""} lowercase : Union[str, Any] = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: lowercase : Optional[Any] = {0: """batch""", 1: """decoder_sequence"""} lowercase : List[Any] = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(snake_case ,direction="""inputs""" ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return 13 @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return 5e-4
285
0
import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase__ = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right lowerCAmelCase__ = 5_00_03 lowerCAmelCase__ = 5_00_02 @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( a , unittest.TestCase): '''simple docstring''' __SCREAMING_SNAKE_CASE = PLBartTokenizer __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = False def _lowerCamelCase ( self) -> Optional[int]: super().setUp() # We have a SentencePiece fixture for testing _A : Union[str, Any] = PLBartTokenizer(__lowerCamelCase , language_codes="base" , keep_accents=__lowerCamelCase) tokenizer.save_pretrained(self.tmpdirname) def _lowerCamelCase ( self) -> List[Any]: _A : List[Any] = PLBartTokenizer(__lowerCamelCase , language_codes="base" , keep_accents=__lowerCamelCase) _A : List[Any] = tokenizer.tokenize("This is a test") self.assertListEqual(__lowerCamelCase , ["▁This", "▁is", "▁a", "▁t", "est"]) self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowerCamelCase) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) _A : Dict = tokenizer.tokenize("I was born in 92000, and this is falsé.") self.assertListEqual( __lowerCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) _A : Optional[int] = tokenizer.convert_tokens_to_ids(__lowerCamelCase) self.assertListEqual( __lowerCamelCase , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] ] , ) _A : Union[str, Any] = tokenizer.convert_ids_to_tokens(__lowerCamelCase) self.assertListEqual( __lowerCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) _A : Tuple = tokenizer.vocab_size _A : int = [tokenizer.convert_ids_to_tokens(__lowerCamelCase) for x in range(end - 4 , __lowerCamelCase)] self.assertListEqual(__lowerCamelCase , ["__java__", "__python__", "__en_XX__", "<mask>"]) _A : Tuple = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go" _A : Dict = tokenizer(__lowerCamelCase).input_ids self.assertEqual( tokenizer.decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase , clean_up_tokenization_spaces=__lowerCamelCase) , __lowerCamelCase , ) def _lowerCamelCase ( self) -> Union[str, Any]: _A : str = PLBartTokenizer(__lowerCamelCase , language_codes="multi" , keep_accents=__lowerCamelCase) _A : Optional[Any] = tokenizer.tokenize("This is a test") self.assertListEqual(__lowerCamelCase , ["▁This", "▁is", "▁a", "▁t", "est"]) self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowerCamelCase) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) _A : List[str] = tokenizer.tokenize("I was born in 92000, and this is falsé.") self.assertListEqual( __lowerCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) _A : List[Any] = tokenizer.convert_tokens_to_ids(__lowerCamelCase) self.assertListEqual( __lowerCamelCase , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] ] , ) _A : str = tokenizer.convert_ids_to_tokens(__lowerCamelCase) self.assertListEqual( __lowerCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) _A : Dict = tokenizer.vocab_size _A : List[Any] = [tokenizer.convert_ids_to_tokens(__lowerCamelCase) for x in range(end - 7 , __lowerCamelCase)] self.assertListEqual( __lowerCamelCase , ["__java__", "__python__", "__en_XX__", "__javascript__", "__php__", "__ruby__", "__go__"]) _A : Tuple = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go" _A : Any = tokenizer(__lowerCamelCase).input_ids self.assertEqual( tokenizer.decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase , clean_up_tokenization_spaces=__lowerCamelCase) , __lowerCamelCase , ) @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( unittest.TestCase): '''simple docstring''' __SCREAMING_SNAKE_CASE = "uclanlp/plbart-python-en_XX" __SCREAMING_SNAKE_CASE = [ "def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])", "def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])", ] __SCREAMING_SNAKE_CASE = [ "Returns the maximum value of a b c.", "Sums the values of a b c.", ] __SCREAMING_SNAKE_CASE = [ 134, 5452, 3_3460, 3_3441, 3_3463, 3_3465, 3_3463, 3_3449, 988, 20, 3_3456, 19, 3_3456, 771, 39, 4258, 889, 3318, 3_3441, 3_3463, 3_3465, 3_3463, 3_3449, 2471, 2, PYTHON_CODE, ] @classmethod def _lowerCamelCase ( cls) -> str: _A : PLBartTokenizer = PLBartTokenizer.from_pretrained( cls.checkpoint_name , language_codes="base" , src_lang="python" , tgt_lang="en_XX") _A : str = 1 return cls def _lowerCamelCase ( self) -> Union[str, Any]: self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__java__"] , 5_0_0_0_1) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__python__"] , 5_0_0_0_2) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__en_XX__"] , 5_0_0_0_3) def _lowerCamelCase ( self) -> Any: _A : Optional[Any] = self.tokenizer.batch_encode_plus(self.src_text).input_ids[0] self.assertListEqual(self.expected_src_tokens , __lowerCamelCase) def _lowerCamelCase ( self) -> Optional[int]: self.assertIn(__lowerCamelCase , self.tokenizer.all_special_ids) _A : int = [EN_CODE, 9_0_3_7, 3_3_4_4_2, 5_7, 7_5_2, 1_5_3, 1_4, 5_6, 1_8, 9, 2] _A : Dict = self.tokenizer.decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase) _A : Optional[Any] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__lowerCamelCase) self.assertEqual(__lowerCamelCase , __lowerCamelCase) self.assertNotIn(self.tokenizer.eos_token , __lowerCamelCase) def _lowerCamelCase ( self) -> Optional[int]: _A : Optional[int] = ["def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])" * 2_0] self.assertIsInstance(src_text[0] , __lowerCamelCase) _A : str = 1_0 _A : str = self.tokenizer(__lowerCamelCase , max_length=__lowerCamelCase , truncation=__lowerCamelCase).input_ids[0] self.assertEqual(ids[-2] , 2) self.assertEqual(ids[-1] , __lowerCamelCase) self.assertEqual(len(__lowerCamelCase) , __lowerCamelCase) def _lowerCamelCase ( self) -> Tuple: self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "__java__"]) , [5_0_0_0_4, 5_0_0_0_1]) def _lowerCamelCase ( self) -> str: _A : Any = tempfile.mkdtemp() _A : Dict = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__lowerCamelCase) _A : int = PLBartTokenizer.from_pretrained(__lowerCamelCase) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __lowerCamelCase) @require_torch def _lowerCamelCase ( self) -> Optional[Any]: _A : Optional[int] = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=__lowerCamelCase , return_tensors="pt") _A : Union[str, Any] = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE]) self.assertEqual(batch.decoder_input_ids[1][0] , __lowerCamelCase) self.assertEqual(batch.decoder_input_ids[1][-1] , 2) self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE]) @require_torch def _lowerCamelCase ( self) -> Optional[Any]: _A : List[Any] = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=len(self.expected_src_tokens) , return_tensors="pt" , ) _A : Tuple = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase) self.assertEqual((2, 2_6) , batch.input_ids.shape) self.assertEqual((2, 2_6) , batch.attention_mask.shape) _A : Tuple = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , __lowerCamelCase) self.assertEqual(2 , batch.decoder_input_ids[0, -1]) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , []) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE]) def _lowerCamelCase ( self) -> List[Any]: _A : List[Any] = self.tokenizer(self.src_text , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=3 , return_tensors="pt") _A : Dict = self.tokenizer( text_target=self.tgt_text , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=1_0 , return_tensors="pt") _A : Any = targets["input_ids"] _A : Union[str, Any] = shift_tokens_right(__lowerCamelCase , self.tokenizer.pad_token_id) self.assertEqual(batch.input_ids.shape[1] , 3) self.assertEqual(batch.decoder_input_ids.shape[1] , 1_0) @require_torch def _lowerCamelCase ( self) -> Union[str, Any]: _A : str = self.tokenizer._build_translation_inputs( "A test" , return_tensors="pt" , src_lang="en_XX" , tgt_lang="java") self.assertEqual( nested_simplify(__lowerCamelCase) , { # A, test, EOS, en_XX "input_ids": [[1_5_0, 2_4_2, 2, 5_0_0_0_3]], "attention_mask": [[1, 1, 1, 1]], # java "forced_bos_token_id": 5_0_0_0_1, } , )
11
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = ["image_processor", "tokenizer"] __SCREAMING_SNAKE_CASE = "OwlViTImageProcessor" __SCREAMING_SNAKE_CASE = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self , __lowerCamelCase=None , __lowerCamelCase=None , **__lowerCamelCase) -> Union[str, Any]: _A : int = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __lowerCamelCase , ) _A : List[Any] = kwargs.pop("feature_extractor") _A : Dict = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`.") if tokenizer is None: raise ValueError("You need to specify a `tokenizer`.") super().__init__(__lowerCamelCase , __lowerCamelCase) def __call__( self , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase="max_length" , __lowerCamelCase="np" , **__lowerCamelCase) -> Any: if text is None and query_images is None and images is None: raise ValueError( "You have to specify at least one text or query image or image. All three cannot be none.") if text is not None: if isinstance(__lowerCamelCase , __lowerCamelCase) or (isinstance(__lowerCamelCase , __lowerCamelCase) and not isinstance(text[0] , __lowerCamelCase)): _A : Union[str, Any] = [self.tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase)] elif isinstance(__lowerCamelCase , __lowerCamelCase) and isinstance(text[0] , __lowerCamelCase): _A : Optional[Any] = [] # Maximum number of queries across batch _A : str = max([len(__lowerCamelCase) for t in text]) # Pad all batch samples to max number of text queries for t in text: if len(__lowerCamelCase) != max_num_queries: _A : Optional[int] = t + [" "] * (max_num_queries - len(__lowerCamelCase)) _A : List[Any] = self.tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase) encodings.append(__lowerCamelCase) else: raise TypeError("Input text should be a string, a list of strings or a nested list of strings") if return_tensors == "np": _A : Tuple = np.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0) _A : Optional[Any] = np.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp _A : Optional[int] = jnp.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0) _A : Optional[int] = jnp.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0) elif return_tensors == "pt" and is_torch_available(): import torch _A : Optional[Any] = torch.cat([encoding["input_ids"] for encoding in encodings] , dim=0) _A : Union[str, Any] = torch.cat([encoding["attention_mask"] for encoding in encodings] , dim=0) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf _A : Any = tf.stack([encoding["input_ids"] for encoding in encodings] , axis=0) _A : Tuple = tf.stack([encoding["attention_mask"] for encoding in encodings] , axis=0) else: raise ValueError("Target return tensor type could not be returned") _A : Optional[Any] = BatchEncoding() _A : Tuple = input_ids _A : Dict = attention_mask if query_images is not None: _A : Optional[Any] = BatchEncoding() _A : List[str] = self.image_processor( __lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase).pixel_values _A : Union[str, Any] = query_pixel_values if images is not None: _A : int = self.image_processor(__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase) if text is not None and images is not None: _A : Tuple = image_features.pixel_values return encoding elif query_images is not None and images is not None: _A : int = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**__lowerCamelCase) , tensor_type=__lowerCamelCase) def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> str: return self.image_processor.post_process(*__lowerCamelCase , **__lowerCamelCase) def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> List[str]: return self.image_processor.post_process_object_detection(*__lowerCamelCase , **__lowerCamelCase) def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> Optional[int]: return self.image_processor.post_process_image_guided_detection(*__lowerCamelCase , **__lowerCamelCase) def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> int: return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase) def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> Optional[int]: return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase) @property def _lowerCamelCase ( self) -> int: warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __lowerCamelCase , ) return self.image_processor_class @property def _lowerCamelCase ( self) -> List[str]: warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __lowerCamelCase , ) return self.image_processor
11
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase : str = logging.get_logger(__name__) def A ( _lowercase , _lowercase=False , _lowercase=False ): SCREAMING_SNAKE_CASE : List[str] = '''backbone.''' if is_semantic else '''''' SCREAMING_SNAKE_CASE : List[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""{prefix}blocks.{i}.norm1.weight""", f"""beit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""{prefix}blocks.{i}.norm1.bias""", f"""beit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (f"""{prefix}blocks.{i}.attn.proj.weight""", f"""beit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (f"""{prefix}blocks.{i}.attn.proj.bias""", f"""beit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""{prefix}blocks.{i}.norm2.weight""", f"""beit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""{prefix}blocks.{i}.norm2.bias""", f"""beit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""{prefix}blocks.{i}.mlp.fc1.weight""", f"""beit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""{prefix}blocks.{i}.mlp.fc1.bias""", f"""beit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""{prefix}blocks.{i}.mlp.fc2.weight""", f"""beit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""{prefix}blocks.{i}.mlp.fc2.bias""", f"""beit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ (f"""{prefix}cls_token""", '''beit.embeddings.cls_token'''), (f"""{prefix}patch_embed.proj.weight""", '''beit.embeddings.patch_embeddings.projection.weight'''), (f"""{prefix}patch_embed.proj.bias""", '''beit.embeddings.patch_embeddings.projection.bias'''), (f"""{prefix}pos_embed""", '''beit.embeddings.position_embeddings'''), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ('''mask_token''', '''beit.embeddings.mask_token'''), ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ] ) else: # layernorm + classification head rename_keys.extend( [ ('''fc_norm.weight''', '''beit.pooler.layernorm.weight'''), ('''fc_norm.bias''', '''beit.pooler.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def A ( _lowercase , _lowercase , _lowercase=False , _lowercase=False ): for i in range(config.num_hidden_layers ): SCREAMING_SNAKE_CASE : int = '''backbone.''' if is_semantic else '''''' # queries, keys and values SCREAMING_SNAKE_CASE : str = state_dict.pop(f"""{prefix}blocks.{i}.attn.qkv.weight""" ) SCREAMING_SNAKE_CASE : str = state_dict.pop(f"""{prefix}blocks.{i}.attn.q_bias""" ) SCREAMING_SNAKE_CASE : Union[str, Any] = state_dict.pop(f"""{prefix}blocks.{i}.attn.v_bias""" ) SCREAMING_SNAKE_CASE : int = in_proj_weight[ : config.hidden_size, : ] SCREAMING_SNAKE_CASE : List[str] = q_bias SCREAMING_SNAKE_CASE : Optional[int] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] SCREAMING_SNAKE_CASE : Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] SCREAMING_SNAKE_CASE : int = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained SCREAMING_SNAKE_CASE : str = state_dict.pop(f"""{prefix}blocks.{i}.gamma_1""" ) SCREAMING_SNAKE_CASE : Optional[int] = state_dict.pop(f"""{prefix}blocks.{i}.gamma_2""" ) SCREAMING_SNAKE_CASE : Optional[int] = gamma_a SCREAMING_SNAKE_CASE : str = gamma_a def A ( _lowercase , _lowercase , _lowercase ): SCREAMING_SNAKE_CASE : str = dct.pop(_lowercase ) SCREAMING_SNAKE_CASE : str = val def A ( ): SCREAMING_SNAKE_CASE : Optional[int] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' SCREAMING_SNAKE_CASE : Any = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ) return im @torch.no_grad() def A ( _lowercase , _lowercase , _lowercase=False ): SCREAMING_SNAKE_CASE : Dict = False if '''rvlcdip''' in checkpoint_url else True SCREAMING_SNAKE_CASE : Optional[Any] = BeitConfig(use_absolute_position_embeddings=_lowercase , use_mask_token=_lowercase ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: SCREAMING_SNAKE_CASE : List[Any] = 1_024 SCREAMING_SNAKE_CASE : int = 4_096 SCREAMING_SNAKE_CASE : List[Any] = 24 SCREAMING_SNAKE_CASE : List[Any] = 16 # labels if "rvlcdip" in checkpoint_url: SCREAMING_SNAKE_CASE : Optional[Any] = 16 SCREAMING_SNAKE_CASE : Tuple = '''huggingface/label-files''' SCREAMING_SNAKE_CASE : Dict = '''rvlcdip-id2label.json''' SCREAMING_SNAKE_CASE : List[Any] = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type='''dataset''' ) , '''r''' ) ) SCREAMING_SNAKE_CASE : List[Any] = {int(_lowercase ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE : Tuple = idalabel SCREAMING_SNAKE_CASE : int = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys SCREAMING_SNAKE_CASE : Dict = torch.hub.load_state_dict_from_url(_lowercase , map_location='''cpu''' )['''model'''] SCREAMING_SNAKE_CASE : int = create_rename_keys(_lowercase , has_lm_head=_lowercase ) for src, dest in rename_keys: rename_key(_lowercase , _lowercase , _lowercase ) read_in_q_k_v(_lowercase , _lowercase , has_lm_head=_lowercase ) # load HuggingFace model SCREAMING_SNAKE_CASE : List[str] = BeitForMaskedImageModeling(_lowercase ) if has_lm_head else BeitForImageClassification(_lowercase ) model.eval() model.load_state_dict(_lowercase ) # Check outputs on an image SCREAMING_SNAKE_CASE : Tuple = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=_lowercase ) SCREAMING_SNAKE_CASE : Optional[Any] = prepare_img() SCREAMING_SNAKE_CASE : Tuple = image_processor(images=_lowercase , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE : Tuple = encoding['''pixel_values'''] SCREAMING_SNAKE_CASE : Dict = model(_lowercase ) SCREAMING_SNAKE_CASE : List[str] = outputs.logits # verify logits SCREAMING_SNAKE_CASE : Tuple = [1, 16] if '''rvlcdip''' in checkpoint_url else [1, 196, 8_192] assert logits.shape == torch.Size(_lowercase ), "Shape of logits not as expected" Path(_lowercase ).mkdir(exist_ok=_lowercase ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowercase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_lowercase ) if push_to_hub: if has_lm_head: SCREAMING_SNAKE_CASE : Union[str, Any] = '''dit-base''' if '''base''' in checkpoint_url else '''dit-large''' else: SCREAMING_SNAKE_CASE : str = '''dit-base-finetuned-rvlcdip''' if '''dit-b''' in checkpoint_url else '''dit-large-finetuned-rvlcdip''' image_processor.push_to_hub( repo_path_or_name=Path(_lowercase , _lowercase ) , organization='''nielsr''' , commit_message='''Add image processor''' , use_temp_dir=_lowercase , ) model.push_to_hub( repo_path_or_name=Path(_lowercase , _lowercase ) , organization='''nielsr''' , commit_message='''Add model''' , use_temp_dir=_lowercase , ) if __name__ == "__main__": __UpperCamelCase : str = argparse.ArgumentParser() parser.add_argument( '--checkpoint_url', default='https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth', type=str, help='URL to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', ) __UpperCamelCase : int = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
258
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging __UpperCamelCase : List[str] = logging.get_logger(__name__) __UpperCamelCase : List[Any] = '▁' __UpperCamelCase : str = {'vocab_file': 'sentencepiece.bpe.model'} __UpperCamelCase : Tuple = { 'vocab_file': { 'facebook/mbart-large-en-ro': ( 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model' ), 'facebook/mbart-large-cc25': ( 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model' ), } } __UpperCamelCase : List[str] = { 'facebook/mbart-large-en-ro': 1024, 'facebook/mbart-large-cc25': 1024, } # fmt: off __UpperCamelCase : Dict = ['ar_AR', 'cs_CZ', 'de_DE', 'en_XX', 'es_XX', 'et_EE', 'fi_FI', 'fr_XX', 'gu_IN', 'hi_IN', 'it_IT', 'ja_XX', 'kk_KZ', 'ko_KR', 'lt_LT', 'lv_LV', 'my_MM', 'ne_NP', 'nl_XX', 'ro_RO', 'ru_RU', 'si_LK', 'tr_TR', 'vi_VN', 'zh_CN'] class lowercase__ ( UpperCamelCase_): UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = ["""input_ids""", """attention_mask"""] UpperCamelCase_ = [] UpperCamelCase_ = [] def __init__( self : Dict , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[int]="<s>" , UpperCamelCase__ : Union[str, Any]="</s>" , UpperCamelCase__ : str="</s>" , UpperCamelCase__ : List[Any]="<s>" , UpperCamelCase__ : List[str]="<unk>" , UpperCamelCase__ : Tuple="<pad>" , UpperCamelCase__ : str="<mask>" , UpperCamelCase__ : Any=None , UpperCamelCase__ : Dict=None , UpperCamelCase__ : str=None , UpperCamelCase__ : Optional[Dict[str, Any]] = None , UpperCamelCase__ : List[Any]=None , **UpperCamelCase__ : Dict , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else mask_token SCREAMING_SNAKE_CASE : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , src_lang=UpperCamelCase__ , tgt_lang=UpperCamelCase__ , additional_special_tokens=UpperCamelCase__ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase__ , ) SCREAMING_SNAKE_CASE : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCamelCase__ ) ) SCREAMING_SNAKE_CASE : Dict = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token SCREAMING_SNAKE_CASE : str = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab SCREAMING_SNAKE_CASE : Tuple = 1 SCREAMING_SNAKE_CASE : Dict = len(self.sp_model ) SCREAMING_SNAKE_CASE : Union[str, Any] = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(UpperCamelCase__ ) } SCREAMING_SNAKE_CASE : Any = {v: k for k, v in self.lang_code_to_id.items()} SCREAMING_SNAKE_CASE : Optional[Any] = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) SCREAMING_SNAKE_CASE : Any = {v: k for k, v in self.fairseq_tokens_to_ids.items()} SCREAMING_SNAKE_CASE : int = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) SCREAMING_SNAKE_CASE : List[str] = src_lang if src_lang is not None else '''en_XX''' SCREAMING_SNAKE_CASE : Any = self.lang_code_to_id[self._src_lang] SCREAMING_SNAKE_CASE : int = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.__dict__.copy() SCREAMING_SNAKE_CASE : int = None SCREAMING_SNAKE_CASE : Any = self.sp_model.serialized_model_proto() return state def __setstate__( self : Tuple , UpperCamelCase__ : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): SCREAMING_SNAKE_CASE : Tuple = {} SCREAMING_SNAKE_CASE : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def __A ( self : int ): '''simple docstring''' return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def __A ( self : Union[str, Any] ): '''simple docstring''' return self._src_lang @src_lang.setter def __A ( self : Tuple , UpperCamelCase__ : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __A ( self : Union[str, Any] , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None , UpperCamelCase__ : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase__ , token_ids_a=UpperCamelCase__ , already_has_special_tokens=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = [1] * len(self.prefix_tokens ) SCREAMING_SNAKE_CASE : Dict = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(UpperCamelCase__ )) + suffix_ones return prefix_ones + ([0] * len(UpperCamelCase__ )) + ([0] * len(UpperCamelCase__ )) + suffix_ones def __A ( self : Optional[int] , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __A ( self : Optional[int] , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = [self.sep_token_id] SCREAMING_SNAKE_CASE : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __A ( self : Tuple , UpperCamelCase__ : Any , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] , UpperCamelCase__ : Optional[str] , **UpperCamelCase__ : Tuple ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) SCREAMING_SNAKE_CASE : Dict = src_lang SCREAMING_SNAKE_CASE : Union[str, Any] = self(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[int] = self.convert_tokens_to_ids(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Any = tgt_lang_id return inputs def __A ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = {self.convert_ids_to_tokens(UpperCamelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __A ( self : Any , UpperCamelCase__ : str ): '''simple docstring''' return self.sp_model.encode(UpperCamelCase__ , out_type=UpperCamelCase__ ) def __A ( self : str , UpperCamelCase__ : int ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] SCREAMING_SNAKE_CASE : Optional[Any] = self.sp_model.PieceToId(UpperCamelCase__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __A ( self : Dict , UpperCamelCase__ : str ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __A ( self : int , UpperCamelCase__ : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = ''''''.join(UpperCamelCase__ ).replace(UpperCamelCase__ , ''' ''' ).strip() return out_string def __A ( self : Dict , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(UpperCamelCase__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join( UpperCamelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase__ , '''wb''' ) as fi: SCREAMING_SNAKE_CASE : List[str] = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase__ ) return (out_vocab_file,) def __A ( self : Any , UpperCamelCase__ : List[str] , UpperCamelCase__ : str = "en_XX" , UpperCamelCase__ : Optional[List[str]] = None , UpperCamelCase__ : str = "ro_RO" , **UpperCamelCase__ : List[str] , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = src_lang SCREAMING_SNAKE_CASE : List[str] = tgt_lang return super().prepare_seqaseq_batch(UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ) def __A ( self : List[Any] ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def __A ( self : List[str] ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __A ( self : str , UpperCamelCase__ : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.lang_code_to_id[src_lang] SCREAMING_SNAKE_CASE : Tuple = [] SCREAMING_SNAKE_CASE : Optional[Any] = [self.eos_token_id, self.cur_lang_code] def __A ( self : List[Any] , UpperCamelCase__ : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.lang_code_to_id[lang] SCREAMING_SNAKE_CASE : Optional[int] = [] SCREAMING_SNAKE_CASE : List[str] = [self.eos_token_id, self.cur_lang_code]
258
1
'''simple docstring''' def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): return int((input_a, input_a).count(0 ) == 0 ) def __UpperCamelCase ( ): assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
198
'''simple docstring''' import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format="""%(message)s""") def __UpperCamelCase ( UpperCAmelCase ): return input_array.reshape((input_array.size, 1) ) def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lowercase__ : Dict = np.nan for i in range(UpperCAmelCase ): lowercase__ : Optional[Any] = features[:, labels == i] lowercase__ : Optional[Any] = data.mean(1 ) # Centralize the data of class i lowercase__ : Dict = data - column_reshape(UpperCAmelCase ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(UpperCAmelCase , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) lowercase__ : List[str] = np.dot(UpperCAmelCase , centered_data.T ) return covariance_sum / features.shape[1] def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lowercase__ : Tuple = features.mean(1 ) lowercase__ : Dict = np.nan for i in range(UpperCAmelCase ): lowercase__ : List[str] = features[:, labels == i] lowercase__ : int = data.shape[1] lowercase__ : Optional[int] = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(UpperCAmelCase ) - column_reshape(UpperCAmelCase ) , (column_reshape(UpperCAmelCase ) - column_reshape(UpperCAmelCase )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) lowercase__ : Optional[int] = device_data * np.dot( column_reshape(UpperCAmelCase ) - column_reshape(UpperCAmelCase ) , (column_reshape(UpperCAmelCase ) - column_reshape(UpperCAmelCase )).T , ) return covariance_sum / features.shape[1] def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): # Check if the features have been loaded if features.any(): lowercase__ : Optional[Any] = features.mean(1 ) # Center the dataset lowercase__ : List[str] = features - np.reshape(UpperCAmelCase , (data_mean.size, 1) ) lowercase__ : Optional[Any] = np.dot(UpperCAmelCase , centered_data.T ) / features.shape[1] lowercase__ , lowercase__ : Tuple = np.linalg.eigh(UpperCAmelCase ) # Take all the columns in the reverse order (-1), and then takes only the first lowercase__ : str = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space lowercase__ : Tuple = np.dot(filtered_eigenvectors.T , UpperCAmelCase ) logging.info('''Principal Component Analysis computed''' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='''%(message)s''' , force=UpperCAmelCase ) logging.error('''Dataset empty''' ) raise AssertionError def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): assert classes > dimensions # Check if features have been already loaded if features.any: lowercase__ , lowercase__ : Any = eigh( covariance_between_classes(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) , covariance_within_classes(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) , ) lowercase__ : Optional[int] = eigenvectors[:, ::-1][:, :dimensions] lowercase__ , lowercase__ , lowercase__ : Optional[int] = np.linalg.svd(UpperCAmelCase ) lowercase__ : List[str] = svd_matrix[:, 0:dimensions] lowercase__ : str = np.dot(filtered_svd_matrix.T , UpperCAmelCase ) logging.info('''Linear Discriminant Analysis computed''' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='''%(message)s''' , force=UpperCAmelCase ) logging.error('''Dataset empty''' ) raise AssertionError def __UpperCamelCase ( ): # Create dummy dataset with 2 classes and 3 features lowercase__ : List[str] = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) lowercase__ : Optional[Any] = np.array([0, 0, 0, 1, 1] ) lowercase__ : str = 2 lowercase__ : Dict = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(UpperCAmelCase ) as error_info: lowercase__ : int = linear_discriminant_analysis( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) if isinstance(UpperCAmelCase , np.ndarray ): raise AssertionError( '''Did not raise AssertionError for dimensions > classes''' ) assert error_info.type is AssertionError def __UpperCamelCase ( ): lowercase__ : Optional[int] = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) lowercase__ : int = 2 lowercase__ : Any = np.array([[6.9_2_8_2_0_3_2_3, 8.6_6_0_2_5_4_0_4, 1_0.3_9_2_3_0_4_8_5], [3.0, 3.0, 3.0]] ) with pytest.raises(UpperCAmelCase ) as error_info: lowercase__ : Dict = principal_component_analysis(UpperCAmelCase , UpperCAmelCase ) if not np.allclose(UpperCAmelCase , UpperCAmelCase ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
198
1
'''simple docstring''' import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class __magic_name__ ( _UpperCAmelCase): def __init__( self : Tuple , lowercase_ : Optional[int] , lowercase_ : Any=13 , lowercase_ : Optional[int]=7 , lowercase_ : List[Any]=True , lowercase_ : List[str]=True , lowercase_ : int=True , lowercase_ : List[Any]=True , lowercase_ : Any=99 , lowercase_ : List[str]=32 , lowercase_ : Union[str, Any]=5 , lowercase_ : Tuple=4 , lowercase_ : int=37 , lowercase_ : Any="gelu" , lowercase_ : int=0.1 , lowercase_ : Optional[int]=0.1 , lowercase_ : Tuple=512 , lowercase_ : Optional[Any]=16 , lowercase_ : Optional[int]=2 , lowercase_ : Any=0.02 , lowercase_ : str=False , lowercase_ : List[Any]=True , lowercase_ : Dict="None" , lowercase_ : Tuple=3 , lowercase_ : Any=4 , lowercase_ : Tuple=None , ): lowercase_ : int = parent lowercase_ : List[Any] = batch_size lowercase_ : Optional[Any] = seq_length lowercase_ : List[str] = is_training lowercase_ : List[Any] = use_input_mask lowercase_ : Optional[int] = use_token_type_ids lowercase_ : Union[str, Any] = use_labels lowercase_ : Dict = vocab_size lowercase_ : List[str] = hidden_size lowercase_ : Optional[int] = num_hidden_layers lowercase_ : Dict = num_attention_heads lowercase_ : Optional[Any] = intermediate_size lowercase_ : Optional[int] = hidden_act lowercase_ : Any = hidden_dropout_prob lowercase_ : Any = attention_probs_dropout_prob lowercase_ : Any = max_position_embeddings lowercase_ : Dict = type_vocab_size lowercase_ : List[str] = type_sequence_label_size lowercase_ : List[Any] = initializer_range lowercase_ : Union[str, Any] = num_labels lowercase_ : Any = num_choices lowercase_ : Optional[int] = relative_attention lowercase_ : Tuple = position_biased_input lowercase_ : List[str] = pos_att_type lowercase_ : Any = scope def SCREAMING_SNAKE_CASE_ ( self : str ): lowercase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ : Optional[Any] = None if self.use_input_mask: lowercase_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) lowercase_ : List[str] = None if self.use_token_type_ids: lowercase_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase_ : str = None lowercase_ : List[str] = None lowercase_ : List[Any] = None if self.use_labels: lowercase_ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase_ : str = ids_tensor([self.batch_size] , self.num_choices ) lowercase_ : List[str] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE_ ( self : str ): return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : List[str] = self.get_config() lowercase_ : int = 300 return config def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : Dict ): self.parent.assertListEqual(list(result.loss.size() ) , [] ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : Tuple , lowercase_ : Any , lowercase_ : Dict , lowercase_ : Union[str, Any] , lowercase_ : Optional[int] , lowercase_ : Dict , lowercase_ : Tuple ): lowercase_ : str = DebertaModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() lowercase_ : str = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ )[0] lowercase_ : Any = model(lowercase_ , token_type_ids=lowercase_ )[0] lowercase_ : Any = model(lowercase_ )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : Dict , lowercase_ : Any , lowercase_ : Any , lowercase_ : Union[str, Any] , lowercase_ : List[str] , lowercase_ : Union[str, Any] , lowercase_ : str ): lowercase_ : Any = DebertaForMaskedLM(config=lowercase_ ) model.to(lowercase_ ) model.eval() lowercase_ : Tuple = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : Dict , lowercase_ : Any , lowercase_ : Optional[Any] , lowercase_ : Dict , lowercase_ : Optional[Any] , lowercase_ : Tuple , lowercase_ : int ): lowercase_ : List[Any] = self.num_labels lowercase_ : Optional[Any] = DebertaForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() lowercase_ : Optional[Any] = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : List[Any] , lowercase_ : List[str] , lowercase_ : List[Any] , lowercase_ : List[Any] , lowercase_ : List[str] , lowercase_ : Tuple , lowercase_ : str ): lowercase_ : List[Any] = self.num_labels lowercase_ : List[Any] = DebertaForTokenClassification(config=lowercase_ ) model.to(lowercase_ ) model.eval() lowercase_ : Union[str, Any] = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , lowercase_ : str , lowercase_ : Union[str, Any] , lowercase_ : str , lowercase_ : Optional[Any] , lowercase_ : List[str] , lowercase_ : List[Any] , lowercase_ : Dict ): lowercase_ : Any = DebertaForQuestionAnswering(config=lowercase_ ) model.to(lowercase_ ) model.eval() lowercase_ : int = model( lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , start_positions=lowercase_ , end_positions=lowercase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): lowercase_ : Optional[Any] = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) : List[Any] = config_and_inputs lowercase_ : str = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __magic_name__ ( _UpperCAmelCase, _UpperCAmelCase, unittest.TestCase): UpperCamelCase__ = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) UpperCamelCase__ = ( { '''feature-extraction''': DebertaModel, '''fill-mask''': DebertaForMaskedLM, '''question-answering''': DebertaForQuestionAnswering, '''text-classification''': DebertaForSequenceClassification, '''token-classification''': DebertaForTokenClassification, '''zero-shot''': DebertaForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase__ = True UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : Optional[int] = DebertaModelTester(self ) lowercase_ : Any = ConfigTester(self , config_class=lowercase_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ ( self : str ): lowercase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): lowercase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): lowercase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*lowercase_ ) @slow def SCREAMING_SNAKE_CASE_ ( self : List[str] ): for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ : Any = DebertaModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) @require_torch @require_sentencepiece @require_tokenizers class __magic_name__ ( unittest.TestCase): @unittest.skip(reason="""Model not available yet""" ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): pass @slow def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): lowercase_ : Optional[int] = DebertaModel.from_pretrained("""microsoft/deberta-base""" ) lowercase_ : Union[str, Any] = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) lowercase_ : int = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowercase_ : int = model(lowercase_ , attention_mask=lowercase_ )[0] # compare the actual values for a slice. lowercase_ : str = torch.tensor( [[[-0.59_86, -0.80_55, -0.84_62], [1.44_84, -0.93_48, -0.80_59], [0.31_23, 0.00_32, -1.41_31]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowercase_ , atol=1E-4 ) , f'''{output[:, 1:4, 1:4]}''' )
21
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _lowercase : Union[str, Any] = { "configuration_encodec": [ "ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP", "EncodecConfig", ], "feature_extraction_encodec": ["EncodecFeatureExtractor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Union[str, Any] = [ "ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST", "EncodecModel", "EncodecPreTrainedModel", ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys _lowercase : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
21
1
import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin _a = random.Random() if is_torch_available(): import torch def __A ( __lowerCAmelCase , __lowerCAmelCase=1.0 , __lowerCAmelCase=None , __lowerCAmelCase=None )-> Union[str, Any]: """simple docstring""" if rng is None: _UpperCAmelCase = global_rng _UpperCAmelCase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class __lowerCamelCase ( unittest.TestCase): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=7 , UpperCAmelCase=400 , UpperCAmelCase=2000 , UpperCAmelCase=1 , UpperCAmelCase=0.0 , UpperCAmelCase=1_6000 , UpperCAmelCase=True , UpperCAmelCase=True , ): """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = min_seq_length _UpperCAmelCase = max_seq_length _UpperCAmelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _UpperCAmelCase = feature_size _UpperCAmelCase = padding_value _UpperCAmelCase = sampling_rate _UpperCAmelCase = return_attention_mask _UpperCAmelCase = do_normalize def UpperCamelCase ( self ): """simple docstring""" return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def UpperCamelCase ( self , UpperCAmelCase=False , UpperCAmelCase=False ): """simple docstring""" def _flatten(UpperCAmelCase ): return list(itertools.chain(*UpperCAmelCase ) ) if equal_length: _UpperCAmelCase = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size _UpperCAmelCase = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _UpperCAmelCase = [np.asarray(UpperCAmelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __lowerCamelCase ( snake_case__ , unittest.TestCase): """simple docstring""" UpperCamelCase__ = ASTFeatureExtractor def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = ASTFeatureExtractionTester(self ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _UpperCAmelCase = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _UpperCAmelCase = [np.asarray(UpperCAmelCase ) for speech_input in speech_inputs] # Test not batched input _UpperCAmelCase = feat_extract(speech_inputs[0] , return_tensors='np' ).input_values _UpperCAmelCase = feat_extract(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) ) # Test batched _UpperCAmelCase = feat_extract(UpperCAmelCase , padding=UpperCAmelCase , return_tensors='np' ).input_values _UpperCAmelCase = feat_extract(UpperCAmelCase , padding=UpperCAmelCase , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(UpperCAmelCase , UpperCAmelCase ): self.assertTrue(np.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. _UpperCAmelCase = [floats_list((1, x) )[0] for x in (800, 800, 800)] _UpperCAmelCase = np.asarray(UpperCAmelCase ) _UpperCAmelCase = feat_extract(UpperCAmelCase , return_tensors='np' ).input_values _UpperCAmelCase = feat_extract(UpperCAmelCase , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(UpperCAmelCase , UpperCAmelCase ): self.assertTrue(np.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) ) @require_torch def UpperCamelCase ( self ): """simple docstring""" import torch _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _UpperCAmelCase = np.random.rand(100 ).astype(np.floataa ) _UpperCAmelCase = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _UpperCAmelCase = feature_extractor.pad([{'input_values': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) _UpperCAmelCase = feature_extractor.pad([{'input_values': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" from datasets import load_dataset _UpperCAmelCase = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech _UpperCAmelCase = ds.sort('id' ).select(range(UpperCAmelCase ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] @require_torch def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = torch.tensor( [-0.98_94, -1.27_76, -0.90_66, -1.27_76, -0.93_49, -1.26_09, -1.03_86, -1.27_76, -1.15_61, -1.27_76, -1.20_52, -1.27_23, -1.21_90, -1.21_32, -1.27_76, -1.11_33, -1.19_53, -1.13_43, -1.15_84, -1.22_03, -1.17_70, -1.24_74, -1.23_81, -1.19_36, -0.92_70, -0.83_17, -0.80_49, -0.77_06, -0.75_65, -0.78_69] ) # fmt: on _UpperCAmelCase = self._load_datasamples(1 ) _UpperCAmelCase = ASTFeatureExtractor() _UpperCAmelCase = feature_extractor(UpperCAmelCase , return_tensors='pt' ).input_values self.assertEquals(input_values.shape , (1, 1024, 128) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , UpperCAmelCase , atol=1e-4 ) )
39
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class A__ ( __magic_name__ ): lowercase = 42 lowercase = 42 def __init__( self : Any , a : UNetaDModel , a : ScoreSdeVeScheduler ): '''simple docstring''' super().__init__() self.register_modules(unet=a , scheduler=a ) @torch.no_grad() def __call__( self : List[str] , a : int = 1 , a : int = 2_000 , a : Optional[Union[torch.Generator, List[torch.Generator]]] = None , a : Optional[str] = "pil" , a : bool = True , **a : int , ): '''simple docstring''' lowerCAmelCase__ : List[str] = self.unet.config.sample_size lowerCAmelCase__ : Union[str, Any] = (batch_size, 3, img_size, img_size) lowerCAmelCase__ : Tuple = self.unet lowerCAmelCase__ : Optional[Any] = randn_tensor(a , generator=a ) * self.scheduler.init_noise_sigma lowerCAmelCase__ : int = sample.to(self.device ) self.scheduler.set_timesteps(a ) self.scheduler.set_sigmas(a ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): lowerCAmelCase__ : Dict = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): lowerCAmelCase__ : Optional[Any] = self.unet(a , a ).sample lowerCAmelCase__ : Dict = self.scheduler.step_correct(a , a , generator=a ).prev_sample # prediction step lowerCAmelCase__ : Optional[int] = model(a , a ).sample lowerCAmelCase__ : Optional[Any] = self.scheduler.step_pred(a , a , a , generator=a ) lowerCAmelCase__ , lowerCAmelCase__ : str = output.prev_sample, output.prev_sample_mean lowerCAmelCase__ : Any = sample_mean.clamp(0 , 1 ) lowerCAmelCase__ : List[str] = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCAmelCase__ : int = self.numpy_to_pil(a ) if not return_dict: return (sample,) return ImagePipelineOutput(images=a )
212
0
def __snake_case ( _lowerCAmelCase : list ) -> List[str]: if len(_lowerCAmelCase ) <= 1: return [tuple(_lowerCAmelCase )] A_ : int = [] def generate(_lowerCAmelCase : int , _lowerCAmelCase : list ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , _lowerCAmelCase ) for i in range(k - 1 ): if k % 2 == 0: # k is even A_ , A_ : int = arr[k - 1], arr[i] else: # k is odd A_ , A_ : Tuple = arr[k - 1], arr[0] generate(k - 1 , _lowerCAmelCase ) generate(len(_lowerCAmelCase ) , _lowerCAmelCase ) return res if __name__ == "__main__": _lowerCAmelCase : int = input('''Enter numbers separated by a comma:\n''').strip() _lowerCAmelCase : List[Any] = [int(item) for item in user_input.split(''',''')] print(heaps(arr))
353
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path _lowerCAmelCase : Optional[Any] = Path(__file__).resolve().parents[3] / '''src''' sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) _lowerCAmelCase : Tuple = {'''base''': '''patrickvonplaten/wav2vec2_tiny_random''', '''robust''': '''patrickvonplaten/wav2vec2_tiny_random_robust'''} _lowerCAmelCase : List[str] = '''zero2''' _lowerCAmelCase : Dict = '''zero3''' _lowerCAmelCase : Tuple = [ZEROa, ZEROa] def __snake_case ( _lowerCAmelCase : str , _lowerCAmelCase : Dict , _lowerCAmelCase : List[Any] ) -> Any: # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param A_ : Dict = parameterized.to_safe_name("_".join(str(_lowerCAmelCase ) for x in param.args ) ) return f"{func.__name__}_{param_based_name}" # Cartesian-product of zero stages with models to test _lowerCAmelCase : List[Any] = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" @parameterized.expand(snake_case , name_func=snake_case ) def SCREAMING_SNAKE_CASE ( self :str , snake_case :Tuple , snake_case :Tuple ): '''simple docstring''' self.run_and_check( stage=snake_case , model=snake_case , distributed=snake_case , fpaa=snake_case , ) @require_torch_multi_gpu @parameterized.expand(snake_case , name_func=snake_case ) def SCREAMING_SNAKE_CASE ( self :int , snake_case :Tuple , snake_case :Optional[Any] ): '''simple docstring''' self.run_and_check( stage=snake_case , model=snake_case , distributed=snake_case , fpaa=snake_case , ) @parameterized.expand(snake_case , name_func=snake_case ) def SCREAMING_SNAKE_CASE ( self :Union[str, Any] , snake_case :Dict , snake_case :Any ): '''simple docstring''' self.run_and_check( stage=snake_case , model=snake_case , distributed=snake_case , fpaa=snake_case , ) @require_torch_multi_gpu @parameterized.expand(snake_case , name_func=snake_case ) def SCREAMING_SNAKE_CASE ( self :int , snake_case :str , snake_case :Tuple ): '''simple docstring''' self.run_and_check( stage=snake_case , model=snake_case , distributed=snake_case , fpaa=snake_case , ) def SCREAMING_SNAKE_CASE ( self :List[str] , snake_case :int ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self :Dict , snake_case :str , snake_case :str , snake_case :int = 10 , snake_case :bool = True , snake_case :bool = True , snake_case :bool = True , ): '''simple docstring''' A_ : Any = models[model] A_ : List[Any] = self.run_trainer( stage=snake_case , model_name=snake_case , eval_steps=snake_case , num_train_epochs=1 , distributed=snake_case , fpaa=snake_case , ) self.do_checks(snake_case ) return output_dir def SCREAMING_SNAKE_CASE ( self :str , snake_case :str , snake_case :str , snake_case :int = 10 , snake_case :int = 1 , snake_case :bool = True , snake_case :bool = True , ): '''simple docstring''' A_ : List[Any] = self.get_auto_remove_tmp_dir("./xxx" , after=snake_case ) A_ : Tuple = f"\n --model_name_or_path {model_name}\n --dataset_name hf-internal-testing/librispeech_asr_dummy\n --dataset_config_name clean\n --train_split_name validation\n --validation_split_name validation\n --output_dir {output_dir}\n --num_train_epochs {str(snake_case )}\n --per_device_train_batch_size 2\n --per_device_eval_batch_size 2\n --evaluation_strategy steps\n --learning_rate 5e-4\n --warmup_steps 8\n --orthography timit\n --preprocessing_num_workers 1\n --group_by_length\n --freeze_feature_extractor\n --report_to none\n --save_steps 0\n --eval_steps {eval_steps}\n --report_to none\n ".split() if fpaa: args.extend(["--fp16"] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files A_ : List[str] = f"--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json".split() A_ : List[str] = [f"{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"] A_ : str = self.get_launcher(snake_case ) A_ : Dict = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(snake_case , env=self.get_env() ) return output_dir def SCREAMING_SNAKE_CASE ( self :Optional[int] , snake_case :Optional[Any]=False ): '''simple docstring''' A_ : int = min(2 , get_gpu_count() ) if distributed else 1 return f"deepspeed --num_nodes 1 --num_gpus {num_gpus}".split()
70
0
'''simple docstring''' from __future__ import annotations a_ : str = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] a_ : str = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def a_ ( __snake_case : list[float] ) -> list[float]: """simple docstring""" lowerCamelCase_ =[] lowerCamelCase_ =len(__snake_case ) for i in range(__snake_case ): lowerCamelCase_ =-1 for j in range(i + 1 , __snake_case ): if arr[i] < arr[j]: lowerCamelCase_ =arr[j] break result.append(__snake_case ) return result def a_ ( __snake_case : list[float] ) -> list[float]: """simple docstring""" lowerCamelCase_ =[] for i, outer in enumerate(__snake_case ): lowerCamelCase_ =-1 for inner in arr[i + 1 :]: if outer < inner: lowerCamelCase_ =inner break result.append(__snake_case ) return result def a_ ( __snake_case : list[float] ) -> list[float]: """simple docstring""" lowerCamelCase_ =len(__snake_case ) lowerCamelCase_ =[] lowerCamelCase_ =[-1] * arr_size for index in reversed(range(__snake_case ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: lowerCamelCase_ =stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) a_ : Dict = ( """from __main__ import arr, next_greatest_element_slow, """ """next_greatest_element_fast, next_greatest_element""" ) print( """next_greatest_element_slow():""", timeit("""next_greatest_element_slow(arr)""", setup=setup), ) print( """next_greatest_element_fast():""", timeit("""next_greatest_element_fast(arr)""", setup=setup), ) print( """ next_greatest_element():""", timeit("""next_greatest_element(arr)""", setup=setup), )
75
'''simple docstring''' import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging a_ : List[Any] = ( """https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py""" ) a_ : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name def a_ ( ) -> List[str]: """simple docstring""" lowerCamelCase_ ='''https://pypi.org/pypi/diffusers/json''' lowerCamelCase_ =json.loads(request.urlopen(__snake_case ).read() )['''releases'''].keys() return sorted(__snake_case , key=lambda __snake_case : version.Version(__snake_case ) ) def a_ ( ) -> str: """simple docstring""" # This function has already been executed if HF_MODULES_CACHE already is in the Python path. if HF_MODULES_CACHE in sys.path: return sys.path.append(__snake_case ) os.makedirs(__snake_case , exist_ok=__snake_case ) lowerCamelCase_ =Path(__snake_case ) / '''__init__.py''' if not init_path.exists(): init_path.touch() def a_ ( __snake_case : Union[str, os.PathLike] ) -> List[str]: """simple docstring""" init_hf_modules() lowerCamelCase_ =Path(__snake_case ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(__snake_case , exist_ok=__snake_case ) lowerCamelCase_ =dynamic_module_path / '''__init__.py''' if not init_path.exists(): init_path.touch() def a_ ( __snake_case : Tuple ) -> List[str]: """simple docstring""" with open(__snake_case , '''r''' , encoding='''utf-8''' ) as f: lowerCamelCase_ =f.read() # Imports of the form `import .xxx` lowerCamelCase_ =re.findall('''^\s*import\s+\.(\S+)\s*$''' , __snake_case , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall('''^\s*from\s+\.(\S+)\s+import''' , __snake_case , flags=re.MULTILINE ) # Unique-ify return list(set(__snake_case ) ) def a_ ( __snake_case : str ) -> str: """simple docstring""" lowerCamelCase_ =False lowerCamelCase_ =[module_file] lowerCamelCase_ =[] # Let's recurse through all relative imports while not no_change: lowerCamelCase_ =[] for f in files_to_check: new_imports.extend(get_relative_imports(__snake_case ) ) lowerCamelCase_ =Path(__snake_case ).parent lowerCamelCase_ =[str(module_path / m ) for m in new_imports] lowerCamelCase_ =[f for f in new_import_files if f not in all_relative_imports] lowerCamelCase_ =[F'''{f}.py''' for f in new_import_files] lowerCamelCase_ =len(__snake_case ) == 0 all_relative_imports.extend(__snake_case ) return all_relative_imports def a_ ( __snake_case : Union[str, Any] ) -> Optional[int]: """simple docstring""" with open(__snake_case , '''r''' , encoding='''utf-8''' ) as f: lowerCamelCase_ =f.read() # Imports of the form `import xxx` lowerCamelCase_ =re.findall('''^\s*import\s+(\S+)\s*$''' , __snake_case , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall('''^\s*from\s+(\S+)\s+import''' , __snake_case , flags=re.MULTILINE ) # Only keep the top-level module lowerCamelCase_ =[imp.split('''.''' )[0] for imp in imports if not imp.startswith('''.''' )] # Unique-ify and test we got them all lowerCamelCase_ =list(set(__snake_case ) ) lowerCamelCase_ =[] for imp in imports: try: importlib.import_module(__snake_case ) except ImportError: missing_packages.append(__snake_case ) if len(__snake_case ) > 0: raise ImportError( '''This modeling file requires the following packages that were not found in your environment: ''' F'''{', '.join(__snake_case )}. Run `pip install {' '.join(__snake_case )}`''' ) return get_relative_imports(__snake_case ) def a_ ( __snake_case : Tuple , __snake_case : Tuple ) -> List[Any]: """simple docstring""" lowerCamelCase_ =module_path.replace(os.path.sep , '''.''' ) lowerCamelCase_ =importlib.import_module(__snake_case ) if class_name is None: return find_pipeline_class(__snake_case ) return getattr(__snake_case , __snake_case ) def a_ ( __snake_case : Dict ) -> Any: """simple docstring""" from ..pipelines import DiffusionPipeline lowerCamelCase_ =dict(inspect.getmembers(__snake_case , inspect.isclass ) ) lowerCamelCase_ =None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , __snake_case ) and cls.__module__.split('''.''' )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( F'''Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:''' F''' {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in''' F''' {loaded_module}.''' ) lowerCamelCase_ =cls return pipeline_class def a_ ( __snake_case : Union[str, os.PathLike] , __snake_case : str , __snake_case : Optional[Union[str, os.PathLike]] = None , __snake_case : bool = False , __snake_case : bool = False , __snake_case : Optional[Dict[str, str]] = None , __snake_case : Optional[Union[bool, str]] = None , __snake_case : Optional[str] = None , __snake_case : bool = False , ) -> Optional[int]: """simple docstring""" lowerCamelCase_ =str(__snake_case ) lowerCamelCase_ =os.path.join(__snake_case , __snake_case ) if os.path.isfile(__snake_case ): lowerCamelCase_ =module_file_or_url lowerCamelCase_ ='''local''' elif pretrained_model_name_or_path.count('''/''' ) == 0: lowerCamelCase_ =get_diffusers_versions() # cut ".dev0" lowerCamelCase_ ='''v''' + '''.'''.join(__version__.split('''.''' )[:3] ) # retrieve github version that matches if revision is None: lowerCamelCase_ =latest_version if latest_version[1:] in available_versions else '''main''' logger.info(F'''Defaulting to latest_version: {revision}.''' ) elif revision in available_versions: lowerCamelCase_ =F'''v{revision}''' elif revision == "main": lowerCamelCase_ =revision else: raise ValueError( F'''`custom_revision`: {revision} does not exist. Please make sure to choose one of''' F''' {', '.join(available_versions + ['main'] )}.''' ) # community pipeline on GitHub lowerCamelCase_ =COMMUNITY_PIPELINES_URL.format(revision=__snake_case , pipeline=__snake_case ) try: lowerCamelCase_ =cached_download( __snake_case , cache_dir=__snake_case , force_download=__snake_case , proxies=__snake_case , resume_download=__snake_case , local_files_only=__snake_case , use_auth_token=__snake_case , ) lowerCamelCase_ ='''git''' lowerCamelCase_ =pretrained_model_name_or_path + '''.py''' except EnvironmentError: logger.error(F'''Could not locate the {module_file} inside {pretrained_model_name_or_path}.''' ) raise else: try: # Load from URL or cache if already cached lowerCamelCase_ =hf_hub_download( __snake_case , __snake_case , cache_dir=__snake_case , force_download=__snake_case , proxies=__snake_case , resume_download=__snake_case , local_files_only=__snake_case , use_auth_token=__snake_case , ) lowerCamelCase_ =os.path.join('''local''' , '''--'''.join(pretrained_model_name_or_path.split('''/''' ) ) ) except EnvironmentError: logger.error(F'''Could not locate the {module_file} inside {pretrained_model_name_or_path}.''' ) raise # Check we have all the requirements in our environment lowerCamelCase_ =check_imports(__snake_case ) # Now we move the module inside our cached dynamic modules. lowerCamelCase_ =DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(__snake_case ) lowerCamelCase_ =Path(__snake_case ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(__snake_case , submodule_path / module_file ) for module_needed in modules_needed: lowerCamelCase_ =F'''{module_needed}.py''' shutil.copy(os.path.join(__snake_case , __snake_case ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(__snake_case , __snake_case ): lowerCamelCase_ =use_auth_token elif use_auth_token is True: lowerCamelCase_ =HfFolder.get_token() else: lowerCamelCase_ =None lowerCamelCase_ =model_info(__snake_case , revision=__snake_case , token=__snake_case ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. lowerCamelCase_ =submodule_path / commit_hash lowerCamelCase_ =full_submodule + os.path.sep + commit_hash create_dynamic_module(__snake_case ) if not (submodule_path / module_file).exists(): shutil.copy(__snake_case , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( __snake_case , F'''{module_needed}.py''' , cache_dir=__snake_case , force_download=__snake_case , resume_download=__snake_case , proxies=__snake_case , use_auth_token=__snake_case , revision=__snake_case , local_files_only=__snake_case , ) return os.path.join(__snake_case , __snake_case ) def a_ ( __snake_case : Union[str, os.PathLike] , __snake_case : str , __snake_case : Optional[str] = None , __snake_case : Optional[Union[str, os.PathLike]] = None , __snake_case : bool = False , __snake_case : bool = False , __snake_case : Optional[Dict[str, str]] = None , __snake_case : Optional[Union[bool, str]] = None , __snake_case : Optional[str] = None , __snake_case : bool = False , **__snake_case : Optional[int] , ) -> Optional[int]: """simple docstring""" lowerCamelCase_ =get_cached_module_file( __snake_case , __snake_case , cache_dir=__snake_case , force_download=__snake_case , resume_download=__snake_case , proxies=__snake_case , use_auth_token=__snake_case , revision=__snake_case , local_files_only=__snake_case , ) return get_class_in_module(__snake_case , final_module.replace('''.py''' , '''''' ) )
75
1
'''simple docstring''' def __UpperCAmelCase ( a_: int ): _UpperCAmelCase : Union[str, Any] = int(__a ) if n_element < 1: _UpperCAmelCase : Dict = ValueError("a should be a positive number" ) raise my_error _UpperCAmelCase : Dict = [1] _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Optional[int] = (0, 0, 0) _UpperCAmelCase : List[str] = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2, hamming_list[j] * 3, hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": __a = input('Enter the last number (nth term) of the Hamming Number Series: ') print('Formula of Hamming Number Series => 2^i * 3^j * 5^k') __a = hamming(int(n)) print('-----------------------------------------------------') print(f'The list with nth numbers is: {hamming_numbers}') print('-----------------------------------------------------')
371
'''simple docstring''' from math import factorial def __UpperCAmelCase ( a_: int = 100 ): return sum(map(a_, str(factorial(a_ ) ) ) ) if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
17
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { '''google/switch-base-8''': '''https://huggingface.co/google/switch-base-8/blob/main/config.json''', } class A ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' A = "switch_transformers" A = ["past_key_values"] A = {"hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__(self , _UpperCAmelCase=3_2_1_2_8 , _UpperCAmelCase=7_6_8 , _UpperCAmelCase=6_4 , _UpperCAmelCase=2_0_4_8 , _UpperCAmelCase=6_4 , _UpperCAmelCase=1_2 , _UpperCAmelCase=3 , _UpperCAmelCase=1_2 , _UpperCAmelCase=3 , _UpperCAmelCase=1_2 , _UpperCAmelCase=8 , _UpperCAmelCase=False , _UpperCAmelCase=0.01 , _UpperCAmelCase="float32" , _UpperCAmelCase=False , _UpperCAmelCase=3_2 , _UpperCAmelCase=1_2_8 , _UpperCAmelCase=0.1 , _UpperCAmelCase=1E-6 , _UpperCAmelCase=0.001 , _UpperCAmelCase=0.001 , _UpperCAmelCase=1.0 , _UpperCAmelCase="relu" , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=0 , _UpperCAmelCase=1 , **_UpperCAmelCase , ) -> int: __UpperCamelCase : List[Any] = vocab_size __UpperCamelCase : List[str] = d_model __UpperCamelCase : Any = d_kv __UpperCamelCase : Optional[int] = d_ff __UpperCamelCase : str = num_sparse_encoder_layers __UpperCamelCase : Dict = num_layers __UpperCamelCase : Union[str, Any] = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __UpperCamelCase : Dict = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: __UpperCamelCase : Optional[int] = self.num_layers // self.num_sparse_encoder_layers else: __UpperCamelCase : Optional[Any] = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: __UpperCamelCase : Union[str, Any] = self.num_decoder_layers // self.num_sparse_decoder_layers else: __UpperCamelCase : Tuple = self.num_decoder_layers # HACK: this will create 0 sparse layers __UpperCamelCase : int = num_heads __UpperCamelCase : Any = num_experts __UpperCamelCase : List[str] = expert_capacity __UpperCamelCase : List[Any] = router_bias __UpperCamelCase : int = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f"`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}" ) __UpperCamelCase : Optional[Any] = router_dtype __UpperCamelCase : Optional[int] = router_ignore_padding_tokens __UpperCamelCase : Union[str, Any] = relative_attention_num_buckets __UpperCamelCase : List[Any] = relative_attention_max_distance __UpperCamelCase : Optional[int] = dropout_rate __UpperCamelCase : str = layer_norm_epsilon __UpperCamelCase : List[Any] = initializer_factor __UpperCamelCase : Dict = feed_forward_proj __UpperCamelCase : List[Any] = use_cache __UpperCamelCase : Optional[Any] = add_router_probs __UpperCamelCase : Union[str, Any] = router_z_loss_coef __UpperCamelCase : Dict = router_aux_loss_coef __UpperCamelCase : Dict = self.feed_forward_proj.split("-" ) __UpperCamelCase : Union[str, Any] = act_info[-1] __UpperCamelCase : List[str] = act_info[0] == 'gated' if len(_a ) > 1 and act_info[0] != "gated" or len(_a ) > 2: raise ValueError( f"`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer." "Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. " "\'gated-gelu\' or \'relu\'" ) # for backwards compatibility if feed_forward_proj == "gated-gelu": __UpperCamelCase : int = 'gelu_new' super().__init__( pad_token_id=_a , eos_token_id=_a , is_encoder_decoder=_a , **_a , )
298
'''simple docstring''' import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def a_ ( _lowerCAmelCase ,_lowerCAmelCase ) -> np.array: __lowerCamelCase : Any = F'{sampling_rate}' __lowerCamelCase : List[str] = '1' __lowerCamelCase : int = 'f32le' __lowerCamelCase : Dict = [ 'ffmpeg', '-i', 'pipe:0', '-ac', ac, '-ar', ar, '-f', format_for_conversion, '-hide_banner', '-loglevel', 'quiet', 'pipe:1', ] try: with subprocess.Popen(_lowerCAmelCase ,stdin=subprocess.PIPE ,stdout=subprocess.PIPE ) as ffmpeg_process: __lowerCamelCase : Tuple = ffmpeg_process.communicate(_lowerCAmelCase ) except FileNotFoundError as error: raise ValueError('ffmpeg was not found but is required to load audio files from filename' ) from error __lowerCamelCase : Any = output_stream[0] __lowerCamelCase : Union[str, Any] = np.frombuffer(_lowerCAmelCase ,np.floataa ) if audio.shape[0] == 0: raise ValueError('Malformed soundfile' ) return audio def a_ ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase = "f32le" ,) -> Dict: __lowerCamelCase : Optional[Any] = F'{sampling_rate}' __lowerCamelCase : Optional[int] = '1' if format_for_conversion == "s16le": __lowerCamelCase : List[Any] = 2 elif format_for_conversion == "f32le": __lowerCamelCase : Tuple = 4 else: raise ValueError(F'Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`' ) __lowerCamelCase : Any = platform.system() if system == "Linux": __lowerCamelCase : Tuple = 'alsa' __lowerCamelCase : Optional[Any] = 'default' elif system == "Darwin": __lowerCamelCase : Union[str, Any] = 'avfoundation' __lowerCamelCase : Tuple = ':0' elif system == "Windows": __lowerCamelCase : List[str] = 'dshow' __lowerCamelCase : Optional[Any] = 'default' __lowerCamelCase : Optional[int] = [ 'ffmpeg', '-f', format_, '-i', input_, '-ac', ac, '-ar', ar, '-f', format_for_conversion, '-fflags', 'nobuffer', '-hide_banner', '-loglevel', 'quiet', 'pipe:1', ] __lowerCamelCase : List[str] = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample __lowerCamelCase : int = _ffmpeg_stream(_lowerCAmelCase ,_lowerCAmelCase ) for item in iterator: yield item def a_ ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = "f32le" ,) -> List[str]: if stream_chunk_s is not None: __lowerCamelCase : int = stream_chunk_s else: __lowerCamelCase : List[Any] = chunk_length_s __lowerCamelCase : Dict = ffmpeg_microphone(_lowerCAmelCase ,_lowerCAmelCase ,format_for_conversion=_lowerCAmelCase ) if format_for_conversion == "s16le": __lowerCamelCase : List[str] = np.intaa __lowerCamelCase : Union[str, Any] = 2 elif format_for_conversion == "f32le": __lowerCamelCase : Union[str, Any] = np.floataa __lowerCamelCase : Optional[Any] = 4 else: raise ValueError(F'Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`' ) if stride_length_s is None: __lowerCamelCase : Any = chunk_length_s / 6 __lowerCamelCase : List[str] = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(_lowerCAmelCase ,(int, float) ): __lowerCamelCase : Tuple = [stride_length_s, stride_length_s] __lowerCamelCase : Union[str, Any] = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample __lowerCamelCase : Optional[Any] = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample __lowerCamelCase : Dict = datetime.datetime.now() __lowerCamelCase : Any = datetime.timedelta(seconds=_lowerCAmelCase ) for item in chunk_bytes_iter(_lowerCAmelCase ,_lowerCAmelCase ,stride=(stride_left, stride_right) ,stream=_lowerCAmelCase ): # Put everything back in numpy scale __lowerCamelCase : Optional[int] = np.frombuffer(item['raw'] ,dtype=_lowerCAmelCase ) __lowerCamelCase : Tuple = ( item['stride'][0] // size_of_sample, item['stride'][1] // size_of_sample, ) __lowerCamelCase : Optional[int] = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def a_ ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase = False ) -> str: __lowerCamelCase : Optional[int] = b'' __lowerCamelCase ,__lowerCamelCase : Any = stride if stride_left + stride_right >= chunk_len: raise ValueError( F'Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}' ) __lowerCamelCase : str = 0 for raw in iterator: acc += raw if stream and len(_lowerCAmelCase ) < chunk_len: __lowerCamelCase : Any = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(_lowerCAmelCase ) >= chunk_len: # We are flushing the accumulator __lowerCamelCase : Any = (_stride_left, stride_right) __lowerCamelCase : Optional[int] = {'raw': acc[:chunk_len], 'stride': stride} if stream: __lowerCamelCase : List[str] = False yield item __lowerCamelCase : Tuple = stride_left __lowerCamelCase : Union[str, Any] = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(_lowerCAmelCase ) > stride_left: __lowerCamelCase : Tuple = {'raw': acc, 'stride': (_stride_left, 0)} if stream: __lowerCamelCase : List[str] = False yield item def a_ ( _lowerCAmelCase ,_lowerCAmelCase ) -> Tuple: __lowerCamelCase : int = 2**24 # 16Mo try: with subprocess.Popen(_lowerCAmelCase ,stdout=subprocess.PIPE ,bufsize=_lowerCAmelCase ) as ffmpeg_process: while True: __lowerCamelCase : Union[str, Any] = ffmpeg_process.stdout.read(_lowerCAmelCase ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError('ffmpeg was not found but is required to stream audio files from filename' ) from error
208
0
import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def lowerCamelCase__ ( __lowerCamelCase : str ): '''simple docstring''' if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class __magic_name__ ( nn.Module ): def __init__( self , snake_case , snake_case) -> Dict: '''simple docstring''' super().__init__() _UpperCAmelCase : List[str] =module _UpperCAmelCase : Optional[int] =nn.Sequential( nn.Linear(module.in_features , _SCREAMING_SNAKE_CASE , bias=_SCREAMING_SNAKE_CASE) , nn.Linear(_SCREAMING_SNAKE_CASE , module.out_features , bias=_SCREAMING_SNAKE_CASE) , ) _UpperCAmelCase : Tuple =(2.0 / (5 * min(module.in_features , module.out_features))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=_SCREAMING_SNAKE_CASE) nn.init.zeros_(self.adapter[1].weight) self.adapter.to(module.weight.device) def lowerCAmelCase ( self , snake_case , *snake_case , **snake_case) -> Tuple: '''simple docstring''' return self.module(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) + self.adapter(_SCREAMING_SNAKE_CASE) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __magic_name__ ( unittest.TestCase ): UpperCAmelCase ='bigscience/bloom-1b7' # Constant values UpperCAmelCase =2.109659552692574 UpperCAmelCase ='Hello my name is' UpperCAmelCase =set() EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I" ) EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n" ) EXPECTED_OUTPUTS.add("Hello my name is John Doe, I am a student at the University" ) UpperCAmelCase =1_0 def lowerCAmelCase ( self) -> List[str]: '''simple docstring''' # Models and tokenizer _UpperCAmelCase : Tuple =AutoTokenizer.from_pretrained(self.model_name) class __magic_name__ ( _UpperCamelCase ): def lowerCAmelCase ( self) -> List[Any]: '''simple docstring''' super().setUp() # Models and tokenizer _UpperCAmelCase : Union[str, Any] =AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map='auto') _UpperCAmelCase : List[str] =AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='auto') def lowerCAmelCase ( self) -> List[str]: '''simple docstring''' del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCAmelCase : Tuple =self.model_abit.config self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'quantization_config')) _UpperCAmelCase : Union[str, Any] =config.to_dict() _UpperCAmelCase : Union[str, Any] =config.to_diff_dict() _UpperCAmelCase : Optional[Any] =config.to_json_string() def lowerCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' from bitsandbytes.nn import Paramsabit _UpperCAmelCase : Optional[Any] =self.model_fpaa.get_memory_footprint() _UpperCAmelCase : Tuple =self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE) _UpperCAmelCase : Optional[Any] =get_some_linear_layer(self.model_abit) self.assertTrue(linear.weight.__class__ == Paramsabit) def lowerCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(_SCREAMING_SNAKE_CASE , torch.nn.Linear): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta) def lowerCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCAmelCase : Tuple =self.tokenizer(self.input_text , return_tensors='pt') _UpperCAmelCase : int =self.model_abit.generate(input_ids=encoded_input['input_ids'].to(0) , max_new_tokens=1_0) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_SCREAMING_SNAKE_CASE) , self.EXPECTED_OUTPUTS) def lowerCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCAmelCase : List[Any] =BitsAndBytesConfig() _UpperCAmelCase : Dict =True _UpperCAmelCase : Any =AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=_SCREAMING_SNAKE_CASE , device_map='auto') _UpperCAmelCase : List[str] =self.tokenizer(self.input_text , return_tensors='pt') _UpperCAmelCase : Optional[Any] =model_abit_from_config.generate( input_ids=encoded_input['input_ids'].to(0) , max_new_tokens=1_0) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_SCREAMING_SNAKE_CASE) , self.EXPECTED_OUTPUTS) def lowerCAmelCase ( self) -> Tuple: '''simple docstring''' with self.assertRaises(_SCREAMING_SNAKE_CASE), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(_SCREAMING_SNAKE_CASE) def lowerCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCAmelCase : Optional[Any] =BitsAndBytesConfig() with self.assertRaises(_SCREAMING_SNAKE_CASE): _UpperCAmelCase : int =AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=_SCREAMING_SNAKE_CASE , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='auto' , bnb_abit_quant_type='nf4' , ) def lowerCAmelCase ( self) -> Dict: '''simple docstring''' with self.assertRaises(_SCREAMING_SNAKE_CASE): # Tries with `str` self.model_abit.to('cpu') with self.assertRaises(_SCREAMING_SNAKE_CASE): # Tries with a `dtype`` self.model_abit.to(torch.floataa) with self.assertRaises(_SCREAMING_SNAKE_CASE): # Tries with a `device` self.model_abit.to(torch.device('cuda:0')) with self.assertRaises(_SCREAMING_SNAKE_CASE): # Tries with a `device` self.model_abit.float() with self.assertRaises(_SCREAMING_SNAKE_CASE): # Tries with a `device` self.model_abit.half() # Test if we did not break anything _UpperCAmelCase : Optional[int] =self.tokenizer(self.input_text , return_tensors='pt') _UpperCAmelCase : List[str] =self.model_fpaa.to(torch.floataa) _UpperCAmelCase : str =self.model_fpaa.generate(input_ids=encoded_input['input_ids'].to(0) , max_new_tokens=1_0) # Check this does not throw an error _UpperCAmelCase : str =self.model_fpaa.to('cpu') # Check this does not throw an error _UpperCAmelCase : Tuple =self.model_fpaa.half() # Check this does not throw an error _UpperCAmelCase : Optional[Any] =self.model_fpaa.float() def lowerCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCAmelCase : Optional[Any] =AutoModelForSeqaSeqLM.from_pretrained('t5-small' , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='auto') self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __magic_name__ ( unittest.TestCase ): @classmethod def lowerCAmelCase ( cls) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase : Dict ='t5-small' _UpperCAmelCase : Dict ='google/flan-t5-small' # flan-t5 uses dense-act instead of dense-relu-dense _UpperCAmelCase : List[Any] =AutoTokenizer.from_pretrained(cls.model_name) _UpperCAmelCase : Tuple ='Translate in German: Hello, my dog is cute' def lowerCAmelCase ( self) -> Any: '''simple docstring''' gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self) -> Tuple: '''simple docstring''' from transformers import TaForConditionalGeneration _UpperCAmelCase : Any =TaForConditionalGeneration._keep_in_fpaa_modules _UpperCAmelCase : int =None # test with `t5-small` _UpperCAmelCase : str =TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='auto') _UpperCAmelCase : Tuple =self.tokenizer(self.input_text , return_tensors='pt').to(0) _UpperCAmelCase : Optional[int] =model.generate(**_SCREAMING_SNAKE_CASE) # test with `flan-t5-small` _UpperCAmelCase : Optional[Any] =TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='auto') _UpperCAmelCase : int =self.tokenizer(self.input_text , return_tensors='pt').to(0) _UpperCAmelCase : Dict =model.generate(**_SCREAMING_SNAKE_CASE) _UpperCAmelCase : str =modules def lowerCAmelCase ( self) -> Dict: '''simple docstring''' import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` _UpperCAmelCase : Any =TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='auto') # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit)) _UpperCAmelCase : Dict =self.tokenizer(self.input_text , return_tensors='pt').to(0) _UpperCAmelCase : Union[str, Any] =model.generate(**_SCREAMING_SNAKE_CASE) # test with `flan-t5-small` _UpperCAmelCase : str =TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='auto') _UpperCAmelCase : Union[str, Any] =self.tokenizer(self.input_text , return_tensors='pt').to(0) _UpperCAmelCase : List[str] =model.generate(**_SCREAMING_SNAKE_CASE) class __magic_name__ ( _UpperCamelCase ): def lowerCAmelCase ( self) -> int: '''simple docstring''' super().setUp() # model_name _UpperCAmelCase : str ='bigscience/bloom-560m' _UpperCAmelCase : List[str] ='t5-small' # Different types of model _UpperCAmelCase : Optional[int] =AutoModel.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='auto') # Sequence classification model _UpperCAmelCase : List[Any] =AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='auto') # CausalLM model _UpperCAmelCase : str =AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='auto') # Seq2seq model _UpperCAmelCase : str =AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='auto') def lowerCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self) -> List[str]: '''simple docstring''' from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter) class __magic_name__ ( _UpperCamelCase ): def lowerCAmelCase ( self) -> Tuple: '''simple docstring''' super().setUp() def lowerCAmelCase ( self) -> List[Any]: '''simple docstring''' del self.pipe gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase : Any =pipeline( 'text-generation' , model=self.model_name , model_kwargs={'device_map': 'auto', 'load_in_4bit': True, 'torch_dtype': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass _UpperCAmelCase : Tuple =self.pipe(self.input_text) self.assertIn(pipeline_output[0]['generated_text'] , self.EXPECTED_OUTPUTS) @require_torch_multi_gpu class __magic_name__ ( _UpperCamelCase ): def lowerCAmelCase ( self) -> List[str]: '''simple docstring''' super().setUp() def lowerCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCAmelCase : Tuple =AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='balanced') # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values()) , {0, 1}) # Check that inference pass works on the model _UpperCAmelCase : int =self.tokenizer(self.input_text , return_tensors='pt') # Second real batch _UpperCAmelCase : Optional[Any] =model_parallel.generate(input_ids=encoded_input['input_ids'].to(0) , max_new_tokens=1_0) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=_SCREAMING_SNAKE_CASE) , self.EXPECTED_OUTPUTS) class __magic_name__ ( _UpperCamelCase ): def lowerCAmelCase ( self) -> str: '''simple docstring''' _UpperCAmelCase : Tuple ='facebook/opt-350m' super().setUp() def lowerCAmelCase ( self) -> Optional[int]: '''simple docstring''' if version.parse(importlib.metadata.version('bitsandbytes')) < version.parse('0.37.0'): return # Step 1: freeze all parameters _UpperCAmelCase : int =AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE) self.assertEqual(set(model.hf_device_map.values()) , {torch.cuda.current_device()}) for param in model.parameters(): _UpperCAmelCase : Dict =False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability _UpperCAmelCase : Union[str, Any] =param.data.to(torch.floataa) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(_SCREAMING_SNAKE_CASE)): _UpperCAmelCase : Union[str, Any] =LoRALayer(module.q_proj , rank=1_6) _UpperCAmelCase : List[str] =LoRALayer(module.k_proj , rank=1_6) _UpperCAmelCase : Optional[Any] =LoRALayer(module.v_proj , rank=1_6) # Step 3: dummy batch _UpperCAmelCase : Dict =self.tokenizer('Test batch ' , return_tensors='pt').to(0) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): _UpperCAmelCase : Tuple =model.forward(**_SCREAMING_SNAKE_CASE) out.logits.norm().backward() for module in model.modules(): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE): self.assertTrue(module.adapter[1].weight.grad is not None) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0) elif isinstance(_SCREAMING_SNAKE_CASE , nn.Embedding): self.assertTrue(module.weight.grad is None) class __magic_name__ ( _UpperCamelCase ): UpperCAmelCase ='gpt2-xl' UpperCAmelCase =3.3191854854152187
368
'''simple docstring''' from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax lowercase =logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase ) class __magic_name__ ( lowerCAmelCase ): def __init__( self , **snake_case) -> Optional[int]: '''simple docstring''' super().__init__(**snake_case) requires_backends(self , 'vision') self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING) def __call__( self , snake_case , **snake_case) -> str: '''simple docstring''' return super().__call__(snake_case , **snake_case) def lowerCAmelCase ( self , **snake_case) -> int: '''simple docstring''' _UpperCAmelCase : str ={} if "candidate_labels" in kwargs: _UpperCAmelCase : Union[str, Any] =kwargs['candidate_labels'] if "hypothesis_template" in kwargs: _UpperCAmelCase : List[Any] =kwargs['hypothesis_template'] return preprocess_params, {}, {} def lowerCAmelCase ( self , snake_case , snake_case=None , snake_case="This is a photo of {}.") -> Any: '''simple docstring''' _UpperCAmelCase : Optional[Any] =load_image(snake_case) _UpperCAmelCase : Union[str, Any] =self.image_processor(images=[image] , return_tensors=self.framework) _UpperCAmelCase : Union[str, Any] =candidate_labels _UpperCAmelCase : List[Any] =[hypothesis_template.format(snake_case) for x in candidate_labels] _UpperCAmelCase : str =self.tokenizer(snake_case , return_tensors=self.framework , padding=snake_case) _UpperCAmelCase : Any =[text_inputs] return inputs def lowerCAmelCase ( self , snake_case) -> str: '''simple docstring''' _UpperCAmelCase : List[str] =model_inputs.pop('candidate_labels') _UpperCAmelCase : Tuple =model_inputs.pop('text_inputs') if isinstance(text_inputs[0] , snake_case): _UpperCAmelCase : Any =text_inputs[0] else: # Batching case. _UpperCAmelCase : str =text_inputs[0][0] _UpperCAmelCase : Any =self.model(**snake_case , **snake_case) _UpperCAmelCase : List[str] ={ 'candidate_labels': candidate_labels, 'logits': outputs.logits_per_image, } return model_outputs def lowerCAmelCase ( self , snake_case) -> Optional[int]: '''simple docstring''' _UpperCAmelCase : str =model_outputs.pop('candidate_labels') _UpperCAmelCase : Union[str, Any] =model_outputs['logits'][0] if self.framework == "pt": _UpperCAmelCase : Dict =logits.softmax(dim=-1).squeeze(-1) _UpperCAmelCase : Union[str, Any] =probs.tolist() if not isinstance(snake_case , snake_case): _UpperCAmelCase : Union[str, Any] =[scores] elif self.framework == "tf": _UpperCAmelCase : Dict =stable_softmax(snake_case , axis=-1) _UpperCAmelCase : str =probs.numpy().tolist() else: raise ValueError(f"Unsupported framework: {self.framework}") _UpperCAmelCase : List[str] =[ {'score': score, 'label': candidate_label} for score, candidate_label in sorted(zip(snake_case , snake_case) , key=lambda snake_case: -x[0]) ] return result
242
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A =logging.get_logger(__name__) A ={ 'bigcode/gpt_bigcode-santacoder': 'https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json', } class _a ( __snake_case ): __a : str = "gpt_bigcode" __a : str = ["past_key_values"] __a : Any = { "hidden_size": "n_embd", "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Optional[int] , lowercase : List[Any]=50_257 , lowercase : Optional[int]=1_024 , lowercase : Any=768 , lowercase : Tuple=12 , lowercase : Optional[int]=12 , lowercase : Tuple=None , lowercase : int="gelu_pytorch_tanh" , lowercase : Tuple=0.1 , lowercase : str=0.1 , lowercase : str=0.1 , lowercase : List[str]=1E-5 , lowercase : Any=0.02 , lowercase : Optional[Any]=True , lowercase : Dict=True , lowercase : List[Any]=50_256 , lowercase : Optional[int]=50_256 , lowercase : List[str]=True , lowercase : List[str]=True , lowercase : List[str]=True , **lowercase : Optional[Any] , ): '''simple docstring''' UpperCAmelCase = vocab_size UpperCAmelCase = n_positions UpperCAmelCase = n_embd UpperCAmelCase = n_layer UpperCAmelCase = n_head UpperCAmelCase = n_inner UpperCAmelCase = activation_function UpperCAmelCase = resid_pdrop UpperCAmelCase = embd_pdrop UpperCAmelCase = attn_pdrop UpperCAmelCase = layer_norm_epsilon UpperCAmelCase = initializer_range UpperCAmelCase = scale_attn_weights UpperCAmelCase = use_cache UpperCAmelCase = attention_softmax_in_fpaa UpperCAmelCase = scale_attention_softmax_in_fpaa UpperCAmelCase = multi_query UpperCAmelCase = bos_token_id UpperCAmelCase = eos_token_id super().__init__(bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ )
34
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} # See all LED models at https://huggingface.co/models?filter=LED UpperCamelCase_ = { '''vocab_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json''', }, '''merges_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json''', }, } UpperCamelCase_ = { '''allenai/led-base-16384''': 16384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def lowerCamelCase_ ( ): '''simple docstring''' UpperCAmelCase_ : int = ( list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) ) ) UpperCAmelCase_ : Dict = bs[:] UpperCAmelCase_ : Any = 0 for b in range(2**8 ): if b not in bs: bs.append(_a ) cs.append(2**8 + n ) n += 1 UpperCAmelCase_ : Any = [chr(_a ) for n in cs] return dict(zip(_a , _a ) ) def lowerCamelCase_ ( _a : List[str] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = set() UpperCAmelCase_ : List[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCAmelCase_ : Optional[int] = char return pairs class _snake_case ( __snake_case ): '''simple docstring''' A__ : str = VOCAB_FILES_NAMES A__ : List[str] = PRETRAINED_VOCAB_FILES_MAP A__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : Optional[int] = ["input_ids", "attention_mask"] def __init__( self: Union[str, Any] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Any ,lowerCamelCase_: Union[str, Any]="replace" ,lowerCamelCase_: Optional[Any]="<s>" ,lowerCamelCase_: List[Any]="</s>" ,lowerCamelCase_: List[str]="</s>" ,lowerCamelCase_: int="<s>" ,lowerCamelCase_: int="<unk>" ,lowerCamelCase_: str="<pad>" ,lowerCamelCase_: Optional[Any]="<mask>" ,lowerCamelCase_: List[str]=False ,**lowerCamelCase_: Tuple ,) -> Any: UpperCAmelCase_ : Union[str, Any] = AddedToken(lowerCamelCase_ ,lstrip=lowerCamelCase_ ,rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else bos_token UpperCAmelCase_ : int = AddedToken(lowerCamelCase_ ,lstrip=lowerCamelCase_ ,rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else eos_token UpperCAmelCase_ : List[str] = AddedToken(lowerCamelCase_ ,lstrip=lowerCamelCase_ ,rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else sep_token UpperCAmelCase_ : List[str] = AddedToken(lowerCamelCase_ ,lstrip=lowerCamelCase_ ,rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else cls_token UpperCAmelCase_ : Optional[Any] = AddedToken(lowerCamelCase_ ,lstrip=lowerCamelCase_ ,rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else unk_token UpperCAmelCase_ : List[str] = AddedToken(lowerCamelCase_ ,lstrip=lowerCamelCase_ ,rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase_ : str = AddedToken(lowerCamelCase_ ,lstrip=lowerCamelCase_ ,rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else mask_token super().__init__( errors=lowerCamelCase_ ,bos_token=lowerCamelCase_ ,eos_token=lowerCamelCase_ ,unk_token=lowerCamelCase_ ,sep_token=lowerCamelCase_ ,cls_token=lowerCamelCase_ ,pad_token=lowerCamelCase_ ,mask_token=lowerCamelCase_ ,add_prefix_space=lowerCamelCase_ ,**lowerCamelCase_ ,) with open(lowerCamelCase_ ,encoding="""utf-8""" ) as vocab_handle: UpperCAmelCase_ : Union[str, Any] = json.load(lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = {v: k for k, v in self.encoder.items()} UpperCAmelCase_ : Any = errors # how to handle errors in decoding UpperCAmelCase_ : int = bytes_to_unicode() UpperCAmelCase_ : Dict = {v: k for k, v in self.byte_encoder.items()} with open(lowerCamelCase_ ,encoding="""utf-8""" ) as merges_handle: UpperCAmelCase_ : Any = merges_handle.read().split("""\n""" )[1:-1] UpperCAmelCase_ : int = [tuple(merge.split() ) for merge in bpe_merges] UpperCAmelCase_ : Union[str, Any] = dict(zip(lowerCamelCase_ ,range(len(lowerCamelCase_ ) ) ) ) UpperCAmelCase_ : Tuple = {} UpperCAmelCase_ : Optional[int] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions UpperCAmelCase_ : int = re.compile(R"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def A__ ( self: List[str] ) -> List[str]: return len(self.encoder ) def A__ ( self: Any ) -> Union[str, Any]: return dict(self.encoder ,**self.added_tokens_encoder ) def A__ ( self: Tuple ,lowerCamelCase_: Dict ) -> Optional[Any]: if token in self.cache: return self.cache[token] UpperCAmelCase_ : Union[str, Any] = tuple(lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = get_pairs(lowerCamelCase_ ) if not pairs: return token while True: UpperCAmelCase_ : Union[str, Any] = min(lowerCamelCase_ ,key=lambda lowerCamelCase_ : self.bpe_ranks.get(lowerCamelCase_ ,float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break UpperCAmelCase_ , UpperCAmelCase_ : Any = bigram UpperCAmelCase_ : Optional[Any] = [] UpperCAmelCase_ : List[str] = 0 while i < len(lowerCamelCase_ ): try: UpperCAmelCase_ : str = word.index(lowerCamelCase_ ,lowerCamelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCAmelCase_ : Union[str, Any] = j if word[i] == first and i < len(lowerCamelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCAmelCase_ : List[str] = tuple(lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = new_word if len(lowerCamelCase_ ) == 1: break else: UpperCAmelCase_ : List[str] = get_pairs(lowerCamelCase_ ) UpperCAmelCase_ : int = """ """.join(lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = word return word def A__ ( self: Union[str, Any] ,lowerCamelCase_: Tuple ) -> List[str]: UpperCAmelCase_ : str = [] for token in re.findall(self.pat ,lowerCamelCase_ ): UpperCAmelCase_ : List[Any] = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCamelCase_ ).split(""" """ ) ) return bpe_tokens def A__ ( self: List[Any] ,lowerCamelCase_: Optional[Any] ) -> Optional[int]: return self.encoder.get(lowerCamelCase_ ,self.encoder.get(self.unk_token ) ) def A__ ( self: List[str] ,lowerCamelCase_: str ) -> Optional[Any]: return self.decoder.get(lowerCamelCase_ ) def A__ ( self: List[str] ,lowerCamelCase_: List[str] ) -> List[Any]: UpperCAmelCase_ : str = """""".join(lowerCamelCase_ ) UpperCAmelCase_ : int = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" ,errors=self.errors ) return text def A__ ( self: Optional[Any] ,lowerCamelCase_: str ,lowerCamelCase_: Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(lowerCamelCase_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase_ : List[Any] = os.path.join( lowerCamelCase_ ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCAmelCase_ : List[str] = os.path.join( lowerCamelCase_ ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(lowerCamelCase_ ,"""w""" ,encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=lowerCamelCase_ ,ensure_ascii=lowerCamelCase_ ) + """\n""" ) UpperCAmelCase_ : str = 0 with open(lowerCamelCase_ ,"""w""" ,encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda lowerCamelCase_ : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' """ Please check that the tokenizer is not corrupted!""" ) UpperCAmelCase_ : Tuple = token_index writer.write(""" """.join(lowerCamelCase_ ) + """\n""" ) index += 1 return vocab_file, merge_file def A__ ( self: str ,lowerCamelCase_: List[int] ,lowerCamelCase_: Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase_ : int = [self.cls_token_id] UpperCAmelCase_ : Optional[int] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A__ ( self: Union[str, Any] ,lowerCamelCase_: List[int] ,lowerCamelCase_: Optional[List[int]] = None ,lowerCamelCase_: bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ ,token_ids_a=lowerCamelCase_ ,already_has_special_tokens=lowerCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase_ )) + [1] return [1] + ([0] * len(lowerCamelCase_ )) + [1, 1] + ([0] * len(lowerCamelCase_ )) + [1] def A__ ( self: str ,lowerCamelCase_: List[int] ,lowerCamelCase_: Optional[List[int]] = None ) -> List[int]: UpperCAmelCase_ : Optional[Any] = [self.sep_token_id] UpperCAmelCase_ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A__ ( self: Optional[Any] ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: str=False ,**lowerCamelCase_: List[str] ) -> Optional[int]: UpperCAmelCase_ : Optional[int] = kwargs.pop("""add_prefix_space""" ,self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCamelCase_ ) > 0 and not text[0].isspace()): UpperCAmelCase_ : Dict = """ """ + text return (text, kwargs) def A__ ( self: List[str] ,lowerCamelCase_: Union[Dict[str, EncodedInput], BatchEncoding] ,lowerCamelCase_: Optional[int] = None ,lowerCamelCase_: PaddingStrategy = PaddingStrategy.DO_NOT_PAD ,lowerCamelCase_: Optional[int] = None ,lowerCamelCase_: Optional[bool] = None ,) -> dict: UpperCAmelCase_ : Optional[int] = super()._pad( encoded_inputs=lowerCamelCase_ ,max_length=lowerCamelCase_ ,padding_strategy=lowerCamelCase_ ,pad_to_multiple_of=lowerCamelCase_ ,return_attention_mask=lowerCamelCase_ ,) # Load from model defaults if return_attention_mask is None: UpperCAmelCase_ : str = """attention_mask""" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: UpperCAmelCase_ : str = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. UpperCAmelCase_ : List[Any] = len(encoded_inputs["""global_attention_mask"""] ) != len(lowerCamelCase_ ) if needs_to_be_padded: UpperCAmelCase_ : Dict = len(lowerCamelCase_ ) - len(encoded_inputs["""global_attention_mask"""] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` UpperCAmelCase_ : str = ( encoded_inputs["""global_attention_mask"""] + [-1] * difference ) elif self.padding_side == "left": UpperCAmelCase_ : List[str] = [-1] * difference + encoded_inputs[ """global_attention_mask""" ] else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return encoded_inputs
345
0
# Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() __lowerCAmelCase = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model __lowerCAmelCase = { # fairseq: '''wmt19-ru-en''': {'''length_penalty''': 1.1}, '''wmt19-en-ru''': {'''length_penalty''': 1.15}, '''wmt19-en-de''': {'''length_penalty''': 1.0}, '''wmt19-de-en''': {'''length_penalty''': 1.1}, # allenai: '''wmt16-en-de-dist-12-1''': {'''length_penalty''': 0.6}, '''wmt16-en-de-dist-6-1''': {'''length_penalty''': 0.6}, '''wmt16-en-de-12-1''': {'''length_penalty''': 0.8}, '''wmt19-de-en-6-6-base''': {'''length_penalty''': 0.6}, '''wmt19-de-en-6-6-big''': {'''length_penalty''': 0.6}, } # this remaps the different models to their organization names __lowerCAmelCase = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: __lowerCAmelCase = '''facebook''' for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: __lowerCAmelCase = '''allenai''' def snake_case_ ( snake_case ) -> Dict: # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} lowercase__: Optional[Any] = dict((re.sub(R'@@$' , '' , snake_case ), v) if k.endswith('@@' ) else (re.sub(R'$' , '</w>' , snake_case ), v) for k, v in d.items() ) lowercase__: Any = '<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[f'{k}</w>'] lowercase__: Any = d[k] # restore return da def snake_case_ ( snake_case , snake_case ) -> Optional[Any]: # prep assert os.path.exists(snake_case ) os.makedirs(snake_case , exist_ok=snake_case ) print(f'Writing results to {pytorch_dump_folder_path}' ) # handle various types of models lowercase__: Optional[Any] = basename(snake_case ) lowercase__: Union[str, Any] = dirname(snake_case ) lowercase__: Optional[int] = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel lowercase__: List[Any] = cls.hub_models() lowercase__: Union[str, Any] = {'bpe': 'fastbpe', 'tokenizer': 'moses'} lowercase__: Optional[Any] = '.' # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(f'using checkpoint {checkpoint_file}' ) lowercase__: str = hub_utils.from_pretrained( snake_case , snake_case , snake_case , archive_map=snake_case , **snake_case ) lowercase__: int = vars(chkpt['args']['model'] ) lowercase__: Optional[Any] = args['source_lang'] lowercase__: Dict = args['target_lang'] lowercase__: List[str] = dirname(snake_case ) lowercase__: Any = basename(snake_case ) # dicts lowercase__: int = os.path.join(snake_case , f'dict.{src_lang}.txt' ) lowercase__: str = os.path.join(snake_case , f'dict.{tgt_lang}.txt' ) lowercase__: List[str] = Dictionary.load(snake_case ) lowercase__: Optional[int] = rewrite_dict_keys(src_dict.indices ) lowercase__: Optional[int] = len(snake_case ) lowercase__: Union[str, Any] = os.path.join(snake_case , 'vocab-src.json' ) print(f'Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records' ) with open(snake_case , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(snake_case , ensure_ascii=snake_case , indent=snake_case ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab lowercase__: Optional[Any] = True for k in src_vocab.keys(): if not k.islower(): lowercase__: Tuple = False break lowercase__: List[Any] = Dictionary.load(snake_case ) lowercase__: Tuple = rewrite_dict_keys(tgt_dict.indices ) lowercase__: Dict = len(snake_case ) lowercase__: Optional[int] = os.path.join(snake_case , 'vocab-tgt.json' ) print(f'Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records' ) with open(snake_case , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(snake_case , ensure_ascii=snake_case , indent=snake_case ) ) # merges_file (bpecodes) lowercase__: Union[str, Any] = os.path.join(snake_case , VOCAB_FILES_NAMES['merges_file'] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" lowercase__: Tuple = os.path.join(snake_case , snake_case ) if os.path.exists(snake_case ): break with open(snake_case , encoding='utf-8' ) as fin: lowercase__: Optional[int] = fin.read() lowercase__: List[str] = re.sub(R' \d+$' , '' , snake_case , 0 , re.M ) # remove frequency number print(f'Generating {merges_file}' ) with open(snake_case , 'w' , encoding='utf-8' ) as fout: fout.write(snake_case ) # model config lowercase__: Any = os.path.join(snake_case , 'config.json' ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", f'need to extend tokenizer to support bpe={args["bpe"]}' assert args["tokenizer"] == "moses", f'need to extend tokenizer to support bpe={args["tokenizer"]}' lowercase__: Optional[Any] = { 'architectures': ['FSMTForConditionalGeneration'], 'model_type': 'fsmt', 'activation_dropout': args['activation_dropout'], 'activation_function': 'relu', 'attention_dropout': args['attention_dropout'], 'd_model': args['decoder_embed_dim'], 'dropout': args['dropout'], 'init_std': 0.0_2, 'max_position_embeddings': args['max_source_positions'], 'num_hidden_layers': args['encoder_layers'], 'src_vocab_size': src_vocab_size, 'tgt_vocab_size': tgt_vocab_size, 'langs': [src_lang, tgt_lang], 'encoder_attention_heads': args['encoder_attention_heads'], 'encoder_ffn_dim': args['encoder_ffn_embed_dim'], 'encoder_layerdrop': args['encoder_layerdrop'], 'encoder_layers': args['encoder_layers'], 'decoder_attention_heads': args['decoder_attention_heads'], 'decoder_ffn_dim': args['decoder_ffn_embed_dim'], 'decoder_layerdrop': args['decoder_layerdrop'], 'decoder_layers': args['decoder_layers'], 'bos_token_id': 0, 'pad_token_id': 1, 'eos_token_id': 2, 'is_encoder_decoder': True, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_all_embeddings'], } # good hparam defaults to start with lowercase__: Union[str, Any] = 5 lowercase__: List[Any] = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: lowercase__: Tuple = best_score_hparams[model_dir]['length_penalty'] else: lowercase__: Union[str, Any] = 1.0 print(f'Generating {fsmt_model_config_file}' ) with open(snake_case , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(snake_case , ensure_ascii=snake_case , indent=snake_case ) ) # tokenizer config lowercase__: Optional[int] = os.path.join(snake_case , snake_case ) lowercase__: Any = { 'langs': [src_lang, tgt_lang], 'model_max_length': 10_24, 'do_lower_case': do_lower_case, } print(f'Generating {fsmt_tokenizer_config_file}' ) with open(snake_case , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(snake_case , ensure_ascii=snake_case , indent=snake_case ) ) # model lowercase__: int = chkpt['models'][0] lowercase__: Optional[int] = model.state_dict() # rename keys to start with 'model.' lowercase__: List[str] = OrderedDict(('model.' + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys lowercase__: int = [ 'model.model', 'model.encoder.version', 'model.decoder.version', 'model.encoder_embed_tokens.weight', 'model.decoder_embed_tokens.weight', 'model.encoder.embed_positions._float_tensor', 'model.decoder.embed_positions._float_tensor', ] for k in ignore_keys: model_state_dict.pop(snake_case , snake_case ) lowercase__: Dict = FSMTConfig.from_pretrained(snake_case ) lowercase__: Union[str, Any] = FSMTForConditionalGeneration(snake_case ) # check that it loads ok model_new.load_state_dict(snake_case , strict=snake_case ) # save lowercase__: Tuple = os.path.join(snake_case , snake_case ) print(f'Generating {pytorch_weights_dump_path}' ) torch.save(snake_case , snake_case ) print('Conversion is done!' ) print('\nLast step is to upload the files to s3' ) print(f'cd {data_root}' ) print(f'transformers-cli upload {model_dir}' ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--fsmt_checkpoint_path''', default=None, type=str, required=True, help=( '''Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,''' ''' bpecodes, etc.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __lowerCAmelCase = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
368
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = '''▁''' __lowerCAmelCase = {'''vocab_file''': '''sentencepiece.bpe.model''', '''monolingual_vocab_file''': '''dict.txt'''} __lowerCAmelCase = { '''vocab_file''': { '''vinai/bartpho-syllable''': '''https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model''', }, '''monolingual_vocab_file''': { '''vinai/bartpho-syllable''': '''https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt''', }, } __lowerCAmelCase = {'''vinai/bartpho-syllable''': 10_24} class __a ( __UpperCamelCase ): __lowercase : int = VOCAB_FILES_NAMES __lowercase : str = PRETRAINED_VOCAB_FILES_MAP __lowercase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase : Optional[int] = ['input_ids', 'attention_mask'] def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<mask>" , lowerCAmelCase__ = None , **lowerCAmelCase__ , ) -> None: '''simple docstring''' # Mask token behave like a normal word, i.e. include the space before it lowercase__: List[str] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token lowercase__: Any = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase__ , ) lowercase__: Dict = vocab_file lowercase__: str = monolingual_vocab_file lowercase__: int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCAmelCase__ ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility lowercase__: List[Any] = {} lowercase__: Optional[int] = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(lowerCAmelCase__ ) not in self.fairseq_tokens_to_ids: lowercase__: str = cnt cnt += 1 with open(lowerCAmelCase__ , 'r' , encoding='utf-8' ) as f: for line in f.readlines(): lowercase__: Optional[Any] = line.strip().split()[0] lowercase__: Optional[Any] = len(self.fairseq_tokens_to_ids ) if str(lowerCAmelCase__ ) not in self.fairseq_tokens_to_ids: lowercase__: Optional[int] = len(self.fairseq_tokens_to_ids ) lowercase__: Optional[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) -> Optional[int]: '''simple docstring''' lowercase__: Tuple = self.__dict__.copy() lowercase__: Tuple = None lowercase__: Optional[Any] = self.sp_model.serialized_model_proto() return state def __setstate__( self , lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' lowercase__: Union[str, Any] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): lowercase__: Union[str, Any] = {} lowercase__: List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase__: Optional[int] = [self.cls_token_id] lowercase__: Union[str, Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] + ([0] * len(lowerCAmelCase__ )) + [1] def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: '''simple docstring''' lowercase__: Dict = [self.sep_token_id] lowercase__: Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' return len(self.fairseq_ids_to_tokens ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase__: Union[str, Any] = {self.convert_ids_to_tokens(lowerCAmelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> List[str]: '''simple docstring''' return self.sp_model.encode(lowerCAmelCase__ , out_type=lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> List[Any]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' return self.fairseq_ids_to_tokens[index] def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' lowercase__: Optional[Any] = ''.join(lowerCAmelCase__ ).replace(lowerCAmelCase__ , ' ' ).strip() return out_string def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCAmelCase__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return lowercase__: int = os.path.join( lowerCAmelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) lowercase__: List[str] = os.path.join( lowerCAmelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['monolingual_vocab_file'] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase__ , 'wb' ) as fi: lowercase__: Optional[Any] = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase__ ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( lowerCAmelCase__ ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , lowerCAmelCase__ ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(lowerCAmelCase__ , 'w' , encoding='utf-8' ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(F'{str(lowerCAmelCase__ )} \n' ) return out_vocab_file, out_monolingual_vocab_file
288
0
'''simple docstring''' def _A ( snake_case ) -> int: _lowercase : str = len(snake_case ) _lowercase : Optional[int] = len(matrix[0] ) _lowercase : Any = min(snake_case , snake_case ) for row in range(snake_case ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , snake_case ): _lowercase : Optional[Any] = matrix[col][row] / matrix[row][row] for i in range(snake_case , snake_case ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows _lowercase : int = True for i in range(row + 1 , snake_case ): if matrix[i][row] != 0: _lowercase , _lowercase : Union[str, Any] = matrix[i], matrix[row] _lowercase : Union[str, Any] = False break if reduce: rank -= 1 for i in range(snake_case ): _lowercase : Tuple = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
250
'''simple docstring''' class a__ : def __init__( self , _UpperCamelCase ): """simple docstring""" _lowercase : Tuple = n _lowercase : Any = [None] * self.n _lowercase : Tuple = 0 # index of the first element _lowercase : Union[str, Any] = 0 _lowercase : str = 0 def __len__( self ): """simple docstring""" return self.size def _lowerCamelCase ( self ): """simple docstring""" return self.size == 0 def _lowerCamelCase ( self ): """simple docstring""" return False if self.is_empty() else self.array[self.front] def _lowerCamelCase ( self , _UpperCamelCase ): """simple docstring""" if self.size >= self.n: raise Exception("QUEUE IS FULL" ) _lowercase : Optional[int] = data _lowercase : Dict = (self.rear + 1) % self.n self.size += 1 return self def _lowerCamelCase ( self ): """simple docstring""" if self.size == 0: raise Exception("UNDERFLOW" ) _lowercase : Optional[Any] = self.array[self.front] _lowercase : List[Any] = None _lowercase : int = (self.front + 1) % self.n self.size -= 1 return temp
250
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class A_ ( metaclass=_snake_case ): '''simple docstring''' UpperCAmelCase_ : Dict = ["""torch""", """scipy"""] def __init__( self : Any , *lowercase_ : Optional[int] , **lowercase_ : Any ) -> str: requires_backends(self , ['torch', 'scipy'] ) @classmethod def UpperCAmelCase_ ( cls : Optional[int] , *lowercase_ : int , **lowercase_ : Optional[int] ) -> Any: requires_backends(cls , ['torch', 'scipy'] ) @classmethod def UpperCAmelCase_ ( cls : Any , *lowercase_ : List[str] , **lowercase_ : Tuple ) -> List[Any]: requires_backends(cls , ['torch', 'scipy'] )
280
'''simple docstring''' import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument lowercase__ = { "/attention/": "/0/SelfAttention/", "/self_attention/": "/0/SelfAttention/", "/encoder_decoder_attention/": "/1/EncDecAttention/", "value": "v", "query": "q", "key": "k", "out": "o", "pre_self_attention_layer_norm": "0/layer_norm", "pre_cross_attention_layer_norm": "1/layer_norm", "pre_attention_layer_norm": "0/layer_norm", # previously 1, but seems wrong "token_embedder": "shared", "encoder_norm": "final_layer_norm", "decoder_norm": "final_layer_norm", "relpos_bias/rel_embedding": "block/0/layer/0/SelfAttention/relative_attention_bias/weight", "router/router_weights/w/": "router/classifier/", "roer/roer_weights/w/": "router/classifier/", "logits_dense": "lm_head", } def UpperCamelCase( UpperCAmelCase_ ): # 1. in HF T5, we have block.{x}.layer.{y}. which corresponds to layer.{x} in # the original model UpperCAmelCase : List[Any] = list(s_dict.keys() ) for key in keys: UpperCAmelCase : Union[str, Any] = R'.*/layers_(\d+)' UpperCAmelCase : List[str] = key if re.match(UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Union[str, Any] = re.sub(R'layers_(\d+)' , R'block/\1/layer' , UpperCAmelCase_ ) UpperCAmelCase : str = R'(encoder|decoder)\/' if re.match(UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Tuple = re.match(UpperCAmelCase_ , UpperCAmelCase_ ).groups() if groups[0] == "encoder": UpperCAmelCase : Union[str, Any] = re.sub(R'/mlp/' , R'/1/mlp/' , UpperCAmelCase_ ) UpperCAmelCase : List[Any] = re.sub(R'/pre_mlp_layer_norm/' , R'/1/layer_norm/' , UpperCAmelCase_ ) elif groups[0] == "decoder": UpperCAmelCase : Tuple = re.sub(R'/mlp/' , R'/2/mlp/' , UpperCAmelCase_ ) UpperCAmelCase : Union[str, Any] = re.sub(R'/pre_mlp_layer_norm/' , R'/2/layer_norm/' , UpperCAmelCase_ ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: UpperCAmelCase : List[str] = new_key.replace(UpperCAmelCase_ , UpperCAmelCase_ ) print(F"""{key} -> {new_key}""" ) UpperCAmelCase : List[Any] = s_dict.pop(UpperCAmelCase_ ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: UpperCAmelCase : Optional[int] = s_dict[ 'encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight' ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: UpperCAmelCase : Optional[int] = s_dict[ 'decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight' ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: UpperCAmelCase : List[str] = s_dict[key].shape[0] UpperCAmelCase : List[Any] = s_dict[key] for idx in range(UpperCAmelCase_ ): UpperCAmelCase : Union[str, Any] = expert_weihts[idx] print(F"""{key} -> {key.replace("expert/" , "nested fstring" )}""" ) s_dict.pop(UpperCAmelCase_ ) return s_dict lowercase__ = { "NUM_ENCODER_LAYERS": "num_layers", "NUM_DECODER_LAYERS": "num_decoder_layers", "NUM_HEADS": "num_heads", "HEAD_DIM": "d_kv", "EMBED_DIM": "d_model", "MLP_DIM": "d_ff", "NUM_SELECTED_EXPERTS": "num_selected_experts", "NUM_ENCODER_SPARSE_LAYERS": "num_sparse_encoder_layers", "NUM_DECODER_SPARSE_LAYERS": "num_sparse_decoder_layers", "dense.MlpBlock.activations": "feed_forward_proj", } def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): # Convert a google style config to the hugging face fromat import regex as re with open(UpperCAmelCase_ , 'r' ) as f: UpperCAmelCase : Union[str, Any] = f.read() UpperCAmelCase : Union[str, Any] = re.findall(R'(.*) = ([0-9.]*)' , UpperCAmelCase_ ) UpperCAmelCase : str = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": UpperCAmelCase : Dict = float(UpperCAmelCase_ ) if '.' in value else int(UpperCAmelCase_ ) UpperCAmelCase : str = re.findall(R'(.*activations) = \(\'(.*)\',\)' , UpperCAmelCase_ )[0] UpperCAmelCase : Union[str, Any] = str(activation[1] ) UpperCAmelCase : Optional[int] = num_experts UpperCAmelCase : List[str] = SwitchTransformersConfig(**UpperCAmelCase_ ) return config def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=None , UpperCAmelCase_="./" , UpperCAmelCase_=8 ): # Initialise PyTorch model print(F"""Loading flax weights from : {flax_checkpoint_path}""" ) UpperCAmelCase : List[Any] = checkpoints.load_tax_checkpoint(UpperCAmelCase_ ) if gin_file is not None: UpperCAmelCase : List[Any] = convert_gin_to_config(UpperCAmelCase_ , UpperCAmelCase_ ) else: UpperCAmelCase : str = SwitchTransformersConfig.from_pretrained(UpperCAmelCase_ ) UpperCAmelCase : str = SwitchTransformersForConditionalGeneration(UpperCAmelCase_ ) UpperCAmelCase : str = flax_params['target'] UpperCAmelCase : Union[str, Any] = flatten_dict(UpperCAmelCase_ , sep='/' ) UpperCAmelCase : Tuple = rename_keys(UpperCAmelCase_ ) UpperCAmelCase : Optional[int] = unflatten_dict(UpperCAmelCase_ , sep='/' ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(UpperCAmelCase_ , UpperCAmelCase_ ) print(F"""Save PyTorch model to {pytorch_dump_path}""" ) pt_model.save_pretrained(UpperCAmelCase_ ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--switch_t5x_checkpoint_path", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the" " model architecture. If not provided, a `gin_file` has to be provided." ), ) parser.add_argument( "--gin_file", default=None, type=str, required=False, help="Path to the gin config file. If not provided, a `config_file` has to be passed ", ) parser.add_argument( "--config_name", default=None, type=str, required=False, help="Config name of SwitchTransformers model." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output pytorch model." ) parser.add_argument("--num_experts", default=8, type=int, required=False, help="Number of experts") lowercase__ = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
280
1
def lowerCAmelCase__ ( ) -> Any: '''simple docstring''' for n in range(1 , 1_0_0_0_0_0_0 ): yield n * (n + 1) // 2 def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Tuple ) -> Any: '''simple docstring''' A__ = 1 A__ = 2 while i * i <= n: A__ = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def lowerCAmelCase__ ( ) -> Dict: '''simple docstring''' return next(i for i in triangle_number_generator() if count_divisors(SCREAMING_SNAKE_CASE_ ) > 5_0_0 ) if __name__ == "__main__": print(solution())
68
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer a__: Optional[int] = logging.get_logger(__name__) a__: int = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} a__: Optional[Any] = { 'vocab_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/vocab.txt', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/vocab.txt', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt' ), 'bert-base-multilingual-cased': 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt', 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt' ), 'bert-base-german-dbmdz-cased': 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt', 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json' ), 'bert-base-multilingual-cased': ( 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json' ), 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-cased': ( 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json' ), }, } a__: List[str] = { 'bert-base-uncased': 512, 'bert-large-uncased': 512, 'bert-base-cased': 512, 'bert-large-cased': 512, 'bert-base-multilingual-uncased': 512, 'bert-base-multilingual-cased': 512, 'bert-base-chinese': 512, 'bert-base-german-cased': 512, 'bert-large-uncased-whole-word-masking': 512, 'bert-large-cased-whole-word-masking': 512, 'bert-large-uncased-whole-word-masking-finetuned-squad': 512, 'bert-large-cased-whole-word-masking-finetuned-squad': 512, 'bert-base-cased-finetuned-mrpc': 512, 'bert-base-german-dbmdz-cased': 512, 'bert-base-german-dbmdz-uncased': 512, 'TurkuNLP/bert-base-finnish-cased-v1': 512, 'TurkuNLP/bert-base-finnish-uncased-v1': 512, 'wietsedv/bert-base-dutch-cased': 512, } a__: Optional[Any] = { 'bert-base-uncased': {'do_lower_case': True}, 'bert-large-uncased': {'do_lower_case': True}, 'bert-base-cased': {'do_lower_case': False}, 'bert-large-cased': {'do_lower_case': False}, 'bert-base-multilingual-uncased': {'do_lower_case': True}, 'bert-base-multilingual-cased': {'do_lower_case': False}, 'bert-base-chinese': {'do_lower_case': False}, 'bert-base-german-cased': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking-finetuned-squad': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking-finetuned-squad': {'do_lower_case': False}, 'bert-base-cased-finetuned-mrpc': {'do_lower_case': False}, 'bert-base-german-dbmdz-cased': {'do_lower_case': False}, 'bert-base-german-dbmdz-uncased': {'do_lower_case': True}, 'TurkuNLP/bert-base-finnish-cased-v1': {'do_lower_case': False}, 'TurkuNLP/bert-base-finnish-uncased-v1': {'do_lower_case': True}, 'wietsedv/bert-base-dutch-cased': {'do_lower_case': False}, } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_INIT_CONFIGURATION __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = BertTokenizer def __init__( self,__lowerCamelCase=None,__lowerCamelCase=None,__lowerCamelCase=True,__lowerCamelCase="[UNK]",__lowerCamelCase="[SEP]",__lowerCamelCase="[PAD]",__lowerCamelCase="[CLS]",__lowerCamelCase="[MASK]",__lowerCamelCase=True,__lowerCamelCase=None,**__lowerCamelCase,): super().__init__( __lowerCamelCase,tokenizer_file=__lowerCamelCase,do_lower_case=__lowerCamelCase,unk_token=__lowerCamelCase,sep_token=__lowerCamelCase,pad_token=__lowerCamelCase,cls_token=__lowerCamelCase,mask_token=__lowerCamelCase,tokenize_chinese_chars=__lowerCamelCase,strip_accents=__lowerCamelCase,**__lowerCamelCase,) A__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''',__lowerCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''',__lowerCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''',__lowerCamelCase ) != tokenize_chinese_chars ): A__ = getattr(__lowerCamelCase,normalizer_state.pop('''type''' ) ) A__ = do_lower_case A__ = strip_accents A__ = tokenize_chinese_chars A__ = normalizer_class(**__lowerCamelCase ) A__ = do_lower_case def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase=None ): A__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase = None ): A__ = [self.sep_token_id] A__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase = None ): A__ = self._tokenizer.model.save(__lowerCamelCase,name=__lowerCamelCase ) return tuple(__lowerCamelCase )
193
0
from __future__ import annotations import string from itertools import cycle, product from pathlib import Path UpperCamelCase_ = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) UpperCamelCase_ = [ord(letter) for letter in string.ascii_lowercase] UpperCamelCase_ = {ord(char) for char in VALID_CHARS} UpperCamelCase_ = ["the", "be", "to", "of", "and", "in", "that", "have"] def A ( __UpperCAmelCase , __UpperCAmelCase ) -> str | None: '''simple docstring''' UpperCAmelCase_ = '''''' UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 for keychar, cipherchar in zip(cycle(__UpperCAmelCase ) , __UpperCAmelCase ): UpperCAmelCase_ = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(__UpperCAmelCase ) return decoded def A ( __UpperCAmelCase ) -> list[str]: '''simple docstring''' UpperCAmelCase_ = [] for key in product(__UpperCAmelCase , repeat=3 ): UpperCAmelCase_ = try_key(__UpperCAmelCase , __UpperCAmelCase ) if encoded is not None: possibles.append(__UpperCAmelCase ) return possibles def A ( __UpperCAmelCase , __UpperCAmelCase ) -> list[str]: '''simple docstring''' return [possible for possible in possibles if common_word in possible.lower()] def A ( __UpperCAmelCase = "p059_cipher.txt" ) -> int: '''simple docstring''' UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = Path(__UpperCAmelCase ).parent.joinpath(__UpperCAmelCase ).read_text(encoding='''utf-8''' ) UpperCAmelCase_ = [int(__UpperCAmelCase ) for number in data.strip().split(''',''' )] UpperCAmelCase_ = filter_valid_chars(__UpperCAmelCase ) for common_word in COMMON_WORDS: UpperCAmelCase_ = filter_common_word(__UpperCAmelCase , __UpperCAmelCase ) if len(__UpperCAmelCase ) == 1: break UpperCAmelCase_ = possibles[0] return sum(ord(__UpperCAmelCase ) for char in decoded_text ) if __name__ == "__main__": print(f"{solution() = }")
362
import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class a_ ( nn.Module ): def __init__( self :Optional[Any]) -> Union[str, Any]: super().__init__() UpperCAmelCase_ = nn.Linear(3 , 4) UpperCAmelCase_ = nn.BatchNormad(4) UpperCAmelCase_ = nn.Linear(4 , 5) def __a ( self :Dict , _lowercase :int) -> str: return self.lineara(self.batchnorm(self.lineara(_lowercase))) class a_ ( _snake_case ): def __a ( self :Tuple , _lowercase :Optional[int] , *_lowercase :Union[str, Any] , **_lowercase :Any) -> Optional[Any]: return (args[0] + 1,) + args[1:], kwargs class a_ ( _snake_case ): def __a ( self :Union[str, Any] , _lowercase :Dict , _lowercase :Tuple) -> int: return output + 1 class a_ ( unittest.TestCase ): def __a ( self :str) -> Optional[int]: UpperCAmelCase_ = ModelForTest() UpperCAmelCase_ = ModelHook() add_hook_to_module(_lowercase , _lowercase) self.assertEqual(test_model._hf_hook , _lowercase) self.assertTrue(hasattr(_lowercase , '''_old_forward''')) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , '''forward''') self.assertListEqual(list(inspect.signature(test_model.forward).parameters) , ['''x''']) remove_hook_from_module(_lowercase) self.assertFalse(hasattr(_lowercase , '''_hf_hook''')) self.assertFalse(hasattr(_lowercase , '''_old_forward''')) def __a ( self :Optional[Any]) -> Any: UpperCAmelCase_ = ModelForTest() UpperCAmelCase_ = ModelHook() add_hook_to_module(_lowercase , _lowercase) add_hook_to_module(_lowercase , _lowercase , append=_lowercase) self.assertEqual(isinstance(test_model._hf_hook , _lowercase) , _lowercase) self.assertEqual(len(test_model._hf_hook.hooks) , 2) self.assertTrue(hasattr(_lowercase , '''_old_forward''')) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , '''forward''') self.assertListEqual(list(inspect.signature(test_model.forward).parameters) , ['''x''']) remove_hook_from_module(_lowercase) self.assertFalse(hasattr(_lowercase , '''_hf_hook''')) self.assertFalse(hasattr(_lowercase , '''_old_forward''')) def __a ( self :Optional[int]) -> Optional[int]: UpperCAmelCase_ = ModelForTest() UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = test_model(x + 1) UpperCAmelCase_ = test_model(x + 2) UpperCAmelCase_ = PreForwardHook() add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) self.assertTrue(torch.allclose(_lowercase , _lowercase , atol=1E-5)) # Attaching a hook to a model when it already has one replaces, does not chain UpperCAmelCase_ = PreForwardHook() add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) self.assertTrue(torch.allclose(_lowercase , _lowercase , atol=1E-5)) # You need to use the sequential hook to chain two or more hooks UpperCAmelCase_ = SequentialHook(PreForwardHook() , PreForwardHook()) add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) assert torch.allclose(_lowercase , _lowercase , atol=1E-5) def __a ( self :List[str]) -> int: UpperCAmelCase_ = ModelForTest() UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = test_model(_lowercase) UpperCAmelCase_ = PostForwardHook() add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) self.assertTrue(torch.allclose(_lowercase , output + 1 , atol=1E-5)) # Attaching a hook to a model when it already has one replaces, does not chain UpperCAmelCase_ = PostForwardHook() add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) self.assertTrue(torch.allclose(_lowercase , output + 1 , atol=1E-5)) # You need to use the sequential hook to chain two or more hooks UpperCAmelCase_ = SequentialHook(PostForwardHook() , PostForwardHook()) add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) assert torch.allclose(_lowercase , output + 2 , atol=1E-5) def __a ( self :str) -> List[Any]: UpperCAmelCase_ = ModelForTest() UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = test_model(_lowercase) UpperCAmelCase_ = PostForwardHook() add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) self.assertTrue(torch.allclose(_lowercase , output + 1)) self.assertTrue(outputa.requires_grad) UpperCAmelCase_ = True UpperCAmelCase_ = test_model(_lowercase) self.assertFalse(outputa.requires_grad) @require_multi_gpu def __a ( self :Tuple) -> Optional[int]: UpperCAmelCase_ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0)) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0)) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1)) self.assertEqual(model.lineara.weight.device , torch.device(0)) self.assertEqual(model.batchnorm.weight.device , torch.device(0)) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0)) self.assertEqual(model.lineara.weight.device , torch.device(1)) # We can still make a forward pass. The input does not need to be on any particular device UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , torch.device(1)) # We can add a general hook to put back output on same device as input. add_hook_to_module(_lowercase , AlignDevicesHook(io_same_device=_lowercase)) UpperCAmelCase_ = torch.randn(2 , 3).to(0) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , torch.device(0)) def __a ( self :str) -> List[Any]: UpperCAmelCase_ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # This will move each submodule on different devices UpperCAmelCase_ = {'''execution_device''': 0 if torch.cuda.is_available() else '''cpu''', '''offload''': True} add_hook_to_module(model.lineara , AlignDevicesHook(**_lowercase)) add_hook_to_module(model.batchnorm , AlignDevicesHook(**_lowercase)) add_hook_to_module(model.lineara , AlignDevicesHook(**_lowercase)) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) # Buffers are not included in the offload by default, so are on the execution device UpperCAmelCase_ = torch.device(hook_kwargs['''execution_device''']) self.assertEqual(model.batchnorm.running_mean.device , _lowercase) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , _lowercase) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara) remove_hook_from_module(model.batchnorm) remove_hook_from_module(model.lineara) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # Now test with buffers included in the offload UpperCAmelCase_ = { '''execution_device''': 0 if torch.cuda.is_available() else '''cpu''', '''offload''': True, '''offload_buffers''': True, } add_hook_to_module(model.lineara , AlignDevicesHook(**_lowercase)) add_hook_to_module(model.batchnorm , AlignDevicesHook(**_lowercase)) add_hook_to_module(model.lineara , AlignDevicesHook(**_lowercase)) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''')) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , _lowercase) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara) remove_hook_from_module(model.batchnorm) remove_hook_from_module(model.lineara) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) def __a ( self :List[Any]) -> str: UpperCAmelCase_ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # This will move each submodule on different devices UpperCAmelCase_ = 0 if torch.cuda.is_available() else '''cpu''' attach_align_device_hook(_lowercase , execution_device=_lowercase , offload=_lowercase) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) # Buffers are not included in the offload by default, so are on the execution device UpperCAmelCase_ = torch.device(_lowercase) self.assertEqual(model.batchnorm.running_mean.device , _lowercase) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , _lowercase) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_lowercase) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # Now test with buffers included in the offload attach_align_device_hook(_lowercase , execution_device=_lowercase , offload=_lowercase , offload_buffers=_lowercase) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''')) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , _lowercase) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_lowercase) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) def __a ( self :Optional[Any]) -> int: UpperCAmelCase_ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # This will move each submodule on different devices UpperCAmelCase_ = 0 if torch.cuda.is_available() else '''cpu''' attach_align_device_hook( _lowercase , execution_device=_lowercase , offload=_lowercase , weights_map=model.state_dict()) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) # Buffers are not included in the offload by default, so are on the execution device UpperCAmelCase_ = torch.device(_lowercase) self.assertEqual(model.batchnorm.running_mean.device , _lowercase) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , _lowercase) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_lowercase) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # Now test with buffers included in the offload attach_align_device_hook( _lowercase , execution_device=_lowercase , offload=_lowercase , weights_map=model.state_dict() , offload_buffers=_lowercase , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''')) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , _lowercase) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_lowercase) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu'''))
344
0
from ...processing_utils import ProcessorMixin class _lowerCamelCase( _a ): lowercase_ : List[Any] = """WhisperFeatureExtractor""" lowercase_ : List[str] = """WhisperTokenizer""" def __init__( self, lowerCamelCase, lowerCamelCase) -> Dict: """simple docstring""" super().__init__(lowerCamelCase, lowerCamelCase) _lowercase : Dict = self.feature_extractor _lowercase : int = False def UpperCamelCase ( self, lowerCamelCase=None, lowerCamelCase=None, lowerCamelCase=True) -> List[str]: """simple docstring""" return self.tokenizer.get_decoder_prompt_ids(task=lowerCamelCase, language=lowerCamelCase, no_timestamps=lowerCamelCase) def __call__( self, *lowerCamelCase, **lowerCamelCase) -> Dict: """simple docstring""" if self._in_target_context_manager: return self.current_processor(*lowerCamelCase, **lowerCamelCase) _lowercase : Any = kwargs.pop('audio', lowerCamelCase) _lowercase : Union[str, Any] = kwargs.pop('sampling_rate', lowerCamelCase) _lowercase : List[str] = kwargs.pop('text', lowerCamelCase) if len(lowerCamelCase) > 0: _lowercase : int = args[0] _lowercase : Union[str, Any] = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.') if audio is not None: _lowercase : Dict = self.feature_extractor(lowerCamelCase, *lowerCamelCase, sampling_rate=lowerCamelCase, **lowerCamelCase) if text is not None: _lowercase : Dict = self.tokenizer(lowerCamelCase, **lowerCamelCase) if text is None: return inputs elif audio is None: return encodings else: _lowercase : Union[str, Any] = encodings['input_ids'] return inputs def UpperCamelCase ( self, *lowerCamelCase, **lowerCamelCase) -> Optional[int]: """simple docstring""" return self.tokenizer.batch_decode(*lowerCamelCase, **lowerCamelCase) def UpperCamelCase ( self, *lowerCamelCase, **lowerCamelCase) -> Tuple: """simple docstring""" return self.tokenizer.decode(*lowerCamelCase, **lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase="np") -> str: """simple docstring""" return self.tokenizer.get_prompt_ids(lowerCamelCase, return_tensors=lowerCamelCase)
21
import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class _lowerCamelCase( _a ): def __init__( self, lowerCamelCase, lowerCamelCase=13, lowerCamelCase=7, lowerCamelCase=True, lowerCamelCase=True, lowerCamelCase=False, lowerCamelCase=True, lowerCamelCase=99, lowerCamelCase=32, lowerCamelCase=5, lowerCamelCase=4, lowerCamelCase=64, lowerCamelCase="gelu", lowerCamelCase=0.1, lowerCamelCase=0.1, lowerCamelCase=5_12, lowerCamelCase=16, lowerCamelCase=2, lowerCamelCase=0.0_2, lowerCamelCase=3, lowerCamelCase=4, lowerCamelCase=None, lowerCamelCase=2, lowerCamelCase=2, lowerCamelCase=2, lowerCamelCase=2, lowerCamelCase=4, lowerCamelCase=1, ) -> Union[str, Any]: """simple docstring""" _lowercase : Dict = parent _lowercase : Optional[Any] = batch_size _lowercase : Any = seq_length _lowercase : Optional[Any] = is_training _lowercase : Optional[Any] = use_input_mask _lowercase : List[Any] = use_token_type_ids _lowercase : List[str] = use_labels _lowercase : str = vocab_size _lowercase : List[str] = hidden_size _lowercase : Dict = num_hidden_layers _lowercase : List[str] = num_attention_heads _lowercase : int = intermediate_size _lowercase : Union[str, Any] = hidden_act _lowercase : int = hidden_dropout_prob _lowercase : List[Any] = attention_probs_dropout_prob _lowercase : Dict = max_position_embeddings _lowercase : Union[str, Any] = type_vocab_size _lowercase : List[Any] = type_sequence_label_size _lowercase : Any = initializer_range _lowercase : List[str] = num_labels _lowercase : Any = num_choices _lowercase : Tuple = scope _lowercase : Optional[Any] = q_groups _lowercase : List[str] = k_groups _lowercase : Optional[int] = v_groups _lowercase : List[str] = post_attention_groups _lowercase : Union[str, Any] = intermediate_groups _lowercase : int = output_groups def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : int = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) _lowercase : Any = None if self.use_input_mask: _lowercase : Tuple = random_attention_mask([self.batch_size, self.seq_length]) _lowercase : Dict = None _lowercase : int = None _lowercase : List[Any] = None if self.use_labels: _lowercase : List[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size) _lowercase : int = ids_tensor([self.batch_size, self.seq_length], self.num_labels) _lowercase : Dict = ids_tensor([self.batch_size], self.num_choices) _lowercase : Optional[Any] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" return SqueezeBertConfig( embedding_size=self.hidden_size, vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, attention_probs_dropout_prob=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, q_groups=self.q_groups, k_groups=self.k_groups, v_groups=self.v_groups, post_attention_groups=self.post_attention_groups, intermediate_groups=self.intermediate_groups, output_groups=self.output_groups, ) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Union[str, Any]: """simple docstring""" _lowercase : List[str] = SqueezeBertModel(config=lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Dict = model(lowerCamelCase, lowerCamelCase) _lowercase : Any = model(lowerCamelCase) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> int: """simple docstring""" _lowercase : Dict = SqueezeBertForMaskedLM(config=lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Optional[Any] = model(lowerCamelCase, attention_mask=lowerCamelCase, labels=lowerCamelCase) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Union[str, Any]: """simple docstring""" _lowercase : Union[str, Any] = SqueezeBertForQuestionAnswering(config=lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : List[Any] = model( lowerCamelCase, attention_mask=lowerCamelCase, start_positions=lowerCamelCase, end_positions=lowerCamelCase) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> str: """simple docstring""" _lowercase : Optional[Any] = self.num_labels _lowercase : int = SqueezeBertForSequenceClassification(lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Any = model(lowerCamelCase, attention_mask=lowerCamelCase, labels=lowerCamelCase) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> List[Any]: """simple docstring""" _lowercase : Union[str, Any] = self.num_labels _lowercase : List[str] = SqueezeBertForTokenClassification(config=lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Union[str, Any] = model(lowerCamelCase, attention_mask=lowerCamelCase, labels=lowerCamelCase) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Dict: """simple docstring""" _lowercase : str = self.num_choices _lowercase : str = SqueezeBertForMultipleChoice(config=lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Dict = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() _lowercase : int = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() _lowercase : Optional[Any] = model( lowerCamelCase, attention_mask=lowerCamelCase, labels=lowerCamelCase, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : Optional[int] = self.prepare_config_and_inputs() ((_lowercase) , (_lowercase) , (_lowercase) , (_lowercase) , (_lowercase) , (_lowercase)) : Dict = config_and_inputs _lowercase : Tuple = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class _lowerCamelCase( _a, _a, unittest.TestCase ): lowercase_ : Union[str, Any] = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) lowercase_ : Optional[int] = ( { """feature-extraction""": SqueezeBertModel, """fill-mask""": SqueezeBertForMaskedLM, """question-answering""": SqueezeBertForQuestionAnswering, """text-classification""": SqueezeBertForSequenceClassification, """token-classification""": SqueezeBertForTokenClassification, """zero-shot""": SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) lowercase_ : Tuple = False lowercase_ : List[str] = True lowercase_ : int = False def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase : str = SqueezeBertModelTester(self) _lowercase : Dict = ConfigTester(self, config_class=lowerCamelCase, dim=37) def UpperCamelCase ( self) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*lowerCamelCase) def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*lowerCamelCase) def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*lowerCamelCase) def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*lowerCamelCase) def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*lowerCamelCase) def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*lowerCamelCase) @slow def UpperCamelCase ( self) -> Dict: """simple docstring""" for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : List[Any] = SqueezeBertModel.from_pretrained(lowerCamelCase) self.assertIsNotNone(lowerCamelCase) @require_sentencepiece @require_tokenizers @require_torch class _lowerCamelCase( unittest.TestCase ): @slow def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase : Union[str, Any] = SqueezeBertForSequenceClassification.from_pretrained('squeezebert/squeezebert-mnli') _lowercase : Optional[int] = torch.tensor([[1, 2_94_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 13, 15_88, 2]]) _lowercase : List[str] = model(lowerCamelCase)[0] _lowercase : Union[str, Any] = torch.Size((1, 3)) self.assertEqual(output.shape, lowerCamelCase) _lowercase : Tuple = torch.tensor([[0.6_4_0_1, -0.0_3_4_9, -0.6_0_4_1]]) self.assertTrue(torch.allclose(lowerCamelCase, lowerCamelCase, atol=1E-4))
21
1
def _snake_case( SCREAMING_SNAKE_CASE__ : int ) -> bool: '''simple docstring''' A__ = [int(_UpperCAmelCase ) for i in ip_va_address.split('.' ) if i.isdigit()] return len(_UpperCAmelCase ) == 4 and all(0 <= int(_UpperCAmelCase ) <= 254 for octet in octets ) if __name__ == "__main__": lowercase_ = input().strip() lowercase_ = """valid""" if is_ip_va_address_valid(ip) else """invalid""" print(f"""{ip} is a {valid_or_invalid} IP v4 address.""")
351
import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, UNetaDConditionModel, VideoToVideoSDPipeline, ) from diffusers.utils import floats_tensor, is_xformers_available, skip_mps from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class A ( _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase = VideoToVideoSDPipeline lowerCamelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({'video'} ) - {'image', 'width', 'height'} lowerCamelCase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'video'} ) - {'image'} lowerCamelCase = PipelineTesterMixin.required_optional_params - {'latents'} lowerCamelCase = False # No `output_type`. lowerCamelCase = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'return_dict', 'callback', 'callback_steps', ] ) def snake_case__ ( self : Tuple )-> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) A__ = UNetaDConditionModel( block_out_channels=(3_2, 6_4, 6_4, 6_4),layers_per_block=2,sample_size=3_2,in_channels=4,out_channels=4,down_block_types=('CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'DownBlock3D'),up_block_types=('UpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D'),cross_attention_dim=3_2,attention_head_dim=4,) A__ = DDIMScheduler( beta_start=0.00_085,beta_end=0.012,beta_schedule='scaled_linear',clip_sample=lowercase_,set_alpha_to_one=lowercase_,) torch.manual_seed(0 ) A__ = AutoencoderKL( block_out_channels=[3_2, 6_4],in_channels=3,out_channels=3,down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'],up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'],latent_channels=4,sample_size=1_2_8,) torch.manual_seed(0 ) A__ = CLIPTextConfig( bos_token_id=0,eos_token_id=2,hidden_size=3_2,intermediate_size=3_7,layer_norm_eps=1E-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=1_0_0_0,hidden_act='gelu',projection_dim=5_1_2,) A__ = CLIPTextModel(lowercase_ ) A__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) A__ = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, } return components def snake_case__ ( self : Optional[Any],lowercase_ : Optional[int],lowercase_ : List[Any]=0 )-> Any: '''simple docstring''' A__ = floats_tensor((1, 3, 3, 3_2, 3_2),rng=random.Random(lowercase_ ) ).to(lowercase_ ) if str(lowercase_ ).startswith('mps' ): A__ = torch.manual_seed(lowercase_ ) else: A__ = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) A__ = { 'prompt': 'A painting of a squirrel eating a burger', 'video': video, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'pt', } return inputs def snake_case__ ( self : List[Any] )-> List[Any]: '''simple docstring''' A__ = 'cpu' # ensure determinism for the device-dependent torch.Generator A__ = self.get_dummy_components() A__ = VideoToVideoSDPipeline(**lowercase_ ) A__ = sd_pipe.to(lowercase_ ) sd_pipe.set_progress_bar_config(disable=lowercase_ ) A__ = self.get_dummy_inputs(lowercase_ ) A__ = 'np' A__ = sd_pipe(**lowercase_ ).frames A__ = frames[0][-3:, -3:, -1] assert frames[0].shape == (3_2, 3_2, 3) A__ = np.array([1_0_6, 1_1_7, 1_1_3, 1_7_4, 1_3_7, 1_1_2, 1_4_8, 1_5_1, 1_3_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available(),reason='XFormers attention is only available with CUDA and `xformers` installed',) def snake_case__ ( self : Optional[Any] )-> int: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=lowercase_,expected_max_diff=5E-3 ) @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def snake_case__ ( self : Any )-> Optional[int]: '''simple docstring''' pass @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def snake_case__ ( self : int )-> int: '''simple docstring''' pass @unittest.skip(reason='`num_images_per_prompt` argument is not supported for this pipeline.' ) def snake_case__ ( self : List[Any] )-> List[str]: '''simple docstring''' pass def snake_case__ ( self : Optional[int] )-> Optional[Any]: '''simple docstring''' return super().test_progress_bar() @slow @skip_mps class A ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self : List[str] )-> Dict: '''simple docstring''' A__ = VideoToVideoSDPipeline.from_pretrained('cerspense/zeroscope_v2_XL',torch_dtype=torch.floataa ) pipe.enable_model_cpu_offload() # 10 frames A__ = torch.Generator(device='cpu' ).manual_seed(0 ) A__ = torch.randn((1, 1_0, 3, 1_0_2_4, 5_7_6),generator=lowercase_ ) A__ = video.to('cuda' ) A__ = 'Spiderman is surfing' A__ = pipe(lowercase_,video=lowercase_,generator=lowercase_,num_inference_steps=3,output_type='pt' ).frames A__ = np.array([-1.0_458_984, -1.1_279_297, -0.9_663_086, -0.91_503_906, -0.75_097_656] ) assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1E-2
282
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { '''tiiuae/falcon-40b''': '''https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json''', '''tiiuae/falcon-7b''': '''https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json''', } class lowerCamelCase ( snake_case_ ): '''simple docstring''' SCREAMING_SNAKE_CASE = '''falcon''' SCREAMING_SNAKE_CASE = ['''past_key_values'''] def __init__(self , _lowerCamelCase=65024 , _lowerCamelCase=4544 , _lowerCamelCase=32 , _lowerCamelCase=71 , _lowerCamelCase=1e-5 , _lowerCamelCase=0.02 , _lowerCamelCase=True , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=None , _lowerCamelCase=False , _lowerCamelCase=False , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase=11 , _lowerCamelCase=11 , **_lowerCamelCase , ): """simple docstring""" UpperCAmelCase__ : List[str] = vocab_size # Backward compatibility with n_embed kwarg UpperCAmelCase__ : List[str] = kwargs.pop("""n_embed""" , __snake_case ) UpperCAmelCase__ : Optional[int] = hidden_size if n_embed is None else n_embed UpperCAmelCase__ : List[Any] = num_hidden_layers UpperCAmelCase__ : int = num_attention_heads UpperCAmelCase__ : Optional[int] = layer_norm_epsilon UpperCAmelCase__ : Union[str, Any] = initializer_range UpperCAmelCase__ : List[Any] = use_cache UpperCAmelCase__ : Tuple = hidden_dropout UpperCAmelCase__ : int = attention_dropout UpperCAmelCase__ : Dict = bos_token_id UpperCAmelCase__ : Optional[int] = eos_token_id UpperCAmelCase__ : List[Any] = num_attention_heads if num_kv_heads is None else num_kv_heads UpperCAmelCase__ : List[Any] = alibi UpperCAmelCase__ : Any = new_decoder_architecture UpperCAmelCase__ : Any = multi_query # Ignored when new_decoder_architecture is True UpperCAmelCase__ : Optional[int] = parallel_attn UpperCAmelCase__ : Tuple = bias super().__init__(bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) @property def _a (self ): """simple docstring""" return self.hidden_size // self.num_attention_heads @property def _a (self ): """simple docstring""" return not self.alibi
171
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class UpperCAmelCase ( datasets.BuilderConfig ): _lowercase: Optional[datasets.Features] = None class UpperCAmelCase ( datasets.ArrowBasedBuilder ): _lowercase: Tuple = PandasConfig def lowercase__ ( self : Optional[Any] ) -> str: return datasets.DatasetInfo(features=self.config.features ) def lowercase__ ( self : List[str] , __snake_case : Dict ) -> int: if not self.config.data_files: raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}" ) _lowerCAmelCase = dl_manager.download_and_extract(self.config.data_files ) if isinstance(__snake_case , (str, list, tuple) ): _lowerCAmelCase = data_files if isinstance(__snake_case , __snake_case ): _lowerCAmelCase = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase = [dl_manager.iter_files(__snake_case ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] _lowerCAmelCase = [] for split_name, files in data_files.items(): if isinstance(__snake_case , __snake_case ): _lowerCAmelCase = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase = [dl_manager.iter_files(__snake_case ) for file in files] splits.append(datasets.SplitGenerator(name=__snake_case , gen_kwargs={"""files""": files} ) ) return splits def lowercase__ ( self : List[Any] , __snake_case : pa.Table ) -> pa.Table: if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example _lowerCAmelCase = table_cast(__snake_case , self.config.features.arrow_schema ) return pa_table def lowercase__ ( self : Dict , __snake_case : Optional[Any] ) -> Any: for i, file in enumerate(itertools.chain.from_iterable(__snake_case ) ): with open(__snake_case , """rb""" ) as f: _lowerCAmelCase = pa.Table.from_pandas(pd.read_pickle(__snake_case ) ) yield i, self._cast_table(__snake_case )
70
0
"""simple docstring""" def lowerCAmelCase_( lowercase_ : list ) -> list: if len(lowercase_ ) <= 1: return [tuple(lowercase_ )] _lowerCamelCase = [] def generate(lowercase_ : int , lowercase_ : list ): _lowerCamelCase = [0] * n res.append(tuple(lowercase_ ) ) _lowerCamelCase = 0 while i < n: if c[i] < i: if i % 2 == 0: _lowerCamelCase , _lowerCamelCase = arr[i], arr[0] else: _lowerCamelCase , _lowerCamelCase = arr[i], arr[c[i]] res.append(tuple(lowercase_ ) ) c[i] += 1 _lowerCamelCase = 0 else: _lowerCamelCase = 0 i += 1 generate(len(lowercase_ ) , lowercase_ ) return res if __name__ == "__main__": __SCREAMING_SNAKE_CASE : List[str] = input('''Enter numbers separated by a comma:\n''').strip() __SCREAMING_SNAKE_CASE : int = [int(item) for item in user_input.split(''',''')] print(heaps(arr))
73
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __SCREAMING_SNAKE_CASE : str = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : str = ['''NllbTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : str = ['''NllbTokenizerFast'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys __SCREAMING_SNAKE_CASE : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
73
1
'''simple docstring''' import string from math import logaa def UpperCAmelCase_ ( __lowercase : str , __lowercase : str ) -> int: '''simple docstring''' _UpperCAmelCase = document.translate( str.maketrans("" , "" , string.punctuation ) ).replace("\n" , "" ) _UpperCAmelCase = document_without_punctuation.split(" " ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def UpperCAmelCase_ ( __lowercase : str , __lowercase : str ) -> tuple[int, int]: '''simple docstring''' _UpperCAmelCase = corpus.lower().translate( str.maketrans("" , "" , string.punctuation ) ) # strip all punctuation and replace it with '' _UpperCAmelCase = corpus_without_punctuation.split("\n" ) _UpperCAmelCase = term.lower() return (len([doc for doc in docs if term in doc] ), len(__lowercase )) def UpperCAmelCase_ ( __lowercase : int , __lowercase : int , __lowercase : Union[str, Any]=False ) -> float: '''simple docstring''' if smoothing: if n == 0: raise ValueError("log10(0) is undefined." ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError("df must be > 0" ) elif n == 0: raise ValueError("log10(0) is undefined." ) return round(logaa(n / df ) , 3 ) def UpperCAmelCase_ ( __lowercase : int , __lowercase : int ) -> float: '''simple docstring''' return round(tf * idf , 3 )
22
"""simple docstring""" import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() _a = 2 class _lowerCAmelCase : """simple docstring""" def __init__( self : Dict, *, # begin keyword-only arguments UpperCAmelCase__ : str="<s>", UpperCAmelCase__ : Tuple="<pad>", UpperCAmelCase__ : str="</s>", UpperCAmelCase__ : Optional[Any]="<unk>", UpperCAmelCase__ : List[Any]=None, ): __lowercase ,__lowercase ,__lowercase ,__lowercase = bos, unk, pad, eos __lowercase = [] __lowercase = [] __lowercase = {} __lowercase = self.add_symbol(UpperCAmelCase__ ) __lowercase = self.add_symbol(UpperCAmelCase__ ) __lowercase = self.add_symbol(UpperCAmelCase__ ) __lowercase = self.add_symbol(UpperCAmelCase__ ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(UpperCAmelCase__ ) __lowercase = len(self.symbols ) def __eq__( self : List[str], UpperCAmelCase__ : Dict ): return self.indices == other.indices def __getitem__( self : Optional[int], UpperCAmelCase__ : List[str] ): if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self : str ): return len(self.symbols ) def __contains__( self : Any, UpperCAmelCase__ : Optional[Any] ): return sym in self.indices @classmethod def _lowercase ( cls : List[Any], UpperCAmelCase__ : Optional[Any] ): __lowercase = cls() d.add_from_file(UpperCAmelCase__ ) return d def _lowercase ( self : Dict, UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : List[Any]=1, UpperCAmelCase__ : str=False ): if word in self.indices and not overwrite: __lowercase = self.indices[word] __lowercase = self.count[idx] + n return idx else: __lowercase = len(self.symbols ) __lowercase = idx self.symbols.append(UpperCAmelCase__ ) self.count.append(UpperCAmelCase__ ) return idx def _lowercase ( self : Any, UpperCAmelCase__ : str ): return 0 def _lowercase ( self : Tuple, UpperCAmelCase__ : List[Any] ): if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): try: with open(UpperCAmelCase__, "r", encoding="utf-8" ) as fd: self.add_from_file(UpperCAmelCase__ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception("Incorrect encoding detected in {}, please rebuild the dataset".format(UpperCAmelCase__ ) ) return __lowercase = f.readlines() __lowercase = self._load_meta(UpperCAmelCase__ ) for line in lines[indices_start_line:]: try: __lowercase ,__lowercase = line.rstrip().rsplit(" ", 1 ) if field == "#fairseq:overwrite": __lowercase = True __lowercase ,__lowercase = line.rsplit(" ", 1 ) else: __lowercase = False __lowercase = int(UpperCAmelCase__ ) __lowercase = line if word in self and not overwrite: raise RuntimeError( "Duplicate word found when loading Dictionary: '{}'. " "Duplicate words can overwrite earlier ones by adding the " "#fairseq:overwrite flag at the end of the corresponding row " "in the dictionary file. If using the Camembert model, please " "download an updated copy of the model file.".format(UpperCAmelCase__ ) ) self.add_symbol(UpperCAmelCase__, n=UpperCAmelCase__, overwrite=UpperCAmelCase__ ) except ValueError: raise ValueError("Incorrect dictionary format, expected '<token> <cnt> [flags]'" ) def _A ( UpperCamelCase_ : int) -> str: '''simple docstring''' __lowercase = dict((re.sub(r"@@$", "", UpperCamelCase_), v) if k.endswith("@@") else (re.sub(r"$", "</w>", UpperCamelCase_), v) for k, v in d.items()) __lowercase = "<s> <pad> </s> <unk>".split() # restore the special tokens for k in keep_keys: del da[F"""{k}</w>"""] __lowercase = d[k] # restore return da def _A ( UpperCamelCase_ : str, UpperCamelCase_ : str) -> List[Any]: '''simple docstring''' if not os.path.exists(UpperCamelCase_): raise ValueError(F"""path {biogpt_checkpoint_path} does not exist!""") os.makedirs(UpperCamelCase_, exist_ok=UpperCamelCase_) print(F"""Writing results to {pytorch_dump_folder_path}""") # handle various types of models __lowercase = os.path.join(UpperCamelCase_, "checkpoint.pt") if not os.path.isfile(UpperCamelCase_): raise ValueError(F"""path to the file {checkpoint_file} does not exist!""") __lowercase = torch.load(UpperCamelCase_, map_location="cpu") __lowercase = chkpt["cfg"]["model"] # dicts __lowercase = os.path.join(UpperCamelCase_, "dict.txt") if not os.path.isfile(UpperCamelCase_): raise ValueError(F"""path to the file {dict_file} does not exist!""") __lowercase = Dictionary.load(UpperCamelCase_) __lowercase = rewrite_dict_keys(src_dict.indices) __lowercase = len(UpperCamelCase_) __lowercase = os.path.join(UpperCamelCase_, VOCAB_FILES_NAMES["vocab_file"]) print(F"""Generating {src_vocab_file} of {src_vocab_size} records""") with open(UpperCamelCase_, "w", encoding="utf-8") as f: f.write(json.dumps(UpperCamelCase_, ensure_ascii=UpperCamelCase_, indent=UpperCamelCase_)) # merges_file (bpecodes) __lowercase = os.path.join(UpperCamelCase_, "bpecodes") if not os.path.isfile(UpperCamelCase_): raise ValueError(F"""path to the file {bpecodes_file} does not exist!""") __lowercase = os.path.join(UpperCamelCase_, VOCAB_FILES_NAMES["merges_file"]) shutil.copyfile(UpperCamelCase_, UpperCamelCase_) # model config __lowercase = os.path.join(UpperCamelCase_, "config.json") __lowercase = { "activation_dropout": args["activation_dropout"], "architectures": ["BioGptForCausalLM"], "attention_probs_dropout_prob": args["attention_dropout"], "bos_token_id": 0, "eos_token_id": 2, "hidden_act": args["activation_fn"], "hidden_dropout_prob": args["dropout"], "hidden_size": args["decoder_embed_dim"], "initializer_range": 0.02, "intermediate_size": args["decoder_ffn_embed_dim"], "layer_norm_eps": 1E-12, "layerdrop": args["decoder_layerdrop"], "max_position_embeddings": args["max_target_positions"], "model_type": "biogpt", "num_attention_heads": args["decoder_attention_heads"], "num_hidden_layers": args["decoder_layers"], "pad_token_id": 1, "scale_embedding": not args["no_scale_embedding"], "tie_word_embeddings": args["share_decoder_input_output_embed"], "vocab_size": src_vocab_size, } # good hparam defaults to start with print(F"""Generating {biogpt_model_config_file}""") with open(UpperCamelCase_, "w", encoding="utf-8") as f: f.write(json.dumps(UpperCamelCase_, ensure_ascii=UpperCamelCase_, indent=UpperCamelCase_)) # tokenizer config __lowercase = os.path.join(UpperCamelCase_, UpperCamelCase_) __lowercase = { "bos_token": "<s>", "eos_token": "</s>", "model_max_length": 1024, "pad_token": "<pad>", "special_tokens_map_file": None, "tokenizer_class": "BioGptTokenizer", "unk_token": "<unk>", } print(F"""Generating {biogpt_tokenizer_config_file}""") with open(UpperCamelCase_, "w", encoding="utf-8") as f: f.write(json.dumps(UpperCamelCase_, ensure_ascii=UpperCamelCase_, indent=UpperCamelCase_)) # model __lowercase = chkpt["model"] # remove unneeded keys __lowercase = [ "decoder.version", ] for k in ignore_keys: model_state_dict.pop(UpperCamelCase_, UpperCamelCase_) __lowercase = list(model_state_dict.keys()) for layer_name in layer_names: if layer_name.endswith("output_projection.weight"): __lowercase = model_state_dict.pop(UpperCamelCase_) else: __lowercase = model_state_dict.pop(UpperCamelCase_) __lowercase = BioGptConfig.from_pretrained(UpperCamelCase_) __lowercase = BioGptForCausalLM(UpperCamelCase_) # check that it loads ok model_new.load_state_dict(UpperCamelCase_) # save __lowercase = os.path.join(UpperCamelCase_, UpperCamelCase_) print(F"""Generating {pytorch_weights_dump_path}""") torch.save(UpperCamelCase_, UpperCamelCase_) print("Conversion is done!") if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--biogpt_checkpoint_path', default=None, type=str, required=True, help=( 'Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,' ' bpecodes, etc.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _a = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
17
0
"""simple docstring""" import os def __lowerCamelCase ( ) -> Optional[Any]: """simple docstring""" with open(os.path.dirname(__UpperCamelCase ) + "/grid.txt" ) as f: lowerCAmelCase_ : str = [] # noqa: E741 for _ in range(20 ): l.append([int(__UpperCamelCase ) for x in f.readline().split()] ) lowerCAmelCase_ : Dict = 0 # right for i in range(20 ): for j in range(17 ): lowerCAmelCase_ : Optional[Any] = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: lowerCAmelCase_ : Dict = temp # down for i in range(17 ): for j in range(20 ): lowerCAmelCase_ : Union[str, Any] = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: lowerCAmelCase_ : List[str] = temp # diagonal 1 for i in range(17 ): for j in range(17 ): lowerCAmelCase_ : Optional[Any] = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: lowerCAmelCase_ : List[Any] = temp # diagonal 2 for i in range(17 ): for j in range(3 , 20 ): lowerCAmelCase_ : List[Any] = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: lowerCAmelCase_ : str = temp return maximum if __name__ == "__main__": print(solution())
161
"""simple docstring""" import qiskit def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase ) -> qiskit.result.counts.Counts: """simple docstring""" lowerCAmelCase_ : int = qiskit.Aer.get_backend("aer_simulator" ) lowerCAmelCase_ : List[Any] = qiskit.QuantumCircuit(4 , 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2 ) qc_ha.cx(1 , 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0 ) # extract XOR value qc_ha.measure(3 , 1 ) # extract AND value # Execute the circuit on the qasm simulator lowerCAmelCase_ : Tuple = qiskit.execute(__UpperCamelCase , __UpperCamelCase , shots=1000 ) # Return the histogram data of the results of the experiment return job.result().get_counts(__UpperCamelCase ) if __name__ == "__main__": lowercase__ = half_adder(1, 1) print(F"""Half Adder Output Qubit Counts: {counts}""")
161
1
"""simple docstring""" import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification A: Any = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co A: int = "main" # Default branch name A: Tuple = "f2c752cfc5c0ab6f4bdec59acea69eefbee381c2" # One particular commit (not the top of `main`) A: List[str] = "aaaaaaa" # This commit does not exist, so we should 404. A: Any = "d9e9f15bc825e4b2c9249e9578f884bbcb5e3684" # Sha-1 of config.json on the top of `main`, for checking purposes A: Optional[Any] = "4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3" @contextlib.contextmanager def _snake_case ( ): print("""Welcome!""" ) yield print("""Bye!""" ) @contextlib.contextmanager def _snake_case ( ): print("""Bonjour!""" ) yield print("""Au revoir!""" ) class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' assert transformers.__spec__ is not None assert importlib.util.find_spec("""transformers""" ) is not None class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' with ContextManagers([] ): print("""Transformers are awesome!""" ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , """Transformers are awesome!\n""" ) @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' with ContextManagers([context_en()] ): print("""Transformers are awesome!""" ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , """Welcome!\nTransformers are awesome!\nBye!\n""" ) @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' with ContextManagers([context_fr(), context_en()] ): print("""Transformers are awesome!""" ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , """Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n""" ) @require_torch def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' self.assertEqual(find_labels(_SCREAMING_SNAKE_CASE ) , ["""labels"""] ) self.assertEqual(find_labels(_SCREAMING_SNAKE_CASE ) , ["""labels""", """next_sentence_label"""] ) self.assertEqual(find_labels(_SCREAMING_SNAKE_CASE ) , ["""start_positions""", """end_positions"""] ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): pass self.assertEqual(find_labels(_SCREAMING_SNAKE_CASE ) , ["""labels"""] ) @require_tf def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' self.assertEqual(find_labels(_SCREAMING_SNAKE_CASE ) , ["""labels"""] ) self.assertEqual(find_labels(_SCREAMING_SNAKE_CASE ) , ["""labels""", """next_sentence_label"""] ) self.assertEqual(find_labels(_SCREAMING_SNAKE_CASE ) , ["""start_positions""", """end_positions"""] ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): pass self.assertEqual(find_labels(_SCREAMING_SNAKE_CASE ) , ["""labels"""] ) @require_flax def SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' self.assertEqual(find_labels(_SCREAMING_SNAKE_CASE ) , [] ) self.assertEqual(find_labels(_SCREAMING_SNAKE_CASE ) , [] ) self.assertEqual(find_labels(_SCREAMING_SNAKE_CASE ) , [] ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): pass self.assertEqual(find_labels(_SCREAMING_SNAKE_CASE ) , [] )
109
"""simple docstring""" from __future__ import annotations class SCREAMING_SNAKE_CASE__ : def __init__( self , _SCREAMING_SNAKE_CASE ) -> None: '''simple docstring''' UpperCAmelCase : Any = data UpperCAmelCase : Node | None = None UpperCAmelCase : Node | None = None def _snake_case ( UpperCamelCase : Node | None ): # In Order traversal of the tree if tree: display(tree.left ) print(tree.data ) display(tree.right ) def _snake_case ( UpperCamelCase : Node | None ): return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def _snake_case ( UpperCamelCase : Node ): if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def _snake_case ( ): # Main function for testing. UpperCAmelCase : int = Node(1 ) UpperCAmelCase : Tuple = Node(2 ) UpperCAmelCase : Any = Node(3 ) UpperCAmelCase : Optional[int] = Node(4 ) UpperCAmelCase : Any = Node(5 ) UpperCAmelCase : Optional[int] = Node(6 ) UpperCAmelCase : int = Node(7 ) UpperCAmelCase : str = Node(8 ) UpperCAmelCase : str = Node(9 ) print(is_full_binary_tree(UpperCamelCase ) ) print(depth_of_tree(UpperCamelCase ) ) print("""Tree is: """ ) display(UpperCamelCase ) if __name__ == "__main__": main()
109
1
import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class __lowerCAmelCase : """simple docstring""" @staticmethod def snake_case__ ( *lowerCAmelCase__ : Tuple , **lowerCAmelCase__ : Any ) -> List[str]: '''simple docstring''' pass def a__ ( lowercase : Image ) -> str: """simple docstring""" _UpperCamelCase = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" _snake_case : str = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def snake_case__ ( self : Tuple , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Union[str, Any] ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = DepthEstimationPipeline(model=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[Any] ) -> Tuple: '''simple docstring''' _UpperCamelCase = depth_estimator('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) self.assertEqual({'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )} , lowerCAmelCase__ ) import datasets _UpperCamelCase = datasets.load_dataset('''hf-internal-testing/fixtures_image_utils''' , '''image''' , split='''test''' ) _UpperCamelCase = depth_estimator( [ Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ), '''http://images.cocodataset.org/val2017/000000039769.jpg''', # RGBA dataset[0]['''file'''], # LA dataset[1]['''file'''], # L dataset[2]['''file'''], ] ) self.assertEqual( [ {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, ] , lowerCAmelCase__ , ) @require_tf @unittest.skip('''Depth estimation is not implemented in TF''' ) def snake_case__ ( self : Optional[int] ) -> int: '''simple docstring''' pass @slow @require_torch def snake_case__ ( self : Optional[Any] ) -> int: '''simple docstring''' _UpperCamelCase = '''Intel/dpt-large''' _UpperCamelCase = pipeline('''depth-estimation''' , model=lowerCAmelCase__ ) _UpperCamelCase = depth_estimator('''http://images.cocodataset.org/val2017/000000039769.jpg''' ) _UpperCamelCase = hashimage(outputs['''depth'''] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['''predicted_depth'''].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs['''predicted_depth'''].min().item() ) , 2.662 ) @require_torch def snake_case__ ( self : Any ) -> Union[str, Any]: '''simple docstring''' self.skipTest('''There is not hf-internal-testing tiny model for either GLPN nor DPT''' )
371
'''simple docstring''' import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowercase__ : Any = logging.getLogger(__name__) def a__ ( lowercase : Optional[Any], lowercase : Tuple ) -> Any: """simple docstring""" return (preds == labels).mean() @dataclass class __lowerCAmelCase : """simple docstring""" _snake_case : str = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) _snake_case : Optional[str] = field( default=__magic_name__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) _snake_case : Optional[str] = field( default=__magic_name__ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) _snake_case : Optional[str] = field( default=__magic_name__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) @dataclass class __lowerCAmelCase : """simple docstring""" _snake_case : str = field(metadata={'help': 'The name of the task to train on: ' + ', '.join(processors.keys() )} ) _snake_case : str = field(metadata={'help': 'Should contain the data files for the task.'} ) _snake_case : int = field( default=1_2_8 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) _snake_case : bool = field( default=__magic_name__ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def a__ ( ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN, ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''', training_args.local_rank, training_args.device, training_args.n_gpu, bool(training_args.local_rank != -1 ), training_args.fpaa, ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''', lowercase ) # Set seed set_seed(training_args.seed ) try: _UpperCamelCase = processors[data_args.task_name]() _UpperCamelCase = processor.get_labels() _UpperCamelCase = len(lowercase ) except KeyError: raise ValueError('''Task not found: %s''' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCamelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, num_labels=lowercase, finetuning_task=data_args.task_name, cache_dir=model_args.cache_dir, ) _UpperCamelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, ) _UpperCamelCase = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path, from_tf=bool('''.ckpt''' in model_args.model_name_or_path ), config=lowercase, cache_dir=model_args.cache_dir, ) # Get datasets _UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir, tokenizer=lowercase, task=data_args.task_name, max_seq_length=data_args.max_seq_length, overwrite_cache=data_args.overwrite_cache, mode=Split.train, ) if training_args.do_train else None ) _UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir, tokenizer=lowercase, task=data_args.task_name, max_seq_length=data_args.max_seq_length, overwrite_cache=data_args.overwrite_cache, mode=Split.dev, ) if training_args.do_eval else None ) def compute_metrics(lowercase : EvalPrediction ) -> Dict: _UpperCamelCase = np.argmax(p.predictions, axis=1 ) return {"acc": simple_accuracy(lowercase, p.label_ids )} # Data collator _UpperCamelCase = DataCollatorWithPadding(lowercase, pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer _UpperCamelCase = Trainer( model=lowercase, args=lowercase, train_dataset=lowercase, eval_dataset=lowercase, compute_metrics=lowercase, data_collator=lowercase, ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _UpperCamelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) _UpperCamelCase = trainer.evaluate() _UpperCamelCase = os.path.join(training_args.output_dir, '''eval_results.txt''' ) if trainer.is_world_master(): with open(lowercase, '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''', lowercase, lowercase ) writer.write('''%s = %s\n''' % (key, value) ) results.update(lowercase ) return results def a__ ( lowercase : Tuple ) -> List[Any]: """simple docstring""" main() if __name__ == "__main__": main()
287
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase : List[Any] = { "configuration_timesformer": ["TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimesformerConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[Any] = [ "TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TimesformerModel", "TimesformerForVideoClassification", "TimesformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys _lowercase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
93
'''simple docstring''' def snake_case_ ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str ): """simple docstring""" lowercase_ : List[str] = len(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = [] for i in range(len(__SCREAMING_SNAKE_CASE ) - pat_len + 1 ): lowercase_ : Tuple = True for j in range(__SCREAMING_SNAKE_CASE ): if s[i + j] != pattern[j]: lowercase_ : List[str] = False break if match_found: position.append(__SCREAMING_SNAKE_CASE ) return position if __name__ == "__main__": assert naive_pattern_search("ABCDEFG", "DE") == [3] print(naive_pattern_search("ABAAABCDBBABCDDEBCABC", "ABC"))
93
1
'''simple docstring''' def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) -> str: '''simple docstring''' snake_case_ = [False] * len(__UpperCAmelCase ) snake_case_ = [] queue.append(__UpperCAmelCase ) snake_case_ = True while queue: snake_case_ = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(__UpperCAmelCase ) snake_case_ = True snake_case_ = u return visited[t] def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) -> Tuple: '''simple docstring''' snake_case_ = [-1] * (len(__UpperCAmelCase )) snake_case_ = 0 while bfs(__UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ): snake_case_ = float('''Inf''' ) snake_case_ = sink while s != source: # Find the minimum value in select path snake_case_ = min(__UpperCAmelCase, graph[parent[s]][s] ) snake_case_ = parent[s] max_flow += path_flow snake_case_ = sink while v != source: snake_case_ = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow snake_case_ = parent[v] return max_flow a : List[Any] = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] a : Tuple = 0, 5 print(ford_fulkerson(graph, source, sink))
362
'''simple docstring''' import math from collections.abc import Callable def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) -> float: '''simple docstring''' snake_case_ = xa snake_case_ = xa while True: if x_n == x_na or function(__UpperCAmelCase ) == function(__UpperCAmelCase ): raise ZeroDivisionError('''float division by zero, could not find root''' ) snake_case_ = x_na - ( function(__UpperCAmelCase ) / ((function(__UpperCAmelCase ) - function(__UpperCAmelCase )) / (x_na - x_n)) ) if abs(x_na - x_na ) < 10**-5: return x_na snake_case_ = x_na snake_case_ = x_na def __magic_name__ ( __UpperCAmelCase ) -> float: '''simple docstring''' return math.pow(__UpperCAmelCase, 3 ) - (2 * x) - 5 if __name__ == "__main__": print(intersection(f, 3, 3.5))
72
0
"""simple docstring""" import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def __lowerCAmelCase (_UpperCamelCase=32 , _UpperCamelCase=10 , _UpperCamelCase=100 , _UpperCamelCase=1026 , _UpperCamelCase=True , _UpperCamelCase="data/tokenized_stories_train_wikitext103.jbl" , _UpperCamelCase="igf_context_pairs.jbl" , ): set_seed(3 ) # generate train_data and objective_set __lowerCAmelCase , __lowerCAmelCase : Optional[int] = generate_datasets( _UpperCamelCase , _UpperCamelCase , number=_UpperCamelCase , min_len=1026 , trim=_UpperCamelCase ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? __lowerCAmelCase : List[Any] = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu' ) # load pretrained model __lowerCAmelCase : int = load_gpta('gpt2' ).to(_UpperCamelCase ) print('computing perplexity on objective set' ) __lowerCAmelCase : Optional[int] = compute_perplexity(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ).item() print('perplexity on objective set:' , _UpperCamelCase ) # collect igf pairs and save to file demo.jbl collect_objective_set(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase=15 , _UpperCamelCase=128 , _UpperCamelCase=100 , _UpperCamelCase="igf_model.pt" , ): set_seed(42 ) # Load pre-trained model __lowerCAmelCase : List[Any] = GPTaLMHeadModel.from_pretrained('gpt2' ) # Initialize secondary learner to use embedding weights of model __lowerCAmelCase : Dict = SecondaryLearner(_UpperCamelCase ) # Train secondary learner __lowerCAmelCase : Optional[Any] = train_secondary_learner( _UpperCamelCase , _UpperCamelCase , max_epochs=_UpperCamelCase , batch_size=_UpperCamelCase , eval_freq=100 , igf_model_path=_UpperCamelCase , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=32 , _UpperCamelCase=1000 , _UpperCamelCase=16 , _UpperCamelCase=1.0 , _UpperCamelCase=recopy_gpta , _UpperCamelCase=None , _UpperCamelCase=10 , _UpperCamelCase="gpt2_finetuned.pt" , ): __lowerCAmelCase : Any = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu' ) __lowerCAmelCase : Union[str, Any] = RandomSampler(_UpperCamelCase ) __lowerCAmelCase : Any = DataLoader(_UpperCamelCase , sampler=_UpperCamelCase ) __lowerCAmelCase : str = max_steps // (len(_UpperCamelCase )) + 1 __lowerCAmelCase : int = 0 __lowerCAmelCase : int = torch.zeros((1, context_len) , dtype=torch.long , device=_UpperCamelCase ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Any = recopy_model(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) model.train() if secondary_learner is not None: secondary_learner.to(_UpperCamelCase ) secondary_learner.eval() __lowerCAmelCase : List[Any] = [] __lowerCAmelCase : Any = 0 __lowerCAmelCase : str = [] __lowerCAmelCase : str = [] # Compute the performance of the transformer model at the beginning __lowerCAmelCase : List[str] = compute_perplexity(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) test_perps.append(_UpperCamelCase ) print('Test perplexity, step' , _UpperCamelCase , ':' , _UpperCamelCase ) for epoch in range(int(_UpperCamelCase ) ): for step, example in enumerate(_UpperCamelCase ): torch.cuda.empty_cache() __lowerCAmelCase : Dict = random.randint(0 , example.size(2 ) - context_len - 1 ) __lowerCAmelCase : Union[str, Any] = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() __lowerCAmelCase : List[Any] = model(_UpperCamelCase , labels=_UpperCamelCase ) __lowerCAmelCase : Any = True if secondary_learner is not None: __lowerCAmelCase : List[Any] = secondary_learner.forward( torch.tensor(_UpperCamelCase , dtype=torch.long , device=_UpperCamelCase ).unsqueeze(0 ) )[0].item() observed_qs.append(float(_UpperCamelCase ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: __lowerCAmelCase : List[Any] = -1 if predicted_q < threshold: __lowerCAmelCase : Dict = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) __lowerCAmelCase : int = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() __lowerCAmelCase : Optional[Any] = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: __lowerCAmelCase : Optional[Any] = compute_perplexity(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) test_perps.append(_UpperCamelCase ) print('Test perplexity, step' , _UpperCamelCase , ':' , _UpperCamelCase ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , _UpperCamelCase ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def __lowerCAmelCase (): __lowerCAmelCase : Tuple = argparse.ArgumentParser(description='Fine-tune a transformer model with IGF on a language modeling task' ) # Required parameters parser.add_argument( '--data_dir' , default=_UpperCamelCase , type=_UpperCamelCase , required=_UpperCamelCase , help='The input data dir. Should contain data files for WikiText.' , ) parser.add_argument( '--model_name_or_path' , default=_UpperCamelCase , type=_UpperCamelCase , required=_UpperCamelCase , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--data_file' , type=_UpperCamelCase , default=_UpperCamelCase , help=( 'A jbl file containing tokenized data which can be split as objective dataset, ' 'train_dataset and test_dataset.' ) , ) parser.add_argument( '--igf_data_file' , type=_UpperCamelCase , default=_UpperCamelCase , help='A jbl file containing the context and information gain pairs to train secondary learner.' , ) parser.add_argument( '--output_dir' , default=_UpperCamelCase , type=_UpperCamelCase , required=_UpperCamelCase , help='The output directory where the final fine-tuned model is stored.' , ) parser.add_argument( '--tokenizer_name' , default=_UpperCamelCase , type=_UpperCamelCase , help='Pretrained tokenizer name or path if not the same as model_name' , ) parser.add_argument('--seed' , type=_UpperCamelCase , default=_UpperCamelCase , help='A seed for reproducible training.' ) parser.add_argument( '--context_len' , default=32 , type=_UpperCamelCase , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--size_objective_set' , default=100 , type=_UpperCamelCase , help='number of articles that are long enough to be used as our objective set' , ) parser.add_argument( '--eval_freq' , default=100 , type=_UpperCamelCase , help='secondary model evaluation is triggered at eval_freq' ) parser.add_argument('--max_steps' , default=1000 , type=_UpperCamelCase , help='To calculate training epochs' ) parser.add_argument( '--secondary_learner_batch_size' , default=128 , type=_UpperCamelCase , help='batch size of training data for secondary learner' , ) parser.add_argument( '--batch_size' , default=16 , type=_UpperCamelCase , help='batch size of training data of language model(gpt2) ' ) parser.add_argument( '--eval_interval' , default=10 , type=_UpperCamelCase , help=( 'decay the selectivity of our secondary learner filter from' '1 standard deviation above average to 1 below average after 10 batches' ) , ) parser.add_argument( '--number' , default=100 , type=_UpperCamelCase , help='The number of examples split to be used as objective_set/test_data' ) parser.add_argument( '--min_len' , default=1026 , type=_UpperCamelCase , help='The minimum length of the article to be used as objective set' ) parser.add_argument( '--secondary_learner_max_epochs' , default=15 , type=_UpperCamelCase , help='number of epochs to train secondary learner' ) parser.add_argument('--trim' , default=_UpperCamelCase , type=_UpperCamelCase , help='truncate the example if it exceeds context length' ) parser.add_argument( '--threshold' , default=1.0 , type=_UpperCamelCase , help=( 'The threshold value used by secondary learner to filter the train_data and allow only' ' informative data as input to the model' ) , ) parser.add_argument('--finetuned_model_name' , default='gpt2_finetuned.pt' , type=_UpperCamelCase , help='finetuned_model_name' ) parser.add_argument( '--recopy_model' , default=_UpperCamelCase , type=_UpperCamelCase , help='Reset the model to the original pretrained GPT-2 weights after each iteration' , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=100 , min_len=1026 , trim=_UpperCamelCase , data_file='data/tokenized_stories_train_wikitext103.jbl' , igf_data_file='igf_context_pairs.jbl' , ) # Load train data for secondary learner __lowerCAmelCase : str = joblib.load('data/IGF_values.jbl' ) # Train secondary learner __lowerCAmelCase : List[Any] = training_secondary_learner( _UpperCamelCase , secondary_learner_max_epochs=15 , secondary_learner_batch_size=128 , eval_freq=100 , igf_model_path='igf_model.pt' , ) # load pretrained gpt2 model __lowerCAmelCase : str = GPTaLMHeadModel.from_pretrained('gpt2' ) set_seed(42 ) # Generate train and test data to train and evaluate gpt2 model __lowerCAmelCase , __lowerCAmelCase : Any = generate_datasets( context_len=32 , file='data/tokenized_stories_train_wikitext103.jbl' , number=100 , min_len=1026 , trim=_UpperCamelCase ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , context_len=32 , max_steps=1000 , batch_size=16 , threshold=1.0 , recopy_model=_UpperCamelCase , secondary_learner=_UpperCamelCase , eval_interval=10 , finetuned_model_name='gpt2_finetuned.pt' , ) if __name__ == "__main__": main()
86
"""simple docstring""" import math import sys def __lowerCAmelCase (_UpperCamelCase ): if number != int(_UpperCamelCase ): raise ValueError('the value of input must be a natural number' ) if number < 0: raise ValueError('the value of input must not be a negative number' ) if number == 0: return 1 __lowerCAmelCase : Any = [-1] * (number + 1) __lowerCAmelCase : List[Any] = 0 for i in range(1 , number + 1 ): __lowerCAmelCase : List[Any] = sys.maxsize __lowerCAmelCase : Optional[int] = int(math.sqrt(_UpperCamelCase ) ) for j in range(1 , root + 1 ): __lowerCAmelCase : Optional[Any] = 1 + answers[i - (j**2)] __lowerCAmelCase : Any = min(_UpperCamelCase , _UpperCamelCase ) __lowerCAmelCase : List[str] = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
86
1
"""simple docstring""" def _lowerCAmelCase ( UpperCAmelCase__ : str ) ->int: stooge(UpperCAmelCase__, 0, len(UpperCAmelCase__ ) - 1 ) return arr def _lowerCAmelCase ( UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Dict ) ->List[str]: if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: A__ : str = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: A__ : Tuple = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(UpperCAmelCase__, UpperCAmelCase__, (h - t) ) # Recursively sort last 2/3 elements stooge(UpperCAmelCase__, i + t, (UpperCAmelCase__) ) # Recursively sort first 2/3 elements stooge(UpperCAmelCase__, UpperCAmelCase__, (h - t) ) if __name__ == "__main__": A_ = input('''Enter numbers separated by a comma:\n''').strip() A_ = [int(item) for item in user_input.split(''',''')] print(stooge_sort(unsorted))
370
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() A_ = logging.get_logger(__name__) def _lowerCAmelCase ( UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Tuple=False ) ->str: A__ : Optional[int] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'blocks.{i}.norm1.weight', f'deit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'blocks.{i}.norm1.bias', f'deit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((f'blocks.{i}.attn.proj.weight', f'deit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((f'blocks.{i}.attn.proj.bias', f'deit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((f'blocks.{i}.norm2.weight', f'deit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'blocks.{i}.norm2.bias', f'deit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc1.weight', f'deit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc1.bias', f'deit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc2.weight', f'deit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc2.bias', f'deit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """deit.embeddings.cls_token"""), ("""dist_token""", """deit.embeddings.distillation_token"""), ("""patch_embed.proj.weight""", """deit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """deit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """deit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ("""pre_logits.fc.weight""", """pooler.dense.weight"""), ("""pre_logits.fc.bias""", """pooler.dense.bias"""), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" A__ : Optional[int] = [(pair[0], pair[1][4:]) if pair[1].startswith("""deit""" ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ("""norm.weight""", """deit.layernorm.weight"""), ("""norm.bias""", """deit.layernorm.bias"""), ("""head.weight""", """cls_classifier.weight"""), ("""head.bias""", """cls_classifier.bias"""), ("""head_dist.weight""", """distillation_classifier.weight"""), ("""head_dist.bias""", """distillation_classifier.bias"""), ] ) return rename_keys def _lowerCAmelCase ( UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : Tuple, UpperCAmelCase__ : List[Any]=False ) ->str: for i in range(config.num_hidden_layers ): if base_model: A__ : Any = """""" else: A__ : Tuple = """deit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A__ : Any = state_dict.pop(f'blocks.{i}.attn.qkv.weight' ) A__ : Tuple = state_dict.pop(f'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict A__ : List[Any] = in_proj_weight[ : config.hidden_size, : ] A__ : str = in_proj_bias[: config.hidden_size] A__ : Any = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A__ : Dict = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A__ : Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] A__ : Any = in_proj_bias[-config.hidden_size :] def _lowerCAmelCase ( UpperCAmelCase__ : List[Any], UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Union[str, Any] ) ->Any: A__ : int = dct.pop(UpperCAmelCase__ ) A__ : Tuple = val def _lowerCAmelCase ( ) ->List[Any]: A__ : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg""" A__ : int = Image.open(requests.get(UpperCAmelCase__, stream=UpperCAmelCase__ ).raw ) return im @torch.no_grad() def _lowerCAmelCase ( UpperCAmelCase__ : Dict, UpperCAmelCase__ : Any ) ->Tuple: A__ : List[Any] = DeiTConfig() # all deit models have fine-tuned heads A__ : Tuple = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size A__ : str = 1_0_0_0 A__ : List[str] = """huggingface/label-files""" A__ : Dict = """imagenet-1k-id2label.json""" A__ : List[str] = json.load(open(hf_hub_download(UpperCAmelCase__, UpperCAmelCase__, repo_type="""dataset""" ), """r""" ) ) A__ : Dict = {int(UpperCAmelCase__ ): v for k, v in idalabel.items()} A__ : Optional[int] = idalabel A__ : Dict = {v: k for k, v in idalabel.items()} A__ : List[str] = int(deit_name[-6:-4] ) A__ : str = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith("""tiny""" ): A__ : List[str] = 1_9_2 A__ : int = 7_6_8 A__ : List[Any] = 1_2 A__ : Dict = 3 elif deit_name[9:].startswith("""small""" ): A__ : List[Any] = 3_8_4 A__ : List[str] = 1_5_3_6 A__ : Any = 1_2 A__ : Union[str, Any] = 6 if deit_name[9:].startswith("""base""" ): pass elif deit_name[4:].startswith("""large""" ): A__ : int = 1_0_2_4 A__ : str = 4_0_9_6 A__ : Any = 2_4 A__ : int = 1_6 # load original model from timm A__ : Dict = timm.create_model(UpperCAmelCase__, pretrained=UpperCAmelCase__ ) timm_model.eval() # load state_dict of original model, remove and rename some keys A__ : Tuple = timm_model.state_dict() A__ : str = create_rename_keys(UpperCAmelCase__, UpperCAmelCase__ ) for src, dest in rename_keys: rename_key(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) read_in_q_k_v(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) # load HuggingFace model A__ : str = DeiTForImageClassificationWithTeacher(UpperCAmelCase__ ).eval() model.load_state_dict(UpperCAmelCase__ ) # Check outputs on an image, prepared by DeiTImageProcessor A__ : int = int( (2_5_6 / 2_2_4) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 A__ : Any = DeiTImageProcessor(size=UpperCAmelCase__, crop_size=config.image_size ) A__ : Union[str, Any] = image_processor(images=prepare_img(), return_tensors="""pt""" ) A__ : Optional[Any] = encoding["""pixel_values"""] A__ : Union[str, Any] = model(UpperCAmelCase__ ) A__ : Union[str, Any] = timm_model(UpperCAmelCase__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(UpperCAmelCase__, outputs.logits, atol=1e-3 ) Path(UpperCAmelCase__ ).mkdir(exist_ok=UpperCAmelCase__ ) print(f'Saving model {deit_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(UpperCAmelCase__ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--deit_name''', default='''vit_deit_base_distilled_patch16_224''', type=str, help='''Name of the DeiT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) A_ = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
296
0
from __future__ import annotations def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, ): """simple docstring""" if (stress, tangential_force, area).count(0 ) != 1: raise ValueError('You cannot supply more or less than 2 values' ) elif stress < 0: raise ValueError('Stress cannot be negative' ) elif tangential_force < 0: raise ValueError('Tangential Force cannot be negative' ) elif area < 0: raise ValueError('Area cannot be negative' ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
334
'''simple docstring''' def UpperCAmelCase ( a_ = 1_0_0 ) -> int: """simple docstring""" A_ : Dict = n * (n + 1) * (2 * n + 1) / 6 A_ : Optional[int] = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(f'{solution() = }')
344
0
def lowercase__ ( lowercase_ ,lowercase_ ) -> str: """simple docstring""" if not (isinstance(lowercase_ ,lowercase_ ) and isinstance(lowercase_ ,lowercase_ )): raise ValueError("longest_common_substring() takes two strings for inputs" ) _UpperCamelCase : Union[str, Any] = len(lowercase_ ) _UpperCamelCase : str = len(lowercase_ ) _UpperCamelCase : Any = [[0] * (texta_length + 1) for _ in range(texta_length + 1 )] _UpperCamelCase : Tuple = 0 _UpperCamelCase : List[Any] = 0 for i in range(1 ,texta_length + 1 ): for j in range(1 ,texta_length + 1 ): if texta[i - 1] == texta[j - 1]: _UpperCamelCase : Optional[Any] = 1 + dp[i - 1][j - 1] if dp[i][j] > ans_length: _UpperCamelCase : str = i _UpperCamelCase : Union[str, Any] = dp[i][j] return texta[ans_index - ans_length : ans_index] if __name__ == "__main__": import doctest doctest.testmod()
370
"""simple docstring""" from typing import Any def lowercase__ ( lowercase_ ) -> list[Any]: """simple docstring""" if not input_list: return [] _UpperCamelCase : Dict = [input_list.count(lowercase_ ) for value in input_list] _UpperCamelCase : Union[str, Any] = max(lowercase_ ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(lowercase_ ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
310
0
'''simple docstring''' from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING lowercase_ = logging.get_logger(__name__) @add_end_docstrings(snake_case_ ) class a_ ( snake_case_ ): '''simple docstring''' def __init__( self , **A ) -> Any: super().__init__(**A ) requires_backends(self , """vision""" ) requires_backends(self , """torch""" ) if self.framework != "pt": raise ValueError(f'The {self.__class__} is only available in PyTorch.' ) self.check_model_type(A ) def snake_case_( self , **A ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = {} # preprocess args if "points_per_batch" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""points_per_batch"""] if "points_per_crop" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""points_per_crop"""] if "crops_n_layers" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""crops_n_layers"""] if "crop_overlap_ratio" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""crop_overlap_ratio"""] if "crop_n_points_downscale_factor" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""crop_n_points_downscale_factor"""] # postprocess args if "pred_iou_thresh" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""pred_iou_thresh"""] if "stability_score_offset" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""stability_score_offset"""] if "mask_threshold" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""mask_threshold"""] if "stability_score_thresh" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""stability_score_thresh"""] if "crops_nms_thresh" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""crops_nms_thresh"""] if "output_rle_mask" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""output_rle_mask"""] if "output_bboxes_mask" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""output_bboxes_mask"""] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self , A , *A , A=None , A=None , **A ) -> List[Any]: return super().__call__(A , *A , num_workers=A , batch_size=A , **A ) def snake_case_( self , A , A=64 , A = 0 , A = 512 / 1500 , A = 32 , A = 1 , ) -> Tuple: _SCREAMING_SNAKE_CASE = load_image(A ) _SCREAMING_SNAKE_CASE = self.image_processor.size["""longest_edge"""] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processor.generate_crop_boxes( A , A , A , A , A , A ) _SCREAMING_SNAKE_CASE = self.image_processor(images=A , return_tensors="""pt""" ) with self.device_placement(): if self.framework == "pt": _SCREAMING_SNAKE_CASE = self.get_inference_context() with inference_context(): _SCREAMING_SNAKE_CASE = self._ensure_tensor_on_device(A , device=self.device ) _SCREAMING_SNAKE_CASE = self.model.get_image_embeddings(model_inputs.pop("""pixel_values""" ) ) _SCREAMING_SNAKE_CASE = image_embeddings _SCREAMING_SNAKE_CASE = grid_points.shape[1] _SCREAMING_SNAKE_CASE = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( """Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. """ """To return all points at once, set points_per_batch to None""" ) for i in range(0 , A , A ): _SCREAMING_SNAKE_CASE = grid_points[:, i : i + points_per_batch, :, :] _SCREAMING_SNAKE_CASE = input_labels[:, i : i + points_per_batch] _SCREAMING_SNAKE_CASE = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def snake_case_( self , A , A=0.88 , A=0.95 , A=0 , A=1 , ) -> Optional[int]: _SCREAMING_SNAKE_CASE = model_inputs.pop("""input_boxes""" ) _SCREAMING_SNAKE_CASE = model_inputs.pop("""is_last""" ) _SCREAMING_SNAKE_CASE = model_inputs.pop("""original_sizes""" ).tolist() _SCREAMING_SNAKE_CASE = model_inputs.pop("""reshaped_input_sizes""" ).tolist() _SCREAMING_SNAKE_CASE = self.model(**A ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks _SCREAMING_SNAKE_CASE = model_outputs["""pred_masks"""] _SCREAMING_SNAKE_CASE = self.image_processor.post_process_masks( A , A , A , A , binarize=A ) _SCREAMING_SNAKE_CASE = model_outputs["""iou_scores"""] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , A , A , A , A , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def snake_case_( self , A , A=False , A=False , A=0.7 , ) -> str: _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] for model_output in model_outputs: all_scores.append(model_output.pop("""iou_scores""" ) ) all_masks.extend(model_output.pop("""masks""" ) ) all_boxes.append(model_output.pop("""boxes""" ) ) _SCREAMING_SNAKE_CASE = torch.cat(A ) _SCREAMING_SNAKE_CASE = torch.cat(A ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processor.post_process_for_mask_generation( A , A , A , A ) _SCREAMING_SNAKE_CASE = defaultdict(A ) for output in model_outputs: for k, v in output.items(): extra[k].append(A ) _SCREAMING_SNAKE_CASE = {} if output_rle_mask: _SCREAMING_SNAKE_CASE = rle_mask if output_bboxes_mask: _SCREAMING_SNAKE_CASE = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
58
import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def a_ ( __lowercase : Dict , __lowercase : int , __lowercase : Optional[Any]=None ) -> Any: # set parameter of one layer assert torch_layer.weight.shape == weight.shape, f'''{torch_layer} layer.weight does not match''' _snake_case = nn.Parameter(__lowercase ) if bias is not None: assert torch_layer.bias.shape == bias.shape, f'''{torch_layer} layer.bias does not match''' _snake_case = nn.Parameter(__lowercase ) def a_ ( __lowercase : Any , __lowercase : Dict , __lowercase : Union[str, Any] ) -> Optional[Any]: # set torch weights for 1-to-1 comparison _snake_case = np.asarray(weights[0] ) _snake_case = np.asarray(weights[1] ) _snake_case = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(__lowercase ).transpose(1 , 2 ).contiguous().view(-1 , __lowercase ) , ) set_param( torch_layer.self_attention.value , torch.tensor(__lowercase ).transpose(1 , 2 ).contiguous().view(-1 , __lowercase ) , ) set_param( torch_layer.output.dense , torch.tensor(__lowercase ).view(-1 , __lowercase ).contiguous().transpose(0 , 1 ) , ) def a_ ( __lowercase : str , __lowercase : Tuple , __lowercase : Any ) -> Optional[Any]: # set torch weights for 1-to-1 comparison _snake_case = np.asarray(weights[0] ) _snake_case = np.asarray(weights[1] ) _snake_case = np.asarray(weights[2] ) _snake_case = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(__lowercase ).transpose(1 , 2 ).contiguous().view(-1 , __lowercase ) , ) set_param( torch_layer.self_attention.key , torch.tensor(__lowercase ).transpose(1 , 2 ).contiguous().view(-1 , __lowercase ) , ) set_param( torch_layer.self_attention.value , torch.tensor(__lowercase ).transpose(1 , 2 ).contiguous().view(-1 , __lowercase ) , ) set_param( torch_layer.output.dense , torch.tensor(__lowercase ).view(-1 , __lowercase ).contiguous().transpose(0 , 1 ) , ) def a_ ( __lowercase : Dict , __lowercase : List[str] , __lowercase : Union[str, Any] ) -> Optional[Any]: # layernorm 1 _snake_case = weights[0][0][0] _snake_case = np.asarray(layer_norm_a[0] ) _snake_case = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(__lowercase ) , torch.tensor(__lowercase ) , ) # lsh weights + output _snake_case = weights[0][1] if len(__lowercase ) < 4: set_layer_weights_in_torch_lsh(__lowercase , torch_block.attention , __lowercase ) else: set_layer_weights_in_torch_local(__lowercase , torch_block.attention , __lowercase ) # intermediate weighs _snake_case = weights[2][0][1][2] # Chunked Feed Forward if len(__lowercase ) == 4: _snake_case = intermediate_weights[2] # layernorm 2 _snake_case = np.asarray(intermediate_weights[0][0] ) _snake_case = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(__lowercase ) , torch.tensor(__lowercase ) , ) # intermediate dense _snake_case = np.asarray(intermediate_weights[1][0] ) _snake_case = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(__lowercase ).transpose(0 , 1 ).contiguous() , torch.tensor(__lowercase ) , ) # intermediate out _snake_case = np.asarray(intermediate_weights[4][0] ) _snake_case = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(__lowercase ).transpose(0 , 1 ).contiguous() , torch.tensor(__lowercase ) , ) def a_ ( __lowercase : Tuple , __lowercase : Tuple , __lowercase : Dict ) -> Optional[int]: # reformer model _snake_case = torch_model.reformer # word embeds _snake_case = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(__lowercase ) , ) if isinstance(weights[3] , __lowercase ): _snake_case = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): _snake_case = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), f'''{position_embeddings[emb_idx]} emb does not match''' _snake_case = nn.Parameter(torch.tensor(__lowercase ) ) _snake_case = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( __lowercase ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): _snake_case = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(__lowercase , __lowercase , __lowercase ) # output layer norm _snake_case = np.asarray(weights[7][0] ) _snake_case = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(__lowercase ) , torch.tensor(__lowercase ) , ) # output embeddings _snake_case = np.asarray(weights[9][0] ) _snake_case = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(__lowercase ).transpose(0 , 1 ).contiguous() , torch.tensor(__lowercase ) , ) def a_ ( __lowercase : Optional[Any] , __lowercase : Dict , __lowercase : List[Any] ) -> Optional[int]: # Initialise PyTorch model _snake_case = ReformerConfig.from_json_file(__lowercase ) print(f'''Building PyTorch model from configuration: {config}''' ) _snake_case = ReformerModelWithLMHead(__lowercase ) with open(__lowercase , 'rb' ) as f: _snake_case = pickle.load(__lowercase )['weights'] set_model_weights_in_torch(__lowercase , __lowercase , config.hidden_size ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , __lowercase ) if __name__ == "__main__": _lowerCamelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--trax_model_pkl_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained Reformer model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) _lowerCamelCase : List[Any] = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
282
0
'''simple docstring''' import argparse import collections import json import os import re import string import sys import numpy as np __snake_case : Optional[Any] = re.compile(r'\b(a|an|the)\b', re.UNICODE) __snake_case : List[str] = None def __lowerCamelCase ( ) -> Dict: """simple docstring""" A__ : Tuple =argparse.ArgumentParser("""Official evaluation script for SQuAD version 2.0.""" ) parser.add_argument("""data_file""", metavar="""data.json""", help="""Input data JSON file.""" ) parser.add_argument("""pred_file""", metavar="""pred.json""", help="""Model predictions.""" ) parser.add_argument( """--out-file""", """-o""", metavar="""eval.json""", help="""Write accuracy metrics to file (default is stdout).""" ) parser.add_argument( """--na-prob-file""", """-n""", metavar="""na_prob.json""", help="""Model estimates of probability of no answer.""" ) parser.add_argument( """--na-prob-thresh""", """-t""", type=__snake_case, default=1.0, help="""Predict \"\" if no-answer probability exceeds this (default = 1.0).""", ) parser.add_argument( """--out-image-dir""", """-p""", metavar="""out_images""", default=__snake_case, help="""Save precision-recall curves to directory.""" ) parser.add_argument("""--verbose""", """-v""", action="""store_true""" ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def __lowerCamelCase ( __snake_case : int ) -> Union[str, Any]: """simple docstring""" A__ : int ={} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: A__ : List[Any] =bool(qa["""answers"""]["""text"""] ) return qid_to_has_ans def __lowerCamelCase ( __snake_case : Union[str, Any] ) -> Tuple: """simple docstring""" def remove_articles(__snake_case : Union[str, Any] ): return ARTICLES_REGEX.sub(""" """, __snake_case ) def white_space_fix(__snake_case : Optional[Any] ): return " ".join(text.split() ) def remove_punc(__snake_case : Any ): A__ : Optional[Any] =set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__snake_case : int ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__snake_case ) ) ) ) def __lowerCamelCase ( __snake_case : str ) -> Union[str, Any]: """simple docstring""" if not s: return [] return normalize_answer(__snake_case ).split() def __lowerCamelCase ( __snake_case : Optional[Any], __snake_case : Union[str, Any] ) -> str: """simple docstring""" return int(normalize_answer(__snake_case ) == normalize_answer(__snake_case ) ) def __lowerCamelCase ( __snake_case : Any, __snake_case : Dict ) -> Union[str, Any]: """simple docstring""" A__ : Optional[Any] =get_tokens(__snake_case ) A__ : Union[str, Any] =get_tokens(__snake_case ) A__ : Optional[Any] =collections.Counter(__snake_case ) & collections.Counter(__snake_case ) A__ : Dict =sum(common.values() ) if len(__snake_case ) == 0 or len(__snake_case ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 A__ : Tuple =1.0 * num_same / len(__snake_case ) A__ : Dict =1.0 * num_same / len(__snake_case ) A__ : Tuple =(2 * precision * recall) / (precision + recall) return fa def __lowerCamelCase ( __snake_case : int, __snake_case : Optional[Any] ) -> Any: """simple docstring""" A__ : str ={} A__ : str ={} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: A__ : int =qa["""id"""] A__ : str =[t for t in qa["""answers"""]["""text"""] if normalize_answer(__snake_case )] if not gold_answers: # For unanswerable questions, only correct answer is empty string A__ : int =[""""""] if qid not in preds: print(f"Missing prediction for {qid}" ) continue A__ : Any =preds[qid] # Take max over all gold answers A__ : Union[str, Any] =max(compute_exact(__snake_case, __snake_case ) for a in gold_answers ) A__ : int =max(compute_fa(__snake_case, __snake_case ) for a in gold_answers ) return exact_scores, fa_scores def __lowerCamelCase ( __snake_case : List[Any], __snake_case : Tuple, __snake_case : int, __snake_case : List[str] ) -> List[str]: """simple docstring""" A__ : Union[str, Any] ={} for qid, s in scores.items(): A__ : Dict =na_probs[qid] > na_prob_thresh if pred_na: A__ : Union[str, Any] =float(not qid_to_has_ans[qid] ) else: A__ : Tuple =s return new_scores def __lowerCamelCase ( __snake_case : List[Any], __snake_case : Any, __snake_case : List[Any]=None ) -> Union[str, Any]: """simple docstring""" if not qid_list: A__ : str =len(__snake_case ) return collections.OrderedDict( [ ("""exact""", 1_00.0 * sum(exact_scores.values() ) / total), ("""f1""", 1_00.0 * sum(fa_scores.values() ) / total), ("""total""", total), ] ) else: A__ : List[str] =len(__snake_case ) return collections.OrderedDict( [ ("""exact""", 1_00.0 * sum(exact_scores[k] for k in qid_list ) / total), ("""f1""", 1_00.0 * sum(fa_scores[k] for k in qid_list ) / total), ("""total""", total), ] ) def __lowerCamelCase ( __snake_case : List[Any], __snake_case : Dict, __snake_case : Tuple ) -> List[Any]: """simple docstring""" for k in new_eval: A__ : str =new_eval[k] def __lowerCamelCase ( __snake_case : int, __snake_case : List[str], __snake_case : Any, __snake_case : Optional[int] ) -> Optional[int]: """simple docstring""" plt.step(__snake_case, __snake_case, color="""b""", alpha=0.2, where="""post""" ) plt.fill_between(__snake_case, __snake_case, step="""post""", alpha=0.2, color="""b""" ) plt.xlabel("""Recall""" ) plt.ylabel("""Precision""" ) plt.xlim([0.0, 1.05] ) plt.ylim([0.0, 1.05] ) plt.title(__snake_case ) plt.savefig(__snake_case ) plt.clf() def __lowerCamelCase ( __snake_case : List[Any], __snake_case : str, __snake_case : Tuple, __snake_case : Dict, __snake_case : Any=None, __snake_case : str=None ) -> Tuple: """simple docstring""" A__ : Optional[int] =sorted(__snake_case, key=lambda __snake_case : na_probs[k] ) A__ : Any =0.0 A__ : Any =1.0 A__ : str =0.0 A__ : Tuple =[1.0] A__ : Dict =[0.0] A__ : Optional[int] =0.0 for i, qid in enumerate(__snake_case ): if qid_to_has_ans[qid]: true_pos += scores[qid] A__ : List[Any] =true_pos / float(i + 1 ) A__ : Dict =true_pos / float(__snake_case ) if i == len(__snake_case ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(__snake_case ) recalls.append(__snake_case ) if out_image: plot_pr_curve(__snake_case, __snake_case, __snake_case, __snake_case ) return {"ap": 1_00.0 * avg_prec} def __lowerCamelCase ( __snake_case : Optional[int], __snake_case : List[Any], __snake_case : Union[str, Any], __snake_case : Tuple, __snake_case : List[str], __snake_case : Union[str, Any] ) -> List[str]: """simple docstring""" if out_image_dir and not os.path.exists(__snake_case ): os.makedirs(__snake_case ) A__ : str =sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return A__ : Dict =make_precision_recall_eval( __snake_case, __snake_case, __snake_case, __snake_case, out_image=os.path.join(__snake_case, """pr_exact.png""" ), title="""Precision-Recall curve for Exact Match score""", ) A__ : Union[str, Any] =make_precision_recall_eval( __snake_case, __snake_case, __snake_case, __snake_case, out_image=os.path.join(__snake_case, """pr_f1.png""" ), title="""Precision-Recall curve for F1 score""", ) A__ : Union[str, Any] ={k: float(__snake_case ) for k, v in qid_to_has_ans.items()} A__ : Any =make_precision_recall_eval( __snake_case, __snake_case, __snake_case, __snake_case, out_image=os.path.join(__snake_case, """pr_oracle.png""" ), title="""Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)""", ) merge_eval(__snake_case, __snake_case, """pr_exact""" ) merge_eval(__snake_case, __snake_case, """pr_f1""" ) merge_eval(__snake_case, __snake_case, """pr_oracle""" ) def __lowerCamelCase ( __snake_case : Any, __snake_case : str, __snake_case : Dict, __snake_case : Dict ) -> Tuple: """simple docstring""" if not qid_list: return A__ : Any =[na_probs[k] for k in qid_list] A__ : List[Any] =np.ones_like(__snake_case ) / float(len(__snake_case ) ) plt.hist(__snake_case, weights=__snake_case, bins=20, range=(0.0, 1.0) ) plt.xlabel("""Model probability of no-answer""" ) plt.ylabel("""Proportion of dataset""" ) plt.title(f"Histogram of no-answer probability: {name}" ) plt.savefig(os.path.join(__snake_case, f"na_prob_hist_{name}.png" ) ) plt.clf() def __lowerCamelCase ( __snake_case : Optional[Any], __snake_case : List[str], __snake_case : Optional[Any], __snake_case : str ) -> str: """simple docstring""" A__ : List[str] =sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) A__ : Optional[Any] =num_no_ans A__ : Dict =cur_score A__ : Optional[Any] =0.0 A__ : Optional[Any] =sorted(__snake_case, key=lambda __snake_case : na_probs[k] ) for i, qid in enumerate(__snake_case ): if qid not in scores: continue if qid_to_has_ans[qid]: A__ : Any =scores[qid] else: if preds[qid]: A__ : int =-1 else: A__ : Any =0 cur_score += diff if cur_score > best_score: A__ : str =cur_score A__ : Dict =na_probs[qid] return 1_00.0 * best_score / len(__snake_case ), best_thresh def __lowerCamelCase ( __snake_case : Any, __snake_case : Dict, __snake_case : str, __snake_case : Dict, __snake_case : List[Any], __snake_case : List[Any] ) -> int: """simple docstring""" A__ , A__ : Optional[int] =find_best_thresh(__snake_case, __snake_case, __snake_case, __snake_case ) A__ , A__ : List[Any] =find_best_thresh(__snake_case, __snake_case, __snake_case, __snake_case ) A__ : int =best_exact A__ : int =exact_thresh A__ : List[str] =best_fa A__ : str =fa_thresh def __lowerCamelCase ( ) -> Union[str, Any]: """simple docstring""" with open(OPTS.data_file ) as f: A__ : int =json.load(__snake_case ) A__ : Optional[Any] =dataset_json["""data"""] with open(OPTS.pred_file ) as f: A__ : Dict =json.load(__snake_case ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: A__ : Optional[int] =json.load(__snake_case ) else: A__ : List[Any] ={k: 0.0 for k in preds} A__ : int =make_qid_to_has_ans(__snake_case ) # maps qid to True/False A__ : Optional[int] =[k for k, v in qid_to_has_ans.items() if v] A__ : Dict =[k for k, v in qid_to_has_ans.items() if not v] A__ , A__ : str =get_raw_scores(__snake_case, __snake_case ) A__ : Any =apply_no_ans_threshold(__snake_case, __snake_case, __snake_case, OPTS.na_prob_thresh ) A__ : List[Any] =apply_no_ans_threshold(__snake_case, __snake_case, __snake_case, OPTS.na_prob_thresh ) A__ : Optional[int] =make_eval_dict(__snake_case, __snake_case ) if has_ans_qids: A__ : Any =make_eval_dict(__snake_case, __snake_case, qid_list=__snake_case ) merge_eval(__snake_case, __snake_case, """HasAns""" ) if no_ans_qids: A__ : Any =make_eval_dict(__snake_case, __snake_case, qid_list=__snake_case ) merge_eval(__snake_case, __snake_case, """NoAns""" ) if OPTS.na_prob_file: find_all_best_thresh(__snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(__snake_case, __snake_case, __snake_case, __snake_case, __snake_case, OPTS.out_image_dir ) histogram_na_prob(__snake_case, __snake_case, OPTS.out_image_dir, """hasAns""" ) histogram_na_prob(__snake_case, __snake_case, OPTS.out_image_dir, """noAns""" ) if OPTS.out_file: with open(OPTS.out_file, """w""" ) as f: json.dump(__snake_case, __snake_case ) else: print(json.dumps(__snake_case, indent=2 ) ) if __name__ == "__main__": __snake_case : Tuple = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt main()
136
'''simple docstring''' import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = (CMStochasticIterativeScheduler,) __snake_case = 10 def lowercase__ ( self : List[str] , **lowerCAmelCase_ : Dict ) -> Dict: '''simple docstring''' A__ : int ={ """num_train_timesteps""": 2_01, """sigma_min""": 0.002, """sigma_max""": 80.0, } config.update(**lowerCAmelCase_ ) return config def lowercase__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' A__ : Dict =10 A__ : str =self.get_scheduler_config() A__ : Any =self.scheduler_classes[0](**lowerCAmelCase_ ) scheduler.set_timesteps(lowerCAmelCase_ ) A__ : List[Any] =scheduler.timesteps[0] A__ : Union[str, Any] =scheduler.timesteps[1] A__ : Optional[int] =self.dummy_sample A__ : Union[str, Any] =0.1 * sample A__ : Dict =scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ).prev_sample A__ : int =scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowercase__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=lowerCAmelCase_ ) def lowercase__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=lowerCAmelCase_ ) def lowercase__ ( self : List[Any] ) -> Dict: '''simple docstring''' A__ : Union[str, Any] =self.scheduler_classes[0] A__ : Dict =self.get_scheduler_config() A__ : Any =scheduler_class(**lowerCAmelCase_ ) A__ : int =1 scheduler.set_timesteps(lowerCAmelCase_ ) A__ : Any =scheduler.timesteps A__ : Optional[int] =torch.manual_seed(0 ) A__ : List[Any] =self.dummy_model() A__ : Optional[int] =self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(lowerCAmelCase_ ): # 1. scale model input A__ : Optional[Any] =scheduler.scale_model_input(lowerCAmelCase_ , lowerCAmelCase_ ) # 2. predict noise residual A__ : Union[str, Any] =model(lowerCAmelCase_ , lowerCAmelCase_ ) # 3. predict previous sample x_t-1 A__ : Tuple =scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_ ).prev_sample A__ : Dict =pred_prev_sample A__ : Union[str, Any] =torch.sum(torch.abs(lowerCAmelCase_ ) ) A__ : Optional[Any] =torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 192.7614 ) < 1e-2 assert abs(result_mean.item() - 0.2510 ) < 1e-3 def lowercase__ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' A__ : Dict =self.scheduler_classes[0] A__ : Dict =self.get_scheduler_config() A__ : Tuple =scheduler_class(**lowerCAmelCase_ ) A__ : Tuple =[1_06, 0] scheduler.set_timesteps(timesteps=lowerCAmelCase_ ) A__ : List[Any] =scheduler.timesteps A__ : Optional[Any] =torch.manual_seed(0 ) A__ : int =self.dummy_model() A__ : int =self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input A__ : Any =scheduler.scale_model_input(lowerCAmelCase_ , lowerCAmelCase_ ) # 2. predict noise residual A__ : List[str] =model(lowerCAmelCase_ , lowerCAmelCase_ ) # 3. predict previous sample x_t-1 A__ : Dict =scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_ ).prev_sample A__ : Union[str, Any] =pred_prev_sample A__ : Union[str, Any] =torch.sum(torch.abs(lowerCAmelCase_ ) ) A__ : List[Any] =torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 347.6357 ) < 1e-2 assert abs(result_mean.item() - 0.4527 ) < 1e-3 def lowercase__ ( self : Optional[Any] ) -> Dict: '''simple docstring''' A__ : Optional[Any] =self.scheduler_classes[0] A__ : Union[str, Any] =self.get_scheduler_config() A__ : List[Any] =scheduler_class(**lowerCAmelCase_ ) A__ : Tuple =[39, 30, 12, 15, 0] with self.assertRaises(lowerCAmelCase_ , msg="""`timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=lowerCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' A__ : Union[str, Any] =self.scheduler_classes[0] A__ : List[str] =self.get_scheduler_config() A__ : Tuple =scheduler_class(**lowerCAmelCase_ ) A__ : Dict =[39, 30, 12, 1, 0] A__ : int =len(lowerCAmelCase_ ) with self.assertRaises(lowerCAmelCase_ , msg="""Can only pass one of `num_inference_steps` or `timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=lowerCAmelCase_ , timesteps=lowerCAmelCase_ ) def lowercase__ ( self : Any ) -> Optional[int]: '''simple docstring''' A__ : Optional[Any] =self.scheduler_classes[0] A__ : Any =self.get_scheduler_config() A__ : Optional[int] =scheduler_class(**lowerCAmelCase_ ) A__ : List[str] =[scheduler.config.num_train_timesteps] with self.assertRaises( lowerCAmelCase_ , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=lowerCAmelCase_ )
136
1
import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class __A( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case ) -> int: '''simple docstring''' self.assertEqual(len(_snake_case ) , len(_snake_case ) ) for a, b in zip(_snake_case , _snake_case ): self.assertAlmostEqual(_snake_case , _snake_case , delta=_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> Any: '''simple docstring''' __a = GradientAccumulator() accumulator([tf.constant([1.0, 2.0] )] ) accumulator([tf.constant([-2.0, 1.0] )] ) accumulator([tf.constant([-1.0, 2.0] )] ) with self.assertRaises(_snake_case ): accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] ) self.assertEqual(accumulator.step , 3 ) self.assertEqual(len(accumulator.gradients ) , 1 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1E-2 ) def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' __a = None ops.enable_eager_execution_internal() __a = tf.config.list_physical_devices('''CPU''' ) if len(_snake_case ) == 1: tf.config.set_logical_device_configuration( physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) __a = tf.config.list_logical_devices(device_type='''CPU''' ) __a = tf.distribute.MirroredStrategy(devices=devices[:2] ) with strategy.scope(): __a = GradientAccumulator() __a = tf.Variable([4.0, 3.0] ) __a , __a = create_optimizer(5E-5 , 10 , 5 ) __a = tf.Variable([0.0, 0.0] , trainable=_snake_case ) def accumulate_on_replica(_snake_case ): accumulator([gradient] ) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) ) @tf.function def accumulate(_snake_case , _snake_case ): with strategy.scope(): __a = strategy.experimental_local_results(_snake_case ) local_variables[0].assign(_snake_case ) local_variables[1].assign(_snake_case ) strategy.run(_snake_case , args=(gradient_placeholder,) ) @tf.function def apply_grad(): with strategy.scope(): strategy.run(_snake_case ) def _check_local_values(_snake_case , _snake_case ): __a = strategy.experimental_local_results(accumulator._gradients[0] ) self.assertListAlmostEqual(values[0].value() , _snake_case , tol=1E-2 ) self.assertListAlmostEqual(values[1].value() , _snake_case , tol=1E-2 ) accumulate([1.0, 2.0] , [-1.0, 1.0] ) accumulate([3.0, -1.0] , [-1.0, -1.0] ) accumulate([-2.0, 2.0] , [3.0, -2.0] ) self.assertEqual(accumulator.step , 3 ) _check_local_values([2.0, 3.0] , [1.0, -2.0] ) apply_grad() self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) _check_local_values([0.0, 0.0] , [0.0, 0.0] )
6
"""simple docstring""" # Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version lowercase__ = get_logger(__name__) class lowerCAmelCase__ : '''simple docstring''' lowerCamelCase__ = """dummy_data""" lowerCamelCase__ = """datasets""" lowerCamelCase__ = False def __init__( self , lowercase , lowercase , lowercase , lowercase = None , lowercase = False , lowercase = True , lowercase = None , ): _lowerCamelCase : Optional[Any] = 0 _lowerCamelCase : Dict = dataset_name _lowerCamelCase : Union[str, Any] = cache_dir _lowerCamelCase : Dict = use_local_dummy_data _lowerCamelCase : Tuple = config # download_callbacks take a single url as input _lowerCamelCase : List[Callable] = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root _lowerCamelCase : Any = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general _lowerCamelCase : str = str(lowercase ) # to be downloaded _lowerCamelCase : Union[str, Any] = None _lowerCamelCase : int = None @property def A_ ( self ): if self._dummy_file is None: _lowerCamelCase : Tuple = self.download_dummy_data() return self._dummy_file @property def A_ ( self ): if self.config is not None: # structure is dummy / config_name / version_name return os.path.join('dummy' , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join('dummy' , self.version_name ) @property def A_ ( self ): return os.path.join(self.dummy_data_folder , 'dummy_data.zip' ) def A_ ( self ): _lowerCamelCase : List[str] = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) _lowerCamelCase : int = cached_path( lowercase , cache_dir=self.cache_dir , extract_compressed_file=lowercase , force_extract=lowercase ) return os.path.join(lowercase , self.dummy_file_name ) @property def A_ ( self ): return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def A_ ( self ): if self._bucket_url is None: _lowerCamelCase : List[Any] = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , '/' ) ) return self._bucket_url @property def A_ ( self ): # return full path if its a dir if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , '/' ).split('/' )[:-1] ) def A_ ( self , lowercase , *lowercase ): if self.load_existing_dummy_data: # dummy data is downloaded and tested _lowerCamelCase : Union[str, Any] = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned _lowerCamelCase : Union[str, Any] = self.dummy_file_name # special case when data_url is a dict if isinstance(lowercase , lowercase ): return self.create_dummy_data_dict(lowercase , lowercase ) elif isinstance(lowercase , (list, tuple) ): return self.create_dummy_data_list(lowercase , lowercase ) else: return self.create_dummy_data_single(lowercase , lowercase ) def A_ ( self , lowercase , *lowercase ): return self.download_and_extract(lowercase ) def A_ ( self , lowercase , lowercase ): return self.download_and_extract(lowercase ) def A_ ( self , lowercase , *lowercase , **lowercase ): return path def A_ ( self ): return {} def A_ ( self , lowercase , lowercase ): _lowerCamelCase : Optional[int] = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(lowercase , lowercase ): for single_url in single_urls: download_callback(lowercase ) else: _lowerCamelCase : List[Any] = single_urls download_callback(lowercase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(lowercase , lowercase ): _lowerCamelCase : List[Any] = [os.path.join(lowercase , urllib.parse.quote_plus(Path(lowercase ).name ) ) for x in single_urls] else: _lowerCamelCase : Optional[int] = single_urls _lowerCamelCase : List[Any] = os.path.join(lowercase , urllib.parse.quote_plus(Path(lowercase ).name ) ) _lowerCamelCase : int = value # make sure that values are unique if all(isinstance(lowercase , lowercase ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique _lowerCamelCase : List[Any] = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def A_ ( self , lowercase , lowercase ): _lowerCamelCase : Optional[Any] = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one _lowerCamelCase : List[str] = all(bool(re.findall('[0-9]{3,}-of-[0-9]{3,}' , lowercase ) ) for url in data_url ) _lowerCamelCase : int = all( url.startswith('https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed' ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): _lowerCamelCase : List[str] = [data_url[0]] * len(lowercase ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(lowercase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus _lowerCamelCase : str = os.path.join(lowercase , urllib.parse.quote_plus(single_url.split('/' )[-1] ) ) dummy_data_list.append(lowercase ) return dummy_data_list def A_ ( self , lowercase , lowercase ): for download_callback in self.download_callbacks: download_callback(lowercase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus _lowerCamelCase : Tuple = os.path.join(lowercase , urllib.parse.quote_plus(data_url.split('/' )[-1] ) ) if os.path.exists(lowercase ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def A_ ( self ): pass def A_ ( self ): pass def A_ ( self , lowercase ): def _iter_archive_members(lowercase ): # this preserves the order of the members inside the ZIP archive _lowerCamelCase : str = Path(self.dummy_file ).parent _lowerCamelCase : Union[str, Any] = path.relative_to(lowercase ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: _lowerCamelCase : List[str] = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(lowercase ) _lowerCamelCase : Optional[int] = Path(lowercase ) _lowerCamelCase : Dict = _iter_archive_members(lowercase ) if self.use_local_dummy_data else path.rglob('*' ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith(('.', '__') ): yield file_path.relative_to(lowercase ).as_posix(), file_path.open('rb' ) def A_ ( self , lowercase ): if not isinstance(lowercase , lowercase ): _lowerCamelCase : List[str] = [paths] for path in paths: if os.path.isfile(lowercase ): if os.path.basename(lowercase ).startswith(('.', '__') ): return yield path else: for dirpath, dirnames, filenames in os.walk(lowercase ): if os.path.basename(lowercase ).startswith(('.', '__') ): continue dirnames.sort() for filename in sorted(lowercase ): if filename.startswith(('.', '__') ): continue yield os.path.join(lowercase , lowercase )
96
0
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification def __UpperCAmelCase ( __a : Tuple ) -> Optional[int]: """simple docstring""" _a : List[Any] = SwinvaConfig() _a : Optional[Any] = swinva_name.split('''_''' ) _a : Union[str, Any] = name_split[1] if "to" in name_split[3]: _a : List[str] = int(name_split[3][-3:] ) else: _a : Dict = int(name_split[3] ) if "to" in name_split[2]: _a : List[Any] = int(name_split[2][-2:] ) else: _a : Optional[int] = int(name_split[2][6:] ) if model_size == "tiny": _a : Tuple = 96 _a : Optional[Any] = (2, 2, 6, 2) _a : Any = (3, 6, 12, 24) elif model_size == "small": _a : Dict = 96 _a : Dict = (2, 2, 18, 2) _a : Optional[Any] = (3, 6, 12, 24) elif model_size == "base": _a : Dict = 128 _a : str = (2, 2, 18, 2) _a : Union[str, Any] = (4, 8, 16, 32) else: _a : Dict = 192 _a : List[str] = (2, 2, 18, 2) _a : Any = (6, 12, 24, 48) if "to" in swinva_name: _a : Optional[Any] = (12, 12, 12, 6) if ("22k" in swinva_name) and ("to" not in swinva_name): _a : int = 21_841 _a : str = '''huggingface/label-files''' _a : int = '''imagenet-22k-id2label.json''' _a : Any = json.load(open(hf_hub_download(__a ,__a ,repo_type='''dataset''' ) ,'''r''' ) ) _a : Any = {int(__a ): v for k, v in idalabel.items()} _a : str = idalabel _a : Any = {v: k for k, v in idalabel.items()} else: _a : Optional[Any] = 1_000 _a : str = '''huggingface/label-files''' _a : Optional[int] = '''imagenet-1k-id2label.json''' _a : Optional[int] = json.load(open(hf_hub_download(__a ,__a ,repo_type='''dataset''' ) ,'''r''' ) ) _a : Any = {int(__a ): v for k, v in idalabel.items()} _a : int = idalabel _a : Dict = {v: k for k, v in idalabel.items()} _a : Dict = img_size _a : Any = num_classes _a : str = embed_dim _a : Dict = depths _a : Optional[Any] = num_heads _a : Optional[Any] = window_size return config def __UpperCAmelCase ( __a : Any ) -> str: """simple docstring""" if "patch_embed.proj" in name: _a : Dict = name.replace('''patch_embed.proj''' ,'''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: _a : Tuple = name.replace('''patch_embed.norm''' ,'''embeddings.norm''' ) if "layers" in name: _a : Union[str, Any] = '''encoder.''' + name if "attn.proj" in name: _a : int = name.replace('''attn.proj''' ,'''attention.output.dense''' ) if "attn" in name: _a : int = name.replace('''attn''' ,'''attention.self''' ) if "norm1" in name: _a : Any = name.replace('''norm1''' ,'''layernorm_before''' ) if "norm2" in name: _a : Optional[Any] = name.replace('''norm2''' ,'''layernorm_after''' ) if "mlp.fc1" in name: _a : Any = name.replace('''mlp.fc1''' ,'''intermediate.dense''' ) if "mlp.fc2" in name: _a : str = name.replace('''mlp.fc2''' ,'''output.dense''' ) if "q_bias" in name: _a : Dict = name.replace('''q_bias''' ,'''query.bias''' ) if "k_bias" in name: _a : List[Any] = name.replace('''k_bias''' ,'''key.bias''' ) if "v_bias" in name: _a : Dict = name.replace('''v_bias''' ,'''value.bias''' ) if "cpb_mlp" in name: _a : List[Any] = name.replace('''cpb_mlp''' ,'''continuous_position_bias_mlp''' ) if name == "norm.weight": _a : str = '''layernorm.weight''' if name == "norm.bias": _a : Optional[Any] = '''layernorm.bias''' if "head" in name: _a : Any = name.replace('''head''' ,'''classifier''' ) else: _a : Optional[int] = '''swinv2.''' + name return name def __UpperCAmelCase ( __a : Tuple ,__a : Optional[int] ) -> Any: """simple docstring""" for key in orig_state_dict.copy().keys(): _a : Any = orig_state_dict.pop(__a ) if "mask" in key: continue elif "qkv" in key: _a : List[Any] = key.split('''.''' ) _a : Union[str, Any] = int(key_split[1] ) _a : Optional[int] = int(key_split[3] ) _a : List[str] = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: _a : Any = val[:dim, :] _a : Tuple = val[dim : dim * 2, :] _a : Optional[Any] = val[-dim:, :] else: _a : Optional[int] = val[:dim] _a : List[str] = val[ dim : dim * 2 ] _a : Any = val[-dim:] else: _a : List[str] = val return orig_state_dict def __UpperCAmelCase ( __a : List[Any] ,__a : Dict ) -> Any: """simple docstring""" _a : Any = timm.create_model(__a ,pretrained=__a ) timm_model.eval() _a : Optional[int] = get_swinva_config(__a ) _a : str = SwinvaForImageClassification(__a ) model.eval() _a : Union[str, Any] = convert_state_dict(timm_model.state_dict() ,__a ) model.load_state_dict(__a ) _a : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _a : Dict = AutoImageProcessor.from_pretrained('''microsoft/{}'''.format(swinva_name.replace('''_''' ,'''-''' ) ) ) _a : Tuple = Image.open(requests.get(__a ,stream=__a ).raw ) _a : Dict = image_processor(images=__a ,return_tensors='''pt''' ) _a : Any = timm_model(inputs['''pixel_values'''] ) _a : List[str] = model(**__a ).logits assert torch.allclose(__a ,__a ,atol=1E-3 ) print(F"""Saving model {swinva_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__a ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__a ) model.push_to_hub( repo_path_or_name=Path(__a ,__a ) ,organization='''nandwalritik''' ,commit_message='''Add model''' ,) if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swinv2_name''', default='''swinv2_tiny_patch4_window8_256''', type=str, help='''Name of the Swinv2 timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) a__ = parser.parse_args() convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
358
def __UpperCAmelCase ( __a : int ) -> int: """simple docstring""" if n == 1 or not isinstance(__a ,__a ): return 0 elif n == 2: return 1 else: _a : Any = [0, 1] for i in range(2 ,n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def __UpperCAmelCase ( __a : int ) -> int: """simple docstring""" _a : Any = 0 _a : Dict = 2 while digits < n: index += 1 _a : Dict = len(str(fibonacci(__a ) ) ) return index def __UpperCAmelCase ( __a : int = 1_000 ) -> int: """simple docstring""" return fibonacci_digits_index(__a ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
15
0
"""simple docstring""" import argparse import os import shutil from pathlib import Path import onnx import torch from packaging import version from torch.onnx import export from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, StableDiffusionPipeline _UpperCAmelCase = version.parse(version.parse(torch.__version__).base_version) < version.parse("""1.11""") def __magic_name__ ( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase=False , ): output_path.parent.mkdir(parents=lowercase , exist_ok=lowercase ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( lowercase , lowercase , f=output_path.as_posix() , input_names=lowercase , output_names=lowercase , dynamic_axes=lowercase , do_constant_folding=lowercase , use_external_data_format=lowercase , enable_onnx_checker=lowercase , opset_version=lowercase , ) else: export( lowercase , lowercase , f=output_path.as_posix() , input_names=lowercase , output_names=lowercase , dynamic_axes=lowercase , do_constant_folding=lowercase , opset_version=lowercase , ) @torch.no_grad() def __magic_name__ ( lowercase , lowercase , lowercase , lowercase = False ): SCREAMING_SNAKE_CASE_: Optional[Any] =torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): SCREAMING_SNAKE_CASE_: Any ="""cuda""" elif fpaa and not torch.cuda.is_available(): raise ValueError("""`float16` model export is only supported on GPUs with CUDA""" ) else: SCREAMING_SNAKE_CASE_: Optional[int] ="""cpu""" SCREAMING_SNAKE_CASE_: str =StableDiffusionPipeline.from_pretrained(lowercase , torch_dtype=lowercase ).to(lowercase ) SCREAMING_SNAKE_CASE_: Union[str, Any] =Path(lowercase ) # TEXT ENCODER SCREAMING_SNAKE_CASE_: str =pipeline.text_encoder.config.max_position_embeddings SCREAMING_SNAKE_CASE_: List[Any] =pipeline.text_encoder.config.hidden_size SCREAMING_SNAKE_CASE_: Dict =pipeline.tokenizer( """A sample prompt""" , padding="""max_length""" , max_length=pipeline.tokenizer.model_max_length , truncation=lowercase , return_tensors="""pt""" , ) onnx_export( pipeline.text_encoder , model_args=(text_input.input_ids.to(device=lowercase , dtype=torch.intaa )) , output_path=output_path / """text_encoder""" / """model.onnx""" , ordered_input_names=["""input_ids"""] , output_names=["""last_hidden_state""", """pooler_output"""] , dynamic_axes={ """input_ids""": {0: """batch""", 1: """sequence"""}, } , opset=lowercase , ) del pipeline.text_encoder # UNET SCREAMING_SNAKE_CASE_: List[str] =pipeline.unet.config.in_channels SCREAMING_SNAKE_CASE_: List[Any] =pipeline.unet.config.sample_size SCREAMING_SNAKE_CASE_: Union[str, Any] =output_path / """unet""" / """model.onnx""" onnx_export( pipeline.unet , model_args=( torch.randn(2 , lowercase , lowercase , lowercase ).to(device=lowercase , dtype=lowercase ), torch.randn(2 ).to(device=lowercase , dtype=lowercase ), torch.randn(2 , lowercase , lowercase ).to(device=lowercase , dtype=lowercase ), False, ) , output_path=lowercase , ordered_input_names=["""sample""", """timestep""", """encoder_hidden_states""", """return_dict"""] , output_names=["""out_sample"""] , dynamic_axes={ """sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, """timestep""": {0: """batch"""}, """encoder_hidden_states""": {0: """batch""", 1: """sequence"""}, } , opset=lowercase , use_external_data_format=lowercase , ) SCREAMING_SNAKE_CASE_: List[Any] =str(unet_path.absolute().as_posix() ) SCREAMING_SNAKE_CASE_: Union[str, Any] =os.path.dirname(lowercase ) SCREAMING_SNAKE_CASE_: Union[str, Any] =onnx.load(lowercase ) # clean up existing tensor files shutil.rmtree(lowercase ) os.mkdir(lowercase ) # collate external tensor files into one onnx.save_model( lowercase , lowercase , save_as_external_data=lowercase , all_tensors_to_one_file=lowercase , location="""weights.pb""" , convert_attribute=lowercase , ) del pipeline.unet # VAE ENCODER SCREAMING_SNAKE_CASE_: Any =pipeline.vae SCREAMING_SNAKE_CASE_: Any =vae_encoder.config.in_channels SCREAMING_SNAKE_CASE_: int =vae_encoder.config.sample_size # need to get the raw tensor output (sample) from the encoder SCREAMING_SNAKE_CASE_: int =lambda lowercase , lowercase : vae_encoder.encode(lowercase , lowercase )[0].sample() onnx_export( lowercase , model_args=( torch.randn(1 , lowercase , lowercase , lowercase ).to(device=lowercase , dtype=lowercase ), False, ) , output_path=output_path / """vae_encoder""" / """model.onnx""" , ordered_input_names=["""sample""", """return_dict"""] , output_names=["""latent_sample"""] , dynamic_axes={ """sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, } , opset=lowercase , ) # VAE DECODER SCREAMING_SNAKE_CASE_: Dict =pipeline.vae SCREAMING_SNAKE_CASE_: List[str] =vae_decoder.config.latent_channels SCREAMING_SNAKE_CASE_: str =vae_decoder.config.out_channels # forward only through the decoder part SCREAMING_SNAKE_CASE_: str =vae_encoder.decode onnx_export( lowercase , model_args=( torch.randn(1 , lowercase , lowercase , lowercase ).to(device=lowercase , dtype=lowercase ), False, ) , output_path=output_path / """vae_decoder""" / """model.onnx""" , ordered_input_names=["""latent_sample""", """return_dict"""] , output_names=["""sample"""] , dynamic_axes={ """latent_sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, } , opset=lowercase , ) del pipeline.vae # SAFETY CHECKER if pipeline.safety_checker is not None: SCREAMING_SNAKE_CASE_: Union[str, Any] =pipeline.safety_checker SCREAMING_SNAKE_CASE_: str =safety_checker.config.vision_config.num_channels SCREAMING_SNAKE_CASE_: Optional[int] =safety_checker.config.vision_config.image_size SCREAMING_SNAKE_CASE_: Optional[int] =safety_checker.forward_onnx onnx_export( pipeline.safety_checker , model_args=( torch.randn( 1 , lowercase , lowercase , lowercase , ).to(device=lowercase , dtype=lowercase ), torch.randn(1 , lowercase , lowercase , lowercase ).to(device=lowercase , dtype=lowercase ), ) , output_path=output_path / """safety_checker""" / """model.onnx""" , ordered_input_names=["""clip_input""", """images"""] , output_names=["""out_images""", """has_nsfw_concepts"""] , dynamic_axes={ """clip_input""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, """images""": {0: """batch""", 1: """height""", 2: """width""", 3: """channels"""}, } , opset=lowercase , ) del pipeline.safety_checker SCREAMING_SNAKE_CASE_: Optional[int] =OnnxRuntimeModel.from_pretrained(output_path / """safety_checker""" ) SCREAMING_SNAKE_CASE_: Any =pipeline.feature_extractor else: SCREAMING_SNAKE_CASE_: Optional[Any] =None SCREAMING_SNAKE_CASE_: str =None SCREAMING_SNAKE_CASE_: Optional[Any] =OnnxStableDiffusionPipeline( vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / """vae_encoder""" ) , vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / """vae_decoder""" ) , text_encoder=OnnxRuntimeModel.from_pretrained(output_path / """text_encoder""" ) , tokenizer=pipeline.tokenizer , unet=OnnxRuntimeModel.from_pretrained(output_path / """unet""" ) , scheduler=pipeline.scheduler , safety_checker=lowercase , feature_extractor=lowercase , requires_safety_checker=safety_checker is not None , ) onnx_pipeline.save_pretrained(lowercase ) print("""ONNX pipeline saved to""" , lowercase ) del pipeline del onnx_pipeline SCREAMING_SNAKE_CASE_: Any =OnnxStableDiffusionPipeline.from_pretrained(lowercase , provider="""CPUExecutionProvider""" ) print("""ONNX pipeline is loadable""" ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( """--model_path""", type=str, required=True, help="""Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).""", ) parser.add_argument("""--output_path""", type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--opset""", default=1_4, type=int, help="""The version of the ONNX operator set to use.""", ) parser.add_argument("""--fp16""", action="""store_true""", default=False, help="""Export the models in `float16` mode""") _UpperCAmelCase = parser.parse_args() convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
173
"""simple docstring""" from __future__ import annotations import numpy as np def __magic_name__ ( lowercase ): return np.maximum(0 , lowercase ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
173
1
from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class _SCREAMING_SNAKE_CASE : def __init__( self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=True , lowercase=True , lowercase=True , lowercase=99 , lowercase=32 , lowercase=2 , lowercase=4 , lowercase=37 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=16 , lowercase=2 , lowercase=0.0_2 , lowercase=3 , lowercase=4 , lowercase=None , ) -> List[Any]: lowerCamelCase_ = parent lowerCamelCase_ = 13 lowerCamelCase_ = 7 lowerCamelCase_ = True lowerCamelCase_ = True lowerCamelCase_ = True lowerCamelCase_ = True lowerCamelCase_ = 99 lowerCamelCase_ = 32 lowerCamelCase_ = 2 lowerCamelCase_ = 4 lowerCamelCase_ = 37 lowerCamelCase_ = "gelu" lowerCamelCase_ = 0.1 lowerCamelCase_ = 0.1 lowerCamelCase_ = 512 lowerCamelCase_ = 16 lowerCamelCase_ = 2 lowerCamelCase_ = 0.0_2 lowerCamelCase_ = 3 lowerCamelCase_ = 4 lowerCamelCase_ = None def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ = None if self.use_input_mask: lowerCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ = None if self.use_token_type_ids: lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase_ = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase_ = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=lowercase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Union[str, Any]: lowerCamelCase_ = TFRoFormerModel(config=lowercase ) lowerCamelCase_ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowerCamelCase_ = [input_ids, input_mask] lowerCamelCase_ = model(lowercase ) lowerCamelCase_ = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> List[str]: lowerCamelCase_ = True lowerCamelCase_ = TFRoFormerForCausalLM(config=lowercase ) lowerCamelCase_ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } lowerCamelCase_ = model(lowercase )["logits"] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[int]: lowerCamelCase_ = TFRoFormerForMaskedLM(config=lowercase ) lowerCamelCase_ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } lowerCamelCase_ = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Union[str, Any]: lowerCamelCase_ = self.num_labels lowerCamelCase_ = TFRoFormerForSequenceClassification(config=lowercase ) lowerCamelCase_ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } lowerCamelCase_ = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> List[str]: lowerCamelCase_ = self.num_choices lowerCamelCase_ = TFRoFormerForMultipleChoice(config=lowercase ) lowerCamelCase_ = tf.tile(tf.expand_dims(lowercase , 1 ) , (1, self.num_choices, 1) ) lowerCamelCase_ = tf.tile(tf.expand_dims(lowercase , 1 ) , (1, self.num_choices, 1) ) lowerCamelCase_ = tf.tile(tf.expand_dims(lowercase , 1 ) , (1, self.num_choices, 1) ) lowerCamelCase_ = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } lowerCamelCase_ = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[int]: lowerCamelCase_ = self.num_labels lowerCamelCase_ = TFRoFormerForTokenClassification(config=lowercase ) lowerCamelCase_ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } lowerCamelCase_ = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Dict: lowerCamelCase_ = TFRoFormerForQuestionAnswering(config=lowercase ) lowerCamelCase_ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } lowerCamelCase_ = model(lowercase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE_( self ) -> Any: lowerCamelCase_ = self.prepare_config_and_inputs() ( ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ) = config_and_inputs lowerCamelCase_ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class _SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ , unittest.TestCase ): lowerCAmelCase__ = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) lowerCAmelCase__ = ( { 'feature-extraction': TFRoFormerModel, 'fill-mask': TFRoFormerForMaskedLM, 'question-answering': TFRoFormerForQuestionAnswering, 'text-classification': TFRoFormerForSequenceClassification, 'text-generation': TFRoFormerForCausalLM, 'token-classification': TFRoFormerForTokenClassification, 'zero-shot': TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = False def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , lowercase ) -> List[str]: if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def SCREAMING_SNAKE_CASE_( self ) -> int: lowerCamelCase_ = TFRoFormerModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=lowercase , hidden_size=37 ) def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_( self ) -> Union[str, Any]: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Any: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> int: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Tuple: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Tuple: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Dict: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase ) @slow def SCREAMING_SNAKE_CASE_( self ) -> Union[str, Any]: lowerCamelCase_ = TFRoFormerModel.from_pretrained("junnyu/roformer_chinese_base" ) self.assertIsNotNone(lowercase ) @require_tf class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE_( self ) -> Any: lowerCamelCase_ = TFRoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_base" ) lowerCamelCase_ = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCamelCase_ = model(lowercase )[0] # TODO Replace vocab size lowerCamelCase_ = 50000 lowerCamelCase_ = [1, 6, vocab_size] self.assertEqual(output.shape , lowercase ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. lowerCamelCase_ = tf.constant( [ [ [-0.1_2_0_5_3_3_4_1, -1.0_2_6_4_9_0_1, 0.2_9_2_2_1_9_4_6], [-1.5_1_3_3_7_8_3, 0.1_9_7_4_3_3, 0.1_5_1_9_0_6_0_7], [-5.0_1_3_5_4_0_3, -3.9_0_0_2_5_6, -0.8_4_0_3_8_7_6_4], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , lowercase , atol=1e-4 ) @require_tf class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): lowerCAmelCase__ = 1e-4 def SCREAMING_SNAKE_CASE_( self ) -> List[str]: lowerCamelCase_ = tf.constant([[4, 10]] ) lowerCamelCase_ = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) lowerCamelCase_ = emba(input_ids.shape ) lowerCamelCase_ = tf.constant( [[0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 1.0_0_0_0, 1.0_0_0_0, 1.0_0_0_0], [0.8_4_1_5, 0.0_4_6_4, 0.0_0_2_2, 0.5_4_0_3, 0.9_9_8_9, 1.0_0_0_0]] ) tf.debugging.assert_near(lowercase , lowercase , atol=self.tolerance ) def SCREAMING_SNAKE_CASE_( self ) -> List[str]: lowerCamelCase_ = tf.constant( [ [0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0], [0.8_4_1_5, 0.8_2_1_9, 0.8_0_2_0, 0.7_8_1_9, 0.7_6_1_7], [0.9_0_9_3, 0.9_3_6_4, 0.9_5_8_1, 0.9_7_4_9, 0.9_8_7_0], ] ) lowerCamelCase_ = TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) lowerCamelCase_ = emba.weight[:3, :5] tf.debugging.assert_near(lowercase , lowercase , atol=self.tolerance ) @require_tf class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): lowerCAmelCase__ = 1e-4 def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: # 2,12,16,64 lowerCamelCase_ = tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowerCamelCase_ = -tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowerCamelCase_ = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) lowerCamelCase_ = embed_positions([2, 16, 768] )[None, None, :, :] lowerCamelCase_ , lowerCamelCase_ = TFRoFormerSelfAttention.apply_rotary_position_embeddings( lowercase , lowercase , lowercase ) lowerCamelCase_ = tf.constant( [ [0.0_0_0_0, 0.0_1_0_0, 0.0_2_0_0, 0.0_3_0_0, 0.0_4_0_0, 0.0_5_0_0, 0.0_6_0_0, 0.0_7_0_0], [-0.2_0_1_2, 0.8_8_9_7, 0.0_2_6_3, 0.9_4_0_1, 0.2_0_7_4, 0.9_4_6_3, 0.3_4_8_1, 0.9_3_4_3], [-1.7_0_5_7, 0.6_2_7_1, -1.2_1_4_5, 1.3_8_9_7, -0.6_3_0_3, 1.7_6_4_7, -0.1_1_7_3, 1.8_9_8_5], [-2.1_7_3_1, -1.6_3_9_7, -2.7_3_5_8, 0.2_8_5_4, -2.1_8_4_0, 1.7_1_8_3, -1.3_0_1_8, 2.4_8_7_1], [0.2_7_1_7, -3.6_1_7_3, -2.9_2_0_6, -2.1_9_8_8, -3.6_6_3_8, 0.3_8_5_8, -2.9_1_5_5, 2.2_9_8_0], [3.9_8_5_9, -2.1_5_8_0, -0.7_9_8_4, -4.4_9_0_4, -4.1_1_8_1, -2.0_2_5_2, -4.4_7_8_2, 1.1_2_5_3], ] ) lowerCamelCase_ = tf.constant( [ [0.0_0_0_0, -0.0_1_0_0, -0.0_2_0_0, -0.0_3_0_0, -0.0_4_0_0, -0.0_5_0_0, -0.0_6_0_0, -0.0_7_0_0], [0.2_0_1_2, -0.8_8_9_7, -0.0_2_6_3, -0.9_4_0_1, -0.2_0_7_4, -0.9_4_6_3, -0.3_4_8_1, -0.9_3_4_3], [1.7_0_5_7, -0.6_2_7_1, 1.2_1_4_5, -1.3_8_9_7, 0.6_3_0_3, -1.7_6_4_7, 0.1_1_7_3, -1.8_9_8_5], [2.1_7_3_1, 1.6_3_9_7, 2.7_3_5_8, -0.2_8_5_4, 2.1_8_4_0, -1.7_1_8_3, 1.3_0_1_8, -2.4_8_7_1], [-0.2_7_1_7, 3.6_1_7_3, 2.9_2_0_6, 2.1_9_8_8, 3.6_6_3_8, -0.3_8_5_8, 2.9_1_5_5, -2.2_9_8_0], [-3.9_8_5_9, 2.1_5_8_0, 0.7_9_8_4, 4.4_9_0_4, 4.1_1_8_1, 2.0_2_5_2, 4.4_7_8_2, -1.1_2_5_3], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , lowercase , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , lowercase , atol=self.tolerance )
47
import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": __A =pd.read_csv('''sample_data.csv''', header=None) __A =df.shape[:1][0] # If you're using some other dataset input the target column __A =df.iloc[:, 1:2] __A =actual_data.values.reshape(len_data, 1) __A =MinMaxScaler().fit_transform(actual_data) __A =1_0 __A =5 __A =2_0 __A =len_data - periods * look_back __A =actual_data[:division] __A =actual_data[division - look_back :] __A, __A =[], [] __A, __A =[], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) __A =np.array(train_x) __A =np.array(test_x) __A =np.array([list(i.ravel()) for i in train_y]) __A =np.array([list(i.ravel()) for i in test_y]) __A =Sequential() model.add(LSTM(1_2_8, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(6_4, input_shape=(1_2_8, 1))) model.add(Dense(forward_days)) model.compile(loss='''mean_squared_error''', optimizer='''adam''') __A =model.fit( x_train, y_train, epochs=1_5_0, verbose=1, shuffle=True, batch_size=4 ) __A =model.predict(x_test)
47
1
__lowercase = { '''A''': ['''B''', '''C''', '''E'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F''', '''G'''], '''D''': ['''B'''], '''E''': ['''A''', '''B''', '''D'''], '''F''': ['''C'''], '''G''': ['''C'''], } def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Optional[int] = set() # keep track of all the paths to be checked __UpperCamelCase :Any = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue __UpperCamelCase :Optional[Any] = queue.pop(0 ) # get the last node from the path __UpperCamelCase :List[Any] = path[-1] if node not in explored: __UpperCamelCase :str = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: __UpperCamelCase :List[str] = list(SCREAMING_SNAKE_CASE ) new_path.append(SCREAMING_SNAKE_CASE ) queue.append(SCREAMING_SNAKE_CASE ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(SCREAMING_SNAKE_CASE ) # in case there's no path between the 2 nodes return [] def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 __UpperCamelCase :int = [start] __UpperCamelCase :List[str] = set(SCREAMING_SNAKE_CASE ) # Keep tab on distances from `start` node. __UpperCamelCase :Any = {start: 0, target: -1} while queue: __UpperCamelCase :Optional[int] = queue.pop(0 ) if node == target: __UpperCamelCase :Tuple = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(SCREAMING_SNAKE_CASE ) queue.append(SCREAMING_SNAKE_CASE ) __UpperCamelCase :Optional[int] = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, '''G''', '''D''')) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, '''G''', '''D''')) # returns 4
43
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class __snake_case ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase__ ( self : Any , A : Union[str, Any] ): for model_result in results.values(): for batch_size, sequence_length in zip(model_result["""bs"""] , model_result["""ss"""] ): __snake_case: Dict = model_result["""result"""][batch_size][sequence_length] self.assertIsNotNone(A ) def UpperCAmelCase__ ( self : List[Any] ): __snake_case: List[Any] = """sshleifer/tiny-gpt2""" __snake_case: Union[str, Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=A , multi_process=A , ) __snake_case: Dict = TensorFlowBenchmark(A ) __snake_case: List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase__ ( self : Optional[int] ): __snake_case: Optional[int] = """sgugger/tiny-distilbert-classification""" __snake_case: str = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , only_pretrain_model=A , ) __snake_case: Any = TensorFlowBenchmark(A ) __snake_case: List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase__ ( self : int ): __snake_case: Dict = """sshleifer/tiny-gpt2""" __snake_case: Union[str, Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) __snake_case: int = TensorFlowBenchmark(A ) __snake_case: str = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase__ ( self : List[Any] ): __snake_case: List[Any] = """sshleifer/tiny-gpt2""" __snake_case: int = AutoConfig.from_pretrained(A ) __snake_case: Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=A , multi_process=A , ) __snake_case: Union[str, Any] = TensorFlowBenchmark(A , [config] ) __snake_case: Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase__ ( self : Any ): __snake_case: Optional[int] = """sshleifer/tiny-gpt2""" __snake_case: Tuple = AutoConfig.from_pretrained(A ) __snake_case: Union[str, Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) __snake_case: str = TensorFlowBenchmark(A , [config] ) __snake_case: str = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase__ ( self : Any ): __snake_case: Tuple = """sshleifer/tiny-gpt2""" __snake_case: str = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) __snake_case: Tuple = TensorFlowBenchmark(A ) __snake_case: Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCAmelCase__ ( self : int ): __snake_case: Dict = """sshleifer/tiny-gpt2""" __snake_case: Union[str, Any] = AutoConfig.from_pretrained(A ) __snake_case: Optional[int] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) __snake_case: List[str] = TensorFlowBenchmark(A , [config] ) __snake_case: Dict = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCAmelCase__ ( self : List[str] ): __snake_case: List[Any] = """patrickvonplaten/t5-tiny-random""" __snake_case: List[str] = AutoConfig.from_pretrained(A ) __snake_case: List[str] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) __snake_case: Optional[int] = TensorFlowBenchmark(A , configs=[config] ) __snake_case: Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , """Cannot do xla on CPU.""" ) def UpperCAmelCase__ ( self : Optional[Any] ): __snake_case: Optional[Any] = """sshleifer/tiny-gpt2""" __snake_case: List[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , use_xla=A , multi_process=A , ) __snake_case: Union[str, Any] = TensorFlowBenchmark(A ) __snake_case: List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase__ ( self : Union[str, Any] ): __snake_case: List[str] = """sshleifer/tiny-gpt2""" with tempfile.TemporaryDirectory() as tmp_dir: __snake_case: int = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=A , save_to_csv=A , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(A , """inf_time.csv""" ) , inference_memory_csv_file=os.path.join(A , """inf_mem.csv""" ) , env_info_csv_file=os.path.join(A , """env.csv""" ) , multi_process=A , ) __snake_case: Tuple = TensorFlowBenchmark(A ) benchmark.run() self.assertTrue(Path(os.path.join(A , """inf_time.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(A , """inf_mem.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(A , """env.csv""" ) ).exists() ) def UpperCAmelCase__ ( self : Optional[int] ): __snake_case: Any = """sshleifer/tiny-gpt2""" def _check_summary_is_not_empty(A : Union[str, Any] ): self.assertTrue(hasattr(A , """sequential""" ) ) self.assertTrue(hasattr(A , """cumulative""" ) ) self.assertTrue(hasattr(A , """current""" ) ) self.assertTrue(hasattr(A , """total""" ) ) with tempfile.TemporaryDirectory() as tmp_dir: __snake_case: Union[str, Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=A , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(A , """log.txt""" ) , log_print=A , trace_memory_line_by_line=A , eager_mode=A , multi_process=A , ) __snake_case: Dict = TensorFlowBenchmark(A ) __snake_case: List[str] = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(A , """log.txt""" ) ).exists() )
111
0
'''simple docstring''' from collections import defaultdict def _A (lowerCAmelCase__ :int ) -> int: '''simple docstring''' _a = 1 _a = True for v in tree[start]: if v not in visited: ret += dfs(lowerCAmelCase__ ) if ret % 2 == 0: cuts.append(lowerCAmelCase__ ) return ret def _A () -> int: '''simple docstring''' dfs(1 ) if __name__ == "__main__": a_ , a_ : List[Any] = 1_0, 9 a_ : Dict = defaultdict(list) a_ : dict[int, bool] = {} a_ : list[int] = [] a_ : Optional[Any] = 0 a_ : Tuple = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (1_0, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
104
'''simple docstring''' import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 a_ : Tuple = get_tests_dir("fixtures") class a ( unittest.TestCase ): def __UpperCAmelCase ( self ) -> str: # A mock response for an HTTP head request to emulate server down _a = mock.Mock() _a = 5_00 _a = {} _a = HTTPError _a = {} # Download this model to make sure it's in the cache. _a = ViTImageProcessor.from_pretrained('hf-internal-testing/tiny-random-vit' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' , return_value=__magic_name__ ) as mock_head: _a = ViTImageProcessor.from_pretrained('hf-internal-testing/tiny-random-vit' ) # This check we did call the fake head request mock_head.assert_called() def __UpperCAmelCase ( self ) -> Optional[int]: # This test is for deprecated behavior and can be removed in v5 _a = ViTImageProcessor.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json' ) def __UpperCAmelCase ( self ) -> Dict: with self.assertRaises(__magic_name__ ): # config is in subfolder, the following should not work without specifying the subfolder _a = AutoImageProcessor.from_pretrained('hf-internal-testing/stable-diffusion-all-variants' ) _a = AutoImageProcessor.from_pretrained( 'hf-internal-testing/stable-diffusion-all-variants' , subfolder='feature_extractor' ) self.assertIsNotNone(__magic_name__ ) @is_staging_test class a ( unittest.TestCase ): @classmethod def __UpperCAmelCase ( cls ) -> Dict: _a = TOKEN HfFolder.save_token(__magic_name__ ) @classmethod def __UpperCAmelCase ( cls ) -> List[Any]: try: delete_repo(token=cls._token , repo_id='test-image-processor' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-image-processor-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-image-processor' ) except HTTPError: pass def __UpperCAmelCase ( self ) -> str: _a = ViTImageProcessor.from_pretrained(__magic_name__ ) image_processor.push_to_hub('test-image-processor' , use_auth_token=self._token ) _a = ViTImageProcessor.from_pretrained(f'{USER}/test-image-processor' ) for k, v in image_processor.__dict__.items(): self.assertEqual(__magic_name__ , getattr(__magic_name__ , __magic_name__ ) ) # Reset repo delete_repo(token=self._token , repo_id='test-image-processor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( __magic_name__ , repo_id='test-image-processor' , push_to_hub=__magic_name__ , use_auth_token=self._token ) _a = ViTImageProcessor.from_pretrained(f'{USER}/test-image-processor' ) for k, v in image_processor.__dict__.items(): self.assertEqual(__magic_name__ , getattr(__magic_name__ , __magic_name__ ) ) def __UpperCAmelCase ( self ) -> Optional[Any]: _a = ViTImageProcessor.from_pretrained(__magic_name__ ) image_processor.push_to_hub('valid_org/test-image-processor' , use_auth_token=self._token ) _a = ViTImageProcessor.from_pretrained('valid_org/test-image-processor' ) for k, v in image_processor.__dict__.items(): self.assertEqual(__magic_name__ , getattr(__magic_name__ , __magic_name__ ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-image-processor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( __magic_name__ , repo_id='valid_org/test-image-processor-org' , push_to_hub=__magic_name__ , use_auth_token=self._token ) _a = ViTImageProcessor.from_pretrained('valid_org/test-image-processor-org' ) for k, v in image_processor.__dict__.items(): self.assertEqual(__magic_name__ , getattr(__magic_name__ , __magic_name__ ) ) def __UpperCAmelCase ( self ) -> Any: CustomImageProcessor.register_for_auto_class() _a = CustomImageProcessor.from_pretrained(__magic_name__ ) image_processor.push_to_hub('test-dynamic-image-processor' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {'AutoImageProcessor': 'custom_image_processing.CustomImageProcessor'} , ) _a = AutoImageProcessor.from_pretrained( f'{USER}/test-dynamic-image-processor' , trust_remote_code=__magic_name__ ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , 'CustomImageProcessor' )
104
1
'''simple docstring''' def SCREAMING_SNAKE_CASE( ) -> int: return 1 def SCREAMING_SNAKE_CASE( __lowercase ) -> int: return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def SCREAMING_SNAKE_CASE( __lowercase ) -> int: return 0 if x < 0 else five_pence(x - 5 ) + two_pence(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE( __lowercase ) -> int: return 0 if x < 0 else ten_pence(x - 1_0 ) + five_pence(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE( __lowercase ) -> int: return 0 if x < 0 else twenty_pence(x - 2_0 ) + ten_pence(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE( __lowercase ) -> int: return 0 if x < 0 else fifty_pence(x - 5_0 ) + twenty_pence(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE( __lowercase ) -> int: return 0 if x < 0 else one_pound(x - 1_0_0 ) + fifty_pence(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE( __lowercase ) -> int: return 0 if x < 0 else two_pound(x - 2_0_0 ) + one_pound(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE( __lowercase = 2_0_0 ) -> int: return two_pound(UpperCamelCase__ ) if __name__ == "__main__": print(solution(int(input().strip())))
319
import random def UpperCamelCase__( UpperCamelCase__ : list , UpperCamelCase__ : List[Any] )->tuple: A__ , A__ , A__ = [], [], [] for element in data: if element < pivot: less.append(UpperCamelCase__ ) elif element > pivot: greater.append(UpperCamelCase__ ) else: equal.append(UpperCamelCase__ ) return less, equal, greater def UpperCamelCase__( UpperCamelCase__ : list , UpperCamelCase__ : int )->Optional[int]: # index = len(items) // 2 when trying to find the median # (value of index when items is sorted) # invalid input if index >= len(UpperCamelCase__ ) or index < 0: return None A__ = items[random.randint(0 , len(UpperCamelCase__ ) - 1 )] A__ = 0 A__ , A__ , A__ = _partition(UpperCamelCase__ , UpperCamelCase__ ) A__ = len(UpperCamelCase__ ) A__ = len(UpperCamelCase__ ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(UpperCamelCase__ , UpperCamelCase__ ) # must be in larger else: return quick_select(UpperCamelCase__ , index - (m + count) )
193
0
'''simple docstring''' def _lowercase ( __A ,__A ): '''simple docstring''' __UpperCamelCase = int(__A ) # Initialize Result __UpperCamelCase = [] # Traverse through all denomination for denomination in reversed(__A ): # Find denominations while int(__A ) >= int(__A ): total_value -= int(__A ) answer.append(__A ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": a__ : List[Any] = [] a__ : Any = '0' if ( input('Do you want to enter your denominations ? (yY/n): ').strip().lower() == "y" ): a__ : List[Any] = int(input('Enter the number of denominations you want to add: ').strip()) for i in range(0, n): denominations.append(int(input(f'''Denomination {i}: ''').strip())) a__ : Optional[int] = input('Enter the change you want to make in Indian Currency: ').strip() else: # All denominations of Indian Currency if user does not enter a__ : List[str] = [1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 5_0_0, 2_0_0_0] a__ : Tuple = input('Enter the change you want to make: ').strip() if int(value) == 0 or int(value) < 0: print('The total value cannot be zero or negative.') else: print(f'''Following is minimal change for {value}: ''') a__ : Tuple = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=' ')
243
'''simple docstring''' import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": a__ : Optional[int] = '%20'.join(argv[1:]) if len(argv) > 1 else quote(str(input('Search: '))) print('Googling.....') a__ : Optional[int] = f'''https://www.google.com/search?q={query}&num=100''' a__ : Union[str, Any] = requests.get( url, headers={'User-Agent': str(UserAgent().random)}, ) try: a__ : Optional[Any] = ( BeautifulSoup(res.text, 'html.parser') .find('div', attrs={'class': 'yuRUbf'}) .find('a') .get('href') ) except AttributeError: a__ : Union[str, Any] = parse_qs( BeautifulSoup(res.text, 'html.parser') .find('div', attrs={'class': 'kCrYT'}) .find('a') .get('href') )['url'][0] webbrowser.open(link)
243
1
"""simple docstring""" def UpperCamelCase_ ( lowerCAmelCase__ : list[int] ) -> list[int]: """simple docstring""" lowerCAmelCase_ : Any = len(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ ): for j in range(i + 1 , lowerCAmelCase__ ): if numbers[j] < numbers[i]: lowerCAmelCase_ ,lowerCAmelCase_ : Union[str, Any] = numbers[j], numbers[i] return numbers if __name__ == "__main__": lowercase__ : List[str] = input("""Enter numbers separated by a comma:\n""").strip() lowercase__ : Optional[Any] = [int(item) for item in user_input.split(""",""")] print(exchange_sort(unsorted))
224
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : Tuple = logging.get_logger(__name__) lowercase__ : Any = { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json""" ), } class UpperCamelCase__ ( lowercase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = """dpr""" def __init__( self : List[Any] , SCREAMING_SNAKE_CASE_ : Tuple=3_0_5_2_2 , SCREAMING_SNAKE_CASE_ : Any=7_6_8 , SCREAMING_SNAKE_CASE_ : Dict=1_2 , SCREAMING_SNAKE_CASE_ : List[str]=1_2 , SCREAMING_SNAKE_CASE_ : int=3_0_7_2 , SCREAMING_SNAKE_CASE_ : List[Any]="gelu" , SCREAMING_SNAKE_CASE_ : int=0.1 , SCREAMING_SNAKE_CASE_ : int=0.1 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=5_1_2 , SCREAMING_SNAKE_CASE_ : Optional[int]=2 , SCREAMING_SNAKE_CASE_ : Optional[int]=0.02 , SCREAMING_SNAKE_CASE_ : List[str]=1E-12 , SCREAMING_SNAKE_CASE_ : List[Any]=0 , SCREAMING_SNAKE_CASE_ : Optional[int]="absolute" , SCREAMING_SNAKE_CASE_ : int = 0 , **SCREAMING_SNAKE_CASE_ : Optional[int] , ): super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Optional[int] = vocab_size lowerCAmelCase_ : Tuple = hidden_size lowerCAmelCase_ : int = num_hidden_layers lowerCAmelCase_ : str = num_attention_heads lowerCAmelCase_ : Any = hidden_act lowerCAmelCase_ : List[str] = intermediate_size lowerCAmelCase_ : int = hidden_dropout_prob lowerCAmelCase_ : Union[str, Any] = attention_probs_dropout_prob lowerCAmelCase_ : Tuple = max_position_embeddings lowerCAmelCase_ : List[str] = type_vocab_size lowerCAmelCase_ : str = initializer_range lowerCAmelCase_ : str = layer_norm_eps lowerCAmelCase_ : List[str] = projection_dim lowerCAmelCase_ : List[str] = position_embedding_type
224
1
def UpperCAmelCase ( a_ ) -> float: """simple docstring""" __A = 0 while len(a_ ) > 1: __A = 0 # Consider two files with minimum cost to be merged for _ in range(2 ): __A = files.index(min(a_ ) ) temp += files[min_index] files.pop(a_ ) files.append(a_ ) optimal_merge_cost += temp return optimal_merge_cost if __name__ == "__main__": import doctest doctest.testmod()
124
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging SCREAMING_SNAKE_CASE :Optional[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :Union[str, Any] = { 'bigscience/bloom': 'https://huggingface.co/bigscience/bloom/resolve/main/config.json', 'bigscience/bloom-560m': 'https://huggingface.co/bigscience/bloom-560m/blob/main/config.json', 'bigscience/bloom-1b1': 'https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json', 'bigscience/bloom-1b7': 'https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json', 'bigscience/bloom-3b': 'https://huggingface.co/bigscience/bloom-3b/blob/main/config.json', 'bigscience/bloom-7b1': 'https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json', } class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = "bloom" snake_case_ = ["past_key_values"] snake_case_ = { "num_hidden_layers": "n_layer", "num_attention_heads": "n_head", } def __init__( self : Optional[Any] ,A : List[Any]=25_08_80 ,A : Optional[int]=64 ,A : List[Any]=2 ,A : Optional[int]=8 ,A : str=1E-5 ,A : str=0.02 ,A : int=True ,A : Optional[Any]=1 ,A : int=2 ,A : str=False ,A : Dict=0.0 ,A : List[Any]=0.0 ,A : str=1 ,A : List[Any]=False ,**A : List[Any] ,): __A = vocab_size # Backward compatibility with n_embed kwarg __A = kwargs.pop("n_embed" ,A ) __A = hidden_size if n_embed is None else n_embed __A = n_layer __A = n_head __A = layer_norm_epsilon __A = initializer_range __A = use_cache __A = pretraining_tp __A = apply_residual_connection_post_layernorm __A = hidden_dropout __A = attention_dropout __A = bos_token_id __A = eos_token_id __A = slow_but_exact super().__init__(bos_token_id=A ,eos_token_id=A ,**A ) class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = version.parse("1.12" ) def __init__( self : str ,A : PretrainedConfig ,A : str = "default" ,A : List[PatchingSpec] = None ,A : bool = False ,): super().__init__(A ,task=A ,patching_specs=A ,use_past=A ) if not getattr(self._config ,"pad_token_id" ,A ): # TODO: how to do that better? __A = 0 @property def UpperCamelCase_ ( self : Union[str, Any] ): __A = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(A ,direction="inputs" ,inverted_values_shape=A ) __A = {0: "batch", 1: "past_sequence + sequence"} else: __A = {0: "batch", 1: "sequence"} return common_inputs @property def UpperCamelCase_ ( self : Optional[Any] ): return self._config.n_layer @property def UpperCamelCase_ ( self : List[Any] ): return self._config.n_head @property def UpperCamelCase_ ( self : Optional[int] ): return 1E-3 def UpperCamelCase_ ( self : Any ,A : "PreTrainedTokenizer" ,A : int = -1 ,A : int = -1 ,A : bool = False ,A : Optional["TensorType"] = None ,): __A = super(A ,self ).generate_dummy_inputs( A ,batch_size=A ,seq_length=A ,is_pair=A ,framework=A ) # We need to order the input in the way they appears in the forward() __A = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch __A , __A = common_inputs["input_ids"].shape # Not using the same length for past_key_values __A = seqlen + 2 __A = self._config.hidden_size // self.num_attention_heads __A = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) __A = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) __A = [ (torch.zeros(A ), torch.zeros(A )) for _ in range(self.num_layers ) ] __A = common_inputs["attention_mask"] if self.use_past: __A = ordered_inputs["attention_mask"].dtype __A = torch.cat( [ordered_inputs["attention_mask"], torch.ones(A ,A ,dtype=A )] ,dim=1 ) return ordered_inputs @property def UpperCamelCase_ ( self : int ): return 13
124
1
"""simple docstring""" from __future__ import annotations import math def a__ ( __SCREAMING_SNAKE_CASE ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__SCREAMING_SNAKE_CASE ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def a__ ( __SCREAMING_SNAKE_CASE ) -> list[int]: __lowerCAmelCase: Union[str, Any] = str(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Tuple = [n] for i in range(1 , len(__SCREAMING_SNAKE_CASE ) ): list_nums.append(int(str_num[i:] ) ) list_nums.append(int(str_num[:-i] ) ) return list_nums def a__ ( __SCREAMING_SNAKE_CASE ) -> bool: if len(str(__SCREAMING_SNAKE_CASE ) ) > 3: if not is_prime(int(str(__SCREAMING_SNAKE_CASE )[-3:] ) ) or not is_prime(int(str(__SCREAMING_SNAKE_CASE )[:3] ) ): return False return True def a__ ( __SCREAMING_SNAKE_CASE = 1_1 ) -> list[int]: __lowerCAmelCase: list[int] = [] __lowerCAmelCase: Any = 1_3 while len(__SCREAMING_SNAKE_CASE ) != count: if validate(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase: Optional[Any] = list_truncated_nums(__SCREAMING_SNAKE_CASE ) if all(is_prime(__SCREAMING_SNAKE_CASE ) for i in list_nums ): list_truncated_primes.append(__SCREAMING_SNAKE_CASE ) num += 2 return list_truncated_primes def a__ ( ) -> int: return sum(compute_truncated_primes(1_1 ) ) if __name__ == "__main__": print(F'''{sum(compute_truncated_primes(11)) = }''')
217
"""simple docstring""" import pickle import numpy as np from matplotlib import pyplot as plt class snake_case : def __init__( self : int , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict , UpperCamelCase__ : Union[str, Any]=0.2 , UpperCamelCase__ : Any=0.2)-> Optional[int]: '''simple docstring''' __lowerCAmelCase: Optional[Any] = bp_numa __lowerCAmelCase: Optional[int] = bp_numa __lowerCAmelCase: Tuple = bp_numa __lowerCAmelCase: Optional[int] = conva_get[:2] __lowerCAmelCase: int = conva_get[2] __lowerCAmelCase: List[str] = size_pa __lowerCAmelCase: Tuple = rate_w __lowerCAmelCase: Dict = rate_t __lowerCAmelCase: List[Any] = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0]) + 0.5) for i in range(self.conva[1]) ] __lowerCAmelCase: Union[str, Any] = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa) + 0.5) __lowerCAmelCase: int = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa) + 0.5) __lowerCAmelCase: Optional[Any] = -2 * np.random.rand(self.conva[1]) + 1 __lowerCAmelCase: int = -2 * np.random.rand(self.num_bpa) + 1 __lowerCAmelCase: str = -2 * np.random.rand(self.num_bpa) + 1 def lowercase_ ( self : Optional[int] , UpperCamelCase__ : int)-> List[str]: '''simple docstring''' __lowerCAmelCase: Any = { "num_bp1": self.num_bpa, "num_bp2": self.num_bpa, "num_bp3": self.num_bpa, "conv1": self.conva, "step_conv1": self.step_conva, "size_pooling1": self.size_poolinga, "rate_weight": self.rate_weight, "rate_thre": self.rate_thre, "w_conv1": self.w_conva, "wkj": self.wkj, "vji": self.vji, "thre_conv1": self.thre_conva, "thre_bp2": self.thre_bpa, "thre_bp3": self.thre_bpa, } with open(UpperCamelCase__ , "wb") as f: pickle.dump(UpperCamelCase__ , UpperCamelCase__) print(f"Model saved: {save_path}") @classmethod def lowercase_ ( cls : Dict , UpperCamelCase__ : Union[str, Any])-> List[Any]: '''simple docstring''' with open(UpperCamelCase__ , "rb") as f: __lowerCAmelCase: Dict = pickle.load(UpperCamelCase__) # noqa: S301 __lowerCAmelCase: Optional[int] = model_dic.get("conv1") conv_get.append(model_dic.get("step_conv1")) __lowerCAmelCase: List[str] = model_dic.get("size_pooling1") __lowerCAmelCase: Union[str, Any] = model_dic.get("num_bp1") __lowerCAmelCase: Any = model_dic.get("num_bp2") __lowerCAmelCase: Union[str, Any] = model_dic.get("num_bp3") __lowerCAmelCase: Optional[int] = model_dic.get("rate_weight") __lowerCAmelCase: int = model_dic.get("rate_thre") # create model instance __lowerCAmelCase: Tuple = CNN(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__) # modify model parameter __lowerCAmelCase: Any = model_dic.get("w_conv1") __lowerCAmelCase: Optional[Any] = model_dic.get("wkj") __lowerCAmelCase: Any = model_dic.get("vji") __lowerCAmelCase: Dict = model_dic.get("thre_conv1") __lowerCAmelCase: int = model_dic.get("thre_bp2") __lowerCAmelCase: Optional[int] = model_dic.get("thre_bp3") return conv_ins def lowercase_ ( self : Dict , UpperCamelCase__ : List[Any])-> List[Any]: '''simple docstring''' return 1 / (1 + np.exp(-1 * x)) def lowercase_ ( self : Dict , UpperCamelCase__ : List[Any])-> Optional[Any]: '''simple docstring''' return round(UpperCamelCase__ , 3) def lowercase_ ( self : Optional[int] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Any , UpperCamelCase__ : List[str] , UpperCamelCase__ : Tuple , UpperCamelCase__ : int)-> Dict: '''simple docstring''' __lowerCAmelCase: List[Any] = convs[0] __lowerCAmelCase: int = convs[1] __lowerCAmelCase: Union[str, Any] = np.shape(UpperCamelCase__)[0] # get the data slice of original image data, data_focus __lowerCAmelCase: Optional[Any] = [] for i_focus in range(0 , size_data - size_conv + 1 , UpperCamelCase__): for j_focus in range(0 , size_data - size_conv + 1 , UpperCamelCase__): __lowerCAmelCase: Union[str, Any] = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(UpperCamelCase__) # calculate the feature map of every single kernel, and saved as list of matrix __lowerCAmelCase: int = [] __lowerCAmelCase: Optional[int] = int((size_data - size_conv) / conv_step + 1) for i_map in range(UpperCamelCase__): __lowerCAmelCase: List[str] = [] for i_focus in range(len(UpperCamelCase__)): __lowerCAmelCase: Union[str, Any] = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map])) - thre_convs[i_map] ) featuremap.append(self.sig(UpperCamelCase__)) __lowerCAmelCase: str = np.asmatrix(UpperCamelCase__).reshape( UpperCamelCase__ , UpperCamelCase__) data_featuremap.append(UpperCamelCase__) # expanding the data slice to One dimenssion __lowerCAmelCase: Optional[Any] = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(UpperCamelCase__)) __lowerCAmelCase: List[Any] = np.asarray(UpperCamelCase__) return focus_list, data_featuremap def lowercase_ ( self : Any , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[Any]="average_pool")-> str: '''simple docstring''' __lowerCAmelCase: Tuple = len(featuremaps[0]) __lowerCAmelCase: List[Any] = int(size_map / size_pooling) __lowerCAmelCase: int = [] for i_map in range(len(UpperCamelCase__)): __lowerCAmelCase: str = featuremaps[i_map] __lowerCAmelCase: List[Any] = [] for i_focus in range(0 , UpperCamelCase__ , UpperCamelCase__): for j_focus in range(0 , UpperCamelCase__ , UpperCamelCase__): __lowerCAmelCase: Any = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(UpperCamelCase__)) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(UpperCamelCase__)) __lowerCAmelCase: Optional[int] = np.asmatrix(UpperCamelCase__).reshape(UpperCamelCase__ , UpperCamelCase__) featuremap_pooled.append(UpperCamelCase__) return featuremap_pooled def lowercase_ ( self : Union[str, Any] , UpperCamelCase__ : str)-> int: '''simple docstring''' __lowerCAmelCase: List[Any] = [] for i in range(len(UpperCamelCase__)): __lowerCAmelCase: Union[str, Any] = np.shape(data[i]) __lowerCAmelCase: int = data[i].reshape(1 , shapes[0] * shapes[1]) __lowerCAmelCase: Dict = data_listed.getA().tolist()[0] data_expanded.extend(UpperCamelCase__) __lowerCAmelCase: Any = np.asarray(UpperCamelCase__) return data_expanded def lowercase_ ( self : Union[str, Any] , UpperCamelCase__ : Union[str, Any])-> Optional[Any]: '''simple docstring''' __lowerCAmelCase: Dict = np.asarray(UpperCamelCase__) __lowerCAmelCase: Optional[int] = np.shape(UpperCamelCase__) __lowerCAmelCase: Optional[int] = data_mat.reshape(1 , shapes[0] * shapes[1]) return data_expanded def lowercase_ ( self : Dict , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Dict)-> List[Any]: '''simple docstring''' __lowerCAmelCase: Optional[int] = [] __lowerCAmelCase: Any = 0 for i_map in range(UpperCamelCase__): __lowerCAmelCase: Optional[Any] = np.ones((size_map, size_map)) for i in range(0 , UpperCamelCase__ , UpperCamelCase__): for j in range(0 , UpperCamelCase__ , UpperCamelCase__): __lowerCAmelCase: Optional[Any] = pd_pool[ i_pool ] __lowerCAmelCase: str = i_pool + 1 __lowerCAmelCase: Dict = np.multiply( UpperCamelCase__ , np.multiply(out_map[i_map] , (1 - out_map[i_map]))) pd_all.append(UpperCamelCase__) return pd_all def lowercase_ ( self : str , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : int , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : str=bool)-> List[str]: '''simple docstring''' print("----------------------Start Training-------------------------") print((" - - Shape: Train_Data ", np.shape(UpperCamelCase__))) print((" - - Shape: Teach_Data ", np.shape(UpperCamelCase__))) __lowerCAmelCase: str = 0 __lowerCAmelCase: Optional[int] = [] __lowerCAmelCase: List[Any] = 1_0_0_0_0 while rp < n_repeat and mse >= error_accuracy: __lowerCAmelCase: Optional[Any] = 0 print(f"-------------Learning Time {rp}--------------") for p in range(len(UpperCamelCase__)): # print('------------Learning Image: %d--------------'%p) __lowerCAmelCase: Dict = np.asmatrix(datas_train[p]) __lowerCAmelCase: Dict = np.asarray(datas_teach[p]) __lowerCAmelCase , __lowerCAmelCase: int = self.convolute( UpperCamelCase__ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) __lowerCAmelCase: Any = self.pooling(UpperCamelCase__ , self.size_poolinga) __lowerCAmelCase: Optional[Any] = np.shape(UpperCamelCase__) __lowerCAmelCase: str = self._expand(UpperCamelCase__) __lowerCAmelCase: str = data_bp_input __lowerCAmelCase: int = np.dot(UpperCamelCase__ , self.vji.T) - self.thre_bpa __lowerCAmelCase: int = self.sig(UpperCamelCase__) __lowerCAmelCase: Optional[Any] = np.dot(UpperCamelCase__ , self.wkj.T) - self.thre_bpa __lowerCAmelCase: str = self.sig(UpperCamelCase__) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- __lowerCAmelCase: Union[str, Any] = np.multiply( (data_teach - bp_outa) , np.multiply(UpperCamelCase__ , (1 - bp_outa))) __lowerCAmelCase: Any = np.multiply( np.dot(UpperCamelCase__ , self.wkj) , np.multiply(UpperCamelCase__ , (1 - bp_outa))) __lowerCAmelCase: str = np.dot(UpperCamelCase__ , self.vji) __lowerCAmelCase: Union[str, Any] = pd_i_all / (self.size_poolinga * self.size_poolinga) __lowerCAmelCase: str = pd_conva_pooled.T.getA().tolist() __lowerCAmelCase: str = self._calculate_gradient_from_pool( UpperCamelCase__ , UpperCamelCase__ , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1]): __lowerCAmelCase: List[Any] = self._expand_mat(pd_conva_all[k_conv]) __lowerCAmelCase: int = self.rate_weight * np.dot(UpperCamelCase__ , UpperCamelCase__) __lowerCAmelCase: Tuple = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0])) __lowerCAmelCase: Tuple = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv]) * self.rate_thre ) # all connected layer __lowerCAmelCase: List[Any] = self.wkj + pd_k_all.T * bp_outa * self.rate_weight __lowerCAmelCase: Union[str, Any] = self.vji + pd_j_all.T * bp_outa * self.rate_weight __lowerCAmelCase: Tuple = self.thre_bpa - pd_k_all * self.rate_thre __lowerCAmelCase: Optional[int] = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image __lowerCAmelCase: List[str] = np.sum(abs(data_teach - bp_outa)) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) __lowerCAmelCase: Tuple = rp + 1 __lowerCAmelCase: Optional[Any] = error_count / patterns all_mse.append(UpperCamelCase__) def draw_error(): __lowerCAmelCase: Dict = [error_accuracy for i in range(int(n_repeat * 1.2))] plt.plot(UpperCamelCase__ , "+-") plt.plot(UpperCamelCase__ , "r--") plt.xlabel("Learning Times") plt.ylabel("All_mse") plt.grid(UpperCamelCase__ , alpha=0.5) plt.show() print("------------------Training Complished---------------------") print((" - - Training epoch: ", rp, f" - - Mse: {mse:.6f}")) if draw_e: draw_error() return mse def lowercase_ ( self : Union[str, Any] , UpperCamelCase__ : Tuple)-> List[str]: '''simple docstring''' __lowerCAmelCase: int = [] print("-------------------Start Testing-------------------------") print((" - - Shape: Test_Data ", np.shape(UpperCamelCase__))) for p in range(len(UpperCamelCase__)): __lowerCAmelCase: Dict = np.asmatrix(datas_test[p]) __lowerCAmelCase , __lowerCAmelCase: Optional[int] = self.convolute( UpperCamelCase__ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) __lowerCAmelCase: Tuple = self.pooling(UpperCamelCase__ , self.size_poolinga) __lowerCAmelCase: List[str] = self._expand(UpperCamelCase__) __lowerCAmelCase: int = data_bp_input __lowerCAmelCase: List[Any] = bp_outa * self.vji.T - self.thre_bpa __lowerCAmelCase: Any = self.sig(UpperCamelCase__) __lowerCAmelCase: Union[str, Any] = bp_outa * self.wkj.T - self.thre_bpa __lowerCAmelCase: List[str] = self.sig(UpperCamelCase__) produce_out.extend(bp_outa.getA().tolist()) __lowerCAmelCase: Tuple = [list(map(self.do_round , UpperCamelCase__)) for each in produce_out] return np.asarray(UpperCamelCase__) def lowercase_ ( self : int , UpperCamelCase__ : Any)-> Any: '''simple docstring''' __lowerCAmelCase: Union[str, Any] = np.asmatrix(UpperCamelCase__) __lowerCAmelCase , __lowerCAmelCase: Optional[Any] = self.convolute( UpperCamelCase__ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) __lowerCAmelCase: Any = self.pooling(UpperCamelCase__ , self.size_poolinga) return data_conveda, data_pooleda if __name__ == "__main__": pass
217
1
def lowerCAmelCase__ ( lowerCamelCase_ : int): '''simple docstring''' if not isinstance(lowerCamelCase_ ,lowerCamelCase_): raise ValueError('''Input must be an integer''') if input_num <= 0: raise ValueError('''Input must be positive''') return sum( divisor for divisor in range(1 ,input_num // 2 + 1) if input_num % divisor == 0) if __name__ == "__main__": import doctest doctest.testmod()
94
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __snake_case : Tuple =logging.get_logger(__name__) def lowerCAmelCase__ ( lowerCamelCase_ : Tuple ,lowerCamelCase_ : Dict=False ,lowerCamelCase_ : List[Any]=False ,lowerCamelCase_ : int=False): '''simple docstring''' lowerCAmelCase__ : Tuple = [] for i in range(config.num_hidden_layers): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""transformer.blocks.{i}.norm1.weight""", f"""vilt.encoder.layer.{i}.layernorm_before.weight""")) rename_keys.append((f"""transformer.blocks.{i}.norm1.bias""", f"""vilt.encoder.layer.{i}.layernorm_before.bias""")) rename_keys.append( (f"""transformer.blocks.{i}.attn.proj.weight""", f"""vilt.encoder.layer.{i}.attention.output.dense.weight""")) rename_keys.append( (f"""transformer.blocks.{i}.attn.proj.bias""", f"""vilt.encoder.layer.{i}.attention.output.dense.bias""")) rename_keys.append((f"""transformer.blocks.{i}.norm2.weight""", f"""vilt.encoder.layer.{i}.layernorm_after.weight""")) rename_keys.append((f"""transformer.blocks.{i}.norm2.bias""", f"""vilt.encoder.layer.{i}.layernorm_after.bias""")) rename_keys.append( (f"""transformer.blocks.{i}.mlp.fc1.weight""", f"""vilt.encoder.layer.{i}.intermediate.dense.weight""")) rename_keys.append((f"""transformer.blocks.{i}.mlp.fc1.bias""", f"""vilt.encoder.layer.{i}.intermediate.dense.bias""")) rename_keys.append((f"""transformer.blocks.{i}.mlp.fc2.weight""", f"""vilt.encoder.layer.{i}.output.dense.weight""")) rename_keys.append((f"""transformer.blocks.{i}.mlp.fc2.bias""", f"""vilt.encoder.layer.{i}.output.dense.bias""")) # embeddings rename_keys.extend( [ # text embeddings ('''text_embeddings.word_embeddings.weight''', '''vilt.embeddings.text_embeddings.word_embeddings.weight'''), ( '''text_embeddings.position_embeddings.weight''', '''vilt.embeddings.text_embeddings.position_embeddings.weight''', ), ('''text_embeddings.position_ids''', '''vilt.embeddings.text_embeddings.position_ids'''), ( '''text_embeddings.token_type_embeddings.weight''', '''vilt.embeddings.text_embeddings.token_type_embeddings.weight''', ), ('''text_embeddings.LayerNorm.weight''', '''vilt.embeddings.text_embeddings.LayerNorm.weight'''), ('''text_embeddings.LayerNorm.bias''', '''vilt.embeddings.text_embeddings.LayerNorm.bias'''), # patch embeddings ('''transformer.cls_token''', '''vilt.embeddings.cls_token'''), ('''transformer.patch_embed.proj.weight''', '''vilt.embeddings.patch_embeddings.projection.weight'''), ('''transformer.patch_embed.proj.bias''', '''vilt.embeddings.patch_embeddings.projection.bias'''), ('''transformer.pos_embed''', '''vilt.embeddings.position_embeddings'''), # token type embeddings ('''token_type_embeddings.weight''', '''vilt.embeddings.token_type_embeddings.weight'''), ]) # final layernorm + pooler rename_keys.extend( [ ('''transformer.norm.weight''', '''vilt.layernorm.weight'''), ('''transformer.norm.bias''', '''vilt.layernorm.bias'''), ('''pooler.dense.weight''', '''vilt.pooler.dense.weight'''), ('''pooler.dense.bias''', '''vilt.pooler.dense.bias'''), ]) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ('''vqa_classifier.0.weight''', '''classifier.0.weight'''), ('''vqa_classifier.0.bias''', '''classifier.0.bias'''), ('''vqa_classifier.1.weight''', '''classifier.1.weight'''), ('''vqa_classifier.1.bias''', '''classifier.1.bias'''), ('''vqa_classifier.3.weight''', '''classifier.3.weight'''), ('''vqa_classifier.3.bias''', '''classifier.3.bias'''), ]) elif nlvr_model: # classification head rename_keys.extend( [ ('''nlvr2_classifier.0.weight''', '''classifier.0.weight'''), ('''nlvr2_classifier.0.bias''', '''classifier.0.bias'''), ('''nlvr2_classifier.1.weight''', '''classifier.1.weight'''), ('''nlvr2_classifier.1.bias''', '''classifier.1.bias'''), ('''nlvr2_classifier.3.weight''', '''classifier.3.weight'''), ('''nlvr2_classifier.3.bias''', '''classifier.3.bias'''), ]) else: pass return rename_keys def lowerCAmelCase__ ( lowerCamelCase_ : Dict ,lowerCamelCase_ : Optional[Any]): '''simple docstring''' for i in range(config.num_hidden_layers): lowerCAmelCase__ : Optional[Any] = '''vilt.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase__ : Dict = state_dict.pop(f"""transformer.blocks.{i}.attn.qkv.weight""") lowerCAmelCase__ : Tuple = state_dict.pop(f"""transformer.blocks.{i}.attn.qkv.bias""") # next, add query, keys and values (in that order) to the state dict lowerCAmelCase__ : Dict = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase__ : Tuple = in_proj_bias[: config.hidden_size] lowerCAmelCase__ : Union[str, Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase__ : Optional[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase__ : str = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase__ : Union[str, Any] = in_proj_bias[-config.hidden_size :] def lowerCAmelCase__ ( lowerCamelCase_ : List[str]): '''simple docstring''' lowerCAmelCase__ : List[Any] = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(lowerCamelCase_ ,lowerCamelCase_) def lowerCAmelCase__ ( lowerCamelCase_ : Optional[Any] ,lowerCamelCase_ : Optional[int] ,lowerCamelCase_ : int): '''simple docstring''' lowerCAmelCase__ : int = dct.pop(lowerCamelCase_) lowerCAmelCase__ : List[Any] = val @torch.no_grad() def lowerCAmelCase__ ( lowerCamelCase_ : int ,lowerCamelCase_ : Union[str, Any]): '''simple docstring''' lowerCAmelCase__ : Optional[int] = ViltConfig(image_size=384 ,patch_size=32 ,tie_word_embeddings=lowerCamelCase_) lowerCAmelCase__ : Optional[Any] = False lowerCAmelCase__ : Union[str, Any] = False lowerCAmelCase__ : Dict = False lowerCAmelCase__ : Any = False if "vqa" in checkpoint_url: lowerCAmelCase__ : List[Any] = True lowerCAmelCase__ : List[Any] = 3129 lowerCAmelCase__ : List[Any] = '''huggingface/label-files''' lowerCAmelCase__ : Union[str, Any] = '''vqa2-id2label.json''' lowerCAmelCase__ : Optional[int] = json.load(open(hf_hub_download(lowerCamelCase_ ,lowerCamelCase_ ,repo_type='''dataset''') ,'''r''')) lowerCAmelCase__ : Optional[Any] = {int(lowerCamelCase_): v for k, v in idalabel.items()} lowerCAmelCase__ : Dict = idalabel lowerCAmelCase__ : List[Any] = {v: k for k, v in idalabel.items()} lowerCAmelCase__ : Optional[int] = ViltForQuestionAnswering(lowerCamelCase_) elif "nlvr" in checkpoint_url: lowerCAmelCase__ : str = True lowerCAmelCase__ : Optional[Any] = 2 lowerCAmelCase__ : Optional[Any] = {0: '''False''', 1: '''True'''} lowerCAmelCase__ : Union[str, Any] = {v: k for k, v in config.idalabel.items()} lowerCAmelCase__ : int = 3 lowerCAmelCase__ : int = ViltForImagesAndTextClassification(lowerCamelCase_) elif "irtr" in checkpoint_url: lowerCAmelCase__ : str = True lowerCAmelCase__ : List[str] = ViltForImageAndTextRetrieval(lowerCamelCase_) elif "mlm_itm" in checkpoint_url: lowerCAmelCase__ : Any = True lowerCAmelCase__ : int = ViltForMaskedLM(lowerCamelCase_) else: raise ValueError('''Unknown model type''') # load state_dict of original model, remove and rename some keys lowerCAmelCase__ : Tuple = torch.hub.load_state_dict_from_url(lowerCamelCase_ ,map_location='''cpu''')['''state_dict'''] lowerCAmelCase__ : Tuple = create_rename_keys(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_) for src, dest in rename_keys: rename_key(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_) read_in_q_k_v(lowerCamelCase_ ,lowerCamelCase_) if mlm_model or irtr_model: lowerCAmelCase__ : int = ['''itm_score.fc.weight''', '''itm_score.fc.bias'''] for k in ignore_keys: state_dict.pop(lowerCamelCase_ ,lowerCamelCase_) # load state dict into HuggingFace model model.eval() if mlm_model: lowerCAmelCase__ , lowerCAmelCase__ : str = model.load_state_dict(lowerCamelCase_ ,strict=lowerCamelCase_) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(lowerCamelCase_) # Define processor lowerCAmelCase__ : List[str] = ViltImageProcessor(size=384) lowerCAmelCase__ : Tuple = BertTokenizer.from_pretrained('''bert-base-uncased''') lowerCAmelCase__ : Union[str, Any] = ViltProcessor(lowerCamelCase_ ,lowerCamelCase_) # Forward pass on example inputs (image + text) if nlvr_model: lowerCAmelCase__ : int = Image.open(requests.get('''https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg''' ,stream=lowerCamelCase_).raw) lowerCAmelCase__ : Union[str, Any] = Image.open(requests.get('''https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg''' ,stream=lowerCamelCase_).raw) lowerCAmelCase__ : Union[str, Any] = ( '''The left image contains twice the number of dogs as the right image, and at least two dogs in total are''' ''' standing.''' ) lowerCAmelCase__ : Optional[int] = processor(lowerCamelCase_ ,lowerCamelCase_ ,return_tensors='''pt''') lowerCAmelCase__ : Tuple = processor(lowerCamelCase_ ,lowerCamelCase_ ,return_tensors='''pt''') lowerCAmelCase__ : Union[str, Any] = model( input_ids=encoding_a.input_ids ,pixel_values=encoding_a.pixel_values ,pixel_values_a=encoding_a.pixel_values ,) else: lowerCAmelCase__ : Dict = Image.open(requests.get('''http://images.cocodataset.org/val2017/000000039769.jpg''' ,stream=lowerCamelCase_).raw) if mlm_model: lowerCAmelCase__ : int = '''a bunch of [MASK] laying on a [MASK].''' else: lowerCAmelCase__ : Optional[int] = '''How many cats are there?''' lowerCAmelCase__ : Optional[int] = processor(lowerCamelCase_ ,lowerCamelCase_ ,return_tensors='''pt''') lowerCAmelCase__ : Any = model(**lowerCamelCase_) # Verify outputs if mlm_model: lowerCAmelCase__ : Dict = torch.Size([1, 11, 30522]) lowerCAmelCase__ : int = torch.tensor([-12.5061, -12.5123, -12.5174]) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] ,lowerCamelCase_ ,atol=1E-4) # verify masked token prediction equals "cats" lowerCAmelCase__ : Optional[Any] = outputs.logits[0, 4, :].argmax(-1).item() assert tokenizer.decode([predicted_id]) == "cats" elif vqa_model: lowerCAmelCase__ : List[Any] = torch.Size([1, 3129]) lowerCAmelCase__ : str = torch.tensor([-15.9495, -18.1472, -10.3041]) assert torch.allclose(outputs.logits[0, :3] ,lowerCamelCase_ ,atol=1E-4) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] ,lowerCamelCase_ ,atol=1E-4) # verify vqa prediction equals "2" lowerCAmelCase__ : List[Any] = outputs.logits.argmax(-1).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: lowerCAmelCase__ : Union[str, Any] = torch.Size([1, 2]) lowerCAmelCase__ : Dict = torch.tensor([-2.8721, 2.1291]) assert torch.allclose(outputs.logits[0, :3] ,lowerCamelCase_ ,atol=1E-4) assert outputs.logits.shape == expected_shape Path(lowerCamelCase_).mkdir(exist_ok=lowerCamelCase_) print(f"""Saving model and processor to {pytorch_dump_folder_path}""") model.save_pretrained(lowerCamelCase_) processor.save_pretrained(lowerCamelCase_) if __name__ == "__main__": __snake_case : Dict =argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) __snake_case : Union[str, Any] =parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
94
1
"""simple docstring""" from __future__ import annotations def lowercase ( __snake_case : int ): lowercase_ : Tuple = [True] * limit lowercase_ : List[str] = False lowercase_ : Tuple = False lowercase_ : List[str] = True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): lowercase_ : Any = i * 2 while index < limit: lowercase_ : Dict = False lowercase_ : Union[str, Any] = index + i lowercase_ : Optional[int] = [2] for i in range(3 , __snake_case , 2 ): if is_prime[i]: primes.append(__snake_case ) return primes def lowercase ( __snake_case : int = 1_0_0_0_0_0_0 ): lowercase_ : List[str] = prime_sieve(__snake_case ) lowercase_ : List[Any] = 0 lowercase_ : List[str] = 0 for i in range(len(__snake_case ) ): for j in range(i + length , len(__snake_case ) ): lowercase_ : Tuple = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: lowercase_ : str = j - i lowercase_ : Any = sol return largest if __name__ == "__main__": print(F"""{solution() = }""")
33
'''simple docstring''' import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html __lowerCAmelCase = 'platform' import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , ): if attention_mask is None: _snake_case = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: _snake_case = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: _snake_case = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _snake_case = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _snake_case = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class _lowerCAmelCase : '''simple docstring''' def __init__(self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=7 , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=99 , UpperCAmelCase=16 , UpperCAmelCase=2 , UpperCAmelCase=4 , UpperCAmelCase=4 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=32 , UpperCAmelCase=2 , UpperCAmelCase=1 , UpperCAmelCase=0 , UpperCAmelCase=0.02 , ) -> Union[str, Any]: _snake_case = parent _snake_case = batch_size _snake_case = seq_length _snake_case = is_training _snake_case = use_labels _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = eos_token_id _snake_case = pad_token_id _snake_case = bos_token_id _snake_case = initializer_range def lowercase (self ) -> str: _snake_case = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) _snake_case = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) _snake_case = shift_tokens_right(UpperCAmelCase , 1 , 2 ) _snake_case = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=UpperCAmelCase , ) _snake_case = prepare_blenderbot_inputs_dict(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) return config, inputs_dict def lowercase (self ) -> Dict: _snake_case, _snake_case = self.prepare_config_and_inputs() return config, inputs_dict def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Dict: _snake_case = 20 _snake_case = model_class_name(UpperCAmelCase ) _snake_case = model.encode(inputs_dict["""input_ids"""] ) _snake_case, _snake_case = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) _snake_case = model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase , UpperCAmelCase ) _snake_case = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) _snake_case = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _snake_case = model.decode( decoder_input_ids[:, :-1] , UpperCAmelCase , decoder_attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , decoder_position_ids=UpperCAmelCase , ) _snake_case = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) _snake_case = model.decode( decoder_input_ids[:, -1:] , UpperCAmelCase , decoder_attention_mask=UpperCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCAmelCase , ) _snake_case = model.decode(UpperCAmelCase , UpperCAmelCase ) _snake_case = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[Any]: _snake_case = 20 _snake_case = model_class_name(UpperCAmelCase ) _snake_case = model.encode(inputs_dict["""input_ids"""] ) _snake_case, _snake_case = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) _snake_case = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) _snake_case = model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase , UpperCAmelCase ) _snake_case = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _snake_case = model.decode( decoder_input_ids[:, :-1] , UpperCAmelCase , decoder_attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , decoder_position_ids=UpperCAmelCase , ) _snake_case = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) _snake_case = model.decode( decoder_input_ids[:, -1:] , UpperCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCAmelCase , decoder_position_ids=UpperCAmelCase , ) _snake_case = model.decode(UpperCAmelCase , UpperCAmelCase , decoder_attention_mask=UpperCAmelCase ) _snake_case = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) @require_flax class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = 99 def lowercase (self ) -> Any: _snake_case = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) _snake_case = input_ids.shape[0] _snake_case = BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def lowercase (self ) -> Optional[Any]: _snake_case, _snake_case, _snake_case = self._get_config_and_data() _snake_case = FlaxBlenderbotForConditionalGeneration(UpperCAmelCase ) _snake_case = lm_model(input_ids=UpperCAmelCase ) _snake_case = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["""logits"""].shape , UpperCAmelCase ) def lowercase (self ) -> int: _snake_case = BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) _snake_case = FlaxBlenderbotForConditionalGeneration(UpperCAmelCase ) _snake_case = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) _snake_case = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) _snake_case = lm_model(input_ids=UpperCAmelCase , decoder_input_ids=UpperCAmelCase ) _snake_case = (*summary.shape, config.vocab_size) self.assertEqual(outputs["""logits"""].shape , UpperCAmelCase ) def lowercase (self ) -> Tuple: _snake_case = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) _snake_case = shift_tokens_right(UpperCAmelCase , 1 , 2 ) _snake_case = np.equal(UpperCAmelCase , 1 ).astype(np.floataa ).sum() _snake_case = np.equal(UpperCAmelCase , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(UpperCAmelCase , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class _lowerCAmelCase ( __snake_case , unittest.TestCase , __snake_case ): '''simple docstring''' lowerCAmelCase_ = True lowerCAmelCase_ = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) lowerCAmelCase_ = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def lowercase (self ) -> Any: _snake_case = FlaxBlenderbotModelTester(self ) def lowercase (self ) -> str: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def lowercase (self ) -> List[str]: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def lowercase (self ) -> Dict: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _snake_case = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) _snake_case = model_class(UpperCAmelCase ) @jax.jit def encode_jitted(UpperCAmelCase , UpperCAmelCase=None , **UpperCAmelCase ): return model.encode(input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase ) with self.subTest("""JIT Enabled""" ): _snake_case = encode_jitted(**UpperCAmelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): _snake_case = encode_jitted(**UpperCAmelCase ).to_tuple() self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) ) for jitted_output, output in zip(UpperCAmelCase , UpperCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def lowercase (self ) -> str: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _snake_case = model_class(UpperCAmelCase ) _snake_case = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] ) _snake_case = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): return model.decode( decoder_input_ids=UpperCAmelCase , decoder_attention_mask=UpperCAmelCase , encoder_outputs=UpperCAmelCase , ) with self.subTest("""JIT Enabled""" ): _snake_case = decode_jitted(**UpperCAmelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): _snake_case = decode_jitted(**UpperCAmelCase ).to_tuple() self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) ) for jitted_output, output in zip(UpperCAmelCase , UpperCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowercase (self ) -> Any: for model_class_name in self.all_model_classes: _snake_case = model_class_name.from_pretrained("""facebook/blenderbot-400M-distill""" ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids _snake_case = np.ones((1, 1) ) * model.config.eos_token_id _snake_case = model(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) @unittest.skipUnless(jax_device != """cpu""" , """3B test too slow on CPU.""" ) @slow def lowercase (self ) -> Dict: _snake_case = {"""num_beams""": 1, """early_stopping""": True, """min_length""": 15, """max_length""": 25} _snake_case = {"""skip_special_tokens""": True, """clean_up_tokenization_spaces""": True} _snake_case = FlaxBlenderbotForConditionalGeneration.from_pretrained("""facebook/blenderbot-3B""" , from_pt=UpperCAmelCase ) _snake_case = BlenderbotTokenizer.from_pretrained("""facebook/blenderbot-3B""" ) _snake_case = ["""Sam"""] _snake_case = tokenizer(UpperCAmelCase , return_tensors="""jax""" ) _snake_case = model.generate(**UpperCAmelCase , **UpperCAmelCase ) _snake_case = """Sam is a great name. It means \"sun\" in Gaelic.""" _snake_case = tokenizer.batch_decode(UpperCAmelCase , **UpperCAmelCase ) assert generated_txt[0].strip() == tgt_text
341
0
"""simple docstring""" import argparse import torch from transformers import ( WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForAudioFrameClassification, WavaVecaForSequenceClassification, WavaVecaForXVector, logging, ) logging.set_verbosity_info() lowerCamelCase_ = logging.get_logger(__name__) def snake_case ( A__ ,A__ ,A__ ): UpperCAmelCase_ : Optional[Any] = WavaVecaForSequenceClassification.from_pretrained(A__ ,config=A__ ) UpperCAmelCase_ : List[Any] = downstream_dict["projector.weight"] UpperCAmelCase_ : Any = downstream_dict["projector.bias"] UpperCAmelCase_ : Union[str, Any] = downstream_dict["model.post_net.linear.weight"] UpperCAmelCase_ : Optional[Any] = downstream_dict["model.post_net.linear.bias"] return model def snake_case ( A__ ,A__ ,A__ ): UpperCAmelCase_ : int = WavaVecaForAudioFrameClassification.from_pretrained(A__ ,config=A__ ) UpperCAmelCase_ : Dict = downstream_dict["model.linear.weight"] UpperCAmelCase_ : Tuple = downstream_dict["model.linear.bias"] return model def snake_case ( A__ ,A__ ,A__ ): UpperCAmelCase_ : List[str] = WavaVecaForXVector.from_pretrained(A__ ,config=A__ ) UpperCAmelCase_ : Union[str, Any] = downstream_dict["connector.weight"] UpperCAmelCase_ : int = downstream_dict["connector.bias"] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): UpperCAmelCase_ : List[Any] = downstream_dict[ F"""model.framelevel_feature_extractor.module.{i}.kernel.weight""" ] UpperCAmelCase_ : Union[str, Any] = downstream_dict[F"""model.framelevel_feature_extractor.module.{i}.kernel.bias"""] UpperCAmelCase_ : Union[str, Any] = downstream_dict["model.utterancelevel_feature_extractor.linear1.weight"] UpperCAmelCase_ : List[Any] = downstream_dict["model.utterancelevel_feature_extractor.linear1.bias"] UpperCAmelCase_ : Tuple = downstream_dict["model.utterancelevel_feature_extractor.linear2.weight"] UpperCAmelCase_ : Dict = downstream_dict["model.utterancelevel_feature_extractor.linear2.bias"] UpperCAmelCase_ : Union[str, Any] = downstream_dict["objective.W"] return model @torch.no_grad() def snake_case ( A__ ,A__ ,A__ ,A__ ): UpperCAmelCase_ : Optional[Any] = torch.load(A__ ,map_location="cpu" ) UpperCAmelCase_ : Dict = checkpoint["Downstream"] UpperCAmelCase_ : Optional[int] = WavaVecaConfig.from_pretrained(A__ ) UpperCAmelCase_ : Optional[Any] = WavaVecaFeatureExtractor.from_pretrained( A__ ,return_attention_mask=A__ ,do_normalize=A__ ) UpperCAmelCase_ : Optional[int] = hf_config.architectures[0] if arch.endswith("ForSequenceClassification" ): UpperCAmelCase_ : Tuple = convert_classification(A__ ,A__ ,A__ ) elif arch.endswith("ForAudioFrameClassification" ): UpperCAmelCase_ : int = convert_diarization(A__ ,A__ ,A__ ) elif arch.endswith("ForXVector" ): UpperCAmelCase_ : int = convert_xvector(A__ ,A__ ,A__ ) else: raise NotImplementedError(F"""S3PRL weights conversion is not supported for {arch}""" ) if hf_config.use_weighted_layer_sum: UpperCAmelCase_ : Optional[Any] = checkpoint["Featurizer"]["weights"] hf_feature_extractor.save_pretrained(A__ ) hf_model.save_pretrained(A__ ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument( '''--base_model_name''', default=None, type=str, help='''Name of the huggingface pretrained base model.''' ) parser.add_argument('''--config_path''', default=None, type=str, help='''Path to the huggingface classifier config.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to the s3prl checkpoint.''') parser.add_argument('''--model_dump_path''', default=None, type=str, help='''Path to the final converted model.''') lowerCamelCase_ = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
253
"""simple docstring""" from __future__ import annotations from collections.abc import MutableSequence class UpperCamelCase_ : def __init__( self : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : MutableSequence[float] ) -> None: if len(lowerCAmelCase_ ) != degree + 1: raise ValueError( "The number of coefficients should be equal to the degree + 1." ) UpperCAmelCase_ : list[float] = list(lowerCAmelCase_ ) UpperCAmelCase_ : Union[str, Any] = degree def __add__( self : int , lowerCAmelCase_ : Polynomial ) -> Polynomial: if self.degree > polynomial_a.degree: UpperCAmelCase_ : List[str] = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , lowerCAmelCase_ ) else: UpperCAmelCase_ : Optional[Any] = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , lowerCAmelCase_ ) def __sub__( self : Union[str, Any] , lowerCAmelCase_ : Polynomial ) -> Polynomial: return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self : List[str] ) -> Polynomial: return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self : Optional[Any] , lowerCAmelCase_ : Polynomial ) -> Polynomial: UpperCAmelCase_ : list[float] = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase_ : int | float ) -> int | float: UpperCAmelCase_ : int | float = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self : Tuple ) -> str: UpperCAmelCase_ : str = "" for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(lowerCAmelCase_ ) return polynomial def __repr__( self : Union[str, Any] ) -> str: return self.__str__() def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Polynomial: UpperCAmelCase_ : list[float] = [0] * self.degree for i in range(self.degree ): UpperCAmelCase_ : List[Any] = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase_ : int | float = 0 ) -> Polynomial: UpperCAmelCase_ : list[float] = [0] * (self.degree + 2) UpperCAmelCase_ : List[Any] = constant for i in range(self.degree + 1 ): UpperCAmelCase_ : Union[str, Any] = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , lowerCAmelCase_ ) def __eq__( self : Union[str, Any] , lowerCAmelCase_ : object ) -> bool: if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self : Tuple , lowerCAmelCase_ : object ) -> bool: return not self.__eq__(lowerCAmelCase_ )
253
1
from __future__ import annotations from math import pi def _lowerCAmelCase ( lowerCAmelCase_ :Optional[int] , lowerCAmelCase_ :List[str] , lowerCAmelCase_ :str )->dict[str, float]: '''simple docstring''' if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if inductance < 0: raise ValueError("Inductance cannot be negative" ) if frequency < 0: raise ValueError("Frequency cannot be negative" ) if reactance < 0: raise ValueError("Inductive reactance cannot be negative" ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
159
# Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version SCREAMING_SNAKE_CASE :Union[str, Any] = get_logger(__name__) class UpperCAmelCase : '''simple docstring''' snake_case_ = "dummy_data" snake_case_ = "datasets" snake_case_ = False def __init__( self : Optional[int] ,A : str ,A : str ,A : Union[Version, str] ,A : Optional[str] = None ,A : bool = False ,A : bool = True ,A : Optional[List[Callable]] = None ,): __A = 0 __A = dataset_name __A = cache_dir __A = use_local_dummy_data __A = config # download_callbacks take a single url as input __A = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root __A = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general __A = str(A ) # to be downloaded __A = None __A = None @property def UpperCamelCase_ ( self : Union[str, Any] ): if self._dummy_file is None: __A = self.download_dummy_data() return self._dummy_file @property def UpperCamelCase_ ( self : Optional[Any] ): if self.config is not None: # structure is dummy / config_name / version_name return os.path.join("dummy" ,self.config.name ,self.version_name ) # structure is dummy / version_name return os.path.join("dummy" ,self.version_name ) @property def UpperCamelCase_ ( self : List[Any] ): return os.path.join(self.dummy_data_folder ,"dummy_data.zip" ) def UpperCamelCase_ ( self : Tuple ): __A = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) __A = cached_path( A ,cache_dir=self.cache_dir ,extract_compressed_file=A ,force_extract=A ) return os.path.join(A ,self.dummy_file_name ) @property def UpperCamelCase_ ( self : str ): return os.path.join(self.datasets_scripts_dir ,self.dataset_name ,self.dummy_zip_file ) @property def UpperCamelCase_ ( self : Any ): if self._bucket_url is None: __A = hf_github_url(self.dataset_name ,self.dummy_zip_file.replace(os.sep ,"/" ) ) return self._bucket_url @property def UpperCamelCase_ ( self : Tuple ): # return full path if its a dir if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep ,"/" ).split("/" )[:-1] ) def UpperCamelCase_ ( self : List[str] ,A : List[Any] ,*A : Dict ): if self.load_existing_dummy_data: # dummy data is downloaded and tested __A = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned __A = self.dummy_file_name # special case when data_url is a dict if isinstance(A ,A ): return self.create_dummy_data_dict(A ,A ) elif isinstance(A ,(list, tuple) ): return self.create_dummy_data_list(A ,A ) else: return self.create_dummy_data_single(A ,A ) def UpperCamelCase_ ( self : str ,A : List[Any] ,*A : List[Any] ): return self.download_and_extract(A ) def UpperCamelCase_ ( self : List[str] ,A : List[str] ,A : Tuple ): return self.download_and_extract(A ) def UpperCamelCase_ ( self : Any ,A : Any ,*A : Optional[Any] ,**A : List[str] ): return path def UpperCamelCase_ ( self : str ): return {} def UpperCamelCase_ ( self : int ,A : int ,A : Tuple ): __A = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(A ,A ): for single_url in single_urls: download_callback(A ) else: __A = single_urls download_callback(A ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(A ,A ): __A = [os.path.join(A ,urllib.parse.quote_plus(Path(A ).name ) ) for x in single_urls] else: __A = single_urls __A = os.path.join(A ,urllib.parse.quote_plus(Path(A ).name ) ) __A = value # make sure that values are unique if all(isinstance(A ,A ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique __A = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def UpperCamelCase_ ( self : Union[str, Any] ,A : str ,A : str ): __A = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one __A = all(bool(re.findall("[0-9]{3,}-of-[0-9]{3,}" ,A ) ) for url in data_url ) __A = all( url.startswith("https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed" ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): __A = [data_url[0]] * len(A ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(A ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus __A = os.path.join(A ,urllib.parse.quote_plus(single_url.split("/" )[-1] ) ) dummy_data_list.append(A ) return dummy_data_list def UpperCamelCase_ ( self : str ,A : List[Any] ,A : Optional[Any] ): for download_callback in self.download_callbacks: download_callback(A ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus __A = os.path.join(A ,urllib.parse.quote_plus(data_url.split("/" )[-1] ) ) if os.path.exists(A ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def UpperCamelCase_ ( self : int ): pass def UpperCamelCase_ ( self : Dict ): pass def UpperCamelCase_ ( self : Optional[Any] ,A : List[Any] ): def _iter_archive_members(A : Optional[Any] ): # this preserves the order of the members inside the ZIP archive __A = Path(self.dummy_file ).parent __A = path.relative_to(A ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: __A = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(A ) __A = Path(A ) __A = _iter_archive_members(A ) if self.use_local_dummy_data else path.rglob("*" ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith((".", "__") ): yield file_path.relative_to(A ).as_posix(), file_path.open("rb" ) def UpperCamelCase_ ( self : List[Any] ,A : Any ): if not isinstance(A ,A ): __A = [paths] for path in paths: if os.path.isfile(A ): if os.path.basename(A ).startswith((".", "__") ): return yield path else: for dirpath, dirnames, filenames in os.walk(A ): if os.path.basename(A ).startswith((".", "__") ): continue dirnames.sort() for filename in sorted(A ): if filename.startswith((".", "__") ): continue yield os.path.join(A ,A )
15
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { """openai/imagegpt-small""": """""", """openai/imagegpt-medium""": """""", """openai/imagegpt-large""": """""", } class a__ ( snake_case__ ): _a : List[str] = """imagegpt""" _a : List[str] = ["""past_key_values"""] _a : int = { """hidden_size""": """n_embd""", """max_position_embeddings""": """n_positions""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , _A=5_1_2 + 1 , _A=3_2 * 3_2 , _A=5_1_2 , _A=2_4 , _A=8 , _A=None , _A="quick_gelu" , _A=0.1 , _A=0.1 , _A=0.1 , _A=1E-5 , _A=0.02 , _A=True , _A=True , _A=False , _A=False , _A=False , **_A , ): """simple docstring""" __lowerCAmelCase = vocab_size __lowerCAmelCase = n_positions __lowerCAmelCase = n_embd __lowerCAmelCase = n_layer __lowerCAmelCase = n_head __lowerCAmelCase = n_inner __lowerCAmelCase = activation_function __lowerCAmelCase = resid_pdrop __lowerCAmelCase = embd_pdrop __lowerCAmelCase = attn_pdrop __lowerCAmelCase = layer_norm_epsilon __lowerCAmelCase = initializer_range __lowerCAmelCase = scale_attn_weights __lowerCAmelCase = use_cache __lowerCAmelCase = scale_attn_by_inverse_layer_idx __lowerCAmelCase = reorder_and_upcast_attn __lowerCAmelCase = tie_word_embeddings super().__init__(tie_word_embeddings=_A , **_A ) class a__ ( snake_case__ ): @property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ] ) def __SCREAMING_SNAKE_CASE( self , _A , _A = 1 , _A = -1 , _A = False , _A = None , _A = 3 , _A = 3_2 , _A = 3_2 , ): """simple docstring""" __lowerCAmelCase = self._generate_dummy_images(_A , _A , _A , _A ) __lowerCAmelCase = dict(preprocessor(images=_A , return_tensors=_A ) ) return inputs
354
def _a ( SCREAMING_SNAKE_CASE_ : List[Any] ): __lowerCAmelCase , __lowerCAmelCase = [], [] while len(SCREAMING_SNAKE_CASE_ ) > 1: __lowerCAmelCase , __lowerCAmelCase = min(SCREAMING_SNAKE_CASE_ ), max(SCREAMING_SNAKE_CASE_ ) start.append(SCREAMING_SNAKE_CASE_ ) end.append(SCREAMING_SNAKE_CASE_ ) collection.remove(SCREAMING_SNAKE_CASE_ ) collection.remove(SCREAMING_SNAKE_CASE_ ) end.reverse() return start + collection + end if __name__ == "__main__": UpperCamelCase__ = input("""Enter numbers separated by a comma:\n""").strip() UpperCamelCase__ = [int(item) for item in user_input.split(""",""")] print(*merge_sort(unsorted), sep=""",""")
102
0
'''simple docstring''' import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def _UpperCamelCase ( __A ) -> Union[str, Any]: '''simple docstring''' return EnvironmentCommand() class lowercase_ ( a__ ): @staticmethod def __a ( a ): UpperCamelCase__ = parser.add_parser("env" ) download_parser.set_defaults(func=a ) def __a ( self ): UpperCamelCase__ = huggingface_hub.__version__ UpperCamelCase__ = "not installed" UpperCamelCase__ = "NA" if is_torch_available(): import torch UpperCamelCase__ = torch.__version__ UpperCamelCase__ = torch.cuda.is_available() UpperCamelCase__ = "not installed" if is_transformers_available(): import transformers UpperCamelCase__ = transformers.__version__ UpperCamelCase__ = "not installed" if is_accelerate_available(): import accelerate UpperCamelCase__ = accelerate.__version__ UpperCamelCase__ = "not installed" if is_xformers_available(): import xformers UpperCamelCase__ = xformers.__version__ UpperCamelCase__ = { "`diffusers` version": version, "Platform": platform.platform(), "Python version": platform.python_version(), "PyTorch version (GPU?)": f'''{pt_version} ({pt_cuda_available})''', "Huggingface_hub version": hub_version, "Transformers version": transformers_version, "Accelerate version": accelerate_version, "xFormers version": xformers_version, "Using GPU in script?": "<fill in>", "Using distributed or parallel set-up in script?": "<fill in>", } print("\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n" ) print(self.format_dict(a ) ) return info @staticmethod def __a ( a ): return "\n".join([f'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
80
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCamelCase : List[Any] = {'configuration_glpn': ['GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GLPNConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = ['GLPNFeatureExtractor'] __UpperCamelCase : List[str] = ['GLPNImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : str = [ 'GLPN_PRETRAINED_MODEL_ARCHIVE_LIST', 'GLPNForDepthEstimation', 'GLPNLayer', 'GLPNModel', 'GLPNPreTrainedModel', ] if TYPE_CHECKING: from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_glpn import GLPNFeatureExtractor from .image_processing_glpn import GLPNImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_glpn import ( GLPN_PRETRAINED_MODEL_ARCHIVE_LIST, GLPNForDepthEstimation, GLPNLayer, GLPNModel, GLPNPreTrainedModel, ) else: import sys __UpperCamelCase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
182
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __a: List[str] = logging.get_logger(__name__) __a: List[Any] = { """distilbert-base-uncased""": """https://huggingface.co/distilbert-base-uncased/resolve/main/config.json""", """distilbert-base-uncased-distilled-squad""": ( """https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json""" ), """distilbert-base-cased""": """https://huggingface.co/distilbert-base-cased/resolve/main/config.json""", """distilbert-base-cased-distilled-squad""": ( """https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json""" ), """distilbert-base-german-cased""": """https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json""", """distilbert-base-multilingual-cased""": ( """https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json""" ), """distilbert-base-uncased-finetuned-sst-2-english""": ( """https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json""" ), } class UpperCAmelCase ( a__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = "distilbert" SCREAMING_SNAKE_CASE = { "hidden_size": "dim", "num_attention_heads": "n_heads", "num_hidden_layers": "n_layers", } def __init__( self , __lowerCAmelCase=30522 , __lowerCAmelCase=512 , __lowerCAmelCase=False , __lowerCAmelCase=6 , __lowerCAmelCase=12 , __lowerCAmelCase=768 , __lowerCAmelCase=4 * 768 , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.0_2 , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.2 , __lowerCAmelCase=0 , **__lowerCAmelCase , ) -> Tuple: lowercase__ : int = vocab_size lowercase__ : List[str] = max_position_embeddings lowercase__ : Union[str, Any] = sinusoidal_pos_embds lowercase__ : List[str] = n_layers lowercase__ : int = n_heads lowercase__ : int = dim lowercase__ : str = hidden_dim lowercase__ : Optional[int] = dropout lowercase__ : str = attention_dropout lowercase__ : Tuple = activation lowercase__ : Tuple = initializer_range lowercase__ : Dict = qa_dropout lowercase__ : Union[str, Any] = seq_classif_dropout super().__init__(**__lowerCAmelCase , pad_token_id=__lowerCAmelCase ) class UpperCAmelCase ( a__ ): '''simple docstring''' @property def _lowerCAmelCase( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": lowercase__ : Tuple = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowercase__ : Dict = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
214
'''simple docstring''' import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline __a: Tuple = datasets.utils.logging.get_logger(__name__) @dataclass class UpperCAmelCase ( datasets.BuilderConfig ): '''simple docstring''' SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = "utf-8" SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = True # deprecated SCREAMING_SNAKE_CASE = None # deprecated SCREAMING_SNAKE_CASE = 1_0 << 2_0 # 10MB SCREAMING_SNAKE_CASE = None class UpperCAmelCase ( datasets.ArrowBasedBuilder ): '''simple docstring''' SCREAMING_SNAKE_CASE = JsonConfig def _lowerCAmelCase( self ) -> Any: if self.config.block_size is not None: logger.warning('''The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead''' ) lowercase__ : Tuple = self.config.block_size if self.config.use_threads is not True: logger.warning( '''The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.''' ) if self.config.newlines_in_values is not None: raise ValueError('''The JSON loader parameter `newlines_in_values` is no longer supported''' ) return datasets.DatasetInfo(features=self.config.features ) def _lowerCAmelCase( self , __lowerCAmelCase ) -> Optional[Any]: if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) lowercase__ : List[str] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(__lowerCAmelCase , (str, list, tuple) ): lowercase__ : List[str] = data_files if isinstance(__lowerCAmelCase , __lowerCAmelCase ): lowercase__ : Union[str, Any] = [files] lowercase__ : Dict = [dl_manager.iter_files(__lowerCAmelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] lowercase__ : str = [] for split_name, files in data_files.items(): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): lowercase__ : List[str] = [files] lowercase__ : Optional[Any] = [dl_manager.iter_files(__lowerCAmelCase ) for file in files] splits.append(datasets.SplitGenerator(name=__lowerCAmelCase , gen_kwargs={'''files''': files} ) ) return splits def _lowerCAmelCase( self , __lowerCAmelCase ) -> pa.Table: if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): lowercase__ : Optional[int] = self.config.features.arrow_schema.field(__lowerCAmelCase ).type lowercase__ : Union[str, Any] = pa_table.append_column(__lowerCAmelCase , pa.array([None] * len(__lowerCAmelCase ) , type=__lowerCAmelCase ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example lowercase__ : Dict = table_cast(__lowerCAmelCase , self.config.features.arrow_schema ) return pa_table def _lowerCAmelCase( self , __lowerCAmelCase ) -> Optional[int]: for file_idx, file in enumerate(itertools.chain.from_iterable(__lowerCAmelCase ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(__lowerCAmelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: lowercase__ : Dict = json.load(__lowerCAmelCase ) # We keep only the field we are interested in lowercase__ : Any = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(__lowerCAmelCase , (list, tuple) ): lowercase__ : List[Any] = set().union(*[row.keys() for row in dataset] ) lowercase__ : List[Any] = {col: [row.get(__lowerCAmelCase ) for row in dataset] for col in keys} else: lowercase__ : Union[str, Any] = dataset lowercase__ : Optional[int] = pa.Table.from_pydict(__lowerCAmelCase ) yield file_idx, self._cast_table(__lowerCAmelCase ) # If the file has one json object per line else: with open(__lowerCAmelCase , '''rb''' ) as f: lowercase__ : Optional[int] = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small lowercase__ : List[str] = max(self.config.chunksize // 32 , 16 << 10 ) lowercase__ : Union[str, Any] = ( self.config.encoding_errors if self.config.encoding_errors is not None else '''strict''' ) while True: lowercase__ : Tuple = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(__lowerCAmelCase ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": lowercase__ : Dict = batch.decode(self.config.encoding , errors=__lowerCAmelCase ).encode('''utf-8''' ) try: while True: try: lowercase__ : str = paj.read_json( io.BytesIO(__lowerCAmelCase ) , read_options=paj.ReadOptions(block_size=__lowerCAmelCase ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(__lowerCAmelCase , pa.ArrowInvalid ) and "straddling" not in str(__lowerCAmelCase ) or block_size > len(__lowerCAmelCase ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( F"""Batch of {len(__lowerCAmelCase )} bytes couldn't be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.""" ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( __lowerCAmelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: lowercase__ : Optional[int] = json.load(__lowerCAmelCase ) except json.JSONDecodeError: logger.error(F"""Failed to read file '{file}' with error {type(__lowerCAmelCase )}: {e}""" ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(__lowerCAmelCase , __lowerCAmelCase ): # list is the only sequence type supported in JSON try: lowercase__ : List[Any] = set().union(*[row.keys() for row in dataset] ) lowercase__ : str = {col: [row.get(__lowerCAmelCase ) for row in dataset] for col in keys} lowercase__ : Optional[int] = pa.Table.from_pydict(__lowerCAmelCase ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(F"""Failed to read file '{file}' with error {type(__lowerCAmelCase )}: {e}""" ) raise ValueError(F"""Not able to read records in the JSON file at {file}.""" ) from None yield file_idx, self._cast_table(__lowerCAmelCase ) break else: logger.error(F"""Failed to read file '{file}' with error {type(__lowerCAmelCase )}: {e}""" ) raise ValueError( F"""Not able to read records in the JSON file at {file}. """ F"""You should probably indicate the field of the JSON file containing your records. """ F"""This JSON file contain the following fields: {str(list(dataset.keys() ) )}. """ F"""Select the correct one and provide it as `field='XXX'` to the dataset loading method. """ ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(__lowerCAmelCase ) batch_idx += 1
214
1
'''simple docstring''' import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class a__ ( UpperCAmelCase__ ): lowerCamelCase : Union[str, Any] =["image_processor", "tokenizer"] lowerCamelCase : int ="BlipImageProcessor" lowerCamelCase : int ="AutoTokenizer" def __init__( self : Dict , a : Any , a : Union[str, Any] , a : str ): """simple docstring""" super().__init__(a , a ) # add QFormer tokenizer __lowerCamelCase = qformer_tokenizer def __call__( self : Union[str, Any] , a : ImageInput = None , a : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , a : bool = True , a : Union[bool, str, PaddingStrategy] = False , a : Union[bool, str, TruncationStrategy] = None , a : Optional[int] = None , a : int = 0 , a : Optional[int] = None , a : Optional[bool] = None , a : bool = False , a : bool = False , a : bool = False , a : bool = False , a : bool = False , a : bool = True , a : Optional[Union[str, TensorType]] = None , **a : List[Any] , ): """simple docstring""" if images is None and text is None: raise ValueError('''You have to specify at least images or text.''' ) __lowerCamelCase = BatchFeature() if text is not None: __lowerCamelCase = self.tokenizer( text=a , add_special_tokens=a , padding=a , truncation=a , max_length=a , stride=a , pad_to_multiple_of=a , return_attention_mask=a , return_overflowing_tokens=a , return_special_tokens_mask=a , return_offsets_mapping=a , return_token_type_ids=a , return_length=a , verbose=a , return_tensors=a , **a , ) encoding.update(a ) __lowerCamelCase = self.qformer_tokenizer( text=a , add_special_tokens=a , padding=a , truncation=a , max_length=a , stride=a , pad_to_multiple_of=a , return_attention_mask=a , return_overflowing_tokens=a , return_special_tokens_mask=a , return_offsets_mapping=a , return_token_type_ids=a , return_length=a , verbose=a , return_tensors=a , **a , ) __lowerCamelCase = qformer_text_encoding.pop('''input_ids''' ) __lowerCamelCase = qformer_text_encoding.pop('''attention_mask''' ) if images is not None: __lowerCamelCase = self.image_processor(a , return_tensors=a ) encoding.update(a ) return encoding def SCREAMING_SNAKE_CASE__ ( self : Dict , *a : Dict , **a : List[str] ): """simple docstring""" return self.tokenizer.batch_decode(*a , **a ) def SCREAMING_SNAKE_CASE__ ( self : Any , *a : List[str] , **a : Tuple ): """simple docstring""" return self.tokenizer.decode(*a , **a ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" __lowerCamelCase = self.tokenizer.model_input_names __lowerCamelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def SCREAMING_SNAKE_CASE__ ( self : Dict , a : str , **a : List[Any] ): """simple docstring""" if os.path.isfile(a ): raise ValueError(f"""Provided path ({save_directory}) should be a directory, not a file""" ) os.makedirs(a , exist_ok=a ) __lowerCamelCase = os.path.join(a , '''qformer_tokenizer''' ) self.qformer_tokenizer.save_pretrained(a ) return super().save_pretrained(a , **a ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : str , a : List[str] , **a : Dict ): """simple docstring""" __lowerCamelCase = AutoTokenizer.from_pretrained(a , subfolder='''qformer_tokenizer''' ) __lowerCamelCase = cls._get_arguments_from_pretrained(a , **a ) args.append(a ) return cls(*a )
67
'''simple docstring''' import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin a : Any = get_tests_dir("""fixtures/spiece.model""") @require_sentencepiece @require_tokenizers class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = AlbertTokenizer lowercase = AlbertTokenizerFast lowercase = True lowercase = True lowercase = True def _lowercase( self ) -> str: super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase : Optional[int] = AlbertTokenizer(A ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase( self , A ) -> int: UpperCAmelCase : Optional[int] = """this is a test""" UpperCAmelCase : Dict = """this is a test""" return input_text, output_text def _lowercase( self ) -> int: UpperCAmelCase : Tuple = """<pad>""" UpperCAmelCase : Optional[int] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) , A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) , A ) def _lowercase( self ) -> Any: UpperCAmelCase : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """▁eloquent""" ) self.assertEqual(len(A ) , 30000 ) def _lowercase( self ) -> Tuple: self.assertEqual(self.get_tokenizer().vocab_size , 30000 ) def _lowercase( self ) -> Union[str, Any]: if not self.test_rust_tokenizer: return UpperCAmelCase : int = self.get_tokenizer() UpperCAmelCase : List[str] = self.get_rust_tokenizer() UpperCAmelCase : Optional[Any] = """I was born in 92000, and this is falsé.""" UpperCAmelCase : str = tokenizer.tokenize(A ) UpperCAmelCase : Optional[int] = rust_tokenizer.tokenize(A ) self.assertListEqual(A , A ) UpperCAmelCase : Any = tokenizer.encode(A , add_special_tokens=A ) UpperCAmelCase : Optional[int] = rust_tokenizer.encode(A , add_special_tokens=A ) self.assertListEqual(A , A ) UpperCAmelCase : Optional[Any] = self.get_rust_tokenizer() UpperCAmelCase : Union[str, Any] = tokenizer.encode(A ) UpperCAmelCase : Optional[int] = rust_tokenizer.encode(A ) self.assertListEqual(A , A ) def _lowercase( self ) -> Any: UpperCAmelCase : List[Any] = AlbertTokenizer(A , keep_accents=A ) UpperCAmelCase : Optional[int] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(A , ["""▁this""", """▁is""", """▁a""", """▁test"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , [48, 25, 21, 1289] ) UpperCAmelCase : Optional[Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( A , ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """é""", """."""] ) UpperCAmelCase : str = tokenizer.convert_tokens_to_ids(A ) self.assertListEqual(A , [31, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] ) UpperCAmelCase : List[str] = tokenizer.convert_ids_to_tokens(A ) self.assertListEqual( A , ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """."""] , ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : str = AlbertTokenizer(A ) UpperCAmelCase : Optional[int] = tokenizer.encode("""sequence builders""" ) UpperCAmelCase : Any = tokenizer.encode("""multi-sequence build""" ) UpperCAmelCase : Optional[Any] = tokenizer.build_inputs_with_special_tokens(A ) UpperCAmelCase : List[str] = tokenizer.build_inputs_with_special_tokens(A , A ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def _lowercase( self ) -> Dict: # fmt: off UpperCAmelCase : Tuple = {"""attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """input_ids""": [[2, 21970, 13, 5, 6092, 167, 28, 7103, 2153, 673, 8, 7028, 12051, 18, 17, 7103, 2153, 673, 8, 3515, 18684, 8, 4461, 6, 1927, 297, 8, 12060, 2607, 18, 13, 5, 4461, 15, 10538, 38, 8, 135, 15, 822, 58, 15, 993, 10363, 15, 1460, 8005, 4461, 15, 993, 255, 2328, 9, 9, 9, 6, 26, 1112, 816, 3260, 13, 5, 103, 2377, 6, 17, 1112, 816, 2782, 13, 5, 103, 10641, 6, 29, 84, 2512, 2430, 782, 18684, 2761, 19, 808, 2430, 2556, 17, 855, 1480, 9477, 4091, 128, 11712, 15, 7103, 2153, 673, 17, 24883, 9990, 9, 3], [2, 11502, 25, 1006, 20, 782, 8, 11809, 855, 1732, 19393, 18667, 37, 367, 21018, 69, 1854, 34, 11860, 19124, 27, 156, 225, 17, 193, 4141, 19, 65, 9124, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 2231, 886, 2385, 17659, 84, 14, 16792, 1952, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A , model_name="""albert-base-v2""" , revision="""6b6560eaf5ff2e250b00c50f380c5389a9c2d82e""" , )
265
0
import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger _UpperCAmelCase = get_logger(__name__) class UpperCAmelCase : '''simple docstring''' def __init__( self , lowercase = None ): """simple docstring""" A_ : Dict = ( os.path.join(lowercase , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) A_ : Union[str, Any] = Extractor def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" A_ : Tuple = os.path.abspath(lowercase ) return os.path.join(self.extract_dir , hash_url_to_filename(lowercase ) ) def lowerCAmelCase_ ( self , lowercase , lowercase ): """simple docstring""" return force_extract or ( not os.path.isfile(lowercase ) and not (os.path.isdir(lowercase ) and os.listdir(lowercase )) ) def lowerCAmelCase_ ( self , lowercase , lowercase = False ): """simple docstring""" A_ : Optional[int] = self.extractor.infer_extractor_format(lowercase ) if not extractor_format: return input_path A_ : Union[str, Any] = self._get_output_path(lowercase ) if self._do_extract(lowercase , lowercase ): self.extractor.extract(lowercase , lowercase , lowercase ) return output_path class UpperCAmelCase ( __A ): '''simple docstring''' @classmethod @abstractmethod def lowerCAmelCase_ ( cls , lowercase , **lowercase ): """simple docstring""" ... @staticmethod @abstractmethod def lowerCAmelCase_ ( lowercase , lowercase ): """simple docstring""" ... class UpperCAmelCase ( __A , __A ): '''simple docstring''' lowerCamelCase_ = [] @staticmethod def lowerCAmelCase_ ( lowercase , lowercase ): """simple docstring""" with open(lowercase , 'rb' ) as f: return f.read(lowercase ) @classmethod def lowerCAmelCase_ ( cls , lowercase , lowercase = b"" ): """simple docstring""" if not magic_number: A_ : Dict = max(len(lowercase ) for cls_magic_number in cls.magic_numbers ) try: A_ : List[str] = cls.read_magic_number(lowercase , lowercase ) except OSError: return False return any(magic_number.startswith(lowercase ) for cls_magic_number in cls.magic_numbers ) class UpperCAmelCase ( __A ): '''simple docstring''' @classmethod def lowerCAmelCase_ ( cls , lowercase , **lowercase ): """simple docstring""" return tarfile.is_tarfile(lowercase ) @staticmethod def lowerCAmelCase_ ( lowercase , lowercase ): """simple docstring""" def resolved(lowercase ) -> str: return os.path.realpath(os.path.abspath(lowercase ) ) def badpath(lowercase , lowercase ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(lowercase , lowercase ) ).startswith(lowercase ) def badlink(lowercase , lowercase ) -> bool: # Links are interpreted relative to the directory containing the link A_ : str = resolved(os.path.join(lowercase , os.path.dirname(info.name ) ) ) return badpath(info.linkname , base=lowercase ) A_ : Optional[int] = resolved(lowercase ) for finfo in members: if badpath(finfo.name , lowercase ): logger.error(F'''Extraction of {finfo.name} is blocked (illegal path)''' ) elif finfo.issym() and badlink(lowercase , lowercase ): logger.error(F'''Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}''' ) elif finfo.islnk() and badlink(lowercase , lowercase ): logger.error(F'''Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}''' ) else: yield finfo @staticmethod def lowerCAmelCase_ ( lowercase , lowercase ): """simple docstring""" os.makedirs(lowercase , exist_ok=lowercase ) A_ : Any = tarfile.open(lowercase ) tar_file.extractall(lowercase , members=TarExtractor.safemembers(lowercase , lowercase ) ) tar_file.close() class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = [B'''\x1F\x8B'''] @staticmethod def lowerCAmelCase_ ( lowercase , lowercase ): """simple docstring""" with gzip.open(lowercase , 'rb' ) as gzip_file: with open(lowercase , 'wb' ) as extracted_file: shutil.copyfileobj(lowercase , lowercase ) class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = [ B'''PK\x03\x04''', B'''PK\x05\x06''', # empty archive B'''PK\x07\x08''', # spanned archive ] @classmethod def lowerCAmelCase_ ( cls , lowercase , lowercase = b"" ): """simple docstring""" if super().is_extractable(lowercase , magic_number=lowercase ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(lowercase , 'rb' ) as fp: A_ : List[str] = _EndRecData(lowercase ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: A_ : str = fp.read(lowercase ) # CD is where we expect it to be if len(lowercase ) == sizeCentralDir: A_ : List[Any] = struct.unpack(lowercase , lowercase ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def lowerCAmelCase_ ( lowercase , lowercase ): """simple docstring""" os.makedirs(lowercase , exist_ok=lowercase ) with zipfile.ZipFile(lowercase , 'r' ) as zip_file: zip_file.extractall(lowercase ) zip_file.close() class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = [B'''\xFD\x37\x7A\x58\x5A\x00'''] @staticmethod def lowerCAmelCase_ ( lowercase , lowercase ): """simple docstring""" with lzma.open(lowercase ) as compressed_file: with open(lowercase , 'wb' ) as extracted_file: shutil.copyfileobj(lowercase , lowercase ) class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = [B'''Rar!\x1a\x07\x00''', B'''Rar!\x1a\x07\x01\x00'''] # RAR_ID # RAR5_ID @staticmethod def lowerCAmelCase_ ( lowercase , lowercase ): """simple docstring""" if not config.RARFILE_AVAILABLE: raise ImportError('Please pip install rarfile' ) import rarfile os.makedirs(lowercase , exist_ok=lowercase ) A_ : List[Any] = rarfile.RarFile(lowercase ) rf.extractall(lowercase ) rf.close() class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = [B'''\x28\xb5\x2F\xFD'''] @staticmethod def lowerCAmelCase_ ( lowercase , lowercase ): """simple docstring""" if not config.ZSTANDARD_AVAILABLE: raise ImportError('Please pip install zstandard' ) import zstandard as zstd A_ : Optional[Any] = zstd.ZstdDecompressor() with open(lowercase , 'rb' ) as ifh, open(lowercase , 'wb' ) as ofh: dctx.copy_stream(lowercase , lowercase ) class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = [B'''\x42\x5A\x68'''] @staticmethod def lowerCAmelCase_ ( lowercase , lowercase ): """simple docstring""" with bza.open(lowercase , 'rb' ) as compressed_file: with open(lowercase , 'wb' ) as extracted_file: shutil.copyfileobj(lowercase , lowercase ) class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = [B'''\x37\x7A\xBC\xAF\x27\x1C'''] @staticmethod def lowerCAmelCase_ ( lowercase , lowercase ): """simple docstring""" if not config.PY7ZR_AVAILABLE: raise ImportError('Please pip install py7zr' ) import pyazr os.makedirs(lowercase , exist_ok=lowercase ) with pyazr.SevenZipFile(lowercase , 'r' ) as archive: archive.extractall(lowercase ) class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = [B'''\x04\x22\x4D\x18'''] @staticmethod def lowerCAmelCase_ ( lowercase , lowercase ): """simple docstring""" if not config.LZ4_AVAILABLE: raise ImportError('Please pip install lz4' ) import lza.frame with lza.frame.open(lowercase , 'rb' ) as compressed_file: with open(lowercase , 'wb' ) as extracted_file: shutil.copyfileobj(lowercase , lowercase ) class UpperCAmelCase : '''simple docstring''' lowerCamelCase_ = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def lowerCAmelCase_ ( cls ): """simple docstring""" return max( len(lowercase ) for extractor in cls.extractors.values() if issubclass(lowercase , lowercase ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def lowerCAmelCase_ ( lowercase , lowercase ): """simple docstring""" try: return MagicNumberBaseExtractor.read_magic_number(lowercase , magic_number_length=lowercase ) except OSError: return b"" @classmethod def lowerCAmelCase_ ( cls , lowercase , lowercase = False ): """simple docstring""" warnings.warn( 'Method \'is_extractable\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ' 'Use \'infer_extractor_format\' instead.' , category=lowercase , ) A_ : int = cls.infer_extractor_format(lowercase ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def lowerCAmelCase_ ( cls , lowercase ): # <Added version="2.4.0"/> """simple docstring""" A_ : List[Any] = cls._get_magic_number_max_length() A_ : Optional[Any] = cls._read_magic_number(lowercase , lowercase ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(lowercase , magic_number=lowercase ): return extractor_format @classmethod def lowerCAmelCase_ ( cls , lowercase , lowercase , lowercase = None , lowercase = "deprecated" , ): """simple docstring""" os.makedirs(os.path.dirname(lowercase ) , exist_ok=lowercase ) # Prevent parallel extractions A_ : str = str(Path(lowercase ).with_suffix('.lock' ) ) with FileLock(lowercase ): shutil.rmtree(lowercase , ignore_errors=lowercase ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(lowercase , lowercase ): # passed as positional arg warnings.warn( 'Parameter \'extractor\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ' 'Use \'extractor_format\' instead.' , category=lowercase , ) A_ : Union[str, Any] = extractor if extractor != 'deprecated' else extractor_format else: A_ : Optional[Any] = cls.extractors[extractor_format] return extractor.extract(lowercase , lowercase ) else: warnings.warn( 'Parameter \'extractor_format\' was made required in version 2.4.0 and not passing it will raise an ' 'exception in 3.0.0.' , category=lowercase , ) for extractor in cls.extractors.values(): if extractor.is_extractable(lowercase ): return extractor.extract(lowercase , lowercase )
192
from __future__ import annotations import requests _UpperCAmelCase = set( """approved_at_utc approved_by author_flair_background_color author_flair_css_class author_flair_richtext author_flair_template_id author_fullname author_premium can_mod_post category clicked content_categories created_utc downs edited gilded gildings hidden hide_score is_created_from_ads_ui is_meta is_original_content is_reddit_media_domain is_video link_flair_css_class link_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title name permalink pwls quarantine saved score secure_media secure_media_embed selftext subreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type total_awards_received ups upvote_ratio url user_reports""".split() ) def UpperCamelCase ( __lowercase : str ,__lowercase : int = 1 ,__lowercase : str = "new" ,__lowercase : list | None = None ): '''simple docstring''' A_ : Tuple = wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(__lowercase ) - valid_terms ) ): A_ : int = f'''Invalid search term: {invalid_search_terms}''' raise ValueError(__lowercase ) A_ : Optional[int] = requests.get( f'''https://reddit.com/r/{subreddit}/{age}.json?limit={limit}''' ,headers={'User-agent': 'A random string'} ,) if response.status_code == 4_29: raise requests.HTTPError A_ : Optional[Any] = response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(__lowercase )} A_ : Union[str, Any] = {} for id_ in range(__lowercase ): A_ : List[str] = { item: data['data']['children'][id_]['data'][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data("""learnpython""", wanted_data=["""title""", """url""", """selftext"""]))
192
1
from collections import deque def _lowerCAmelCase (_lowerCAmelCase): UpperCamelCase_ = len(_lowerCAmelCase) UpperCamelCase_ = deque() UpperCamelCase_ = [False for _ in range(_lowerCAmelCase)] UpperCamelCase_ = [-1 for _ in range(_lowerCAmelCase)] UpperCamelCase_ = index_of[:] def strong_connect(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase): UpperCamelCase_ = index # the number when this node is seen UpperCamelCase_ = index # lowest rank node reachable from here index += 1 stack.append(_lowerCAmelCase) UpperCamelCase_ = True for w in g[v]: if index_of[w] == -1: UpperCamelCase_ = strong_connect(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase) UpperCamelCase_ = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: UpperCamelCase_ = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: UpperCamelCase_ = [] UpperCamelCase_ = stack.pop() UpperCamelCase_ = False component.append(_lowerCAmelCase) while w != v: UpperCamelCase_ = stack.pop() UpperCamelCase_ = False component.append(_lowerCAmelCase) components.append(_lowerCAmelCase) return index UpperCamelCase_ = [] for v in range(_lowerCAmelCase): if index_of[v] == -1: strong_connect(_lowerCAmelCase , 0 , _lowerCAmelCase) return components def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase): UpperCamelCase_ = [[] for _ in range(_lowerCAmelCase)] for u, v in edges: g[u].append(_lowerCAmelCase) return g if __name__ == "__main__": # Test UpperCAmelCase : List[Any] =7 UpperCAmelCase : Any =[0, 0, 1, 2, 3, 3, 4, 4, 6] UpperCAmelCase : str =[1, 3, 2, 0, 1, 4, 5, 6, 5] UpperCAmelCase : List[Any] =[(u, v) for u, v in zip(source, target)] UpperCAmelCase : str =create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
128
from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) UpperCAmelCase : Optional[int] =logging.get_logger(__name__) # pylint: disable=invalid-name UpperCAmelCase : Any =""" Examples: ```py >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline >>> from diffusers.utils import load_image >>> import torch >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16 ... ) >>> pipe_prior.to(\"cuda\") >>> prompt = \"A red cartoon frog, 4k\" >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False) >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-decoder\", torch_dtype=torch.float16 ... ) >>> pipe.to(\"cuda\") >>> init_image = load_image( ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\" ... \"/kandinsky/frog.png\" ... ) >>> image = pipe( ... image=init_image, ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... height=768, ... width=768, ... num_inference_steps=100, ... strength=0.2, ... ).images >>> image[0].save(\"red_frog.png\") ``` """ def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=8): UpperCamelCase_ = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 UpperCamelCase_ = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase=5_12 , _lowerCAmelCase=5_12): UpperCamelCase_ = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1) UpperCamelCase_ = np.array(pil_image.convert("RGB")) UpperCamelCase_ = arr.astype(np.floataa) / 127.5 - 1 UpperCamelCase_ = np.transpose(_lowerCAmelCase , [2, 0, 1]) UpperCamelCase_ = torch.from_numpy(_lowerCAmelCase).unsqueeze(0) return image class _lowercase (a_ ): '''simple docstring''' def __init__( self , snake_case__ , snake_case__ , snake_case__ , ): '''simple docstring''' super().__init__() self.register_modules( unet=snake_case__ , scheduler=snake_case__ , movq=snake_case__ , ) UpperCamelCase_ = 2 ** (len(self.movq.config.block_out_channels ) - 1) def _lowerCamelCase ( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' UpperCamelCase_ = min(int(num_inference_steps * strength ) , snake_case__ ) UpperCamelCase_ = max(num_inference_steps - init_timestep , 0 ) UpperCamelCase_ = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _lowerCamelCase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__=None ): '''simple docstring''' if not isinstance(snake_case__ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(snake_case__ )}""" ) UpperCamelCase_ = image.to(device=snake_case__ , dtype=snake_case__ ) UpperCamelCase_ = batch_size * num_images_per_prompt if image.shape[1] == 4: UpperCamelCase_ = image else: if isinstance(snake_case__ , snake_case__ ) and len(snake_case__ ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(snake_case__ )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) elif isinstance(snake_case__ , snake_case__ ): UpperCamelCase_ = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(snake_case__ ) ] UpperCamelCase_ = torch.cat(snake_case__ , dim=0 ) else: UpperCamelCase_ = self.movq.encode(snake_case__ ).latent_dist.sample(snake_case__ ) UpperCamelCase_ = self.movq.config.scaling_factor * init_latents UpperCamelCase_ = torch.cat([init_latents] , dim=0 ) UpperCamelCase_ = init_latents.shape UpperCamelCase_ = randn_tensor(snake_case__ , generator=snake_case__ , device=snake_case__ , dtype=snake_case__ ) # get latents UpperCamelCase_ = self.scheduler.add_noise(snake_case__ , snake_case__ , snake_case__ ) UpperCamelCase_ = init_latents return latents def _lowerCamelCase ( self , snake_case__=0 ): '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) UpperCamelCase_ = torch.device(F"""cuda:{gpu_id}""" ) UpperCamelCase_ = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(snake_case__ , snake_case__ ) def _lowerCamelCase ( self , snake_case__=0 ): '''simple docstring''' if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) UpperCamelCase_ = torch.device(F"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to("cpu" , silence_dtype_warnings=snake_case__ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) UpperCamelCase_ = None for cpu_offloaded_model in [self.unet, self.movq]: UpperCamelCase_ , UpperCamelCase_ = cpu_offload_with_hook(snake_case__ , snake_case__ , prev_module_hook=snake_case__ ) # We'll offload the last model manually. UpperCamelCase_ = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _lowerCamelCase ( self ): '''simple docstring''' if not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(snake_case__ , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(snake_case__ ) def __call__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ = 512 , snake_case__ = 512 , snake_case__ = 100 , snake_case__ = 4.0 , snake_case__ = 0.3 , snake_case__ = 1 , snake_case__ = None , snake_case__ = "pil" , snake_case__ = True , ): '''simple docstring''' UpperCamelCase_ = self._execution_device UpperCamelCase_ = guidance_scale > 1.0 if isinstance(snake_case__ , snake_case__ ): UpperCamelCase_ = torch.cat(snake_case__ , dim=0 ) UpperCamelCase_ = image_embeds.shape[0] if isinstance(snake_case__ , snake_case__ ): UpperCamelCase_ = torch.cat(snake_case__ , dim=0 ) if do_classifier_free_guidance: UpperCamelCase_ = image_embeds.repeat_interleave(snake_case__ , dim=0 ) UpperCamelCase_ = negative_image_embeds.repeat_interleave(snake_case__ , dim=0 ) UpperCamelCase_ = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=snake_case__ ) if not isinstance(snake_case__ , snake_case__ ): UpperCamelCase_ = [image] if not all(isinstance(snake_case__ , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( F"""Input is in incorrect format: {[type(snake_case__ ) for i in image]}. Currently, we only support PIL image and pytorch tensor""" ) UpperCamelCase_ = torch.cat([prepare_image(snake_case__ , snake_case__ , snake_case__ ) for i in image] , dim=0 ) UpperCamelCase_ = image.to(dtype=image_embeds.dtype , device=snake_case__ ) UpperCamelCase_ = self.movq.encode(snake_case__ )["latents"] UpperCamelCase_ = latents.repeat_interleave(snake_case__ , dim=0 ) self.scheduler.set_timesteps(snake_case__ , device=snake_case__ ) UpperCamelCase_ , UpperCamelCase_ = self.get_timesteps(snake_case__ , snake_case__ , snake_case__ ) UpperCamelCase_ = timesteps[:1].repeat(batch_size * num_images_per_prompt ) UpperCamelCase_ , UpperCamelCase_ = downscale_height_and_width(snake_case__ , snake_case__ , self.movq_scale_factor ) UpperCamelCase_ = self.prepare_latents( snake_case__ , snake_case__ , snake_case__ , snake_case__ , image_embeds.dtype , snake_case__ , snake_case__ ) for i, t in enumerate(self.progress_bar(snake_case__ ) ): # expand the latents if we are doing classifier free guidance UpperCamelCase_ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCamelCase_ = {"image_embeds": image_embeds} UpperCamelCase_ = self.unet( sample=snake_case__ , timestep=snake_case__ , encoder_hidden_states=snake_case__ , added_cond_kwargs=snake_case__ , return_dict=snake_case__ , )[0] if do_classifier_free_guidance: UpperCamelCase_ , UpperCamelCase_ = noise_pred.split(latents.shape[1] , dim=1 ) UpperCamelCase_ , UpperCamelCase_ = noise_pred.chunk(2 ) UpperCamelCase_ , UpperCamelCase_ = variance_pred.chunk(2 ) UpperCamelCase_ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) UpperCamelCase_ = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , "variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): UpperCamelCase_ , UpperCamelCase_ = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase_ = self.scheduler.step( snake_case__ , snake_case__ , snake_case__ , generator=snake_case__ , )[0] # post-processing UpperCamelCase_ = self.movq.decode(snake_case__ , force_not_quantize=snake_case__ )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: UpperCamelCase_ = image * 0.5 + 0.5 UpperCamelCase_ = image.clamp(0 , 1 ) UpperCamelCase_ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCamelCase_ = self.numpy_to_pil(snake_case__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=snake_case__ )
128
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import ( DiffusionPipeline, UnCLIPImageVariationPipeline, UnCLIPScheduler, UNetaDConditionModel, UNetaDModel, ) from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, load_image, require_torch_gpu, skip_mps from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ , unittest.TestCase ): __lowerCAmelCase : Dict = UnCLIPImageVariationPipeline __lowerCAmelCase : Union[str, Any] = IMAGE_VARIATION_PARAMS - {'height', 'width', 'guidance_scale'} __lowerCAmelCase : Dict = IMAGE_VARIATION_BATCH_PARAMS __lowerCAmelCase : Any = [ 'generator', 'return_dict', 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] __lowerCAmelCase : List[Any] = False @property def SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' return 32 @property def SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' return 32 @property def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' return self.time_input_dim @property def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' return self.time_input_dim * 4 @property def SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' return 100 @property def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : List[str] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(_SCREAMING_SNAKE_CASE ) @property def SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase : str = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) return CLIPVisionModelWithProjection(_SCREAMING_SNAKE_CASE ) @property def SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase : Any = { """clip_embeddings_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """cross_attention_dim""": self.cross_attention_dim, } UpperCAmelCase : List[str] = UnCLIPTextProjModel(**_SCREAMING_SNAKE_CASE ) return model @property def SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase : Optional[int] = { """sample_size""": 32, # RGB in channels """in_channels""": 3, # Out channels is double in channels because predicts mean and variance """out_channels""": 6, """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": """identity""", } UpperCAmelCase : List[Any] = UNetaDConditionModel(**_SCREAMING_SNAKE_CASE ) return model @property def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' return { "sample_size": 64, "layers_per_block": 1, "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"), "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"), "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "in_channels": 6, "out_channels": 3, } @property def SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase : Dict = UNetaDModel(**self.dummy_super_res_kwargs ) return model @property def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' torch.manual_seed(1 ) UpperCAmelCase : List[Any] = UNetaDModel(**self.dummy_super_res_kwargs ) return model def SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' UpperCAmelCase : Any = self.dummy_decoder UpperCAmelCase : Tuple = self.dummy_text_proj UpperCAmelCase : Optional[Any] = self.dummy_text_encoder UpperCAmelCase : Optional[Any] = self.dummy_tokenizer UpperCAmelCase : Optional[Any] = self.dummy_super_res_first UpperCAmelCase : Tuple = self.dummy_super_res_last UpperCAmelCase : Tuple = UnCLIPScheduler( variance_type="""learned_range""" , prediction_type="""epsilon""" , num_train_timesteps=1000 , ) UpperCAmelCase : int = UnCLIPScheduler( variance_type="""fixed_small_log""" , prediction_type="""epsilon""" , num_train_timesteps=1000 , ) UpperCAmelCase : List[Any] = CLIPImageProcessor(crop_size=32 , size=32 ) UpperCAmelCase : int = self.dummy_image_encoder return { "decoder": decoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_proj": text_proj, "feature_extractor": feature_extractor, "image_encoder": image_encoder, "super_res_first": super_res_first, "super_res_last": super_res_last, "decoder_scheduler": decoder_scheduler, "super_res_scheduler": super_res_scheduler, } def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=True ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : List[str] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_SCREAMING_SNAKE_CASE ) ).to(_SCREAMING_SNAKE_CASE ) if str(_SCREAMING_SNAKE_CASE ).startswith("""mps""" ): UpperCAmelCase : int = torch.manual_seed(_SCREAMING_SNAKE_CASE ) else: UpperCAmelCase : Optional[int] = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) if pil_image: UpperCAmelCase : Union[str, Any] = input_image * 0.5 + 0.5 UpperCAmelCase : List[str] = input_image.clamp(0 , 1 ) UpperCAmelCase : Optional[Any] = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() UpperCAmelCase : Union[str, Any] = DiffusionPipeline.numpy_to_pil(_SCREAMING_SNAKE_CASE )[0] return { "image": input_image, "generator": generator, "decoder_num_inference_steps": 2, "super_res_num_inference_steps": 2, "output_type": "np", } def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : Union[str, Any] = """cpu""" UpperCAmelCase : List[str] = self.get_dummy_components() UpperCAmelCase : str = self.pipeline_class(**_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Tuple = pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Union[str, Any] = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE , pil_image=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[str] = pipe(**_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Tuple = output.images UpperCAmelCase : Optional[int] = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE , pil_image=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Any = pipe( **_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , )[0] UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] UpperCAmelCase : str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase : int = np.array( [ 0.9997, 0.0002, 0.9997, 0.9997, 0.9969, 0.0023, 0.9997, 0.9969, 0.9970, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' UpperCAmelCase : Optional[Any] = """cpu""" UpperCAmelCase : List[Any] = self.get_dummy_components() UpperCAmelCase : List[str] = self.pipeline_class(**_SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[Any] = pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[str] = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE , pil_image=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[Any] = pipe(**_SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[str] = output.images UpperCAmelCase : Any = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE , pil_image=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Tuple = pipe( **_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , )[0] UpperCAmelCase : Tuple = image[0, -3:, -3:, -1] UpperCAmelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase : Optional[int] = np.array([0.9997, 0.0003, 0.9997, 0.9997, 0.9970, 0.0024, 0.9997, 0.9971, 0.9971] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : List[str] = """cpu""" UpperCAmelCase : str = self.get_dummy_components() UpperCAmelCase : Union[str, Any] = self.pipeline_class(**_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[int] = pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Any = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE , pil_image=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : str = [ pipeline_inputs["""image"""], pipeline_inputs["""image"""], ] UpperCAmelCase : str = pipe(**_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Union[str, Any] = output.images UpperCAmelCase : str = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE , pil_image=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Dict = [ tuple_pipeline_inputs["""image"""], tuple_pipeline_inputs["""image"""], ] UpperCAmelCase : Dict = pipe( **_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , )[0] UpperCAmelCase : str = image[0, -3:, -3:, -1] UpperCAmelCase : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (2, 64, 64, 3) UpperCAmelCase : Any = np.array( [ 0.9997, 0.9989, 0.0008, 0.0021, 0.9960, 0.0018, 0.0014, 0.0002, 0.9933, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : Dict = torch.device("""cpu""" ) class SCREAMING_SNAKE_CASE__ : __lowerCAmelCase : Optional[Any] = 1 UpperCAmelCase : List[Any] = self.get_dummy_components() UpperCAmelCase : str = self.pipeline_class(**_SCREAMING_SNAKE_CASE ) UpperCAmelCase : int = pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[str] = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(0 ) UpperCAmelCase : Tuple = pipe.decoder.dtype UpperCAmelCase : Any = 1 UpperCAmelCase : List[str] = ( batch_size, pipe.decoder.config.in_channels, pipe.decoder.config.sample_size, pipe.decoder.config.sample_size, ) UpperCAmelCase : Dict = pipe.prepare_latents( _SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , scheduler=DummyScheduler() ) UpperCAmelCase : List[Any] = ( batch_size, pipe.super_res_first.config.in_channels // 2, pipe.super_res_first.config.sample_size, pipe.super_res_first.config.sample_size, ) UpperCAmelCase : Optional[int] = pipe.prepare_latents( _SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , scheduler=DummyScheduler() ) UpperCAmelCase : str = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE , pil_image=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : str = pipe( **_SCREAMING_SNAKE_CASE , decoder_latents=_SCREAMING_SNAKE_CASE , super_res_latents=_SCREAMING_SNAKE_CASE ).images UpperCAmelCase : Union[str, Any] = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE , pil_image=_SCREAMING_SNAKE_CASE ) # Don't pass image, instead pass embedding UpperCAmelCase : Dict = pipeline_inputs.pop("""image""" ) UpperCAmelCase : int = pipe.image_encoder(_SCREAMING_SNAKE_CASE ).image_embeds UpperCAmelCase : Dict = pipe( **_SCREAMING_SNAKE_CASE , decoder_latents=_SCREAMING_SNAKE_CASE , super_res_latents=_SCREAMING_SNAKE_CASE , image_embeddings=_SCREAMING_SNAKE_CASE , ).images # make sure passing text embeddings manually is identical assert np.abs(img_out_a - img_out_a ).max() < 1E-4 @skip_mps def SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' UpperCAmelCase : Tuple = torch_device == """cpu""" # Check is relaxed because there is not a torch 2.0 sliced attention added kv processor UpperCAmelCase : str = 1E-2 self._test_attention_slicing_forward_pass( test_max_difference=_SCREAMING_SNAKE_CASE , expected_max_diff=_SCREAMING_SNAKE_CASE ) @skip_mps def SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' UpperCAmelCase : int = torch_device == """cpu""" UpperCAmelCase : int = True UpperCAmelCase : Optional[Any] = [ """decoder_num_inference_steps""", """super_res_num_inference_steps""", ] self._test_inference_batch_single_identical( test_max_difference=_SCREAMING_SNAKE_CASE , relax_max_difference=_SCREAMING_SNAKE_CASE , additional_params_copy_to_batched_inputs=_SCREAMING_SNAKE_CASE , ) def SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' UpperCAmelCase : Union[str, Any] = [ """decoder_num_inference_steps""", """super_res_num_inference_steps""", ] if torch_device == "mps": # TODO: MPS errors with larger batch sizes UpperCAmelCase : Optional[int] = [2, 3] self._test_inference_batch_consistent( batch_sizes=_SCREAMING_SNAKE_CASE , additional_params_copy_to_batched_inputs=_SCREAMING_SNAKE_CASE , ) else: self._test_inference_batch_consistent( additional_params_copy_to_batched_inputs=_SCREAMING_SNAKE_CASE ) @skip_mps def SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' return super().test_dict_tuple_outputs_equivalent() @skip_mps def SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' return super().test_save_load_local() @skip_mps def SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' return super().test_save_load_optional_components() @slow @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : Optional[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png""" ) UpperCAmelCase : Tuple = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/unclip/karlo_v1_alpha_cat_variation_fp16.npy""" ) UpperCAmelCase : Optional[Any] = UnCLIPImageVariationPipeline.from_pretrained( """kakaobrain/karlo-v1-alpha-image-variations""" , torch_dtype=torch.floataa ) UpperCAmelCase : Dict = pipeline.to(_SCREAMING_SNAKE_CASE ) pipeline.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : str = torch.Generator(device="""cpu""" ).manual_seed(0 ) UpperCAmelCase : List[Any] = pipeline( _SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , output_type="""np""" , ) UpperCAmelCase : str = output.images[0] assert image.shape == (256, 256, 3) assert_mean_pixel_difference(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 15 )
361
"""simple docstring""" import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class SCREAMING_SNAKE_CASE__ : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=sys.maxsize ) -> int: '''simple docstring''' UpperCAmelCase : List[Any] = """bilinear""" UpperCAmelCase : Tuple = max_size UpperCAmelCase : Optional[Any] = short_edge_length def __call__( self , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : List[str] = [] for img in imgs: UpperCAmelCase , UpperCAmelCase : List[Any] = img.shape[:2] # later: provide list and randomly choose index for resize UpperCAmelCase : Dict = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img UpperCAmelCase : List[str] = size * 1.0 / min(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if h < w: UpperCAmelCase , UpperCAmelCase : Dict = size, scale * w else: UpperCAmelCase , UpperCAmelCase : Optional[int] = scale * h, size if max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) > self.max_size: UpperCAmelCase : List[str] = self.max_size * 1.0 / max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[int] = newh * scale UpperCAmelCase : int = neww * scale UpperCAmelCase : Tuple = int(neww + 0.5 ) UpperCAmelCase : Optional[int] = int(newh + 0.5 ) if img.dtype == np.uinta: UpperCAmelCase : str = Image.fromarray(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[Any] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) UpperCAmelCase : Optional[int] = np.asarray(_SCREAMING_SNAKE_CASE ) else: UpperCAmelCase : Any = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw UpperCAmelCase : Union[str, Any] = nn.functional.interpolate( _SCREAMING_SNAKE_CASE , (newh, neww) , mode=self.interp_method , align_corners=_SCREAMING_SNAKE_CASE ).squeeze(0 ) img_augs.append(_SCREAMING_SNAKE_CASE ) return img_augs class SCREAMING_SNAKE_CASE__ : def __init__( self , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : Any = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) UpperCAmelCase : List[Any] = cfg.INPUT.FORMAT UpperCAmelCase : Dict = cfg.SIZE_DIVISIBILITY UpperCAmelCase : Dict = cfg.PAD_VALUE UpperCAmelCase : Tuple = cfg.INPUT.MAX_SIZE_TEST UpperCAmelCase : Any = cfg.MODEL.DEVICE UpperCAmelCase : List[Any] = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) UpperCAmelCase : List[str] = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) UpperCAmelCase : Optional[Any] = lambda _SCREAMING_SNAKE_CASE : (x - self.pixel_mean) / self.pixel_std def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' UpperCAmelCase : List[Any] = tuple(max(_SCREAMING_SNAKE_CASE ) for s in zip(*[img.shape for img in images] ) ) UpperCAmelCase : List[Any] = [im.shape[-2:] for im in images] UpperCAmelCase : Any = [ nn.functional.pad( _SCREAMING_SNAKE_CASE , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ] return torch.stack(_SCREAMING_SNAKE_CASE ), torch.tensor(_SCREAMING_SNAKE_CASE ) def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> Optional[int]: '''simple docstring''' with torch.no_grad(): if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCAmelCase : int = [images] if single_image: assert len(_SCREAMING_SNAKE_CASE ) == 1 for i in range(len(_SCREAMING_SNAKE_CASE ) ): if isinstance(images[i] , torch.Tensor ): images.insert(_SCREAMING_SNAKE_CASE , images.pop(_SCREAMING_SNAKE_CASE ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( _SCREAMING_SNAKE_CASE , torch.as_tensor(img_tensorize(images.pop(_SCREAMING_SNAKE_CASE ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge UpperCAmelCase : str = torch.tensor([im.shape[:2] for im in images] ) UpperCAmelCase : int = self.aug(_SCREAMING_SNAKE_CASE ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic UpperCAmelCase : Any = [self.normalizer(_SCREAMING_SNAKE_CASE ) for x in images] # now pad them to do the following operations UpperCAmelCase , UpperCAmelCase : Optional[Any] = self.pad(_SCREAMING_SNAKE_CASE ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad UpperCAmelCase : int = torch.true_divide(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def _snake_case ( UpperCamelCase : Dict , UpperCamelCase : Dict ): boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def _snake_case ( UpperCamelCase : Any , UpperCamelCase : Tuple[int, int] ): assert torch.isfinite(UpperCamelCase ).all(), "Box tensor contains infinite or NaN!" UpperCAmelCase , UpperCAmelCase : str = box_size tensor[:, 0].clamp_(min=0 , max=UpperCamelCase ) tensor[:, 1].clamp_(min=0 , max=UpperCamelCase ) tensor[:, 2].clamp_(min=0 , max=UpperCamelCase ) tensor[:, 3].clamp_(min=0 , max=UpperCamelCase )
76
0
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging lowerCAmelCase : List[str] = logging.get_logger(__name__) def A_ ( _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Optional[Any] = nn.functional.normalize(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: List[Any] = nn.functional.normalize(_UpperCAmelCase ) return torch.mm(_UpperCAmelCase , normalized_text_embeds.t() ) class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : str = CLIPConfig _UpperCAmelCase : Optional[int] = ['''CLIPEncoderLayer'''] def __init__( self : List[Any] , lowerCAmelCase__ : CLIPConfig): super().__init__(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = CLIPVisionModel(config.vision_config) SCREAMING_SNAKE_CASE_: List[str] = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = nn.Parameter(torch.ones(17 , config.projection_dim) , requires_grad=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = nn.Parameter(torch.ones(3 , config.projection_dim) , requires_grad=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = nn.Parameter(torch.ones(17) , requires_grad=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = nn.Parameter(torch.ones(3) , requires_grad=lowerCAmelCase__) @torch.no_grad() def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: List[Any] = self.vision_model(lowerCAmelCase__)[1] # pooled_output SCREAMING_SNAKE_CASE_: Tuple = self.visual_projection(lowerCAmelCase__) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 SCREAMING_SNAKE_CASE_: Dict = cosine_distance(lowerCAmelCase__ , self.special_care_embeds).cpu().float().numpy() SCREAMING_SNAKE_CASE_: Optional[Any] = cosine_distance(lowerCAmelCase__ , self.concept_embeds).cpu().float().numpy() SCREAMING_SNAKE_CASE_: Optional[int] = [] SCREAMING_SNAKE_CASE_: List[Any] = image_embeds.shape[0] for i in range(lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Dict = {"special_scores": {}, "special_care": [], "concept_scores": {}, "bad_concepts": []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images SCREAMING_SNAKE_CASE_: List[Any] = 0.0 for concept_idx in range(len(special_cos_dist[0])): SCREAMING_SNAKE_CASE_: int = special_cos_dist[i][concept_idx] SCREAMING_SNAKE_CASE_: Union[str, Any] = self.special_care_embeds_weights[concept_idx].item() SCREAMING_SNAKE_CASE_: str = round(concept_cos - concept_threshold + adjustment , 3) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img["special_scores"][concept_idx]}) SCREAMING_SNAKE_CASE_: Tuple = 0.01 for concept_idx in range(len(cos_dist[0])): SCREAMING_SNAKE_CASE_: List[str] = cos_dist[i][concept_idx] SCREAMING_SNAKE_CASE_: Any = self.concept_embeds_weights[concept_idx].item() SCREAMING_SNAKE_CASE_: Optional[int] = round(concept_cos - concept_threshold + adjustment , 3) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(lowerCAmelCase__) result.append(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = [len(res["bad_concepts"]) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase__ : torch.FloatTensor , lowerCAmelCase__ : torch.FloatTensor): SCREAMING_SNAKE_CASE_: Optional[Any] = self.vision_model(lowerCAmelCase__)[1] # pooled_output SCREAMING_SNAKE_CASE_: Tuple = self.visual_projection(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = cosine_distance(lowerCAmelCase__ , self.special_care_embeds) SCREAMING_SNAKE_CASE_: str = cosine_distance(lowerCAmelCase__ , self.concept_embeds) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images SCREAMING_SNAKE_CASE_: Dict = 0.0 SCREAMING_SNAKE_CASE_: List[str] = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) SCREAMING_SNAKE_CASE_: List[str] = torch.any(special_scores > 0 , dim=1) SCREAMING_SNAKE_CASE_: str = special_care * 0.01 SCREAMING_SNAKE_CASE_: Optional[Any] = special_adjustment.unsqueeze(1).expand(-1 , cos_dist.shape[1]) SCREAMING_SNAKE_CASE_: Any = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) SCREAMING_SNAKE_CASE_: Optional[int] = torch.any(concept_scores > 0 , dim=1) return images, has_nsfw_concepts
13
import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer lowercase__ =logging.get_logger(__name__) lowercase__ ={'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} lowercase__ ={ 'vocab_file': { 'junnyu/roformer_chinese_small': 'https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt', 'junnyu/roformer_chinese_base': 'https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt', 'junnyu/roformer_chinese_char_small': ( 'https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt' ), 'junnyu/roformer_chinese_char_base': ( 'https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt' ), 'junnyu/roformer_small_discriminator': ( 'https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt' ), 'junnyu/roformer_small_generator': ( 'https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt' ), } } lowercase__ ={ 'junnyu/roformer_chinese_small': 1536, 'junnyu/roformer_chinese_base': 1536, 'junnyu/roformer_chinese_char_small': 512, 'junnyu/roformer_chinese_char_base': 512, 'junnyu/roformer_small_discriminator': 128, 'junnyu/roformer_small_generator': 128, } lowercase__ ={ 'junnyu/roformer_chinese_small': {'do_lower_case': True}, 'junnyu/roformer_chinese_base': {'do_lower_case': True}, 'junnyu/roformer_chinese_char_small': {'do_lower_case': True}, 'junnyu/roformer_chinese_char_base': {'do_lower_case': True}, 'junnyu/roformer_small_discriminator': {'do_lower_case': True}, 'junnyu/roformer_small_generator': {'do_lower_case': True}, } class UpperCamelCase__ ( __lowercase ): _SCREAMING_SNAKE_CASE : Optional[Any] = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : Optional[Any] = PRETRAINED_INIT_CONFIGURATION _SCREAMING_SNAKE_CASE : Optional[int] = RoFormerTokenizer def __init__(self : List[str] , snake_case_ : Optional[int]=None , snake_case_ : str=None , snake_case_ : Optional[Any]=True , snake_case_ : str="[UNK]" , snake_case_ : Dict="[SEP]" , snake_case_ : Any="[PAD]" , snake_case_ : str="[CLS]" , snake_case_ : List[Any]="[MASK]" , snake_case_ : Any=True , snake_case_ : List[str]=None , **snake_case_ : Optional[int] , ): super().__init__( snake_case_ , tokenizer_file=snake_case_ , do_lower_case=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , tokenize_chinese_chars=snake_case_ , strip_accents=snake_case_ , **snake_case_ , ) __a : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get('''lowercase''' , snake_case_ ) != do_lower_case or pre_tok_state.get('''strip_accents''' , snake_case_ ) != strip_accents ): __a : List[str] = getattr(snake_case_ , pre_tok_state.pop('''type''' ) ) __a : Optional[Any] = do_lower_case __a : Optional[int] = strip_accents __a : List[str] = pre_tok_class(**snake_case_ ) __a : Optional[Any] = do_lower_case def __getstate__(self : Union[str, Any] ): __a : Any = self.__dict__.copy() __a : Union[str, Any] = BertPreTokenizer() return state def __setstate__(self : Tuple , snake_case_ : Optional[Any] ): __a : Dict = d __a : str = self.__dict__['''_tokenizer'''].get_vocab() __a : Optional[Any] = PreTokenizer.custom(JiebaPreTokenizer(snake_case_ ) ) def lowerCAmelCase (self : Optional[int] , snake_case_ : List[Any] , snake_case_ : Optional[Any]=None ): __a : Optional[int] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCAmelCase (self : Optional[int] , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None ): __a : int = [self.sep_token_id] __a : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase (self : int , snake_case_ : str , snake_case_ : Optional[str] = None ): __a : Optional[Any] = self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ ) def lowerCAmelCase (self : Dict , snake_case_ : Dict , snake_case_ : Tuple=None , snake_case_ : Optional[Any]=None , snake_case_ : Union[str, Any]=False , **snake_case_ : Tuple , ): __a : List[str] = BertPreTokenizer() return super().save_pretrained(snake_case_ , snake_case_ , snake_case_ , snake_case_ , **snake_case_ )
216
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available A : Optional[int] = {'''tokenization_herbert''': ['''HerbertTokenizer''']} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[Any] = ['''HerbertTokenizerFast'''] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys A : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
276
import argparse import math import traceback import dateutil.parser as date_parser import requests def __lowerCamelCase ( __a :str ) -> Optional[int]: """simple docstring""" A__ = {} A__ = job["""started_at"""] A__ = job["""completed_at"""] A__ = date_parser.parse(__a ) A__ = date_parser.parse(__a ) A__ = round((end_datetime - start_datetime).total_seconds() / 60.0 ) A__ = start A__ = end A__ = duration_in_min return job_info def __lowerCamelCase ( __a :Optional[Any] , __a :List[str]=None ) -> List[Any]: """simple docstring""" A__ = None if token is not None: A__ = {"""Accept""": """application/vnd.github+json""", """Authorization""": F'Bearer {token}'} A__ = F'https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100' A__ = requests.get(__a , headers=__a ).json() A__ = {} try: job_time.update({job["""name"""]: extract_time_from_single_job(__a ) for job in result["""jobs"""]} ) A__ = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 ) for i in range(__a ): A__ = requests.get(url + F'&page={i + 2}' , headers=__a ).json() job_time.update({job["""name"""]: extract_time_from_single_job(__a ) for job in result["""jobs"""]} ) return job_time except Exception: print(F'Unknown error, could not fetch links:\n{traceback.format_exc()}' ) return {} if __name__ == "__main__": A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''') A : Dict = parser.parse_args() A : List[Any] = get_job_time(args.workflow_run_id) A : int = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(F'''{k}: {v["duration"]}''')
276
1
"""simple docstring""" from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), F'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), F'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})''' def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=True ) -> List[Any]: '''simple docstring''' model.train() lowercase_ = model(__lowerCAmelCase ) lowercase_ = F.mse_loss(__lowerCAmelCase , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(__lowerCAmelCase ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase=False ) -> List[Any]: '''simple docstring''' set_seed(42 ) lowercase_ = RegressionModel() lowercase_ = deepcopy(__lowerCAmelCase ) lowercase_ = RegressionDataset(length=80 ) lowercase_ = DataLoader(__lowerCAmelCase , batch_size=16 ) model.to(accelerator.device ) if sched: lowercase_ = AdamW(params=model.parameters() , lr=1E-3 ) lowercase_ = AdamW(params=ddp_model.parameters() , lr=1E-3 ) lowercase_ = LambdaLR(__lowerCAmelCase , lr_lambda=lambda __lowerCAmelCase : epoch**0.65 ) lowercase_ = LambdaLR(__lowerCAmelCase , lr_lambda=lambda __lowerCAmelCase : epoch**0.65 ) # Make a copy of `model` if sched: lowercase_ , lowercase_ , lowercase_ , lowercase_ = accelerator.prepare(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) else: lowercase_ , lowercase_ = accelerator.prepare(__lowerCAmelCase , __lowerCAmelCase ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowercase_ , lowercase_ , lowercase_ = get_training_setup(__lowerCAmelCase ) # Use a single batch lowercase_ , lowercase_ = next(iter(__lowerCAmelCase ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model lowercase_ , lowercase_ = accelerator.gather((ddp_input, ddp_target) ) lowercase_ , lowercase_ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(__lowerCAmelCase ): step_model(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) else: # Sync grads step_model(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), F'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) lowercase_ = ddp_input[torch.randperm(len(__lowerCAmelCase ) )] def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> int: '''simple docstring''' lowercase_ , lowercase_ , lowercase_ = get_training_setup(__lowerCAmelCase ) # Use a single batch lowercase_ , lowercase_ = next(iter(__lowerCAmelCase ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model lowercase_ , lowercase_ = accelerator.gather((ddp_input, ddp_target) ) lowercase_ , lowercase_ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(__lowerCAmelCase ): step_model(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) else: # Sync grads step_model(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) lowercase_ = ddp_input[torch.randperm(len(__lowerCAmelCase ) )] def _SCREAMING_SNAKE_CASE (__lowerCAmelCase=False , __lowerCAmelCase=False ) -> Optional[Any]: '''simple docstring''' lowercase_ = Accelerator( split_batches=__lowerCAmelCase , dispatch_batches=__lowerCAmelCase , gradient_accumulation_steps=2 ) # Test that context manager behaves properly lowercase_ , lowercase_ , lowercase_ = get_training_setup(__lowerCAmelCase ) for iteration, batch in enumerate(__lowerCAmelCase ): lowercase_ , lowercase_ = batch.values() # Gather the distributed inputs and targs for the base model lowercase_ , lowercase_ = accelerator.gather((ddp_input, ddp_target) ) lowercase_ , lowercase_ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Do "gradient accumulation" (noop) with accelerator.accumulate(__lowerCAmelCase ): step_model(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(__lowerCAmelCase ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) lowercase_ = ddp_input[torch.randperm(len(__lowerCAmelCase ) )] GradientState._reset_state() def _SCREAMING_SNAKE_CASE (__lowerCAmelCase=False , __lowerCAmelCase=False ) -> Optional[int]: '''simple docstring''' lowercase_ = Accelerator( split_batches=__lowerCAmelCase , dispatch_batches=__lowerCAmelCase , gradient_accumulation_steps=2 ) # Test that context manager behaves properly lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = get_training_setup(__lowerCAmelCase , __lowerCAmelCase ) for iteration, batch in enumerate(__lowerCAmelCase ): lowercase_ , lowercase_ = batch.values() # Gather the distributed inputs and targs for the base model lowercase_ , lowercase_ = accelerator.gather((ddp_input, ddp_target) ) lowercase_ , lowercase_ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(__lowerCAmelCase )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(__lowerCAmelCase ): step_model(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), F'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n''' lowercase_ = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(__lowerCAmelCase )) if accelerator.num_processes > 1: check_model_parameters(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) GradientState._reset_state() def _SCREAMING_SNAKE_CASE () -> Optional[Any]: '''simple docstring''' lowercase_ = Accelerator() lowercase_ = RegressionDataset(length=80 ) lowercase_ = DataLoader(__lowerCAmelCase , batch_size=16 ) lowercase_ = RegressionDataset(length=96 ) lowercase_ = DataLoader(__lowerCAmelCase , batch_size=16 ) lowercase_ , lowercase_ = accelerator.prepare(__lowerCAmelCase , __lowerCAmelCase ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(__lowerCAmelCase ): assert id(accelerator.gradient_state.active_dataloader ) == id(__lowerCAmelCase ) if iteration < len(__lowerCAmelCase ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(__lowerCAmelCase ): assert id(accelerator.gradient_state.active_dataloader ) == id(__lowerCAmelCase ) if batch_num < len(__lowerCAmelCase ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def _SCREAMING_SNAKE_CASE () -> List[str]: '''simple docstring''' lowercase_ = Accelerator() lowercase_ = accelerator.state if state.local_process_index == 0: print("""**Test `accumulate` gradient accumulation with dataloader break**""" ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("""**Test NOOP `no_sync` context manager**""" ) test_noop_sync(__lowerCAmelCase ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("""**Test Distributed `no_sync` context manager**""" ) test_distributed_sync(__lowerCAmelCase ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation, """ , F'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation(__lowerCAmelCase , __lowerCAmelCase ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("""<""" , """2.0""" ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation with optimizer and scheduler, """ , """`split_batches=False`, `dispatch_batches=False`**""" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation with optimizer and scheduler, """ , F'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation_with_opt_and_scheduler(__lowerCAmelCase , __lowerCAmelCase ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> str: '''simple docstring''' main() if __name__ == "__main__": main()
136
"""simple docstring""" from __future__ import annotations import math def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> list: '''simple docstring''' if len(__lowerCAmelCase ) != 2 or len(a[0] ) != 2 or len(__lowerCAmelCase ) != 2 or len(b[0] ) != 2: raise Exception("""Matrices are not 2x2""" ) lowercase_ = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__lowerCAmelCase ) ) ] def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__lowerCAmelCase ) ) ] def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> tuple[list, list, list, list]: '''simple docstring''' if len(__lowerCAmelCase ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception("""Odd matrices are not supported!""" ) lowercase_ = len(__lowerCAmelCase ) lowercase_ = matrix_length // 2 lowercase_ = [[a[i][j] for j in range(__lowerCAmelCase , __lowerCAmelCase )] for i in range(__lowerCAmelCase )] lowercase_ = [ [a[i][j] for j in range(__lowerCAmelCase , __lowerCAmelCase )] for i in range(__lowerCAmelCase , __lowerCAmelCase ) ] lowercase_ = [[a[i][j] for j in range(__lowerCAmelCase )] for i in range(__lowerCAmelCase )] lowercase_ = [[a[i][j] for j in range(__lowerCAmelCase )] for i in range(__lowerCAmelCase , __lowerCAmelCase )] return top_left, top_right, bot_left, bot_right def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> tuple[int, int]: '''simple docstring''' return len(__lowerCAmelCase ), len(matrix[0] ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> None: '''simple docstring''' print("""\n""".join(str(__lowerCAmelCase ) for line in matrix ) ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> list: '''simple docstring''' if matrix_dimensions(__lowerCAmelCase ) == (2, 2): return default_matrix_multiplication(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = split_matrix(__lowerCAmelCase ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = split_matrix(__lowerCAmelCase ) lowercase_ = actual_strassen(__lowerCAmelCase , matrix_subtraction(__lowerCAmelCase , __lowerCAmelCase ) ) lowercase_ = actual_strassen(matrix_addition(__lowerCAmelCase , __lowerCAmelCase ) , __lowerCAmelCase ) lowercase_ = actual_strassen(matrix_addition(__lowerCAmelCase , __lowerCAmelCase ) , __lowerCAmelCase ) lowercase_ = actual_strassen(__lowerCAmelCase , matrix_subtraction(__lowerCAmelCase , __lowerCAmelCase ) ) lowercase_ = actual_strassen(matrix_addition(__lowerCAmelCase , __lowerCAmelCase ) , matrix_addition(__lowerCAmelCase , __lowerCAmelCase ) ) lowercase_ = actual_strassen(matrix_subtraction(__lowerCAmelCase , __lowerCAmelCase ) , matrix_addition(__lowerCAmelCase , __lowerCAmelCase ) ) lowercase_ = actual_strassen(matrix_subtraction(__lowerCAmelCase , __lowerCAmelCase ) , matrix_addition(__lowerCAmelCase , __lowerCAmelCase ) ) lowercase_ = matrix_addition(matrix_subtraction(matrix_addition(__lowerCAmelCase , __lowerCAmelCase ) , __lowerCAmelCase ) , __lowerCAmelCase ) lowercase_ = matrix_addition(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = matrix_addition(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = matrix_subtraction(matrix_subtraction(matrix_addition(__lowerCAmelCase , __lowerCAmelCase ) , __lowerCAmelCase ) , __lowerCAmelCase ) # construct the new matrix from our 4 quadrants lowercase_ = [] for i in range(len(__lowerCAmelCase ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(__lowerCAmelCase ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> list: '''simple docstring''' if matrix_dimensions(__lowerCAmelCase )[1] != matrix_dimensions(__lowerCAmelCase )[0]: lowercase_ = ( """Unable to multiply these matrices, please check the dimensions.\n""" F'''Matrix A: {matrixa}\n''' F'''Matrix B: {matrixa}''' ) raise Exception(__lowerCAmelCase ) lowercase_ = matrix_dimensions(__lowerCAmelCase ) lowercase_ = matrix_dimensions(__lowerCAmelCase ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] lowercase_ = max(*__lowerCAmelCase , *__lowerCAmelCase ) lowercase_ = int(math.pow(2 , math.ceil(math.loga(__lowerCAmelCase ) ) ) ) lowercase_ = matrixa lowercase_ = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , __lowerCAmelCase ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __lowerCAmelCase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , __lowerCAmelCase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) lowercase_ = actual_strassen(__lowerCAmelCase , __lowerCAmelCase ) # Removing the additional zeros for i in range(0 , __lowerCAmelCase ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __lowerCAmelCase ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": UpperCAmelCase : List[Any] = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] UpperCAmelCase : Optional[int] = [[0, 2, 1, 1], [16, 2, 3, 3], [2, 2, 7, 7], [13, 11, 22, 4]] print(strassen(matrixa, matrixa))
136
1
from argparse import ArgumentParser from .env import EnvironmentCommand def snake_case( ) -> Tuple: '''simple docstring''' lowercase : Union[str, Any] = ArgumentParser('''Diffusers CLI tool''' , usage='''diffusers-cli <command> [<args>]''' ) lowercase : Dict = parser.add_subparsers(help='''diffusers-cli command helpers''' ) # Register commands EnvironmentCommand.register_subcommand(__magic_name__ ) # Let's go lowercase : Optional[Any] = parser.parse_args() if not hasattr(__magic_name__ , '''func''' ): parser.print_help() exit(1 ) # Run lowercase : int = args.func(__magic_name__ ) service.run() if __name__ == "__main__": main()
116
import math def snake_case( __magic_name__ ) -> bool: '''simple docstring''' lowercase : Union[str, Any] = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(__magic_name__ ) def snake_case( __magic_name__ = 1 / 1_23_45 ) -> int: '''simple docstring''' lowercase : Union[str, Any] = 0 lowercase : str = 0 lowercase : Optional[int] = 3 while True: lowercase : Any = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(__magic_name__ ): lowercase : Any = int(__magic_name__ ) total_partitions += 1 if check_partition_perfect(__magic_name__ ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(__magic_name__ ) integer += 1 if __name__ == "__main__": print(f'''{solution() = }''')
116
1
"""simple docstring""" A = [ (1_000, '''M'''), (900, '''CM'''), (500, '''D'''), (400, '''CD'''), (100, '''C'''), (90, '''XC'''), (50, '''L'''), (40, '''XL'''), (10, '''X'''), (9, '''IX'''), (5, '''V'''), (4, '''IV'''), (1, '''I'''), ] def __A ( a_ :str) -> int: __a : str = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 1_00, '''D''': 5_00, '''M''': 10_00} __a : List[Any] = 0 __a : List[str] = 0 while place < len(a_): if (place + 1 < len(a_)) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def __A ( a_ :int) -> str: __a : Union[str, Any] = [] for arabic, roman in ROMAN: ((__a) , (__a)) : Any = divmod(a_ , a_) result.append(roman * factor) if number == 0: break return "".join(a_) if __name__ == "__main__": import doctest doctest.testmod()
160
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer A = logging.get_logger(__name__) A = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} A = { '''vocab_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/vocab.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/vocab.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/vocab.json''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json''', '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json''' ), }, '''merges_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/merges.txt''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/merges.txt''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/merges.txt''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt''', '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt''' ), }, '''tokenizer_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/tokenizer.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/tokenizer.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json''', '''roberta-base-openai-detector''': ( '''https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json''' ), '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json''' ), }, } A = { '''roberta-base''': 512, '''roberta-large''': 512, '''roberta-large-mnli''': 512, '''distilroberta-base''': 512, '''roberta-base-openai-detector''': 512, '''roberta-large-openai-detector''': 512, } class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = ['''input_ids''', '''attention_mask'''] __lowerCAmelCase = RobertaTokenizer def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="replace" , _UpperCAmelCase="<s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="<s>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase="<mask>" , _UpperCAmelCase=False , _UpperCAmelCase=True , **_UpperCAmelCase , ): super().__init__( _UpperCAmelCase , _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , errors=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , trim_offsets=_UpperCAmelCase , **_UpperCAmelCase , ) __a : str = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , _UpperCAmelCase ) != add_prefix_space: __a : Tuple = getattr(_UpperCAmelCase , pre_tok_state.pop('''type''' ) ) __a : Dict = add_prefix_space __a : str = pre_tok_class(**_UpperCAmelCase ) __a : Optional[int] = add_prefix_space __a : str = '''post_processor''' __a : int = getattr(self.backend_tokenizer , _UpperCAmelCase , _UpperCAmelCase ) if tokenizer_component_instance: __a : Dict = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __a : Optional[Any] = tuple(state['''sep'''] ) if "cls" in state: __a : List[Any] = tuple(state['''cls'''] ) __a : Optional[Any] = False if state.get('''add_prefix_space''' , _UpperCAmelCase ) != add_prefix_space: __a : Any = add_prefix_space __a : List[Any] = True if state.get('''trim_offsets''' , _UpperCAmelCase ) != trim_offsets: __a : List[Any] = trim_offsets __a : List[str] = True if changes_to_apply: __a : Any = getattr(_UpperCAmelCase , state.pop('''type''' ) ) __a : Any = component_class(**_UpperCAmelCase ) setattr(self.backend_tokenizer , _UpperCAmelCase , _UpperCAmelCase ) @property def _lowerCamelCase ( self ): if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def _lowerCamelCase ( self , _UpperCAmelCase ): __a : int = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else value __a : Tuple = value def _lowerCamelCase ( self , *_UpperCAmelCase , **_UpperCAmelCase ): __a : Tuple = kwargs.get('''is_split_into_words''' , _UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_UpperCAmelCase , **_UpperCAmelCase ) def _lowerCamelCase ( self , *_UpperCAmelCase , **_UpperCAmelCase ): __a : str = kwargs.get('''is_split_into_words''' , _UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*_UpperCAmelCase , **_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ): __a : Optional[int] = self._tokenizer.model.save(_UpperCAmelCase , name=_UpperCAmelCase ) return tuple(_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase=None ): __a : int = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ): __a : Dict = [self.sep_token_id] __a : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
160
1
import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def A(__a: Tuple , __a: Union[str, Any] ): lowerCAmelCase_ = checkpoint lowerCAmelCase_ = {} lowerCAmelCase_ = vae_state_dict["encoder.conv_in.weight"] lowerCAmelCase_ = vae_state_dict["encoder.conv_in.bias"] lowerCAmelCase_ = vae_state_dict["encoder.conv_out.weight"] lowerCAmelCase_ = vae_state_dict["encoder.conv_out.bias"] lowerCAmelCase_ = vae_state_dict["encoder.norm_out.weight"] lowerCAmelCase_ = vae_state_dict["encoder.norm_out.bias"] lowerCAmelCase_ = vae_state_dict["decoder.conv_in.weight"] lowerCAmelCase_ = vae_state_dict["decoder.conv_in.bias"] lowerCAmelCase_ = vae_state_dict["decoder.conv_out.weight"] lowerCAmelCase_ = vae_state_dict["decoder.conv_out.bias"] lowerCAmelCase_ = vae_state_dict["decoder.norm_out.weight"] lowerCAmelCase_ = vae_state_dict["decoder.norm_out.bias"] lowerCAmelCase_ = vae_state_dict["quant_conv.weight"] lowerCAmelCase_ = vae_state_dict["quant_conv.bias"] lowerCAmelCase_ = vae_state_dict["post_quant_conv.weight"] lowerCAmelCase_ = vae_state_dict["post_quant_conv.bias"] # Retrieves the keys for the encoder down blocks only lowerCAmelCase_ = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "encoder.down" in layer} ) lowerCAmelCase_ = { layer_id: [key for key in vae_state_dict if F"down.{layer_id}" in key] for layer_id in range(__a ) } # Retrieves the keys for the decoder up blocks only lowerCAmelCase_ = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "decoder.up" in layer} ) lowerCAmelCase_ = { layer_id: [key for key in vae_state_dict if F"up.{layer_id}" in key] for layer_id in range(__a ) } for i in range(__a ): lowerCAmelCase_ = [key for key in down_blocks[i] if F"down.{i}" in key and F"down.{i}.downsample" not in key] if F"encoder.down.{i}.downsample.conv.weight" in vae_state_dict: lowerCAmelCase_ = vae_state_dict.pop( F"encoder.down.{i}.downsample.conv.weight" ) lowerCAmelCase_ = vae_state_dict.pop( F"encoder.down.{i}.downsample.conv.bias" ) lowerCAmelCase_ = renew_vae_resnet_paths(__a ) lowerCAmelCase_ = {"old": F"down.{i}.block", "new": F"down_blocks.{i}.resnets"} assign_to_checkpoint(__a , __a , __a , additional_replacements=[meta_path] , config=__a ) lowerCAmelCase_ = [key for key in vae_state_dict if "encoder.mid.block" in key] lowerCAmelCase_ = 2 for i in range(1 , num_mid_res_blocks + 1 ): lowerCAmelCase_ = [key for key in mid_resnets if F"encoder.mid.block_{i}" in key] lowerCAmelCase_ = renew_vae_resnet_paths(__a ) lowerCAmelCase_ = {"old": F"mid.block_{i}", "new": F"mid_block.resnets.{i - 1}"} assign_to_checkpoint(__a , __a , __a , additional_replacements=[meta_path] , config=__a ) lowerCAmelCase_ = [key for key in vae_state_dict if "encoder.mid.attn" in key] lowerCAmelCase_ = renew_vae_attention_paths(__a ) lowerCAmelCase_ = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(__a , __a , __a , additional_replacements=[meta_path] , config=__a ) conv_attn_to_linear(__a ) for i in range(__a ): lowerCAmelCase_ = num_up_blocks - 1 - i lowerCAmelCase_ = [ key for key in up_blocks[block_id] if F"up.{block_id}" in key and F"up.{block_id}.upsample" not in key ] if F"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict: lowerCAmelCase_ = vae_state_dict[ F"decoder.up.{block_id}.upsample.conv.weight" ] lowerCAmelCase_ = vae_state_dict[ F"decoder.up.{block_id}.upsample.conv.bias" ] lowerCAmelCase_ = renew_vae_resnet_paths(__a ) lowerCAmelCase_ = {"old": F"up.{block_id}.block", "new": F"up_blocks.{i}.resnets"} assign_to_checkpoint(__a , __a , __a , additional_replacements=[meta_path] , config=__a ) lowerCAmelCase_ = [key for key in vae_state_dict if "decoder.mid.block" in key] lowerCAmelCase_ = 2 for i in range(1 , num_mid_res_blocks + 1 ): lowerCAmelCase_ = [key for key in mid_resnets if F"decoder.mid.block_{i}" in key] lowerCAmelCase_ = renew_vae_resnet_paths(__a ) lowerCAmelCase_ = {"old": F"mid.block_{i}", "new": F"mid_block.resnets.{i - 1}"} assign_to_checkpoint(__a , __a , __a , additional_replacements=[meta_path] , config=__a ) lowerCAmelCase_ = [key for key in vae_state_dict if "decoder.mid.attn" in key] lowerCAmelCase_ = renew_vae_attention_paths(__a ) lowerCAmelCase_ = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(__a , __a , __a , additional_replacements=[meta_path] , config=__a ) conv_attn_to_linear(__a ) return new_checkpoint def A(__a: str , __a: str , ): # Only support V1 lowerCAmelCase_ = requests.get( " https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml" ) lowerCAmelCase_ = io.BytesIO(r.content ) lowerCAmelCase_ = OmegaConf.load(__a ) lowerCAmelCase_ = 512 lowerCAmelCase_ = "cuda" if torch.cuda.is_available() else "cpu" if checkpoint_path.endswith("safetensors" ): from safetensors import safe_open lowerCAmelCase_ = {} with safe_open(__a , framework="pt" , device="cpu" ) as f: for key in f.keys(): lowerCAmelCase_ = f.get_tensor(__a ) else: lowerCAmelCase_ = torch.load(__a , map_location=__a )["state_dict"] # Convert the VAE model. lowerCAmelCase_ = create_vae_diffusers_config(__a , image_size=__a ) lowerCAmelCase_ = custom_convert_ldm_vae_checkpoint(__a , __a ) lowerCAmelCase_ = AutoencoderKL(**__a ) vae.load_state_dict(__a ) vae.save_pretrained(__a ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument('''--vae_pt_path''', default=None, type=str, required=True, help='''Path to the VAE.pt to convert.''') parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the VAE.pt to convert.''') lowerCamelCase__ = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
22
def A(__a: Tuple ): lowerCAmelCase_ = len(__a ) while cur > 1: # Find the maximum number in arr lowerCAmelCase_ = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi lowerCAmelCase_ = arr[mi::-1] + arr[mi + 1 : len(__a )] # Reverse whole list lowerCAmelCase_ = arr[cur - 1 :: -1] + arr[cur : len(__a )] cur -= 1 return arr if __name__ == "__main__": lowerCamelCase__ = input('''Enter numbers separated by a comma:\n''').strip() lowerCamelCase__ = [int(item) for item in user_input.split(''',''')] print(pancake_sort(unsorted))
22
1
"""simple docstring""" import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def _snake_case ( snake_case__ : Optional[Any] ): A = SwinConfig() A = swin_name.split('_' ) A = name_split[1] A = int(name_split[4] ) A = int(name_split[3][-1] ) if model_size == "tiny": A = 96 A = (2, 2, 6, 2) A = (3, 6, 12, 24) elif model_size == "small": A = 96 A = (2, 2, 18, 2) A = (3, 6, 12, 24) elif model_size == "base": A = 128 A = (2, 2, 18, 2) A = (4, 8, 16, 32) else: A = 192 A = (2, 2, 18, 2) A = (6, 12, 24, 48) if "in22k" in swin_name: A = 2_1841 else: A = 1000 A = 'huggingface/label-files' A = 'imagenet-1k-id2label.json' A = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type='dataset' ) , 'r' ) ) A = {int(snake_case__ ): v for k, v in idalabel.items()} A = idalabel A = {v: k for k, v in idalabel.items()} A = img_size A = num_classes A = embed_dim A = depths A = num_heads A = window_size return config def _snake_case ( snake_case__ : List[str] ): if "patch_embed.proj" in name: A = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: A = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: A = 'encoder.' + name if "attn.proj" in name: A = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: A = name.replace('attn' , 'attention.self' ) if "norm1" in name: A = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: A = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: A = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: A = name.replace('mlp.fc2' , 'output.dense' ) if name == "norm.weight": A = 'layernorm.weight' if name == "norm.bias": A = 'layernorm.bias' if "head" in name: A = name.replace('head' , 'classifier' ) else: A = 'swin.' + name return name def _snake_case ( snake_case__ : List[str] , snake_case__ : Tuple ): for key in orig_state_dict.copy().keys(): A = orig_state_dict.pop(snake_case__ ) if "mask" in key: continue elif "qkv" in key: A = key.split('.' ) A = int(key_split[1] ) A = int(key_split[3] ) A = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: A = val[:dim, :] A = val[ dim : dim * 2, : ] A = val[-dim:, :] else: A = val[ :dim ] A = val[ dim : dim * 2 ] A = val[ -dim: ] else: A = val return orig_state_dict def _snake_case ( snake_case__ : Optional[Any] , snake_case__ : Union[str, Any] ): A = timm.create_model(snake_case__ , pretrained=snake_case__ ) timm_model.eval() A = get_swin_config(snake_case__ ) A = SwinForImageClassification(snake_case__ ) model.eval() A = convert_state_dict(timm_model.state_dict() , snake_case__ ) model.load_state_dict(snake_case__ ) A = 'http://images.cocodataset.org/val2017/000000039769.jpg' A = AutoImageProcessor.from_pretrained('microsoft/{}'.format(swin_name.replace('_' , '-' ) ) ) A = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ) A = image_processor(images=snake_case__ , return_tensors='pt' ) A = timm_model(inputs['pixel_values'] ) A = model(**snake_case__ ).logits assert torch.allclose(snake_case__ , snake_case__ , atol=1e-3 ) print(F'Saving model {swin_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(snake_case__ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(snake_case__ ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swin_name''', default='''swin_tiny_patch4_window7_224''', type=str, help='''Name of the Swin timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) _lowercase = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
74
"""simple docstring""" import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def lowerCAmelCase_ ( snake_case_ : Dict , snake_case_ : str , snake_case_ : str , snake_case_ : Path , snake_case_ : str = None , snake_case_ : str = None , snake_case_ : str = None , ) ->List[Any]: if config_name_or_path is None: lowerCamelCase__ : Dict ='facebook/rag-token-base' if model_type == 'rag_token' else 'facebook/rag-sequence-base' if generator_tokenizer_name_or_path is None: lowerCamelCase__ : Optional[int] =generator_name_or_path if question_encoder_tokenizer_name_or_path is None: lowerCamelCase__ : Optional[int] =question_encoder_name_or_path lowerCamelCase__ : Optional[Any] =RagTokenForGeneration if model_type == 'rag_token' else RagSequenceForGeneration # Save model. lowerCamelCase__ : Union[str, Any] =RagConfig.from_pretrained(snake_case_ ) lowerCamelCase__ : Optional[Any] =AutoConfig.from_pretrained(snake_case_ ) lowerCamelCase__ : Optional[Any] =AutoConfig.from_pretrained(snake_case_ ) lowerCamelCase__ : Optional[int] =gen_config lowerCamelCase__ : str =question_encoder_config lowerCamelCase__ : str =model_class.from_pretrained_question_encoder_generator( snake_case_ , snake_case_ , config=snake_case_ ) rag_model.save_pretrained(snake_case_ ) # Sanity check. model_class.from_pretrained(snake_case_ ) # Save tokenizers. lowerCamelCase__ : str =AutoTokenizer.from_pretrained(snake_case_ ) gen_tokenizer.save_pretrained(dest_dir / 'generator_tokenizer/' ) lowerCamelCase__ : Optional[int] =AutoTokenizer.from_pretrained(snake_case_ ) question_encoder_tokenizer.save_pretrained(dest_dir / 'question_encoder_tokenizer/' ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( """--model_type""", choices=["""rag_sequence""", """rag_token"""], required=True, type=str, help="""RAG model type: rag_sequence, rag_token""", ) parser.add_argument("""--dest""", type=str, required=True, help="""Path to the output checkpoint directory.""") parser.add_argument("""--generator_name_or_path""", type=str, required=True, help="""Generator model identifier""") parser.add_argument( """--question_encoder_name_or_path""", type=str, required=True, help="""Question encoder model identifier""" ) parser.add_argument( """--generator_tokenizer_name_or_path""", type=str, help="""Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``""", ) parser.add_argument( """--question_encoder_tokenizer_name_or_path""", type=str, help="""Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``""", ) parser.add_argument( """--config_name_or_path""", type=str, help=( """Identifier of the model config to use, if not provided, resolves to a base config for a given""" """ ``model_type``""" ), ) lowerCAmelCase = parser.parse_args() lowerCAmelCase = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
126
0
from typing import TYPE_CHECKING from ...utils import _LazyModule lowercase : Union[str, Any] = {"""tokenization_byt5""": ["""ByT5Tokenizer"""]} if TYPE_CHECKING: from .tokenization_byta import ByTaTokenizer else: import sys lowercase : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
366
def A_ ( A__ , A__ , A__ ) -> float: if principal <= 0: raise Exception('Principal borrowed must be > 0' ) if rate_per_annum < 0: raise Exception('Rate of interest must be >= 0' ) if years_to_repay <= 0 or not isinstance(A__ , A__ ): raise Exception('Years to repay must be an integer > 0' ) # Yearly rate is divided by 12 to get monthly rate a__ : str = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly a__ : List[Any] = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
225
0
def a_ ( _A ) -> bool: """simple docstring""" if num < 0: return False snake_case__ = num snake_case__ = 0 while num > 0: snake_case__ = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
307
import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class __SCREAMING_SNAKE_CASE: def __init__( self: int , UpperCamelCase: List[str] , UpperCamelCase: str=13 , UpperCamelCase: int=7 , UpperCamelCase: Any=True , UpperCamelCase: Dict=True , UpperCamelCase: Dict=False , UpperCamelCase: Optional[int]=True , UpperCamelCase: Dict=99 , UpperCamelCase: Dict=32 , UpperCamelCase: Optional[Any]=5 , UpperCamelCase: Union[str, Any]=4 , UpperCamelCase: List[str]=37 , UpperCamelCase: List[str]="gelu" , UpperCamelCase: Optional[Any]=0.1 , UpperCamelCase: Union[str, Any]=0.1 , UpperCamelCase: Union[str, Any]=5_12 , UpperCamelCase: str=16 , UpperCamelCase: int=2 , UpperCamelCase: Optional[int]=0.02 , UpperCamelCase: Union[str, Any]=3 , UpperCamelCase: Dict=4 , UpperCamelCase: List[str]=None , ) -> List[str]: snake_case__ = parent snake_case__ = batch_size snake_case__ = seq_length snake_case__ = is_training snake_case__ = use_input_mask snake_case__ = use_token_type_ids snake_case__ = use_labels snake_case__ = vocab_size snake_case__ = hidden_size snake_case__ = num_hidden_layers snake_case__ = num_attention_heads snake_case__ = intermediate_size snake_case__ = hidden_act snake_case__ = hidden_dropout_prob snake_case__ = attention_probs_dropout_prob snake_case__ = max_position_embeddings snake_case__ = type_vocab_size snake_case__ = type_sequence_label_size snake_case__ = initializer_range snake_case__ = num_labels snake_case__ = num_choices snake_case__ = scope def lowerCAmelCase_ ( self: List[str] ) -> Dict: snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ = None if self.use_input_mask: snake_case__ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ = None if self.use_token_type_ids: snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case__ = None snake_case__ = None snake_case__ = None if self.use_labels: snake_case__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case__ = ids_tensor([self.batch_size] , self.num_choices ) snake_case__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase_ ( self: Optional[Any] ) -> Union[str, Any]: return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase , initializer_range=self.initializer_range , ) def lowerCAmelCase_ ( self: Optional[int] , UpperCamelCase: Dict , UpperCamelCase: List[Any] , UpperCamelCase: List[str] , UpperCamelCase: List[str] , UpperCamelCase: Any , UpperCamelCase: List[Any] , UpperCamelCase: str ) -> Dict: snake_case__ = LlamaModel(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ = model(UpperCamelCase , attention_mask=UpperCamelCase ) snake_case__ = model(UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self: List[Any] , UpperCamelCase: List[str] , UpperCamelCase: Tuple , UpperCamelCase: Optional[int] , UpperCamelCase: Union[str, Any] , UpperCamelCase: List[Any] , UpperCamelCase: Any , UpperCamelCase: Optional[Any] , UpperCamelCase: Optional[Any] , UpperCamelCase: List[Any] , ) -> str: snake_case__ = True snake_case__ = LlamaModel(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ = model( UpperCamelCase , attention_mask=UpperCamelCase , encoder_hidden_states=UpperCamelCase , encoder_attention_mask=UpperCamelCase , ) snake_case__ = model( UpperCamelCase , attention_mask=UpperCamelCase , encoder_hidden_states=UpperCamelCase , ) snake_case__ = model(UpperCamelCase , attention_mask=UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self: List[str] , UpperCamelCase: Any , UpperCamelCase: List[str] , UpperCamelCase: Union[str, Any] , UpperCamelCase: Union[str, Any] , UpperCamelCase: List[Any] , UpperCamelCase: Dict , UpperCamelCase: Any , UpperCamelCase: int , UpperCamelCase: Optional[Any] , ) -> Any: snake_case__ = LlamaForCausalLM(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ = model(UpperCamelCase , attention_mask=UpperCamelCase , labels=UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase_ ( self: List[Any] , UpperCamelCase: Dict , UpperCamelCase: Optional[Any] , UpperCamelCase: Optional[Any] , UpperCamelCase: List[str] , UpperCamelCase: List[str] , UpperCamelCase: List[str] , UpperCamelCase: int , UpperCamelCase: str , UpperCamelCase: List[str] , ) -> Union[str, Any]: snake_case__ = True snake_case__ = True snake_case__ = LlamaForCausalLM(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() # first forward pass snake_case__ = model( UpperCamelCase , attention_mask=UpperCamelCase , encoder_hidden_states=UpperCamelCase , encoder_attention_mask=UpperCamelCase , use_cache=UpperCamelCase , ) snake_case__ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids snake_case__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case__ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and snake_case__ = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case__ = torch.cat([input_mask, next_mask] , dim=-1 ) snake_case__ = model( UpperCamelCase , attention_mask=UpperCamelCase , encoder_hidden_states=UpperCamelCase , encoder_attention_mask=UpperCamelCase , output_hidden_states=UpperCamelCase , )['hidden_states'][0] snake_case__ = model( UpperCamelCase , attention_mask=UpperCamelCase , encoder_hidden_states=UpperCamelCase , encoder_attention_mask=UpperCamelCase , past_key_values=UpperCamelCase , output_hidden_states=UpperCamelCase , )['hidden_states'][0] # select random slice snake_case__ = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case__ = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case__ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCamelCase , UpperCamelCase , atol=1e-3 ) ) def lowerCAmelCase_ ( self: int ) -> Dict: snake_case__ = self.prepare_config_and_inputs() ( ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ) = config_and_inputs snake_case__ = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE( a_ , a_ , a_ , unittest.TestCase ): _UpperCAmelCase = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () _UpperCAmelCase = (LlamaForCausalLM,) if is_torch_available() else () _UpperCAmelCase = ( { "feature-extraction": LlamaModel, "text-classification": LlamaForSequenceClassification, "text-generation": LlamaForCausalLM, "zero-shot": LlamaForSequenceClassification, } if is_torch_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False def lowerCAmelCase_ ( self: int ) -> int: snake_case__ = LlamaModelTester(self ) snake_case__ = ConfigTester(self , config_class=UpperCamelCase , hidden_size=37 ) def lowerCAmelCase_ ( self: Optional[int] ) -> Optional[Any]: self.config_tester.run_common_tests() def lowerCAmelCase_ ( self: int ) -> int: snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase ) def lowerCAmelCase_ ( self: Optional[Any] ) -> str: snake_case__ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case__ = type self.model_tester.create_and_check_model(*UpperCamelCase ) def lowerCAmelCase_ ( self: List[Any] ) -> Union[str, Any]: snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ = 3 snake_case__ = input_dict['input_ids'] snake_case__ = input_ids.ne(1 ).to(UpperCamelCase ) snake_case__ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) snake_case__ = LlamaForSequenceClassification(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ = model(UpperCamelCase , attention_mask=UpperCamelCase , labels=UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCAmelCase_ ( self: str ) -> Union[str, Any]: snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ = 3 snake_case__ = 'single_label_classification' snake_case__ = input_dict['input_ids'] snake_case__ = input_ids.ne(1 ).to(UpperCamelCase ) snake_case__ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) snake_case__ = LlamaForSequenceClassification(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ = model(UpperCamelCase , attention_mask=UpperCamelCase , labels=UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCAmelCase_ ( self: Dict ) -> int: snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ = 3 snake_case__ = 'multi_label_classification' snake_case__ = input_dict['input_ids'] snake_case__ = input_ids.ne(1 ).to(UpperCamelCase ) snake_case__ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) snake_case__ = LlamaForSequenceClassification(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ = model(UpperCamelCase , attention_mask=UpperCamelCase , labels=UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('LLaMA buffers include complex numbers, which breaks this test' ) def lowerCAmelCase_ ( self: Dict ) -> Any: pass @parameterized.expand([('linear',), ('dynamic',)] ) def lowerCAmelCase_ ( self: Tuple , UpperCamelCase: Optional[Any] ) -> List[str]: snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ = ids_tensor([1, 10] , config.vocab_size ) snake_case__ = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights snake_case__ = LlamaModel(UpperCamelCase ) original_model.to(UpperCamelCase ) original_model.eval() snake_case__ = original_model(UpperCamelCase ).last_hidden_state snake_case__ = original_model(UpperCamelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights snake_case__ = {'type': scaling_type, 'factor': 10.0} snake_case__ = LlamaModel(UpperCamelCase ) scaled_model.to(UpperCamelCase ) scaled_model.eval() snake_case__ = scaled_model(UpperCamelCase ).last_hidden_state snake_case__ = scaled_model(UpperCamelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(UpperCamelCase , UpperCamelCase , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(UpperCamelCase , UpperCamelCase , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(UpperCamelCase , UpperCamelCase , atol=1e-5 ) ) @require_torch class __SCREAMING_SNAKE_CASE( unittest.TestCase ): @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def lowerCAmelCase_ ( self: Union[str, Any] ) -> str: snake_case__ = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] snake_case__ = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-7b-hf' , device_map='auto' ) snake_case__ = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 snake_case__ = torch.tensor([[-6.6_550, -4.1_227, -4.9_859, -3.2_406, 0.8_262, -3.0_033, 1.2_964, -3.3_699]] ) torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off snake_case__ = torch.tensor([-12.8_281, -7.4_453, -0.4_639, -8.0_625, -7.2_500, -8.0_000, -6.4_883, -7.7_695, -7.8_438, -7.0_312, -6.2_188, -7.1_328, -1.8_496, 1.9_961, -8.6_250, -6.7_227, -12.8_281, -6.9_492, -7.0_742, -7.7_852, -7.5_820, -7.9_062, -6.9_375, -7.9_805, -8.3_438, -8.1_562, -8.0_469, -7.6_250, -7.7_422, -7.3_398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , UpperCamelCase , atol=1e-5 , rtol=1e-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def lowerCAmelCase_ ( self: Union[str, Any] ) -> Optional[Any]: snake_case__ = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] snake_case__ = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-hf' , device_map='auto' ) snake_case__ = model(torch.tensor(UpperCamelCase ) ) # Expected mean on dim = -1 snake_case__ = torch.tensor([[-2.0_622, -1.2_794, -1.1_638, -0.9_788, -1.4_603, -1.0_238, -1.7_893, -1.4_411]] ) torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off snake_case__ = torch.tensor([-8.1_406, -8.0_547, 2.7_461, -1.2_344, -0.1_448, -1.8_262, -1.0_020, -1.8_154, -1.6_895, -1.8_516, -2.3_574, -0.9_277, 3.7_598, 6.5_742, -1.2_998, -0.1_177, -8.1_406, -2.9_688, -2.9_199, -3.1_699, -3.5_254, -2.3_555, -2.7_988, -3.4_141, -2.8_262, -4.5_195, -3.3_379, -3.3_164, -2.7_832, -3.0_273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , UpperCamelCase , atol=1e-5 , rtol=1e-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def lowerCAmelCase_ ( self: int ) -> List[Any]: snake_case__ = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] snake_case__ = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-chat-hf' , device_map='auto' ) snake_case__ = model(torch.tensor(UpperCamelCase ) ) # Expected mean on dim = -1 snake_case__ = torch.tensor([[-0.8_562, -1.8_520, -0.7_551, -0.4_162, -1.5_161, -1.2_038, -2.4_823, -2.3_254]] ) torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off snake_case__ = torch.tensor([-2.2_227, 4.8_828, 0.9_023, -0.4_578, -0.7_871, -0.1_033, -0.6_221, -0.5_786, -0.7_803, -1.0_674, -1.2_920, -0.1_570, 0.8_008, 2.0_723, -0.9_497, 0.2_771, -2.2_227, -0.7_612, -1.4_346, -1.2_061, -1.6_426, -0.3_000, -0.7_139, -1.1_934, -1.8_691, -1.6_973, -1.5_947, -1.2_705, -0.3_523, -0.5_513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase , atol=1e-2 , rtol=1e-2 ) @unittest.skip( 'Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test' ) @slow def lowerCAmelCase_ ( self: List[str] ) -> Tuple: snake_case__ = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] snake_case__ = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-70b-hf' , device_map='auto' ) snake_case__ = model(torch.tensor(UpperCamelCase ) ) snake_case__ = torch.tensor( [[-4.2_327, -3.3_360, -4.6_665, -4.7_631, -1.8_180, -3.4_170, -1.4_211, -3.1_810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase , atol=1e-2 , rtol=1e-2 ) # fmt: off snake_case__ = torch.tensor([-9.4_922, -3.9_551, 1.7_998, -5.6_758, -5.1_055, -5.8_984, -4.8_320, -6.8_086, -6.5_391, -5.6_172, -5.5_820, -5.5_352, 1.7_881, 3.6_289, -6.5_117, -3.4_785, -9.5_000, -6.0_352, -6.8_125, -6.0_195, -6.6_836, -5.4_727, -6.2_812, -6.0_391, -7.3_398, -7.4_297, -7.4_844, -6.5_820, -5.8_789, -5.5_312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , UpperCamelCase , atol=1e-5 , rtol=1e-5 ) @unittest.skip('Model is curently gated' ) @slow def lowerCAmelCase_ ( self: Tuple ) -> Optional[int]: snake_case__ = 'Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi' snake_case__ = 'Simply put, the theory of relativity states that ' snake_case__ = LlamaTokenizer.from_pretrained('meta-llama/Llama-2-13b-chat-hf' ) snake_case__ = tokenizer.encode(UpperCamelCase , return_tensors='pt' ) snake_case__ = LlamaForCausalLM.from_pretrained( 'meta-llama/Llama-2-13b-chat-hf' , device_map='sequential' , use_safetensors=UpperCamelCase ) # greedy generation outputs snake_case__ = model.generate(UpperCamelCase , max_new_tokens=64 , top_p=UpperCamelCase , temperature=1 , do_sample=UpperCamelCase ) snake_case__ = tokenizer.decode(generated_ids[0] , skip_special_tokens=UpperCamelCase ) self.assertEqual(UpperCamelCase , UpperCamelCase )
307
1
"""simple docstring""" import argparse import torch from torch import nn from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration def SCREAMING_SNAKE_CASE__ ( snake_case : str )-> Union[str, Any]: '''simple docstring''' UpperCAmelCase__ : Optional[int] = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "decoder.output_projection.weight", "_float_tensor", "encoder.embed_positions._float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(snake_case , snake_case ) def SCREAMING_SNAKE_CASE__ ( snake_case : Tuple )-> Dict: '''simple docstring''' UpperCAmelCase__ : List[Any] = list(s_dict.keys() ) for key in keys: if "transformer_layers" in key: UpperCAmelCase__ : int = s_dict.pop(snake_case ) elif "subsample" in key: UpperCAmelCase__ : int = s_dict.pop(snake_case ) def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] )-> Any: '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : str = emb.weight.shape UpperCAmelCase__ : List[Any] = nn.Linear(snake_case , snake_case , bias=snake_case ) UpperCAmelCase__ : Optional[Any] = emb.weight.data return lin_layer def SCREAMING_SNAKE_CASE__ ( snake_case : Union[str, Any] , snake_case : int )-> Optional[int]: '''simple docstring''' UpperCAmelCase__ : Dict = torch.load(snake_case , map_location="cpu" ) UpperCAmelCase__ : int = mam_aaa["args"] UpperCAmelCase__ : int = mam_aaa["model"] UpperCAmelCase__ : Union[str, Any] = state_dict["decoder.output_projection.weight"] remove_ignore_keys_(snake_case ) rename_keys(snake_case ) UpperCAmelCase__ : List[str] = state_dict["decoder.embed_tokens.weight"].shape[0] UpperCAmelCase__ : Optional[Any] = args.share_decoder_input_output_embed UpperCAmelCase__ : int = [int(snake_case ) for i in args.conv_kernel_sizes.split("," )] UpperCAmelCase__ : Tuple = SpeechaTextConfig( vocab_size=snake_case , max_source_positions=args.max_source_positions , max_target_positions=args.max_target_positions , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="relu" , num_conv_layers=len(snake_case ) , conv_channels=args.conv_channels , conv_kernel_sizes=snake_case , input_feat_per_channel=args.input_feat_per_channel , input_channels=args.input_channels , tie_word_embeddings=snake_case , num_beams=5 , max_length=200 , use_cache=snake_case , decoder_start_token_id=2 , early_stopping=snake_case , ) UpperCAmelCase__ : Optional[int] = SpeechaTextForConditionalGeneration(snake_case ) UpperCAmelCase__ , UpperCAmelCase__ : Dict = model.model.load_state_dict(snake_case , strict=snake_case ) if len(snake_case ) > 0 and not set(snake_case ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( "Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing," f' but all the following weights are missing {missing}' ) if tie_embeds: UpperCAmelCase__ : Union[str, Any] = make_linear_from_emb(model.model.decoder.embed_tokens ) else: UpperCAmelCase__ : List[Any] = lm_head_weights model.save_pretrained(snake_case ) if __name__ == "__main__": _lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("""--fairseq_path""", type=str, help="""Path to the fairseq model (.pt) file.""") parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") _lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
298
"""simple docstring""" import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class lowerCAmelCase__ ( __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =XLMTokenizer SCREAMING_SNAKE_CASE_ =False def __a ( self : Dict ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase__ : Optional[int] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "lo", "low", "er</w>", "low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>", ] UpperCAmelCase__ : Any = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) UpperCAmelCase__ : Tuple = ["l o 123", "lo w 1456", "e r</w> 1789", ""] UpperCAmelCase__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase__ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" ) as fp: fp.write(json.dumps(snake_case__ ) ) with open(self.merges_file , "w" ) as fp: fp.write("\n".join(snake_case__ ) ) def __a ( self : Union[str, Any] , snake_case__ : List[Any] ): '''simple docstring''' UpperCAmelCase__ : str = "lower newer" UpperCAmelCase__ : Optional[Any] = "lower newer" return input_text, output_text def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = XLMTokenizer(self.vocab_file , self.merges_file ) UpperCAmelCase__ : List[Any] = "lower" UpperCAmelCase__ : Any = ["low", "er</w>"] UpperCAmelCase__ : Any = tokenizer.tokenize(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) UpperCAmelCase__ : Optional[Any] = tokens + ["<unk>"] UpperCAmelCase__ : List[Any] = [1_4, 1_5, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , snake_case__ ) @slow def __a ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Any = XLMTokenizer.from_pretrained("xlm-mlm-en-2048" ) UpperCAmelCase__ : str = tokenizer.encode("sequence builders" , add_special_tokens=snake_case__ ) UpperCAmelCase__ : Dict = tokenizer.encode("multi-sequence build" , add_special_tokens=snake_case__ ) UpperCAmelCase__ : Any = tokenizer.build_inputs_with_special_tokens(snake_case__ ) UpperCAmelCase__ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(snake_case__ , snake_case__ ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
298
1
"""simple docstring""" import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py lowerCamelCase_ : Optional[Any] = """src/diffusers""" # Matches is_xxx_available() lowerCamelCase_ : Dict = re.compile(R"""is\_([a-z_]*)_available\(\)""") # Matches from xxx import bla lowerCamelCase_ : Tuple = re.compile(R"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") lowerCamelCase_ : List[str] = """ {0} = None """ lowerCamelCase_ : str = """ class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, {1}) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, {1}) """ lowerCamelCase_ : Tuple = """ def {0}(*args, **kwargs): requires_backends({0}, {1}) """ def _A ( lowercase ): """simple docstring""" a =_re_backend.findall(lowercase ) if len(lowercase ) == 0: return None return "_and_".join(lowercase ) def _A ( ): """simple docstring""" with open(os.path.join(lowercase , '''__init__.py''' ) , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: a =f.readlines() # Get to the point we do the actual imports for type checking a =0 a ={} # Go through the end of the file while line_index < len(lowercase ): # If the line contains is_backend_available, we grab all objects associated with the `else` block a =find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith('''else:''' ): line_index += 1 line_index += 1 a =[] # Until we unindent, add backend objects to the list while line_index < len(lowercase ) and len(lines[line_index] ) > 1: a =lines[line_index] a =_re_single_line_import.search(lowercase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(lowercase ) > 0: a =objects else: line_index += 1 return backend_specific_objects def _A ( lowercase , lowercase ): """simple docstring""" if name.isupper(): return DUMMY_CONSTANT.format(lowercase ) elif name.islower(): return DUMMY_FUNCTION.format(lowercase , lowercase ) else: return DUMMY_CLASS.format(lowercase , lowercase ) def _A ( lowercase=None ): """simple docstring""" if backend_specific_objects is None: a =read_init() # For special correspondence backend to module name as used in the function requires_modulename a ={} for backend, objects in backend_specific_objects.items(): a ='''[''' + ''', '''.join(f'''"{b}"''' for b in backend.split('''_and_''' ) ) + ''']''' a ='''# This file is autogenerated by the command `make fix-copies`, do not edit.\n''' dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(lowercase , lowercase ) for o in objects] ) a =dummy_file return dummy_files def _A ( lowercase=False ): """simple docstring""" a =create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py a ={'''torch''': '''pt'''} # Locate actual dummy modules and read their content. a =os.path.join(lowercase , '''utils''' ) a ={ backend: os.path.join(lowercase , f'''dummy_{short_names.get(lowercase , lowercase )}_objects.py''' ) for backend in dummy_files.keys() } a ={} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(lowercase ): with open(lowercase , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: a =f.read() else: a ='''''' for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( f'''Updating diffusers.utils.dummy_{short_names.get(lowercase , lowercase )}_objects.py as the main ''' '''__init__ has new objects.''' ) with open(dummy_file_paths[backend] , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(dummy_files[backend] ) else: raise ValueError( '''The main __init__ has objects that are not present in ''' f'''diffusers.utils.dummy_{short_names.get(lowercase , lowercase )}_objects.py. Run `make fix-copies` ''' '''to fix this.''' ) if __name__ == "__main__": lowerCamelCase_ : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") lowerCamelCase_ : Optional[Any] = parser.parse_args() check_dummies(args.fix_and_overwrite)
81
"""simple docstring""" import os from datetime import datetime as dt from github import Github lowercase__ : int = [ '''good first issue''', '''good second issue''', '''good difficult issue''', '''enhancement''', '''new pipeline/model''', '''new scheduler''', '''wip''', ] def __lowercase ( ): snake_case_ : Optional[Any] = Github(os.environ['''GITHUB_TOKEN'''] ) snake_case_ : Any = g.get_repo('''huggingface/diffusers''' ) snake_case_ : Any = repo.get_issues(state='''open''' ) for issue in open_issues: snake_case_ : str = sorted(issue.get_comments() , key=lambda _a : i.created_at , reverse=_a ) snake_case_ : Dict = comments[0] if len(_a ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='''closed''' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='''open''' ) issue.remove_from_labels('''stale''' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) issue.add_to_labels('''stale''' ) if __name__ == "__main__": main()
264
0
"""simple docstring""" import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class _snake_case ( unittest.TestCase ): @property def lowerCamelCase__ ( self : Dict ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowerCamelCase__ ( self : str ): __lowerCamelCase : List[Any] = ort.SessionOptions() __lowerCamelCase : List[Any] = False return options def lowerCamelCase__ ( self : Any ): __lowerCamelCase : int = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) __lowerCamelCase : List[str] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) __lowerCamelCase : Union[str, Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy" ) # using the PNDM scheduler by default __lowerCamelCase : str = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="onnx" , safety_checker=UpperCAmelCase , feature_extractor=UpperCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) __lowerCamelCase : Dict = "A red cat sitting on a park bench" __lowerCamelCase : List[str] = np.random.RandomState(0 ) __lowerCamelCase : str = pipe( prompt=UpperCAmelCase , image=UpperCAmelCase , mask_image=UpperCAmelCase , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=15 , generator=UpperCAmelCase , output_type="np" , ) __lowerCamelCase : Dict = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1E-2
64
"""simple docstring""" from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { '''google/efficientnet-b7''': '''https://huggingface.co/google/efficientnet-b7/resolve/main/config.json''', } class _snake_case ( a__ ): snake_case__ = "efficientnet" def __init__( self : Dict , UpperCAmelCase : int = 3 , UpperCAmelCase : int = 600 , UpperCAmelCase : float = 2.0 , UpperCAmelCase : float = 3.1 , UpperCAmelCase : int = 8 , UpperCAmelCase : List[int] = [3, 3, 5, 3, 5, 5, 3] , UpperCAmelCase : List[int] = [32, 16, 24, 40, 80, 112, 192] , UpperCAmelCase : List[int] = [16, 24, 40, 80, 112, 192, 320] , UpperCAmelCase : List[int] = [] , UpperCAmelCase : List[int] = [1, 2, 2, 2, 1, 2, 1] , UpperCAmelCase : List[int] = [1, 2, 2, 3, 3, 4, 1] , UpperCAmelCase : List[int] = [1, 6, 6, 6, 6, 6, 6] , UpperCAmelCase : float = 0.2_5 , UpperCAmelCase : str = "swish" , UpperCAmelCase : int = 2560 , UpperCAmelCase : str = "mean" , UpperCAmelCase : float = 0.0_2 , UpperCAmelCase : float = 0.0_0_1 , UpperCAmelCase : float = 0.9_9 , UpperCAmelCase : float = 0.5 , UpperCAmelCase : float = 0.2 , **UpperCAmelCase : Union[str, Any] , ): super().__init__(**UpperCAmelCase ) __lowerCamelCase : Dict = num_channels __lowerCamelCase : str = image_size __lowerCamelCase : Any = width_coefficient __lowerCamelCase : Any = depth_coefficient __lowerCamelCase : Any = depth_divisor __lowerCamelCase : Optional[Any] = kernel_sizes __lowerCamelCase : Union[str, Any] = in_channels __lowerCamelCase : List[Any] = out_channels __lowerCamelCase : Optional[Any] = depthwise_padding __lowerCamelCase : int = strides __lowerCamelCase : int = num_block_repeats __lowerCamelCase : Optional[Any] = expand_ratios __lowerCamelCase : int = squeeze_expansion_ratio __lowerCamelCase : Any = hidden_act __lowerCamelCase : Optional[Any] = hidden_dim __lowerCamelCase : Union[str, Any] = pooling_type __lowerCamelCase : Optional[Any] = initializer_range __lowerCamelCase : Tuple = batch_norm_eps __lowerCamelCase : Optional[int] = batch_norm_momentum __lowerCamelCase : Any = dropout_rate __lowerCamelCase : List[Any] = drop_connect_rate __lowerCamelCase : int = sum(UpperCAmelCase ) * 4 class _snake_case ( a__ ): snake_case__ = version.parse("1.11" ) @property def lowerCamelCase__ ( self : Union[str, Any] ): return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def lowerCamelCase__ ( self : List[Any] ): return 1E-5
64
1
"""simple docstring""" _lowercase : Dict = [ "Audio", "Array2D", "Array3D", "Array4D", "Array5D", "ClassLabel", "Features", "Sequence", "Value", "Image", "Translation", "TranslationVariableLanguages", ] from .audio import Audio from .features import ArrayaD, ArrayaD, ArrayaD, ArrayaD, ClassLabel, Features, Sequence, Value from .image import Image from .translation import Translation, TranslationVariableLanguages
238
"""simple docstring""" from functools import lru_cache def snake_case__ ( __lowerCamelCase : int ): """simple docstring""" lowerCamelCase__ : Optional[Any] =2 lowerCamelCase__ : Optional[int] =set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(__lowerCamelCase ) if n > 1: factors.add(__lowerCamelCase ) return factors @lru_cache def snake_case__ ( __lowerCamelCase : int ): """simple docstring""" return len(unique_prime_factors(__lowerCamelCase ) ) def snake_case__ ( __lowerCamelCase : list ): """simple docstring""" return len(set(__lowerCamelCase ) ) in (0, 1) def snake_case__ ( __lowerCamelCase : int ): """simple docstring""" lowerCamelCase__ : Tuple =2 while True: # Increment each value of a generated range lowerCamelCase__ : Tuple =[base + i for i in range(__lowerCamelCase )] # Run elements through out unique_prime_factors function # Append our target number to the end. lowerCamelCase__ : Optional[Any] =[upf_len(__lowerCamelCase ) for x in group] checker.append(__lowerCamelCase ) # If all numbers in the list are equal, return the group variable. if equality(__lowerCamelCase ): return group # Increment our base variable by 1 base += 1 def snake_case__ ( __lowerCamelCase : int = 4 ): """simple docstring""" lowerCamelCase__ : List[Any] =run(__lowerCamelCase ) return results[0] if len(__lowerCamelCase ) else None if __name__ == "__main__": print(solution())
238
1
"""simple docstring""" from __future__ import annotations def snake_case_ ( A_ : float, A_ : float, A_ : float ): '''simple docstring''' if days_between_payments <= 0: raise ValueError('''days_between_payments must be > 0''' ) if daily_interest_rate < 0: raise ValueError('''daily_interest_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * daily_interest_rate * days_between_payments def snake_case_ ( A_ : float, A_ : float, A_ : float, ): '''simple docstring''' if number_of_compounding_periods <= 0: raise ValueError('''number_of_compounding_periods must be > 0''' ) if nominal_annual_interest_rate_percentage < 0: raise ValueError('''nominal_annual_interest_rate_percentage must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def snake_case_ ( A_ : float, A_ : float, A_ : float, ): '''simple docstring''' if number_of_years <= 0: raise ValueError('''number_of_years must be > 0''' ) if nominal_annual_percentage_rate < 0: raise ValueError('''nominal_annual_percentage_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return compound_interest( A_, nominal_annual_percentage_rate / 3_65, number_of_years * 3_65 ) if __name__ == "__main__": import doctest doctest.testmod()
354
"""simple docstring""" import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __snake_case ( _lowercase , unittest.TestCase): # TODO: is there an appropriate internal test set? snake_case__ : List[str] = "ssube/stable-diffusion-x4-upscaler-onnx" def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __lowerCAmelCase : int=0 ): """simple docstring""" _lowerCamelCase : Tuple = floats_tensor((1, 3, 1_2_8, 1_2_8) , rng=random.Random(__lowerCAmelCase ) ) _lowerCamelCase : Union[str, Any] = torch.manual_seed(__lowerCAmelCase ) _lowerCamelCase : Tuple = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" _lowerCamelCase : Union[str, Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = self.get_dummy_inputs() _lowerCamelCase : Any = pipe(**__lowerCAmelCase ).images _lowerCamelCase : Dict = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 5_1_2, 5_1_2, 3) _lowerCamelCase : str = np.array( [0.6_97_47_82, 0.68_90_20_93, 0.70_13_58_85, 0.7_58_36_18, 0.7_80_45_45, 0.7_85_49_12, 0.78_66_74_26, 0.78_74_38_63, 0.78_07_02_23] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" _lowerCamelCase : Optional[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) _lowerCamelCase : List[str] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _lowerCamelCase : int = self.get_dummy_inputs() _lowerCamelCase : Optional[Any] = pipe(**__lowerCAmelCase ).images _lowerCamelCase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) _lowerCamelCase : Optional[int] = np.array( [0.6_89_88_92, 0.59_24_05_56, 0.52_49_95_27, 0.58_86_62_15, 0.52_25_82_35, 0.52_57_27_15, 0.62_41_44_73, 0.6_17_43_87, 0.6_21_49_64] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" _lowerCamelCase : Optional[int] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) _lowerCamelCase : Optional[int] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _lowerCamelCase : Tuple = self.get_dummy_inputs() _lowerCamelCase : str = pipe(**__lowerCAmelCase ).images _lowerCamelCase : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) _lowerCamelCase : str = np.array( [0.7_65_92_78, 0.76_43_76_64, 0.75_57_91_07, 0.7_69_11_16, 0.77_66_69_86, 0.7_72_76_72, 0.7_75_86_64, 0.7_81_22_26, 0.76_94_25_15] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" _lowerCamelCase : Any = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) _lowerCamelCase : Union[str, Any] = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = self.get_dummy_inputs() _lowerCamelCase : Tuple = pipe(**__lowerCAmelCase ).images _lowerCamelCase : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) _lowerCamelCase : Union[str, Any] = np.array( [0.6_97_47_82, 0.68_90_20_93, 0.70_13_58_85, 0.7_58_36_18, 0.7_80_45_45, 0.7_85_49_12, 0.78_66_74_26, 0.78_74_38_63, 0.78_07_02_23] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" _lowerCamelCase : Dict = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) _lowerCamelCase : int = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = self.get_dummy_inputs() _lowerCamelCase : List[Any] = pipe(**__lowerCAmelCase ).images _lowerCamelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) _lowerCamelCase : Optional[int] = np.array( [0.77_42_44_96, 0.77_36_01, 0.7_64_52_88, 0.7_76_95_98, 0.7_77_27_39, 0.7_73_86_88, 0.78_18_72_33, 0.77_87_95_84, 0.76_70_43] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class __snake_case ( unittest.TestCase): @property def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" _lowerCamelCase : Optional[int] = ort.SessionOptions() _lowerCamelCase : List[str] = False return options def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" _lowerCamelCase : Optional[int] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) _lowerCamelCase : Any = init_image.resize((1_2_8, 1_2_8) ) # using the PNDM scheduler by default _lowerCamelCase : List[str] = OnnxStableDiffusionUpscalePipeline.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _lowerCamelCase : int = '''A fantasy landscape, trending on artstation''' _lowerCamelCase : List[Any] = torch.manual_seed(0 ) _lowerCamelCase : List[str] = pipe( prompt=__lowerCAmelCase , image=__lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=1_0 , generator=__lowerCAmelCase , output_type='''np''' , ) _lowerCamelCase : List[Any] = output.images _lowerCamelCase : List[Any] = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) _lowerCamelCase : str = np.array([0.48_83, 0.49_47, 0.49_80, 0.49_75, 0.49_82, 0.49_80, 0.50_00, 0.50_06, 0.49_72] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" _lowerCamelCase : Union[str, Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) _lowerCamelCase : int = init_image.resize((1_2_8, 1_2_8) ) _lowerCamelCase : str = LMSDiscreteScheduler.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' , subfolder='''scheduler''' ) _lowerCamelCase : Dict = OnnxStableDiffusionUpscalePipeline.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' , scheduler=__lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = '''A fantasy landscape, trending on artstation''' _lowerCamelCase : int = torch.manual_seed(0 ) _lowerCamelCase : List[str] = pipe( prompt=__lowerCAmelCase , image=__lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=2_0 , generator=__lowerCAmelCase , output_type='''np''' , ) _lowerCamelCase : Union[str, Any] = output.images _lowerCamelCase : Optional[Any] = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) _lowerCamelCase : str = np.array( [0.50_17_37_53, 0.50_22_33_56, 0.50_20_39, 0.50_23_30_36, 0.5_02_37_25, 0.5_02_26_01, 0.5_01_87_58, 0.50_23_40_85, 0.50_24_15_66] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
175
0
import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class __a ( A__ ): _lowerCAmelCase : List[Any] = (PNDMScheduler,) _lowerCAmelCase : Dict = (('''num_inference_steps''', 5_0),) def __lowercase ( self : List[str] , **SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' UpperCamelCase__ : Optional[int] = { "num_train_timesteps": 10_00, "beta_start": 0.0_0_0_1, "beta_end": 0.0_2, "beta_schedule": "linear", } config.update(**SCREAMING_SNAKE_CASE ) return config def __lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE : str=0 , **SCREAMING_SNAKE_CASE : int ): '''simple docstring''' UpperCamelCase__ : Any = dict(self.forward_default_kwargs ) UpperCamelCase__ : int = kwargs.pop("num_inference_steps" , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = self.dummy_sample UpperCamelCase__ : Optional[int] = 0.1 * sample UpperCamelCase__ : List[Any] = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: UpperCamelCase__ : Tuple = self.get_scheduler_config(**SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[Any] = scheduler_class(**SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) # copy over dummy past residuals UpperCamelCase__ : Any = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[int] = scheduler_class.from_pretrained(SCREAMING_SNAKE_CASE ) new_scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) # copy over dummy past residuals UpperCamelCase__ : str = dummy_past_residuals[:] UpperCamelCase__ : Any = scheduler.step_prk(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample UpperCamelCase__ : Optional[int] = new_scheduler.step_prk(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" UpperCamelCase__ : Optional[Any] = scheduler.step_plms(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample UpperCamelCase__ : Union[str, Any] = new_scheduler.step_plms(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __lowercase ( self : Optional[Any] ): '''simple docstring''' pass def __lowercase ( self : Any , SCREAMING_SNAKE_CASE : Dict=0 , **SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' UpperCamelCase__ : str = dict(self.forward_default_kwargs ) UpperCamelCase__ : Optional[int] = kwargs.pop("num_inference_steps" , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Any = self.dummy_sample UpperCamelCase__ : List[Any] = 0.1 * sample UpperCamelCase__ : List[str] = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: UpperCamelCase__ : List[str] = self.get_scheduler_config() UpperCamelCase__ : Tuple = scheduler_class(**SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) # copy over dummy past residuals (must be after setting timesteps) UpperCamelCase__ : List[Any] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[Any] = scheduler_class.from_pretrained(SCREAMING_SNAKE_CASE ) # copy over dummy past residuals new_scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) # copy over dummy past residual (must be after setting timesteps) UpperCamelCase__ : Optional[int] = dummy_past_residuals[:] UpperCamelCase__ : int = scheduler.step_prk(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample UpperCamelCase__ : Dict = new_scheduler.step_prk(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" UpperCamelCase__ : int = scheduler.step_plms(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample UpperCamelCase__ : str = new_scheduler.step_plms(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __lowercase ( self : Union[str, Any] , **SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' UpperCamelCase__ : str = self.scheduler_classes[0] UpperCamelCase__ : Tuple = self.get_scheduler_config(**SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[int] = scheduler_class(**SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Union[str, Any] = 10 UpperCamelCase__ : Optional[Any] = self.dummy_model() UpperCamelCase__ : List[str] = self.dummy_sample_deter scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) for i, t in enumerate(scheduler.prk_timesteps ): UpperCamelCase__ : Union[str, Any] = model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Union[str, Any] = scheduler.step_prk(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): UpperCamelCase__ : Tuple = model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[int] = scheduler.step_plms(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).prev_sample return sample def __lowercase ( self : Tuple ): '''simple docstring''' UpperCamelCase__ : Dict = dict(self.forward_default_kwargs ) UpperCamelCase__ : Optional[int] = kwargs.pop("num_inference_steps" , SCREAMING_SNAKE_CASE ) for scheduler_class in self.scheduler_classes: UpperCamelCase__ : Any = self.get_scheduler_config() UpperCamelCase__ : List[Any] = scheduler_class(**SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = self.dummy_sample UpperCamelCase__ : Optional[int] = 0.1 * sample if num_inference_steps is not None and hasattr(SCREAMING_SNAKE_CASE , "set_timesteps" ): scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) elif num_inference_steps is not None and not hasattr(SCREAMING_SNAKE_CASE , "set_timesteps" ): UpperCamelCase__ : List[Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) UpperCamelCase__ : List[Any] = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] UpperCamelCase__ : List[str] = dummy_past_residuals[:] UpperCamelCase__ : Tuple = scheduler.step_prk(SCREAMING_SNAKE_CASE , 0 , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample UpperCamelCase__ : Optional[int] = scheduler.step_prk(SCREAMING_SNAKE_CASE , 1 , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) UpperCamelCase__ : Any = scheduler.step_plms(SCREAMING_SNAKE_CASE , 0 , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample UpperCamelCase__ : str = scheduler.step_plms(SCREAMING_SNAKE_CASE , 1 , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def __lowercase ( self : Optional[int] ): '''simple docstring''' for timesteps in [1_00, 10_00]: self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE ) def __lowercase ( self : Dict ): '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Any = self.scheduler_classes[0] UpperCamelCase__ : List[str] = self.get_scheduler_config(steps_offset=1 ) UpperCamelCase__ : Dict = scheduler_class(**SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [9_01, 8_51, 8_51, 8_01, 8_01, 7_51, 7_51, 7_01, 7_01, 6_51, 6_51, 6_01, 6_01, 5_01, 4_01, 3_01, 2_01, 1_01, 1] ) , ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1] , [0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=SCREAMING_SNAKE_CASE , beta_end=SCREAMING_SNAKE_CASE ) def __lowercase ( self : Dict ): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=SCREAMING_SNAKE_CASE ) def __lowercase ( self : Any ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE ) def __lowercase ( self : Tuple ): '''simple docstring''' for t in [1, 5, 10]: self.check_over_forward(time_step=SCREAMING_SNAKE_CASE ) def __lowercase ( self : List[str] ): '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 1_00] ): self.check_over_forward(num_inference_steps=SCREAMING_SNAKE_CASE ) def __lowercase ( self : Dict ): '''simple docstring''' UpperCamelCase__ : Union[str, Any] = 27 for scheduler_class in self.scheduler_classes: UpperCamelCase__ : Union[str, Any] = self.dummy_sample UpperCamelCase__ : List[str] = 0.1 * sample UpperCamelCase__ : Union[str, Any] = self.get_scheduler_config() UpperCamelCase__ : Optional[int] = scheduler_class(**SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): UpperCamelCase__ : List[Any] = scheduler.step_prk(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).prev_sample def __lowercase ( self : Union[str, Any] ): '''simple docstring''' with self.assertRaises(SCREAMING_SNAKE_CASE ): UpperCamelCase__ : List[str] = self.scheduler_classes[0] UpperCamelCase__ : List[Any] = self.get_scheduler_config() UpperCamelCase__ : Dict = scheduler_class(**SCREAMING_SNAKE_CASE ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def __lowercase ( self : Tuple ): '''simple docstring''' UpperCamelCase__ : Union[str, Any] = self.full_loop() UpperCamelCase__ : Any = torch.sum(torch.abs(SCREAMING_SNAKE_CASE ) ) UpperCamelCase__ : Optional[Any] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 1_9_8.1_3_1_8 ) < 1e-2 assert abs(result_mean.item() - 0.2_5_8_0 ) < 1e-3 def __lowercase ( self : int ): '''simple docstring''' UpperCamelCase__ : Tuple = self.full_loop(prediction_type="v_prediction" ) UpperCamelCase__ : List[str] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE ) ) UpperCamelCase__ : List[str] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 6_7.3_9_8_6 ) < 1e-2 assert abs(result_mean.item() - 0.0_8_7_8 ) < 1e-3 def __lowercase ( self : Tuple ): '''simple docstring''' UpperCamelCase__ : Tuple = self.full_loop(set_alpha_to_one=SCREAMING_SNAKE_CASE , beta_start=0.0_1 ) UpperCamelCase__ : Tuple = torch.sum(torch.abs(SCREAMING_SNAKE_CASE ) ) UpperCamelCase__ : Tuple = torch.mean(torch.abs(SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 2_3_0.0_3_9_9 ) < 1e-2 assert abs(result_mean.item() - 0.2_9_9_5 ) < 1e-3 def __lowercase ( self : List[Any] ): '''simple docstring''' UpperCamelCase__ : int = self.full_loop(set_alpha_to_one=SCREAMING_SNAKE_CASE , beta_start=0.0_1 ) UpperCamelCase__ : Optional[Any] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE ) ) UpperCamelCase__ : Union[str, Any] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 1_8_6.9_4_8_2 ) < 1e-2 assert abs(result_mean.item() - 0.2_4_3_4 ) < 1e-3
189
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> int: while b: UpperCamelCase__ , UpperCamelCase__ : int = b, a % b return a def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> int: return a if b == 0 else euclidean_gcd_recursive(__lowerCAmelCase , a % b ) def SCREAMING_SNAKE_CASE ( ) -> str: print(f'euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}' ) print(f'euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}' ) print(f'euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}' ) print(f'euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}' ) print(f'euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}' ) print(f'euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}' ) print(f'euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}' ) print(f'euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}' ) print(f'euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}' ) print(f'euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}' ) if __name__ == "__main__": main()
189
1
'''simple docstring''' import json import logging import os import sys from time import time from unittest.mock import patch from transformers.testing_utils import TestCasePlus, require_torch_tpu logging.basicConfig(level=logging.DEBUG) _SCREAMING_SNAKE_CASE : Any = logging.getLogger() def UpperCamelCase_( snake_case : Any ): '''simple docstring''' snake_case_ = {} snake_case_ = os.path.join(snake_case , "all_results.json" ) if os.path.exists(snake_case ): with open(snake_case , "r" ) as f: snake_case_ = json.load(snake_case ) else: raise ValueError(f'can\'t find {path}' ) return results _SCREAMING_SNAKE_CASE : str = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) @require_torch_tpu class _snake_case ( lowercase_ ): def lowerCAmelCase__ ( self ) -> Tuple: '''simple docstring''' import xla_spawn snake_case_ = self.get_auto_remove_tmp_dir() snake_case_ = F'\n ./examples/pytorch/text-classification/run_glue.py\n --num_cores=8\n ./examples/pytorch/text-classification/run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --do_train\n --do_eval\n --debug tpu_metrics_debug\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --max_steps=10\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n '.split() with patch.object(a__ , "argv" , a__ ): snake_case_ = time() xla_spawn.main() snake_case_ = time() snake_case_ = get_results(a__ ) self.assertGreaterEqual(result["eval_accuracy"] , 0.7_5 ) # Assert that the script takes less than 500 seconds to make sure it doesn't hang. self.assertLess(end - start , 500 ) def lowerCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' import xla_spawn snake_case_ = "\n ./tests/test_trainer_tpu.py\n --num_cores=8\n ./tests/test_trainer_tpu.py\n ".split() with patch.object(a__ , "argv" , a__ ): xla_spawn.main()
359
'''simple docstring''' import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class _snake_case ( unittest.TestCase , lowercase_ ): def lowerCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ = load_tool("text-classification" ) self.tool.setup() snake_case_ = load_tool("text-classification" , remote=a__ ) def lowerCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ = self.tool("That's quite cool" , ["positive", "negative"] ) self.assertEqual(a__ , "positive" ) def lowerCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ = self.remote_tool("That's quite cool" , ["positive", "negative"] ) self.assertEqual(a__ , "positive" ) def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ = self.tool(text="That's quite cool" , labels=["positive", "negative"] ) self.assertEqual(a__ , "positive" ) def lowerCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ = self.remote_tool(text="That's quite cool" , labels=["positive", "negative"] ) self.assertEqual(a__ , "positive" )
92
0
"""simple docstring""" import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def UpperCamelCase_ ( lowerCAmelCase__ : Tuple ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase_ : Union[str, Any] = args.pruning_method lowerCAmelCase_ : Dict = args.threshold lowerCAmelCase_ : List[Any] = args.model_name_or_path.rstrip('/' ) lowerCAmelCase_ : Optional[Any] = args.target_model_path print(f"Load fine-pruned model from {model_name_or_path}" ) lowerCAmelCase_ : Optional[Any] = torch.load(os.path.join(lowerCAmelCase__ , 'pytorch_model.bin' ) ) lowerCAmelCase_ : List[str] = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: lowerCAmelCase_ : Any = tensor print(f"Copied layer {name}" ) elif "classifier" in name or "qa_output" in name: lowerCAmelCase_ : Tuple = tensor print(f"Copied layer {name}" ) elif "bias" in name: lowerCAmelCase_ : List[str] = tensor print(f"Copied layer {name}" ) else: if pruning_method == "magnitude": lowerCAmelCase_ : int = MagnitudeBinarizer.apply(inputs=lowerCAmelCase__ , threshold=lowerCAmelCase__ ) lowerCAmelCase_ : Dict = tensor * mask print(f"Pruned layer {name}" ) elif pruning_method == "topK": if "mask_scores" in name: continue lowerCAmelCase_ : Tuple = name[:-6] lowerCAmelCase_ : Tuple = model[f"{prefix_}mask_scores"] lowerCAmelCase_ : int = TopKBinarizer.apply(lowerCAmelCase__ , lowerCAmelCase__ ) lowerCAmelCase_ : str = tensor * mask print(f"Pruned layer {name}" ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue lowerCAmelCase_ : List[str] = name[:-6] lowerCAmelCase_ : List[str] = model[f"{prefix_}mask_scores"] lowerCAmelCase_ : List[str] = ThresholdBinarizer.apply(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) lowerCAmelCase_ : str = tensor * mask print(f"Pruned layer {name}" ) elif pruning_method == "l0": if "mask_scores" in name: continue lowerCAmelCase_ : Optional[Any] = name[:-6] lowerCAmelCase_ : str = model[f"{prefix_}mask_scores"] lowerCAmelCase_ ,lowerCAmelCase_ : Optional[Any] = -0.1, 1.1 lowerCAmelCase_ : Dict = torch.sigmoid(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = s * (r - l) + l lowerCAmelCase_ : str = s_bar.clamp(min=0.0 , max=1.0 ) lowerCAmelCase_ : int = tensor * mask print(f"Pruned layer {name}" ) else: raise ValueError('Unknown pruning method' ) if target_model_path is None: lowerCAmelCase_ : Optional[int] = os.path.join( os.path.dirname(lowerCAmelCase__ ) , f"bertarized_{os.path.basename(lowerCAmelCase__ )}" ) if not os.path.isdir(lowerCAmelCase__ ): shutil.copytree(lowerCAmelCase__ , lowerCAmelCase__ ) print(f"\nCreated folder {target_model_path}" ) torch.save(lowerCAmelCase__ , os.path.join(lowerCAmelCase__ , 'pytorch_model.bin' ) ) print('\nPruned model saved! See you later!' ) if __name__ == "__main__": lowercase__ : List[str] = argparse.ArgumentParser() parser.add_argument( """--pruning_method""", choices=["""l0""", """magnitude""", """topK""", """sigmoied_threshold"""], type=str, required=True, help=( """Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,""" """ sigmoied_threshold = Soft movement pruning)""" ), ) parser.add_argument( """--threshold""", type=float, required=False, help=( """For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.""" """For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.""" """Not needed for `l0`""" ), ) parser.add_argument( """--model_name_or_path""", type=str, required=True, help="""Folder containing the model that was previously fine-pruned""", ) parser.add_argument( """--target_model_path""", default=None, type=str, required=False, help="""Folder containing the model that was previously fine-pruned""", ) lowercase__ : str = parser.parse_args() main(args)
224
"""simple docstring""" from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : Union[str, Any] = logging.get_logger(__name__) lowercase__ : List[str] = { """huggingface/informer-tourism-monthly""": ( """https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json""" ), # See all Informer models at https://huggingface.co/models?filter=informer } class UpperCamelCase__ ( lowercase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = """informer""" _SCREAMING_SNAKE_CASE = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__( self : Any , SCREAMING_SNAKE_CASE_ : Optional[int] = None , SCREAMING_SNAKE_CASE_ : Optional[int] = None , SCREAMING_SNAKE_CASE_ : str = "student_t" , SCREAMING_SNAKE_CASE_ : str = "nll" , SCREAMING_SNAKE_CASE_ : int = 1 , SCREAMING_SNAKE_CASE_ : List[int] = None , SCREAMING_SNAKE_CASE_ : Optional[Union[str, bool]] = "mean" , SCREAMING_SNAKE_CASE_ : int = 0 , SCREAMING_SNAKE_CASE_ : int = 0 , SCREAMING_SNAKE_CASE_ : int = 0 , SCREAMING_SNAKE_CASE_ : int = 0 , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE_ : int = 6_4 , SCREAMING_SNAKE_CASE_ : int = 3_2 , SCREAMING_SNAKE_CASE_ : int = 3_2 , SCREAMING_SNAKE_CASE_ : int = 2 , SCREAMING_SNAKE_CASE_ : int = 2 , SCREAMING_SNAKE_CASE_ : int = 2 , SCREAMING_SNAKE_CASE_ : int = 2 , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : str = "gelu" , SCREAMING_SNAKE_CASE_ : float = 0.05 , SCREAMING_SNAKE_CASE_ : float = 0.1 , SCREAMING_SNAKE_CASE_ : float = 0.1 , SCREAMING_SNAKE_CASE_ : float = 0.1 , SCREAMING_SNAKE_CASE_ : float = 0.1 , SCREAMING_SNAKE_CASE_ : int = 1_0_0 , SCREAMING_SNAKE_CASE_ : float = 0.02 , SCREAMING_SNAKE_CASE_ : str=True , SCREAMING_SNAKE_CASE_ : str = "prob" , SCREAMING_SNAKE_CASE_ : int = 5 , SCREAMING_SNAKE_CASE_ : bool = True , **SCREAMING_SNAKE_CASE_ : int , ): # time series specific configuration lowerCAmelCase_ : Dict = prediction_length lowerCAmelCase_ : List[str] = context_length or prediction_length lowerCAmelCase_ : List[Any] = distribution_output lowerCAmelCase_ : int = loss lowerCAmelCase_ : Optional[int] = input_size lowerCAmelCase_ : Tuple = num_time_features lowerCAmelCase_ : List[str] = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] lowerCAmelCase_ : int = scaling lowerCAmelCase_ : List[Any] = num_dynamic_real_features lowerCAmelCase_ : Union[str, Any] = num_static_real_features lowerCAmelCase_ : Optional[int] = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(SCREAMING_SNAKE_CASE_ ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) lowerCAmelCase_ : str = cardinality else: lowerCAmelCase_ : Any = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(SCREAMING_SNAKE_CASE_ ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) lowerCAmelCase_ : Optional[int] = embedding_dimension else: lowerCAmelCase_ : Union[str, Any] = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] lowerCAmelCase_ : Optional[int] = num_parallel_samples # Transformer architecture configuration lowerCAmelCase_ : Any = input_size * len(self.lags_sequence ) + self._number_of_features lowerCAmelCase_ : Any = d_model lowerCAmelCase_ : Union[str, Any] = encoder_attention_heads lowerCAmelCase_ : Optional[Any] = decoder_attention_heads lowerCAmelCase_ : Any = encoder_ffn_dim lowerCAmelCase_ : List[str] = decoder_ffn_dim lowerCAmelCase_ : Optional[Any] = encoder_layers lowerCAmelCase_ : Tuple = decoder_layers lowerCAmelCase_ : Optional[int] = dropout lowerCAmelCase_ : Dict = attention_dropout lowerCAmelCase_ : int = activation_dropout lowerCAmelCase_ : Dict = encoder_layerdrop lowerCAmelCase_ : str = decoder_layerdrop lowerCAmelCase_ : Union[str, Any] = activation_function lowerCAmelCase_ : Union[str, Any] = init_std lowerCAmelCase_ : Union[str, Any] = use_cache # Informer lowerCAmelCase_ : Optional[int] = attention_type lowerCAmelCase_ : Any = sampling_factor lowerCAmelCase_ : int = distil super().__init__(is_encoder_decoder=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) @property def SCREAMING_SNAKE_CASE__ ( self : Any ): return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
224
1
import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class _a ( _lowercase): def __init__( self : int , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Optional[int]=None , _SCREAMING_SNAKE_CASE : int=True , _SCREAMING_SNAKE_CASE : Optional[int]=None , **_SCREAMING_SNAKE_CASE : Tuple )-> List[Any]: lowerCAmelCase__ : int = parent lowerCAmelCase__ : Optional[int] = config_class lowerCAmelCase__ : Tuple = has_text_modality lowerCAmelCase__ : Tuple = kwargs lowerCAmelCase__ : Dict = common_properties def UpperCAmelCase__( self : Any )-> int: lowerCAmelCase__ : Union[str, Any] = self.config_class(**self.inputs_dict ) lowerCAmelCase__ : Any = ( ['''hidden_size''', '''num_attention_heads''', '''num_hidden_layers'''] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(['''vocab_size'''] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , msg=F'`{prop}` does not exist' ) # Test that config has the common properties as setter for idx, name in enumerate(_SCREAMING_SNAKE_CASE ): try: setattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.parent.assertEqual( getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE , msg=F'`{name} value {idx} expected, but was {getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )}' ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(_SCREAMING_SNAKE_CASE ): try: lowerCAmelCase__ : str = self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE , msg=F'`{name} value {idx} expected, but was {getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )}' ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def UpperCAmelCase__( self : List[Any] )-> Dict: lowerCAmelCase__ : List[str] = self.config_class(**self.inputs_dict ) lowerCAmelCase__ : Optional[int] = json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : List[str] )-> Union[str, Any]: lowerCAmelCase__ : int = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ : Optional[Any] = os.path.join(_SCREAMING_SNAKE_CASE , '''config.json''' ) config_first.to_json_file(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Optional[int] = self.config_class.from_json_file(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def UpperCAmelCase__( self : List[Any] )-> List[str]: lowerCAmelCase__ : List[Any] = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : int = self.config_class.from_pretrained(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def UpperCAmelCase__( self : Any )-> int: lowerCAmelCase__ : Tuple = self.config_class(**self.inputs_dict ) lowerCAmelCase__ : str = '''test''' with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ : Union[str, Any] = os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) config_first.save_pretrained(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : str = self.config_class.from_pretrained(_SCREAMING_SNAKE_CASE , subfolder=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def UpperCAmelCase__( self : Union[str, Any] )-> Union[str, Any]: lowerCAmelCase__ : List[str] = self.config_class(**self.inputs_dict , num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) , 5 ) self.parent.assertEqual(len(config.labelaid ) , 5 ) lowerCAmelCase__ : Any = 3 self.parent.assertEqual(len(config.idalabel ) , 3 ) self.parent.assertEqual(len(config.labelaid ) , 3 ) def UpperCAmelCase__( self : Optional[Any] )-> str: if self.config_class.is_composition: return lowerCAmelCase__ : Dict = self.config_class() self.parent.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Any )-> Dict: lowerCAmelCase__ : Dict = copy.deepcopy(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : List[Any] = self.config_class(**_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : List[Any] = [] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(('''torch_dtype''', config.torch_dtype, torch.floataa) ) elif getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) != value: wrong_values.append((key, getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), value) ) if len(_SCREAMING_SNAKE_CASE ) > 0: lowerCAmelCase__ : Union[str, Any] = '''\n'''.join([F'- {v[0]}: got {v[1]} instead of {v[2]}' for v in wrong_values] ) raise ValueError(F'The following keys were not properly set in the config:\n{errors}' ) def UpperCAmelCase__( self : Union[str, Any] )-> Tuple: self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
355
from math import isqrt def lowerCamelCase_ ( _a ): """simple docstring""" lowerCAmelCase__ : Dict = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , _a , _a ): lowerCAmelCase__ : int = False return [i for i in range(2 , _a ) if is_prime[i]] def lowerCamelCase_ ( _a = 10**8 ): """simple docstring""" lowerCAmelCase__ : Any = calculate_prime_numbers(max_number // 2 ) lowerCAmelCase__ : Tuple = 0 lowerCAmelCase__ : List[Any] = 0 lowerCAmelCase__ : Optional[int] = len(_a ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(f'''{solution() = }''')
211
0
'''simple docstring''' import unittest from transformers.testing_utils import require_bsa from transformers.utils import is_bsa_available from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin if is_bsa_available(): from transformers import MarkupLMFeatureExtractor class A_ ( unittest.TestCase ): def __init__( self : Optional[Any] , snake_case_ : Optional[Any] ): _UpperCAmelCase = parent def lowercase ( self : str ): return {} def UpperCAmelCase_ ( ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = "<HTML>\n\n <HEAD>\n <TITLE>sample document</TITLE>\n </HEAD>\n\n <BODY BGCOLOR=\"FFFFFF\">\n <HR>\n <a href=\"http://google.com\">Goog</a>\n <H1>This is one header</H1>\n <H2>This is a another Header</H2>\n <P>Travel from\n <P>\n <B>SFO to JFK</B>\n <BR>\n <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B>\n <HR>\n <div style=\"color:#0000FF\">\n <h3>Traveler <b> name </b> is\n <p> John Doe </p>\n </div>" _UpperCAmelCase = "\n <!DOCTYPE html>\n <html>\n <body>\n\n <h1>My First Heading</h1>\n <p>My first paragraph.</p>\n\n </body>\n </html>\n " return [html_string_a, html_string_a] @require_bsa class A_ ( lowerCAmelCase_ , unittest.TestCase ): _lowerCamelCase : Dict = MarkupLMFeatureExtractor if is_bsa_available() else None def lowercase ( self : List[str] ): _UpperCAmelCase = MarkupLMFeatureExtractionTester(self ) @property def lowercase ( self : int ): return self.feature_extract_tester.prepare_feat_extract_dict() def lowercase ( self : List[Any] ): # Initialize feature_extractor _UpperCAmelCase = self.feature_extraction_class() # Test not batched input _UpperCAmelCase = get_html_strings()[0] _UpperCAmelCase = feature_extractor(snake_case_ ) # fmt: off _UpperCAmelCase = [["sample document", "Goog", "This is one header", "This is a another Header", "Travel from", "SFO to JFK", "on May 2, 2015 at 2:00 pm. For details go to confirm.com", "Traveler", "name", "is", "John Doe"]] _UpperCAmelCase = [["/html/head/title", "/html/body/a", "/html/body/h1", "/html/body/h2", "/html/body/p", "/html/body/p/p/b[1]", "/html/body/p/p/b[2]/i", "/html/body/p/p/div/h3", "/html/body/p/p/div/h3/b", "/html/body/p/p/div/h3", "/html/body/p/p/div/h3/p"]] # fmt: on self.assertEqual(encoding.nodes , snake_case_ ) self.assertEqual(encoding.xpaths , snake_case_ ) # Test batched _UpperCAmelCase = get_html_strings() _UpperCAmelCase = feature_extractor(snake_case_ ) # fmt: off _UpperCAmelCase = expected_nodes + [["My First Heading", "My first paragraph."]] _UpperCAmelCase = expected_xpaths + [["/html/body/h1", "/html/body/p"]] self.assertEqual(len(encoding.nodes ) , 2 ) self.assertEqual(len(encoding.xpaths ) , 2 ) self.assertEqual(encoding.nodes , snake_case_ ) self.assertEqual(encoding.xpaths , snake_case_ )
22
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging __SCREAMING_SNAKE_CASE :Dict = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE :int = { '''deepmind/language-perceiver''': '''https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json''', # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class A_ ( lowerCAmelCase_ ): _lowerCamelCase : int = """perceiver""" def __init__( self : Any , snake_case_ : List[Any]=2_5_6 , snake_case_ : str=1_2_8_0 , snake_case_ : Optional[int]=7_6_8 , snake_case_ : int=1 , snake_case_ : List[Any]=2_6 , snake_case_ : Dict=8 , snake_case_ : List[Any]=8 , snake_case_ : Tuple=None , snake_case_ : Tuple=None , snake_case_ : Any="kv" , snake_case_ : Any=1 , snake_case_ : List[str]=1 , snake_case_ : Optional[int]="gelu" , snake_case_ : List[Any]=0.1 , snake_case_ : Dict=0.0_2 , snake_case_ : int=1e-12 , snake_case_ : List[str]=True , snake_case_ : str=2_6_2 , snake_case_ : Optional[Any]=2_0_4_8 , snake_case_ : Union[str, Any]=5_6 , snake_case_ : Dict=[3_6_8, 4_9_6] , snake_case_ : Tuple=1_6 , snake_case_ : Union[str, Any]=1_9_2_0 , snake_case_ : List[Any]=1_6 , snake_case_ : Tuple=[1, 1_6, 2_2_4, 2_2_4] , **snake_case_ : List[Any] , ): super().__init__(**snake_case_ ) _UpperCAmelCase = num_latents _UpperCAmelCase = d_latents _UpperCAmelCase = d_model _UpperCAmelCase = num_blocks _UpperCAmelCase = num_self_attends_per_block _UpperCAmelCase = num_self_attention_heads _UpperCAmelCase = num_cross_attention_heads _UpperCAmelCase = qk_channels _UpperCAmelCase = v_channels _UpperCAmelCase = cross_attention_shape_for_attention _UpperCAmelCase = self_attention_widening_factor _UpperCAmelCase = cross_attention_widening_factor _UpperCAmelCase = hidden_act _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = use_query_residual # masked language modeling attributes _UpperCAmelCase = vocab_size _UpperCAmelCase = max_position_embeddings # image classification attributes _UpperCAmelCase = image_size # flow attributes _UpperCAmelCase = train_size # multimodal autoencoding attributes _UpperCAmelCase = num_frames _UpperCAmelCase = audio_samples_per_frame _UpperCAmelCase = samples_per_patch _UpperCAmelCase = output_shape class A_ ( lowerCAmelCase_ ): @property def lowercase ( self : int ): if self.task == "multiple-choice": _UpperCAmelCase = {0: "batch", 1: "choice", 2: "sequence"} else: _UpperCAmelCase = {0: "batch", 1: "sequence"} return OrderedDict( [ ("inputs", dynamic_axis), ("attention_mask", dynamic_axis), ] ) @property def lowercase ( self : Optional[Any] ): return 1e-4 def lowercase ( self : List[str] , snake_case_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , snake_case_ : int = -1 , snake_case_ : int = -1 , snake_case_ : int = -1 , snake_case_ : bool = False , snake_case_ : Optional[TensorType] = None , snake_case_ : int = 3 , snake_case_ : int = 4_0 , snake_case_ : int = 4_0 , ): # copied from `transformers.onnx.config.OnnxConfig` and slightly altered/simplified if isinstance(snake_case_ , snake_case_ ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _UpperCAmelCase = compute_effective_axis_dimension( snake_case_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _UpperCAmelCase = preprocessor.num_special_tokens_to_add(snake_case_ ) _UpperCAmelCase = compute_effective_axis_dimension( snake_case_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=snake_case_ ) # Generate dummy inputs according to compute batch and sequence _UpperCAmelCase = [" ".join(["a"] ) * seq_length] * batch_size _UpperCAmelCase = dict(preprocessor(snake_case_ , return_tensors=snake_case_ ) ) _UpperCAmelCase = inputs.pop("input_ids" ) return inputs elif isinstance(snake_case_ , snake_case_ ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _UpperCAmelCase = compute_effective_axis_dimension(snake_case_ , fixed_dimension=OnnxConfig.default_fixed_batch ) _UpperCAmelCase = self._generate_dummy_images(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) _UpperCAmelCase = dict(preprocessor(images=snake_case_ , return_tensors=snake_case_ ) ) _UpperCAmelCase = inputs.pop("pixel_values" ) return inputs else: raise ValueError( "Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor." )
22
1
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A_ ( _lowerCamelCase , unittest.TestCase ): lowerCAmelCase__ = KandinskyInpaintPipeline lowerCAmelCase__ = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""] lowerCAmelCase__ = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image""", ] lowerCAmelCase__ = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] lowerCAmelCase__ = False @property def _lowerCAmelCase (self :Dict )-> str: return 32 @property def _lowerCAmelCase (self :List[str] )-> List[str]: return 32 @property def _lowerCAmelCase (self :Dict )-> Optional[int]: return self.time_input_dim @property def _lowerCAmelCase (self :List[str] )-> List[str]: return self.time_input_dim * 4 @property def _lowerCAmelCase (self :Union[str, Any] )-> Dict: return 100 @property def _lowerCAmelCase (self :Dict )-> str: __A = XLMRobertaTokenizerFast.from_pretrained('''YiYiXu/tiny-random-mclip-base''' ) return tokenizer @property def _lowerCAmelCase (self :Dict )-> Tuple: torch.manual_seed(0 ) __A = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) __A = MultilingualCLIP(_UpperCamelCase ) __A = text_encoder.eval() return text_encoder @property def _lowerCAmelCase (self :List[str] )-> Union[str, Any]: torch.manual_seed(0 ) __A = { '''in_channels''': 9, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''text_image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''text_image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } __A = UNetaDConditionModel(**_UpperCamelCase ) return model @property def _lowerCAmelCase (self :List[str] )-> List[Any]: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _lowerCAmelCase (self :Optional[Any] )-> str: torch.manual_seed(0 ) __A = VQModel(**self.dummy_movq_kwargs ) return model def _lowerCAmelCase (self :Tuple )-> Optional[int]: __A = self.dummy_text_encoder __A = self.dummy_tokenizer __A = self.dummy_unet __A = self.dummy_movq __A = DDIMScheduler( num_train_timesteps=1000 , beta_schedule='''linear''' , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=_UpperCamelCase , set_alpha_to_one=_UpperCamelCase , steps_offset=1 , prediction_type='''epsilon''' , thresholding=_UpperCamelCase , ) __A = { '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def _lowerCAmelCase (self :str , _UpperCamelCase :str , _UpperCamelCase :List[Any]=0 )-> Any: __A = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(_UpperCamelCase ) ).to(_UpperCamelCase ) __A = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(_UpperCamelCase ) # create init_image __A = floats_tensor((1, 3, 64, 64) , rng=random.Random(_UpperCamelCase ) ).to(_UpperCamelCase ) __A = image.cpu().permute(0 , 2 , 3 , 1 )[0] __A = Image.fromarray(np.uinta(_UpperCamelCase ) ).convert('''RGB''' ).resize((256, 256) ) # create mask __A = np.ones((64, 64) , dtype=np.floataa ) __A = 0 if str(_UpperCamelCase ).startswith('''mps''' ): __A = torch.manual_seed(_UpperCamelCase ) else: __A = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase ) __A = { '''prompt''': '''horse''', '''image''': init_image, '''mask_image''': mask, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 2, '''guidance_scale''': 4.0, '''output_type''': '''np''', } return inputs def _lowerCAmelCase (self :Optional[Any] )-> Any: __A = '''cpu''' __A = self.get_dummy_components() __A = self.pipeline_class(**_UpperCamelCase ) __A = pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) __A = pipe(**self.get_dummy_inputs(_UpperCamelCase ) ) __A = output.images __A = pipe( **self.get_dummy_inputs(_UpperCamelCase ) , return_dict=_UpperCamelCase , )[0] __A = image[0, -3:, -3:, -1] __A = image_from_tuple[0, -3:, -3:, -1] print(f"""image.shape {image.shape}""" ) assert image.shape == (1, 64, 64, 3) __A = np.array( [0.8_3_2_6_9_1_9, 0.7_3_7_9_0_4_6_7, 0.2_0_9_1_8_5_8_1, 0.9_3_0_9_6_1_2, 0.5_5_1_1_7_9_1, 0.4_3_7_1_3_3_2_8, 0.5_5_1_3_3_2_1, 0.4_9_9_2_2_9_3_4, 0.5_9_4_9_7_7_8_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" def _lowerCAmelCase (self :int )-> Union[str, Any]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class A_ ( unittest.TestCase ): def _lowerCAmelCase (self :Dict )-> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase (self :Optional[Any] )-> List[str]: __A = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy''' ) __A = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) __A = np.ones((768, 768) , dtype=np.floataa ) __A = 0 __A = '''a hat''' __A = KandinskyPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(_UpperCamelCase ) __A = KandinskyInpaintPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-inpaint''' , torch_dtype=torch.floataa ) __A = pipeline.to(_UpperCamelCase ) pipeline.set_progress_bar_config(disable=_UpperCamelCase ) __A = torch.Generator(device='''cpu''' ).manual_seed(0 ) __A , __A = pipe_prior( _UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() __A = pipeline( _UpperCamelCase , image=_UpperCamelCase , mask_image=_UpperCamelCase , image_embeds=_UpperCamelCase , negative_image_embeds=_UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=100 , height=768 , width=768 , output_type='''np''' , ) __A = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase )
250
def _a ( lowerCamelCase: str ) -> bool: '''simple docstring''' __A = [int(lowerCamelCase ) for i in ip_va_address.split('''.''' ) if i.isdigit()] return len(lowerCamelCase ) == 4 and all(0 <= int(lowerCamelCase ) <= 2_54 for octet in octets ) if __name__ == "__main__": snake_case__ : Union[str, Any] = input().strip() snake_case__ : Any = 'valid' if is_ip_va_address_valid(ip) else 'invalid' print(f'{ip} is a {valid_or_invalid} IP v4 address.')
250
1
from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def lowercase__ ( __snake_case : Namespace ): '''simple docstring''' return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) __UpperCAmelCase = '\ntransformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires\nTensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.\n' class lowerCamelCase (_SCREAMING_SNAKE_CASE ): '''simple docstring''' @staticmethod def __UpperCAmelCase ( _UpperCamelCase ) -> str: UpperCAmelCase_ : Union[str, Any] = parser.add_parser( 'convert' , help='CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.' , ) train_parser.add_argument('--model_type' , type=_lowerCAmelCase , required=_lowerCAmelCase , help='Model\'s type.' ) train_parser.add_argument( '--tf_checkpoint' , type=_lowerCAmelCase , required=_lowerCAmelCase , help='TensorFlow checkpoint path or folder.' ) train_parser.add_argument( '--pytorch_dump_output' , type=_lowerCAmelCase , required=_lowerCAmelCase , help='Path to the PyTorch saved model output.' ) train_parser.add_argument('--config' , type=_lowerCAmelCase , default='' , help='Configuration file path or folder.' ) train_parser.add_argument( '--finetuning_task_name' , type=_lowerCAmelCase , default=_lowerCAmelCase , help='Optional fine-tuning task name if the TF model was a finetuned model.' , ) train_parser.set_defaults(func=_lowerCAmelCase ) def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , *_UpperCamelCase , ) -> str: UpperCAmelCase_ : str = logging.get_logger('transformers-cli/converting' ) self._logger.info(f"Loading model {model_type}" ) UpperCAmelCase_ : int = model_type UpperCAmelCase_ : List[Any] = tf_checkpoint UpperCAmelCase_ : int = pytorch_dump_output UpperCAmelCase_ : str = config UpperCAmelCase_ : List[Any] = finetuning_task_name def __UpperCAmelCase ( self ) -> Optional[int]: if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_lowerCAmelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_lowerCAmelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_lowerCAmelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(_lowerCAmelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_lowerCAmelCase ) if "ckpt" in self._tf_checkpoint.lower(): UpperCAmelCase_ : Optional[int] = self._tf_checkpoint UpperCAmelCase_ : Optional[int] = '' else: UpperCAmelCase_ : str = self._tf_checkpoint UpperCAmelCase_ : Union[str, Any] = '' convert_transfo_xl_checkpoint_to_pytorch( _lowerCAmelCase , self._config , self._pytorch_dump_output , _lowerCAmelCase ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_lowerCAmelCase ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_lowerCAmelCase ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) else: raise ValueError( '--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]' )
29
from __future__ import annotations lowerCamelCase__ : Optional[int] = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] lowerCamelCase__ : List[Any] = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def UpperCAmelCase_ ( __UpperCAmelCase : list[float] ) -> list[float]: SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = len(__UpperCAmelCase ) for i in range(__UpperCAmelCase ): SCREAMING_SNAKE_CASE_ = -1 for j in range(i + 1 , __UpperCAmelCase ): if arr[i] < arr[j]: SCREAMING_SNAKE_CASE_ = arr[j] break result.append(__UpperCAmelCase ) return result def UpperCAmelCase_ ( __UpperCAmelCase : list[float] ) -> list[float]: SCREAMING_SNAKE_CASE_ = [] for i, outer in enumerate(__UpperCAmelCase ): SCREAMING_SNAKE_CASE_ = -1 for inner in arr[i + 1 :]: if outer < inner: SCREAMING_SNAKE_CASE_ = inner break result.append(__UpperCAmelCase ) return result def UpperCAmelCase_ ( __UpperCAmelCase : list[float] ) -> list[float]: SCREAMING_SNAKE_CASE_ = len(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [-1] * arr_size for index in reversed(range(__UpperCAmelCase ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: SCREAMING_SNAKE_CASE_ = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) lowerCamelCase__ : List[str] = ( 'from __main__ import arr, next_greatest_element_slow, ' 'next_greatest_element_fast, next_greatest_element' ) print( 'next_greatest_element_slow():', timeit('next_greatest_element_slow(arr)', setup=setup), ) print( 'next_greatest_element_fast():', timeit('next_greatest_element_fast(arr)', setup=setup), ) print( ' next_greatest_element():', timeit('next_greatest_element(arr)', setup=setup), )
225
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a_ : Union[str, Any] = logging.get_logger(__name__) a_ : Optional[int] = { """xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/config.json""", """xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/config.json""", """xlm-roberta-large-finetuned-conll02-dutch""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll02-spanish""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-english""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-german""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json""" ), } class __UpperCamelCase ( lowerCamelCase__ ): lowercase : Tuple ='xlm-roberta' def __init__( self, lowerCAmelCase=30_522, lowerCAmelCase=768, lowerCAmelCase=12, lowerCAmelCase=12, lowerCAmelCase=3_072, lowerCAmelCase="gelu", lowerCAmelCase=0.1, lowerCAmelCase=0.1, lowerCAmelCase=512, lowerCAmelCase=2, lowerCAmelCase=0.0_2, lowerCAmelCase=1e-12, lowerCAmelCase=1, lowerCAmelCase=0, lowerCAmelCase=2, lowerCAmelCase="absolute", lowerCAmelCase=True, lowerCAmelCase=None, **lowerCAmelCase, ): """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase, bos_token_id=lowerCAmelCase, eos_token_id=lowerCAmelCase, **lowerCAmelCase ) lowerCamelCase_ =vocab_size lowerCamelCase_ =hidden_size lowerCamelCase_ =num_hidden_layers lowerCamelCase_ =num_attention_heads lowerCamelCase_ =hidden_act lowerCamelCase_ =intermediate_size lowerCamelCase_ =hidden_dropout_prob lowerCamelCase_ =attention_probs_dropout_prob lowerCamelCase_ =max_position_embeddings lowerCamelCase_ =type_vocab_size lowerCamelCase_ =initializer_range lowerCamelCase_ =layer_norm_eps lowerCamelCase_ =position_embedding_type lowerCamelCase_ =use_cache lowerCamelCase_ =classifier_dropout class __UpperCamelCase ( lowerCamelCase__ ): @property def lowercase__ ( self ): """simple docstring""" if self.task == "multiple-choice": lowerCamelCase_ ={0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowerCamelCase_ ={0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
369
'''simple docstring''' import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def a_ ( __snake_case : Optional[int] ) -> List[str]: """simple docstring""" lowerCamelCase_ =[ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(__snake_case , __snake_case ) def a_ ( __snake_case : List[Any] ) -> int: """simple docstring""" lowerCamelCase_, lowerCamelCase_ =emb.weight.shape lowerCamelCase_ =nn.Linear(__snake_case , __snake_case , bias=__snake_case ) lowerCamelCase_ =emb.weight.data return lin_layer def a_ ( __snake_case : Union[str, Any] , __snake_case : Tuple=None ) -> Dict: """simple docstring""" lowerCamelCase_ ={} for old_key in state_dict.keys(): lowerCamelCase_ =old_key if "moe_layer.experts." in key: if expert_idx is not None: lowerCamelCase_ =key.replace('''moe_layer.experts.0''' , F'''ffn.experts.expert_{expert_idx}''' ) else: lowerCamelCase_ =key.replace('''moe_layer.experts.''' , '''ffn.experts.expert_''' ) if "gate" in key: lowerCamelCase_ =key.replace('''.moe_layer.gate.wg''' , '''.ffn.router.classifier''' ) if "fc2" and "experts" not in key: lowerCamelCase_ =key.replace('''.fc2.''' , '''.ffn.fc2.''' ) if "fc1" and "experts" not in key: lowerCamelCase_ =key.replace('''.fc1.''' , '''.ffn.fc1.''' ) if ".encoder_attn." in key: lowerCamelCase_ =key.replace('''.encoder_attn.''' , '''.cross_attention.''' ) if "encoder_attn_layer_norm" in key: lowerCamelCase_ =key.replace('''encoder_attn_layer_norm''' , '''cross_attention_layer_norm''' ) if "final_layer_norm" in key: lowerCamelCase_ =key.replace('''final_layer_norm''' , '''ff_layer_norm''' ) lowerCamelCase_ =state_dict[old_key] return new_dict def a_ ( __snake_case : Optional[Any] , __snake_case : Any , __snake_case : Optional[int] , __snake_case : Tuple , __snake_case : str = WEIGHTS_NAME ) -> Dict: """simple docstring""" lowerCamelCase_ =[] lowerCamelCase_ =0 os.makedirs(__snake_case , exist_ok=__snake_case ) for expert in range(__snake_case ): lowerCamelCase_ =switch_checkpoint_path + F'''-rank-{expert}.pt''' if os.path.isfile(__snake_case ): lowerCamelCase_ =torch.load(__snake_case )['''model'''] remove_ignore_keys_(__snake_case ) lowerCamelCase_ =rename_fairseq_keys(__snake_case , __snake_case ) lowerCamelCase_ =os.path.join( __snake_case , weights_name.replace('''.bin''' , F'''-{len(__snake_case )+1:05d}-of-???.bin''' ) ) torch.save(__snake_case , __snake_case ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(__snake_case )[0]].dtype ) # Add the last block lowerCamelCase_ =os.path.join(__snake_case , weights_name.replace('''.bin''' , F'''-{len(__snake_case )+1:05d}-of-???.bin''' ) ) lowerCamelCase_ =torch.load(switch_checkpoint_path + '''-shared.pt''' )['''model'''] remove_ignore_keys_(__snake_case ) lowerCamelCase_ =rename_fairseq_keys(__snake_case , __snake_case ) lowerCamelCase_ =shared_weights['''decoder.embed_tokens.weight'''] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(__snake_case ) == 1: lowerCamelCase_ =os.path.join(__snake_case , __snake_case ) torch.save(__snake_case , __snake_case ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(__snake_case , __snake_case ) # Otherwise, let's build the index lowerCamelCase_ ={} for idx, shard in enumerate(__snake_case ): lowerCamelCase_ =weights_name.replace('''.bin''' , F'''-{idx+1:05d}-of-{len(__snake_case ):05d}.bin''' ) lowerCamelCase_ =os.path.join(__snake_case , weights_name.replace('''.bin''' , F'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(__snake_case , os.path.join(__snake_case , __snake_case ) ) for key in shard: lowerCamelCase_ =shard_file # Add the metadata lowerCamelCase_ ={'''total_size''': total_size} lowerCamelCase_ ={'''metadata''': metadata, '''weight_map''': weight_map} with open(os.path.join(__snake_case , __snake_case ) , '''w''' , encoding='''utf-8''' ) as f: lowerCamelCase_ =json.dumps(__snake_case , indent=2 , sort_keys=__snake_case ) + '''\n''' f.write(__snake_case ) return metadata, index if __name__ == "__main__": a_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--nllb_moe_checkpoint_path""", default="""/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000""", type=str, required=False, help="""Path to a directory containing a folder per layer. Follows the original Google format.""", ) parser.add_argument("""--dtype""", default="""float32""", type=str, required=False, help="""dtype of the saved model""") parser.add_argument( """--pytorch_dump_folder_path""", default="""/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b""", type=str, required=False, help="""Path to the output pytorch model.""", ) a_ : Tuple = parser.parse_args() a_ , a_ : int = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 1_28, args.dtype, ) a_ : Tuple = NllbMoeConfig.from_pretrained( """facebook/nllb-200-3.3B""", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=1_28 ) config.save_pretrained(args.pytorch_dump_folder_path) a_ : Any = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print("""Done""") model.save_pretrained(args.pytorch_dump_folder_path)
6
0
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = Dict[str, Any] UpperCamelCase = List[Prediction] @add_end_docstrings(__A ) class __UpperCAmelCase (__A ): def __init__( self: List[str] , *UpperCAmelCase_: Optional[Any] , **UpperCAmelCase_: Tuple ): '''simple docstring''' super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_ ) if self.framework == "tf": raise ValueError(F'The {self.__class__} is only available in PyTorch.' ) requires_backends(self , """vision""" ) self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) ) def UpperCamelCase ( self: Any , **UpperCAmelCase_: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = {} if "threshold" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["threshold"] return {}, {}, postprocess_kwargs def __call__( self: List[Any] , *UpperCAmelCase_: List[Any] , **UpperCAmelCase_: Optional[int] ): '''simple docstring''' return super().__call__(*UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: Dict , UpperCAmelCase_: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = load_image(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.IntTensor([[image.height, image.width]] ) _SCREAMING_SNAKE_CASE = self.image_processor(images=[image] , return_tensors="""pt""" ) if self.tokenizer is not None: _SCREAMING_SNAKE_CASE = self.tokenizer(text=inputs["""words"""] , boxes=inputs["""boxes"""] , return_tensors="""pt""" ) _SCREAMING_SNAKE_CASE = target_size return inputs def UpperCamelCase ( self: str , UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = model_inputs.pop("""target_size""" ) _SCREAMING_SNAKE_CASE = self.model(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = outputs.__class__({"""target_size""": target_size, **outputs} ) if self.tokenizer is not None: _SCREAMING_SNAKE_CASE = model_inputs["bbox"] return model_outputs def UpperCamelCase ( self: str , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: Union[str, Any]=0.9 ): '''simple docstring''' _SCREAMING_SNAKE_CASE = model_outputs["target_size"] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. _SCREAMING_SNAKE_CASE = target_size[0].tolist() def unnormalize(UpperCAmelCase_: Optional[Any] ): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 1_000), (height * bbox[1] / 1_000), (width * bbox[2] / 1_000), (height * bbox[3] / 1_000), ] ) ) _SCREAMING_SNAKE_CASE = model_outputs["logits"].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 ) _SCREAMING_SNAKE_CASE = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] _SCREAMING_SNAKE_CASE = [unnormalize(UpperCAmelCase_ ) for bbox in model_outputs["bbox"].squeeze(0 )] _SCREAMING_SNAKE_CASE = ["score", "label", "box"] _SCREAMING_SNAKE_CASE = [dict(zip(UpperCAmelCase_ , UpperCAmelCase_ ) ) for vals in zip(scores.tolist() , UpperCAmelCase_ , UpperCAmelCase_ ) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel _SCREAMING_SNAKE_CASE = self.image_processor.post_process_object_detection(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = raw_annotations[0] _SCREAMING_SNAKE_CASE = raw_annotation["scores"] _SCREAMING_SNAKE_CASE = raw_annotation["labels"] _SCREAMING_SNAKE_CASE = raw_annotation["boxes"] _SCREAMING_SNAKE_CASE = scores.tolist() _SCREAMING_SNAKE_CASE = [self.model.config.idalabel[label.item()] for label in labels] _SCREAMING_SNAKE_CASE = [self._get_bounding_box(UpperCAmelCase_ ) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] _SCREAMING_SNAKE_CASE = ["score", "label", "box"] _SCREAMING_SNAKE_CASE = [ dict(zip(UpperCAmelCase_ , UpperCAmelCase_ ) ) for vals in zip(raw_annotation["""scores"""] , raw_annotation["""labels"""] , raw_annotation["""boxes"""] ) ] return annotation def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: "torch.Tensor" ): '''simple docstring''' if self.framework != "pt": raise ValueError("""The ObjectDetectionPipeline is only available in PyTorch.""" ) _SCREAMING_SNAKE_CASE = box.int().tolist() _SCREAMING_SNAKE_CASE = { "xmin": xmin, "ymin": ymin, "xmax": xmax, "ymax": ymax, } return bbox
306
from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL a_ = logging.get_logger(__name__) def lowerCamelCase__ ( _a): if isinstance(_a , (list, tuple)) and isinstance(videos[0] , (list, tuple)) and is_valid_image(videos[0][0]): return videos elif isinstance(_a , (list, tuple)) and is_valid_image(videos[0]): return [videos] elif is_valid_image(_a): return [[videos]] raise ValueError(f"Could not make batched video from {videos}") class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ =['pixel_values'] def __init__( self : Optional[Any] , a : bool = True , a : Dict[str, int] = None , a : PILImageResampling = PILImageResampling.BILINEAR , a : bool = True , a : Dict[str, int] = None , a : bool = True , a : Union[int, float] = 1 / 255 , a : bool = True , a : bool = True , a : Optional[Union[float, List[float]]] = None , a : Optional[Union[float, List[float]]] = None , **a : Tuple , ) -> None: """simple docstring""" super().__init__(**a ) SCREAMING_SNAKE_CASE : Tuple = size if size is not None else {"shortest_edge": 256} SCREAMING_SNAKE_CASE : Tuple = get_size_dict(a , default_to_square=a ) SCREAMING_SNAKE_CASE : List[str] = crop_size if crop_size is not None else {"height": 224, "width": 224} SCREAMING_SNAKE_CASE : str = get_size_dict(a , param_name="crop_size" ) SCREAMING_SNAKE_CASE : Dict = do_resize SCREAMING_SNAKE_CASE : List[Any] = size SCREAMING_SNAKE_CASE : Optional[int] = do_center_crop SCREAMING_SNAKE_CASE : int = crop_size SCREAMING_SNAKE_CASE : int = resample SCREAMING_SNAKE_CASE : Any = do_rescale SCREAMING_SNAKE_CASE : int = rescale_factor SCREAMING_SNAKE_CASE : Tuple = offset SCREAMING_SNAKE_CASE : str = do_normalize SCREAMING_SNAKE_CASE : Optional[int] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN SCREAMING_SNAKE_CASE : Dict = image_std if image_std is not None else IMAGENET_STANDARD_STD def __UpperCamelCase ( self : Optional[Any] , a : np.ndarray , a : Dict[str, int] , a : PILImageResampling = PILImageResampling.BILINEAR , a : Optional[Union[str, ChannelDimension]] = None , **a : Union[str, Any] , ) -> np.ndarray: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = get_size_dict(a , default_to_square=a ) if "shortest_edge" in size: SCREAMING_SNAKE_CASE : str = get_resize_output_image_size(a , size["shortest_edge"] , default_to_square=a ) elif "height" in size and "width" in size: SCREAMING_SNAKE_CASE : Dict = (size["height"], size["width"]) else: raise ValueError(F"Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}" ) return resize(a , size=a , resample=a , data_format=a , **a ) def __UpperCamelCase ( self : List[str] , a : np.ndarray , a : Dict[str, int] , a : Optional[Union[str, ChannelDimension]] = None , **a : str , ) -> np.ndarray: """simple docstring""" SCREAMING_SNAKE_CASE : str = get_size_dict(a ) if "height" not in size or "width" not in size: raise ValueError(F"Size must have 'height' and 'width' as keys. Got {size.keys()}" ) return center_crop(a , size=(size["height"], size["width"]) , data_format=a , **a ) def __UpperCamelCase ( self : List[Any] , a : np.ndarray , a : Union[int, float] , a : bool = True , a : Optional[Union[str, ChannelDimension]] = None , **a : Tuple , ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : int = image.astype(np.floataa ) if offset: SCREAMING_SNAKE_CASE : Union[str, Any] = image - (scale / 2) return rescale(a , scale=a , data_format=a , **a ) def __UpperCamelCase ( self : int , a : np.ndarray , a : Union[float, List[float]] , a : Union[float, List[float]] , a : Optional[Union[str, ChannelDimension]] = None , **a : List[str] , ) -> np.ndarray: """simple docstring""" return normalize(a , mean=a , std=a , data_format=a , **a ) def __UpperCamelCase ( self : Tuple , a : ImageInput , a : bool = None , a : Dict[str, int] = None , a : PILImageResampling = None , a : bool = None , a : Dict[str, int] = None , a : bool = None , a : float = None , a : bool = None , a : bool = None , a : Optional[Union[float, List[float]]] = None , a : Optional[Union[float, List[float]]] = None , a : Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> np.ndarray: """simple docstring""" if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) if offset and not do_rescale: raise ValueError("For offset, do_rescale must also be set to True." ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE : List[str] = to_numpy_array(a ) if do_resize: SCREAMING_SNAKE_CASE : Optional[Any] = self.resize(image=a , size=a , resample=a ) if do_center_crop: SCREAMING_SNAKE_CASE : Union[str, Any] = self.center_crop(a , size=a ) if do_rescale: SCREAMING_SNAKE_CASE : Any = self.rescale(image=a , scale=a , offset=a ) if do_normalize: SCREAMING_SNAKE_CASE : Tuple = self.normalize(image=a , mean=a , std=a ) SCREAMING_SNAKE_CASE : Optional[int] = to_channel_dimension_format(a , a ) return image def __UpperCamelCase ( self : Dict , a : ImageInput , a : bool = None , a : Dict[str, int] = None , a : PILImageResampling = None , a : bool = None , a : Dict[str, int] = None , a : bool = None , a : float = None , a : bool = None , a : bool = None , a : Optional[Union[float, List[float]]] = None , a : Optional[Union[float, List[float]]] = None , a : Optional[Union[str, TensorType]] = None , a : ChannelDimension = ChannelDimension.FIRST , **a : Tuple , ) -> PIL.Image.Image: """simple docstring""" SCREAMING_SNAKE_CASE : str = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE : Union[str, Any] = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE : int = do_center_crop if do_center_crop is not None else self.do_center_crop SCREAMING_SNAKE_CASE : str = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE : Optional[Any] = offset if offset is not None else self.offset SCREAMING_SNAKE_CASE : str = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE : Optional[int] = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE : Optional[Any] = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE : int = size if size is not None else self.size SCREAMING_SNAKE_CASE : List[Any] = get_size_dict(a , default_to_square=a ) SCREAMING_SNAKE_CASE : Tuple = crop_size if crop_size is not None else self.crop_size SCREAMING_SNAKE_CASE : Union[str, Any] = get_size_dict(a , param_name="crop_size" ) if not valid_images(a ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) SCREAMING_SNAKE_CASE : Optional[int] = make_batched(a ) SCREAMING_SNAKE_CASE : List[Any] = [ [ self._preprocess_image( image=a , do_resize=a , size=a , resample=a , do_center_crop=a , crop_size=a , do_rescale=a , rescale_factor=a , offset=a , do_normalize=a , image_mean=a , image_std=a , data_format=a , ) for img in video ] for video in videos ] SCREAMING_SNAKE_CASE : Optional[int] = {"pixel_values": videos} return BatchFeature(data=a , tensor_type=a )
76
0
"""simple docstring""" import enum import shutil import sys lowercase__ , lowercase__ = shutil.get_terminal_size() lowercase__ = {"""UP""": """A""", """DOWN""": """B""", """RIGHT""": """C""", """LEFT""": """D"""} class __lowerCamelCase ( enum.Enum ): '''simple docstring''' a_ : int = 0 a_ : Union[str, Any] = 1 def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase="" ) -> int: """simple docstring""" sys.stdout.write(str(__UpperCamelCase ) + end ) sys.stdout.flush() def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase="" ) -> Tuple: """simple docstring""" forceWrite(f'''\u001b[{color}m{content}\u001b[0m''' , __UpperCamelCase ) def __lowerCamelCase ( ) -> Tuple: """simple docstring""" forceWrite("\r" ) def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase ) -> Any: """simple docstring""" forceWrite(f'''\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}''' ) def __lowerCamelCase ( ) -> Any: """simple docstring""" forceWrite(" " * TERMINAL_WIDTH ) reset_cursor() def __lowerCamelCase ( ) -> List[str]: """simple docstring""" reset_cursor() forceWrite("-" * TERMINAL_WIDTH )
161
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowercase__ = {"""configuration_reformer""": ["""REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ReformerConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = ["""ReformerTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = ["""ReformerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ """REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """ReformerAttention""", """ReformerForMaskedLM""", """ReformerForQuestionAnswering""", """ReformerForSequenceClassification""", """ReformerLayer""", """ReformerModel""", """ReformerModelWithLMHead""", """ReformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
161
1
_snake_case = {str(digit): digit**5 for digit in range(10)} def lowercase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' return sum(DIGITS_FIFTH_POWER[digit] for digit in str(SCREAMING_SNAKE_CASE_ ) ) def lowercase_( ): '''simple docstring''' return sum( number for number in range(1000 , 1000000 ) if number == digits_fifth_powers_sum(SCREAMING_SNAKE_CASE_ ) ) if __name__ == "__main__": print(solution())
283
import argparse _snake_case = '''docs/source/_static/js/custom.js''' def lowercase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' with open(SCREAMING_SNAKE_CASE_ , encoding="utf-8" , newline="\n" ) as f: lowerCamelCase : List[str] = f.readlines() lowerCamelCase : int = 0 # First let's put the right version while not lines[index].startswith("const stableVersion =" ): index += 1 lowerCamelCase : str = f"""const stableVersion = \"v{version}\"\n""" # Then update the dictionary while not lines[index].startswith("const versionMapping = {" ): index += 1 # We go until the end while not lines[index].startswith("}" ): index += 1 # We add the new version at the end lines[index - 1] += f""" \"v{version}\": \"v{version}\",\n""" with open(SCREAMING_SNAKE_CASE_ , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument('''--version''', help='''Release version.''') _snake_case = parser.parse_args() update_custom_js(args.version)
283
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowercase = { '''configuration_roc_bert''': ['''ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RoCBertConfig'''], '''tokenization_roc_bert''': ['''RoCBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ '''ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RoCBertForCausalLM''', '''RoCBertForMaskedLM''', '''RoCBertForMultipleChoice''', '''RoCBertForPreTraining''', '''RoCBertForQuestionAnswering''', '''RoCBertForSequenceClassification''', '''RoCBertForTokenClassification''', '''RoCBertLayer''', '''RoCBertModel''', '''RoCBertPreTrainedModel''', '''load_tf_weights_in_roc_bert''', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys __lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
105
from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
105
1
def a__ ( UpperCAmelCase : str , UpperCAmelCase : str ) -> int: if len(UpperCAmelCase ) != len(UpperCAmelCase ): raise ValueError('''String lengths must match!''' ) UpperCAmelCase : Union[str, Any] = 0 for chara, chara in zip(UpperCAmelCase , UpperCAmelCase ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
336
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging _lowerCamelCase : str = logging.get_logger(__name__) _lowerCamelCase : Optional[int] = { "Salesforce/codegen-350M-nl": "https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json", "Salesforce/codegen-350M-multi": "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json", "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json", "Salesforce/codegen-2B-nl": "https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json", "Salesforce/codegen-2B-multi": "https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json", "Salesforce/codegen-2B-mono": "https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json", "Salesforce/codegen-6B-nl": "https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json", "Salesforce/codegen-6B-multi": "https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json", "Salesforce/codegen-6B-mono": "https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json", "Salesforce/codegen-16B-nl": "https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json", "Salesforce/codegen-16B-multi": "https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json", "Salesforce/codegen-16B-mono": "https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json", } class __UpperCAmelCase ( lowerCamelCase__ ): UpperCamelCase = """codegen""" UpperCamelCase = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : Any, __A : Optional[int]=5_0_4_0_0, __A : Tuple=2_0_4_8, __A : Optional[int]=2_0_4_8, __A : List[str]=4_0_9_6, __A : List[str]=2_8, __A : Union[str, Any]=1_6, __A : Tuple=6_4, __A : Union[str, Any]=None, __A : Union[str, Any]="gelu_new", __A : Any=0.0, __A : Dict=0.0, __A : str=0.0, __A : Optional[int]=1E-5, __A : Any=0.0_2, __A : Any=True, __A : Union[str, Any]=5_0_2_5_6, __A : List[str]=5_0_2_5_6, __A : int=False, **__A : List[Any], ): UpperCAmelCase : int = vocab_size UpperCAmelCase : Tuple = n_ctx UpperCAmelCase : Tuple = n_positions UpperCAmelCase : Optional[int] = n_embd UpperCAmelCase : Union[str, Any] = n_layer UpperCAmelCase : List[str] = n_head UpperCAmelCase : Tuple = n_inner UpperCAmelCase : int = rotary_dim UpperCAmelCase : List[Any] = activation_function UpperCAmelCase : List[str] = resid_pdrop UpperCAmelCase : Optional[Any] = embd_pdrop UpperCAmelCase : str = attn_pdrop UpperCAmelCase : Tuple = layer_norm_epsilon UpperCAmelCase : Dict = initializer_range UpperCAmelCase : Union[str, Any] = use_cache UpperCAmelCase : Any = bos_token_id UpperCAmelCase : List[str] = eos_token_id super().__init__( bos_token_id=__A, eos_token_id=__A, tie_word_embeddings=__A, **__A ) class __UpperCAmelCase ( lowerCamelCase__ ): def __init__( self : Any, __A : PretrainedConfig, __A : str = "default", __A : List[PatchingSpec] = None, __A : bool = False, ): super().__init__(__A, task=__A, patching_specs=__A, use_past=__A ) if not getattr(self._config, '''pad_token_id''', __A ): # TODO: how to do that better? UpperCAmelCase : Union[str, Any] = 0 @property def __magic_name__ ( self : str ): UpperCAmelCase : Union[str, Any] = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(__A, direction='''inputs''' ) UpperCAmelCase : int = {0: '''batch''', 1: '''past_sequence + sequence'''} else: UpperCAmelCase : List[Any] = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def __magic_name__ ( self : Dict ): return self._config.n_layer @property def __magic_name__ ( self : List[str] ): return self._config.n_head def __magic_name__ ( self : str, __A : PreTrainedTokenizer, __A : int = -1, __A : int = -1, __A : bool = False, __A : Optional[TensorType] = None, ): UpperCAmelCase : Union[str, Any] = super(__A, self ).generate_dummy_inputs( __A, batch_size=__A, seq_length=__A, is_pair=__A, framework=__A ) # We need to order the input in the way they appears in the forward() UpperCAmelCase : Union[str, Any] = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch UpperCAmelCase , UpperCAmelCase : str = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values UpperCAmelCase : str = seqlen + 2 UpperCAmelCase : Optional[int] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) UpperCAmelCase : Optional[int] = [ (torch.zeros(__A ), torch.zeros(__A )) for _ in range(self.num_layers ) ] UpperCAmelCase : Union[str, Any] = common_inputs['''attention_mask'''] if self.use_past: UpperCAmelCase : Optional[Any] = ordered_inputs['''attention_mask'''].dtype UpperCAmelCase : Dict = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(__A, __A, dtype=__A )], dim=1 ) return ordered_inputs @property def __magic_name__ ( self : Tuple ): return 1_3
336
1
'''simple docstring''' from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor lowerCAmelCase: List[str] = transforms.Compose( [ transforms.Resize((2_5_6, 2_5_6)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def lowerCamelCase__ ( _A ): if isinstance(a__ , torch.Tensor ): return image elif isinstance(a__ , PIL.Image.Image ): a : Tuple = [image] a : int = [trans(img.convert('RGB' ) ) for img in image] a : Union[str, Any] = torch.stack(a__ ) return image class a__( lowerCamelCase__ ): def __init__( self : Any , __snake_case : Optional[Any] , __snake_case : Tuple ): super().__init__() # make sure scheduler can always be converted to DDIM a : Union[str, Any] = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=lowercase_ , scheduler=lowercase_ ) def lowercase_ ( self : str , __snake_case : List[Any] ): if strength < 0 or strength > 1: raise ValueError(F"""The value of strength should in [0.0, 1.0] but is {strength}""" ) def lowercase_ ( self : Optional[Any] , __snake_case : str , __snake_case : Union[str, Any] , __snake_case : Any ): a : Dict = min(int(num_inference_steps * strength ) , lowercase_ ) a : List[Any] = max(num_inference_steps - init_timestep , 0 ) a : Any = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowercase_ ( self : int , __snake_case : Optional[int] , __snake_case : Optional[Any] , __snake_case : List[str] , __snake_case : int , __snake_case : Optional[Any] , __snake_case : Optional[int]=None ): if not isinstance(lowercase_ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(lowercase_ )}""" ) a : Dict = image.to(device=lowercase_ , dtype=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) and len(lowercase_ ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(lowercase_ )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) a : List[Any] = init_latents.shape a : Union[str, Any] = randn_tensor(lowercase_ , generator=lowercase_ , device=lowercase_ , dtype=lowercase_ ) # get latents print('add noise to latents at timestep' , lowercase_ ) a : Optional[Any] = self.scheduler.add_noise(lowercase_ , lowercase_ , lowercase_ ) a : Any = init_latents return latents @torch.no_grad() def __call__( self : List[Any] , __snake_case : Union[torch.FloatTensor, PIL.Image.Image] = None , __snake_case : float = 0.8 , __snake_case : int = 1 , __snake_case : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __snake_case : float = 0.0 , __snake_case : int = 50 , __snake_case : Optional[bool] = None , __snake_case : Optional[str] = "pil" , __snake_case : bool = True , ): self.check_inputs(lowercase_ ) # 2. Preprocess image a : Dict = preprocess(lowercase_ ) # 3. set timesteps self.scheduler.set_timesteps(lowercase_ , device=self.device ) a , a : List[Any] = self.get_timesteps(lowercase_ , lowercase_ , self.device ) a : Union[str, Any] = timesteps[:1].repeat(lowercase_ ) # 4. Prepare latent variables a : List[Any] = self.prepare_latents(lowercase_ , lowercase_ , lowercase_ , self.unet.dtype , self.device , lowercase_ ) a : Dict = latents # 5. Denoising loop for t in self.progress_bar(lowercase_ ): # 1. predict noise model_output a : Dict = self.unet(lowercase_ , lowercase_ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 a : List[str] = self.scheduler.step( lowercase_ , lowercase_ , lowercase_ , eta=lowercase_ , use_clipped_model_output=lowercase_ , generator=lowercase_ , ).prev_sample a : List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) a : int = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": a : Tuple = self.numpy_to_pil(lowercase_ ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=lowercase_ )
369
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase: Any = { 'configuration_poolformer': [ 'POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PoolFormerConfig', 'PoolFormerOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase: List[str] = ['PoolFormerFeatureExtractor'] lowerCAmelCase: Tuple = ['PoolFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase: str = [ 'POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PoolFormerForImageClassification', 'PoolFormerModel', 'PoolFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys lowerCAmelCase: Dict = _LazyModule(__name__, globals()['__file__'], _import_structure)
96
0
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
207
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available UpperCamelCase__ = { """configuration_audio_spectrogram_transformer""": [ """AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ASTConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ """AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """ASTForAudioClassification""", """ASTModel""", """ASTPreTrainedModel""", ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = ["""ASTFeatureExtractor"""] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
92
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __snake_case : int = """▁""" __snake_case : Optional[Any] = {"""vocab_file""": """spiece.model"""} __snake_case : List[str] = { """vocab_file""": {"""google/pegasus-xsum""": """https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"""} } __snake_case : List[str] = { """google/pegasus-xsum""": 5_12, } __snake_case : Union[str, Any] = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( __A): _SCREAMING_SNAKE_CASE : List[Any] = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : List[str] = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : Tuple = ['input_ids', 'attention_mask'] def __init__( self , _UpperCamelCase , _UpperCamelCase="<pad>" , _UpperCamelCase="</s>" , _UpperCamelCase="<unk>" , _UpperCamelCase="<mask_2>" , _UpperCamelCase="<mask_1>" , _UpperCamelCase=None , _UpperCamelCase=1_03 , _UpperCamelCase = None , **_UpperCamelCase , ): """simple docstring""" lowerCAmelCase__ = offset if additional_special_tokens is not None: if not isinstance(__lowercase , __lowercase ): raise TypeError( F"additional_special_tokens should be of type {type(__lowercase )}, but is" F" {type(__lowercase )}" ) lowerCAmelCase__ = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F"<unk_{i}>" for i in range(len(__lowercase ) , self.offset - 1 ) ] if len(set(__lowercase ) ) != len(__lowercase ): raise ValueError( 'Please make sure that the provided additional_special_tokens do not contain an incorrectly' F" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}." ) lowerCAmelCase__ = additional_special_tokens_extended else: lowerCAmelCase__ = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F"<unk_{i}>" for i in range(2 , self.offset )] lowerCAmelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=__lowercase , unk_token=__lowercase , mask_token=__lowercase , pad_token=__lowercase , mask_token_sent=__lowercase , offset=__lowercase , additional_special_tokens=__lowercase , sp_model_kwargs=self.sp_model_kwargs , **__lowercase , ) lowerCAmelCase__ = mask_token_sent lowerCAmelCase__ = vocab_file lowerCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__lowercase ) # add special tokens to encoder dict lowerCAmelCase__ = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) lowerCAmelCase__ = {v: k for k, v in self.encoder.items()} @property def UpperCamelCase__ ( self ): """simple docstring""" return len(self.sp_model ) + self.offset def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = {self.convert_ids_to_tokens(__lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): """simple docstring""" lowerCAmelCase__ = self.__dict__.copy() lowerCAmelCase__ = None return state def __setstate__( self , _UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): lowerCAmelCase__ = {} lowerCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase__ ( self , _UpperCamelCase ): """simple docstring""" return self.sp_model.encode(__lowercase , out_type=__lowercase ) def UpperCamelCase__ ( self , _UpperCamelCase ): """simple docstring""" if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] lowerCAmelCase__ = self.sp_model.piece_to_id(__lowercase ) return sp_id + self.offset def UpperCamelCase__ ( self , _UpperCamelCase ): """simple docstring""" if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: lowerCAmelCase__ = self.sp_model.IdToPiece(index - self.offset ) return token def UpperCamelCase__ ( self , _UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = [] lowerCAmelCase__ = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__lowercase ) + token lowerCAmelCase__ = [] else: current_sub_tokens.append(__lowercase ) out_string += self.sp_model.decode(__lowercase ) return out_string.strip() def UpperCamelCase__ ( self , _UpperCamelCase=False ): """simple docstring""" return 1 def UpperCamelCase__ ( self , _UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = False ): """simple docstring""" if already_has_special_tokens: return self._special_token_mask(__lowercase ) elif token_ids_a is None: return self._special_token_mask(__lowercase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase=None ): """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase = None ): """simple docstring""" if not os.path.isdir(__lowercase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return lowerCAmelCase__ = os.path.join( __lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowercase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowercase ) elif not os.path.isfile(self.vocab_file ): with open(__lowercase , 'wb' ) as fi: lowerCAmelCase__ = self.sp_model.serialized_model_proto() fi.write(__lowercase ) return (out_vocab_file,)
359
import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json __snake_case : Tuple = """sshleifer/mar_enro_6_3_student""" class __SCREAMING_SNAKE_CASE ( __lowercase): def UpperCamelCase__ ( self ): """simple docstring""" super().setUp() lowerCAmelCase__ = cached_path( 'https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz' , extract_compressed_file=_UpperCamelCase , ) lowerCAmelCase__ = F"{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k" @slow @require_torch_gpu def UpperCamelCase__ ( self ): """simple docstring""" MarianMTModel.from_pretrained(_UpperCamelCase ) @slow @require_torch_gpu def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = { '$MAX_LEN': 64, '$BS': 64, '$GAS': 1, '$ENRO_DIR': self.data_dir, 'facebook/mbart-large-cc25': MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", '--learning_rate=3e-5': '--learning_rate 3e-4', '--num_train_epochs 6': '--num_train_epochs 1', } # Clean up bash script lowerCAmelCase__ = (self.test_file_dir / 'train_mbart_cc25_enro.sh').open().read().split('finetune.py' )[1].strip() lowerCAmelCase__ = bash_script.replace('\\\n' , '' ).strip().replace('"$@"' , '' ) for k, v in env_vars_to_replace.items(): lowerCAmelCase__ = bash_script.replace(_UpperCamelCase , str(_UpperCamelCase ) ) lowerCAmelCase__ = self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") lowerCAmelCase__ = F"\n --output_dir {output_dir}\n --tokenizer_name Helsinki-NLP/opus-mt-en-ro\n --sortish_sampler\n --do_predict\n --gpus 1\n --freeze_encoder\n --n_train 40000\n --n_val 500\n --n_test 500\n --fp16_opt_level O1\n --num_sanity_val_steps 0\n --eval_beams 2\n ".split() # XXX: args.gpus > 1 : handle multi_gpu in the future lowerCAmelCase__ = ['finetune.py'] + bash_script.split() + args with patch.object(_UpperCamelCase , 'argv' , _UpperCamelCase ): lowerCAmelCase__ = argparse.ArgumentParser() lowerCAmelCase__ = pl.Trainer.add_argparse_args(_UpperCamelCase ) lowerCAmelCase__ = SummarizationModule.add_model_specific_args(_UpperCamelCase , os.getcwd() ) lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = main(_UpperCamelCase ) # Check metrics lowerCAmelCase__ = load_json(model.metrics_save_path ) lowerCAmelCase__ = metrics['val'][0] lowerCAmelCase__ = metrics['val'][-1] self.assertEqual(len(metrics['val'] ) , (args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[F"val_avg_{model.val_metric}"] , _UpperCamelCase ) self.assertGreater(last_step_stats['val_avg_gen_time'] , 0.01 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats['val_avg_gen_time'] , 1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats['val_avg_bleu'] - first_step_stats['val_avg_bleu'] , 2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats['val_avg_bleu'] , 17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics['val'][-1]['val_avg_bleu'] - metrics['test'][-1]['test_avg_bleu'] ) , 1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict lowerCAmelCase__ = os.listdir(_UpperCamelCase ) lowerCAmelCase__ = [x for x in contents if x.endswith('.ckpt' )][0] lowerCAmelCase__ = os.path.join(args.output_dir , _UpperCamelCase ) lowerCAmelCase__ = torch.load(_UpperCamelCase , map_location='cpu' ) lowerCAmelCase__ = 'model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: lowerCAmelCase__ = {os.path.basename(_UpperCamelCase ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['test'] ) == 1 class __SCREAMING_SNAKE_CASE ( __lowercase): @timeout_decorator.timeout(6_00 ) @slow @require_torch_gpu def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = F"{self.test_file_dir_str}/test_data/wmt_en_ro" lowerCAmelCase__ = { '--fp16_opt_level=O1': '', '$MAX_LEN': 1_28, '$BS': 16, '$GAS': 1, '$ENRO_DIR': data_dir, '$m': 'sshleifer/student_marian_en_ro_6_1', 'val_check_interval=0.25': 'val_check_interval=1.0', } # Clean up bash script lowerCAmelCase__ = ( (self.test_file_dir / 'distil_marian_no_teacher.sh').open().read().split('distillation.py' )[1].strip() ) lowerCAmelCase__ = bash_script.replace('\\\n' , '' ).strip().replace('"$@"' , '' ) lowerCAmelCase__ = bash_script.replace('--fp16 ' , ' ' ) for k, v in env_vars_to_replace.items(): lowerCAmelCase__ = bash_script.replace(_UpperCamelCase , str(_UpperCamelCase ) ) lowerCAmelCase__ = self.get_auto_remove_tmp_dir() lowerCAmelCase__ = bash_script.replace('--fp16' , '' ) lowerCAmelCase__ = 6 lowerCAmelCase__ = ( ['distillation.py'] + bash_script.split() + [ F"--output_dir={output_dir}", '--gpus=1', '--learning_rate=1e-3', F"--num_train_epochs={epochs}", '--warmup_steps=10', '--val_check_interval=1.0', '--do_predict', ] ) with patch.object(_UpperCamelCase , 'argv' , _UpperCamelCase ): lowerCAmelCase__ = argparse.ArgumentParser() lowerCAmelCase__ = pl.Trainer.add_argparse_args(_UpperCamelCase ) lowerCAmelCase__ = SummarizationDistiller.add_model_specific_args(_UpperCamelCase , os.getcwd() ) lowerCAmelCase__ = parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu lowerCAmelCase__ = distill_main(_UpperCamelCase ) # Check metrics lowerCAmelCase__ = load_json(model.metrics_save_path ) lowerCAmelCase__ = metrics['val'][0] lowerCAmelCase__ = metrics['val'][-1] assert len(metrics['val'] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.01 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[F"val_avg_{model.val_metric}"] , _UpperCamelCase ) # check lightning ckpt can be loaded and has a reasonable statedict lowerCAmelCase__ = os.listdir(_UpperCamelCase ) lowerCAmelCase__ = [x for x in contents if x.endswith('.ckpt' )][0] lowerCAmelCase__ = os.path.join(args.output_dir , _UpperCamelCase ) lowerCAmelCase__ = torch.load(_UpperCamelCase , map_location='cpu' ) lowerCAmelCase__ = 'model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: lowerCAmelCase__ = {os.path.basename(_UpperCamelCase ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['test'] ) == 1
122
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class snake_case ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict =StableDiffusionInstructPixaPixPipeline SCREAMING_SNAKE_CASE_ : Tuple =TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width", "cross_attention_kwargs"} SCREAMING_SNAKE_CASE_ : List[Any] =TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS SCREAMING_SNAKE_CASE_ : Tuple =IMAGE_TO_IMAGE_IMAGE_PARAMS SCREAMING_SNAKE_CASE_ : List[str] =IMAGE_TO_IMAGE_IMAGE_PARAMS def _lowerCamelCase ( self : List[Any] ): torch.manual_seed(0 ) __UpperCamelCase = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=8 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=3_2 , ) __UpperCamelCase = PNDMScheduler(skip_prk_steps=__A ) torch.manual_seed(0 ) __UpperCamelCase = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) __UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) __UpperCamelCase = CLIPTextModel(__A ) __UpperCamelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) __UpperCamelCase = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def _lowerCamelCase ( self : str , __A : Dict , __A : Any=0 ): __UpperCamelCase = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(__A ) ).to(__A ) __UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] __UpperCamelCase = Image.fromarray(np.uinta(__A ) ).convert('RGB' ) if str(__A ).startswith('mps' ): __UpperCamelCase = torch.manual_seed(__A ) else: __UpperCamelCase = torch.Generator(device=__A ).manual_seed(__A ) __UpperCamelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'image_guidance_scale': 1, 'output_type': 'numpy', } return inputs def _lowerCamelCase ( self : Dict ): __UpperCamelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator __UpperCamelCase = self.get_dummy_components() __UpperCamelCase = StableDiffusionInstructPixaPixPipeline(**__A ) __UpperCamelCase = sd_pipe.to(__A ) sd_pipe.set_progress_bar_config(disable=__A ) __UpperCamelCase = self.get_dummy_inputs(__A ) __UpperCamelCase = sd_pipe(**__A ).images __UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) __UpperCamelCase = np.array([0.7526, 0.3750, 0.4547, 0.6117, 0.5866, 0.5016, 0.4327, 0.5642, 0.4815] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _lowerCamelCase ( self : Optional[int] ): __UpperCamelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator __UpperCamelCase = self.get_dummy_components() __UpperCamelCase = StableDiffusionInstructPixaPixPipeline(**__A ) __UpperCamelCase = sd_pipe.to(__A ) sd_pipe.set_progress_bar_config(disable=__A ) __UpperCamelCase = self.get_dummy_inputs(__A ) __UpperCamelCase = 'french fries' __UpperCamelCase = sd_pipe(**__A , negative_prompt=__A ) __UpperCamelCase = output.images __UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) __UpperCamelCase = np.array([0.7511, 0.3642, 0.4553, 0.6236, 0.5797, 0.5013, 0.4343, 0.5611, 0.4831] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _lowerCamelCase ( self : List[str] ): __UpperCamelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator __UpperCamelCase = self.get_dummy_components() __UpperCamelCase = StableDiffusionInstructPixaPixPipeline(**__A ) __UpperCamelCase = sd_pipe.to(__A ) sd_pipe.set_progress_bar_config(disable=__A ) __UpperCamelCase = self.get_dummy_inputs(__A ) __UpperCamelCase = [inputs['prompt']] * 2 __UpperCamelCase = np.array(inputs['image'] ).astype(np.floataa ) / 255.0 __UpperCamelCase = torch.from_numpy(__A ).unsqueeze(0 ).to(__A ) __UpperCamelCase = image / 2 + 0.5 __UpperCamelCase = image.permute(0 , 3 , 1 , 2 ) __UpperCamelCase = image.repeat(2 , 1 , 1 , 1 ) __UpperCamelCase = sd_pipe(**__A ).images __UpperCamelCase = image[-1, -3:, -3:, -1] assert image.shape == (2, 3_2, 3_2, 3) __UpperCamelCase = np.array([0.5812, 0.5748, 0.5222, 0.5908, 0.5695, 0.7174, 0.6804, 0.5523, 0.5579] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _lowerCamelCase ( self : List[Any] ): __UpperCamelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator __UpperCamelCase = self.get_dummy_components() __UpperCamelCase = EulerAncestralDiscreteScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='scaled_linear' ) __UpperCamelCase = StableDiffusionInstructPixaPixPipeline(**__A ) __UpperCamelCase = sd_pipe.to(__A ) sd_pipe.set_progress_bar_config(disable=__A ) __UpperCamelCase = self.get_dummy_inputs(__A ) __UpperCamelCase = sd_pipe(**__A ).images __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = [round(__A , 4 ) for x in image_slice.flatten().tolist()] print(','.join([str(__A ) for x in slice] ) ) assert image.shape == (1, 3_2, 3_2, 3) __UpperCamelCase = np.array([0.7417, 0.3842, 0.4732, 0.5776, 0.5891, 0.5139, 0.4052, 0.5673, 0.4986] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _lowerCamelCase ( self : Any ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def _lowerCamelCase ( self : str ): __UpperCamelCase = self.get_dummy_components() __UpperCamelCase = StableDiffusionInstructPixaPixPipeline(**__A ) __UpperCamelCase = VaeImageProcessor(do_resize=__A , do_normalize=__A ) __UpperCamelCase = pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) __UpperCamelCase = pipe(**self.get_dummy_inputs_by_type(__A , input_image_type='pt' ) )[0] __UpperCamelCase = components['vae'] __UpperCamelCase = self.get_dummy_inputs_by_type(__A , input_image_type='pt' ) for image_param in self.image_latents_params: if image_param in inputs.keys(): __UpperCamelCase = vae.encode(inputs[image_param] ).latent_dist.mode() __UpperCamelCase = pipe(**__A )[0] __UpperCamelCase = np.abs(out - out_latents_inputs ).max() self.assertLess(__A , 1e-4 , 'passing latents as image input generate different result from passing image' ) @slow @require_torch_gpu class snake_case ( unittest.TestCase ): """simple docstring""" def _lowerCamelCase ( self : Any ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self : int , __A : int=0 ): __UpperCamelCase = torch.manual_seed(__A ) __UpperCamelCase = load_image( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg' ) __UpperCamelCase = { 'prompt': 'turn him into a cyborg', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'image_guidance_scale': 1.0, 'output_type': 'numpy', } return inputs def _lowerCamelCase ( self : Optional[Any] ): __UpperCamelCase = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=__A ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) pipe.enable_attention_slicing() __UpperCamelCase = self.get_inputs() __UpperCamelCase = pipe(**__A ).images __UpperCamelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) __UpperCamelCase = np.array([0.5902, 0.6015, 0.6027, 0.5983, 0.6092, 0.6061, 0.5765, 0.5785, 0.5555] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def _lowerCamelCase ( self : Dict ): __UpperCamelCase = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=__A ) __UpperCamelCase = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) pipe.enable_attention_slicing() __UpperCamelCase = self.get_inputs() __UpperCamelCase = pipe(**__A ).images __UpperCamelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) __UpperCamelCase = np.array([0.6578, 0.6817, 0.6972, 0.6761, 0.6856, 0.6916, 0.6428, 0.6516, 0.6301] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def _lowerCamelCase ( self : int ): __UpperCamelCase = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=__A ) __UpperCamelCase = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) pipe.enable_attention_slicing() __UpperCamelCase = self.get_inputs() __UpperCamelCase = pipe(**__A ).images __UpperCamelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) __UpperCamelCase = np.array([0.3828, 0.3834, 0.3818, 0.3792, 0.3865, 0.3752, 0.3792, 0.3847, 0.3753] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def _lowerCamelCase ( self : List[str] ): __UpperCamelCase = 0 def callback_fn(__A : int , __A : int , __A : torch.FloatTensor ) -> None: __UpperCamelCase = True nonlocal number_of_steps number_of_steps += 1 if step == 1: __UpperCamelCase = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 6_4, 6_4) __UpperCamelCase = latents[0, -3:, -3:, -1] __UpperCamelCase = np.array([-0.2463, -0.4644, -0.9756, 1.5176, 1.4414, 0.7866, 0.9897, 0.8521, 0.7983] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: __UpperCamelCase = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 6_4, 6_4) __UpperCamelCase = latents[0, -3:, -3:, -1] __UpperCamelCase = np.array([-0.2644, -0.4626, -0.9653, 1.5176, 1.4551, 0.7686, 0.9805, 0.8452, 0.8115] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 __UpperCamelCase = False __UpperCamelCase = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=__A , torch_dtype=torch.floataa ) __UpperCamelCase = pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) pipe.enable_attention_slicing() __UpperCamelCase = self.get_inputs() pipe(**__A , callback=__A , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def _lowerCamelCase ( self : List[str] ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __UpperCamelCase = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=__A , torch_dtype=torch.floataa ) __UpperCamelCase = pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __UpperCamelCase = self.get_inputs() __UpperCamelCase = pipe(**__A ) __UpperCamelCase = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 1_0**9 def _lowerCamelCase ( self : Optional[int] ): __UpperCamelCase = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 __UpperCamelCase = inputs['image'].resize((5_0_4, 5_0_4) ) __UpperCamelCase = 'timbrooks/instruct-pix2pix' __UpperCamelCase = StableDiffusionInstructPixaPixPipeline.from_pretrained( __A , safety_checker=__A , ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) pipe.enable_attention_slicing() __UpperCamelCase = pipe(**__A ) __UpperCamelCase = output.images[0] __UpperCamelCase = image[2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert image.shape == (5_0_4, 5_0_4, 3) __UpperCamelCase = np.array([0.2726, 0.2529, 0.2664, 0.2655, 0.2641, 0.2642, 0.2591, 0.2649, 0.2590] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3
53
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'kssteven/ibert-roberta-base': 'https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json', 'kssteven/ibert-roberta-large': 'https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json', 'kssteven/ibert-roberta-large-mnli': ( 'https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json' ), } class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): snake_case_ = """ibert""" def __init__( self : Optional[int] , __lowercase : List[str]=3_05_22 , __lowercase : Tuple=7_68 , __lowercase : str=12 , __lowercase : Optional[int]=12 , __lowercase : Optional[Any]=30_72 , __lowercase : str="gelu" , __lowercase : List[str]=0.1 , __lowercase : List[Any]=0.1 , __lowercase : List[str]=5_12 , __lowercase : str=2 , __lowercase : Tuple=0.02 , __lowercase : Union[str, Any]=1e-12 , __lowercase : List[Any]=1 , __lowercase : List[str]=0 , __lowercase : Optional[Any]=2 , __lowercase : int="absolute" , __lowercase : Tuple=False , __lowercase : int="none" , **__lowercase : Optional[Any] , ) -> List[Any]: super().__init__(pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase ) SCREAMING_SNAKE_CASE__ : Any =vocab_size SCREAMING_SNAKE_CASE__ : Dict =hidden_size SCREAMING_SNAKE_CASE__ : str =num_hidden_layers SCREAMING_SNAKE_CASE__ : Union[str, Any] =num_attention_heads SCREAMING_SNAKE_CASE__ : Tuple =hidden_act SCREAMING_SNAKE_CASE__ : List[str] =intermediate_size SCREAMING_SNAKE_CASE__ : Union[str, Any] =hidden_dropout_prob SCREAMING_SNAKE_CASE__ : int =attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : Union[str, Any] =max_position_embeddings SCREAMING_SNAKE_CASE__ : Dict =type_vocab_size SCREAMING_SNAKE_CASE__ : Tuple =initializer_range SCREAMING_SNAKE_CASE__ : str =layer_norm_eps SCREAMING_SNAKE_CASE__ : Tuple =position_embedding_type SCREAMING_SNAKE_CASE__ : Any =quant_mode SCREAMING_SNAKE_CASE__ : Optional[int] =force_dequant class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): @property def __magic_name__ ( self : str ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": SCREAMING_SNAKE_CASE__ : str ={0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: SCREAMING_SNAKE_CASE__ : Any ={0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
152
0
from copy import deepcopy class A : def __init__(self , lowerCAmelCase = None , lowerCAmelCase = None ): if arr is None and size is not None: __lowercase= size __lowercase= [0] * size elif arr is not None: self.init(lowerCAmelCase ) else: raise ValueError('Either arr or size must be specified' ) def _A (self , lowerCAmelCase ): __lowercase= len(lowerCAmelCase ) __lowercase= deepcopy(lowerCAmelCase ) for i in range(1 , self.size ): __lowercase= self.next_(lowerCAmelCase ) if j < self.size: self.tree[j] += self.tree[i] def _A (self ): __lowercase= self.tree[:] for i in range(self.size - 1 , 0 , -1 ): __lowercase= self.next_(lowerCAmelCase ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def _A (lowerCAmelCase ): return index + (index & (-index)) @staticmethod def _A (lowerCAmelCase ): return index - (index & (-index)) def _A (self , lowerCAmelCase , lowerCAmelCase ): if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value __lowercase= self.next_(lowerCAmelCase ) def _A (self , lowerCAmelCase , lowerCAmelCase ): self.add(lowerCAmelCase , value - self.get(lowerCAmelCase ) ) def _A (self , lowerCAmelCase ): if right == 0: return 0 __lowercase= self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] __lowercase= self.prev(lowerCAmelCase ) return result def _A (self , lowerCAmelCase , lowerCAmelCase ): return self.prefix(lowerCAmelCase ) - self.prefix(lowerCAmelCase ) def _A (self , lowerCAmelCase ): return self.query(lowerCAmelCase , index + 1 ) def _A (self , lowerCAmelCase ): value -= self.tree[0] if value < 0: return -1 __lowercase= 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 __lowercase= 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
357
from typing import Any import numpy as np def _lowerCamelCase( lowercase__ ) -> bool: '''simple docstring''' return np.array_equal(lowercase__ , matrix.conjugate().T ) def _lowerCamelCase( lowercase__ , lowercase__ ) -> Any: '''simple docstring''' __lowercase= v.conjugate().T __lowercase= v_star.dot(lowercase__ ) assert isinstance(lowercase__ , np.ndarray ) return (v_star_dot.dot(lowercase__ )) / (v_star.dot(lowercase__ )) def _lowerCamelCase( ) -> None: '''simple docstring''' __lowercase= np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] ) __lowercase= np.array([[1], [2], [3]] ) assert is_hermitian(lowercase__ ), F'{a} is not hermitian.' print(rayleigh_quotient(lowercase__ , lowercase__ ) ) __lowercase= np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(lowercase__ ), F'{a} is not hermitian.' assert rayleigh_quotient(lowercase__ , lowercase__ ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
304
0
import re def _UpperCAmelCase ( snake_case ): """simple docstring""" if len(re.findall("""[ATCG]""" , snake_case ) ) != len(snake_case ): raise ValueError("""Invalid Strand""" ) return dna.translate(dna.maketrans("""ATCG""" , """TAGC""" ) ) if __name__ == "__main__": import doctest doctest.testmod()
82
import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class __lowerCAmelCase ( unittest.TestCase ): def snake_case ( self ): """simple docstring""" _lowerCAmelCase = { """task_specific_params""": { """summarization""": {"""length_penalty""": 1.0, """max_length""": 128, """min_length""": 12, """num_beams""": 4}, """summarization_cnn""": {"""length_penalty""": 2.0, """max_length""": 142, """min_length""": 56, """num_beams""": 4}, """summarization_xsum""": {"""length_penalty""": 1.0, """max_length""": 62, """min_length""": 11, """num_beams""": 6}, } } _lowerCAmelCase = { """task_specific_params.summarization.length_penalty""": 1.0, """task_specific_params.summarization.max_length""": 128, """task_specific_params.summarization.min_length""": 12, """task_specific_params.summarization.num_beams""": 4, """task_specific_params.summarization_cnn.length_penalty""": 2.0, """task_specific_params.summarization_cnn.max_length""": 142, """task_specific_params.summarization_cnn.min_length""": 56, """task_specific_params.summarization_cnn.num_beams""": 4, """task_specific_params.summarization_xsum.length_penalty""": 1.0, """task_specific_params.summarization_xsum.max_length""": 62, """task_specific_params.summarization_xsum.min_length""": 11, """task_specific_params.summarization_xsum.num_beams""": 6, } self.assertEqual(flatten_dict(_snake_case ) , _snake_case ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(_snake_case ) , x.transpose() ) ) _lowerCAmelCase = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(_snake_case , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def snake_case ( self ): """simple docstring""" _lowerCAmelCase = np.random.randn(3 , 4 ) _lowerCAmelCase = torch.tensor(_snake_case ) self.assertTrue(np.allclose(transpose(_snake_case ) , transpose(_snake_case ).numpy() ) ) _lowerCAmelCase = np.random.randn(3 , 4 , 5 ) _lowerCAmelCase = torch.tensor(_snake_case ) self.assertTrue(np.allclose(transpose(_snake_case , axes=(1, 2, 0) ) , transpose(_snake_case , axes=(1, 2, 0) ).numpy() ) ) @require_tf def snake_case ( self ): """simple docstring""" _lowerCAmelCase = np.random.randn(3 , 4 ) _lowerCAmelCase = tf.constant(_snake_case ) self.assertTrue(np.allclose(transpose(_snake_case ) , transpose(_snake_case ).numpy() ) ) _lowerCAmelCase = np.random.randn(3 , 4 , 5 ) _lowerCAmelCase = tf.constant(_snake_case ) self.assertTrue(np.allclose(transpose(_snake_case , axes=(1, 2, 0) ) , transpose(_snake_case , axes=(1, 2, 0) ).numpy() ) ) @require_flax def snake_case ( self ): """simple docstring""" _lowerCAmelCase = np.random.randn(3 , 4 ) _lowerCAmelCase = jnp.array(_snake_case ) self.assertTrue(np.allclose(transpose(_snake_case ) , np.asarray(transpose(_snake_case ) ) ) ) _lowerCAmelCase = np.random.randn(3 , 4 , 5 ) _lowerCAmelCase = jnp.array(_snake_case ) self.assertTrue(np.allclose(transpose(_snake_case , axes=(1, 2, 0) ) , np.asarray(transpose(_snake_case , axes=(1, 2, 0) ) ) ) ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(_snake_case , (4, 3) ) , np.reshape(_snake_case , (4, 3) ) ) ) _lowerCAmelCase = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(_snake_case , (12, 5) ) , np.reshape(_snake_case , (12, 5) ) ) ) @require_torch def snake_case ( self ): """simple docstring""" _lowerCAmelCase = np.random.randn(3 , 4 ) _lowerCAmelCase = torch.tensor(_snake_case ) self.assertTrue(np.allclose(reshape(_snake_case , (4, 3) ) , reshape(_snake_case , (4, 3) ).numpy() ) ) _lowerCAmelCase = np.random.randn(3 , 4 , 5 ) _lowerCAmelCase = torch.tensor(_snake_case ) self.assertTrue(np.allclose(reshape(_snake_case , (12, 5) ) , reshape(_snake_case , (12, 5) ).numpy() ) ) @require_tf def snake_case ( self ): """simple docstring""" _lowerCAmelCase = np.random.randn(3 , 4 ) _lowerCAmelCase = tf.constant(_snake_case ) self.assertTrue(np.allclose(reshape(_snake_case , (4, 3) ) , reshape(_snake_case , (4, 3) ).numpy() ) ) _lowerCAmelCase = np.random.randn(3 , 4 , 5 ) _lowerCAmelCase = tf.constant(_snake_case ) self.assertTrue(np.allclose(reshape(_snake_case , (12, 5) ) , reshape(_snake_case , (12, 5) ).numpy() ) ) @require_flax def snake_case ( self ): """simple docstring""" _lowerCAmelCase = np.random.randn(3 , 4 ) _lowerCAmelCase = jnp.array(_snake_case ) self.assertTrue(np.allclose(reshape(_snake_case , (4, 3) ) , np.asarray(reshape(_snake_case , (4, 3) ) ) ) ) _lowerCAmelCase = np.random.randn(3 , 4 , 5 ) _lowerCAmelCase = jnp.array(_snake_case ) self.assertTrue(np.allclose(reshape(_snake_case , (12, 5) ) , np.asarray(reshape(_snake_case , (12, 5) ) ) ) ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(_snake_case ) , np.squeeze(_snake_case ) ) ) _lowerCAmelCase = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(_snake_case , axis=2 ) , np.squeeze(_snake_case , axis=2 ) ) ) @require_torch def snake_case ( self ): """simple docstring""" _lowerCAmelCase = np.random.randn(1 , 3 , 4 ) _lowerCAmelCase = torch.tensor(_snake_case ) self.assertTrue(np.allclose(squeeze(_snake_case ) , squeeze(_snake_case ).numpy() ) ) _lowerCAmelCase = np.random.randn(1 , 4 , 1 , 5 ) _lowerCAmelCase = torch.tensor(_snake_case ) self.assertTrue(np.allclose(squeeze(_snake_case , axis=2 ) , squeeze(_snake_case , axis=2 ).numpy() ) ) @require_tf def snake_case ( self ): """simple docstring""" _lowerCAmelCase = np.random.randn(1 , 3 , 4 ) _lowerCAmelCase = tf.constant(_snake_case ) self.assertTrue(np.allclose(squeeze(_snake_case ) , squeeze(_snake_case ).numpy() ) ) _lowerCAmelCase = np.random.randn(1 , 4 , 1 , 5 ) _lowerCAmelCase = tf.constant(_snake_case ) self.assertTrue(np.allclose(squeeze(_snake_case , axis=2 ) , squeeze(_snake_case , axis=2 ).numpy() ) ) @require_flax def snake_case ( self ): """simple docstring""" _lowerCAmelCase = np.random.randn(1 , 3 , 4 ) _lowerCAmelCase = jnp.array(_snake_case ) self.assertTrue(np.allclose(squeeze(_snake_case ) , np.asarray(squeeze(_snake_case ) ) ) ) _lowerCAmelCase = np.random.randn(1 , 4 , 1 , 5 ) _lowerCAmelCase = jnp.array(_snake_case ) self.assertTrue(np.allclose(squeeze(_snake_case , axis=2 ) , np.asarray(squeeze(_snake_case , axis=2 ) ) ) ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(_snake_case , axis=1 ) , np.expand_dims(_snake_case , axis=1 ) ) ) @require_torch def snake_case ( self ): """simple docstring""" _lowerCAmelCase = np.random.randn(3 , 4 ) _lowerCAmelCase = torch.tensor(_snake_case ) self.assertTrue(np.allclose(expand_dims(_snake_case , axis=1 ) , expand_dims(_snake_case , axis=1 ).numpy() ) ) @require_tf def snake_case ( self ): """simple docstring""" _lowerCAmelCase = np.random.randn(3 , 4 ) _lowerCAmelCase = tf.constant(_snake_case ) self.assertTrue(np.allclose(expand_dims(_snake_case , axis=1 ) , expand_dims(_snake_case , axis=1 ).numpy() ) ) @require_flax def snake_case ( self ): """simple docstring""" _lowerCAmelCase = np.random.randn(3 , 4 ) _lowerCAmelCase = jnp.array(_snake_case ) self.assertTrue(np.allclose(expand_dims(_snake_case , axis=1 ) , np.asarray(expand_dims(_snake_case , axis=1 ) ) ) )
82
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "caidas/swin2sr-classicalsr-x2-64": ( "https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json" ), } class A ( _UpperCAmelCase ): """simple docstring""" lowerCamelCase = 'swin2sr' lowerCamelCase = { 'hidden_size': 'embed_dim', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : Optional[Any],lowercase_ : Dict=6_4,lowercase_ : Dict=1,lowercase_ : str=3,lowercase_ : Any=1_8_0,lowercase_ : str=[6, 6, 6, 6, 6, 6],lowercase_ : Optional[Any]=[6, 6, 6, 6, 6, 6],lowercase_ : Optional[int]=8,lowercase_ : Optional[Any]=2.0,lowercase_ : str=True,lowercase_ : str=0.0,lowercase_ : List[Any]=0.0,lowercase_ : List[str]=0.1,lowercase_ : int="gelu",lowercase_ : List[str]=False,lowercase_ : Dict=0.02,lowercase_ : Dict=1E-5,lowercase_ : int=2,lowercase_ : List[str]=1.0,lowercase_ : Optional[Any]="1conv",lowercase_ : Tuple="pixelshuffle",**lowercase_ : Optional[Any],)-> List[Any]: '''simple docstring''' super().__init__(**lowercase_ ) A__ = image_size A__ = patch_size A__ = num_channels A__ = embed_dim A__ = depths A__ = len(lowercase_ ) A__ = num_heads A__ = window_size A__ = mlp_ratio A__ = qkv_bias A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = drop_path_rate A__ = hidden_act A__ = use_absolute_embeddings A__ = layer_norm_eps A__ = initializer_range A__ = upscale A__ = img_range A__ = resi_connection A__ = upsampler
362
import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params lowercase_ = getLogger(__name__) lowercase_ = "cuda" if torch.cuda.is_available() else "cpu" def _snake_case( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int = 8 , SCREAMING_SNAKE_CASE__ : str = DEFAULT_DEVICE , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : Dict="summarization" , SCREAMING_SNAKE_CASE__ : Any=None , **SCREAMING_SNAKE_CASE__ : str , ) -> Dict: '''simple docstring''' A__ = Path(SCREAMING_SNAKE_CASE__ ).open('w' , encoding='utf-8' ) A__ = str(SCREAMING_SNAKE_CASE__ ) A__ = AutoModelForSeqaSeqLM.from_pretrained(SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ) if fpaa: A__ = model.half() A__ = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) logger.info(f'Inferred tokenizer type: {tokenizer.__class__}' ) # if this is wrong, check config.model_type. A__ = time.time() # update config with task specific params use_task_specific_params(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if prefix is None: A__ = prefix or getattr(model.config , 'prefix' , '' ) or '' for examples_chunk in tqdm(list(chunks(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) ): A__ = [prefix + text for text in examples_chunk] A__ = tokenizer(SCREAMING_SNAKE_CASE__ , return_tensors='pt' , truncation=SCREAMING_SNAKE_CASE__ , padding='longest' ).to(SCREAMING_SNAKE_CASE__ ) A__ = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **SCREAMING_SNAKE_CASE__ , ) A__ = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ , skip_special_tokens=SCREAMING_SNAKE_CASE__ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ ) for hypothesis in dec: fout.write(hypothesis + '\n' ) fout.flush() fout.close() A__ = int(time.time() - start_time ) # seconds A__ = len(SCREAMING_SNAKE_CASE__ ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def _snake_case( ) -> Tuple: '''simple docstring''' return datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S' ) def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[int]=True ) -> Dict: '''simple docstring''' A__ = argparse.ArgumentParser() parser.add_argument('model_name' , type=SCREAMING_SNAKE_CASE__ , help='like facebook/bart-large-cnn,t5-base, etc.' ) parser.add_argument('input_path' , type=SCREAMING_SNAKE_CASE__ , help='like cnn_dm/test.source' ) parser.add_argument('save_path' , type=SCREAMING_SNAKE_CASE__ , help='where to save summaries' ) parser.add_argument('--reference_path' , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , help='like cnn_dm/test.target' ) parser.add_argument('--score_path' , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , default='metrics.json' , help='where to save metrics' ) parser.add_argument('--device' , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ , help='cuda, cuda:1, cpu etc.' ) parser.add_argument( '--prefix' , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ , help='will be added to the begininng of src examples' ) parser.add_argument('--task' , type=SCREAMING_SNAKE_CASE__ , default='summarization' , help='used for task_specific_params + metrics' ) parser.add_argument('--bs' , type=SCREAMING_SNAKE_CASE__ , default=8 , required=SCREAMING_SNAKE_CASE__ , help='batch size' ) parser.add_argument( '--n_obs' , type=SCREAMING_SNAKE_CASE__ , default=-1 , required=SCREAMING_SNAKE_CASE__ , help='How many observations. Defaults to all.' ) parser.add_argument('--fp16' , action='store_true' ) parser.add_argument('--dump-args' , action='store_true' , help='print the custom hparams with the results' ) parser.add_argument( '--info' , nargs='?' , type=SCREAMING_SNAKE_CASE__ , const=datetime_now() , help=( 'use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.' ' lang=en-ru. If no value is passed, the current datetime string will be used.' ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate A__ , A__ = parser.parse_known_args() A__ = parse_numeric_n_bool_cl_kwargs(SCREAMING_SNAKE_CASE__ ) if parsed_args and verbose: print(f'parsed the following generate kwargs: {parsed_args}' ) A__ = [' ' + x.rstrip() if 't5' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: A__ = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(f'score_path {args.score_path} will be overwritten unless you type ctrl-c.' ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('Can\'t mix --fp16 and --device cpu' ) A__ = generate_summaries_or_translations( SCREAMING_SNAKE_CASE__ , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **SCREAMING_SNAKE_CASE__ , ) if args.reference_path is None: return {} # Compute scores A__ = calculate_bleu if 'translation' in args.task else calculate_rouge A__ = [x.rstrip() for x in open(args.save_path ).readlines()] A__ = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(SCREAMING_SNAKE_CASE__ )] A__ = score_fn(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) scores.update(SCREAMING_SNAKE_CASE__ ) if args.dump_args: scores.update(SCREAMING_SNAKE_CASE__ ) if args.info: A__ = args.info if verbose: print(SCREAMING_SNAKE_CASE__ ) if args.score_path is not None: json.dump(SCREAMING_SNAKE_CASE__ , open(args.score_path , 'w' ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
282
0
'''simple docstring''' import math import random from typing import Any from .hill_climbing import SearchProblem def lowerCAmelCase (__A , __A = True , __A = math.inf , __A = -math.inf , __A = math.inf , __A = -math.inf , __A = False , __A = 100 , __A = 0.01 , __A = 1 , ): """simple docstring""" _a = False _a = search_prob _a = start_temperate _a = [] _a = 0 _a = None while not search_end: _a = current_state.score() if best_state is None or current_score > best_state.score(): _a = current_state scores.append(a__) iterations += 1 _a = None _a = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to _a = random.randint(0 , len(a__) - 1) # picking a random neighbor _a = neighbors.pop(a__) _a = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: _a = change * -1 # in case we are finding minimum if change > 0: # improves the solution _a = picked_neighbor else: _a = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability _a = picked_neighbor _a = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor _a = True else: _a = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(a__) , a__) plt.xlabel('''Iterations''') plt.ylabel('''Function values''') plt.show() return best_state if __name__ == "__main__": def lowerCAmelCase (__A , __A): """simple docstring""" return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) lowercase_ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) lowercase_ = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( "The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 " F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) # starting the problem with initial coordinates (12, 47) lowercase_ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) lowercase_ = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( "The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 " F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) def lowerCAmelCase (__A , __A): """simple docstring""" return (3 * x**2) - (6 * y) lowercase_ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowercase_ = simulated_annealing(prob, find_max=False, visualization=True) print( "The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: " F"""{local_min.score()}""" ) lowercase_ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowercase_ = simulated_annealing(prob, find_max=True, visualization=True) print( "The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: " F"""{local_min.score()}""" )
211
import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class __A( a , a , unittest.TestCase ): snake_case_ = AutoencoderKL snake_case_ = '''sample''' snake_case_ = 1E-2 @property def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' __a = 4 __a = 3 __a = (32, 32) __a = floats_tensor((batch_size, num_channels) + sizes ).to(_snake_case ) return {"sample": image} @property def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' return (3, 32, 32) @property def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' return (3, 32, 32) def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' __a = { '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 4, } __a = self.dummy_input return init_dict, inputs_dict def SCREAMING_SNAKE_CASE_ ( self ) -> Tuple: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' pass @unittest.skipIf(torch_device == '''mps''' , '''Gradient checkpointing skipped on MPS''' ) def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' __a , __a = self.prepare_init_args_and_inputs_for_common() __a = self.model_class(**_snake_case ) model.to(_snake_case ) assert not model.is_gradient_checkpointing and model.training __a = model(**_snake_case ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() __a = torch.randn_like(_snake_case ) __a = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing __a = self.model_class(**_snake_case ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(_snake_case ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training __a = model_a(**_snake_case ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() __a = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1E-5 ) __a = dict(model.named_parameters() ) __a = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5E-5 ) ) def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' __a , __a = AutoencoderKL.from_pretrained('''fusing/autoencoder-kl-dummy''' , output_loading_info=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(_snake_case ) __a = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' __a = AutoencoderKL.from_pretrained('''fusing/autoencoder-kl-dummy''' ) __a = model.to(_snake_case ) model.eval() if torch_device == "mps": __a = torch.manual_seed(0 ) else: __a = torch.Generator(device=_snake_case ).manual_seed(0 ) __a = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) __a = image.to(_snake_case ) with torch.no_grad(): __a = model(_snake_case , sample_posterior=_snake_case , generator=_snake_case ).sample __a = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": __a = torch.tensor( [ -4.0_078E-01, -3.8_323E-04, -1.2_681E-01, -1.1_462E-01, 2.0_095E-01, 1.0_893E-01, -8.8_247E-02, -3.0_361E-01, -9.8_644E-03, ] ) elif torch_device == "cpu": __a = torch.tensor( [-0.1352, 0.0878, 0.0419, -0.0818, -0.1069, 0.0688, -0.1458, -0.4446, -0.0026] ) else: __a = torch.tensor( [-0.2421, 0.4642, 0.2507, -0.0438, 0.0682, 0.3160, -0.2018, -0.0727, 0.2485] ) self.assertTrue(torch_all_close(_snake_case , _snake_case , rtol=1E-2 ) ) @slow class __A( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Optional[Any]: '''simple docstring''' return F"""gaussian_noise_s={seed}_shape={'_'.join([str(_snake_case ) for s in shape] )}.npy""" def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE_ ( self , _snake_case=0 , _snake_case=(4, 3, 512, 512) , _snake_case=False ) -> Any: '''simple docstring''' __a = torch.floataa if fpaa else torch.floataa __a = torch.from_numpy(load_hf_numpy(self.get_file_format(_snake_case , _snake_case ) ) ).to(_snake_case ).to(_snake_case ) return image def SCREAMING_SNAKE_CASE_ ( self , _snake_case="CompVis/stable-diffusion-v1-4" , _snake_case=False ) -> Optional[Any]: '''simple docstring''' __a = '''fp16''' if fpaa else None __a = torch.floataa if fpaa else torch.floataa __a = AutoencoderKL.from_pretrained( _snake_case , subfolder='''vae''' , torch_dtype=_snake_case , revision=_snake_case , ) model.to(_snake_case ).eval() return model def SCREAMING_SNAKE_CASE_ ( self , _snake_case=0 ) -> Tuple: '''simple docstring''' if torch_device == "mps": return torch.manual_seed(_snake_case ) return torch.Generator(device=_snake_case ).manual_seed(_snake_case ) @parameterized.expand( [ # fmt: off [33, [-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case ) -> List[Any]: '''simple docstring''' __a = self.get_sd_vae_model() __a = self.get_sd_image(_snake_case ) __a = self.get_generator(_snake_case ) with torch.no_grad(): __a = model(_snake_case , generator=_snake_case , sample_posterior=_snake_case ).sample assert sample.shape == image.shape __a = sample[-1, -2:, -2:, :2].flatten().float().cpu() __a = torch.tensor(expected_slice_mps if torch_device == '''mps''' else expected_slice ) assert torch_all_close(_snake_case , _snake_case , atol=3E-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0513, 0.0289, 1.3799, 0.2166, -0.2573, -0.0871, 0.5103, -0.0999]], [47, [-0.4128, -0.1320, -0.3704, 0.1965, -0.4116, -0.2332, -0.3340, 0.2247]], # fmt: on ] ) @require_torch_gpu def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Tuple: '''simple docstring''' __a = self.get_sd_vae_model(fpaa=_snake_case ) __a = self.get_sd_image(_snake_case , fpaa=_snake_case ) __a = self.get_generator(_snake_case ) with torch.no_grad(): __a = model(_snake_case , generator=_snake_case , sample_posterior=_snake_case ).sample assert sample.shape == image.shape __a = sample[-1, -2:, :2, -2:].flatten().float().cpu() __a = torch.tensor(_snake_case ) assert torch_all_close(_snake_case , _snake_case , atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1609, 0.9866, -0.0487, -0.0777, -0.2716, 0.8368, -0.2055, -0.0814], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2377, 0.1147, 0.1333, -0.4841, -0.2506, -0.0805, -0.0491, -0.4085], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case ) -> Optional[int]: '''simple docstring''' __a = self.get_sd_vae_model() __a = self.get_sd_image(_snake_case ) with torch.no_grad(): __a = model(_snake_case ).sample assert sample.shape == image.shape __a = sample[-1, -2:, -2:, :2].flatten().float().cpu() __a = torch.tensor(expected_slice_mps if torch_device == '''mps''' else expected_slice ) assert torch_all_close(_snake_case , _snake_case , atol=3E-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2051, -0.1803, -0.2311, -0.2114, -0.3292, -0.3574, -0.2953, -0.3323]], [37, [-0.2632, -0.2625, -0.2199, -0.2741, -0.4539, -0.4990, -0.3720, -0.4925]], # fmt: on ] ) @require_torch_gpu def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Optional[int]: '''simple docstring''' __a = self.get_sd_vae_model() __a = self.get_sd_image(_snake_case , shape=(3, 4, 64, 64) ) with torch.no_grad(): __a = model.decode(_snake_case ).sample assert list(sample.shape ) == [3, 3, 512, 512] __a = sample[-1, -2:, :2, -2:].flatten().cpu() __a = torch.tensor(_snake_case ) assert torch_all_close(_snake_case , _snake_case , atol=1E-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0369, 0.0207, -0.0776, -0.0682, -0.1747, -0.1930, -0.1465, -0.2039]], [16, [-0.1628, -0.2134, -0.2747, -0.2642, -0.3774, -0.4404, -0.3687, -0.4277]], # fmt: on ] ) @require_torch_gpu def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Optional[Any]: '''simple docstring''' __a = self.get_sd_vae_model(fpaa=_snake_case ) __a = self.get_sd_image(_snake_case , shape=(3, 4, 64, 64) , fpaa=_snake_case ) with torch.no_grad(): __a = model.decode(_snake_case ).sample assert list(sample.shape ) == [3, 3, 512, 512] __a = sample[-1, -2:, :2, -2:].flatten().float().cpu() __a = torch.tensor(_snake_case ) assert torch_all_close(_snake_case , _snake_case , atol=5E-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='''xformers is not required when using PyTorch 2.0.''' ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Union[str, Any]: '''simple docstring''' __a = self.get_sd_vae_model(fpaa=_snake_case ) __a = self.get_sd_image(_snake_case , shape=(3, 4, 64, 64) , fpaa=_snake_case ) with torch.no_grad(): __a = model.decode(_snake_case ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __a = model.decode(_snake_case ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(_snake_case , _snake_case , atol=1E-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='''xformers is not required when using PyTorch 2.0.''' ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> List[str]: '''simple docstring''' __a = self.get_sd_vae_model() __a = self.get_sd_image(_snake_case , shape=(3, 4, 64, 64) ) with torch.no_grad(): __a = model.decode(_snake_case ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __a = model.decode(_snake_case ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(_snake_case , _snake_case , atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]], [47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]], # fmt: on ] ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Optional[int]: '''simple docstring''' __a = self.get_sd_vae_model() __a = self.get_sd_image(_snake_case ) __a = self.get_generator(_snake_case ) with torch.no_grad(): __a = model.encode(_snake_case ).latent_dist __a = dist.sample(generator=_snake_case ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] __a = sample[0, -1, -3:, -3:].flatten().cpu() __a = torch.tensor(_snake_case ) __a = 3E-3 if torch_device != '''mps''' else 1E-2 assert torch_all_close(_snake_case , _snake_case , atol=_snake_case )
6
0
"""simple docstring""" def __lowercase ( snake_case_ : str ,snake_case_ : str ) ->bool: '''simple docstring''' __A : Optional[int] = len(snake_case_ ) __A : List[str] = len(snake_case_ ) __A : List[Any] = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] __A : Union[str, Any] = True for i in range(snake_case_ ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: __A : Tuple = True if a[i].islower(): __A : Optional[int] = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
351
"""simple docstring""" a_ = { """meter""": """m""", """kilometer""": """km""", """megametre""": """Mm""", """gigametre""": """Gm""", """terametre""": """Tm""", """petametre""": """Pm""", """exametre""": """Em""", """zettametre""": """Zm""", """yottametre""": """Ym""", } # Exponent of the factor(meter) a_ = { """m""": 0, """km""": 3, """Mm""": 6, """Gm""": 9, """Tm""": 12, """Pm""": 15, """Em""": 18, """Zm""": 21, """Ym""": 24, } def __lowercase ( snake_case_ : float ,snake_case_ : str ,snake_case_ : str ) ->float: '''simple docstring''' __A : Tuple = from_type.lower().strip('''s''' ) __A : Optional[int] = to_type.lower().strip('''s''' ) __A : List[str] = UNIT_SYMBOL.get(snake_case_ ,snake_case_ ) __A : Any = UNIT_SYMBOL.get(snake_case_ ,snake_case_ ) if from_sanitized not in METRIC_CONVERSION: __A : int = ( F"""Invalid 'from_type' value: {from_type!r}.\n""" F"""Conversion abbreviations are: {', '.join(snake_case_ )}""" ) raise ValueError(snake_case_ ) if to_sanitized not in METRIC_CONVERSION: __A : str = ( F"""Invalid 'to_type' value: {to_type!r}.\n""" F"""Conversion abbreviations are: {', '.join(snake_case_ )}""" ) raise ValueError(snake_case_ ) __A : Optional[Any] = METRIC_CONVERSION[from_sanitized] __A : Optional[int] = METRIC_CONVERSION[to_sanitized] __A : Union[str, Any] = 1 if from_exponent > to_exponent: __A : Dict = from_exponent - to_exponent else: __A : Union[str, Any] = -(to_exponent - from_exponent) return value * pow(10 ,snake_case_ ) if __name__ == "__main__": from doctest import testmod testmod()
291
0
def UpperCamelCase__ ( A__ , A__ , A__ , A__ , A__ ) -> Dict: if index == number_of_items: return 0 snake_case__ : List[str] = 0 snake_case__ : Dict = 0 snake_case__ : Dict = knapsack(__A , __A , __A , __A , index + 1 ) if weights[index] <= max_weight: snake_case__ : int = values[index] + knapsack( __A , __A , __A , max_weight - weights[index] , index + 1 ) return max(__A , __A ) if __name__ == "__main__": import doctest doctest.testmod()
143
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> List[Any]: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Tuple: requires_backends(cls , ["""flax"""] ) class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> str: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Any: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> int: requires_backends(cls , ["""flax"""] ) class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> Dict: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> int: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> List[Any]: requires_backends(cls , ["""flax"""] ) class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> Optional[Any]: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Optional[int]: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Optional[int]: requires_backends(cls , ["""flax"""] ) class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> Optional[Any]: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> str: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> List[str]: requires_backends(cls , ["""flax"""] ) class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> Optional[int]: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> str: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> int: requires_backends(cls , ["""flax"""] ) class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> List[Any]: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Any: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Dict: requires_backends(cls , ["""flax"""] ) class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> Union[str, Any]: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Dict: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Tuple: requires_backends(cls , ["""flax"""] ) class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> int: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Optional[int]: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> List[str]: requires_backends(cls , ["""flax"""] ) class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> int: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> str: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> str: requires_backends(cls , ["""flax"""] ) class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> int: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Tuple: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Tuple: requires_backends(cls , ["""flax"""] ) class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> Optional[int]: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Tuple: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> Any: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Tuple: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> List[str]: requires_backends(cls , ["""flax"""] )
349
0
def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = len(lowerCamelCase__ ) lowerCamelCase_ = len(lowerCamelCase__ ) lowerCamelCase_ = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] lowerCamelCase_ = True for i in range(lowerCamelCase__ ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: lowerCamelCase_ = True if a[i].islower(): lowerCamelCase_ = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
47
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) __A ={ '''configuration_trocr''': ['''TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TrOCRConfig'''], '''processing_trocr''': ['''TrOCRProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ '''TROCR_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TrOCRForCausalLM''', '''TrOCRPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys __A =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
47
1
"""simple docstring""" import logging from transformers import PretrainedConfig a : Tuple = logging.getLogger(__name__) a : Dict = { '''bertabs-finetuned-cnndm''': '''https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json''', } class __UpperCamelCase ( a__ ): lowerCamelCase : Optional[Any] ="""bertabs""" def __init__( self , lowerCAmelCase__=3_0522 , lowerCAmelCase__=512 , lowerCAmelCase__=6 , lowerCAmelCase__=512 , lowerCAmelCase__=8 , lowerCAmelCase__=512 , lowerCAmelCase__=0.2 , lowerCAmelCase__=6 , lowerCAmelCase__=768 , lowerCAmelCase__=8 , lowerCAmelCase__=2048 , lowerCAmelCase__=0.2 , **lowerCAmelCase__ , ) -> int: super().__init__(**lowerCAmelCase__ ) a : Dict = vocab_size a : str = max_pos a : str = enc_layers a : int = enc_hidden_size a : Tuple = enc_heads a : Dict = enc_ff_size a : List[Any] = enc_dropout a : str = dec_layers a : Dict = dec_hidden_size a : Union[str, Any] = dec_heads a : Union[str, Any] = dec_ff_size a : List[Any] = dec_dropout
105
"""simple docstring""" import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def _SCREAMING_SNAKE_CASE ( _lowercase : Union[str, Any] ) ->str: '''simple docstring''' a, a : str = image.size a, a : Tuple = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 a : Union[str, Any] = image.resize((w, h) , resample=PIL_INTERPOLATION["lanczos"] ) a : int = np.array(_lowercase ).astype(np.floataa ) / 255.0 a : List[str] = image[None].transpose(0 , 3 , 1 , 2 ) a : Dict = torch.from_numpy(_lowercase ) return 2.0 * image - 1.0 class __UpperCamelCase ( a__ ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) -> str: super().__init__() self.register_modules(vqvae=lowerCAmelCase__ , unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ ) @torch.no_grad() def __call__( self , lowerCAmelCase__ = None , lowerCAmelCase__ = 1 , lowerCAmelCase__ = 100 , lowerCAmelCase__ = 0.0 , lowerCAmelCase__ = None , lowerCAmelCase__ = "pil" , lowerCAmelCase__ = True , ) -> Union[Tuple, ImagePipelineOutput]: if isinstance(lowerCAmelCase__ , PIL.Image.Image ): a : int = 1 elif isinstance(lowerCAmelCase__ , torch.Tensor ): a : str = image.shape[0] else: raise ValueError(f"""`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(lowerCAmelCase__ )}""" ) if isinstance(lowerCAmelCase__ , PIL.Image.Image ): a : Tuple = preprocess(lowerCAmelCase__ ) a, a : Optional[Any] = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image a : Tuple = (batch_size, self.unet.config.in_channels // 2, height, width) a : List[str] = next(self.unet.parameters() ).dtype a : Any = randn_tensor(lowerCAmelCase__ , generator=lowerCAmelCase__ , device=self.device , dtype=lowerCAmelCase__ ) a : Union[str, Any] = image.to(device=self.device , dtype=lowerCAmelCase__ ) # set timesteps and move to the correct device self.scheduler.set_timesteps(lowerCAmelCase__ , device=self.device ) a : int = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler a : str = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] a : str = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) a : List[Any] = {} if accepts_eta: a : Any = eta for t in self.progress_bar(lowerCAmelCase__ ): # concat latents and low resolution image in the channel dimension. a : str = torch.cat([latents, image] , dim=1 ) a : int = self.scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) # predict the noise residual a : Union[str, Any] = self.unet(lowerCAmelCase__ , lowerCAmelCase__ ).sample # compute the previous noisy sample x_t -> x_t-1 a : Tuple = self.scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample # decode the image latents with the VQVAE a : List[Any] = self.vqvae.decode(lowerCAmelCase__ ).sample a : int = torch.clamp(lowerCAmelCase__ , -1.0 , 1.0 ) a : Optional[int] = image / 2 + 0.5 a : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": a : Union[str, Any] = self.numpy_to_pil(lowerCAmelCase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCAmelCase__ )
105
1
"""simple docstring""" from typing import Any class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Optional[Any] , __a : Any ) -> Optional[Any]: _UpperCamelCase : int = data _UpperCamelCase : Union[str, Any] = None def __repr__( self : List[Any] ) -> str: return F'''Node({self.data})''' class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : int ) -> List[Any]: _UpperCamelCase : Tuple = None def __iter__( self : Union[str, Any] ) -> Any: _UpperCamelCase : List[str] = self.head while node: yield node.data _UpperCamelCase : Union[str, Any] = node.next def __len__( self : Any ) -> int: return sum(1 for _ in self ) def __repr__( self : List[str] ) -> str: return "->".join([str(__a ) for item in self] ) def __getitem__( self : Optional[Any] , __a : int ) -> Any: if not 0 <= index < len(self ): raise ValueError("list index out of range." ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self : Dict , __a : int , __a : Any ) -> None: if not 0 <= index < len(self ): raise ValueError("list index out of range." ) _UpperCamelCase : List[str] = self.head for _ in range(__a ): _UpperCamelCase : str = current.next _UpperCamelCase : Any = data def __SCREAMING_SNAKE_CASE ( self : Dict , __a : Any ) -> None: self.insert_nth(len(self ) , __a ) def __SCREAMING_SNAKE_CASE ( self : str , __a : Any ) -> None: self.insert_nth(0 , __a ) def __SCREAMING_SNAKE_CASE ( self : int , __a : int , __a : Any ) -> None: if not 0 <= index <= len(self ): raise IndexError("list index out of range" ) _UpperCamelCase : Any = Node(__a ) if self.head is None: _UpperCamelCase : int = new_node elif index == 0: _UpperCamelCase : List[str] = self.head # link new_node to head _UpperCamelCase : List[Any] = new_node else: _UpperCamelCase : List[str] = self.head for _ in range(index - 1 ): _UpperCamelCase : List[Any] = temp.next _UpperCamelCase : Any = temp.next _UpperCamelCase : List[Any] = new_node def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> None: # print every node data print(self ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: return self.delete_nth(0 ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: # delete from tail return self.delete_nth(len(self ) - 1 ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : int = 0 ) -> Any: if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError("List index out of range." ) _UpperCamelCase : str = self.head # default first node if index == 0: _UpperCamelCase : Dict = self.head.next else: _UpperCamelCase : Tuple = self.head for _ in range(index - 1 ): _UpperCamelCase : Tuple = temp.next _UpperCamelCase : Any = temp.next _UpperCamelCase : Optional[Any] = temp.next.next return delete_node.data def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> bool: return self.head is None def __SCREAMING_SNAKE_CASE ( self : Dict ) -> None: _UpperCamelCase : Union[str, Any] = None _UpperCamelCase : Dict = self.head while current: # Store the current node's next node. _UpperCamelCase : List[Any] = current.next # Make the current node's next point backwards _UpperCamelCase : Tuple = prev # Make the previous node be the current node _UpperCamelCase : Dict = current # Make the current node the next node (to progress iteration) _UpperCamelCase : Optional[int] = next_node # Return prev in order to put the head at the end _UpperCamelCase : int = prev def lowercase__ ( ) -> None: """simple docstring""" _UpperCamelCase : Tuple = LinkedList() assert linked_list.is_empty() is True assert str(lowercase_ ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(lowercase_ ) == i linked_list.insert_nth(lowercase_ ,i + 1 ) assert str(lowercase_ ) == "->".join(str(lowercase_ ) for i in range(1 ,11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(lowercase_ ) == "->".join(str(lowercase_ ) for i in range(0 ,12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(lowercase_ ) == 9 assert str(lowercase_ ) == "->".join(str(lowercase_ ) for i in range(1 ,10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 ,9 ) ) is True for i in range(0 ,9 ): _UpperCamelCase : Optional[int] = -i assert all(linked_list[i] == -i for i in range(0 ,9 ) ) is True linked_list.reverse() assert str(lowercase_ ) == "->".join(str(lowercase_ ) for i in range(-8 ,1 ) ) def lowercase__ ( ) -> None: """simple docstring""" _UpperCamelCase : Optional[int] = [ -9, 100, Node(77_345_112 ), "dlrow olleH", 7, 5_555, 0, -192.5_5555, "Hello, world!", 77.9, Node(10 ), None, None, 12.20, ] _UpperCamelCase : Union[str, Any] = LinkedList() for i in test_input: linked_list.insert_tail(lowercase_ ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(lowercase_ ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head _UpperCamelCase : Optional[int] = linked_list.delete_head() assert result == -9 assert ( str(lowercase_ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail _UpperCamelCase : Union[str, Any] = linked_list.delete_tail() assert result == 12.2 assert ( str(lowercase_ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list _UpperCamelCase : int = linked_list.delete_nth(10 ) assert result is None assert ( str(lowercase_ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node("Hello again, world!" ) ) assert ( str(lowercase_ ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(lowercase_ ) assert ( str(lowercase_ ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(lowercase_ ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def lowercase__ ( ) -> Tuple: """simple docstring""" from doctest import testmod testmod() _UpperCamelCase : Union[str, Any] = LinkedList() linked_list.insert_head(input("Inserting 1st at head " ).strip() ) linked_list.insert_head(input("Inserting 2nd at head " ).strip() ) print("\nPrint list:" ) linked_list.print_list() linked_list.insert_tail(input("\nInserting 1st at tail " ).strip() ) linked_list.insert_tail(input("Inserting 2nd at tail " ).strip() ) print("\nPrint list:" ) linked_list.print_list() print("\nDelete head" ) linked_list.delete_head() print("Delete tail" ) linked_list.delete_tail() print("\nPrint list:" ) linked_list.print_list() print("\nReverse linked list" ) linked_list.reverse() print("\nPrint list:" ) linked_list.print_list() print("\nString representation of linked list:" ) print(lowercase_ ) print("\nReading/changing Node data using indexing:" ) print(F'''Element at Position 1: {linked_list[1]}''' ) _UpperCamelCase : Union[str, Any] = input("Enter New Value: " ).strip() print("New list:" ) print(lowercase_ ) print(F'''length of linked_list is : {len(lowercase_ )}''' ) if __name__ == "__main__": main()
310
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL lowerCamelCase__ = logging.get_logger(__name__) def lowercase__ ( lowercase_ ) -> List[List[ImageInput]]: """simple docstring""" if isinstance(lowercase_ ,(list, tuple) ) and isinstance(videos[0] ,(list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(lowercase_ ,(list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(lowercase_ ): return [[videos]] raise ValueError(F'''Could not make batched video from {videos}''' ) class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :str = ["pixel_values"] def __init__( self : List[str] , __a : bool = True , __a : Dict[str, int] = None , __a : PILImageResampling = PILImageResampling.BILINEAR , __a : bool = True , __a : Dict[str, int] = None , __a : bool = True , __a : Union[int, float] = 1 / 255 , __a : bool = True , __a : bool = True , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , **__a : List[Any] , ) -> None: super().__init__(**__a ) _UpperCamelCase : Union[str, Any] = size if size is not None else {"shortest_edge": 256} _UpperCamelCase : List[Any] = get_size_dict(__a , default_to_square=__a ) _UpperCamelCase : int = crop_size if crop_size is not None else {"height": 224, "width": 224} _UpperCamelCase : Optional[Any] = get_size_dict(__a , param_name="crop_size" ) _UpperCamelCase : str = do_resize _UpperCamelCase : Dict = size _UpperCamelCase : int = do_center_crop _UpperCamelCase : int = crop_size _UpperCamelCase : Optional[Any] = resample _UpperCamelCase : Dict = do_rescale _UpperCamelCase : Any = rescale_factor _UpperCamelCase : Any = offset _UpperCamelCase : Union[str, Any] = do_normalize _UpperCamelCase : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCamelCase : str = image_std if image_std is not None else IMAGENET_STANDARD_STD def __SCREAMING_SNAKE_CASE ( self : Any , __a : np.ndarray , __a : Dict[str, int] , __a : PILImageResampling = PILImageResampling.BILINEAR , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Tuple , ) -> np.ndarray: _UpperCamelCase : Any = get_size_dict(__a , default_to_square=__a ) if "shortest_edge" in size: _UpperCamelCase : str = get_resize_output_image_size(__a , size["shortest_edge"] , default_to_square=__a ) elif "height" in size and "width" in size: _UpperCamelCase : Any = (size["height"], size["width"]) else: raise ValueError(F'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) return resize(__a , size=__a , resample=__a , data_format=__a , **__a ) def __SCREAMING_SNAKE_CASE ( self : Dict , __a : np.ndarray , __a : Dict[str, int] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Optional[int] , ) -> np.ndarray: _UpperCamelCase : List[Any] = get_size_dict(__a ) if "height" not in size or "width" not in size: raise ValueError(F'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(__a , size=(size["height"], size["width"]) , data_format=__a , **__a ) def __SCREAMING_SNAKE_CASE ( self : Dict , __a : np.ndarray , __a : Union[int, float] , __a : bool = True , __a : Optional[Union[str, ChannelDimension]] = None , **__a : List[str] , ) -> Optional[Any]: _UpperCamelCase : Any = image.astype(np.floataa ) if offset: _UpperCamelCase : Dict = image - (scale / 2) return rescale(__a , scale=__a , data_format=__a , **__a ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : np.ndarray , __a : Union[float, List[float]] , __a : Union[float, List[float]] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Union[str, Any] , ) -> np.ndarray: return normalize(__a , mean=__a , std=__a , data_format=__a , **__a ) def __SCREAMING_SNAKE_CASE ( self : Any , __a : ImageInput , __a : bool = None , __a : Dict[str, int] = None , __a : PILImageResampling = None , __a : bool = None , __a : Dict[str, int] = None , __a : bool = None , __a : float = None , __a : bool = None , __a : bool = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> np.ndarray: if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) if offset and not do_rescale: raise ValueError("For offset, do_rescale must also be set to True." ) # All transformations expect numpy arrays. _UpperCamelCase : Optional[Any] = to_numpy_array(__a ) if do_resize: _UpperCamelCase : Any = self.resize(image=__a , size=__a , resample=__a ) if do_center_crop: _UpperCamelCase : Dict = self.center_crop(__a , size=__a ) if do_rescale: _UpperCamelCase : Union[str, Any] = self.rescale(image=__a , scale=__a , offset=__a ) if do_normalize: _UpperCamelCase : int = self.normalize(image=__a , mean=__a , std=__a ) _UpperCamelCase : str = to_channel_dimension_format(__a , __a ) return image def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : ImageInput , __a : bool = None , __a : Dict[str, int] = None , __a : PILImageResampling = None , __a : bool = None , __a : Dict[str, int] = None , __a : bool = None , __a : float = None , __a : bool = None , __a : bool = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[str, TensorType]] = None , __a : ChannelDimension = ChannelDimension.FIRST , **__a : List[Any] , ) -> PIL.Image.Image: _UpperCamelCase : List[str] = do_resize if do_resize is not None else self.do_resize _UpperCamelCase : Optional[int] = resample if resample is not None else self.resample _UpperCamelCase : str = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCamelCase : str = do_rescale if do_rescale is not None else self.do_rescale _UpperCamelCase : int = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCamelCase : str = offset if offset is not None else self.offset _UpperCamelCase : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize _UpperCamelCase : str = image_mean if image_mean is not None else self.image_mean _UpperCamelCase : Tuple = image_std if image_std is not None else self.image_std _UpperCamelCase : int = size if size is not None else self.size _UpperCamelCase : Tuple = get_size_dict(__a , default_to_square=__a ) _UpperCamelCase : List[str] = crop_size if crop_size is not None else self.crop_size _UpperCamelCase : Optional[int] = get_size_dict(__a , param_name="crop_size" ) if not valid_images(__a ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) _UpperCamelCase : Union[str, Any] = make_batched(__a ) _UpperCamelCase : Optional[Any] = [ [ self._preprocess_image( image=__a , do_resize=__a , size=__a , resample=__a , do_center_crop=__a , crop_size=__a , do_rescale=__a , rescale_factor=__a , offset=__a , do_normalize=__a , image_mean=__a , image_std=__a , data_format=__a , ) for img in video ] for video in videos ] _UpperCamelCase : List[Any] = {"pixel_values": videos} return BatchFeature(data=__a , tensor_type=__a )
310
1
import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class snake_case__ ( lowerCamelCase__ ): lowercase__ : torch.FloatTensor lowercase__ : Optional[torch.FloatTensor] = None def UpperCamelCase ( _A, _A=0.999, _A="cosine", ): """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(_A ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_A ): return math.exp(t * -12.0 ) else: raise ValueError(f'Unsupported alpha_tranform_type: {alpha_transform_type}' ) __magic_name__ : Optional[int] = [] for i in range(__lowerCAmelCase ): __magic_name__ : Tuple = i / num_diffusion_timesteps __magic_name__ : List[Any] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__lowerCAmelCase ) / alpha_bar_fn(__lowerCAmelCase ), __lowerCAmelCase ) ) return torch.tensor(__lowerCAmelCase, dtype=torch.floataa ) class snake_case__ ( lowerCamelCase__ , lowerCamelCase__ ): @register_to_config def __init__( self , lowerCAmelCase__ = 10_00 , lowerCAmelCase__ = "fixed_small_log" , lowerCAmelCase__ = True , lowerCAmelCase__ = 1.0 , lowerCAmelCase__ = "epsilon" , lowerCAmelCase__ = "squaredcos_cap_v2" , ) -> Optional[int]: if beta_schedule != "squaredcos_cap_v2": raise ValueError("""UnCLIPScheduler only supports `beta_schedule`: \'squaredcos_cap_v2\'""" ) __magic_name__ : Any = betas_for_alpha_bar(snake_case__ ) __magic_name__ : Optional[int] = 1.0 - self.betas __magic_name__ : Optional[int] = torch.cumprod(self.alphas , dim=0 ) __magic_name__ : Optional[int] = torch.tensor(1.0 ) # standard deviation of the initial noise distribution __magic_name__ : Optional[Any] = 1.0 # setable values __magic_name__ : Any = None __magic_name__ : Union[str, Any] = torch.from_numpy(np.arange(0 , snake_case__ )[::-1].copy() ) __magic_name__ : List[str] = variance_type def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> torch.FloatTensor: return sample def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Optional[int]: __magic_name__ : Union[str, Any] = num_inference_steps __magic_name__ : Any = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) __magic_name__ : List[Any] = (np.arange(0 , snake_case__ ) * step_ratio).round()[::-1].copy().astype(np.intaa ) __magic_name__ : Tuple = torch.from_numpy(snake_case__ ).to(snake_case__ ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None ) -> Tuple: if prev_timestep is None: __magic_name__ : str = t - 1 __magic_name__ : Optional[int] = self.alphas_cumprod[t] __magic_name__ : Dict = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one __magic_name__ : Dict = 1 - alpha_prod_t __magic_name__ : int = 1 - alpha_prod_t_prev if prev_timestep == t - 1: __magic_name__ : List[str] = self.betas[t] else: __magic_name__ : Dict = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample __magic_name__ : Dict = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: __magic_name__ : int = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": __magic_name__ : Union[str, Any] = torch.log(torch.clamp(snake_case__ , min=1e-2_0 ) ) __magic_name__ : Optional[Any] = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler __magic_name__ : Any = variance.log() __magic_name__ : Dict = beta.log() __magic_name__ : Dict = (predicted_variance + 1) / 2 __magic_name__ : List[Any] = frac * max_log + (1 - frac) * min_log return variance def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__=None , lowerCAmelCase__ = True , ) -> Union[UnCLIPSchedulerOutput, Tuple]: __magic_name__ : str = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": __magic_name__ : Union[str, Any] = torch.split(snake_case__ , sample.shape[1] , dim=1 ) else: __magic_name__ : int = None # 1. compute alphas, betas if prev_timestep is None: __magic_name__ : List[str] = t - 1 __magic_name__ : Optional[Any] = self.alphas_cumprod[t] __magic_name__ : List[Any] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one __magic_name__ : Union[str, Any] = 1 - alpha_prod_t __magic_name__ : int = 1 - alpha_prod_t_prev if prev_timestep == t - 1: __magic_name__ : List[Any] = self.betas[t] __magic_name__ : Tuple = self.alphas[t] else: __magic_name__ : str = 1 - alpha_prod_t / alpha_prod_t_prev __magic_name__ : Optional[int] = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": __magic_name__ : Tuple = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": __magic_name__ : Union[str, Any] = model_output else: raise ValueError( F'prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`' """ for the UnCLIPScheduler.""" ) # 3. Clip "predicted x_0" if self.config.clip_sample: __magic_name__ : Dict = torch.clamp( snake_case__ , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __magic_name__ : Optional[Any] = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t __magic_name__ : List[str] = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __magic_name__ : List[Any] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise __magic_name__ : List[Any] = 0 if t > 0: __magic_name__ : str = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=snake_case__ , device=model_output.device ) __magic_name__ : Optional[int] = self._get_variance( snake_case__ , predicted_variance=snake_case__ , prev_timestep=snake_case__ , ) if self.variance_type == "fixed_small_log": __magic_name__ : Optional[Any] = variance elif self.variance_type == "learned_range": __magic_name__ : Tuple = (0.5 * variance).exp() else: raise ValueError( F'variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`' """ for the UnCLIPScheduler.""" ) __magic_name__ : List[Any] = variance * variance_noise __magic_name__ : int = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=snake_case__ , pred_original_sample=snake_case__ ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) -> torch.FloatTensor: __magic_name__ : str = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) __magic_name__ : int = timesteps.to(original_samples.device ) __magic_name__ : Union[str, Any] = alphas_cumprod[timesteps] ** 0.5 __magic_name__ : Any = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): __magic_name__ : List[str] = sqrt_alpha_prod.unsqueeze(-1 ) __magic_name__ : Any = (1 - alphas_cumprod[timesteps]) ** 0.5 __magic_name__ : Optional[int] = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): __magic_name__ : int = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) __magic_name__ : Any = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
342
import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __snake_case ( lowerCamelCase__ , unittest.TestCase ): # FIXME: add fast tests pass @nightly @require_onnxruntime @require_torch_gpu class __snake_case ( unittest.TestCase ): @property def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' UpperCAmelCase : List[Any] =ort.SessionOptions() UpperCAmelCase : Optional[int] =False return options def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' UpperCAmelCase : int =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) UpperCAmelCase : Optional[Any] =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) UpperCAmelCase : List[str] =OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , safety_checker=snake_case__ , feature_extractor=snake_case__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=snake_case__ ) UpperCAmelCase : Dict ='''A red cat sitting on a park bench''' UpperCAmelCase : int =np.random.RandomState(0 ) UpperCAmelCase : Any =pipe( prompt=snake_case__ , image=snake_case__ , mask_image=snake_case__ , guidance_scale=7.5 , num_inference_steps=10 , generator=snake_case__ , output_type='''np''' , ) UpperCAmelCase : Dict =output.images UpperCAmelCase : Optional[int] =images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) UpperCAmelCase : Tuple =np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : List[str] =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) UpperCAmelCase : Tuple =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) UpperCAmelCase : List[str] =LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , subfolder='''scheduler''' , revision='''onnx''' ) UpperCAmelCase : int =OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , scheduler=snake_case__ , safety_checker=snake_case__ , feature_extractor=snake_case__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=snake_case__ ) UpperCAmelCase : Union[str, Any] ='''A red cat sitting on a park bench''' UpperCAmelCase : int =np.random.RandomState(0 ) UpperCAmelCase : str =pipe( prompt=snake_case__ , image=snake_case__ , mask_image=snake_case__ , guidance_scale=7.5 , num_inference_steps=20 , generator=snake_case__ , output_type='''np''' , ) UpperCAmelCase : Dict =output.images UpperCAmelCase : int =images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) UpperCAmelCase : Union[str, Any] =np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
348
0
def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ): """simple docstring""" if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) snake_case = str(bin(UpperCamelCase_ ) )[2:] # remove the leading "0b" snake_case = str(bin(UpperCamelCase_ ) )[2:] # remove the leading "0b" snake_case = max(len(UpperCamelCase_ ) ,len(UpperCamelCase_ ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(UpperCamelCase_ ) ,b_binary.zfill(UpperCamelCase_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
360
import re from filelock import FileLock try: import nltk _SCREAMING_SNAKE_CASE : Union[str, Any] = True except (ImportError, ModuleNotFoundError): _SCREAMING_SNAKE_CASE : Optional[Any] = False if NLTK_AVAILABLE: with FileLock(".lock") as lock: nltk.download("punkt", quiet=True) def UpperCAmelCase__ (UpperCamelCase_ ): """simple docstring""" re.sub('''<n>''' ,'''''' ,UpperCamelCase_ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(UpperCamelCase_ ) )
213
0